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A B S T R A C T

Brain functional networks identified from fMRI data can provide potential biomarkers for brain disorders. Group
independent component analysis (GICA) is popular for extracting brain functional networks from multiple
subjects. In GICA, different strategies exist for reconstructing subject-specific networks from the group-level
networks. However, it is unknown whether these strategies have different sensitivities to group differences and
abilities in distinguishing patients. Among GICA, spatio-temporal regression (STR) and spatially constrained ICA
approaches such as group information guided ICA (GIG-ICA) can be used to propagate components (indicating
networks) to a new subject that is not included in the original subjects. In this study, based on the same a priori
network maps, we reconstructed subject-specific networks using these two methods separately from resting-state
fMRI data of 151 schizophrenia patients (SZs) and 163 healthy controls (HCs). We investigated group differences
in the estimated functional networks and the functional network connectivity (FNC) obtained by each method.
The networks were also used as features in a cross-validated support vector machine (SVM) for classifying SZs
and HCs. We selected features using different strategies to provide a comprehensive comparison between the two
methods. GIG-ICA generally showed greater sensitivity in statistical analysis and better classification perfor-
mance (accuracy 76.45 ± 8.9%, sensitivity 0.74 ± 0.11, specificity 0.79 ± 0.11) than STR (accuracy
67.45 ± 8.13%, sensitivity 0.65 ± 0.11, specificity 0.71 ± 0.11). Importantly, results were also consistent
when applied to an independent dataset including 82 HCs and 82 SZs. Our work suggests that the functional
networks estimated by GIG-ICA are more sensitive to group differences, and GIG-ICA is promising for identifying
image-derived biomarkers of brain disease.

1. Introduction

Functional brain networks derived from functional magnetic re-
sonance imaging (fMRI) data may serve as potential biomarkers for
many mental disorders. One of the most widely applied multivariate
methods for estimating brain functional networks is independent

component analysis (ICA). Spatial ICA (Calhoun et al., 2001; Mckeown
et al., 1998), which models the fMRI data as a combination of spatially
independent sources with each being related to a time course (TC), has
been widely applied in functional MRI studies. Unlike traditional
techniques such as general lineal model (GLM) and region of interest
based methods, ICA requires no prior information in determining the
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regions and time series. Another advantage of ICA is that it can analyze
multiple brain networks at the same time by considering the whole
fMRI data, while traditional methods need to set separate prior in-
formation for extracting each of the multiple networks under experi-
ment. ICA can also denoise the fMRI data by decomposing artifacts as
independent components, thereby extracting more meaningful compo-
nents. However, the biggest challenge in ICA comes from the arbitrary
order of the obtained components. This limitation makes the functional
networks of different subjects, computed by performing individual ICA
on each subject's fMRI data, not directly corresponding across subjects.
Since network correspondence is necessary for statistical analysis and
classification in multi-subject studies, estimating accurate subject-spe-
cific networks with the same biological meaning across subjects is a
key.

Group ICA (GICA) has been proposed to solve the problem of es-
tablishing subject correspondence in multi-subject studies. It involves
performing ICA on the group data by temporal concatenation
(Beckmann et al., 2009; Calhoun et al., 2001), spatial concatenation
(Svensén et al., 2002) or tensor organization (Beckmann and Smith,
2005; Lee et al., 2008). The temporal concatenation is by far the most
widely used approach and allows for unique TCs for each subject and
while assuming spatial stationarity of the maps, still does allow for
considerable variability in the single subject maps (Allen et al., 2012).
However, the degree to which the trade-off between a group model and
an individual subject representation is traversed depends on the specific
algorithm being used (Erhardt et al., 2011; Michael et al., 2014). In
fMRI studies, the temporal concatenation method is widely applied
(Allen et al., 2011; Calhoun and Adali, 2012; Schmithorst and Holland,
2004; Smith et al., 2013). Typical temporal concatenation-based group
ICA approaches perform principal component analysis (PCA) dimension
reduction on fMRI data followed by ICA, which generates group-level
independent components. Next, a back-reconstruction step is im-
plemented to estimate subject-specific components and their associated
subject-specific TCs. The widely-used Group ICA of fMRI toolbox (GIFT)
incorporates several methods for the back-reconstruction step, in-
cluding three PCA-based approaches (GICA1, GICA2 and GICA3)
(Calhoun, 2004), a least-squares based approach called spatio-temporal
regression (STR) or dual regression (Beckmann et al., 2009; Erhardt
et al., 2011), and two spatially constrained approaches (Lin et al., 2010)
including group information guided ICA (GIG-ICA) which incorporates
a multiple-objective function optimization approach (Du and Fan,
2013). Among the strategies implemented in the GIFT toolbox, both
STR and GIG-ICA can be used to estimate the subject-specific networks
for additional subjects who are not used for computation of the group-
level components, while PCA-based methods cannot be as easily ex-
tended this way. GIG-ICA simultaneously optimizes the independence
among individual networks of each subject and the dependence of
networks across subjects, providing a nice balance between the group
model (matching of components) and the individual subject specificity
of the estimated networks, including well estimated resting-state net-
works in the context of highly subject specific artifacts (Du et al.,
2016a). Spatial networks derived from ICA analysis of fMRI data are
extensively used as features in classification of mental illness such as
schizophrenia (Castro et al., 2011; Du et al., 2012). For classification
(or diagnosis) of new subjects, it is necessary to extract accurate in-
dividual networks while still preserving network correspondence with
previous subjects.

Schizophrenia is a chronic illness associated with widespread
changes in brain connectivity. Meda et al. reported abnormal resting-
state functional network connectivity (FNC) in schizophrenia and psy-
chotic bipolar patients (Meda et al., 2012). Temporally coherent brain
networks such as temporal lobe and default mode networks have been
shown to reliably discriminate subjects with bipolar disorder, chronic
schizophrenia and healthy controls (Calhoun et al., 2008). The inter-
actions among brain networks have also been implicated in healthy
population and various clinical groups. It has been shown that patients

with schizophrenia tend to linger in a state of weak connectivity at rest
(Damaraju et al., 2014a; Du et al., 2016b). Similar findings have been
reported in patients with bipolar disorder (Rashid et al., 2014). Group
ICA methods have also identified potential biomarkers for schizo-
phrenia, bipolar disorder and schizoaffective disorder (Du et al., 2014,
2015a, b, 2016b).

Group ICA methods have been widely applied for investigating
functional network biomarkers in the fMRI field. Whenever fMRI re-
searchers encounter a new dataset, a method such as STR or GIG-ICA
may allow them to conveniently estimate the subject-level networks
using prior network reference maps. Both STR and GIG-ICA have been
applied to explore brain disorders, while STR is more popular. For ex-
ample, Skåtun et al. used pairwise STR-estimated voxel time course
correlation as features in a linear discriminant analysis framework to
predict schizophrenia with 76.7% accuracy (Skåtun et al., 2017). Vos
et al. used STR-estimated features such as static FNC, dynamic FNC and
ALFF and an elastic net logistic regressor to classify Alzheimer's disease
patients with 85% accuracy (de Vos et al., 2018). GIG-ICA, as a rela-
tively new and less-known technique for back-reconstruction of in-
dividual networks, also has been applied for distinguishing disorders.
Osuch et al. used the similarity matrix of GIG-ICA estimated subject-
specific networks as features in an SVM-based framework to classify
bipolar disorder patients from major depressive disorder patients with
92.4% accuracy (Osuch et al., 2018). In another study, Kam et al. used
GIG-ICA estimated subject-specific networks in a convolutional neural
network (CNN) based classifier to predict early mild cognitive impair-
ment (MCI) with 74.23% accuracy (Kam et al., 2018). However, to the
best of our knowledge, no studies have directly compared back-re-
construction approaches in the context of biomarker detection from real
data. Thus, it is unclear which back-reconstruction method is more
sensitive in revealing subtle differences between groups or subjects
when the goal is to translate the results to new datasets (e.g. for an
identified set of biomarkers). In this study we hope to provide some
important guidance on this issue.

In this paper, we compare the STR and GIG-ICA methods in terms of
their ability to identify brain network-based biomarkers that can dis-
criminate healthy controls (HCs) from schizophrenia patients (SZs).
GIG-ICA could be more sensitive, as the use of STR on new subjects
assumes fixed component maps (Joel et al., 2011), whereas GIG-ICA re-
optimizes the independence of the components given the new data,
while also preserving the component ordering. In our study, we first
estimated the group-level components from the publicly available
Functional Biomedical Informatics Research Network (FBIRN) dataset
using ICA. Using these group-level networks as prior, we used both STR
and GIG-ICA methods to back-reconstruct the subject-specific func-
tional networks from the fMRI data of the FBIRN dataset and then in-
vestigated the group differences on the spatial networks and the FNC
for each method. This paper includes part of our preliminary work
(Salman et al., 2017). In our present paper, we comprehensively com-
pared the two methods by performing the support vector machine
(SVM) technique to classify HCs and SZs in the FBIRN dataset using the
networks as features. To corroborate this classification outcome, we
used the same priors to estimate subject-specific networks from the
Center of Biomedical Research Excellence (COBRE) dataset consisting
of HC and SZ samples independent of the FBIRN dataset, and then
performed classification on it.

2. Materials and methods

2.1. Materials

2.1.1. Primary dataset (FBIRN)
We employed data from the FBIRN phase-III study. Resting-state

fMRI data were originally collected from 186 HCs and 176 SZs. The
subjects were age and gender-matched. The SZs were diagnosed using
Structured Clinical Interview for DSM-IV-TR Axis I Disorders (First
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et al., 2002). The exclusion criteria for the SZs were based on a current
or past history of major medical illness and having significant extra-
pyramidal symptoms or tardive dyskinesia or significant changes in
psychotropic medications in the previous two months before the scan.
Any healthy subject with a current or past history of major neurological
or psychiatric medical illness, or a first degree relative with a psychotic
illness diagnosis was also excluded. Subjects were also excluded if they
did not have any of the following: normal hearing levels, sufficient
eyesight to see visual displays, IQ>75, fluency in English and ability
to perform the study tasks, or if they had previous head injury or pro-
longed unconsciousness, substance or alcohol dependence, migraine
treatments or MRI contradictions. In the resting-state fMRI scan, 162
volumes of echo planar imaging (EPI) BOLD fMRI data were collected
on 3 T scanners in eyes closed condition with the following imaging
parameters: FOV=220mm×220mm (64×64 matrix), TR =2 s, TE
=30ms, flip angle =770, 32 sequential ascending axial slices with
thickness of 4mm and 1mm skip (Keator et al., 2016).

2.1.2. Validation dataset (COBRE)
The independent dataset used in external classification evaluation

came from the COBRE study conducted at the Mind Research Network
(MRN). Resting-state fMRI data of 100 HCs and 87 SZs consisted of 149
volumes of T2*-weighted functional images each, acquired using a
gradient-echo EPI sequence: TR= 2 s, TE=29ms, flip angle= 75°,
number of axial slices= 33 in sequential ascending order, slice thick-
ness= 3.5 mm, slice gap=1.05mm, field of view=240mm, matrix
size= 64×64 and voxel size= 3.75mm×3.75mm×4.55mm.

2.1.3. Medication information
We had anti-psychotic data available for 129 patients in the primary

FBIRN dataset and 76 patients in the secondary COBRE dataset. We
converted these anti-psychotic data to their respective chlorpromazine
(CPZ) dosage equivalents for the patients (separately for each dataset)
with available dose-level medication data, as specified by Andreasen
et al. (Andreasen et al., 2010). As shown in Table 1, there is no sig-
nificant differences between the two datasets in the medication, tested
by two-tailed two-sample t-test (p-value= 0.08).

2.2. Methods

2.2.1. Data preprocessing
FMRI data of FBIRN were preprocessed using the SPM (Friston,

2007) and AFNI (Cox, 1996) toolboxes. The initial 6 volumes from each
scan were discarded to allow for equilibration of T1-related signal sa-
turation. Next, the signal-fluctuation-to-noise ratio (SFNR) of all sub-
jects was calculated (Friedman et al., 2006). In addition, the INRIAlign
(Freire et al., 2002) toolbox in SPM was used to perform rigid body
motion correction, which produced a measure of maximum root mean
square (RMS) translation. All subjects with SFNR<150 and RMS
translation>4mm were excluded (Damaraju et al., 2014a). The re-
maining 314 subjects, consisting of 163 HCs (mean age 36.9, 46 fe-
males) and 151 SZs (mean age 37.8, 37 females) were included for
further analysis. Next, slice-timing correction was performed to account
for timing difference in slice acquisition using the middle slice as re-
ference (Damaraju et al., 2014a). The fMRI data were then despiked
using AFNI's 3dDespike algorithm to reduce the effect of outliers

(Damaraju et al., 2014b). The images were subsequently spatially
normalized to the standard Montreal Neurological Institute (MNI) space
and resampled to 3mm×3mm×3mm voxels. Finally, the images
were smoothed to 6mm full width at half maximum (FWHM). Addi-
tional details about data preprocessing can be found in (Damaraju et al.,
2014a). The same preprocessing procedure as above was used while
preprocessing the fMRI data of COBRE. After preprocessing, a total of
164 subjects (82 HCs, 82 SZs) out of 187 were retained for further
analysis.

2.2.2. Group-level component computation
In this work, we used the 47 group-level network-related compo-

nents from our previous study (Damaraju et al., 2014a) as prior, ob-
tained from the data of FBIRN. These group-level networks were esti-
mated by performing group-level ICA on the temporal concatenation of
preprocessed fMRI data of all subjects (Calhoun et al., 2001). The
procedure is presented in Fig. 1(A) which includes two steps: (1) per-
forming the subject-level principal component analysis (PCA) with the
number of principal components as 120 (PC1=120) on each subject's
fMRI data and group-level PCA with the number of principal compo-
nents as 100 (PC2= 100) on the reduced and concatenated data, and
(2) performing ICA with Infomax (Bell and Sejnowski, 1995) on the
PCA-reduced data, resulting in group-level components. The relatively
high number of subject-level principal components (120) were chosen
because it has been shown to stabilize the subsequent back-re-
construction (Erhardt et al., 2011). The high number of group-level
components (100) has also shown to produce refined networks which
correspond well to known anatomical and functional segmentation
(Allen et al., 2011). To ensure the stability of IC estimation, ICA was
repeated 20 times in ICASSO (Ma et al., 2011) and the 100 most reliable
components were identified as the final group-level components. Fi-
nally, the 100 independent components were evaluated to identify the
resting-state networks. The criteria for identifying the networks were:
(1) the peak activation clusters of a network should be in grey matter,
(2) there should be minimal overlap with known vascular, suscept-
ibility, ventricular and edge regions, and (3) the mean power spectra of
the networks should show higher low frequency spectral power. Fol-
lowing this selection procedure, 47 resting-state networks were ob-
tained out of 100 spatially independent components. More details in-
cluding the network labels and coordinates of peak activation of these
networks can be found in previous work (Damaraju et al., 2014a) and
Supplementary Table S1.

2.2.3. Reconstruction of individual networks using STR and GIG-ICA
For the FBIRN data, the back-reconstruction step involves esti-

mating subject-specific networks and their associated time courses
(TCs) for each of the 314 subjects based on the selected 47 group-level
networks. In this study, we performed back-reconstruction using spatio-
temporal regression (STR) and group information guided ICA (GIG-ICA)
separately. Both methods can be implemented using the GIFT toolbox
(Calhoun, 2004). Note that the subject-specific networks reconstructed
by both methods were based on the same prior networks, and thereby
were corresponding across individual networks as well as comparable
across the two methods.

STR uses a least squares approach to estimate subject-specific net-
works and their associated TCs (Beckmann et al., 2009; Erhardt et al.,
2011). This approach is as follows. Let Yi=RiS+ E1i, where Yi is the
T× V matrix for subject i (i=1, 2,… , M) after preprocessing, T in-
dicates time points and V is the number of voxels, Ri is the subject-
specific TC, S is the matrix of estimated group-level networks and E1i

indicates the error. In the first step, as shown in Fig. 1(C1), least squares
estimation for the TC Ri

T gives = −R SS SẎ ( )i
T T

i
T . Next, the subject-spe-

cific networks, Si are estimated from the TCs (Ṙi). Here, the earlier
assumption that all subjects share a common network, is relaxed
(Erhardt et al., 2011). According to Fig. 1(C2), let = +Y R S Ėi i i i2 . Then
least squares estimation for Si gives the subject networks:

Table 1
Patient medication data.

FBIRN study COBRE study

Total SZ patients 151 82
Medicated patients 129 76
Mean CPZ dosage 300.8 351.57
Standard deviation 158.59 246.4
Difference p=0.08
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= −S R R R Ẏ ( ̇ ̇ ) ̇i i
T

i i
T

i. After obtaining the individual Si, each network (row
of Si) is z-scored to zero mean and unit variance.

GIG-ICA using a multi-objective optimization framework is pro-
posed to estimate individual networks (Du and Fan, 2013; Du et al.,
2015b; Du et al., 2017b). Let Sk denote the kth group-level reference IC
(representing one network). The optimization, as depicted in Fig. 1(B),
is

⎧
⎨
⎩

=ma
J S = E G S − E G v

F S = E S S
wx

( ) [ ( )] [ ( )]

( ) [ ]
s. t. 1

i
k

i
k

i
k k

i
k

i
k

2

here, Sik= (wi
k)T · Yi denotes the kth subject-specific IC of the ith subject,

which corresponds to Sk. Yi denotes the random vector of whitened
fMRI data of the ith subject, and wi

k is the unmixing vector. J(Sik), the
negentropy of the estimated Sik with updates on wi

k, serves to measure
the independence of the IC. G(·) is a nonquadratic function and v is a
Gaussian variable with zero mean and unit variance. F(Sik) measures
the similarity between Sk and Sik, with E[ ] denoting the expectation of
variable. Solving the optimization function results in the optimal Sik.
The algorithm automatically generates z-scored Sik, which can be
compared across subjects. Subsequently, the subject-specific TC can be
computed as Ri= Yi ∙ Si+, where Si+ denotes the pseudo-inverse matrix
of the estimated components.

We compared STR and GIG-ICA methods because they allow esti-
mation of new subject-specific networks (and TCs) based on a set of
reference ICs. This ability is particularly important for classification and
application goals. In our study, the Smatrix in STR consists of 47 group-
level networks out of 100 ICs, while Sk in GIG-ICA is kth network from
47 group-level networks. That is to say, we input the same priors (47
networks) and individual-subject fMRI data for both methods in order
to get a fair comparison. However, researchers may argue that the

inclusion of artifactual components would improve the STR estimation.
As a supplementary validation, for the STR method, we also took all
100 ICs as the S matrix for estimating 100 ICs for each subject. We then
selected the 47 subject-specific networks corresponding to the 47
group-level networks in consequent experiments and reported the re-
sults. Note: for the GIG-ICA method, the network computation will not
be affected.

2.2.4. Comparison between STR and GIG-ICA for distinguishing HCs and
SZs

The subject-specific networks and TCs estimated using a back-re-
construction method such as GIG-ICA or STR allows us to perform
group comparison by statistical analyses. The following sections de-
scribe the analyses undertaken to compare the HC vs. SZ group differ-
ences in the functional networks and the functional network con-
nectivity (FNC) for each method. A machine learning method is also
applied to classify HCs and SZs using the spatial networks estimated by
each method, aiming to compare which back-reconstruction strategy
can better differentiate patients and controls at the level of the single-
subject.

2.2.4.1. Comparing group difference in the functional network maps. We
used three different strategies to provide a comprehensive comparison
of subject-level networks estimated by GIG-ICA and STR, as depicted in
Fig. 2. We carried out the following procedure separately for each of the
47 networks. In strategy 1, in the first step we identified the voxels with
significantly positive z-scores (p < 0.01 after Bonferroni correction for
multiple comparisons) using a right-tailed one sample t-test across all
subjects. Then we took an overlap of these significant voxels between
GIG-ICA and STR. This resulted in one common mask for each network.
In the second step, we identified the voxels with significant group
differences (p < 0.05, uncorrected) using a two-tailed two-sample t-

Fig. 1. Method framework of (A) group-level ICA on all subjects' fMRI data to estimate the group-level networks, (B) group information guided ICA (GIG-ICA) and (C)
spatio-temporal regression (STR). (B) and (C) are performed on each subject's fMRI data to estimate the subject-specific networks and time courses.
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test between HC and SZ within this mask. We took another overlap of
these significant voxels to obtain the discriminatory voxels for strategy
1, and noted the t-statistic value (t-stat) at each voxel for GIG-ICA and
STR. For a particular network, some voxels show significantly higher z-
scores in HC than SZ, whereas for the other voxels within the same
network it can be the opposite. The first set of voxels is referred to as
VHC> SZ, whereas the latter is referred to as VHC< SZ. In Strategy 2, no
overlap of significant voxels was taken after one sample t-tests and two
sample t-tests, so there was no common mask. Therefore, the processes
of discriminatory voxel identification for GIG-ICA and STR were
independent. In strategy 3, an overlap of voxels with significantly
positive z-scores was taken after the first step, while the second step
(between-group comparison) was performed for each method
independently.

In the three strategies discussed above, within each network, we
noted the t-stats of the discriminatory voxel z-scores at the second step.
Next we obtained the significant difference between the voxel t-stats
estimated by GIG-ICA and STR using a permutation test at the network
level. In this test, the t-stats obtained using GIG-ICA were assigned
factor= 1 and the ones from STR were assigned factor= 0. The dif-
ference of mean of t-stats with factor= 1 and factor= 0 was noted. We
then permuted the factors 10,000 times and built a distribution of the
observed mean difference. This distribution was used to obtain a p-
value for the mean difference via two-tailed test. The statistical differ-
ence between t-stats obtained from GIG-ICA and STR in each network
was noted.

2.2.4.2. Classification based on the functional network maps. For FBIRN
data, classification was performed using a 10-fold cross-validated

training-testing framework with 100 repeats. In each repeat,
randomly selected 90% of FBIRN data (Ntrain) were used for selecting
features and training a classifier model, and then individual-subject
classification differentiating controls and patients was implemented for
the remaining testing data (Ntest). The framework is described in
Fig. 3(A). Three different strategies (as described in Section 2.2.4.1)
allowed extracting three different sets of discriminatory voxels from
each method for the training data. The corresponding z-scores (in the
subject-specific ICs) were used as the features to train an SVM classifier
with radial basis function (RBF) kernel, which was then used to predict
the testing set of subjects (HC vs. SZ). As SVM is not scale-invariant,
each feature of the training set and testing set were standardized across
subjects separately. The classification method is detailed below.

A C-support vector classifier (C-SVC, C is the regularization para-
meter of the SVM algorithm) with RBF kernel was used to classify the
controls and the patients using the features identified in the previous
step. The LibSVM toolbox for MATLAB was used to perform the clas-
sification (Chang and Lin, 2011). The classification experiment was
repeated 100 times for GIG-ICA and STR estimated network features
and each of the three strategies to obtain a stable measure of the
classification results, each time with randomly selected training/testing
samples. In each of these repeats, a 10-fold cross-validation was per-
formed within the training subset (Ntrain) to determine the optimum
cost parameter (C) and kernel parameter (γ) of the classifier as follows.
The training samples were divided into approximately 10 equal folds. In
each iteration (out of 10), one of the folds was set aside for testing and
the features from the other 9 folds were used for model training. As a
result, every subject in the original training set was used at least once
for testing the model during cross validation. Initially a coarse cross-

Fig. 2. Statistical analysis procedure on brain functional networks. For each network estimated by GIG-ICA and STR, three different strategies were employed to
identify the voxels showing significant effect of diagnosis. In strategy 1, after both one-sample t-tests and two-sample t-tests, the common significant voxels between
GIG-ICA and STR were considered. In strategy 2, common significant voxels between the two methods were not considered at any step (hence the comparison was
independent between the methods). In strategy 3, the common significant voxels between the methods were considered after one-sample t-tests, but not after two-
sample t-tests.
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validation was performed, i.e. the C parameter was selected from 10
logarithmically spaced values between 10 to 1015 and γ from another
10 values between 10−15 to 1. The values were logarithmically spaced
to reduce the amount of time required to run cross-validation. Once an
optimum pair of parameters (corresponding to the highest testing ac-
curacy, the ratio of correctly labelled subjects and total number of
subjects in the testing set) was determined from the logarithmically
spaced sequence, a fine cross-validation was performed based on line-
arly spaced parameter values in the proximity of the identified op-
timum parameter. It was possible to obtain the optimum parameter
with reasonable cross-validation accuracy from these steps. For each of
the 10 folds, an SVM model was generated using the optimum pair of
(C,γ) parameters and the features extracted from the training set. The
model was then used for predicting the test accuracy from the re-
maining fold. The (C,γ) pair for which the validation accuracy was
highest was retained. Finally, the selected features and the (C,γ)
parameters from the training set were used to predict the test accuracy
from the remaining Ntest subjects.

We mentioned at the end of Section 2.2.3 that two sets of STR
networks were estimated with and without including the noisy com-
ponents in the computation. We performed the above classification
experiment twice with these two different sets of STR networks along
with the GIG-ICA networks estimated from the FBIRN dataset and
summarized the results over 100 runs in both cases.

The generalizability of the identified biomarkers employed to dis-
tinguish SZs was also examined and compared between GIG-ICA and
STR using the independent COBRE dataset. The framework is described
in Fig. 3(B). For each subject in COBRE data, the subject-level networks
were computed (using GIG-ICA and STR) based on the 47 group-level
networks resulting from Section 2.2.2 and its preprocessed fMRI data.
The estimated networks of subjects in FBIRN and COBRE had the same
order, therefore the features can be correspondingly extracted. It is
worth noting that the feature selection was performed only based on the
FBIRN data, and three strategies were applied in this step. For COBRE

data, two different classification schemes were employed. In the first
scheme, an SVM model was trained using all the subjects from the
FBIRN dataset, and this model was used to predict the labels for each of
the subjects in the COBRE dataset. In the second scheme, an SVM model
was trained using 90% of the COBRE dataset, which was then used to
predict the rest of the subjects in COBRE, and this procedure was re-
peated 10 times with different sets of randomly selected training/
testing subjects. In both schemes, the optimal parameters of SVM were
estimated using 10-fold cross-validation within the training data.

2.2.4.3. Comparing the functional network connectivity. FNC assesses
between-network connectivity, i.e. the interaction among networks.
In the ICA approach, this can be studied by examining the temporal
relationship among the associated TCs of the networks. In our work, the
group difference in FNC was investigated using FBIRN data as follows.
The subject-specific TCs of the functional networks were first post-
processed by removing linear, quadratic and cubic trends, regressing
out head motion parameters and despiking using AFNI's 3dDespike
algorithm (Cox, 1996), which reduced the impact of outliers on FNC
computation. Correlation among brain networks has been shown to be
primarily driven by low frequency fluctuations in BOLD fMRI data
(Cordes et al., 2001). Hence the network TCs were also filtered with a
5th order low-pass Butterworth filter with a high cut-off frequency of
0.15 Hz. To reflect the interaction among networks, a 47×47 FNC
matrix of each subject was computed using the Pearson correlations
between the paired post-processed TCs.

A paired t-test was performed between the subject-specific con-
nectivity estimated by GIG-ICA and STR to illustrate the contrast be-
tween the two methods. Finally, for each method, group differences
between HCs and SZs were identified by performing a two-tailed two-
sample t-test on each element (representing connection between two
networks) in the FNC matrix. Then the identified group differences
were compared between the two methods.

Fig. 3. Framework for SVM classification on GIG-ICA and STR estimated networks. (A) Classification framework using the (primary) FBIRN data with 100 times of
10-fold cross-validation. In each time, a random training set was selected, on which 3 strategies were used for feature selection. Three sets of selected features were
used separately to train SVM models whose optimum parameters (C,γ) were determined by another 10-fold cross-validation within the training data. Then the model
was used to predict the testing set using the same features. (B) Classification framework using the COBRE data, independent from the primary FBIRN data. Two
different schemes were applied to evaluate the classification ability in COBRE data. In the first scheme, an SVM model was trained using all the subjects from the
FBIRN dataset, and this model was used to predict the labels for each of the subjects in the COBRE dataset. In the second scheme, 10-fold cross-validation within
COBRE dataset was performed.
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2.2.5. Association between medication and network features
It has been observed that medication may alter the FNC in patients.

We looked at the association of medication with both the subject-level
networks and the FNC of the patients in the FBIRN dataset. For the
networks, we determined the association via Pearson correlation be-
tween each voxel z-scores of different subject-level networks and the
CPZ dosage equivalent of the patients for GIG-ICA and STR. The cor-
relations were deemed significant if they passed Bonferroni correction
for multiple comparisons at the network level. As for the FNC, we
correlated each FNC of SZs with their CPZ dosage and determined
significance after multiple comparisons for both GIG-ICA and STR.

3. Results

3.1. Comparison results of the network maps

The 47 group-level networks are presented in Fig. 4. Based on their
known anatomical and functional properties, these networks are

grouped into the following functional domains: 5 subcortical (SC), 2
auditory (AUD), 10 visual (VIS), 6 sensorimotor (SM), 9 attention
(ATTN), 7 frontal (FRN), 6 default-mode (DMN), and 2 cerebellar (CB)
networks. More details including the network labels and coordinates of
peak activation of these networks can be found in previous work
(Damaraju et al., 2014a) and Supplementary Table S1.

Fig. 5 displays the scatterplots of the t-stats (i.e., t-values from two-
sample t-tests) within each of the 47 networks estimated using GIG-ICA
and STR respectively. Three subplots show t-stats for three different sets
of voxels obtained from three different strategies, as outlined in Section
2.2.4.1 as well as Fig. 2. Each scatterplot has a break on the y-axis, with
the top half presenting t-stats from the voxels in the VHC> SZ mask, and
the bottom half showing the results from the VHC< SZ mask. Note that
the two-sample t-test was performed by comparing HC to SZ, hence the
t-stats are negative in the bottom halves of the plots (VHC< SZ mask).
Supplementary Fig. S1, S2 and S3 present the t-map of these dis-
criminatory voxels at the slices with highest variation in t-stats, ob-
tained from the three different strategies respectively. The individual

Fig. 4. Composite view of 47 group-level networks grouped into functional domains: 5 subcortical (SC), 2 auditory (AUD), 10 visual (VIS), 6 sensorimotor (SM), 9
attention (ATT), 7 fronto-parietal (FRN), 6 default mode (DMN) and 2 cerebellar (CB) networks. Intensity of color represents z-scores. Component labels and peak
activation coordinates can be found in previous work (Damaraju et al., 2014a) and Supplementary Table S1.
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voxel based group differences are consolidated for each network
through a permutation test, the result of which are indicated by the red
stars and blue circles in Fig. 5.

Fig. 5(A) shows that in strategy 1, for 31 out of 47 networks'
VHC> SZ mask, the t-stats are significantly more positive when the
networks are estimated by GIG-ICA compared to STR, as indicated by
red stars on the top half of the subfigure. For one out of the other 16,
namely left angular gyrus (DMN), STR shows significantly higher (more
positive) t-stats than GIG-ICA, as indicated by the blue circle. For the
rest of 15 networks, the t-stats were not significantly different between
GIG-ICA and STR in the permutation test. For 17 networks of the
VHC< SZ mask, the t-stats are significantly more negative when esti-
mated by GIG-ICA than STR. However, there are 6 other networks in the
VHC< SZ mask where STR shows significantly more negative mean t-
stats than GIG-ICA. Fig. 5(B) shows that in strategy 2, for 34 out of 47
networks' VHC> SZ masks, the t-stats are significantly more positive
when the networks are estimated by GIG-ICA. In contrast, there are 3
networks, namely precuneus, left angular gyrus and another angular
gyrus component where the t-stats are significantly more positive when
estimated by STR. In case of the VHC< SZ mask, there are 26 networks
where GIG-ICA shows significantly more negative t-stats in than STR,
while in 5 networks out of 47, the t-stats are significantly more negative
when estimated by STR. Fig. 5(C) shows that in strategy 3, for 34 out of
47 networks' VHC> SZ mask, the t-stats are significantly more positive
when the networks are estimated by GIG-ICA. In contrast, superior
parietal lobule, precuneus and left angular gyrus shows significantly
higher (more positive) t-stats for STR. In case of the VHC< SZ mask,
there are 21 networks out of 47 where the t-stats are significantly more
negative when estimated by GIG-ICA as opposed to 8 for STR.

Supplementary Table S2 presents the exact number of dis-
criminatory voxels found in networks estimated by each method fol-
lowing the three different strategies. It shows that the highest number
of significant voxels are identified in strategy 2, and the number of
significant voxels in each network are different between GIG-ICA and
STR. For strategy 3, the number of significant voxels is also different
between the methods. This is because the process of identifying the
significant voxels is independent between GIG-ICA and STR for these
two strategies, with partial or no overlap between the methods. Taken
together, these results indicate that for the majority of the networks,
GIG-ICA shows significantly greater group differences in the individual
voxels with significant effect of diagnosis when compared to STR.

3.2. Classification results using the network maps

We evaluated the classification ability using two datasets (FBIRN
and COBRE). Fig. 6 shows the results with respect to FBIRN. For each
method (STR or GIG-ICA) with each strategy (in feature selection), the
accuracies in the testing data from 100 repeats of classification are
shown in a column in Fig. 6(A) using a scatterplot, with a line, a darker
box and a lighter box indicating the mean, 95% confidence interval of
mean and standard deviation respectively. The sensitivity and specifi-
city are also shown in the same manner in Fig. 6(B) and 6(C), respec-
tively. In addition, Supplementary Fig. S4 presents the positive pre-
dictive value (PPV) and negative predictive value (NPV) scores of
classification. Supplementary Fig. S5, S6 and S7 show the frequency of
each voxel being used as a feature across 100 runs, grouped into 8
functional domains as estimated by the three strategies respectively.

Supplementary Fig. S8, S9 and S10 present the t-stats obtained from
two-sample t-test between HCs and SZs in the training sets, averaged
over 100 runs and the maximum in each functional domain in each
voxel. Supplementary Table S3 contains the average number of features
in each functional domain over 100 runs of classification. For strategy
1, the classification accuracy across 100 runs was 70.81 ± 7.85%
(sensitivity 0.69 ± 0.1, specificity 0.74 ± 0.11, PPV 0.70 ± 0.14,
NPV 0.72 ± 0.11) for GIG-ICA and 64.97 ± 7.82% (sensitivity
0.66 ± 0.1, specificity 0.66 ± 0.1, PPV 0.63 ± 0.13, NPV
0.67 ± 0.11) for STR. For strategy 2, the accuracy was 76.45 ± 8.9%
(sensitivity 0.75 ± 0.11, specificity 0.8 ± 0.11, PPV 0.77 ± 0.14,
NPV 0.77 ± 0.11) for GIG-ICA and 67.45 ± 8.13% (sensitivity
0.65 ± 0.11, specificity 0.71 ± 0.11, PPV 0.67 ± 0.14, NPV
0.69 ± 0.11) for STR. For strategy 3, the accuracy was
72.65 ± 7.96% (sensitivity 0.72 ± 0.1, specificity 0.75 ± 0.11, PPV
0.72 ± 0.14, NPV 0.74 ± 0.11) for GIG-ICA and 66.26 ± 7.23%
(sensitivity 0.65 ± 0.09, specificity 0.68 ± 0.1, PPV 0.65 ± 0.12,
NPV 0.68 ± 0.11) for STR. To statistically evaluate the difference in
the classification measures, two-sample t-tests were performed. The p-
values obtained from the tests and noted in Fig. 6 are all significant at
0.05 level, which indicates that the GIG-ICA classification measures are
all significantly higher than the STR measures. Hence it is evident that
the average testing accuracy, sensitivity and specificity based on fea-
tures estimated by GIG-ICA are higher than STR in all strategies.

The results above were obtained by including only the 47 resting-
state networks in STR estimation. As mentioned in Section 2.2.3, we
also estimated STR by including all 100 group-level ICs. We then used
the 47 subject-specific networks corresponding to the 47 group-level
networks in the STR feature selection steps. Fig. 7 shows the classifi-
cation results obtained using those. For strategy 1, the classification
accuracy across 100 runs was 69.13 ± 8.4% (sensitivity 0.68 ± 0.11,
specificity 0.72 ± 0.11) for GIG-ICA and 62.55 ± 8.26% (sensitivity
0.62 ± 0.11, specificity 0.66 ± 0.12) for STR. For strategy 2, the ac-
curacy was 76.06 ± 7.37% (sensitivity 0.74 ± 0.10, specificity
0.80 ± 0.11) for GIG-ICA and 63.68 ± 7.67% (sensitivity
0.59 ± 0.10, specificity 0.69 ± 0.11) for STR. For strategy 3, the ac-
curacy was 72.39 ± 7.44% (sensitivity 0.69 ± 0.10, specificity
0.77 ± 0.10) for GIG-ICA and 63.52 ± 8.64% (sensitivity
0.61 ± 0.10, specificity 0.68 ± 0.10) for STR. It indicates that in-
cluding the artifactual components does not improve the classification
accuracy in STR. On the other hand, for an extra 100 runs of classifi-
cation with the same training/test subjects used in STR, the GIG-ICA
classification scores were stable and very close to those described in the
previous paragraph. The focus of our work was to compare the efficacy
of GIG-ICA and STR methods in estimating subject specific-networks
using prior references. This experiment shows that STR did not perform
better than GIG-ICA even if all available group-level ICs were included
for computation in STR. On the contrary the results from STR were
slightly worse compared to that with only meaningful group-level
networks used as inputs.

The superior classification performance of the GIG-ICA method
generalizes well into the COBRE data, as demonstrated in Fig. 8. It is
worth pointing out that the features were selected based on FBIRN data.
Using the first scheme where the model was trained based on all FBIRN
data, the predicted accuracy of the COBRE subjects using GIG-ICA and
STR features were 78.66% and 75% respectively for strategy 1, 81.1%
and 73.17% for strategy 2 and 79.88% and 73.17% for strategy 3. The

Fig. 5. Individual voxel-based group difference and permutation test results, showing scatterplot of t-stats obtained from two-sample t-test between HC and SZ on
each significant voxel within each network for strategy 1, 2 and 3 as outlined in Section 2.2.4.1, in subfigures (A), (B) and (C) respectively. Permutation test was
performed on voxels with positive t-stats and negative t-stats separately. For relevant networks, the red stars indicate that GIG-ICA shows significantly greater group
difference than STR in the permutation test (p < 0.05), and the blue circles indicate that STR shows significantly greater group difference compared to GIG-ICA. The
absence of such an indicator means that in that network there was no significant difference between GIG-ICA or STR estimated t-stats. The full form name of each
network can be found in Supplementary Table S1.(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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sensitivity using GIG-ICA and STR features were 0.72 and 0.73 re-
spectively for strategy 1, 0.73 and 0.72 for strategy 2 and 0.72 and 0.7
for strategy 3. The specificity using GIG-ICA and STR features were 0.85
and 0.77 respectively for strategy 1, 0.89 and 0.74 for strategy 2 and
0.88 and 0.77 for strategy 3. In the second scheme, SVM models were
trained on randomly selected COBRE subjects using 10-fold cross-vali-
dation and then the rest were used in classification, which was repeated
10 times. For strategy 1, the average accuracy over the 10 runs was
83.13 ± 11.04% (sensitivity 0.8 ± 0.17, specificity 0.89 ± 0.12) for
GIG-ICA and 73.13 ± 15.32% (sensitivity 0.73 ± 0.22, specificity
0.78 ± 0.18) for STR. For strategy 2, the average accuracy was
78.75 ± 13.24% (sensitivity 0.77 ± 0.15, specificity 0.84 ± 0.17)
for GIG-ICA and 70.63 ± 11.04% (sensitivity 0.72 ± 0.17, specificity
0.74 ± 0.16) for STR. For strategy 3, the results were 76.25 ± 7.1%
(sensitivity 0.74 ± 0.15, specificity 0.82 ± 0.11) for GIG-ICA and
66.25 ± 11.1% (sensitivity 0.66 ± 0.18, specificity 0.7 ± 0.13) for
STR. The results indicate a clear trend toward higher classification
performance using GIG-ICA estimated networks in predicting in-
dependent data.

3.3. Comparison results of the functional network connectivity

In addition to the statistical analysis and classification on the sub-
ject-level spatially independent networks, we also examined the dif-
ferences in FNC estimated by GIG-ICA and STR. Pairwise correlation

between 47 networks' TCs resulted in 47× (47− 1)/2=1081 con-
nectivity values for each subject. Fig. 9(A) and 9(B) display the mean
FNC across subjects estimated by GIG-ICA and STR, respectively. Notice
that the GIG-ICA mean connectivity matrix appears to have higher
contrast than the STR matrix. To establish this fact, a paired t-test was
performed between each connectivity estimated using GIG-ICA and STR
across all subjects. The t-stats obtained from the paired t-test on the
connectivities are presented in Fig. 9(C). The positive t-stats indicate
that connectivity strengths estimated using GIG-ICA have higher values
compared to STR, and the negative t-stats indicate the opposite. It ap-
pears from the figure that the connectivity strengths estimated by GIG-
ICA within the same domain (near the diagonal) are higher compared to
STR.

We also compared the identified group difference between the two
back-reconstruction methods. Figs. 10(A) and 10(B) show the t-stats
obtained from two-sample t-tests performed on each connection esti-
mated by GIG-ICA and STR respectively. Fig. 10(C) and (D) show the
same t-stats thresholded at p < 0.05 after Bonferroni correction for
multiple comparisons, for GIG-ICA and STR respectively. The thre-
sholded FNC matrices indicate that there is considerable overlap be-
tween the group differences obtained from GIG-ICA and STR, but there
are some important differences as well.

Since there were many connectivity pairs identified by both
methods showing significant differences between the groups at 0.05
level of significance, a lower p-value threshold (10−5) was chosen to

Fig. 6. HC and SZ classification results obtained using networks estimated by GIG-ICA and STR methods from FBIRN data as features and SVM technique. Features
were extracted from randomly selected training subjects using 3 different strategies and testing was performed on the remaining subjects. Classification with 10-fold
cross-validation was repeated 100 times. Each dot represents accuracy in (A), sensitivity in (B) and specificity in (C), obtained in one of the 100 repeats. The
horizontal line indicates mean result, darker box indicates 95% confidence interval of mean and lighter box indicates standard deviation of the results. The p-values
obtained from two-sample t-tests between the GIG-ICA and STR measures for each strategy are mentioned below the x-axis.

Fig. 7. HC and SZ classification results obtained using networks estimated by GIG-ICA and STR methods from FBIRN data as features and SVM technique. Note:
Different from Fig. 6, the subject-specific networks from STR were estimated by including all available 100 group-level ICs as input. All the notations are the same as
in Fig. 6.
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more clearly illustrate the differences. As shown in Fig. 11, both
methods found unique alterations in schizophrenia. Fig. 11(A) shows
the significant group differences identified by both methods. For both
GIG-ICA and STR, SZs show stronger connectivity compared to HCs
between thalamus (IC#18) and several sensory (AUD, VIS and SM)
networks. On the other hand, HCs show stronger connectivity than SZs
between VIS (left lingual, right cuneus and right calcarine gyrus) and
SM (right postcentral, left precentral and left medial frontal gyrus)
networks. Fig. 11(B) shows that at 10−5 level of confidence, con-
nectivities differ significantly different between HC and SZ in 27 out of
1081 pairs for GIG-ICA but not STR. In fact, a look at Supplementary
Table S3 reveals that most of these FNC pairs were not significantly
different between HC and SZ in the STR estimated result even at the
0.05 level. In contrast, 27 other FNC pairs out of 1081 were found to be
significantly different at 10−5 level between HC and SZ in the STR
result, as shown in Fig. 11(C), most of which were also significant in the
GIG-ICA result at 10−3 level (see Supplementary Table S4). These re-
sults suggest that GIG-ICA is more sensitive to group differences in the
analysis of FNC than STR.

3.4. Association between medication and network features

We looked at the correlation between medication and network
features in the primary FBIRN dataset. On an average across the 47 GIG-
ICA networks, we found 18 voxel z-scores to be significantly correlated
with patient medication after Bonferroni correction for multiple

comparisons. For STR networks, the average was 20. The highest
number (80) of GIG-ICA voxel z-scores with significant correlations
were found in the postcentral gyrus (IC#59), whereas none was found
in substantia nigra (IC#75), posterior cingulate cortex (IC#47) or left
angular gyrus (IC#95). In case of STR, we found the highest number
(285) of medication-associated voxels in dorsomedial prefrontal cortex
(IC#69), whereas 12 different networks, almost all in the SM and VIS
domains, did not have a voxel significantly associated with medication
in them. As for FNC, we found that none of the 1081 nodes was sig-
nificantly correlated with patient medication after Bonferroni correc-
tion for multiple comparisons.

4. Discussion

In this study, we investigated the ability of different GICA back-
reconstruction methods to identify biomarkers of schizophrenia. We
compared GIG-ICA and STR methods in terms of the ability of the es-
timated subject-specific networks in differentiating HC and SZ groups
by investigating the group difference in the network maps and the FNC
as well as classifying patients from healthy controls using spatial net-
works. The STR method does not explicitly optimize independence of
the subject-specific networks, and rather treats the component maps as
fixed overlapping seeds (Joel et al., 2011). In contrast, the GIG-ICA
method optimizes independence among the subject-specific compo-
nents (Du and Fan, 2013; Du et al., 2015b). Recent studies have de-
monstrated the importance of incorporating individual variability in

Fig. 8. HC and SZ classification results of the independent dataset (COBRE). Features were extracted from subjects from the FBIRN dataset using 3 different
strategies. The black lines in (A)-(C) indicate results from the first scheme where all FBIRN data were used for training and all COBRE data were used for testing the
SVM model. In the second scheme, the classification was performed using a 10-fold cross-validation framework and was repeated 10 times. Each dot represents
accuracy in (A), sensitivity in (B) and specificity in (C), obtained in one of the 10 repeats. The horizontal line indicates mean result, darker box indicates 95%
confidence interval of mean and the lighter box indicates standard deviation of the results in the second scheme.

Fig. 9. The mean FNC matrix across all subjects in FBIRN. (A) Mean FNC matrix estimated using GIG-ICA. (B) Mean FNC matrix estimated using STR. (C) Paired t-test
result between the two methods based on the subject-specific FNC matrix.

M.S. Salman, et al. NeuroImage: Clinical 22 (2019) 101747

11



the estimation of functional networks and connectivity (Bijsterbosch
et al., 2018). Our findings in the current work reflect that the spatially
constrained GIG-ICA method is more sensitive to group differences
(even at the level of prediction of individual subjects from independent

data), hence has more potential for biomarker identification.
Three different strategies were formulated to provide a fair com-

parison between the two methods. Strategy 1 allowed us to compare the
group differences in the voxel z-scores and use the features in

Fig. 10. T-stats obtained from two-sample t-test between controls and patients in each element of the FNC matrix. (A) Group difference captured by GIG-ICA. (B)
Group difference captured by STR. (C) Group difference captured by GIG-ICA, with t-stats thresholded at p < 0.05 after Bonferroni correction for multiple com-
parisons. (D) Group difference captured by STR, with t-stats thresholded at p < 0.05 after Bonferroni correction for multiple comparisons.

Fig. 11. Significant group differences in FNC thresholded at p < 10−5 after Bonferroni correction for multiple comparisons. (A) Group differences captured by both
GIG-ICA and STR. (B) Group differences captured by GIG-ICA only. (C) Group differences captured by STR only.
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classification which were common in the two methods, with only the
actual z-scores being different in the networks. Strategy 2 allowed for a
feature selection and classification pipeline which was independent in
the two methods. Strategy 3 considered the common positive activation
(z-scores) in both methods; the subsequent step was independent. Note
that only positive activation in networks was considered and compared
considering that voxels with positive z-scores represent more mean-
ingful maps compared to the negative maps. This is because the esti-
mated components from ICA were converted to have positive skewness
(Du et al., 2017a). The permutation tests on individual voxel group
difference showed that for every strategy, t-stats computed based on
GIG-ICA estimated networks in both VHC> SZ and VHC< SZ masks are
significantly greater in majority of the 47 networks compared to STR.
Based on these results we conclude that more GIG-ICA-estimated net-
works, compared to STR, can indicate greater group difference.

Three different sets of features, i.e. the voxel z-scores for each
component selected by the three slightly different strategies were used
to classify HCs and SZs in the (primary) FBIRN data. The main ob-
servation from the classification results is that the average accuracy of
classification based on features estimated by GIG-ICA method is higher
than STR in all strategies, as indicated by the non-overlapping 95%
confidence interval of mean in Fig. 6(A). Similar differences in the two
methods are also found in terms of the sensitivity, specificity, PPV and
NPV metrics across all strategies as evident in Fig. 6 and Supplementary
Fig. S4. Strategy 2 employed a feature selection pipeline for the two
methods which was independent from each other. As a result, the most
discriminatory features were all included in the model training. Some of
those features were lost in strategy 3, and more in strategy 1 because of
the overlaps between two methods within the feature selection step.
This explains why the difference in classification accuracy between the
two methods was biggest in strategy 2.

Care was taken to avoid overfitting or underfitting the SVM classi-
fier, and to generate models using an automatic feature selection pi-
peline which can show consistent result in new independent datasets.
The dimensionality of the fMRI data and the corresponding feature set
was very high. In strategy 1, the average number of features used in
model training was 8140 ± 445 across 100 repeats of classification.
This number was the same for both GIG-ICA and STR, since we looked
at common voxels in both methods in this strategy. In strategy 2, the
average numbers of features were 52,551 ± 2429 and 26,825 ± 941
for GIG-ICA and STR respectively; and for strategy 3 those were
31,929 ± 1317 and 19,466 ± 699. Supplementary Table S3 presents
the average number of features in each functional domain over 100
runs of classification. Notice that the number of discriminating voxels
between the controls and the patients is much higher in GIG-ICA esti-
mated networks compared to STR, which is another advantage of this
method. Although the dimensionality of the observations is very high,
314 observations is still a reasonably large sample size for a machine
learning problem. SVM is not scale-invariant, hence every feature in the
training set and the testing set were standardized separately (by setting
mean=0 and standard deviation=1). In each repeat, model training
and cross-validation was performed on 90% randomly selected subjects
out of the whole dataset, and the performance of the trained model was
reported based on prediction of the remaining subjects. Sensitivity,
specificity, PPV and NPV are reported in addition to classification ac-
curacy, as these measures take false positives and false negatives into
account and thus are more desirable ways to communicate the perfor-
mance of classification in identifying the target condition of interest
(schizophrenia in this case). There are ways to formulate a more con-
vincing testing procedure, such as using the trained models to predict
classification performance on a different dataset containing HCs and
SZs. In this paper, we evaluated this using the independent COBRE
dataset, which also indicated higher classification accuracy and speci-
ficity when the features were estimated by GIG-ICA. In terms of sensi-
tivity however, the two methods are very close, which is due to the
nearly equal number of true positives detected.

The takeaway from the analysis of FNC is that at a higher sig-
nificance level of 10−5, STR fails to capture some of the significant
differences in connectivity between HCs and SZs. Connectivity between
the functional networks is one of the emerging features of interest in
diagnosis of mental illness. GIG-ICA generates visibly higher contrast in
the mean FNC matrices and greater group difference in the two-sample
t-test results. GIG-ICA also shows a higher number of group differences
between subcortical networks and the other networks in which SZ pa-
tients have higher connectivity compared to HCs. GIG-ICA results also
find more group differences between default mode network and other
networks where HCs have higher connectivity compared to SZs. Note
that in our study GIG-ICA is successful in identifying these results in
schizophrenia using the average connectivity over the whole duration
of the scan, whereas previous studies identified similar results in
windowed dynamic FNC states (Damaraju et al., 2014a). These findings
suggest the importance of using the higher-order statistical method to
optimize the back-reconstruction at the single-subject level using spa-
tially constrained ICA.

We have summarized the medication details for the patients in both
datasets. There is no significant in medication between the primary
FBIRN and the secondary COBRE dataset. We performed experiments
on the subject-level networks and the FNC in the FBIRN dataset to
determine if medication had significant association with those mea-
sures. We found that for either GIG-ICA or STR, on an average<20
voxel z-scores were significantly correlated with CPZ dosage equiva-
lent, and none of the FNC was significantly correlated. It leads us to
conclude that there was little or no significant impact of medication on
the networks or FNC estimated by either GIG-ICA or STR.

It should be noted that the STR subject network estimation could be
improved by adding additional artifact removal steps and more ag-
gressive motion correction (Griffanti et al., 2014), although artifact
removal could improve the GIG-ICA network estimation as well. It has
also been pointed out that including the artifactual components in STR
may improve the subject-level network estimation. The focus of our
work was to compare the efficacy of GIG-ICA and STR methods in es-
timating subject-specific networks using prior references. In our ex-
periment and result depicted in Fig. 7, this experiment shows that
classification using networks from STR did not perform better than the
results relating to GIG-ICA even if all available group-level ICs were
included for computation in STR. On the contrary the results from STR
were slightly worse compared to that with only meaningful 47 group-
level networks used as inputs. Another method for subject network
estimation is template-based rotation (TBR) which works by mapping
data from new sessions into a priori templates (Schultz et al., 2014).
TBR has shown larger group differences than dual regression and
warrants a comparison with GIG-ICA in future.

In this study, the same feature selection and classification techni-
ques were used for both methods in the interest of fair comparison. In
addition, we applied statistical methods to extract features from all
network maps and traditional SVM classification. In some previous
works, researchers obtained higher classification accuracy using these
two datasets by combining multimodal features and advanced classi-
fiers. However, schizophrenia classification studies using other data-
sets, which used a single modality and less complex classification
method, reported scores similar to those found by us (Cheng et al.,
2015; Deng et al., 2019; Ma et al., 2018; Pläschke et al., 2017). Using
the FBIRN phase-II dataset, Dakka et al. used a generalizable feature
map (preprocessed fMRI data) and classification framework (long short-
term memory (LSTM) deep neural network) and reported 66.4% ac-
curacy (Dakka et al., 2017). On the other hand, Juneja et al. reported
94% accuracy obtained using one of the IC maps out of 18 obtained
from group ICA of fMRI data and an SVM classifier (Juneja et al., 2016).
However, the accuracy obtained from the other maps were poor. Ulloa
et al. used structural MRI (sMRI) maps and amplitude of low frequency
fluctuation (ALFF) maps extracted from fMRI combined with a syn-
thetic data generator to train a multi-layer perceptron (MLP) classifier
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and obtained 85% accuracy in the FBIRN phase-III dataset (Ulloa et al.,
2018). Comprehensive review papers in terms of SZ classification stu-
dies can be found in (Arbabshirani et al., 2016; Du et al., 2018). Based
on this review and our reported results, it appears that more sensitive
feature extraction and selection criteria may result in better dis-
criminatory features and higher accuracy. SVM was the choice of
classifier in our study due to its simplicity and popularity in the field.
We believe more advanced feature selection methods would improve
the classification results more. Our focus in this work was on comparing
two methods using the same classifier rather than an extensive com-
parison of classifiers which we reserve for future work.

This is an initial study on the efficacy of spatially-constrained ICA
(e.g. GIG-ICA) methods in identifying fMRI-based biomarkers of schi-
zophrenia. We found that this method is more sensitive to group dif-
ferences and more powerful for the classification goal. Importantly, this
approach enables ICA-based methods to scale to independent datasets
by providing network correspondence between subjects while also op-
timizing for independence within the independent dataset. As GIG-ICA
provides a promising approach for biomarker selection for schizo-
phrenia, in future we will explore its ability using broader diseases such
as bipolar disorder, Alzheimer's disease and so on.
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