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Abstract

We present a novel method for constructing neurally imple-
mented spatial representations that we show to be useful for
building models of spatial cognition. This method represents
continuous (i.e., real-valued) spaces using neurons, and iden-
tifies a set of operations for manipulating these representa-
tions. Specifically, we use “fractional binding” to construct
“spatial semantic pointers” (SSPs) that we use to generate and
manipulate representations of spatial maps encoding the posi-
tions of objects. We show how these representations can be
transformed to answer queries about the location and identities
of objects, move the relative or global position of items, and
answer queries about regions of space, among other things.
We demonstrate that the neural implementation in spiking net-
works of SSPs have similar accuracy and capacity as the math-
ematical ideal.

Keywords: Semantic Pointer Architecture; spatial semantic
pointer; spatial representation; fractional binding; continuous
spaces; spiking neural networks

Introduction
There is evidence for a wide variety of types of mental rep-
resentation. Some mental representations are well-described
using discrete structures (e.g., graphs, trees, lists, and so on).
Others are well-described using continuous structures (e.g.,
images, maps, surfaces, and so on). Here we propose a
kind of mental representation of continuous structures that is
amenable to neural implementation.

Recently, there have been several proposals for how neu-
ral networks can represent discrete structures. One family of
approaches, called Vector Symbolic Architectures (VSAs),
defines algebras over high-dimensional vector spaces, and
uses those algebras to encode such structures. VSAs
have been used to characterize a variety of cognitive be-
haviours, including analogical reasoning (Plate, 1994), lan-
guage processing (Jones & Mewhort, 2007), and concept
encoding (Crawford et al., 2015). Most VSAs are defined
over continuous vector spaces, including Multiply Add Per-
mute (MAP; Gayler, 2004), Holographic Reduced Represen-
tations (HRR; Plate, 1995), and Vector-derived Transforma-
tion Binding (VTB; Gosmann, 2018). When VSAs are used
to model cognitive behaviours, they essentially define meth-
ods for characterizing continuous vectors as both slots and
fillers and define a method of binding fillers to slots.

In this work, we will use the Semantic Pointer Architec-
ture (SPA; Eliasmith, 2013), which proposes a means of neu-
rally implementing VSAs for explaining cognitive behaviour
in biologically plausible spiking networks. This architecture
uses aspects of VSAs for cognitive representation, but the

SPA also addresses visual processing, motor control, mem-
ory, decision making, and cognitive control in ways that do
not use VSAs. However, all of these elements of the SPA use
representations called semantic pointers (SPs), which result
from compressing and decompressing information in cortex.
As a result, we can think of VSA algebras as proposing a
family of compression operators that are well-suited for cer-
tain cognitive tasks.

However, as with most uses of VSAs, in past work the
SPA addresses cognitive tasks with a focus on representa-
tions of discrete structures (i.e., discrete slots in a represented
structure). Here we propose a method for encoding cognitive
structures over continuous spaces. We call this kind of rep-
resentation “spatial semantic pointers” (SSPs). In this paper
we propose and examine in some detail a specific kind of SSP
implemented using a particular “fractional binding” operator
to encode real-valued quantities – although a variety of other
operators can be analogously defined.

In the remainder of the paper we provide a mathematical
definition of SSPs, and show how SSPs can provide a nat-
ural means of generating and manipulating representations
that are useful for spatial cognition. We identify desiderata
for spatial representation that are useful for cognitive expla-
nations. We then implement this representation both mathe-
matically and neurally, and perform simulation experiments
to demonstrate that it has a variety of useful properties, in-
cluding: being able to query a memory for its spatial or
non-spatial contents, representing multiple objects and loca-
tions simultaneously, spatially transforming memory contents
without decoding them, and representing regions of space of
various shapes and sizes. The choice of VSA and binding op-
erator used in this work allows the representation and various
transformations to be implemented efficiently by a spiking
neural network.

A spatial representation

Our proposed representation generalizes the notion of vec-
tor binding to continuous spaces. By analogy to fractional
powers defining the multiplication of reals, we define frac-
tional bindings for vectors in a vector space. To explain, let
us first consider binding a vector to itself a discrete number
of times. That is, let k ∈ N be a natural number, B ∈ Rd be a
fixed d-dimensional vector (i.e., semantic pointer), and ~ be
a binding operator. We can repeatedly bind B with itself k−1
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times1 as follows:

Bk = B~B~ . . .~B︸ ︷︷ ︸
B appears k times

. (1)

This representation has been used in several cognitive mod-
els, for instance, to encode the position (k) in a list in serial
working memory (Choo & Eliasmith, 2010). We propose to
generalize this to continuous quantities (as opposed to dis-
crete lists, for example) by permitting k to be real. Allowing a
real k means that the resulting vector Bk encodes a continuous
quantity. Most VSA operators can be interpreted in this man-
ner (including MAP (Gayler, 2004), VTB (Gosmann, 2018),
and HRR (Plate, 1995)), but not all (e.g., spatter codes (Kan-
erva, 1994)).

In the specific case of the SPA, we take the binding opera-
tor to be circular convolution (as proposed by Plate) and the
fixed d-dimensional vectors to be semantic pointers chosen
from the unit sphere. We then define our fractional binding
operation by expressing equation 1 in the complex domain:

Bk = F −1
{

F {B}k
}

, k ∈ R, (2)

where F {·} is the Fourier transform, and F {B}k is
an element-wise exponentiation of a complex vector—
analogous to exponentiation using fractional powers
(e.g., b2.5)—permitting k to be real.2 In the present paper, we
use unitary vectors for B due to the fact that their length does
not change with multiple bindings, and their inverse is equal
to their approximate inverse (see below).

This definition comes with many useful algebraic proper-
ties analogous to the relationship between multiplication and
exponentiation (e.g., b2.5b1.5 = b4), in particular:

Bk1 ~Bk2 = Bk1+k2 , k1,k2 ∈ R. (3)

In essence, fractional binding is to circular convolution as
exponentiation is to multiplication. We exploit equation 3
to perform semantically meaningful operations (e.g., shifting
space) in our experiments.

Next, we extend this representation to multiple dimensions,
which is the focus of our experiments below. In general, we
can represent points in Rn by repeating equation 2, n times,
using a different semantic pointer for each represented dimen-
sion (i.e., for each axis), and then binding all of the resulting
vectors together. For n = 2, we think of the representation
as encoding a continuous 2-D spatial representation (e.g., the
location of objects on a map). In this case, the SSP that rep-
resents the point (x,y) is defined as the vector resulting from
the function:

S(x,y) = Xx ~Y y, (4)

where X and Y are fixed semantic pointers, x and y are reals,
and we are using fractional binding as defined by equation 2.

1When k = 0 we get the identity vector corresponding to ~.
2For natural k, equations 1 and 2 are mathematically equivalent.

Similarly, the SSP that represents a continuous region (e.g.,
a solid rectangle), specified by some infinite set of 2-D points
R, is defined as:

S(R) =
∫
(x,y)∈R

Xx ~Y y dxdy. (5)

There are efficient ways to compute equations 4 and 5
with spiking neurons using the Neural Engineering Frame-
work (NEF; Eliasmith & Anderson, 2003). We use a publicly-
available implementation in several of our results below.

To represent a single object occupying some location or
region, we bind its semantic pointer representation, OBJ, with
the SSP from equation 4 or 5, respectively:

M = OBJ~S. (6)

In general, to represent a set of m labelled objects together in
the same memory, we can use superposition:

M =
m

∑
i=1

OBJi ~Si, (7)

with a distinct semantic pointer OBJi tagging each object.
Given a representation like that in equation 7, we can query

it in a number of ways. For example, to determine what object
is at location (x,y) we can compute:

M~ (Xx ~Y y)−1 = M~X−x ~Y−y. (8)

By the properties of binding and superposition, the resulting
vector will have highest cosine similarity (i.e., dot product)
with the object at (x,y).3 Note that the inverse used in equa-
tion 8 is approximate, but choosing X and Y to be unitary
vectors guarantees it is equal to the true inverse.

We can construct a heatmap of representations defined by
equation 7, to visualize a decoding of the objects back into the
original continuous space. For instance, for m = 2 (i.e., two
represented objects), taking the dot product of M~OBJ−1

i (M
is from equation 7) with vectors representing positions spaced
by ∆x and ∆y to tile the 2-D space, provides the visualization
of Figure 1.

In summary, fractional binding provides a scheme for en-
coding a set of n-dimensional points into a d-dimensional
SSP. This comes with an algebra for operating on these SSPs
in meaningful ways (e.g., querying, shifting, and so on).
When combined with the methods of the SPA, we can spa-
tially manipulate collections of objects in a spiking neural
implementation, as detailed in our experiments below.

Desiderata for spatial representation
To test if the proposed metric representation is useful, we con-
sider its ability to be used in a variety of ways for represent-
ing, querying, and updating representations of objects in a
spatial map. Here we describe the tests we perform, and in
the next section we present the results of these tests.

3This assumes d is sufficiently large, relative to m, as is typical
for VSAs.
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Figure 1: A heatmap visualizing the representation of two
objects at different locations, as specified by equation 7. This
graph is the sum of the decoding for each object.

The proposed desiderata for manipulating 2-D spatial rep-
resentations are identified and briefly described in Table 1.
In this table, M refers to the representation generated as de-
scribed in the previous section.

Example queries
To illustrate the application of representing objects at contin-
uous spatial locations using SSPs we demonstrate a variety
of example queries in Figure 2. A set of animals (items) at
random spatial locations are encoded into an SSP using equa-
tion 7 as shown in Figure 2a. This is accomplished by binding
the SP representing each object with the SSP corresponding
to its location, summing these values together, and then nor-
malizing the result.

Various queries can be made with this representation. Fig-
ure 2c (top) shows the results of asking for the locations of
different objects, decoded as a heatmap. If the object exists at
more than one location, the resulting SSP will be highly sim-
ilar to all of these locations (image on the left). If the object
does not exist at any location, the resulting SSP will not be
similar to any location on the heatmap (image on the right).
Figure 2c (bottom) shows the reverse is possible too: given a
location, find out which objects are at that location. If there
are no objects at the queried location, the result will be noise
and will not be similar to any object in the vocabulary (as
shown in the far right).

Location queries can also be extended to regions of space,
as shown in Figure 2b. If the region encompasses multiple
objects, all objects should be returned, as depicted by the bar
charts at the bottom. The region semantic pointers themselves
are a single vector that is formed by integrating over the spa-
tial semantic pointers within the region and normalizing the
result, as described by equation 5. This process creates a
vector that has a high dot product similarity with all vectors
within a particular area while having a low dot product with

Desiderata Description
Capacity Determine how many ob-

jects can be encoded into M
and a target object success-
fully decoded.

Query single object Find the location of an ob-
ject given the object and M.

Query missing object Indicate if an object is not
present when queried.

Query location Determine what object is at
a given location.

Query duplicate ob-
ject

Determine the positions of
multiple versions of the
same object.

Neural implementa-
tion

Implement the operations in
spiking neurons.

Region representa-
tion

Represent an entire region in
the 2-D space.

Query Region Determine which objects are
in a spatial region.

Shift single object in
group

Change the position of a sin-
gle object without decoding
M.

Shift whole group Change the position of all
objects in M similarly.

Readout (x,y) loca-
tion from SSP

Map from the SSP represen-
tation to the 2-D space.

Table 1: Desiderata for metric representations of space.

vectors outside the region. Two example represented regions
are illustrated in the heatmaps at the top of the figure. It is
important to note that due to the normalization, the dot prod-
uct with the region vector and a single point within the region
will decrease as the area of the region increases. The conse-
quence of this fact is that the optimal threshold for detection
is a function of the area.

Experimental methods
To quantify how well this spatial representation performs in
general for each of the desideratum a consistent measure must
be used. In this paper we chose to use the accuracy of the out-
put. When the output is a semantic pointer for an object, it is
considered correct if its vector is more similar to the vector for
the correct object than any other vector from a vocabulary of
objects. Vocabularies are randomly generated semantic point-
ers of between 4 and 48 items, as described below. Similarity
is determined by taking the dot product between vectors, with
a larger value corresponding to a better match. When the out-
put is a semantic pointer for a location, it is considered correct
when the represented location is within 0.5 units of the true
location. This threshold is chosen because it is approximately
the radius of the region of similarity that a spatial semantic
pointer has around itself.

The capacity calculation requires identifying a threshold
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(c) Location and item queries

Figure 2: Example queries of items, locations, and regions. a) An example memory encoded into an SSP. b) Region queries
applied to the memory in (a). c) Object (top) and location (bottom) queries applied to the memory in (a).

above which an item is identified as present in the represen-
tation. For this purpose we pick a threshold that is 3 sigma
above the mean, ensuring a 99.7% chance of accepting only
correct items.

For our capacity tests, we experiment with a dimension-
ality of 128, 256, and 512, and observe the overall effect
on performance. In all other tests we fix the number of di-
mensions to 512, which we have found achieves good per-
formance across a wide variety of tasks in both spiking and
non-spiking regimes.

For each desideratum, accuracy reported is the mean across
6,000 trials with memory sizes varying uniformly between 2
and 24 items. For each trial the vocabulary of objects is cho-
sen to be twice the number of objects encoded into memory
(i.e., 4 to 48).

Each object is assigned a random unitary vector. All se-

mantic pointers used in each task are normalized after every
operation. All 2-D coordinates used in the experiments are
chosen uniformly at random within the domain of -5 to 5 for
both x and y. The size of the domain in relation to the dimen-
sionality of the semantic pointers determines the ideal level
of performance (not shown).

Query single object Equation 9 is used to produce an SSP
representing the location of the desired object. Accuracy is
computed by decoding this high-dimensional vector, S, into
the 2-D coordinate it represents and comparing to the true
location.

S = M~OBJ−1. (9)

Query missing object Given a memory containing objects,
query an object that does not exist (using equation 9). The
correct behaviour is a result that is highly dissimilar to all
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locations within the domain of interest. This is determined
by the dot product of S and every SSP being less than 0.1.

Query duplicate object Given a memory containing many
objects with some duplicates, query an object that appears
twice. The correct behaviour is to return a spatial semantic
pointer that represents both locations of this object.

Query location Use equation 8 with the location for one of
the objects in memory. The correct behaviour is to return a
semantic pointer for the object at that location.

Query region On each trial a circular region is created with
a radius between 1 and 3 units and centered at a random loca-
tion. An SSP is constructed for this region using equation 5.
The inverse of this SSP is convolved with the memory to ob-
tain a semantic pointer representing all objects in the region.
Accuracy is computed by adding the number of objects cor-
rectly detected in the region to the number of objects correctly
not detected from outside the region and then dividing by the
total number of objects in the memory.

Shift single object in group Moving a single object within
a group can be accomplished by adding the object of inter-
est convolved with a vector that is the difference between the
start and end positions, as shown in equation 10. Accuracy
is reported for all objects as well as just the object that was
moved.

∆M = OBJ~∆S. (10)

Shift whole group The memory is convolved with an SSP
that corresponds to a random displacement, which leverages
the property of equation 3. An object query is then performed
for each object in the memory and the result is considered
correct if it moved by the displacement amount. A heatmap
visualizing the result of the two shifting operations is shown
in Figure 3 for a group of three identical objects.

Readout (x,y) location from SSP For the non-neural case
location is extracted from the maximum point in the heatmap.
In spiking neurons a heteroassociative memory is optimized
to map from a 512-dimensional SSP to a 2-D location.

Construct SSP from (x,y) location This can be computed
directly from equation 4. For the experiment using spiking
neurons each axis is first computed separately and then con-
volved together.

All experiments were repeated using networks of leaky
integrate-and-fire (LIF) neurons and the NEF to implement
the necessary transformations. In all trials 50 neurons were
used per dimension to represent the memory and to compute
circular convolutions.

Results
The results of the experiments for each of the desideratum are
shown in Table 2.4 As can be seen from the table, the SSP

4All source code required to reproduce these ex-
periments and generate the figures is available at
https://github.com/ctn-waterloo/cogsci2019-ssp.
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Figure 3: Shifting objects in memory. Left: The original
memory. Middle: Shifting the top left object. Right: Shifting
all three objects.

Desiderata Accuracy
Non-Neural Neural

Query single object 99.1% 95.7%
Query missing object 99.4% 96.7%
Query location 97.3% 94.7%
Query duplicate object 97.4% 95.3%
Query region 90.4% 73.5%
Shift single object in group
(all objects)

75.7% 67.3%

Shift single object in group
(moved object)

100.0% 100.0%

Shift whole group 97.8% 96.7%
Readout (x,y) location from
SSP

100.0% 94.1%

Construct SSP from (x,y) lo-
cation

100.0% 99.0%

Table 2: Experiments for the desiderata for metric representa-
tions of space. Accuracy is calculated using SSP representa-
tions containing 2 to 24 items. When the output is a location,
it is considered correct when the result is within 0.5 units of
the true location.

representation is able to address the desiderata quite well,
both in purely mathematical and neural implementations. The
worst performance is evident in the shifting of a single object
in a group. Specifically, the accuracy of the representation for
the objects that were not shifted decreases, while the accuracy
for the shifted object increases. This is due to normalization
effects making the moved object be re-encoded with a larger
relative magnitude than the rest of the items. Using a scaling
factor proportional to the number of items in the memory mit-
igates this effect (improves accuracy from 75.7% to 97.8%),
but in general the number of items within a memory is not al-
ways known without first retrieving items from memory, and
equation 10 is agnostic to the other contents of the memory.

To better characterize the capacity of a single memory us-
ing this representation we performed queries on memories
with progressively larger numbers of items encoded (see Fig-
ure 4). The shape of the curve is very similar for both loca-
tion and object queries since the decrease in the dot product
is mostly a result of the normalization of the memory to a
unit vector. The standard deviation for the dot product of two
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Figure 4: Memory capacity and accuracy as a function of the
number of items in the SSP for ideal and neural implementa-
tions while varying the dimensionality. Top panels show the
item and location capacity. Bottom panels show the item and
location accuracy.

random vectors in a unit hypersphere is
√

1/D where D is
the dimensionality of the space. The mean is zero, so for
512 dimensions this results in a 3-sigma threshold similar-
ity of 0.133. SSPs that represent coordinates within a finite
domain will span a smaller subspace of the hypersphere, so
their threshold will be a little higher. Specifically, we esti-
mated the threshold by generating 10,000 random SSPs from
a 10×10 2-D domain and computing the dot product between
every pair. The mean is approximately zero, and three stan-
dard deviations is 0.154. Consequently 99.7% of queries will
be above this value for items actually in the memory. The
accuracy plots show the importance of dimensionality on ac-
curacy of decoding memories.

Discussion
We have proposed a novel neural representation, SSPs, for
encoding structured continuous spaces using fractional bind-
ing. We have demonstrated that these representations satisfy
desiderata for representations that are useful for spatial cog-
nition. By implementing these methods at the level of spik-
ing neurons, this work enables future exploration of trade-
offs between neural constraints and performance for tasks of
increasing complexity. In addition, a spiking neural imple-
mentation serves as a prerequisite for constructing dynamical
models of spatial cognition that operate sparsely over time
and in an event-driven manner.

SSPs have many potential applications for modelling cog-
nitive phenomena that involve spatial reasoning over time,
such as path planning and navigation. Objects that a cog-
nitive agent encounters while traversing a space can be stored
in memory in such a way that their relative distances and di-
rections from each other are preserved.

The extension of Vector Symbolic Architectures to contin-

uous representation presented in this work is not limited to
representing physical space. Any continuous dimension over
which concepts may vary (e.g., mass, colour, value, and so
on) can utilize this representation.

While we have explored some of the capacity and accu-
racy limitations of this representation, it is important to note
that the effective capacity can likely be increased by hier-
archically chunking items into groups when encoding them
into the memory by using a similar technique as the method
demonstrated in Crawford et al. (2015).

Areas of future work include exploring the theoretical
foundations of this method to improve our understanding of
its strengths and limitations. As well, there remain many
questions regarding how well a cognitive model using these
representations can scale and how well the behaviour and
neural recordings from such a model match that of animals.
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