
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
What a bouncing ball tells us about the brain, development, and autism

Permalink
https://escholarship.org/uc/item/3zz0s32s

Author
Marin, Andrew

Publication Date
2024
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3zz0s32s
https://escholarship.org
http://www.cdlib.org/


 

 

UNIVERSITY OF CALIFORNIA SAN DIEGO 

What a bouncing ball tells us about the brain, development, and autism 

 

A dissertation submitted in partial satisfaction of the requirement for the degree  

Doctor of Philosophy 

 

 

in 

 

 

Experimental Psychology 

 

 

by 

 

 

Andrew Marin 

 

Committee in Charge: 

 Professor Leslie J Carver, Chair 

 Professor Seana Coulson 

 Professor Shafali Jeste 

 Professor Lindsey J. Powell 

 Professor Viola S Störmer 

 

 

 

2024 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright 

Andrew Marin, 2024 

All rights reserved 

 



 

iii 

The Dissertation of Andrew Marin is approved, and it is acceptable in quality and form for 

publication on microfilm and electronically. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

University of California San Diego 

2024 

 

 

 



 

iv 

DEDICATION 

This dissertation is dedicated to my parents, whose unwavering support has been 

foundational for my successes. I am deeply grateful for everything you have done for me. I also 

dedicate this work to my incredible mentors, whose guidance, wisdom, and inspiration have 

shaped me into the scholar I am today. Your passion for knowledge and dedication to teaching 

have been a constant source of motivation. And lastly, to Emily, the four-year-old kid who 

always tested my patience but forever changed my perception.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

v 

TABLE OF CONTENTS 

Dissertation Approval Page ……………………………………………………………………   iii 

Dedication ………………………………………………………………………………………  iv 

Table of Contents …………………………………………………………………………………v 

List of Figures ……………………………………………………………………………………vi 

List of Tables …………………………………………………………………………………   viii 

Acknowledgements ………………………………………………………………………………ix 

Vita ……………………………………………………………………………………………… xi   

Abstract of the Dissertation ……………………………………………………………………  xii 

Introduction ……………………………………………………………………………………… 1 

Chapter 1. Expectations about dynamic visual objects facilitates early sensory  

processing of congruent sounds …………………………………………………………………  9 

 

 

Chapter 2. Electrophysiological differences underlying the perception of auditory  

error in autism …………………………………………………………………………………   23 

  

 

Chapter 3. Infant sensitivity toward the timing of sounds predicted by a dynamic  

visual object ……………………………………………………………………………………  73 

 

 

Conclusion ……………………………………………………………………………………  112    

 

 

 

 

 

 

 



 

vi 

LIST OF FIGURES 

Figure 1.1: Single trial schematic depicting the AV-synchronous condition …………………   12 

 

  

Figure 1.2: Depiction of the left-start sensory conditions (right-start not pictured) …………… 13 

 

 

Figure 1.3: Grand averaged ERP and auditory N1–P2 peak-to-peak amplitude and  

N1 peak latency responses for Experiment 1 ……………………………………………… ……15 

 

 

Figure 1.4: Depiction of the AV-occluded condition for Experiment 2 (right start  

not pictured) ……………………………………………………………………………………  17 

 

 

Figure 1.5: Grand averaged ERP, auditory N1–P2 peak-to-peak amplitude response,  

and P2 peak latency response for Experiment 2 ………………………………………………   18 

 

 

Figure 2.1: Grand averaged ERPs between the autistic and NT groups, and N1-P2  

peak-to-peak mean amplitude across trial types ………………………………………………   35 

 

 

Figure 2.2: AV Difference ERPs between autistic and NT groups ……………………………  41 

 

 

Figure 2.3: Correlations between the SRS RRB t-score and N1-P2 peak-to-peak  

mean amplitude intercepts within the autistic group ……………………………………………46 

 

 

Figure 2.C1: N1 peak latency between autistic and NT groups, and across trial types …………70 

 

 

Figure 2.C2: P2 peak latency split between autistic and NT groups, and across trial types …… 71 

 

 

Figure 2.C3: N1-P2 peak-to-peak mean difference amplitude between autistic and  

NT groups and across the three AV trial types ………………………………………………… 72 

 

 

Figure 3.1: Visual depiction of each audio-visual (AV) condition ……………………………   85 

 

 

Figure 3.2: Diagram of the time course between experimental trials …………………………   88 

 

 



 

vii 

Figure 3.3: Scatter plot of looking time averages (log10 transformed) between the  

AV asynchronous and AV synchronous conditions …………………………………………… 92 

 

 

Figure 3.4. Model estimates of logged looking times plotted across trial number,  

split between the AV asynchronous and AV synchronous conditions ………………………… 94 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

viii 

LIST OF TABLES 

 

Table 2.1: Marginal means of peak amplitude and latency between each group,  

across trial types …………………………………………………………………………………37 

 

 

Table 2.2: Marginal means of differential mean peak amplitude between both  

groups, across trial types ………………………………………………………………………   42 

 

 

Table 2.A1: Post-hoc comparisons for each ERP measure’s interaction between trial type & 

group ………………………………………………………….…………………………………65 

 

 

Table 3.1: Frequency of demographic categories ……………………………………………… 82 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

ix 

ACKNOWLEDGEMENTS 

I'd like to express my gratitude to the research assistants who have been instrumental in 

supporting my dissertation research. Your dedication and hard work have been invaluable 

contributions to the success of these projects. I will always be indebted to your assistance and 

commitment. Thank you to Sophia Bokovikova, Kayce Padilla, Ipek Talu, Melanie Dratva, Zara 

Fearns, Mincong Wu, Gabriela Bernal, Elli Connell, Alexander Nam, Danna Wu, Haley Rippon, 

Amanda Salatino, Joshua Cervantes, Carmen Chen, Xiaoyang Liu, Rylie Pepper-gjerman, Elise 

Zhao, and all the rest I forgot to mention. 

I would like to acknowledge all our participants, big and small, and the families who 

participated in my research. Your time and insights have been instrumental in advancing our 

understanding of how the brain anticipates. 

I want to extend my heartfelt thanks to my committee members: Viola Störmer, Lindsey 

Powell, Seana Coulson, and Shafali Jeste. Your guidance, expertise, and invaluable feedback 

throughout this dissertation process has been exceptional, all of which has shaped this work and 

my growth as a scientist. 

And lastly, I would like to thank Leslie Carver, my advisor and chair to this dissertation. I 

would like to express my appreciation for Leslie's invaluable guidance and support throughout 

my time here at UCSD. Her expertise, encouragement, and dedication have been instrumental in 

shaping this work and helping me navigate the challenges of my research. I am especially 

grateful for her trust in my abilities and for empowering me to be an independent scholar. Above 

all, I want to express my thanks for your kindness and belief in my potential. 

 

 



 

x 

Chapter 1, in full, is a reprint of the material as it appears in Expectations about dynamic 

visual objects facilitates early sensory processing of congruent sounds in Cortex. Marin, Andrew; 

Störmer, Viola S.; Carver, Leslie J. (2021). The dissertation author was the primary investigator 

and author of this paper. 

Chapter 2, in part is currently being prepared for submission for publication of the 

material. Marin, Andrew; Pearson, Lucy; Wu, Mincong; Baker, Elizabeth; Carver, Leslie J. The 

dissertation author was the primary investigator and author of this material. 

Chapter 3, in part is currently being prepared for submission for publication of the 

material. Marin, Andrew; Fearns, Zara; Dratva, Melanie; Powell, Lindsey J.; Störmer, Viola S.; 

Carver, Leslie J. The dissertation author was the primary investigator and author of this material. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xi 

VITA 

2012 Bachelor of Science, Psychology, San Jose State University 

2015 Master of Arts, General-Experimental Psychology, Cal. State University, Northridge 

2024 Doctor of Philosophy, Experimental Psychology, University of California San Diego 

 

PUBLICATIONS  

Marin, A., Störmer. V.S., & Carver, L.J. (2021). Expectations about dynamic visual objects 

facilitates early sensory processing of congruent sounds. Cortex, 144, 198-211. DOI: 

10.1016/j.cortex.2021.08.006 

 

Tran, X. A., McDonald, N. M., Dickinson, A., Scheffler, A., Frohlich, J., Marin, A., Liu, C. K., 

Nosco, E., Sentürk, D., Dapretto, M., & Jeste, S. S. (2020). Functional connectivity during 

language processing in 3‐month‐old infants at familial risk for autism spectrum disorder. 

European Journal of Neuroscience, 53(5), 1621-1637. DOI: 10.1111/ejn.15005 

 

Dickinson, A., Daniel, M., Marin, A., Goanker, B., Dapretto, M., McDonald, N. M., & Jeste, S. 

(2020). Multivariate neural connectivity patterns in early infancy predict later autism symptoms. 

Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 6(1), 59-69. DOI: 

10.1016/j.bpsc.2020.06.003 

 

Marin, A., Hutman, T., Ponting, C., McDonald, N. M., Carver, L.J., Baker, E., Daniel, M., 

Dickinson, A., Dapretto, M., Johnson, S. P., & Jeste, S. S. (2020). Electrophysiological 

signatures of visual statistical learning in three-month old infants at familial and low risk for 

autism spectrum disorder. Developmental Psychobiology, 62(6), 858-870. DOI: 

10.1002/dev.21971  

 

FIELDS OF STUDY 

Major Field: Psychology 

 Studies in Developmental Psychology 

 

 

 

 

 



 

xii 

 

 

 

 

 

 

ABSTRACT OF THE DISSERTATION 

 

What a bouncing ball tells us about the brain, development, and autism 

by 

Andrew Marin 

Doctor of Philosophy in Experimental Psychology 

University of California San Diego, 2024 

Professor Leslie Carver, Chair 

 

In everyday perception, dynamic objects move and collide within physical environments, 

producing expected sounds. In this dissertation, I suggest that perceptual phenomena, like a 

bouncing ball, may offer mechanistic insights into: 1) how the brain anticipates sound via the 

integration of dynamic visual cues, 2) clinical populations who show differences in the ability to 

anticipate, and 3) the developmental emergence of skills used to anticipate sound. In a series of 

experiments, I presented neurotypical and autistic adults, and neurotypical infants a dynamic 

visual object that collides with a physical barrier, eliciting a sound at the point of expected 

collision (AV-synchronous), or unexpectedly before collision (AV-asynchronous). In chapter 

one, I recorded event-related potentials (ERPs) from neurotypical adults who were exposed to 

sounds that either synchronized with visual collision or occurred asynchronously before 

collision. I also included conditions where the object was occluded during synchronous collision,



 

xiii 

or when sound was presented without dynamic visual cues. I found that synchronous and 

occluded collision sounds elicited an attenuated auditory response relative to asynchronous or 

audio-only sounds. These results suggest that dynamic visual stimuli can help generate 

expectations about the timing of sound, which then facilitates the processing of auditory 

information that matches these expectations. 

In chapter two, I replicated the same methods as in chapter one, but in a sample of 

autistic adults. Here, I observed greater amplitudes toward asynchrony in autism relative to 

neurotypicals, while no group differences toward fully visible or occluded synchrony emerged. 

These results suggest that neural responses to prediction errors are affected in autism, and not the 

integration of top-down expectations. In chapter three, I modified these methods for use in 

neurotypical infants to show that 4-to-5-month-olds look longer to bounce sounds that violate 

temporal expectations of when a bounce sound should occur. 

These studies highlight the presence of neural mechanisms sensitive to predictable sound, 

which appear to be different in clinical populations like autism. Moreover, infants are sensitive to 

collision sounds, demonstrating that these perceptual skills are available early in life. 

Collectively, these methods could be further leveraged to understand the emergence of 

neurodevelopmental conditions like autism. 
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Introduction 

Imagine a cracked egg dropping onto a sizzling pan, a deck of cards being shuffled, or 

hands clapping. Each experience has one thing in common: they involve dynamic visual objects 

signaling expectations toward sound. Processing expected auditory input generated by a moving 

visual object is a difficult task for the brain to implement. It requires the assessment of the 

object’s spatial location moving within the physical constraints of the environment, and to then 

use this information to infer the relation between the sound and the object. Such processes are 

multimodal, requiring the brain to depend on integrative neural pathways between visual and 

auditory modalities. Critically, these pathways may be impacted in clinical populations, like 

autistic individuals, who experience widespread structural neural alterations (Belmonte, 2004; 

Bourgeron, 2015; Geschwind & Levitt, 2007; Parikshak et al., 2015; Port et al., 2014). 

Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by 

challenges in social communication and the presence of repetitive behaviors or interests 

(American Psychiatric Association, 2022). In addition, several sensory differences that include 

the processing of faces and emotional stimuli (Eussen et al., 2015; Harms et al., 2010; Pellicano 

et al., 2007; Uljarevic & Hamilton, 2013), multisensory integration (Stevenson et al., 2014; 

Wallace & Stevenson, 2014), and the presence of hypo- and hyper- sensory sensitivities 

(Baranek et al., 2013; Robertson & Baron-Cohen, 2017) have been identified in autistic 

individuals. Up to 90% of autistic people exhibit altered sensory processing sensitivities 

(Tavassoli et al., 2014; Tomchek & Dunn, 2007) that affect each sensory modality: touch (Marco 

et al., 2012; Puts et al., 2014), taste (Tavassoli & Baron-Cohen, 2012), smell (Galle et al., 2013; 

Rozenkrantz et al., 2015), audition (Bonnel et al., 2003), and vision (Simmons et al., 2009). 
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Clearly sensory sensitivities play a role in autism, influencing neural processing and shaping 

perceptual experiences that contribute to unique symptom profiles. 

Numerous hypotheses have been proposed to explain the etiology of the heterogenous 

symptom profile that underlies autism. Recent theories posit that several symptoms of autism 

(e.g., insistence on sameness, deficits in social interaction) may stem from underlying differences 

in predictive coding (Cannon et al., 2021; Lawson et al., 2014; Pellicano & Burr, 2012; Sinha et 

al., 2014; Van Boxtel & Lu, 2013; Van de Cruys et al., 2014). A key concept of predictive 

coding is that the brain generates predictions about the present state of the world based on 

previous and current sensory input. Predictions (or expectations) serve as “priors”, which are 

internal representations of the probabilistic structure of one’s environment (Clark, 2013; Friston, 

2005; Lawson et al., 2014) and are continually contrasted with current sensory input to 

contextualize and inform our perception (Dempster, 1968; Knill & Richards, 1996).  

In predictive coding, predictions are not just generated, but are actively compared to the 

potential error of those predictions. If the prediction error informs our perception, prior 

expectations are readjusted to minimize future errors. Given that our sensory world behaves with 

some degree of uncertainty, and that the neural systems involved in processing sensory 

information are noisy themselves, prediction errors can be wrong or uninformative. Thus, the 

influence of top-down expectancies relative to bottom-up processing is mediated by the 

precision, or confidence bestowed upon the prediction error (Friston, 2010). If the resulting error 

signal is perceived as informative, it is then passed up the hierarchy to inform higher-level, top-

down expectations to effectively resolve prediction errors in the future. High sensory precision 

would result in the individual placing more weight in prediction errors generated at each level of 

the processing hierarchy, while low sensory precision would attenuate the influence of bottom-
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up signals at each level, and bias perception toward prior beliefs. Therefore, a healthy balance 

between using informative errors to update one’s expectations, or to employ an appropriate 

amount of precision when encountering error is necessary for effective mental models.  

 In this sense, predictive coding theory suggests that a primary function of the brain is to 

regulate prediction errors that can be encountered at any level of the processing stream, which is 

computed within contextualized mental models. This predictive mechanism is critical for 

learning, allowing us to anticipate perception and readjust when our expectation is violated. As 

such, differences in the integration and optimization of prediction errors has been proposed as a 

mechanism that may be responsible for predictive dysfunction in autism. Specifically, 

differences related to 1) generating predictions and/or 2) detecting violations to those predictions 

(i.e., prediction errors) have unique implications for learning within both social and non-social 

domains, and alterations to predictive mechanisms are what likely causes the key symptoms seen 

in autism (Cannon et al., 2021; Lawson et al., 2014; Pellicano & Burr, 2012; Sinha et al., 2014; 

Van Boxtel & Lu, 2013; Van de Cruys et al., 2014). 

With this dissertation, I will look to quantify the mechanisms involved in predicting 

sound via the integration of dynamic visual cues. Grounded in predictive coding theory, I will 

use a novel electrophysiological (EEG) method to measure the brain’s response to expected 

sounds that are either congruent or incongruent with an object’s motion (chapter one). I will use 

these same methods to compare the neural response toward the generation of successful 

predictions versus ones that signify error in autistic adults (chapter two). I will then propose a 

study using similar methods to measure infant looking time toward collision events (chapter 

three). I will then close with a theoretical summary of how the mechanisms related to auditory 

predictions may help explain the emergence of autism early in development. 
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a b s t r a c t

The perception of a moving object can lead to the expectation of its sound, yet little is

known about how visual expectations influence auditory processing. We examined how

visual perception of an object moving continuously across the visual field influences early

auditory processing of a sound that occurred congruently or incongruently with the ob-

ject's motion. In Experiment 1, electroencephalogram (EEG) activity was recorded from

adults who passively viewed a ball that appeared either on the left or right boundary of a

display and continuously traversed along the horizontal midline to make contact and elicit

a bounce sound off the opposite boundary. Our main analysis focused on the auditory-

evoked event-related potential. For audio-visual (AV) trials, a sound accompanied the vi-

sual input when the ball contacted the opposite boundary (AV-synchronous), or the sound

occurred before contact (AV-asynchronous). We also included audio-only and visual-only

trials. AV-synchronous sounds elicited an earlier and attenuated auditory response rela-

tive to AV-asynchronous or audio-only events. In Experiment 2, we examined the roles of

expectancy and multisensory integration in influencing this response. In addition to the

audio-only, AV-synchronous, and AV-asynchronous conditions, participants were shown a

ball that became occluded prior to reaching the boundary of the display, but elicited an

expected sound at the point of occluded collision. The auditory response during the AV-

occluded condition resembled that of the AV-synchronous condition, suggesting that ex-

pectations induced by a moving object can influence early auditory processing. Broadly, the

results suggest that dynamic visual stimuli can help generate expectations about the

timing of sounds, which then facilitates the processing of auditory information that

matches these expectations.
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1. Introduction

In everyday life, dynamic visual objects often predict accom-

panying sounds. For example, observing two hands moving
closer together precedes the onset of a clap, or a marble con-
tacting another results in a sound precisely at the point of
collision. These scenarios showcase how motion (i.e., direc-
tionality, speed, etc.) and physical cues (i.e., artificially defined
object boundaries, collision, etc.) of dynamic visual objects in
natural sensory environments elicit expected sounds at pre-
cise moments in time and space. Perceiving such events
uniquely highlights how visual anticipation can directly
interact with auditory processingdyet little is known about
how auditory processing is influenced by preceding visual

information about moving objects. We know that dynamic
visual objects can elicit sounds in natural sensory environ-
ments, but does this visually driven anticipation facilitate
early auditory processing?

Dynamically moving visual objects often generate sounds
that can be predicted from the temporal expectancy laid forth
by the object itself. Accurately inferring the source of sounds
generated by a moving object involves matching temporally
synchronous visual information with the sound. Such in-
ferences may reflect a mechanism designed to exploit the
temporal and spatial information of a moving object to make

predictions about expected sounds in the environment.
Questions regarding stimulus prediction and its brain bases
have received considerable amounts of attention, particularly
within the auditory domain (for review, Lange, 2013). Event-
related potentials (ERPs), which reflect the averaged electro-
encephalogram (EEG) response time-locked to a particular
event, have been utilized to examine how early auditory re-
sponses are shaped by predictable sensory information. One
particular ERP response that is modulated by predictable
sounds is the auditory evoked potential (i.e., the N1eP2 com-
plex), which is an early sensory response elicited after a

sound. Many studies have reported that the auditory response
is attenuated when hearing temporally predictable sounds
(Clementz et al., 2002; D'Andrea-Penna et al., 2020; Ford et al.,
2007; Ford & Hillyard, 1981; Kononowicz & van Rijn, 2014;
Lange, 2009; Menceloglu et al., 2020; Schafer et al., 1981).
Auditory response suppression toward expected sounds has
usually been interpreted within a general predictive coding
framework (Friston, 2005; Lange, 2013), where the reduction of
the auditory response is thought to arise due to top-down
expectancies matching bottom-up sensory input. The syn-
chronous match between bottom-up and top-down signals is

thought to reduce the error signal of the predicted sound,
which results in an overall reduction of the evoked ERP
(Baldeweg, 2007; Lange, 2013). Yet, many of the studies
mentioned here cued the expectation of the sound within the
temporal domain by providing the perceiver foreknowledge
about when a soundwould occur. However, in natural sensory
environments, sounds aremore likely to be preceded by visual
stimuli that are often moving across time and space.

The perception of simultaneity of discrete audio-visual
(AV) events in time and space plays a large role in deter-
mining if the two sensory events will be perceptually bounded
as one, or perceived as two separate events (K€ording et al.,

2007; for review, see Wallace & Stevenson, 2014). Discrete

sensory events that remain in close temporal proximity to one
another are more likely to be integrated as one, whereas
sensory events that are further away in time and space are
more likely to be perceived as two distinct events (Spence,
2007; Stevenson, Zemtsov, & Wallace, 2012; Stevenson,
Fister, et al., 2012; van Wassenhove et al., 2007). Simple AV
stimuli like pure auditory tones and geometrical visual shapes
have been associated with an enlarged auditory neural
response compared to the sum of unimodal presentations
(Fort et al., 2002; Giard & Peronnet, 1999; Molholm et al., 2002).
Enhancement of early neural responses while perceiving

multisensory simultaneity has been theorized as a general
principle of multisensory processing (Meredith et al., 1987).
Other demonstrations of AV integration in natural environ-
ments involve the perception of speech sounds, human ac-
tions, and dynamic visual objects. The auditory-evoked
potential has been found to occur earlier in time and elicit a
smaller amplitude response when speech sounds are paired
with synchronous mouth movements compared to auditory-
only presentations, which has been interpreted as auditory
processing being suppressed when paired with visual infor-
mation (van Wassenhove et al., 2005). In the case of speech

perception, visual information originating from mouth
movements precedes paired auditory outputs by tens to a few
hundreds of milliseconds (vanWassenhove et al., 2005), likely
leading to strong expectations about when and what sound
will appear. Other research has shown that such expectations
can also be triggered by non-speech stimuli, for example
human actions (i.e., a hand clap) and dynamic objects (i.e., a
hammer tapping a cup), which have been also shown to
attenuate the auditory response (Stekelenburg & Vroomen,
2007). Critically, decreases in the auditory response were not
seen with objects that did not provide anticipatory visual

motion information (Stekelenburg & Vroomen, 2007), sug-
gesting that the amplitude reduction underlying the early
auditory response occurs when visual information provides
clear expectations about the onset of a sound. Together, these
studies suggest that a smaller amplitude of the auditory
response may arise in situations that allow a relatively long
build-up of visual expectations (e.g., through themovement of
hands or lips), in that the visual information allows one to
predict the upcoming acoustic signal, and subsequently re-
duces uncertainty and lowers computational demands of
auditory brain regions (Besle et al., 2004; Vroomen &

Stekelenburg, 2010).

Another study further supports the notion that changes in
early auditory processing only arise when visual information
reliably predicts sound onset. Vroomen & Stekelenburg found
early attenuation of the auditory evoked potential when
viewing simple visual stimuli that provided expectations of an
anticipated sound compared to auditory-alone presentations
(2010). In their task, for AV expectation trials, two disks
appeared to the extreme left and right of a vertically aligned
rectangle that was presented at the center of a display. Here,
each visual disk moved toward the rectangle and eventually
collided with it, compressing it and eliciting a synchronous

pure tone at the point of collision. Participants were also
exposed to two other conditions where 1) the dynamic visual
stimuli collided with the rectangle but did not contain an
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expected sound (visual-only) and 2) audio-only trials that

contained sound with no visual stimulus. These three trial
types appeared in a single block, in random order. Impor-
tantly, in a new block of trials, participants were exposed to a
new AV condition that did not provide visual expectations
about when the sound would appear. In this condition, there
were no visual disks, but the rectangle eventually compressed
and made a sound upon doing so. Within this block, subjects
were also presented with the same audio- and visual-only
trials described previously, and each were presented in a
random order. In a follow-up experiment, Vroomen & Steke-
lenburg presented the same two AV trials, as well as the

audio- and visual-only conditions explained above. In addi-
tion, they 1) provided two new sensory conditions where the
sound either happened before or after the collision event (AV-
asynchronous; early and late) and 2) manipulated whether
these sensory conditions appeared in a fixed or random order
(2010). Here, the early amplitude response during fixed block
ordering was reduced while perceiving synchronous AV ex-
pectations compared to audio-alone input, an effect not seen
during mixed block ordering. This led the authors to suggest
that auditory reduction arises when visual information reli-
ably predicts AV onset across trials. Moreover, they found that

the auditory response was not different in amplitude or la-
tency between the synchronous and asynchronous AV inputs
during mixed order presentations. Interestingly, a later
component (i.e., the P2) showed a different pattern and was
attenuated when early asynchronous and synchronous AV
stimuli were fixed and varied from trial to trial. This suggests a
possible dissociation between these two components of the
auditory ERP. Taken together, these studies suggest that the
neural effects of AV expectations depend on various factors,
such as temporal synchrony, the amount of visual and audi-
tory input, whether or not trial information was known be-

forehand, and the stimuli used.
One factor not considered in Vroomen and Stekelenburg

(2010) was what would happen with a more naturalistic vi-
sual event such as a single object, moving in a uniform di-
rection (i.e., a ball bouncing off a wall). Here, we fill this gap in
the literature by better characterizing the neural correlates
governing the anticipation of dynamic, temporally synchro-
nous AV processing. Unidirectional dynamic visual stimuli
might provide 1) the visual system more precise expectations
about the collision event that elicits the anticipatory sound
and/or 2) the auditory event itself may be more predictable
when the accompanying visual stimulus is moving unidirec-

tionally. Dynamic visual stimuli moving unidirectionally, in
turn,may afford the visual system greater sensitivities toward
small temporal AV asynchronies sooner in the auditory pro-
cessing stream. Furthermore, it is currently unknown
whether AV effects occur based on expectations alone, or
whether visual objects and sounds need to be both present in
order to affect sensory processing. Thus, the primary objective
of our study was to examine how dynamic visual inputda
single object moving continuously in one direction across the
visual fielddinfluences early auditory processing of a sound
that is either congruent with the object's motion, and thus

likely perceived as being part of the visual object, or incon-
gruent with the object's motion. We were guided by the hy-
pothesis that AV temporal synchrony would result in an

attenuated and faster auditory response, compared to a

unimodal auditory presentationda response profile that
would mimic the auditory effects seen in Stekelenburg and
Vroomen (2007) and Vroomen and Stekelenburg (2010).
Considering the null findings regarding the neural response
toward the synchrony of dynamic AV input outlined above
(i.e., 2007, 2010), we expected differences might appear
because our stimuli were designed to constrain visual expec-
tations in a single direction, perhaps affording the brain
greater sensitivity toward small temporal asynchronies
earlier in time. We also examined whether such auditory ERP
effects only occur when a visual stimulus is presented at the

same time as the sound, as predicted by multisensory inte-
gration accounts, or whether the expectation triggered by a
moving visual stimulus is sufficient in influencing auditory
processing. To test this hypothesis, we conducted a second
experiment and examined auditory responses elicited by vi-
sual anticipatory information that becomes occluded prior to
temporally congruent collision.

2. Methods

We report all data exclusions, all inclusion/exclusion criteria,
whether inclusion/exclusion criteria were established prior to
data analysis, all manipulations, and all measures in the
study. A statement on how sample size was determined can
be found in the methods section of Experiment 2.

2.1. Participants

Twenty-nine college-aged adults (Mage ¼ 20.48 years,
SD ¼ 1.76; 14 female) were recruited via an online university
subject pool and received course credit for participating. Prior
to the experiment, each participant reported having normal or
corrected-to-normal vision, normal hearing, and no history of
neuropsychological, cognitive, or developmental disorders.

All participants provided written informed consent in accor-
dance with the tenets of the 1964 Declaration of Helsinki. An
additional eight adults were tested but were excluded due to
equipment malfunction (n ¼ 3) and excessive (>10% of trials)
EEG artifact (i.e., head motion, muscle artifact etc.; n ¼ 5).

2.2. Audio-visual stimuli

The AV stimuli used in this experiment were the same as in
Werchan et al. (2018). The stimuli were created using Adobe
After Effects software, while stimulus delivery was controlled
by E-prime software (Psychology Software Tools, 2016) and
presented on a CRT monitor (13 width " 9.5 height; in inches),
with a 60 Hz refresh rate. Participants viewed the stimuli at an
average distance of 71 cm. The primary object of interestwas a
red ball that was one inch in diameter, subtending a visual
angle of about 2.05#. The ball appeared within a black rect-
angle (7.75 width " 5.5 height in inches; visual angle width-

¼ 15.8#; subtended visual angle height¼ 11.2#) that was overlaid
on top of a neutral gray background (13 width " 9.5 height; in

inches; visual angle width ¼ 26.2#; visual angle height ¼ 19.3#).
The inside of the black rectangle contained a grid of small
white dots that emphasized the straight, horizontal motion of
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the red ball. The ball's horizontal movement was constrained

to occur within the black rectangle at a rate of 2.5s per motion
cycle (i.e., visual object starts and returns to its origin). The
sounds were presented via two speakers presented to the left
and right of themonitor. The sound itself was a 50 decibel (dB)
complex tone that resembled a solid object colliding with a
hard surface (a knocking sound) and had a duration of
200 msec.

2.3. Paradigm and procedure

Each participant was seated in a dark room and was shown a
randomly presented stream of four AV sensory conditions: 1)
visual-only, 2) audio-only, 3) AV-synchronous, and 4) AV-
asynchronous, while high-density EEG (Electrical Geodesics,
Inc.) was recorded. The experimental session took part during
a single lab visit, and the EEG recording lasted approximately
45 min. At the start of each trial (see Fig. 1 for a single trial
diagram), a geometric, achromatic fractal videowas presented
for 1000 msec, and served as visual input to promote partici-
pant attention and engagement during the passive viewing

task.
A small fixation cross (.75width! .75 in height; 1.5 of visual

angle) then appeared for 1000 msec, followed by the random
presentation of one of the four sensory conditions previously
mentioned. There were a total of 416 experimental trials (104
trials per condition), split into four blocks. The experiment
was split into blocks to provide breaks to the participant as
needed. The primary part of each trial (where the ball moved

across the screen, described in more detail below) lasted

2000 msec. Upon completion of each trial, a single letter (.75
width ! .75 in height; 1.5 subtended visual angle), out of a
possible of eight, appeared randomly in the center of the
screen for 500 msec. At the start of each experimental block,
the participant was instructed to identify and count, using a
handheld clicker, a single target letter. This secondary task
served as an attention check to keep each participant engaged
during the passive viewing task. All participants were above a
95% accuracy rate in the secondary task so no subjects were
removed due to poor attention.

For the visual-only, AV-synchronous, andAV-asynchronous

conditions, a single red ball randomly appearedoneither the far
left or right boundary of the black rectangle display. The ball
then traversedhorizontally tomakecontactwithandbounceoff
the opposite boundary of the black rectangle. Participants were
not explicitly told to maintain fixation but were encouraged to
not track the exact motion of the ball and to take in the stimuli
holistically. The EEG data was cleaned for any eye movements
that occurred (see EEG data processing). The time between the
start of the red ball's motion to the time it reached the opposite
boundaryof thedisplaywas1200msec. For theAV-synchronous
condition, the bounce-sound occurred at 1200 msec, exactly

when the ball touched theopposite boundary of the grid. During
the AV-asynchronous condition, the bounce-sound occurred at
750 msec post stimulus onset, which corresponded to the ball
just having passed the vertical midline as it moved toward the
opposite wall, and before it contacted the wall. The visual-only
condition contained the ball moving and bouncing off the

Fig. 1 e Single trial schematic depicting the AV-synchronous condition. For each trial, a small achromatic fractal video was
first presented for 1000 msec (ms) to promote participant engagement during the passive viewing task. A small fixation
cross then appeared, followed by the random presentation of one of four sensory conditions for a total of 416 experimental
trials, 104 trials per condition. The interval labeled “Event Stimuli” contains the primary part of the trial, where participants
viewed a ball that moved across the screen and may or may not be presented with auditory input. A visual depiction and
description of each sensory condition is outlined within Fig. 2. Lastly, upon completion of the event stimuli, each participant
was instructed to identify a single target letter among 7 distractor letters, which served as an attention check.
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oppositeboundaryof theblack rectanglewithnosound.Theball

for the AV-synchronous, AV-asynchronous, and visual-only
conditions remained stationary at the opposite boundary for
50 msec, so the time from the start of motion in one direction
and the start of motion back to its origin was 1250 msec. At
1250msec, theball started tomove toward its origin at the same
speed and the stimulus subsequently terminated at 2000msec,
well before contact with the boundary of origin. The audio-only
condition contained the black rectangle and no visual input
provided by the red ball, but the bounce-sound occurred at
1200 msec after the start of the trial. The duration of the sound
for the audio-only, AV-synchronous, and AV-asynchronous

conditions was 200 msec. Each trial occurred with equal prob-
ability and was randomly generated within each experimental
block (see Fig. 2 for a visual diagram of each sensory condition).

2.4. EEG data processing

Continuous EEG was recorded via a 128-channel HydroCel
Geodesic Sensor Net (Electrical Geodesics, Inc.; EGI).

Impedances were kept below 50 kOhms in all electrodes and

the raw EEG data were referenced online to the vertex (Cz) and
digitized at 500 Hz. EEG data were amplified according to the
default settings of an EGI internal amplifier (model type: Net
Amps 300). All data were processed off-line using MATLAB
(Mathworks, Inc.) and EEGLAB/ERPLAB software (Delorme &

Makeig, 2004; Lopez-Calderon & Luck, 2014). A video of each
participant was obtained during the EEG recording to ensure
they kept their eyes on the display during the EEG session.

The raw EEG data were first digitally filtered using a
.05e50 Hz bandpass (Butterworth) and 60 Hz notch filters. Data
were then manually inspected for individual bad channels

present throughout at least 50% of the recording, as well as
electromyographic (EMG) and other movement artifacts. EEG
data with evidence of egregious EMG, movement, or muscle
artifacts were rejected from the analysis. Data from bad
channels were replaced using a spherical spline interpolation
algorithm. The cleaned EEG data were then taken through an
independent component analysis (ICA), where evidence of eye
artifact (i.e., eye blinks and saccades) was removed from the

Fig. 2 e Depiction of the left-start sensory conditions (right-start not pictured). The moving spherical visual object is shown
in red, the presentation of the sound is depicted as a bright yellow star, and the white arrows indicate the direction of
motion of the visual object. The red rectangle drawn over a single frame of each condition reflects the point in time where
we are event-locking the EEG data for each sensory condition. All ERPs were time-locked to the sound presentation, or in
case of the visual-only condition, the moment when the ball bounced off the boundary. The audio-only condition contained
no visual input at all. The visual-only condition contained the dynamic motion of the ball, with no audio input. For the
synchronous condition, the bounce sound occurred when the ball first made contact with the boundary of the grid. For the
asynchronous condition, the bounce sound corresponded to the ball just having moved past vertical midline. All conditions
were equally likely to occur and were randomly intermixed across the experiment. The onset of each trial followed an inter-
stimulus interval with a randomly presented jitter of 500e750 msec.
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data set. To ensure that all ocular-related artifacts were elimi-

nated by the ICA successfully, we scrolled through the entire
raw EEG traces to look for any residual eye blinks or eye
movements and if present, removed them by hand. This ICA
procedure ensured that no eye movement artifacts were con-
tained in the final data. Thus, while it is possible that some
participants moved their eyes less in one condition than the
other (e.g., audio-only vs. visual-present), this should not affect
our ERP results. We also noticed ICA components in the data
that resembled high-frequency harmonics andopted to remove
them. The EEG data were then segmented into 1000 msec
epochs (!200 to 800 msec relative to stimulus onset), and

baseline corrected usingmean voltage during the 200msec pre-
stimulus baseline period. ERPswere time-locked to the onset of
the sound in all conditions except the visual-only condition in
which case the ERPswere time-locked to the exactmoment the
ball touched the boundary. Each segmented data set was again
manually inspected for excessive artifacts. Once artifact rejec-
tion was completed, the EEG data were again filtered, this time
using a 30 Hz lowpass (Butterworth) filter and then re-
referenced to an average reference. Grand-averaged ERPs
were then obtained for each participant by averaging all
available epochs for each condition.

The total number of acceptable ERP segments per partici-
pant was on average 404.28 trials (SD ¼ 8.08): (audio-only
condition: M ¼ 101.38, SD ¼ 2.04; visual-only condition:
M ¼ 101.45, SD ¼ 1.97; AV-synchronous condition: M ¼ 100.66,
SD ¼ 3.05; AV-asynchronous condition:M ¼ 100.79, SD ¼ 3.02).
There were no significant differences between the conditions
in the amount of total useable segments included in the
construction of each individual ERP response, F(3, 28) ¼ 1.4,

p ¼ .25, h2p ¼ .05.

2.5. ERP regions & components of interest

To test whether early sensory processing was affected by the
temporal synchrony of dynamicAVevents, the auditoryN1 and

P2 components of the auditory evoked potential were evalu-
ated. The N1 component is the first negative going peak of the
auditory evoked potential and is thought to index the early
sensory processing of auditory stimuli (Godey et al., 2001;
Mayhew et al., 2010; N€a€at€anen & Winkler, 1999; Picton et al.,
1974; Ponton et al., 2002). The N1 was operationalized here as
the minimum peak amplitude and latency occurring within
100e200msec after sound onset. The auditory P2 component is
the second positive going peak of the auditory evoked potential
and its functional significance is much less clear compared to
the preceding N1. One possible hypothesis posits that the

auditory P2may be involved inmatching current sensory input
with past perceptual representations (Freunberger et al., 2007;
Luck & Hillyard, 1994). The P2 was operationalized here as the
maximum peak amplitude and latency occurring within
200e300msec after sound onset. Both the timewindow and the
regions of interest were selected based on our hypotheses
about the timing of each ERP component (Stekelenburg &

Vroomen, 2007; Vroomen & Stekelenburg, 2010) and from vi-
sual inspection using the grand averaged ERP across all par-
ticipants and conditions. To quantify early processing of a
sound across the entire auditory ERP, we calculated the N1eP2

peak-to-peak amplitude response, which reflects the amplitude

change between the negative N1 trough and positive P2 peak.
To obtain this value, we subtracted the amplitude of the P2
response from the amplitude of the N1 response for each sub-
ject. For our latency analyses, we planned to conduct individual
N1 and P2 peak latency measures for both experiments. A six-
channel frontal-central auditory region was constructed to
evaluate differences in auditory activity between each sensory
condition. The ERP data, stimuli, and scripts that support the
findings of this study are available to download (Marin et al.,
2021a, 2021b). Note that no part of the study's procedures or
analysis plan were formally pre-registered before the research

was conducted.

3. Results

Fig. 3a presents the grand averaged (n ¼ 29) ERP waveforms,
split between sensory conditions.

As can be clearly seen in Fig. 3, all conditions that included
a sound elicited auditory-evoked potentials, but – as expected
– the visual-only condition did not elicit an auditory response,
and was thus dropped from all subsequent analyses.1 We
conducted two separate one-way within-subjects repeated
measures ANOVAs with three levels (audio-only, AV-
synchronous, AV-asynchronous) for the amplitude and la-
tency responses, within frontal-central scalp regions. All sta-
tistical analyses presented below were conducted in R studio,

using the ‘tidyverse’ and ‘emmeans’ plugin packages.

3.1. N1eP2 peak-to-peak amplitude

As can be seen in Fig. 3a and b, the N1eP2 peak-to-peak ampli-
tude differed between conditions. Statistical analysis of the
N1eP2 peak-to-peak amplitude confirmed this observation and
revealed a significant main effect of condition, F(2, 28) ¼ 14.2,

p< .001, h2p ¼ .34 (seeFig. 3b). Post-hoc tests revealed that theAV-

synchronous condition (M ¼ !7.52, SD ¼ 2.83) exhibited a
smaller N1eP2 peak-to-peak amplitude that significantly
differed compared to the AV-asynchronous (M ¼ !8.44,
SD ¼ 3.75; p ¼ .006, d ¼ .28) and the audio-only (M ¼ !9.05,
SD ¼ 3.78; p < .001, d ¼ .46) responses. The AV-asynchronous

responsewasnotdifferent fromtheaudio-onlyresponse (p¼ .1).

3.2. N1 and P2 peak latency

To assess whether the timing of early auditory ERP was
affected by the temporal synchrony of dynamic AV events, the
N1 and P2 components were evaluated using analyses similar
to the N1eP2 peak-to-peak. We predicted that the N1 and P2

responses toward the dynamic AV synchrony should elicit
faster peak amplitudes compared AV asynchronous and audio
only responses.

1 The visual-only condition was included in the design of the
experiment to keep all conditions symmetrical and not bias
participants' expectations in any particular way. Because the
visual-only condition contained continuous visual information
but no sound, we planned to not look at the EEG data for this
condition in any meaningful way.
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Analysis of N1 minimum peak latency revealed a signifi-

cant main effect of condition, F(2, 28) ¼ 33, p < .001, h2p ¼ .54 (see

Fig. 3c). The N1 peaked earlier for the AV-synchronous con-
dition (M ¼ 144.17 msec, SD ¼ 12.7) compared to AV-

asynchronous (M ¼ 162.39 msec, SD ¼ 17.2; p < .001, d ¼ 1.21)
and audio-only (M ¼ 150.3 msec, SD ¼ 12.4; p ¼ .03, d ¼ .49)
responses. Additionally, the N1 was slower for the AV-
asynchronous response compared to the audio-only
response (p < .001, d ¼ .81).

Analysis of P2 maximum peak latency also revealed a sig-
nificant main effect of condition, F(2, 28) ¼ 31.98, p < .001,

h2p ¼ .53 (not depicted). Like the N1, the P2 peaked sooner for

the AV-synchronous condition (M ¼ 234.32 msec, SD ¼ 14.8)
compared to AV-asynchronous (M ¼ 255.33 msec, SD ¼ 13.2;
p < .001, d ¼ 1.5) and audio-only (M ¼ 242.12 msec, SD ¼ 17.4;
p ¼ .01, d ¼ .48) responses. Additionally, the P2 was slower for
the AV-asynchronous response compared to the audio-only
response (p < .001, d ¼ .86).

3.3. Summary and discussion of Experiment 1

We found that the auditory response was sensitive to the
temporal relationship between dynamic AV input for
Experiment 1. The auditory response was smaller in
amplitude and occurred earlier in time when visual input
was synchronously paired in time and space with an ex-
pected sound, compared to the response elicited from

auditory-alone and asynchronous AV inputs. Additionally,
the neural response toward asynchronous AV input was
significantly delayed compared to AV-synchronous and
auditory-alone presentations. Importantly, smaller auditory
responses were seen even when the synchrony of the AV
collision event varied unpredictably from trial to trial e a
key distinction from Vroomen and Stekelenburg (2010). This
pattern of results suggests that early sensitivity toward the
temporal synchrony of anticipated sounds allows the brain
to code for temporally congruent AV events, resulting in an

Fig. 3 e Grand averaged ERP and auditory N1eP2 peak-to-peak amplitude and N1 peak latency responses for Experiment 1.
Sub-figure (a) presents the frontal-central grand-averaged ERP obtained from a six-channel auditory region of interest
shown below the x-axis of the ERP figure. For the ERP figure, the y-axis reflects voltage, which is plotted positive up and the
x-axis is the time in milliseconds (msec). Error bars around the ERP reflect the upper and lower bonds of one within-subject
standard error of the mean (þ/¡). Sub-figures (b) and (c) reflect individual scatter plots for the central-frontal N1eP2 peak-to-
peak amplitude and N1 peak latency responses, respectively, for 29 adults. The visual-only condition (i.e., sub-figure a,
orange trace) was omitted from our main analyses due to the absence of an auditory-evoked potential. The grey color
represents the audio alone condition, the blue denotes the AV-synchronous (AVS) condition, and the red is the AV-
asynchronous condition (AVA). The error bars in the scatter plot figures reflect the upper and lower bounds of one within-
subject standard error of the mean (þ/¡), and significant p-values are provided above each bracket comparison. Sub-figure
(d) reflects the grand averaged ERP difference wave of the audio-only response subtracted from the AV-synchronous (blue
dash trace) and AV-asynchronous (red dash trace) responses. Sub-figure (e) reflects the voltage distribution (in microvolts;
uV) on the scalp of the average N1 activity of the AV-synchronous, AV-asynchronous, and audio only responses. The
activity here reflects the mean voltage across the scalp between 100 and 200 msec after the onset of the sound.
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attenuated (or suppressed) early auditory response. Criti-

cally, Experiment 1 underscores the role of temporal syn-
chrony in facilitating early auditory processing, providing
further evidence that the auditory effects are relevant for
non-predictable inanimate objects, not just expected
human actions and AV speech perception (additional theo-
retical implications are included in the general discussion).
Taken together, the results of Experiment 1 suggest that the
continuous presentation of a moving object can alter the
processing of incoming auditory information within the first
200 msec of processing.

4. Experiment 2

Experiment 1 showed that a moving visual object can alter
early auditory processing of a subsequent sound that is

perceived as part of the same object. One interpretation of
the results of Experiment 1 is that the auditory effects
occurred because the sound and visual object were present
at the same time during the collision event e which would
be consistent with a multisensory account of sensory
facilitation. An alternative is, however, that the expectation
of a sound induced by a single moving visual stimulus is
sufficient to alter auditory processing, even if no visual
object is present at the same time the sound occurs. Thus,
in Experiment 2, we tested whether continuous visual input
is necessary to generate the auditory effects found during

temporally synchronous AV presentations, or whether the
expectation about a moving object is sufficient to modulate
early auditory processing. To do this, we added a new AV
condition in which we showed the visual and motion cues
provided by the ball and its motion, and then removed
these cues via occlusion well before the object collided with
an artificial boundary and subsequently elicited an ex-
pected bounce sound. Thus, the sound appeared at the
moment the ball would collide with the boundary, only the
ball was not visible to participants anymore. We compared
this condition to the AV synchronous, AV-asynchronous,

and audio-only conditions identical to those in Experi-
ment 1. With this new AV-occluded condition, we hoped to
elicit similar visual expectancies as in the AV-synchronous
condition, but to eliminate the simultaneous presentation
of visual object and sound during the collision itself, to
tease apart effects of expectation alone, and multisensory
integration.

We expected to replicate the auditory effects seen in
Experiment 1 for AV-synchronous relative to AV-
asynchronous and audio-only conditions. Of particular inter-
est was the AV-occluded condition: If the AV-occluded audi-

tory responsewasmost similar to audio-only activity, it would
imply that temporally concordant AV input is important to
elicit the auditory effects, consistent with multisensory inte-
gration. Alternatively, if the AV-occluded response looks
similar to the AV-synchronous response, it would suggest that
visually-induced expectations alone are sufficient to alter
early auditory processing. Lastly, if the AV-occluded condition
resembled the AV-asynchronous response profile, this would
suggest that both conditions elicit responses possibly related
to detecting AV incongruencies.

5. Methods

5.1. Participants

Due to relatively large effect sizes in Experiment 1, we reduced
the sample in Experiment 2 to match that used by Vroomen
and Stekelenburg (2010). Nineteen college-aged adults
(Mage ¼ 20.51 years, SD ¼ 1.46; 9 female) participated in
Experiment 2. An additional five adults were tested but were
excluded due to excessive EEG artifact based on the removal
criteria outlined in the methods section of Experiment 1.

5.2. Audio-visual stimuli

The AV stimuli used in this experiment were the same as in
Experiment 1, with the exception of the added AV-occluded
condition described below. The new AV-occluded condition
contained the same AV properties as the AV-synchronous
condition. We did not include the visual-only condition in
this experiment. Like in Experiment 1, the AV-asynchronous
tone occurred 450 msec before contacting the opposite edge.

5.3. Paradigm and procedure

Each participant was seated in a dark room and was shown a
randomly presented stream of four AV sensory conditions: 1)
audio-only, 2) AV-synchronous, 3) AV-asynchronous, and 4)
AV-occluded while high-density EEG was recorded. For the
new AV-occluded condition (see Fig. 4 for a single trial stim-
ulus presentation of the timing of events), a single red ball
randomly appeared on either the far left or right boundary of a
black rectangle display, at the horizontal midline of the

monitor.
The ball in this condition traversed along the horizontal

midline, but at approximately 600 msec, it began to move
through an invisible slit midway in the display and became
fully occluded before contacting the opposite boundary. For
this condition, the bounce-sound occurred at 1200 msec,
exactly when the occluded ball would contact the opposite
boundary of the rectangle display. Thus, the timing of the
sound was predictable based on when the object entered the
occluding area, but the visual object itself was not visible
when the bouncing sound was played. After auditory onset,

the invisible ball started to move back toward its origin (still
occluded at this point) and became fully visible half-way
through the display (after another 600 msec), then the stim-
uli subsequently terminated at 2000 msec. Additionally, all
participants again performed the secondary task in between
trials and were above a 95% accurate in task, resulting in no
subjects removed due to poor attention.

5.4. EEG data processing

The EEG/ERP pre-processing steps were the same as Experi-
ment 1. The total number of acceptable ERP segments per
participant was on average 404 trials (SD ¼ 11.6): (audio-only
condition: M ¼ 101.74, SD ¼ 2.28; AV-synchronous condition:
M¼ 100.79, SD¼ 3.33; AV-asynchronous condition:M¼ 100.79,
SD ¼ 3.19; AV-occluded condition: M ¼ 100.68, SD ¼ 3.93).

c o r t e x 1 4 4 ( 2 0 2 1 ) 1 9 8e2 1 1 205



 

 17 

 
 

There were no condition differences regarding the amount of
total useable segments included in the construction of each

individual ERP response, F(3, 18) ¼ 1.7, p ¼ .18, h2p ¼ .09.

6. Results

Fig. 5a displays the grand averaged (n ¼ 19) auditory ERP

waveforms, split between the four sensory conditions.
As seen in the grand averaged ERP for Experiment 2 (see

Fig. 5a), ERP deflections between each condition were seen as
early as the onset of the sound (0 msec) and by using N1eP2
peak-to-peak measures, we hope to account for these early
ERP differences. The N1 and P2 peak latency analyses for
Experiment 2 were conducted in the same manner as the la-
tency analyses for Experiment 1 because the early visual
amplitude drift seen between the conditions would not in-
fluence the interpretation of timing on the auditory ERP. We
then conducted a within-subjects repeated measures

ANOVAs with 4 levels (audio-only, AV-synchronous, AV-
asynchronous, AV-occluded) for the N1eP2 peak-to-peak
amplitude response and N1 and P2 peak latency responses
within frontal-central scalp regions.

6.1. N1eP2 peak-to-peak amplitude

As shown in Fig. 5a, the auditory component differed in terms
of amplitude and latency across the four conditions. Statistical

analysis of N1eP2 peak-to-peak amplitude revealed a signifi-

cantmain effect of condition, F(3, 18)¼ 8.73, p < .001, h2p ¼ .33 (see

Fig. 5b). Post-hoc tests revealed that the AV-synchronous
response (M ¼ "5.79, SD ¼ 2.09) exhibited an attenuated
N1eP2 peak-to-peak amplitude compared to the AV-

asynchronous (M ¼ "7.18, SD ¼ 2.77; p ¼ .004, d ¼ .57) and
audio-only (M ¼ "7.32, SD ¼ 2.36; p ¼ .001, d ¼ .69) responses,
while the AV-asynchronous response was not statistically
different from the audio-only response (p ¼ .98), overall repli-
cating Experiment 1. Importantly, the AV-occluded response
(M¼"5.91, SD¼ 1.67 was significantly smaller compared to the
AV-asynchronous (p ¼ .01, d ¼ .56) and audio-only (p ¼ .003,
d¼ .69) responses. The AV-occluded responsewas not different
compared to the AV-synchronous (p ¼ .99) response.

6.2. N1 and P2 peak latency

Analysis ofN1minimumpeak latency revealed anon-significant

main effect of condition (F(3, 18) ¼ 2.08, p¼ .11, h2p ¼ .1), diverging

from Experiment 1. However, analysis of P2 maximum peak la-
tencyrevealedasignificantmaineffectof condition (F(3, 18)¼ 68.9,

p< .001, h2p ¼ .79; see Fig. 5c). The P2was significantly delayed for

the AV-asynchronous response (M ¼ 244.8 msec, SD ¼ 11.31)
compared to the AV-synchronous (M ¼ 221.49 msec, SD ¼ 9.99;
p < .001, d ¼ 2.18), audio-only (M ¼ 228.16 msec, SD ¼ 10.78;
p< .001, d¼ 1.51), andAV-occluded (M¼ 225.18msec, SD¼ 10.68;
p < .001, d ¼ 1.78) responses. The P2 for the AV-synchronous
response also peaked sooner compared to the audio-only
response (p ¼ .002, d ¼ .64). All other comparisons failed to
reach statistical significance (all p's > .17).

6.3. Summary and discussion of Experiment 2

The amplitude and latency effects seen in Experiment 1 were
replicated in Experiment 2, providing further evidence that the
early auditory response is sensitive to the temporal relation-
ship between dynamic AV input. However, the effects of la-
tency were not present at the N1, but were only seen at the P2
for Experiment 2. While we want to be careful in interpreting
the N1 latency effects for Experiment 1, the perception of AV
asynchrony, on average, delays the auditory response relative

to each condition for both Experiments 1 and 2. Importantly,
thepartial replicationof the effectsof latency suggests theyare
overall less robust compared to the amplitude effects.

Of particular interest in Experiment 2 was the response
pattern of the AV-occluded condition. We found that the audi-
toryN1eP2peak-to-peakamplitude responseelicitedduring the
AV-occluded condition was smaller compared to unimodal
auditory and temporally asynchronous AV inputs, and closely
mimicked the AV-synchronous response in amplitude and la-
tency. These findings suggest that early auditory sensitivity to-
ward the expectation of sounds can arise as the result of

preceding visual input, without simultaneous audio and visual
input. The AV-occluded P2 response also revealed a significant
difference in speeded latency compared to the AV-
asynchronous response. Importantly, the overall pattern of re-
sults suggests that theAV-occluded response closely resembled

Fig. 4 e Depiction of the AV-occluded condition for Experiment 2 (right start not pictured). In this condition, a red ball
appeared on the left or right side of the display and began to move to the opposite boundary. The ball began to occlude
behind an invisible slit in the display when it approached the half-way point (600 msec). By the time the ball reached the
opposite boundary, it was invisible, but a sound was presented that contained the same temporal characteristics as the
audio-visual synchronous presentation. ERPs for this condition were time-locked to the frame labeled “Auditory event.”
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the activity in the AV-synchronous condition. Overall, Experi-
ment2demonstrated thatvisualexpectationinducedbyasingle
moving object can facilitate early auditory processing, as most

clearly indexed by the overall reduction of the auditory ERP.

7. General discussion

7.1. Early auditory processing is attenuated for
synchronous audio-visual events

The goal of this studywas to examine the electrophysiological
correlates of dynamic AV temporal synchrony in the healthy

adult brain. For Experiment 1, we were guided by the hy-
pothesis that subtlemanipulations of the temporal synchrony
underlying dynamic AV events would result in unique pat-

terns of neural responses underlying the auditory ERP, spe-
cifically the early auditory response. We found clear evidence
that dynamic AV stimulation that differed in temporal onset
synchrony subsequently altered the early sensory response
(<200 msec) to sounds in fundamentally different ways. Spe-
cifically, the early auditory response to temporally synchro-
nous AV events resulted in a pattern of reduced auditory
processing (i.e., lower amplitude, faster peak latency)
compared to discordant AV stimulation. A second experiment
was conducted to assess early auditory responses toward

Fig. 5 e Grand averaged ERP, auditory N1eP2 peak-to-peak amplitude response, and P2 peak latency response for
Experiment 2. Subfigure (a) presents the frontal-central grand-averaged ERP and individual scatter plots for (b) N1eP2 peak-
to-peak amplitude (c) P2 peak latency responses for 19 adults. N1 peak latency responses did significantly differ between
conditions. For the ERP figure, the y-axis reflects voltage, which is plotted positive up and the x-axis is the time in
milliseconds (msec). Error bars around the ERP reflect the upper and lower bonds of one within-subject standard error of the
mean (þ/¡). The grey color represents the audio alone condition, the blue denotes the AV-synchronous condition, the red is
the AV-asynchronous condition, and the purple is the AV-occluded condition. The error bars in the scatter plot figures
reflect the upper and lower bounds of one within-subject standard error of the mean (þ/¡), and significant p-values are
provided above each bracket comparison.
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visually occluded but temporally synchronous auditory input.

We found that the N1eP2 peak-to-peak response toward AV-
synchrony was similar to AV input that contained tempo-
rally synchronous, but visually occluded auditory input. These
early sensitivities toward the temporal alignment of dynamic
AV input demonstrate that general auditory processing is
shaped by the temporal expectancies triggered by preceding
dynamic visual input.

Our analyses for Experiment 1 revealed both an attenuated
and accelerated auditory response when processing dynamic
and temporally congruent AV inputs. These changes in the
auditory evoked potential can be interpreted as very early

auditory (<200 msec) processing being reduced during
congruent AV conditions relative to incongruent AV (or audio-
only) conditions, possibly indicating that participants coded
the temporal synchrony of an expected sound generated by a
moving stimulus very early in the auditory processing stream.
Additionally, the AV-asynchronous response, where the
sound occurred before it was expected, elicited a delayed
auditory response compared to the response elicited from
unimodal auditory events, likely reflecting a signature of
detecting sensory conflict between the timing of the auditory
and visual stimuli. The findings of early changes of the audi-

tory evoked potential e amplitude reduction and shorter la-
tencye for temporally congruent, dynamic AV stimuli provide
more evidence for the idea that similar amplitude reductions
(i.e., suppression) of the auditory response arises in scenarios
in which preceding sensory input matches additional, yet
expected sensory input (Clementz et al., 2002; D'Andrea-
Penna et al., 2020; Ford et al., 2007; Ford & Hillyard, 1981;
Kononowicz & van Rijn, 2014; Lange, 2009, 2013; Menceloglu
et al., 2020; Schafer et al., 1981; Stekelenburg & Vroomen,
2007; van Wassenhove et al., 2005; Vroomen & Stekelenburg,
2010). Note that no direct comparisons were made between

visual-only presentations and the three other sensory condi-
tions, due to the lack of an observed auditory ERP in the visual-
only condition. Given that our visual stimuluswas continuous
rather than a discrete event, wewere also not able to observe a
clear visually-evoked response of the ball bouncing; however,
our data clearly showed that the visual stimulus modulated
auditory processing. We recognize that there are potentially
important differences between the AV-synchronous and AV-
asynchronous conditions. First, the visual position of the ob-
ject during sound onset is different between the AV-
synchronous and AV-asynchronous conditions, where the
ball is closer to the origin for the AV-asynchronous condition,

which makes a direct comparison of their baselines difficult.
Second, the reversal of the object after the collision in the
synchronous condition may have provided the observer
additional visual information that was not seen during the
AV-asynchronous condition. Because of these important, yet
unavoidable sensory differences between the AV-
synchronous and AV-asynchronous conditions, some degree
of caution is needed when interpreting these results.

The present results deviate in some ways from the findings
by Vroomen and Stekelenburg (2010). Specifically, Vroomen &

Stekelenburg observed differences in the auditory response

only when the visual input predicted the sound with high
reliability (fixed blocks only; three condition comparison:
audio-only, visual-only, and AV-synchronous expectations;

their Experiment 1), but when the relation became less reliable

(mixed vs. fixed blocks; six condition comparison: audio-only,
visual-only, AV-synchronous expectation, AV-non expecta-
tion, and early and late AV-asynchronous sound onset; their
Experiment 2), these early auditory modulations only appeared
during fixed-block, AV-synchronous expectation pre-
sentations. With regards to the later auditory response
(~240 msec), they found an equally suppressed response to-
ward synchronous AV and early asynchronous AV input
regardless of the predictability of the audio-visual events (i.e.,
both in fixed and intermixed blocks). We, on the other hand,
found that the auditory response was sensitive to AV asyn-

chronies evenwhen synchronous and asynchronous trial types
were randomly intermixed, and the visual input thus did not
reliably predict the timing of a sound across trials. The later
auditory response appeared to show, on average, a general
sensitivity to audio-visual inputs regardless of temporal syn-
chrony, similar to Vroomen and Stekelenburg (2010). However,
since we did not have clear a priori expectations with regards to
the later auditory response in our tasks, we hesitate to strongly
interpret these changes in the later auditory response.

Why do our results differ from those observed in the pre-
vious study? In the current set of experiments, a visual object

provided expectations about upcoming auditory input in a
single, uniform direction. In Vroomen and Stekelenburg (2010),
two visual objects appeared to the left and right of a rectangle
and moved toward it, eventually colliding with and bouncing
off it. In our experiments, visual expectation, and therefore
attention, was not divided between two objects, which may
have reduced uncertainty, providing for a more accurate
perceptual representation of the temporal relationships un-
derlying the AV inputs. Additionally, the stimuli used in the
current experiment were perhaps more reflective of natural
sensory environments. For example, we opted to use a red

sphere that appeared to move toward and bounce off a single,
artificially defined barrier, eliciting a “knock” sound that
resembled the sound of a ball bouncing of the wall. Vroomen
and Stekelenburg used more simplified stimuli, including two
white visual disks that elicited a pure auditory tone upon syn-
chronous contact with an artificially defined barrier. Alterna-
tively, the contrast between the results of our Experiment 1 and
Vroomen and Stekelenburg (2010), wherewe found a difference
in the neural response toward synchronous and asynchronous
AV inputs during mixed trials while they did not, may have
arisen due to differences in the temporal gap between discor-
dant AV stimulation. In our experiments, the auditory onset for

asynchronous AV input occurred 450 msec before visual colli-
sion. Vroomen and Stekelenburg presented auditory informa-
tion 240 msec before visual collision (2010). The auditory
response is thought to reflect an early sensory response that is
modulated by low-level auditory characteristics like loudness
and pitch (Hyde, 1997), and thus in principle could be sensitive
to other low-level characteristics like systemically smaller
asynchronous temporal gaps in dynamic AV input. We think it
is unlikely that these small differences in the temporal onset of
a soundpairedwith dynamic, yet discordant visual input drives
the auditory response synchrony differences between the two

studies.
We measured responses to AV asynchrony using a single

offset in timing between the synchronous AV event and the
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asynchronous one. However, differences in timing between

when a sound is expected based on visual input and when it
actually occurs couldmatter for how reliable themultisensory
percept is. Additional studies will also be needed to assess the
auditory response while perceiving systematically smaller
temporal onsets, or even small delays between discordant AV
input. Such research will help further characterize whether
this mechanism relies more so on a general sensitivity toward
the temporal expectation elicited by a moving object itself
versus one that would rely on a uniquemultisensory interplay
between the AV inputs.

7.2. Synchronous visual expectations about the timing
of sounds reduces auditory responses

In Experiment 2, we asked whether expectation provided by
continuous visual input preceding the soundwas sufficient to
elicit an attenuated auditory response even in the absence of
the visual input continuing to the point of impact. The N1eP2
peak-to-peak response to audio-only and AV-asynchronous
inputs were greater compared to sensory information that

provided synchronous auditory stimulation but occluded vi-
sual information at the point of collision. Additionally, the
AV-occluded condition was not statistically different in
amplitude or latency from the AV-synchronous response.
Thus, the reduced auditory amplitude toward occluded AV
stimulation provides evidence for sensitivity toward the
expectation of the impending sound in that the brain's
response resembled theperceptionofAV-synchronous input,
even without a precise visual representation of the collision
event. Thehumanvisual systemdisplays a remarkable ability
to represent the persistence of dynamic objects that undergo

brief visual occlusion (see review, Scholl, 2007). Even six-
month old human infants are able to anticipate the exit tra-
jectory of a briefly occluded visual object in motion (Johnson
et al., 2003). Additionally, the ability to visually track and
identify multiple target objects that undergo brief visual oc-
clusion is unimpaired in normal sighted individuals (Scholl&
Pylyshyn, 1999). In this case, tracking a briefly occluded visual
object may help reduce the computational demands of audi-
tory brain regions, allowing for the auditory system to better
coordinate in time and space the physical properties of the
occluded object (i.e., rate ofmotion, physical boundaries, etc.)

with its expected sound. In other words, the suppressed
auditory response elicited by occluded and synchronous AV
inputs may have resulted from the brain generating suc-
cessful predictions about when an expected sound would
occur. We showed this by simply presenting a dynamic
moving object for a relatively short time that contained ac-
curate temporal and spatial information. These visual cues in
essence allowed the perceiver to infer the source of the sound
even without simultaneous visual input. It is worth noting
that the visible condition containedmore precise information
about when the tone occurs, and thus the dissociation be-

tween expectation and integration ought to be interpreted
carefully. Nonetheless, Experiment 2 underscores the
importance of visual expectations in eliciting auditory sup-
pression, in that the brief representation of a dynamic visual
object's spatial and temporal properties led to the expectation
of an accompanying sound.

7.3. Summary

Early sensitivity toward the temporal synchrony of dynamic AV

events is important for the successful identification of bimodal
sensory signals that should be perceived as either unified or
two separate sensory events. Sensitivity to the temporal rela-
tion between AV input allows the brain to either processes
congruent AV events or detect asynchrony very early in the
auditory processing stream. Thus, the reduction of the auditory
response to AV temporal synchrony may manifest from the
brain generating successful predictions about basic sensory
events in the environment. In other words, the reduced audi-
tory response seen here may have resulted from a perceptual
match between top-down expectancies of a sound and correct

bottom-up sensory input, like the ball's motion and its syn-
chronous relation to the timing of the sound itself. Such
mechanisms may help lay the groundwork to further under-
stand how neural activity is shaped in later processing stages
that involve higher-level cognitive processes like attention and
decision making. For example, one might direct less attention
toward the low-level features of temporally synchronous AV
events, while exerting more effort in extracting contextual in-
formation embedded within the AV signal. Conversely, AV
input that is temporally asynchronousmay evoke disturbances
in fundamental mechanisms designed to bind bimodal sensory
information as one. These highly specialized sensory processes

afford the brain the ability to exhibit sensitivities toward rela-
tively small temporal discrepancies between dynamic AV
stimulation. Such mechanisms are crucial, as the successful
integration of the expectation of an accompanying sound that
arise via dynamic visual stimuli results in precise scene rep-
resentations. Another interpretation of the data could be that
the auditory response expectancy effects resulted from the pre-
activation of the neural representation of the expected sound
contained in the time prior to sound actually occurring (Blom
et al., 2020; Kok et al., 2017). This is a very important distinc-
tion that can be addressed in future research. For example,

sensory manipulations, like varying the speed of the object it-
self, the time spent behind occlusion, or a combination of both
are needed to assess contextual occlusion influences over the
visual ERP. The fact that the auditory response was not modi-
fied by occlusion but was different from unimodal input sug-
gests that expectation plays some role in processing expected
sounds based on the trajectory of amoving visual stimulus. The
neural mechanism characterized in this study may be funda-
mental to proper AV processing more broadly, in that these
early auditory responses are sensitive to temporal discrep-
ancies between AV sensory input that differ in milliseconds.

In sum, our results provide evidence for a neural mecha-
nism that is sensitive to the underlying temporal relation of
dynamic AV input in healthy adults. Early sensitivities to
temporally congruent and discordant events may help deter-
mine how the brain subsequently processes bimodal experi-
ences in natural sensory environments. For synchronous
events, the brain exhibited a reduced auditory response when
the temporal predictions of an ensuing sound were in line
with preceding visual input. In contrast, greater neural re-
sponses were seen in the presence of AV temporal incon-
gruency. Early sensitivity toward the temporal synchrony of

dynamic AV events, as reflected in the early auditory response
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modulations, may reflect a basic perceptual mechanism used

to gage the plausibility of expected sensory events contained
within our environment. Importantly, a moving visual object
that provides accurate spatial and temporal expectations
about when a sound is likely about to appear are sufficient in
attenuating early auditory processing. Broadly, this suggests
that visual input e or the representation of visual input e

leads tomore efficient auditory processing within the first few
hundred milliseconds of processing. These early influences
likely have important consequences for other downstream
processes.
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Abstract

Predictive coding accounts of Autism Spectrum Disorder (ASD) suggest that autistic individuals

display differences in predicting sensory information. Previous research has noted neural

differences in auditory predictions and error integration in autistic individuals, but which signals

are most impacted remains unclear. Here, we recorded auditory event-related potentials (ERPs)

from autistic and neurotypical (NT) adults who passively observed a ball that made a bounce

sound upon physical collision. We compared auditory ERPs to conditions where the sound of the

ball either occurred: 1) in synchrony with visual collision, 2) asynchronously before collision, 3)

during synchronous, but occluded collision, or 4) the sound occurred in isolation. Across all

participants, the asynchronous condition elicited greater auditory responses compared to

synchronous and obscured inputs, while the activity in the obscured condition closely resembled

that of the synchronous condition. We also found the differential P2 amplitude toward

asynchrony in autism was greater relative to NT, while no differences in response to fully visible

or occluded synchrony were observed. Exploratory brain-behavioral analyses revealed that

greater neural responses corresponding to the perception of asynchronous sound was related to a

decrease in self reported autistic traits. These results suggest that increased neural responses to

basic perceptual errors in autism may result from differences in bottom-up sensory processing,

rather than the integration of top-down expectations.

Keywords: Autism, ASD, auditory ERP, audio-visual (AV), predictive coding
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Electrophysiological Differences Underlying the Perception of Auditory Error in Autism

Imagine yourself at a grocery store. Employees greet you with a smile and wave. Old,

rickety carts get louder as people whiz by you. All of a sudden, a customer drops a glass jar from

the shelf, prompting you to cover your ears in anticipation of it crashing to the floor. These

dynamic visual experiences, occurring in both social and non-social settings, provide visual cues

about when to anticipate certain sounds. Processing cross-modal events depends on the

successful integration of unisensory signals entering the brain, which equip us to process and

respond to naturalistic sensory information. As a result, differences in how the brain anticipates

sound from vision may stem from disruptions in integrative sensory systems. Characterizing the

mechanisms in neurodevelopmental populations who experience diffuse alterations in these

neural systems, coupled with documented behavioral issues related to predictive processing, is

one way to gain insight into how we neurologically predict sounds based on visual information.

To these individuals, walking through a grocery store could be a challenging sensory experience,

a sentiment commonly shared by autistic people (MacLennan et al., 2023).

Autism Spectrum Disorder (ASD) is a heterogeneous neurodevelopmental condition with

a diverse range of individual symptoms characterized by differences in social communication

and the presence of restrictive and repetitive behaviors (American Psychiatric Association,

2022). Though sensory processing differences are well-documented, clinicians have traditionally

emphasized autism as a primarily socially orientated disorder, involving challenges in processing

socially motivated stimuli and understanding others' behaviors and mental states (for review,

Baron-Cohen, 2000; Chevallier et al., 2012; Klin et al., 2002). Contemporary research has tended

to compartmentalize sensory and social features when studying autism, despite findings that the

severity of sensory sensitivities is related to the severity of social-cognitive symptoms (Hilton et
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al., 2010; Thye et. al, 2018; Tavassoli et al., 2018; Zhai et al., 2023). Although empirical and

clinical evidence suggests that autism is a disorder largely defined by social differences, there

remains a gap between the documented differences in social cognition and the role of sensory

mechanisms that may underlie social functioning.

Predictive Coding Theory (PCT) of autism is a domain-general account of autistic

symptomatology, suggesting the heterogeneous symptom profile is defined by fundamental

disruptions in utilizing internal predictive models and effective error processing (Cannon et al.,

2021; Sinha et al., 2014). PCT outlines that the brain's principal function is to build internal

mental models, or “priors,” to optimize efficient bottom-up processing of external information

(Friston, 2005; Jiang & Rao, 2021). PCT argues that top-down expectations are compared to

bottom-up sensory signals (Huang & Rao, 2011; Huang, 2018; Choi, 2018; Heeger, 2017), where

discrepancies between what we expect and what we perceive trigger prediction errors, or a

‘surprise’ (Feldman & Friston, 2010), which in turn facilitates attention towards updating mental

models (Picard and Friston, 2014; Sinclair et al., 2021). In sum, subjective inference of our

environment is dependent on the delicate balance between integrating prediction errors with

current mental models, or experience-dependent learning (Friston, 2012). Thus, PCT is emerging

as a hypothesis to understand the cortical processing implicated in predicting real-world

expectations that can be quantified at a mechanistic level.

Neurocomputational models such as PCT have been posited as an explanatory framework

to understand the neural mechanisms underlying major neurodevelopmental and

neuropsychiatric disorders (Huys et al., 2021; Huys et al., 2016; Kaye and Krystal, 2020).

Dysfunctions in the regulation of predictive neural systems are thought to characterize

differences in perceptual, attentional, or reasoning deficits, which appear to map onto clinical
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symptoms (Smith et al., 2021; van Schalkwyk et al., 2017). In applying the PCT framework to

autism, it is commonly accepted that differences in predictive circuitry hinder the optimization of

top-down prediction models, leading to a heightened reliance on sensory information.

Originating from an inability to flexibly process prediction errors, core deficits appear to be

consequences of a disinhibited system that may formulate an endophenotype shared across

autistic individuals (Van Boxtel & Lu, 2013; Greene, 2019). However, the mechanisms

underlying these predictive differences in autism remain a topic of ongoing debate.

Pellicano and Burr (2012) first promoted the view that autism etiology is primarily rooted

in attenuated top-down signals (i.e., ‘hypo-priors’). They posit distinct differences in the

precision of priors, in which autistic people occupy ‘weaker’ mental models in comparison to

neurotypical (NT) people. Alternatively, Van De Cruys et al. (2014) and Lawson et al. (2014)

suggest that core symptomology in autism is underpinned by the inability to flexibly process

bottom-up prediction errors, where errors are weighed higher than pre-existing priors. These

theories converge in their argument that individuals on the spectrum have a bias towards

overemphasizing bottom-up sensory information, such that the formation of mental models is

compromised. However, the contribution of top-down and bottom-up signaling in shaping

predictive differences is an open question. To address this, we will directly compare the

mechanisms that support the integration of top-down expectations versus those that signal

bottom-up prediction error in autistic participants.

Questions regarding the neural basis of stimulus prediction have particularly garnered a

lot of interest within the auditory domain (for review, Lange, 2013). Event-related potentials

(ERPs), which represent the averaged electroencephalogram (EEG) response time-locked to a

particular event, have been employed to assess how early auditory responses are shaped by
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predictable sensory information. The auditory evoked potential (i.e., the N1–P2 complex) is an

early sensory response that is modulated by predictable auditory input. For example, several

studies have reported that the auditory response is attenuated when hearing temporally

predictable sounds (Clementz et al., 2002; D'Andrea-Penna et al., 2020; Ford et al., 2007; Ford &

Hillyard, 1981; Kononowicz & van Rijn, 2014; Lange, 2009; Menceloglu et al., 2020; Schafer et

al., 1981). Within a predictive coding framework (Friston, 2005; Lange, 2013), auditory response

reduction toward expected sounds is thought to be reflective of top-down expectations. The

synchronous match between top-down and bottom-up signals is hypothesized to reduce the error

signal of the predictive sound and thus attenuate the evoked ERP (Baldeweg, 2007; Lange,

2013). Moreover, sounds that violate auditory expectations result in an increased amplitude and

latency in auditory responses (for review, Näätänen et al., 2007). Therefore, the auditory ERP

serves as an electrophysiological marker for prediction and error signals, displaying reduced

amplitudes for prediction and an amplified response for error.

Of particular interest are two studies by van Laarhoven et al., which utilized ERPs to

quantify neural markers of motor-auditory prediction (2019) and auditory omission error (2020)

in autistic adults. In the study assessing motor-auditory predictions, researchers analyzed how the

autistic brain predicts sounds generated by movements, using the N1 component as a measure for

these internal predictions. Participants were exposed to three conditions: 1) a motor-auditory

condition where each participant pressed a button that resulted in a sound, 2) an audio-only

condition where participants only heard the sound, and 3) a motor-only condition where each

participant made a button press, but no sound was heard. Here, the neural response to

self-initiated sounds was reduced compared to externally produced sounds in NT, but was absent

in the autistic group. van Laarhoven et al. suggested that the motor-to-auditory predictions may
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be compromised in autistic individuals, subsequently limiting the ability to predict the

consequences of their self-initiated movements. The inability to anticipate upcoming sensory

events, especially if self-generated, provides evidence for differences in top-down predictive

models in autism.

Extending this work, a further study by van Laarhoven examined autistic neural

responses to error while observing expected and unexpected actions of others. Here, ERPs were

recorded while adult participants passively viewed video recordings of hand claps, including

trials where visual input was predictive of the expected sound and trials that contained

unexpected omissions of the auditory stimulus. When the auditory stimulus was omitted, autistic

participants demonstrated a larger error response compared to NT, indicating that autistic

participants exhibited an increased response when top-down predictions were violated. The

presence of increased sensory signaling quantified by the omission study suggests the presence

of bottom-up sensory-driven predictive differences in autism.

These two findings demonstrate electrophysiological support for top-down (van

Laarhoven et al., 2019) and bottom-up (van Laarhoven et al., 2020) predictive coding differences

in autism, evidenced specifically within the motor-audio and audio-visual (AV) domains.

However, neither of these studies distinguished between auditory signals that represent

processing sound based on expected top-down information from the same sound causing

bottom-up errors. The motor-auditory prediction study lacked a comparison between predictable

sounds and those that violated expectations. Similarly, the handclap paradigm quantified the

error signal as the absence of auditory stimulation, lacking a direct comparison of predictable

sound versus sound that induces error. Despite the primary proposition of the PCT framework

being that perceptual processing involves the integration of prediction errors, the differences
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between responses to predicted sounds and sounds that elicit error have not, to our knowledge,

yet been measured within autistic participants. To advance PCT from a computational theory to a

domain-general sensory processing model, dissecting the interplay between external information

and prior expectations is crucial to understanding predictive differences in autism.

Extending the work of van Laarhoven et al. and taking advantage of the utility of ERP

markers of prediction in the AV domain, we will use a paradigm that directly compares auditory

prediction and error signaling as two distinct mechanisms of predictive auditory processing. As

discussed earlier, auditory stimulation can become predictable if anticipatory visual information

provides congruent spatiotemporal cues about the timing and content of the sound. For example,

previous research has shown that a moving visual object, like a ball bouncing off a physical

barrier, can reduce early auditory responses to congruent bounce sounds in NT adults (Marin et

al., 2021; Vroomen & Stekelenburg, 2010). Bounce sounds that violate the spatiotemporal

expectations of sound (i.e., sound before collision) elicit enlarged auditory responses that reflect

the perception of error (Marin et al., 2021). Moreover, the reduction of the auditory ERP occurs

without visual input as observed in an occluded AV condition, where a ball slipped behind an

invisible occluder before synchronous collision. We propose to use these stimuli to directly

compare neural responses related to the integration of basic auditory predictions versus

mechanisms related to error perception in autistic adults, which to our knowledge, is the first

study to do so.

Our aim is to enhance our understanding of the mechanisms that underlie predictive

differences in autism, as outlined by the PCT framework. In previous work employing these

stimuli in NT adults, we found that fully visible and occluded synchrony exhibited a reduced

auditory response relative to asynchronous collision, and audio alone inputs – a pattern we
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expected to replicate here. Note that directional hypotheses regarding group-level differences in

auditory ERP prediction and error signaling between autistic and NT participants were not made

prior to data collection. Group-level differences in synchronous and occluded AV processing

could signal differences in the integration of top-down expectations signals in autism, as found in

van Laarhoven et al. (2019). Alternatively, individuals within the autistic group may exhibit

differences in error signaling compared to NT, as found in van Laarhoven et al., (2020). We may

also find that both signals are affected in autism compared to NT controls. Null effects between

autistic and NT participants could indicate no evidence of group-level differences in processing

basic auditory predictions. We will also conduct exploratory analyses to assess the relation

between neural signatures of auditory prediction and the presence of autistic traits. By directly

contrasting predictive and error signaling, we will be better equipped to explore fundamental

questions regarding the nature of mechanisms that drive predictive coding differences in autism.

Methods

Participants

Our sample included 20 autistic and 20 NT participants. Each group included six males

and 14 females, and the average age of the autistic (Myears = 21.8, SDyears = 3.7) and NT (Myears =

21.6; SDyears = 2.6) groups did not differ at the time of EEG recording (p = 0.58). All NT

participants self-reported: normal or corrected-to-normal vision, normal hearing, and no history

of neuropsychological, cognitive, or developmental disorders. NT participants were all college

students who received course credit for participation and were recruited through an online

participant pool. The autistic group was primarily recruited via flyers on college campuses in the

San Diego area, or through an online participant pool. Autistic participants had the option to

receive course credit or a $30 gift voucher. Of the 20 autistic participants, 17 were attending
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college at the time of the study, and three had previously graduated. Informed consent was

obtained from all participants. For eligibility purposes, autistic participants were required to

present a diagnostic report from a certified clinical psychologist or medical professional. Eight

autistic participants presented documentation that included scores from a past administration of

the Autism Diagnostic Observation Schedule (ADOS; Lord et al., 2012). The age of autism

diagnosis ranged from age 3 to age 20, with the average age of diagnosis being around 15 years

old (SDyears = 6.8; Median = 17). Two participants reported challenges in retrieving their

documentation. As an alternative, participants offered confirmation through their college’s

academic office for students with disabilities as an acknowledgment of their diagnosis.

Self-report measures of autistic traits

All participants completed self-report questionnaires to measure autistic traits. The Social

Responsiveness Scale, Second Edition (SRS-2) was administered to assess autistic individual

differences related to social reciprocity and communication skills (Constantino & Gruber, 2012).

The SRS-2 quantifies social communication behaviors related to: social awareness, social

cognition, social communication, social motivation, and restricted and repetitive behaviors

(RRBs). Formatted as likert-scale response options (not true, sometimes true, often true, and

almost always true), raw total scores are converted into gender-normed t-scores. As expected,

average t-scores on the SRS were significantly higher for autistic participants (M = 73.9, SD =

9.44) than NT participants (M = 50.4, SD = 8.29; t(37.38) = 8.39, p < 0.001, d = 2.65).

AV stimuli

Identical stimuli and room set up used in Marin et al. (2021) was used in this study. For a

visual depiction and specifications of these stimuli, refer to Marin et al. (2021).

Procedure
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Each participant was first invited to schedule an online meeting where an assistant

explained the study details and requirements. Autistic participants were asked to provide clinical

documentation of their autism diagnosis then were sent links to complete online questionnaires.

The ERP procedures were identical to experiment two in Marin et al. (2021).

EEG/ERP processing pipeline

The EEG data acquisition specifications and the ERP pipeline were identical to Marin et

al. (2021). The only exception is the use of automated artifact detection criteria to help flag

excessive, muscle-based artifacts. This criterion utilizes a sliding window peak-to-peak threshold

method, where any 200ms window with a voltage change exceeding 75 µV, relative to a 700 ms

baseline period, is flagged as an artifact. On average, participants contributed 399.6 valid ERP

segments (SD = 11.9) across the four conditions. We conducted a 4 (condition; Ao, AVo, AVs,

AVa) x 2 (group; ASD vs NT) repeated measures ANOVA to test for differences in usable ERP

segments between each condition and group. Statistical analysis showed no differences in the

number of usable segments across trial types (F(1, 38) = 0.08, p = 0.78). We did, however, find a

marginally significant main effect of group, where the autistic group (M = 403.3, SD = 2.7) had

more usable segments compared to NT (M = 396.2, SD = 3.7; F(1, 38) = 3.9, p = 0.06). There

was no interaction between trial type and group (F(1, 38) = 0.01, p = 0.93).

ERP regions & components of interest

For this study, the impact of temporal synchrony underlying dynamic AV events on early

sensory processing was assessed by examining the auditory N1 and P2 components. The N1 was

defined as the mean peak amplitude and latency within a 100–200 msec window following the

onset sound, while the P2 was defined as the mean peak amplitude and latency within a 200–300

msec window post sound onset. The selection of components, time windows, and the regions of
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interest were the same as described in Marin et al., (2021). The use of mean amplitude measures

instead of peak amplitude measures is a deviation from our previous work in Marin et al. (2021).

Mean peak amplitude was used to reduce the impact of random noise or fluctuations in the ERP

signal. Averaging across multiple data points around each peak can better control for some of the

variability caused by noise (Luck, 2014, Picton et al., 2000, Handy, 2005), leading to more stable

and reliable measurements of the N1 and P2 responses across participants and between groups.

For mean amplitudes, we averaged each sample point within the predefined N1 and P2 time

windows across all usable ERP segments to create a single average for each channel and trial

type, per participant. N1-P2 peak-to-peak (P2P) mean amplitude measurements were obtained by

subtracting the P2 activity from the N1 response.

Results

Figure 2.1 depicts the grand averaged ERPs between NT and autistic participants for each

trial type. Subfigure 1c is the ERP between groups, collapsed across trial types.
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Figure 2.1. Grand averaged ERPs between the autistic and NT groups, and N1-P2 peak-to-peak
mean amplitude across trial types. Subfigures a and b represent the grand averaged ERPs for
each trial type, split between the NT (fig. 1a) and autistic (fig. 1b) groups. The black ERP trace
corresponds to the Ao condition, the blue trace represents the AVs condition, the red trace
represents the AVa condition, and the purple trace represents the AVo condition. Subfigure c is
the grand averaged ERP for NT (in light blue) and autistic participants (in dark blue), collapsed
across the four trial types. On each ERP figure, the y-axis represents voltage, with positive
values plotted upwards, while the x-axis represents time in milliseconds (msec). The error bars
around the ERP indicate the upper and lower bounds of one within-subject standard error of the
mean (+/-). Subfigure d is a scatter plot illustrating N1-P2 P2P mean amplitude for each
participant. In this plot, each scatter point represents the single-channel level activity from a
six-channel central-frontal auditory region for individual participants. Each boxplot shows the
interquartile range (IQR) between the first and third quartiles, with black horizontal lines
indicating median averages. Whiskers extend to the minimum and maximum values within the
IQR. The black point within each box plot represents model estimates of the marginal means for
N1-P2 P2P mean amplitude for each trial type. Note that the formatting conventions for the ERP
figures and scatter plots will remain consistent across all subsequent figures.

We opted to employ linear mixed effects modeling in lieu of traditional ANOVA approaches

used in Marin et al. (2021). Linear mixed effects modeling is often more flexible over traditional
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ANOVA approaches because it handles nested or repeated data better, allows for random effects,

and offers increased power (Hox, 2010; West et al., 2014). For each ERP analysis reported

below, we tested the interaction between group (2-level between-subjects factor; autism vs. NT)

and trial type (4-level within-subjects factor; Ao, AVs, AVa, AVo), which was defined by the

following code in R: lmer(ERPmeasure ~ Trial Type*Group + (1|Participant:Channel). We used

a nested effects structure to model the random effects, considering amplitudes and latencies from

the six EEG channels contained within a single frontal-central auditory region, nested within

each participant. We then assessed model fit using an analysis of deviance, comparing the Wald

Chi-Square tests for each main effect, as well as their interaction.

We will conduct a likelihood ratio test to assess model fit via a reduction in the Akaike

Information Criterion (AIC). Here, the interaction model will be compared to additive main

effect and null models to assess fit. A significant decrease in AIC suggests that a new model

provides a better balance between goodness of fit and complexity compared to the previous

model. We will then perform post-hoc tests on the model that fits the data best, as determined by

significant decreases in AIC for each analysis. All statistical analyses were conducted in R

(version 4.3.2), using the ‘tidyverse’, ‘emmeans’, and ‘lmerTest’ packages. Regarding post-hoc

tests for significant interactions between trial type and group, our main focus, as hypothesized, is

on analyzing the differences between groups for each trial type (e.g., NT response to AVa vs.

ASD response to AVa). Significant group differences between different trial types (e.g., NT

response to AVo vs. ASD response to AVa) were not expected based on our hypotheses, and will

not be interpreted as meaningful. For reference, p-values for these comparisons can be found in

Appendix A.

N1–P2 peak-to-peak mean amplitude

36



The analysis of model fit found that trial type (χ2(3) = 282.2, p < .001) and group (χ2(1)

= 27.8, p < .001) were significant predictors of N1-P2 P2P mean amplitude. The interaction

between trial type and group was also marginally significant (χ2(3) = 7.3, p = .06). A likelihood

ratio test shows that the interaction model with trial type and group as interacting predictors

marginally explained more variation (AIC = 3045.6) in the observed data compared to a main

effects model with trial type and group as additive predictors (AIC = 3046.9, p = .06). The

interaction model did significantly explain more variation compared to a null model (AIC =

3452.4, p < .001). We conducted post hoc tests for the trending group by trial type interaction

using the emmeans package in R. Table 2.1 depicts the model estimated marginal means of

N1-P2 P2P mean amplitude and N1/P2 latency responses between the autistic and NT groups

and across the four trial types.

Table 2.1
Marginal means of peak amplitude and latency between each group, across trial types

N1-P2 mean P2P
amp. (uV)

N1 latency (ms) P2 latency (ms)

Autism NT Autism NT Autism NT

M(SE) M(SE) M(SE) M(SE) M(SE) M(SE)

Trial Type

Ao -2.8(.2) -4(.2) 150(2.1) 150(2.1) 233(1.3) 233(1.3)

AVs -1.8(.2) -2.8(.2) 138(2.1) 139(2.1) 223(1.3) 227(1.3)

AVa -3.1(.2) -3.9(.2) 164(2.1) 158(2.1) 248(1.3) 248(1.3)

AVo -1.6(.2) -2.8(.2) 136(2.1) 140(2.1) 227(1.3) 227(1.3)

Post-hoc tests for the trending interaction effect between trial type and group revealed the

autistic group had smaller N1-P2 P2P mean amplitude responses across all four trial types

compared to NT (all t’s > 3.8, all p’s < .005, all d’s > 1.02). Moreover, there were a number of
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significant differences between the groups, and across the four trial types. We omitted the

significant results of these interaction comparisons due to the absence of explicit hypotheses, but

detailed descriptions for each ERP measure can be found in Appendix B. The pattern of N1-P2

mean amplitudes between the four trial types was the same within each group. Within both

groups, post-hoc tests revealed that the AVs and AVo responses were significantly reduced

compared to the AVa (all t’s < -10.8, all p’s < .001, all d’s < -1.39) and Ao (all t’s < -11.1, all p’s

< .001, all d’s < -1.2). There were no differences between the AVs and AVo responses (both p’s >

.54). In both groups, the AVa response was not statistically different compared to the Ao

response (ASD, p = 0.1; NT, p = 1.0).

N1 peak latency

The analysis of model fit found the main effect of trial type was a significant predictor of

N1 peak latency (χ2(3) = 187.1, p < .001). The main effect of group was not a significant

predictor of N1 peak latency (χ2(1) = 0.001, p = .97), but the interaction between trial type and

group was (χ2(3) = 8.5, p = .04). The analysis of model fit for N1 peak latency found that the

interaction model with trial type and group as predictors explained significantly more variation

(AIC = 8557.7) in the observed data compared to an additive main effects model (AIC = 8560.1,

p = .04) and to a null model (AIC = 8786, p < .001; see Appendix C for a N1 latency figure).

Notably, post-hoc tests revealed no group differences in N1 peak latency between the

four trial types (all p’s > .57). N1 peak latency post-hoc tests revealed similar patterns within

both groups. The AVs response peaked sooner compared to AVa (both t’s > 8.6, both p’s < .001,

both d’s > 1.1) and Ao (both t’s > 4.9, both p’s < .001, both d’s > 0.63). There were no

differences in N1 peak latency between AVs and AVo processing (p > .98). The AVo response

also peaked earlier compared to AVa (both t’s > 8.1, both p’s < .001, both d’s > 1) and Ao (both
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t’s > 4.4, both p’s < .001, both d’s > 0.6). The AVa response also exhibited a delay in N1 peak

latency compared to Ao (both t’s < -3.7, both p’s < .006, both d’s < -0.5).

P2 peak latency

The analysis of model fit found the main effect of trial type was a significant predictor of

P2 peak latency (χ2(3) = 633, p < .001). The main effect of group was not a significant predictor

of P2 peak latency (χ2(1) = 0.03, p = .86), but the interaction between trial type and group was

significant (χ2(3) = 11.8, p = .008). A likelihood ratio test revealed that the interaction model

with trial type and group as predictors explained significantly more variation (AIC = 7338) in the

observed data compared to the main effects model with trial type and group as additive

predictors (AIC = 7343.8, p = .008). The interaction model also explained more variation

compared to a null model (AIC = 8012.6, p < .001; see Appendix C for a P2 latency figure).

Post-hoc tests revealed no group differences in P2 peak latency between the four trial

types (all p’s > .38). Within both groups, the overall pattern was virtually the same. Responses

toward AVs resulted in faster P2 peak latencies compared to AVa (both t’s < 19.5, both p’s < .001,

both d’s > 2.5) and Ao processing (both t’s > 5, both p’s < .001, both d’s > 0.65). AVa responses

resulted in a delayed P2 peak with respect to Ao (both t’s < -14.3, both p’s < .001, both d’s <

-1.84) and AVo (both t’s > 19.6, both p’s < .001, both d’s > 2.5). The AVo P2 response also

peaked sooner compared to the Ao response (both t’s > 5.1, both p’s < .001, both d’s > .66). The

only difference within the groups regarding P2 latency occurred between the AVs and AVo trial

types. For the autism group, the P2 peaked sooner for the AVs compared to AVo (t = -3.7, p =

.005, d’s = -0.5), but this difference was absent in NT (p = 1.00).

Auditory ERP subtraction technique to account for group-level amplitude differences

39



As demonstrated by the four condition N1-P2 P2P amplitude ERP analysis, there were

overall differences in amplitudes between the two groups, where the autistic group showed

smaller auditory responses compared to NT. To control for group differences in auditory

processing, we opted to subtract auditory-related activity from each AV condition since the

sound used in the Ao condition was identical to the sounds used in the other three AV conditions.

To do this, we took the averaged Ao response from each individual participant and subtracted it

from their averaged AV responses. This allowed us to accurately consider and adjust for any

low-level auditory processing differences between the groups. Figure 3.2 displays the ERP

difference waves between trial types, which reveal comparable amplitude effects between the

groups.
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Figure 2.2. AV Difference ERPs between autistic and NT groups. The figure above depicts the
grand-averaged difference ERPs from a frontal-central auditory region. The Ao response for each
participant has been subtracted from each AV condition. Sub-figure a) represents the difference
ERPs for the autistic group, while subfigure b) depicts NT. The error bars around the ERP
indicate the upper and lower bounds of one within-subject standard error of the mean (+/-). On
the ERP figure, the y-axis represents difference amplitude, while the x-axis represents time in
milliseconds (ms). Subfigure 2c displays a scatter plot illustrating the non-significant interaction
for N1 mean difference amplitude, split between trial type and group. On the N1 scatter plot, the
y-axis represents the difference amplitude, where positive values indicate reduced amplitudes
relative to Ao processing, while the x-axis is trial type. Subfigure 2d displays scatter plots
illustrating the P2 mean difference amplitude. Here, the y-axis represents the difference
amplitude, with more positive values indicating greater amplitudes relative to Ao processing.

We averaged the mean amplitude for each participant across the three difference wave ERPs,

which was our main dependent variable. We did not consider N1 and P2 latency analyses

because of the auditory subtraction technique employed.

N1–P2 peak-to-peak mean differential amplitude
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As depicted in Figure 3.2, the grand averaged auditory difference ERP exhibited

variations in N1-P2 P2P mean amplitude across the three trial types and the two groups. For this

model, we tested the interaction between two fixed factors: AV trial type (3-level within-subjects

factor AVs, AVa, AVo) and group (2-level between-subjects factor; Autism and NT). The analysis

of model fit found a non-significant interaction between trial type and group on N1-P2 P2P mean

differential amplitude (χ2(2) = 4.3, p = .12). Due to the presence of a non-significant interaction,

we chose to conduct main effect tests of model fit using the additive main effects model. Here,

we found significant main effects of trial type (χ2(2) = 306, p < .001) and group (χ2(1) = 3.8, p =

.05) on N1-P2 P2P mean differential amplitude. A likelihood ratio test for N1-P2 P2P mean

differential amplitude suggests the trial type by group interaction model (AIC = 2084.7) did not

explain the data better compared to the additive main effects model (AIC = 2085, p = .12). The

interaction and additive main effect models did significantly explain the data better compared to

a null model (AIC = 2320.3, both p‘s < .001; see Appendix C for a figure of the non-significant

interaction). Table 2.2 provides model estimated marginal means for the N1-P2 P2P difference

amplitude, N1 difference amplitude, and P2 difference amplitude across trial type and group.

Table 2.2
Marginal means of differential mean peak amplitude between both groups, across trial types

N1-P2 P2P difference
amp. (uV)

N1 mean difference
amp. (uV)

P2 mean difference
amp. (uV)

Autism NT Autism NT Autism NT

M (SE) M (SE) M (SE) M (SE) M (SE) M (SE)

Trial Type

AVs 1(.1) 1.2(.1) 0.6(.09) 0.7(.09) -0.4(.11) -0.6(.11)

AVa -0.3(.1) 0.04(.1) -0.5(.09) -0.9(.09) -0.2(.11) -0.7(.11)

AVo 1.2(.1) 1.2(.1) 0.1(.09) -0.1(.09) -1.1(.11) -1.3(.11)

42



Post-hoc tests of the main effect of trial type revealed that the AVa response exhibited

greater differential amplitudes compared to the AVs and AVo (both t‘s < -14.5, both p‘s < .001,

both d‘s < -2.70). There were no differences between the AVo and AVs (p = .45). For the

significant main effect of group, we found that the autistic N1-P2 P2P differential mean

amplitude response collapsed across the three AV trial types (M = 0.64, 95% CI [0.51, 0.77]) was

smaller compared to NT (M = 0.82, 95% CI [0.69, 0.95]; t = -2, p = .05, d = -0.39).

Analysis of individual N1/P2 amplitude responses

In addition to N1-P2 P2P difference amplitudes, we chose to analyze difference

amplitudes across the individual components of the auditory response. Analyzing individual

peaks in ERP data offers several advantages over traditional P2P analyses. ERP components

exhibit variability in morphology, latency, and amplitude across individuals and experimental

conditions. By focusing on individual peaks, we can better capture this variability and accurately

account for individual differences in ERP responses. In clinical settings, individual peak analyses

can be particularly informative for identifying differences in ERP components associated with

neurological or psychiatric conditions.

N1 mean differential amplitude

The analysis of model fit found a non-significant interaction between trial type and group

on N1 mean differential amplitude (χ2(2) = 3.8, p = .15). Due to the presence of a non-significant

interaction, we chose to conduct main effect tests of model fit using the additive main effects

model. Here, we found a significant main effect of trial type (χ2(2) = 216.9, p < .001), but not

group (χ2(1) = 1.4, p = .23). Analyses of model fit for N1 differential mean amplitude suggest

that the trial type by group interaction model (AIC = 1994.4) did not explain the data better

compared to the additive main effects model (AIC = 1994.2, p = .15). The interaction and
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additive main effects models did explain the data better compared to a null model (AIC = 2169.2,

both p‘s < .001; see figure 2.2c for the interaction between trial type and group). Post-hoc tests of

the significant main effect of trial type revealed that the AVa response exhibited greater N1

differential mean amplitudes compared to AVs (t = -14.7, p < .001, d = -1.34) and AVo (t = -7.1,

p < .001, d = -0.65). In addition, the AVs response was reduced relative to the AVo response (t =

7.7, p < .001, d = 0.7).

P2 mean differential amplitude

The analysis of model fit found that trial type (χ2(2) = 53.2, p < .001) and group (χ2(1) =

14, p < .001) were significant predictors of P2 mean differential amplitude. The analysis also

revealed a significant interaction between trial type and group (χ2(2) = 6.6, p = .04; see figure

2.2d). Analyses of model fit suggest the AV condition by group interaction model (AIC = 2282)

explains the data better compared to an additive main effects model (AIC = 2284.6, p = .04) and

to a null model (AIC = 2356, p < .001). Post-hoc tests for the P2 differential mean amplitudes

revealed that the autistic group had larger P2 differential mean amplitude responses for the AVa

condition compared to NT response toward AVa (t = 3.7, p = .003, d = .53). There were no

significant group-level differences between the AVs (p = .96) and AVo (p = .95) responses. The

overall pattern of P2 mean differential amplitude responses within both groups were the same.

For both groups, the differential AVo response was reduced compared to the AVs (both t‘s > 5.1,

both p‘s < .001, both d’s > .66) and AVa (both t‘s > 3.9, both p‘s < .001, both d’s > .51)

responses. There were no significant differences in P2 differential amplitude between the AVs

and AVa responses in both groups (both p‘s > .39).

Exploratory ERP associations with autistic traits
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We conducted a series of additional exploratory analyses to better understand the

connection between predictive neural signals that revealed group level differences (i.e., N1-P2

P2P mean amplitude, AVs/AVo P2 peak latency difference, and P2 mean differential AVa

amplitudes) and behaviors related to self-reported autistic traits. For ERP measures, we

calculated participant level y-intercepts, whereas for autistic traits, we obtained the total SRS

t-score and each of the five t-scored subscales (i.e., RRBs, social cognition, social

communication, social awareness, and social motivation). We obtained ERP intercepts for each

individual participant and trial type using the following code in R: lmer (ERP measure ~

Group*Trial Type + (1| Participant:Trial Type). We opted to run correlations within the autistic

group because of the presence of group-level differences in ERP and behavioral measures. For

this set of exploratory analyses, we tested 36 unique correlations using the intercepts from each

ERP measure that revealed group differences and the six t-score measures of the SRS. Thus, after

applying Bonferroni correction, p-values below .001 will be considered statistically significant.

First, we tested correlations between N1-P2 P2P mean amplitudes and SRS t-scores

across the four trial types, within the autistic group. We found that more positive intercepts (i.e.,

greater amplitudes) in response to AVa was related to a decrease in SRS RRB t-scores in the

autistic group, r(18) = -0.48, p = .03. The same association was not seen within each of the four

other subdomains of the SRS (all p‘s > .47), the SRS total t-score (p = .48), nor was the RRB

t-score correlated with amplitude responses toward Ao (p = .09), AVs (p = .18), and AVo (p =

.27). There were no associations between each of AV responses and RRB t-scores in the NT

group (p = .37). Figure 2.3 presents the correlations between the N1-P2 amplitudes for each trial

type and the SRS RRB t-scores within the autistic group.
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Figure 2.3. Correlations between the SRS RRB t-score and N1-P2 peak-to-peak mean amplitude
intercepts within the autistic group. The figure above depicts the correlations between the SRS
RRB t-scores and AVa (fig. 3a), Ao (fig. 3b), AVs (fig. 3c), and AVo (fig. 3d) intercepts. Each
scatter point, color coded by trial type, represents a participant’s N1-P2 P2P mean amplitude
intercept, plotted on the x-axis, and SRS RRB t-score, plotted on the y-axis for each trial type. A
black dashed line of best fit was drawn for visualization purposes.

No significant correlations were found between SRS measures and the difference in P2 latency

between the AVs and AVo intercepts (all p‘s > .28), or the P2 differential amplitude response

toward AVa (all p‘s > .1). Note that the correlations reported here failed to reach significance

after correcting for multiple comparisons.

Discussion
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The current study measured auditory ERPs between autistic and age-matched NT adults

to evaluate neural signatures associated with prediction and error. There has been no attempt to

directly differentiate neural signals that represent the processing of a sound based on predictable

top-down information from sounds that elicit bottom-up error in autistic adults. Here,

participants observed a moving object generate synchronous, asynchronous, or occluded

collision sounds while ERPs were recorded. Auditory ERPs showed a consistent response profile

across all participants, with both fully visible and occluded collisions resulting in reduced

auditory responses compared to isolated and asynchronous sounds, replicating Marin et al.

(2021). Autistic participants also had reduced sensory responses to sounds across all trial types

relative to NT. To account for group-level auditory differences, we subtracted out neural activity

related to unimodal auditory processing from each of the three AV scenarios, which resulted in

comparable ERP responses between the groups.

Analyses of differential mean amplitude revealed the presence of bottom-up sensory

differences, where larger P2 amplitudes toward asynchronous collision sounds were observed in

autistic participants. Critically, autistic ERP responses to fully visible and occluded synchrony

were comparable to NT, thereby suggesting top-down auditory predictions were functional in this

sample, even in the absence of visual stimulation. P2 latency responses were also different in

autism, where the P2 peaked faster toward fully visible AV synchrony compared to occluded

synchrony - a response not seen in NT. Exploratory correlational analyses revealed that overall

amplitudes toward asynchrony were related to self-reported variability in autistic traits related to

RRBs, but this association did not remain significant after adjusting for multiple comparisons.

Our findings indicate that early auditory responses are affected by the alignment of dynamic AV

input, highlighting neural distinctions between autistic and NT participants. Here, we provide
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mechanistic evidence for predictive coding differences in autism that are driven by early auditory

differences related to the perception of error, and not the integration of top-down expectations.

P2 amplitudes toward asynchronous processing were enlarged in ASD relative to NT

Notably, we found that the autistic P2 differential response elicited by asynchronous

sound was enlarged relative to NT. Group differences were not seen in responses that originated

from synchronous and occluded AV input. These results suggest that group-level differences

were driven by responses related to the perception of bottom-up sensory error, and not the

integration of top-down expectations in autism. This suggests that bottom-up error processing is

what drives predictive processing differences between our sample of autistic and NT participants.

Our findings mirror those of van Laarhoven et al. (2020), who observed enlarged error responses

from autistic participants when perceiving an absence of sound elicited by a person clapping

their hands. The amplified error signaling measured in this study builds upon the finding of

increased error responses in autism, which extends beyond the scope of social cognitive

processing to include basic perceptual predictions.

Not all studies examining error and prediction yield results consistent with those reported

here. A recent meta-analysis by Chen et al. (2020) reviewed auditory ‘oddball’ mismatch

negativity (MMN) responses in autistic populations. Across studies, autistic participants

consistently show lower MMN amplitudes and delayed latencies compared to NTs. In flanker

tasks, autistic adults (South et al. 2010), as well as autistic children (Sokhadze et al., 2010) show

reduced amplitudes in error-related negativity when viewing incompatible target/distractor

pairings, indicating possible error attenuation. In reward processing, autistic adults show reduced

neural responses to socially contingent rewards compared to NT individuals (Scott-Van Zeeland

et al., 2010; Delmonte et al., 2012; Kohls et al., 2013). These studies collectively indicate
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reduced neural responses in reward anticipation integration and error perception, contrasting with

our study and van Laarhoven et al. (2020). Whether hypo- or hyper-sensory processing is

present, both indicate that sensory differences impact perception in autism. These differences,

regardless of directionality, may affect mental model formation by improperly weighting

prediction errors in natural perception.

In our study, we found enlarged error responses at the P2 component, while van

Laarhoven et al. (2020) reported larger N1 responses. It could be that the unexpected omission of

sound introduces earlier amplitude differences compared to errors related to the synchrony

between sound and vision. Alternatively, the differences in component location may have been

influenced by dissimilar stimuli used between the two studies. The visual of a handclap was used

in van Laarhoven et al. (2020), so the ERPs measured there can be interpreted as intrinsically

social. Human hands convey socially meaningful signals that reflect thoughts and intentions

(Hoppe et al., 2020; Fausey et al., 2016), and autistic individuals struggle with processing

socially relevant stimuli. For instance, Amoruso et al. (2018) found that lower-support autistic

adults are less likely than NT to integrate top-down contextual expectations with kinematics

when observing actions. Perhaps social processing complexities could cause earlier amplitude

differences toward error in autism compared to more non-social perceptual phenomena.

Larger P2 responses toward asynchrony suggest that auditory error signaling differences

may occur in slightly later sensory stages in autism. The auditory P2 response is a multifaceted

component that contributes to auditory perception, attention, language processing

(Lewandowska, 2008; Bolt et al., 2023, Tremblay et al., 2014), stimulus classification (Key et

al., 2005) as well as the maintenance of auditory information in working memory tasks (Rader et

al., 2008). In autism, the auditory P2 has been associated with social deficits and attention
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switching difficulty (Chien et al., 2019), AV speech perception (Borgolte et al, 2021), sensitivity

toward sound omissions (Foss-feig et al., 2018), and multisensory integration (Russo et al. 2010;

Stefanou et al., 2020). The finding of enlarged P2 error amplitude aligns with theoretical

accounts, particularly Van De Cruys (2014) and Lawson et al. (2014), who argue that an

improper weighting of prediction error is a key driver of predictive differences in autism.

Regardless of component location, these results suggest that the perception of error can influence

the early sensory processing of sound (< 300ms).

Overall auditory amplitude reduction in ASD relative to NT

Auditory processing amplitudes of the N1-P2 complex were reduced in autism relative to

NT. Group-level amplitude differences can hinder the interpretation of meaningful group

comparisons. However, we implemented an effective way to limit the influence of group

differences by subtracting out auditory-related activity from each AV ERP. Even after

implementing the subtraction technique, we observed small group differences in overall N1-P2

peak-to-peak differential amplitudes across the three AV responses. Yet, we discovered that

while overall ASD amplitudes were smaller mathematically, P2 amplitude was larger in autism.

Reduced auditory processing in autism may suggest the presence of broader processing

variations within the phenotype. For example, a recent meta-analysis by Williams et al. (2020)

found reduced and delayed N1 amplitudes to pure tones in autism, where there were no observed

group-level differences in P2 responses. It is worth noting that in our sample, larger amplitudes

toward asynchrony were linked to reduced RRBs in ASD, but this association was not significant

after adjusting for multiple comparisons. Thus, the observed reduction in amplitudes may

underscore a crucial aspect to consider when studying sensory processing in autistic individuals,

potentially offering clinically meaningful markers of comparison.
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After controlling for auditory processing differences, we still found that the differential

N1-P2 peak-to-peak response was reduced in autism, but these differences were absent when

assessing each component in isolation. Importantly, group level differences toward the

perception of error at the P2 were larger in autism. It could be reasonably assumed that larger P2

error responses in autism may be driven by preceding N1 responses, which were smaller on

average but not statistically different between the groups (see fig. 2c). However, it is important to

note that smaller N1 responses associated with error perception may contribute, at least in part,

to some of the reported N1 reduction findings in the literature (Williams et al., 2020). It is often

challenging to compare overall amplitude differences, as these could be driven by factors such as

skull/hair thickness, statistical power, or potentially more meaningful factors like autism

symptom heterogeneity. Regardless of potential reduction occurring at the N1, we report larger

P2 amplitudes toward the perception of error that occur early in the processing stream (< 300ms)

that map onto other research of larger error responses in autism (van Laarhoven et al., 2020).

Comparable ERP pattern for each trial type within each group

We observed that the overall pattern of mean amplitude and latency responses were

similar within groups. Specifically, fully visible and occluded collision resulted in a reduction of

the auditory response relative to sound occurring slightly before contact, and to sound that did

not contain visual expectations. By analyzing auditory prediction and error signaling, we showed

that expected perceptual phenomena are integrated normatively via the presence of reduced

auditory amplitudes toward expected sound, reflective of prior integration, in autistic

participants. This contrasts with van Laarhoven et al. (2019), who found an absence of auditory

reduction to predictable motor-auditory events, thereby concluding that motor-to-auditory

predictions may be compromised in autism. In addition, our finding challenges some predictive
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coding accounts of autism, notably one of the original accounts by Pellicano and Burr (2012) in

which predictive differences are attributed to ‘weaker’ prior models in comparison to NTs,

positing that top-down components of the autistic predictive circuitry are impacted. While we

recognize not all autistic individuals have stable prior models across psychological domains, our

research highlights their ability to integrate simple auditory predictions effectively. Findings such

as ours are important to highlight that autistic sensory processing is not always a deviation from

NT, which is crucial in autism research and benefits the autistic community more widely.

Our sole finding in the difference of overall response patterns between the groups was

that autistic individuals exhibited faster P2 latency responses towards occluded AV stimuli

compared to fully visible AV synchrony. The occlusion condition can be seen to represent ‘pure’

prediction, as no visual input requires one to rely on expectation alone. Thus, there may be a

small multisensory facilitation effect of fully visible synchrony seen in autism. These P2 latency

differences did not map onto variability in autistic traits, suggesting this small facilitation effect

may not contain significant clinical relevance. Replication efforts are needed.

General Conclusions and Future Directions

Considering the characteristics of our sample is important here, especially when

comparing our results to those of van Laarhoven et al. (2019), who found an absence of auditory

response reduction toward predictable sound. In contrast, we found that autistic adults do

integrate simple auditory predictions, as evidenced by a significant reduction in amplitude

toward predictable sound. The discrepancy between the two studies may be partly driven by

differences in support levels between the two samples. van Laarhoven et al., (2019) enrolled

high-support autistic adults who were residing in long-term care facilities, and who were facing

severe mental health challenges. Our sample represents a low-support group, who were recruited
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primarily from an undergraduate population. Hence, each study may not be broadly

representative of the diverse range of symptoms that characterize autism. Therefore, as we

observe small differences in this low-support group, there are reasonable hypotheses to suggest

that we may see larger effects in populations with higher-support needs. This is not to argue that

neural indices have the same stability in all individuals of the spectrum with similar support

needs, as we have suggested that there is likely wide heterogeneity in predictive models.

However, it appears that within our low-support sample, auditory expectations were integrated

normatively in the context of simple perceptual associations. As this is a novel finding, it will be

essential to replicate these results using larger and more diverse autistic samples, including those

with varying support needs. Thus, replication is necessary to confirm such findings, and to delve

deeper into the diverse phenotypic heterogeneity within the autism spectrum.

It is worth noting that, although informative, predictions made from simple AV stimuli do

not encapsulate the multi-modal social predictions we make within our daily lives. It is likely

that as stimuli become more complex and socially determined, predictions become increasingly

difficult to employ. Challenges in social communication are well documented in autism. Social

processing challenges may explain earlier error enhancement in autism during unexpectedly

omitted sound (van Laarhoven et al., 2019). It could be that more socially demanding predictions

could exhibit greater influence over sensory processing in ASD. Studies targeting predictive

differences across social contexts are critical to understanding the mechanisms that support the

instantiation of predictions across socially relevant domains of psychological functioning.

It is also important to acknowledge that our research findings are constrained by the

specific attributes of our sample group, which may impact generalizability. One challenge was

independently confirming clinical diagnoses, which introduces some uncertainty regarding the
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reliability of diagnoses in the autistic sample. Our predominantly female sample also contradicts

the 3:1 male-to-female ratio typical in ASD population estimates (Loomes et al., 2017),

suggesting that the sex characteristics of our sample may not fully represent the broader autistic

population. Yet, research seems to point towards more female-specific profiles in sensory

processing challenges in autism for both child (Osório et al., 2021; Kumazaki et al., 2015) and

adult (Cardon et al., 2023) populations. For example, Lai et al. (2011) investigated behavioral

differences in autistic men and women and found that women reported more lifetime sensory

symptoms but fewer social-cognitive challenges. Therefore, our female-heavy sample, although

not directly generalizable, may be important in understanding autistic sensory differences in

underrepresented female cohorts.

In sum, our results provide evidence for neural differences underlying the perception of

error in autism relative to NT. We found that autistic adults, like NTs, exhibited reduced neural

responses toward synchronous collision sound relative to sound without visual input. Our results

support the idea of dysregulated neural systems in autism concerning the perception of

sensory-driven perceptual errors rather than systems related to the integration of top-down

expectations. In a broader sense, these findings have significant sensory-based implications for

predictive coding theories of autism. These implications are likely important in understanding

the heterogeneity within autism and its effects on other related processes, like social cognition.
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Appendix A

Table of Post-Hoc Tests for each ERP Analysis

Appendix A includes post-hoc tests for each of the six ERP analyses, covering both the

four-condition and three-condition differential analyses. The first row of the table displays the

p-values for the interaction between trial type and group. Post-hoc p-values for the trial type

main effect are also provided when there are non-significant interactions.

Table 2.A1
Post-hoc comparisons for each ERP measure’s interaction between trial type & group

Group Trial type
comparison

N1-P2 mean
peak-to-peak
(p = .06)

N1 peak
latency
(p = .04)

P2 peak
latency
(p = .008)

N1-P2 mean
peak-to-peak
audio out
(p = .12; ns)

N1 mean
peak

audio out
(p = .15; ns)

P2 mean
peak

audio out
(p = .04)

Ao v. AVa .1 <.0001 <.0001 – – –

Ao v. AVs <.0001 <.0001 <.0001 – – –

ASD
Ao v. AVo <.0001 <.0001 <.0001 – – –

AVa v. AVs <.0001 <.0001 <.0001 <.0001 <.0001 .38

AVa v. AVo <.0001 <.0001 <.0001 <.0001 <.0001 <.0001

AVs v. AVo .54 .9824 .005 .45 <.0001 <.0001

Ao v. AVa 1.000 .006 <.0001 – – –

Ao v. AVs <.0001 <.0001 <.0001 – – –

NT
Ao v. AVo <.0001 .0003 <.0001 – – –

AVa v. AVs <.0001 <.0001 <.0001 <.0001 <.0001 .91

AVa v. AVo <.0001 <.0001 <.0001 <.0001 <.0001 .002

AVs v. AVo 1.000 .9998 1.000 .45 <.0001 <.0001

Ao ASD v.
Ao NT <.0001 1.000 1.000 – – –
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Table 2.A1
Post-hoc comparisons for each ERP measure’s interaction between trial type & group (continued)

Ao ASD v.
AVa NT <.0001 .12 <.0001 – – –

Ao ASD v.
AVs NT 1.000 .006 .05 – – –

Ao ASD v.
AVo NT 1.000 .02 .04 – – –

AVa ASD
v. Ao NT .002 .0001 <.0001 – – –

AVa ASD
v. AVa NT .005 .57 1.000 ns ns .007

AVa ASD
v. AVs NT .88 <.0001 <.0001 ns ns <.0001

ASD
v. NT

AVa ASD
v. AVo NT .88 <.0001 <.0001 ns ns <.0001

AVs ASD
v. Ao NT <.0001 .005 <.0001 – – –

AVs ASD
v. AVa NT <.0001 <.0001 <.0001 ns ns .52

AVs ASD
v. AVs NT .0004 1.000 .38 ns ns .967

AVs ASD
v. AVo NT .0004 .9998 .42 ns ns <.0001

AVo ASD
v. Ao NT <.0001 .0003 .07 – – –

AVo ASD
v. AVa NT <.0001 <.0001 <.0001 ns ns .05

AVo ASD
v. AVs NT <.0001 .993 1.000 ns ns .003

AVo ASD
v. AVo NT <.0001 .9462 1.000 ns ns .992

Note that “–” denotes the exclusion of Ao conditions from the N1-P2 difference ERP. Bold font
for the group difference section indicates planned comparisons between trial type and group.
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Appendix B

Descriptions of the Post-Hoc Tests Between Groups, and Across Trial Types

Appendix B describes significant post-hoc tests applied to analyses showing significant

effects across trial type and group.

Four trial type N1-P2 peak-to-peak mean amplitude

The NT N1-P2 peak-to-peak mean amplitude response to AVa processing was larger

compared to the autistic response toward Ao (t = 5.1, p < .001, d = -0.05), AVs (t = 9.5, p < .001,

d = -1.39) and AVo (t = 10.4, p < .001, d = -1.39). The NT response to AVo was also larger

compared to the autistic response toward AVs (t = 4.4, p < .001, d = 1.19). The NT response to

AVs was also larger compared to the autistic response elicited toward AVo input (t = 5.3, p <

.001, d = 0.002). The NT response to Ao processing was also significantly larger compared to the

autistic response to AVa (t = 4, p = .002, d = 1.07), AVs (t = 9.7, p < .001, d = 2.63), and AVo (t =

10.6, p < .001, d = 2.88). All other N1-P2 peak-to-peak amplitude comparisons between group

and across trial type failed to reach significance (all p’s > .88).

N1 Peak latency

The Ao N1 peak latency response in the autistic group was significantly delayed

compared to the NT response to AVs (t = 3.7, p = .006, d = 0.63) and AVo (t = 3.3, p = .02, d =

0.57). There were no significant N1 latency differences between the autistic Ao response and NT

AVa response (p = .12). The N1 latency AVa response in the ASD group was also significantly

delayed with respect to the NT response toward AVs (t = 8.3, p < .001, d = 1.43), AVo (t = 8, p <

.001, d = 1.37), and Ao (t = 4.6, p < .001, d = 0.80). We also found that the autistic N1 peak

latency response toward AVs occurred sooner compared to the NT response to Ao (t = -3.8, p =
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.005, d = -0.65) and AVa (t = -6.5, p < .001, d = -1.12). There were no significant differences in

N1 latency between the ASD response toward AVs and the NT N1 response toward AVo (p =

.99). The N1 AVo response in the ASD group also peaked sooner compared to the NT N1 latency

response to AVa (t = -7.2, p < .001, d = -1.24) and Ao (t = -4.5, p < .001, d = -0.77). Lastly, there

were no significant differences between the N1 AVo response in the ASD group and the NT N1

response to AVs (p = .99).

P2 Peak latency

The Ao P2 peak latency response in the autistic group was significantly delayed

compared to the NT response to AVs (t = 3, p = .05, d = 0.69) and AVo (t = 3.1, p = .04, d =

0.70), but peaked sooner compared to AVa processing (t = -8, p < .001, d = -1.82). The AVa

response in the ASD group was delayed compared to the NT response to AVs (t = 11.2, p < .001,

d = 2.53), AVo (t = 11.2, p < .001, d = 2.55) and Ao (t = 8.3, p < .001, d = 1.88). We found that

the autistic P2 peak latency response toward AVs occurred sooner compared to the NT response

to Ao (t = -5, p < .001, d = -1.14) and AVa (t = -13.2, p < .001, d = -3). There were no differences

in the autistic P2 peak latency response toward AVs and the NT P2 response toward AVo (p =

.42). The AVo P2 response in the ASD group also peaked sooner compared to the NT response to

AVa (t = -11.1, p < .001, d = -2.52) and Ao (t = -2.9, p = .07, d = -0.66), but was not different

compared to the NT response to AVs (p = 1.0).

P2 Differential Mean Amplitude

We found that the autistic P2 differential mean amplitude response toward AVa was

significantly larger compared to the NT response toward AVo (t = 7.3, p < .001, d = 1.03), but

was not different compared toward the NT response to AVs (p = .1). The autistic P2 differential

response toward AVs was larger compared to the NT response to AVo (t = 5.6, p < .001, d =
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0.79), but there were no differences compared to the NT response toward AVa (p = .35). Lastly,

the autistic P2 differential response toward AVo was reduced compared to the NT response to

AVs (t = -3.9, p = .002, d = -0.54) and AVa (t = -2.7, p = .07, d = -0.38) processing.
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Appendix C

Addition Figures of N1/P2 Latency and N1-P2 Peak-to-Peak Differential Mean Amplitude

Figure 2.C1. N1 peak latency between autistic and NT groups, and across trial types. For the
latency scatter plot, the y-axis represents time in milliseconds (ms), while the x-axis is trial type,
split between groups.
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Figure 2.C2. P2 peak latency split between autistic and NT groups, and across trial types.
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Figure 2.C3. N1-P2 peak-to-peak mean difference amplitude between autistic and NT groups
and across the three AV trial types. This figure displays scatter plots illustrating the N1–P2
peak-to-peak mean difference amplitude for each participant. On the scatter plot figure, the
y-axis represents the difference amplitude, with more positive values indicating greater response
reduction relative to audio-only processing, while the x-axis represents trial type. Note that this
figure depicts the non-significant interaction between trial type and group.

Chapter 2, in part is currently being prepared for submission for publication of the

material. Marin, Andrew; Pearson, Lucy; Wu, Mincong; Baker, Elizabeth; Carver, Leslie J. The

dissertation author was the primary investigator and author of this material.
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Abstract 

Everyday perceptual experiences include dynamic objects that move and give rise to expected 

sounds. In this study, we asked if four- to five-month-old infants are sensitive to the temporal 

synchrony of sounds generated by a moving visual object. In a moderated, online study, we 

showed twenty-four infants a novel experimental paradigm featuring a moving 2-D ball and 

bounce sounds. We presented each infant with alternating trials from two conditions that 

manipulated the temporal congruence of the ball’s motion and the sound: one in which the 

bounce sound occurred simultaneously upon physical collision between the ball and a barrier 

(audio-visual; AV-synchronous), and one in which the sound came slightly before collision (AV-

asynchronous). Using offline behavioral coding of recorded looking time, we show that infants 

looked longer toward AV asynchronous trials compared to synchronous ones. This data 

demonstrates that young infants have expectations regarding the temporal alignment of visual 

and auditory properties of physical events over the course of a single familiarization phase. The 

presence of early cross-modal expectations may provide a foundation for physical inference and 

learning in natural sensory environments.  

Keywords: Infancy, expectation, audio-visual, synchrony, cross-modal 
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Infant Sensitivity Toward the Timing of Sounds Predicted by a Dynamic Visual Object 

The natural world is filled with dynamic visual information that is strongly linked with 

associated sounds. Imagine moving fingers striking the keys of a piano, the back and forth 

bounces of a ball in a tennis match, or a person clapping their hands: Each of these visual 

experiences predict accompanying sound via the integration of top-down knowledge structures 

related to physical environments. In the case of a ball bounce, the dynamic visual movement of 

the ball generates strong auditory expectations of a bounce sound as it moves toward physical 

collision with a hard surface. Past computational research has found that neurotypical adults use 

their understanding about the physical world to inform their inferences about past (Smith & Vul, 

2014; Gerstenberg et al., 2018) and present (Gerstenberg et al., 2021) events, and to anticipate 

events in the future (Smith et al., 2013; Battaglia et al., 2013). Adults can also reconstruct what 

could have happened in the past based on integrating visual and sound information (Gerstenberg 

et al., 2012) and can infer motion trajectories of falling objects colliding with angled surfaces 

(Little & Firestone, 2021). Thus, abstracting about the plausibility of physical events - within and 

across modalities - seems to occur rapidly and relatively effortlessly for adults; however, it is not 

yet understood how and when these abilities emerge.   

Previous work suggests that early knowledge structures about the physical world emerge 

during infancy (Wellman & Gelman, 1992; Baillargeon et al. 2012; White, 2014; Saxe & Carey, 

2006). This includes developing sensitivities toward the physical properties of objects (for 

review see, Spelke and Kinzler, 2007), which may provide foundational skills for infants to form 

higher order inferences about cause and effect relations in real-world sensory environments 

(Spelke et al., 1992; Ullman & Tenenbaum, 2020). For example, early representations of the 

movement of dynamic objects help to organize the infant’s understanding of how objects behave 
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within the physical world. Infants as young as three months of age make more accurate and 

faster anticipatory eye movements toward predictable visual patterns (i.e., flashes of light 

moving left to right) versus irregular ones (i.e., flashes of light moving randomly; Haith et al., 

1988). Importantly, the infant’s ability to anticipate motion trajectories improves with experience 

(Johnson et al. 2003). Infants also spend more time attending to perceptual events that violate 

their expectations of how physical objects behave (Spelke, 1985; see review, Margoni et al., 

2023). Infants are aware that objects remain cohesive, even when partly occluded (see review, 

Spelke, 1990; Kellman & Spelke, 1983) and that solid objects cannot pass through space 

occupied by other solid objects (Baillargeon et al., 1985; Spelke et al., 1992); therefore eliciting 

higher looking times towards events in which physical properties are violated. These findings 

suggest that infants have expectations of objects’ behavioral dynamics due to sensitivities 

towards their physical properties (for review, Spelke & Kinzler, 2007) and that these skills gain 

sophistication throughout development (for review, Bremner et al., 2014). Infants then use these 

knowledge structures to build more complex abstractions about how objects behave in natural 

sensory environments. 

In adults, inferences about behavioral dynamics of objects are tied to psychological 

determinants that govern the perception of causal launching events. Michotte (1946, 1963) first 

demonstrated this by showing adults a moving object which contacted a stationary object to 

launch it into motion. When the timing or spacing of the launch event varied, adults did not 

ascribe physical collision to be the cause of the launch event. Similar findings have been 

extended to young infants (e.g., four months of age; for review, Saxe & Carey, 2006) such that 

they look longer toward physically implausible, non-contact launching events after being 

habituated toward physically plausible launches (Leslie, 1984; Ball, 1973). Furthermore, seven- 

https://www.sciencedirect.com/science/article/pii/S0001691806000710?casa_token=uY7k-2BfBbEAAAAA:i6Kfp76TlipBQLDOxGRljcYCBpZ5w5jcMnsw_dULCdEHg-eUQMh0ZlK9dS-UFF3V3Nt4UpIdUiw#bib8
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to ten-month-old infants also look longer when encountering a temporal delay between physical 

collision of two objects and the subsequent launching event (for review, Scholl & Tremoulet, 

2000; Kotovsky & Baillargeon, 2000), and towards launching events where the relative speed of 

one object does not match the second object’s speed when it is subsequently launched into 

motion (Kominsky et al., 2017). Each of these studies suggested that a violation of the infants’ 

learned expectations elicited longer look times toward implausible events, which in turn 

demonstrates that infants have pre-existing representations of visual object interactions. 

However, perceptual causality signals are not limited to visual collision events; as dynamic 

visual objects signal predictable, casual sound upon impact with another object or a boundary.  

The ability to predict sound based on dynamic visual cues, like collision, depends on 

lower-level perceptual skills dedicated to detecting the alignment of audio-visual (AV) signals 

across time and space. For example, research in adults has shown that AV signals closely aligned 

in both space and time are more likely to be perceived as integrated compared to those that are 

not (Wallace et al., 2003; Körding et al., 2007; Parise et al., 2012). Infants are also able to 

integrate AV signals soon after they are born. Four-month-old infants, when habituated to two 

objects that create different rhythmic sounds, will look longer toward the object responsible for 

each sound upon hearing it, suggesting that they can match the rhythms of sounds that have been 

contingently paired with objects that create them (Spelke, 1976). Infants also prefer to look 

toward AV input that display synchronous temporal and spatial alignment within the first few 

months (Spelke, 1979; Bahrick, 1983), or even weeks (Bahrick, 2001) of their life. As discussed 

in Bahrick and Lickliter (2000), the coordinated timing of sensory inputs across different 

modalities serves as an attentional cue and facilitates perceptual learning in infancy, especially 

during language acquisition. Infants sensitivity toward the correspondence between AV speech 
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signals occurs within the first six months of life (Kuhl & Meltzoff, 1982, 1984), including that 

infants prefer to attend to synchronous lip movement-to-voice presentations rather than those out 

of synchrony (Dodd, 1979), expect the spatial output of their mothers’ voice to match the 

location of their mothers’ face (Aronson & Rosenbloom, 1971), and demonstrate the McGurk 

effect, where the specific movement of the lip influences which phoneme they expect to hear 

(Rosenblum et.al., 1997). Furthermore, infants are able to remember word-object relations better 

when information is presented synchronously, rather than asynchronously (Gogate & Bahrick, 

2001), and selectively attend to mouths when speech is synchronous (Hillairet de Boisferon et. 

al., 2017), and can detect AV asynchrony pertaining to speech even without rhythmic cues 

(Lewkowicz, 2003).  

Synchrony biases like these have been theorized to facilitate cross modal learning across 

language and cognitive domains in infancy (see review, Oakes 2010; Poli et.al., 2020). Aside 

from noticing synchrony of visual input and sound when learning language, four-month-olds 

have shown a synchrony bias when beginning to reason about the composition of moving 

objects, expecting rigid versus elastic objects to behave differently upon collision (Bahrick, 

1983). Furthermore, one study found that newborn infants exhibit greater looking time towards 

an object which is moving in a direction that matches an accompanying sound (i.e., an increase 

in volume when moving towards them), compared to misaligned AV information (Orioli, 2018). 

These studies suggest that AV integration, in the form of a synchrony bias, is a crucial part of 

infant learning when they are being exposed to unfamiliar sensory associations. Neural evidence 

also supports the emergence of infant synchrony biases as they learn to integrate AV input with 

experience, such that repeated exposure to AV contingencies attenuates neural responses 

compared to unimodal input (Kersey & Emberson, 2017). Although the precise mechanisms 

https://www.sciencedirect.com/science/article/pii/S016363839900003X#BIB4
https://www.sciencedirect.com/science/article/pii/S016363839900003X#BIB4
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driving synchrony biases in infancy remains unclear, the bias toward AV synchrony can be 

contextualized within the framework of infant-learned associations, which contrasts the 

perceptual biases toward asynchrony that stem from expectation violations (Roder et al., 2000; 

Colombo & Mitchell, 2009). 

In infancy, synchronous and asynchronous AV perceptual biases also emerge when 

processing dynamic objects interacting within physical environments. For example, it has been 

demonstrated that infants are sensitive to small asynchronies when viewing ball bounce collision 

events (Lewkowitz, 1996). Here, infants were first habituated to a 2-D ball that moved up and 

down, and made a sound when the ball made physical contact with the bottom boundary of the 

display. During the test phase, infants were shown the same visual event with varying 

spatiotemporal offsets (i.e., 250 milliseconds (ms), 300ms, and 350ms) between sound onset and 

visual collision, and were found to dishabituate toward the AV stimuli when presented with the 

300ms offset interval. Four-month-olds are also sensitive toward violations of expected relations 

between object-sound numerosity, in that they look longer toward perceptual events where the 

number of dynamic visual objects (i.e., one ball bouncing) differed from the number of sounds 

elicited (i.e., two bounce sounds heard; Smith et al., 2017). These findings suggest that infants 

form expected associations about the number of visual objects and sounds based on cues of 

harmonicity, and when this expectation is violated, they look longer at the mismatching stimuli. 

These behavioral results also appear to reflect a contrast to the contexts where infant synchrony 

biases emerge. When abstracting about new associations about physical environments that 

infants have not had much experience with, infants prefer synchronous AV events (Bahrick, 

1983; Orioli, 2018), whereas when viewing perceptual events that violate previously held 
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expectations (Smith et al., 2017; Lewkowicz, 1996), infants show the opposite effect and prefer 

to look at perceptual events that violate their physical expectations. 

One factor not considered in Smith et al. (2017) and in Lewkowitz (1996) was whether 

infants are able to detect a mismatch between AV inputs solely through brief exposure to lower-

level spatial and temporal cues, without prior exposure. Therefore, the primary objective of the 

present study was to test whether infants have pre-existing expectations about whether moving 

objects elicit an immediate sound upon collision with a boundary. We were specifically 

interested in whether this sensitivity is present naturally, without introducing a habituation phase 

within the same experiment. Additionally, whereas Smith et al. (2017) and Lewkowitz (1996) 

both used stimuli where a ball appeared to be acted on by gravity (i.e., traveled downwards and 

then bounced back up), our stimuli was designed to mimic naturalistic movement that the infants 

would have to anticipate, as the ball traveled within the display in a self-propelled manner at a 

consistent speed. To investigate this, we measured the looking time of four- to five-month-old 

infants as they viewed a 2-D ball that moved along a physically plausible motion path to bounce 

off and make a sound upon colliding with a boundary. For synchronous AV trials, sound 

accompanied the ball’s dynamic motion precisely when it collided with the edges of the display, 

while for the asynchronous AV trials, the sound occurred slightly before visual collision. We 

expected misalignment between visual and auditory input to elicit a violation of expectation, as 

the perception of temporal and spatial simultaneity of discrete AV events plays a large role in 

determining if the two sensory events will be perceptually integrated as one, or perceived as two 

separate events (Wallace et al., 2003; Körding et al., 2007; Parise et al., 2012). We were guided 

by the pre-registered prediction that infants would show greater looking time on average toward 

AV asynchronous presentations compared to synchronous ones, due to a violation of their 
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expectations about the spatiotemporal relations between dynamic visual objects and collision 

sounds. Alternatively, greater looking times toward the AV synchronous presentations would 

indicate the presence of a familiarity bias toward the learned regularities of dynamic AV events, 

which could indicate that the infants are still learning about the alignment between visual 

collision and sound. No looking time differences could indicate that the infants are too young to 

notice the small differences in spatiotemporal information we used in our design, and therefore 

this association may occur with more experience. Additional analyses ruled out order effects, 

side biases, and color preferences driving these results. 

Methods 

Participants 

Our pre-registered sample consisted of 24, four-to-five-month-old infant participants (age 

range: 4 months 1 day - 4 months 29 days; Mage = 4.39 months; SD = 0.26; 15 female) who 

participated in this virtual experiment with their primary caregiver over a Zoom call. An 

additional six infants were recruited and participated in the study, but were excluded from 

analysis based on our pre-registered exclusion criteria (see looking time processing for specific 

exclusion criteria). Each primary caregiver and their infant were recruited using social media 

advertisements and were not compensated for participating. All remote data collection 

procedures took place in San Diego, California between April 2022 and July 2022. Participants 

came from California (n = 9), Ohio (n = 2), Massachusetts (n = 2), Washington (n = 1), New 

York (n = 2), North Carolina (n = 1), Louisiana (n = 1), South Carolina (n = 1), Maine (n = 1), 

New Mexico (n = 1), Nebraska (n = 1), Colorado (n = 1), and Indiana (n = 1). The ethnic 

breakdown, primary caregiver level of education, and total household income of our infant 

sample can be seen in table one. 
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Table 3.1 
Frequency of Demographic Categories 

 Frequency (n = 24) Percentage 

 

Infant Race   

White 16 66.7 

Hispanic or Latino 4 16.7 

Asian or Pacific Islander 1 4.2 

Black 0 0.0 

Mixed Race 3 12.5 

Primary Caregiver Level of Education   

High School Diploma 0 0.0 

Associate Degree 3 12.5 

Bachelor’s or Undergraduate Degree 9 37.5 

Master’s Degree 7 29.2 

Doctorate 5 20.8 

Total Household Income   

Not Reported 1 4.2 

$40,000 - $60,000 3 12.5 

$60,000 - $80,000 2 8.3 

$80,000 - $100,000 3 12.5 

$100,000 or more 15 62.5 
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We screened each infant via primary caregiver self-report prior to their participation to 

confirm that the infant had normal hearing, corrected-to-normal or normal vision, no known 

neuropsychological, intellectual, developmental or genetic disorders, and experienced no 

significant prematurity (i.e. at least 37 full weeks of gestation). We also ensured that the primary 

caregiver joined the experiment from a laptop or desktop computer with a forward-facing 

webcam at the top of their display. All procedures were approved by a local institutional review 

board (IRB) and each primary caregiver provided informed consent on behalf of themselves and 

the infant. 

Audio-Visual Stimuli 

The AV stimuli for this experiment were created using Blender 2-D Animation 

(Community, 2018; version 2.8) and Movavi Video Editor Plus 21.3.0 softwares, and were 

exported with a frame rate of 24 frames per second using a 1920x1080 pixel resolution. The 

visual stimuli consisted of a single green 2-D ball that moved continuously to bounce off 

artificially defined boundaries of a black rectangle, which was overlaid on top of a neutral gray 

background (see Fig. 1). For each trial, the ball appeared at either the top left or right side of the 

black rectangle and began to move diagonally toward the bottom of the black rectangle. The 

green ball then appeared to bounce off upon visual collision with the bottom boundary and 

continued its dynamic motion along a path that depended on the trajectory of the previous 

bounce. The ball traveled across the rectangular display with a trajectory designed to avoid 

corners, so that on average the ball collided with one of the four boundaries every 2.05 seconds 

(SD = 0.93s), as the distance traveled varied by bounce. 

Visual angles of the stimuli were estimated using 1) a viewing distance of 50 cm, which 

was the approximate viewing distance for our participants, and 2) a standard laptop monitor size 
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of 30.4 cm x 21.2 cm, which was the typical computer set up used for each session. Note that we 

were unable to obtain an exact viewing distance and monitor size for each infant, and that visual 

viewing angle between each infant varied. Based on these approximations, the green ball, which 

was 5.43 cm in diameter, subtended a visual angle of about 2.9 degrees. The ball’s movement 

was constrained to occur within the boundary of a black rectangle which measured 

approximately 7.93 inches in width and 5.3 inches in height (approximate visual angle height = 

15.1 degrees; visual angle width = 11.4 degrees; subtended rectangular visual angle height*width = 

3.01 degrees). Auditory stimuli were then embedded into the 2-D animation (using Movavi) to 

provide the perception of bounce sound when the green ball collided with one of the four 

boundaries of the black rectangle. The sound itself was a 50 decibel complex tone that resembled 

a solid object colliding with a hard surface (i.e., a knocking sound) and had a duration of 110 ms.  

The experiment contained three conditions in total: AV synchronous, AV asynchronous, 

and AV surprise (see Figure 1 for a visual depiction of each condition). 
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Figure 3.1. Visual depiction of each audio-visual (AV) condition. Each condition contained a 2-
D green circle, which initially appeared at the top left or right corner for each stimulus condition 
(left-side start depicted above). The dynamic movement of the ball is illustrated by the white 
arrows (white arrows were not present in the actual experimental stimuli). The timeline below 
each condition shows the timing of the relevant visual and auditory stimuli. Sound onset is 
represented by the audio icon while visual collision between the ball and boundary is depicted by 
the yellow stars. In the surprise condition, the ball continued along its trajectory instead of 
bouncing, thus appearing to pass through the boundary upon first collision and disappearing 
behind the display. 
 

For AV synchronous trials, the ball’s dynamic motion was accompanied by a bounce sound 

precisely when it collided with one of the boundaries of the black rectangle. For the AV 

asynchronous condition, the bounce sound occurred approximately 250ms (+ or - 25ms jitter) 

before visual collision with a boundary. Although Lewkowicz (1996) found that infants are 

sensitive to AV asynchronies with a minimum offset of 300ms, Knopp et al. (2014) found neural 

evidence that infants are sensitive to AV asynchronies using a 200ms offset. Thus, we opted to 

use 250ms (+ or - 25ms) AV offsets in our study. For the AV surprise trials, a single bounce 

sound occurred at the point of collision with the lower boundary of the rectangle, but the ball 

continued along its downward motion path through the lower boundary and disappeared instead 

of bouncing. For the AV surprise trials, after the ball disappeared, it would not reappear for the 
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remaining duration of the trial. During piloting, we observed that infants were not engaged with 

the AV surprise condition due to the ball disappearing. However, the novelty of the surprise 

trials did result in regained interest during the latter half of the experiment. Based on these 

preliminary observations, we opted not to analyze looking times using this condition, but kept 

the AV surprise trials in the experiment to improve attention during the second half of the 

presentation. Each AV stimulus video was up to 50 seconds long, but the trial length during the 

experiment was infant-controlled (see procedure section below). Additionally, the initial starting 

location for the ball was counterbalanced so that the ball could initially appear on either the left 

or right side of the black rectangle. This was accomplished by mirroring each video so that each 

condition had a left and a right version with the ball following the same, but reflected, motion 

path. 

Procedure 

This experiment had two run orders which both contained 12 trials (five AV 

synchronous, five AV asynchronous, and two AV surprise trials). Each infant participant was 

randomly assigned into one of two run orders to control for initial presentation effects, where 12 

infants saw an AV synchronous presentation first, and the other 12 saw an AV asynchronous trial 

first. Trials alternated between AV synchronous and AV asynchronous presentations, with two 

AV surprise trials inserted in the 5th and 9th position in both run orders. 

This experiment was conducted virtually over Zoom, where two experimenters were 

present with the infant participant and their primary caregiver. Upon joining the Zoom session, 

the primary experimenter welcomed each infant participant and their caregiver and provided 

verbal instructions to the caregiver. The experimenter explicitly instructed the caregiver to 

minimize external distractions in the environment in which the infant would be viewing the 
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stimuli (e.g., closing windows, keeping pets and other people out of the room, moving toys out 

of the infant’s reach, turning off their computer notifications, etc.). The infant participants 

watched the stimuli at a normal viewing distance (i.e., approximately 50cm) and the caregiver’s 

were given the option to choose out of our recommended viewing placements: seated on the lap 

of their primary caregiver (n = 18), standing on the caregiver’s lap (n = 1), seated in a carrier seat 

or high chair (n = 3), or seating on the ground in front of the device (n = 2). The caregiver was 

also instructed to keep the infant as still as possible, but not to distract the infant or redirect the 

infant’s attention if the infant looked away. 

The virtual experimental sessions followed the same infant controlled looking time 

procedure as outlined in Smith-Flores et al. (2021). In this procedure, two experimenters, who 

were in different locations but on a phone call with each other, joined a video call with the infant 

participant and caregiver. The primary experimenter controlled the stimuli presentation via a 

web-based presentation program (Slides.com), and the secondary experimenter, who was blind to 

run order and trial type, live coded infant looking time while only viewing the video stream of 

the infant using PsychoPy (Peirce, 2007) and PyHab (Kominsky, 2019). At the start of the 

experiment, each infant viewed a 5-point calibration video where a rotating disk accompanied by 

sound directed the attention of the infant to the center and the four corners of the display. The 

calibration established the boundaries of the participant’s display so that the experimenters were 

able to distinguish whether the infant looked towards the edges of the display or away from it. 

Prior to the presentation of each AV trial, an attention grabber appeared. This fixation stimulus 

consisted of a small spinning blue star presented in the center of the screen that made a chime 

sound and played continuously. The fixation stimulus was designed to promote infant 

engagement between trials and to orient their gaze to the center of the display. When the primary 
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experimenter determined that the infant had looked at the fixation stimulus for approximately 

two seconds, the experimenter advanced the slide. This ended the fixation stimulus and its 

accompanying chime sound, and the experimental stimuli appeared (see Figure 2 for a schematic 

of the experimental time course).  

 

Figure 3.2. Diagram of the time course between experimental trials. Each experimental trial 
began with an attention grabber consisting of a spinning blue star at the center of the screen that 
made a chime sound. The AV stimulus was presented after the attention grabber ended. The 
duration of the attention grabbers and experimental trials were both infant controlled. The 
attention grabber ended upon 2s of infant gaze as determined by the primary experimenter and 
the AV trial ended upon 2s of infant inattention as determined by the secondary experimenter. 
Sounds are represented by the audio icon while visual collision between the ball and boundary is 
depicted by the yellow stars. The maximum duration of each experimental trial was 50 seconds.  
 

The cessation of the fixation chime sound served as a cue to the secondary experimenter to 

initiate a button press on their keyboard while viewing a live feed of the infant, indicating the 

start of stimulus presentation for a given AV trial. The secondary experimenter held down this 

key the entire time the infant was looking at the screen, and if the infant looked away from the 

screen, the secondary experimenter released the key. If the secondary experimenter’s key 

remained unpressed for 2 seconds, their computer generated an external sound that was heard by 

the primary experimenter through the phone call with the secondary experimenter. Upon hearing 



 

 89 

the tone, the primary experimenter ended the AV trial and advanced to the next fixation stimulus, 

and the procedure repeated itself. 

Looking Time Processing  

The primary looking time measure was determined by a separate offline coder, who was 

not involved in the collection of the live looking time data, and was blinded to condition and run 

order. This offline coder viewed the recording of each session and coded the infant’s looking 

time using Datavyu (Datavyu Team, 2014). Looking time in seconds was calculated separately 

for each AV trial. Raw looking time per AV trial could be up to 50 seconds if the infant faced the 

screen throughout the entire trial, or the total duration they looked at the stimuli until a two-

second look-away, which ended the trial. Any periods of infant look-aways that lasted less than 

two-seconds were treated as inattention and subtracted from the total trial looking time. As 

recommended for looking-time data (Csibra et al., 2016), each infant’s cumulative looking time 

in seconds for each trial was log transformed. For each participant, we then averaged the logged 

looking time across all valid trials in a condition. A separate trained research assistant also coded 

each video to ensure reliability of the single offline coder. Both coders displayed high inter-rater 

reliability when determining if a given trial was good or bad based on the exclusion criteria 

outlined below (Kappa = .83, overall agreement = 93%). We also assessed inter-rater reliability 

between the two coders in determining average looking times in seconds collapsed across all the 

usable synchronous and asynchronous conditions in the experiment for each infant. The analysis 

revealed average looking time determinations between the two coders were highly correlated, 

r(22)  = 0.97, p < 0.001. 

Individual trials were excluded if: the infant cried for more than 10 seconds within a trial  

(n = 3 trials removed); the caregiver or other entity interfered with the infant’s looking (e.g., a 
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sound from the caregiver distracts the infant, caregiver points back to the screen, etc.; n = 7 trials 

removed); there were technical issues (n = 2 trials removed); or newly introduced environmental 

stimuli (e.g., a siren outside, a dog barking, etc.) captured the attention of the infant for longer 

than two seconds (n = 3 trials removed). For a given participant, individual trials were also 

excluded if the total accumulated look time was less than two seconds (n = 15 trials removed). 

Furthermore, if the offline coder determined that the live experimenters ended the trial before 

infant inattention (e.g., stimulus was advanced during online coding before the infant looked 

away for two seconds), that trial was dropped from analysis (n = 4 trials removed). Five infants 

did not complete the full 12 trial exposure phase due to global fussiness issues, but were included 

in the analysis. A total of 11 trials were not presented across these five infants. Thus, all 

individual trial exclusions (n = 34) resulted in a total of 195 (of 229 total possible trials; 85.2% 

retention rate) usable trials collapsed across the 24 infants in our sample. 

After excluding individual trials, participants were only included in the analysis if they 

completed a minimum of two valid trials of both the AV synchronous and AV asynchronous 

conditions (after Smith et al., 2017). Infants (n = 3) who did not complete at least two valid trials 

per condition were excluded from the analysis and replaced with a new participant. Additionally, 

participants who experienced any technical difficulties (n = 3) which impacted the experimental 

presentation or the recording quality of the Zoom session (e.g. internet connectivity, display 

issues, low-resolution recordings, etc.) and lead to uncertainty in behaviorally coding the infant’s 

gaze, were excluded from analysis and replaced with a new participant. 

There were a total of 98 valid AV asynchronous trials and 97 valid AV synchronous trials 

collapsed across the 24 infants in our sample. The number of valid trials collapsed across the two 

conditions of interest from the 24 infants in our sample ranged from 5 to 10 trials (Musable trials = 
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8.13, SDusable trials = 1.6). We also conducted a pre-registered independent samples t-test to 

examine differences in the number of usable trials between the two run orders. We found that the 

total number of usable trials was not significantly different between the infants who saw the AV 

asynchronous trial first (Musable trials = 8.08, SDusable trials = 1.68), compared to those who saw the 

AV synchronous first (Musable trials = 8.17, SDusable trials = 1.64; t(21.9) = 0.12, p = 0.9). We also 

conducted a pre-registered paired samples t-test to assess whether there were significant 

differences between the total number of usable AV synchronous and AV asynchronous trials 

used in computing each infant’s averages. This analysis revealed non-significant differences 

between the amount of AV synchronous (Musable trials = 4.04, SDusable trials = 0.86) and AV 

asynchronous trials (Musable trials = 4.08, SDusable trials = .97; t(23) = 0.24, p = 0.81). Thus, any 

differences in subsequent analyses were not driven by the number of trials seen between the two 

run orders and between the two conditions of interest. 

Results  

Our primary dependent measure was the logged average looking time for valid AV 

synchronous and AV asynchronous presentations. We conducted a pre-registered 2x2 mixed 

factorial ANOVA to examine the prediction that infants will look longer towards AV 

asynchronous presentations compared to AV synchronous ones. In our ANOVA model, we 

treated the averaged logged looking times for the AV synchronous and AV asynchronous 

presentations as a two level within-subjects factor, while the two run orders consisted of a two 

level between-subjects factor. As predicted, we found a trending main effect between AV trial 

type, F(1, 22) = 3.61, p = 0.07, partial η2 = .14, where infants spent greater time looking toward 

the AV asynchronous (M = 1.06, SD = 0.26) presentations compared to AV synchronous trials 

(M = 0.98, SD = 0.27; see Figure 3). 
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Figure 3.3. Scatter plot of looking time averages (log10 transformed) between the AV 
asynchronous and AV synchronous conditions. The above figure depicts that on average, four-to-
five-month-old infants look longer toward temporally asynchronous AV input compared to 
synchronous AV presentations. The y-axis represents average looking time in logged seconds, 
while the x-axis represents the two conditions of interest. The individual average logged looking 
time values for the AV asynchronous condition are depicted by the red circles and the AV 
synchronous values are presented by the blue circles. The solid gray lines connecting each pair of 
red and blue circles represents the average logged looking times between AV conditions for each 
infant participant. The black horizontal lines within each boxplot are group level median 
averages of logged look time for the AV asynchronous and AV synchronous conditions. The 
large black scatter point represents the mean logged reaction time for each condition. Raw 
average values in seconds for each condition are provided next to the large scatter points. The p-
value presented above the bracket was obtained using the log transform of average looking time 
in seconds between the AV asynchronous and AV synchronous conditions. 
  

Our ANOVA also showed that there was no significant main effect of run order, F(1, 22) 

= 0.16, p = 0.69, nor was there a significant interaction between AV trial type and run order, F(1, 

22) = 1.56, p = 0.23. We also conducted a pre-registered paired samples t-test to assess whether 
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the initial appearance of the ball stimulus (i.e., top-left, top-right) across trials influenced the 

looking time results, similar to Smith et al. (2017). We found no significant differences in 

average logged looking times between left (Mleft = 1.01, SDleft = 0.29) and right side onset trials 

(Mright = 1.02, SDright = 0.25; t(23) = -0.17, p = 0.86).  

Exploratory Linear Mixed Effects Analysis of Logged Looking Time Across Individual Trials 

We also opted to conduct an exploratory linear mixed effects analysis to examine the 

interaction between trial type (two level factorial variable) and trial number (ordered 10 level 

factorial variable; 1 through 12, surprise trials 5 and 9 dropped) on logged looking time. The 

model included trial type and trial number as fixed effects and participant as a random effect to 

account for individual variability. The analysis was performed using the lmerTest package in R 

software (Version 4.3.2). We tested the interaction between trial type and trial number on logged 

looking times using the following code: lmer(Log Duration ~ Trial Number * Trial Type + 

(1|participant)). 

The analysis of model fit found that trial number (β = -0.37, 95% CI [-0.055, -0.2], p < 

.001) and trial type (β = -0.09, 95% CI [-0.17, -0.01], p = .04) were significant predictors of 

logged looking times. As expected, logged looking times decreased as trial number increased. 

Logged looking times were also significantly longer for the asynchronous condition (M = 1.03, 

95% CI [0.93, 1.14]) compared to synchrony (M = 0.95, 95% CI [0.85, 1.05]; t = 2.03, p = .04). 

We found a significant interaction between trial type and trial number (β = -0.38, 95% CI [-0.3, 

0.2], p = .05). To follow up, we ran the model separately for each trial type, using ordered trial 

number as a fixed factor and participant as a random effect. We found that the synchronous 

condition had a steeper slope of decline (β = -0.44, 95% CI [-0.63, -0.25], p < .001) for logged 

looking times compared to asynchrony (β = -0.38, 95% CI [-0.55, -0.21], p < .001; see figure 4). 
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Figure 3.4. Model estimates of logged looking times plotted across trial number, split between 
the AV asynchronous and AV synchronous conditions. The above figure depicts the estimated 
marginal means obtained from the model for each trial number, split between trial type. The y-
axis represents the logged looking time (log10) in seconds, while the x-axis represents trial 
number. The solid red and blue lines represent the line of best fit for each condition. Trials five 
and nine were the AV-surprise trials and were not included in the analysis or figure. 

 

A likelihood ratio test shows that the interaction effect model with trial number and trial type as 

predictors explained significantly more variation (AIC = 138.1; BIC = 210.1) in the observed 

data compared to main effects model with trial number and trial type as additive predictors 

(χ2(9) = 17.9, p = .04, AIC = 138; BIC = 180.5) and compared to a null model (χ2(19) = 98.4, p 

< .001, AIC = 198.5; BIC = 208.3). 

Discussion 



 

 95 

Our goal for this study was to assess if infants as young as four-to-five months of age are 

sensitive to the spatiotemporal congruency between dynamic visual input and associated sounds. 

We predicted that AV asynchronous spatiotemporal information (i.e., sound preceding visual 

contact with a physical barrier) should result in increased looking time relative to synchronous 

representations due to infants' expectations about alignment between the timing of visual input 

and the onset of a sound. Our results supported this prediction: as a group, infants looked 

significantly longer toward asynchronous AV events. These findings expand our knowledge of 

the crossmodal perceptual abilities of infants, demonstrating that they are sensitive to AV 

associations over the course of a brief exposure phase. This is an important extension of previous 

work, such as the study by Smith et al. (2017), where infants looked longer toward events that 

contained a mismatch between the number of visual objects seen and sounds heard (i.e., one ball 

bouncing, two sounds elicited). Our data reveals that infants also display an early sensitivity 

toward the spatiotemporal alignment of dynamic visual input and sounds.  

Past computational research has found that young children are able to integrate visual and 

auditory information to make inferences about past events (Outa et al., 2022). Infants’ early 

sensitivity to low-level temporal properties of AV associations may provide a foundation for 

attending to and learning about the causes underlying multimodal events. Since we did not utilize 

a habituation or familiarization/test procedure, the infants’ sensitivity to distinguish between AV 

asynchronous and synchronous inputs suggests that the infants have prior expectations about 

visual objects and their accompanying sounds. The lack of a familiarization/test procedure is also 

in contrast to the launching studies previously described (Michotte, 1946, 1963; Ball, 1973; 

Leslie, 1984; Kotovsky & Baillargeon, 2000; Saxe & Carey, 2006; Kominsky et al., 2017) in 

which infants were first habituated to a plausible launching event (i.e., a moving object collided 
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with another static object, which propels it into motion), and were then presented with a violation 

of the previous event (i.e., uninitiated contact between the two objects results in launching). 

Although extremely useful, in habituation designs, an infant’s ability to detect a violation of 

expectation is contingent on learning the environmental constraints of the experiment during the 

initial exposure phase. In contrast, our study showed that as a group, infants were able to notice a 

difference in AV spatiotemporal information between the two conditions based on previously 

held expectations of how their physical world operates. 

The findings reported here suggest the presence of mechanisms responsible for 

associating sounds with the behavioral dynamics of a moving visual object very early in 

development. This raises the question: what type of perceptual experiences are useful in 

facilitating these skills? Dynamic AV sensory information is ubiquitously available to the infant 

at birth (i.e., hand clapping, objects dropping, balls bouncing, people speaking, etc.), which may 

be one reason why infants are able to detect changes in the temporal alignment of sounds caused 

by preceding visual input so early in life. Mandler (2012) argued that infant inferences about 

launching events also coincides with increased experiences with forces acting on the body in 

natural environments. For example, newborn infants often experience pressure and resistance 

because they are pressed against things in their immediate environment (e.g., resting in a cradle, 

being held, or swaddled by a blanket). As the infant develops, so do their fine and gross motor 

skills and their abilities to interact with objects in their immediate environment. Infants then gain 

more opportunities to manipulate objects, realizing that some objects can be picked up while 

others cannot, or that people are self-propelled agents and can send non-animate objects into 

motion. Mandler (2012) concluded that inferring launch causality emerges through the 

interaction between domain-general processes that generate concepts from attended perceptual 
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events and the ability to manipulate a range of objects. On the other hand, the perception of 

crossmodal associations underlying AV input may not be dependent on the acquisition of fine 

and gross motor skills, but rather the maturation of visual and auditory systems, which develop 

sooner. Since AV information is readily available in naturalistic settings, the early ability to 

assess the congruence of the onset of sounds and the behavioral dynamics of a visual object may 

be the result of earlier capacities for the infant to extract regularity from objects, independent 

from motor abilities. As such, AV information may provide the infant opportunities to employ 

perceptual predictions in the real world earlier than launching events would.  

The finding that infants have early developing abilities to notice small spatiotemporal 

incongruencies suggests an early sensitivity to the crossmodal structure of sound anticipated by a 

moving visual object. Detecting the spatiotemporal incongruence between sound onset and the 

movement of visual object relies on a host of different processes, including visuospatial memory 

(Orioli et al., 2018), crossmodal integration (Lewkowitz, 1996; Grossman et al., 2006), attention 

(Lewkowitz & Hansen-Tift, 2012), and the eventual inference about the timing of the sound 

itself, which assumes a great deal of processing power. The idea that infants integrate such 

complex perceptual input may suggest that these skills are critical for normative perceptual 

development (Meltzoff, 1990; Bahrick & Lickliter, 2000), as correctly inferring the source of 

expected sensory information is vital to the successful navigation of environments. We would 

also like to preface that the data presented here does not address how early these skills may 

develop. In fact, a recent study suggests that neonates are sensitive to low-level spatiotemporal 

cues that determine the perception of launching events (Mascalzoni et al., 2013). Because of this, 

assumptions cannot be made about when crossmodal anticipation of sound emerges. Yet, the fact 

that such inconsistencies can be noticed so early in development suggests the presence of 
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fundamental skills used to judge the spatiotemporal properties of moving objects in natural 

sensory environments. 

The results of this study pose an important outstanding question: is infant sensitivity 

toward expected sounds driven by high-level perceptual inferences of causality, or are the infants 

simply discriminating between conditions using low-level spatiotemporal cues? For example, an 

alternative explanation for differences in looking time towards synchronous versus asynchronous 

collision events could be that infants are attending to change in the stimulus rather than 

demonstrating a sensitivity toward the timing of expected sound caused by collision. On the one 

hand, Michotte argued that the low-level representation of perceptual causality serves as the 

basis of higher level causal inference (1964). However, many studies in the causal launching 

literature have shown that infants are able to infer causality of perceptual events such as 

launching, even if the launch event itself was visually occluded (for review, see Saxe and Carey, 

2006). Would the infant notice temporal discrepancies of sounds without precise visual 

representations? Trials in which infants viewed an object moving behind an occluder prior to 

hearing an associated sound would require the infant to infer the expected timing of the sound in 

the absence of precise visual cues. Alternatively, investigating physically impossible state 

changes of a dynamic object undergoing collision (i.e., an object changes color upon collision) is 

another way to test whether infants are inferring causality of sound based on collision cues, or if 

they are attending to a misaligned collision because it is simply linked to a stimulus change. 

These studies would be critical in assessing how limited sensory information may dictate the 

formation of higher level inferences about anticipated sounds that are associated with the 

behavioral dynamics of objects. 
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Anticipating sounds is ubiquitous in natural sensory environments and can occur in a 

variety of visual contexts. One key difference between this study and previous work (Smith et. 

al., 2017, Lewkowitz, 1996) involves the use of an abstract dynamic visual object, rather one that 

moves under the constraint of gravity. Here, we show that with relatively sparse and abstract 

perceptual input, that infants expect AV synchrony during novel events, demonstrating that 

infants’ early cross modal expectations are quite flexible. This may relate to how more complex 

visual information, originating from animate beings in the environment, may influence an 

infants’ ability to anticipate sounds. For example, perceiving a hand clap introduces the added 

complexity of processing hands as animate visual objects, which have been found to influence 

the perception of causality underlying state changes of non-animate visual objects (Muentener & 

Carey, 2010). Examining further scenarios with more abstract crossmodal representations would 

be interesting to see if more perceptually complex AV interactions would show similar effects. 

As mentioned in the introduction, familiarity biases toward AV input seem to emerge in 

the context of learning novel crossmodal AV associations, where infants look longer toward 

objects upon hearing sounds that are associated with them (Spelke et al., 1976) and use 

temporally synchronous, redundant visual input to help facilitate low-level auditory 

discriminations (Bahrick & Lickliter, 2000). Differential AV associations manifesting in the 

form of familiarity or novelty biases may point to the presence of different crossmodal 

mechanisms in infancy. For example, how do learned probabilistic AV pairings (i.e., a doorbell 

rings, a dog toy squeaks), where familiarity biases may emerge, differ from more deterministic 

physical relations, in which novelty biases emerge? Neuroimaging studies may be ideal to further 

unpack potential mechanistic differences between the two. For example, many EEG studies have 

reported that the auditory response is attenuated when hearing temporally predictable sounds in 
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neurotypical adults (for review, see Lange, 2013), and similar findings have been reported in 

early infancy (Hyde et al., 2009, Emberson et al., 2015, Kopp, 2014). Within-subjects 

comparisons of early-life neural responses to predictable versus random AV pairings may help to 

distinguish mechanisms responsible for predicting sensory information in natural environments. 

Lastly, future research investigating how lower level processing abilities support the 

acquisition of higher level perceptual skills related to prediction is also needed. For example, 

discoveries related to understanding how infants learn to anticipate sound from visual objects 

may provide foundational tools related to the acquisition of skills related to language and social 

cognition. Early sensitivity toward the statistical regularity between syllabus in natural speech is 

a critical temporal feature underlying the acquisition of language (for review, Saffran, 1996). 

Recent EEG evidence suggests that 3-month-old infants who display mature neural responses to 

the low-level discrimination of pitch were found to also exhibit neural responses related to the 

discrimination of novel transitional probabilities of syllables embedded in a continuous speech 

stream. This same pattern of pitch and syllable discrimination was reproduced in adults, which 

suggests that this neural language learning mechanism that persists into adulthood is present 

within the first few months of life (Mueller et al., 2012). Dynamic spatial information, like the 

movement of the mouth, also influences the perception of the resulting syllable (i.e., the McGurk 

effect) in neurotypical adults (MacDonald & McGurk, 1978; Munhall, 1996) and infants 

(Kushnerenko et al. 2008; Rosenblum et al., 1997). Clearly, the perception of low level 

spatiotemporal information is a fundamental feature embedded across different psychological 

domains, such as the perception of physical and social AV associations, or even natural 

language. Within-subject studies that investigate how individuals process anticipated sounds 

across various visual contexts can help determine the extent to which the development of basic 
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perceptual skills contributes to the capacity to predict AV interactions across cognitive, social, 

and language domains. 

In closing, the present results suggest that infants as young as four-to-five months of age 

are sensitive to temporal alignment of sounds associated with a moving visual object. Early 

sensitivities to dynamic crossmodal spatiotemporal input, like the perception of a ball bounce, 

may provide the infant foundational learning opportunities to anticipate more complex sensory 

events during everyday perception. Infants, as a group, displayed longer looking times toward 

bounce sounds that occurred before the ball made visual collision with a boundary, compared to 

when the same sound occurred during the exact moment of visual collision. Detecting violations 

of perceptual expectations toward multisensory physical events likely has developmental 

implications for how infants form expectations about their natural sensory environments. 
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Conclusion 

With this dissertation, I examined how the brain anticipates sound via collision events, 

such as a bouncing ball. Grounded in predictive coding theory, I showed that the dynamic 

movement of objects can modulate auditory responses based on whether the object’s motion was 

congruent or incongruent with timing of a collision sound (chapter one). I then tested these same 

methods, but in a sample of autistic adults, finding that early responses towards incongruent 

collision sounds were larger in autism relative to neurotypical (NT) controls (chapter two). To 

examine the developmental origins of these skills, I demonstrated that infants as young as four 

months of age are able to detect small incongruencies about the timing of collision sounds 

(chapter three). In predictive coding, predictions are actively compared with incoming sensory 

inputs, and any discrepancies or "prediction errors'' between the predicted and actual inputs are 

used to update and refine the brain's internal models. A key aspect of predictive coding theory 

involves two distinct processes: integrating predictions and detecting errors. Yet actual 

mechanistic explanations of these processes remain largely unexplored. 

In chapter one, I implemented novel methods to test how visual expectations can 

influence early sensory processing of congruent or incongruent collision sounds. In NT adults, 

sounds that were incongruent with visual expectations resulted in enlarged neural responses, 

which reflect the integration of prediction error. Conversely, sounds that were in line with visual 

expectations resulted in a reduction of neural responses relative to processing sound in isolation, 

which reflect the integration of top-down predictions with congruent sensory information. Here, I 

demonstrated that the processes related to representing error and predictions are mechanistically 

distinct. Although these processes are different, disruptions to either could equally impact 

predictive neural systems. Difficulties in appropriately contextualizing previous expectations in 
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otherwise unpredictable sensory environments could serve as a promising target to test in clinical 

populations who report difficulties in implementing predictions. 

 Predictive coding theory has also been proposed as a framework used to explain the 

diverse symptom profile seen in autism. It has been theorized that autistic people may exhibit 

atypical responses to sensory stimuli because predictive mechanisms might be less accurate or 

differently tuned compared to NT. In chapter two, I sought out to utilize the methods outlined in 

chapter 1, but in a sample of autistic adults. Although predictive coding lends a parsimonious 

explanation of autistic symptoms, more research is needed to fully elucidate the mechanisms that 

may be impacted. To date there have been no attempts to directly compare the mechanisms that 

reflect the integration of predictions versus those that signal error in autism. Using the same 

methods outlined in chapter one, I found that the auditory response elicited when hearing 

incongruent sounds was enlarged in autism relative to NT. Importantly, auditory responses to 

fully visible and occluded synchrony were not different between the groups. These findings 

suggest that autistic predictive differences in response to simple auditory expectations are driven 

by the perception of error, and not the integration of predictions. 

Predictions provide us with invaluable tools to construct mental models about the world. 

Not only do our expectations inform our understanding of the physical properties underlying 

natural scenes, but they are also sensitive to the detection of faces that signal expressive 

emotions and social cues. The anticipation of a person’s movements in relation to objects in 

naturalistic environments communicates intention and requests. Social beings are dynamic but 

far less predictable than non-social objects. Larger brain responses to error may cause the autistic 

individual to pay attention to uninformative contingencies in the environment at the expense of 

social information. That same person might experience significant activation in error networks 
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when engaging in social situations because social beings are less predictable. This may lead that 

individual to self-select away from social environments, or even counteract confusing 

information by engaging in restricted and repetitive behaviors. By self-selecting away from 

unpredictable sensory environments, the individual limits their opportunities to engage in 

dynamic interactions, social or non-social, which have downstream cognitive and social 

consequences. Thus, isolating the processes involved in representing predictions and error may 

provide clues to how they govern perceptual and social experiences in autistic individuals.  

Because autism is a neurodevelopmental condition, any explanation of autism using 

predictive coding as its basis must explain how disruptions in predictive systems manifest into 

the fundamental symptoms that characterize autism. An initial step in evaluating these 

developmental questions concerning autism involves investigating whether NT infants can 

perceive the timing of anticipated sounds. In chapter three, I explored the developmental origins 

of these skills by examining infant looking time behavior when viewing temporally predictable 

sound versus sound that violated expectations (chapter three). Here, we modified the methods 

used in chapters one and two for use in an infant looking time study. I found that 4- to 5-month 

old NT infants look longer toward collision events that violate expectations of when sound 

should occur, suggesting that infants are sensitive to the low-level properties that predict 

anticipatory sounds early in life. These processes are used to make powerful inferences about 

environments, and could play a large role in implementing more general predictions.  

Our sensory environment contains dynamic objects that behave in accordance with their 

physical properties (Torralba & Oliva, 2003), constraints (Oliva & Torralba, 2007; Torralba et 

al., 2006), and statistical dependencies (Kersten & Yuille, 2003; Penev & Atick, 1996). Infants 

too represent objects and their properties in natural environments (Bremner et al., 2015; Spelke 
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& Kinzler, 2007), suggesting that these skills are foundational for normative perception, 

affording the infant opportunities to reason about the physical properties of objects and how they 

interact in natural environments (Baillargeon, 2008; Feigenson & Carey, 2003; Rosenberg & 

Carey, 2006; Spelke & Kinzler, 2007). Early perceptual sensitivities toward the predictable 

properties of objects affords the infant opportunities to learn statistical regularities embedded in 

environments (Bulf et al., 2011; Kirkham et al., 2002), which can build into increasingly more 

complex physical abstractions such as perceptual causality (Kominsky et al., 2017; Leslie & 

Keeble, 1987; Newman et al., 2008; Oakes & Cohen, 1990; Saxe & Carey, 2006; Scholl & 

Tremoulet, 2000; Shultz, 1982). Such reasoning abilities inform the infant’s expectations about 

future sensory events, which helps to resolve perceptual ambiguities as they arise (Kouider et al., 

2015; Schlottmann, 2001; Trainor, 2012). In the first year of life, early perceptual sensitivities 

toward dynamic objects play a vital role in explaining how infants make sense of increasingly 

complex sensory environments. Because infants are sensitive to auditory predictions, and the 

processes used to represent predictions appear to be different in autism, further examining the 

development of these mechanisms may offer an explanatory framework for understanding the 

emergence of autism prior to reliable diagnoses. As such, early disruptions underlying the 

processes related to perceiving and interpreting basic sensory predictions about objects are likely 

to have a cascading influence on the development of higher-order predictive models.  

Considering that sensory systems employ mechanisms to predict sound (chapter one) and 

are impacted in autism (chapter two), it is logical to investigate how neural variations in infancy 

influence the capacity to predict sound. This, in turn, could contribute to the early emergence of 

autistic symptoms seen later in childhood. Multiple lines of evidence suggest that alterations in 

neural connectivity underlie the core ASD phenotype (Belmonte, 2004; Bourgeron, 2015; 
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Geschwind & Levitt, 2007; Parikshak et al., 2015; Port et al., 2014). Infants later diagnosed with 

autism also experience accelerated rates of cortical surface area hyper-expansion between 6 to 12 

months, which give rise to altered sensorimotor/attentional experiences (for review, Piven et al., 

2017). Aberrant perceptual experiences in infants later diagnosed with ASD leads to altered 

experience-dependent neural development, resulting in a decreased elimination of neural 

processes (for review see Akshoomoff et al., 2002) and brain volume overgrowth during the 

second and third years of life (Hazlett et al., 2011). Thus, disrupted neural connectivity in the 

first year of life can be detected in sensory systems, which could affect perceptual experiences 

well before autistic symptoms arise. Interestingly, wide-spread neural alterations also co-occur 

within similar developmental time frames in which infants are beginning to learn how objects 

interact in natural environments. Such developmental overlap suggests that processes involved in 

simple audio-visual object relations may be ideal perceptual readouts of disrupted neural 

circuitry designed to process expected sounds early in life.  

In sum, quantifying the biological and developmental mechanisms that govern the 

processing of expected sensory information in infants at risk for autism is a promising target to 

understand the perceptual consequences of diffuse structural alterations underlying integrative 

sensory systems in the brain. Altered dynamic sensory representations may impede the infant’s 

ability to learn from their sensory world, consequently influencing how the infant reasons about 

the nature of objects. Disruptions to these early formative perceptual mechanisms may, in turn, 

have downstream consequences for later development, giving rise to cognitive and social 

communication differences that characterize neurodevelopmental disorders like autism. Thus, the 

auditory signals measured in this dissertation may offer tractable targets of predictive differences 

prior to the emergence of autistic symptoms. 
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