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Electroencephalography (EEG) is typically viewed through the lens of spectral analysis.
Recently, multiple lines of evidence have demonstrated that the underlying neuronal
dynamics are characterized by scale-free avalanches. These results suggest that
techniques from statistical physics may be used to analyze EEG signals. We utilized
a publicly available database of fourteen subjects with waking and sleep stage 2 EEG
tracings per subject, and observe that power-law dynamics of critical-state neuronal
avalanches are not sufficient to fully describe essential features of EEG signals. We
hypothesized that this could reflect the phenomenon of discrete scale invariance (DSI) in
EEG large voltage deflections (LVDs) as being more prominent in waking consciousness.
We isolated LVDs, and analyzed logarithmically transformed LVD size probability density
functions (PDF) to assess for DSI. We find evidence of increased DSI in waking,
as opposed to sleep stage 2 consciousness. We also show that the signatures of
DSI are specific for EEG LVDs, and not a general feature of fractal simulations with
similar statistical properties to EEG. Removing only LVDs from waking EEG produces a
reduction in power in the alpha and beta frequency bands. These findings may represent
a new insight into the understanding of the cortical dynamics underlying consciousness.

Keywords: consciousness, neuronal avalanche, scale invariance, discrete scale invariance, EEG, human, sleep,
electroencephalography

INTRODUCTION

Although rarely explicitly stated, the dominant model for the analysis of human EEG signals for
more than 50 years has been spectral analysis, implicitly viewing the time-dependent changes in
cortical local field potentials as a set of dynamic and standing electrical waves originating from
the top 5 mm of the cerebral cortex (Nunez and Srinivasan, 2006; Nunez, 2010). Such techniques
have proven spectacularly successful in both research and clinical medicine (Schwilden, 2006;
Arciniegas, 2011; Schiff et al., 2014).

However, many lines of evidence originating in multielectrode array recordings of rodent
cortex (Plenz and Thiagarajan, 2007; Gireesh and Plenz, 2008; Klaus et al., 2011), extending
through human electrocorticography (Priesemann et al., 2013), electroencephalography (EEG; Poil
et al., 2012; Palva et al., 2013), magnetoencephalography (MEG; Shriki et al., 2013; Yu et al., 2013),
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and magnetic resonance imaging (MRI; Kitzbichler et al., 2009)
have resounding demonstrated that a fundamental organizing
principle of neuronal activity in the cerebral cortex is via dynamic
distributions of scale-free ‘‘neuronal avalanches’’. Power-law-
distributed neuronal avalanches have been shown to demonstrate
many hallmarks of dynamic systems in a critical state (Shriki
et al., 2013; Yu et al., 2013), which simulations have shown
are likely to lead maximal information transmission throughout
the neuronal ensemble (reviewed in Shew and Plenz, 2013). A
priori, such non-stationary dynamical systems would not be best
analyzed via spectral analysis (Weisstein, 2014).

EEG has also been linked to neuronal avalanche activity. The
developmental time course of neuronal avalanche maturation
was studied in a rodent model, where the onset of power-
law distributed neuronal avalanches was correlated with the
maturation of beta and gamma band EEG signals (Gireesh
and Plenz, 2008). Neural network models with avalanche
dynamics can quite readily produce a signal that approximates
human EEG, however with reduced power in the 20–50 Hz
(‘‘beta’’ and ‘‘gamma’’ bands; de Arcangelis and Herrmann,
2012). Many convincing demonstrations of neuronal avalanche
activity in rodents, non-human primates, and humans have been
reported, showing that functional mammalian cortical neuronal
ensembles organize into scale-free, critical-state dynamics, with
a characteristic power law exponent and branch ratio (Shew and
Plenz, 2013; Shriki et al., 2013). Additionally, EEG and MEG
signals themselves have been shown to be highly non-stationary,
albeit amenable to analysis as ‘‘quasi-stationary’’ (Kaplan et al.,
2005).

While compelling, these observations beg the question as to
what role, if any, neuronal avalanches may play in the origin of
conscious mental states, especially given the clear observations
that rodent brain tissue in vitro exhibits similar power law
behavior and critical state dynamics via branch ratio analysis of
avalanches to that of waking human MEG signals (Plenz and
Thiagarajan, 2007; Shriki et al., 2013). In fact, cortical neuronal
avalanche size has been found to follow a power law with an
exponent of −1.5 in rodent cortex cultures in vitro, in vivo
anesthetized rodent cortex, and awake primates (Klaus et al.,
2011). Consciousness is thought to be mediated at the neuronal
level via cortical-thalamic feedback loops capable of global
informational binding without strict localization (Edelman and
Tonioni, 2000; Baars et al., 2013; Boly et al., 2013), and many
investigators have pointed out the theoretical advantages of
critical-state neuronal dynamics in terms of rapid, global cortical
information transfer (Poil et al., 2012; Palva et al., 2013; Shew and
Plenz, 2013). Cortical avalanche dynamics have been explored
using power law techniques in awake vs. sleeping rodents,
and found to have a very similar structure (Ribeiro et al.,
2010). By contrast, avalanche distributions were found to differ
somewhat among sleep stages in a group of human epileptic
patients implanted with hippocampal electrodes (Priesemann
et al., 2013).

Investigators have also studied changes in neuronal
physiology with conscious vs. unconscious mental states
using methods looking for Long Range Temporal Correlation
(LRTC) in neuronal physiology in many different systems (Li

et al., 2008; Nikulin et al., 2012; Blythe et al., 2014). Using
multiscale entropy and detrended fluctuation analysis (DFA) of
renal sympathetic nerve activity, anesthetized rats were found to
have decreased LRTC compared to awake rats (Li et al., 2008).
Using Hilbert transformed alpha and gamma band information,
subsequent application of DFA demonstrated that subjects
with schizophrenia had decreased alpha and beta band LRTC
compared to healthy controls (Nikulin et al., 2012). A further
application of LRTC in EEG demonstrated that an improved
source localization method was able to improve LRTC estimates
using DFA (Blythe et al., 2014).

With an eye to these data, we make the fairly obvious
observation that critical-state neuronal avalanche dynamics are
unable to explain much of the regularity in structure seen in
waking human EEG signals, both when analyzed by spectral
analysis and autocorrelation function (ACF) analysis. Spectral
analysis and ACF analysis yield markedly diferent results for
waking and sleep 2, whereas cortical avalanche dynamics have
been shown to be very similar across different states of cortical
function, both in vivo and in vitro (Plenz and Thiagarajan,
2007; Klaus et al., 2011; Shriki et al., 2013). We utilized a
publicly available EEG dataset, taking advantage of continuous
somnogram information to get waking and sleep stage EEG
tracings from the same individuals, in order to directly compare
changes in EEG large voltage deflection (LVD) dynamics within
subjects. Taking the viewpoint that ensembles of neuronal
avalanches contribute to EEG, we hypothesized that discrete
scale invariance (DSI) might be superimposed on critical-
state dynamics in waking more than in sleep stage 2 LVDs.
This is because log-periodic oscillations in the observables
of natural processes can be caused by a partial breaking
of scale invariance, resulting in a ‘‘periodicity’’ in the data
(cf. Sornette, 1998, 2006; Zhou et al., 2005). This hypothesis
could represent a new insight into our understanding of
the cortical neuronal dynamics of brain function, including
consciousness.

For the following brief description of DSI, we adapt from
several expositions by Sornette (1998, 2006). This report is
too brief to provide a comprehensive review of DSI, for
which we refer the interested reader to Sornette (1998)
and references therein. Power-law-distributed systems are
typically characterized by continuous scale invariance, where an
observable function O(x) is scale invariant under the arbitrary
change x→ λx (where λ→ 1+) when there is a function µ(λ)
such that:

O(x) = µO(λx) (1)

The solution to which is the basic power law formula:

O(x) = Cxa (2)

where C is a constant and

α = −
logµ
log λ

(3)

Studies in complex systems prone to catastrophes, including
financial markets, ruptures of pressurized containers, and
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earthquakes have demonstrated that certain dynamical systems
can exhibit a weaker form of DSI where the control parameter λ

acts as a scaling ratio, and can only exhibit discrete values, e.g.,
λ1,λ2,λ3 . . . ,λn (Sornette, 1998, 2006). As a result, in DSI, the
power law behavior of the underlying system is also controlled
by complex exponents decorating the power laws, leading to
periodicity (Sornette, 1998, 2006):

α = −
logµ
log λ

+ i
2πn
log λ

(4)

where n is an integer and i the imaginary unit. In the case of n = 0,
the imaginary part drops out and continuous scale invariance is
recovered as in (3).

MATERIALS AND METHODS

EEG Data
We utilized a publicly available database of single-channel
EEG recordings from the MIT-BIH polysomnographic
database recorded using the 10–20 EEG reference system
(slpdb; http://www.physionet.org; Ichimaru and Moody, 1999;
Goldberger et al., 2000). We utilized the same dataset previously
reported, and details of the subjects and EEG data utilized
are as described (Zorick and Mandelkern, 2013). Briefly, our
database consists of eight different non-contiguous 1 min EEG
tracings (recorded at 250 Hz) from 14 subjects in both waking
and sleep stage 2 consciousness, one lead per subject. Approval
for this study was provided by the local VA West Los Angeles
Institutional Review Board.

Simulations
Our choice of simulations was motivated by the fact that
these simulations exhibit similar fractal (and in some cases,
multifractal) properties to that of human waking EEG
(Zorick and Mandelkern, 2013). The log normal sigma 0.1
multifractal series (32,768 data points) was downloaded
from http://www.physionet.org/physiotools/multifractal/,
made from the log-normal wavelet cascade algorithm with
parameters v = ln(2)/4 and σ = 0.1 as described (Muzy
et al., 1993). The fractional Brownian motion monofractal
series was generated with Hurst exponent (H) of 0.2 using
the ‘‘dvfBm’’ R package (120,000 data points; version 1.0;
Coeurjolly, 2001). The binomial multifractal series (BMS)
was constructed with 120,000 data points after Kantelhardt
et al. (2002); Zorick and Mandelkern (2013). The BMS is a
series of N = 2nmax numbers with index k = 1, . . ., N, defined
by

xk = an(k−1)(1− a)nmax−n(k−1) (5)

For this series, a is a user-defined parameter which can take
values 0.5 < a < 1. We chose the parameter a = 0.6 such
that the resulting multifractal spectrum roughly matches that
of the human waking EEG samples (Zorick and Mandelkern,
2013). Here n(k) is the sum of digits equal to 1 in the binary
representation of the index k (120,000 data points). As an
example, choosing an index value of k = 13, n(13) = 3, as the binary
representation of the decimal number 13 is 1101.

Spectral Analysis and Autocorrelation
Function
Fast Fourier Transform (FFT) and ACF analysis were performed
on EEG tracings utilizing the R ‘‘spec.pgram’’ and ‘‘acf’’ functions
(RCoreTeam, 2012).

EEG Large Voltage Deflections
Based upon data from MEG showing that only spikes >3 SD
from the mean in size are able to be differentiated from the
Gaussian distribution (Shriki et al., 2013), we identified LVDs
of size >2.5 SD from the mean of the EEG segment, separately
both for positive and negative voltages. The results obtained
are quite similar when identifying LVDs of size >2 SD from
the mean. However, the relatively short length of available EEG
traces and the relatively coarse sampling rate (250 Hz) limited
analysis in our dataset to thresholds <3 SD from the mean, as
thresholds higher than this would not generate enough LVDs
to reliably analyze in subsequent steps. We defined LVD size
s as the sum of voltage readings between times at which the
EEG voltage is zero (zero crossings). We utilized LVD size as
an appropriate measure for further analysis, as it led to robust
PDF estimations given adequate sequence length. Each EEG
segment was analyzed separately for LVD PDF estimation and
periodicity.

Probability Density Function Analysis
We utilized the R ‘‘density’’ function (RCoreTeam, 2012) to
obtain the normalized probability density function (PDF) f(s) for
each LVD segment. Segments with fewer than 50 avalanches per
segment did not produce reliable PDF estimates, so these were
excluded. After PDF estimation, the scale sizes f(s) were natural
log transformed for further analysis.

Lomb-Scargle Periodogram Analysis
To assess for DSI in EEG LVD sizes, we utilized the Lomb-
Scargle nonparametric periodogram method from the log-scale
PDF f(s) of the neuronal avalanches. The Lomb-Scargle method
is motivated as the necessary logarithmic transformation step of
the frequencies presents non-uniformly spaced samples (Zhou
and Sornette, 2002; Zhou et al., 2005; Press et al., 2007). The R
function ‘‘spec.ls’’ in the ‘‘cts’’ package (written by Zhu Wang)
was used, which was designed to follow (Press et al., 2007).
Normalized Lomb-Scargle periodograms were constructed by
dividing by the variance of the frequency data f(s) to permit
statistical testing (Press et al., 2007). We utilized normalized
Lomb-Scargle periodograms to assess for statistical significance
using the probability threshold of p = 0.01, with P(>z) � Me−z ,
where z is the threshold value at the desired significance level,
and M is a maximum estimate of the number of independent
frequencies in the periodogram (which we heuristically estimate
at twice the number of data points in the input series (512 data
points; Press et al., 2007).

Statistical Analysis
All statistical analyses were performed using R (RCoreTeam,
2012) and SPSS (IBM, Chicago, 2014). Statistically significant

Frontiers in Human Neuroscience | www.frontiersin.org 3 December 2015 | Volume 9 | Article 638

http://www.physionet.org
http://www.physionet.org/physiotools/multifractal/
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Zorick and Mandelkern DSI and EEG LVDs

Lomb-Scargle periodogram peaks were broadly defined as
any point with a positive slope immediately preceding, and
a negative slope immediately following. For each segment
we have the number of significant (p < 0.01) Lomb-Scargle
peaks and the area of the Lomb-Scargle periodogram above
the p = 0.01 probability threshold, for both positive- and
negative-LVD periodograms. We analyze these four data
sets separately using a linear mixed model, regressing the
number of peaks (or area) against consciousness condition
(waking or sleep stage 2). The covariance model for
the within-subject measurements is taken as compound
symmetry.

RESULTS

Waking EEG Differs from Sleep Stage 2
EEG by Both Spectral Analysis and
Autocorrelation Function Analysis
Using a dataset with 8 min of EEG from both waking and sleep
stage 2 in 14 individuals, we performed spectral analysis via FFT
andACF analysis on each of eight separate non-contiguous 1min
tracings for each subject (Figure 1). While by no means a novel
finding, we simply make the observation that waking EEG is
readily distinguished from sleep stage 2 EEG via spectral analysis
(Figure 1A). We furthermore note the characteristic oscillatory

patterns in the ACF that differ markedly between waking and
sleep stage 2 EEGs (Figure 1B).

LVD PDFs Appear to have a Similar
Structure for Waking and Sleep Stage 2,
though more Avalanches are found in
Waking
We isolated 2.5 SD LVDs from the 14 subjects’ waking and sleep
stage 2 EEGs, and show a semilog plot of the PDF vs. LVD size
for one subject (Figure 2). Positive (Figure 2A) and negative
(Figure 2B) LVDPDFs appear somewhat similar for both waking
and sleep stage 2.

By contrast, we observe a clear distinction between waking
and sleep stage 2 in terms of both the mean number of LVDs
per segment, and the percentage of segments containing more
than 50 LVDs, both shown by statistical comparison to be highly
significant (Table 1). The number of segments we were able to
utilize per state of consciousness for both positive and negative
LVDs is listed in Table 1.

Waking Differs from Sleep Stage 2 in the
Extent of DSI Seen in the EEG LVD PDF
Fluctuations
LVD PDFs were subjected to log transformation for Lomb-
Scargle periodogram analysis (Figure 3) to look for evidence

FIGURE 1 | Mean spectral analysis and autocorrelation function analysis for waking vs. sleep stage 2 EEG. Fourteen subjects had 8 min each of both
waking and sleep stage 2 EEG data, in non-continuous 1 min segments. (A) Fast Fourier Transform (FFT) was performed on 8 × 1 min segments of both waking
(black) and sleep stage 2 (blue) EEG for each subject, and the spectra were averaged across segments and subjects to generate the mean spectrum shown. Waking
EEG has more power in the alpha (8–13 Hz), beta, and gamma band (∼20–40 Hz) ranges. (B) Autocorrelation function (ACF) with a maximum lag of 500 data points
was performed on 8 × 1 min EEG segments of both waking (black) and sleep stage 2 (blue) EEG for each subject. Note characteristic oscillatory pattern for waking
EEG ACF.
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FIGURE 2 | Typical natural log scale probability distribution estimations for positive and negative LVDs. LVDs were isolated at 2.5 SD from positive (A) and
negative (B) voltage deflections from a 1 min segment of waking (black) and sleep stage 2 (blue) EEG tracings from one subject for illustration purposes.

of DSI in the PDF as a function of LVD size. While the total
mean area of statistically significant periodogram signals does
not differ between waking and sleep 2 positive LVDs, there is a
modest difference in total mean area for negative LVDs (Figure 3;
Table 2). However, for both positive and negative LVDs, there
were clearly more statistically significant periodogram peaks for
waking compared to sleep stage 2 (Figure 3; Table 2).

TABLE 1 | Waking EEGs have more LVDs than sleep 2.

A #LVDs per segment Statistic1 p-value

Pos
Waking 141.5 (55.4) t(111) = 10.75 <0.001
Sleep 2 70.6 (56.7)
Neg
Waking 159.5 (82.4) t(111) = 11.34 <0.001
Sleep 2 60.7 (44.0)

B #Segments with >50 LVDs Statistic2 p-value

Pos
Waking 109 (97%) χ2 = 48.2 <0.001
Sleep 2 57 (51%)
Neg
Waking 106 (95%) χ2 = 55.1 <0.001
Sleep 2 47 (42%)

1
Pairwise t-test;

2
McNemar’s chi-square test; A: numbers are listed as Mean (SD)

of # of LVDs per segment; B: numbers are listed as N (%) out of 112 total segments.

As a further test of this hypothesis, in order to confirm
that this effect persisted for longer segment lengths, we isolated
additional 5 min long continuous EEG tracings from the same
subjects for both waking and sleep stage 2 (all 14 subjects, one
5 min segment for each state of consciousness). These were
then processed using the same techniques of isolation of 2.5
SD LVDs, followed by PDF estimation, log transformation, and
Lomb-Scargle periodogram analysis (Table 3). Given that there
is less data per subject in this analysis, it is unsurprising that
there is now only a strong trend to significance for positive
LVD areas (p = 0.11) and peaks (p = 0.06), with no difference
for negative LVD areas (p = 0.28) and peaks (p = 0.25;
Table 3). However, in all cases the average values for waking
EEGs are greater than those for sleep 2 EEGs, supporting the
patterns seen for the 1 min EEG tracing analysis (Tables 2, 3;
Figure 3).

Simulation Data and LVD DSI
In order to evaluate whether DSI is specific to waking EEG
avalanches, we utilized mono- and multifractal simulation data
which have similar fractal dynamics (as assessed by Hölder
exponents) to waking EEGs (cf. Zorick and Mandelkern, 2013).
Positive 2.5 SD amplitude deflections were isolated from BMS,
fractional Brownian Motion with H = 0.2 (fBM 0.2) and log
normal sigma 0.1 (LNS 0.1) multifractal series, and subjected to
PDF estimation and log transformation followed by normalized
Lomb-Scargle periodogram analysis as for EEGs (Figure 4).
For perspective, these were plotted together with mean waking
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FIGURE 3 | Mean significant Lomb-Scargle normalized periodogram areas from PDF plots of log scale frequencies for positive (A) and negative (B)
LVDs. Data represent mean normalized Lomb-Scargle periodogram plots of power > p = 0.01 across 14 subjects for 8 min of EEG for waking (black) and sleep
stage 2 (blue) LVDs. ∗∗p < 0.001 for mean number of significant peaks for waking vs. sleep 2 by linear mixed effect modeling. #p < 0.05 for total significant area for
waking vs. sleep 2 by linear mixed effect modeling; see Table 2.

and sleep stage 2 positive LVD normalized Lomb-Scargle
periodogram data derived from a natural log scale (Figure 4).
Significance level for normalized Lomb-Scargle periodogram
peaks are shown with a horizontal line for the p = 0.01
significance level (Figure 4). As can be seen, normalized Lomb-
Scargle periodogram data of 2.5 SD positive deflections from
BMS, LNS 0.1, and fBM 0.2 do not approach significance,
whereas the mean waking and sleep stage 2 LVDs clearly exceed
the significance threshold (Figure 4). This indicates that DSI is

TABLE 2 | LS periodogram from PDF statistics.

Pos Mean (SD) F(1,151) p-value

Total area
Waking 3443 (5206) 1.61 0.21
Sleep 2 2379 (5295)
Peaks
Waking 3.91 (3.44) 18.25 <0.0001
Sleep 2 1.82 (2.29)

Neg Mean (SD) F(1,138) p-value

Total area
Waking 2647 (4122) 3.94 0.049
Sleep 2 1306 (2768)
Peaks
Waking 3.87 (3.61) 17 0.0001
Sleep 2 1.91 (2.43)

Pos, positive LVDs; Neg, negative LVDs. Statistics listed are derived from linear

mixed effect modeling.

not a general feature of fractal series withmeanHölder exponents
of∼0.2, but rather specific for EEG-derived LVDs (Figure 4).

Removal of EEG LVDs Reduces Alpha and
Beta Spectral Power
In order to assess whether >2.5 SD EEG LVDs contribute
to the spectral structure of EEG, we removed all EEG values
containing 2.5 SD positive and negative LVDs from the 14

TABLE 3 | LS periodogram from PDF statistics of 5 min long EEG
segments.

Pos Mean (SD) F(1,151) p-value

Total area
Waking 521.3 (1194.9) V = 14a 0.11
Sleep 2 26.7 (94.3)
Peaks
Waking 1.21 (2.04) t = 2.02b 0.06
Sleep 2 0.14 (0.36)

Neg Mean (SD) Statistic p-value

Total area
Waking 527.8 (1327.7) V = 12a 0.28
Sleep 2 16.3 (41.5)
Peaks
Waking 0.86 (1.75) t = 1.2b 0.25
Sleep 2 0.29 (0.61)

Pos, positive LVDs; Neg, negative LVDs. aWilcoxon Signed Rank test statistic;
bPaired t-test statistic.
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FIGURE 4 | Natural log scale normalized Lomb-Scargle periodgrams
for waking, sleep stage 2, log normal sigma 0.1 (LNS 0.1), binomial
multifractal series (BMS; a = 0.6), and fractional Brownian Motion (fBM
0.2) avalanches. Data represent mean natural log of normalized
Lomb-Scargle periodogram plots of 2.5 SD positive LVDs across 14 subjects
for 8 min EEG from waking (black) and sleep stage 2 (blue), along with the
same measures for a single LNS 0.1 multifractal series (gray), BMS (red), and
fBM 0.2 (green). Horizontal dashed line indicates the threshold for statistical
significance of normalized Lomb-Scargle periodogram peaks (p = 0.01) based
upon the number of possible frequencies in the PDF estimation, as defined in
Press et al. (2007).

subjects’ waking consciousness tracings, or about 4.2% of
voltage readings per segment on average (Figure 5). For
comparison, we included both complete waking EEG tracings,
and waking EEG tracings where 5% of the voltage values
were removed randomly from each segment, and waking EEG
tracings where 5% of contiguous EEG data was excised from
the middle of the segment (Figure 5). FFT was performed
on these data, and spectral power in the alpha (8–13 Hz),
beta (16–31 Hz), and gamma (35–45 Hz) frequency bands was
summed for each of eight waking EEG segments from the
14 participants (Figure 5; Table 4). Compared to complete
waking EEG, random deletion of either 5% of the voltage
values or a segment of 5% of contiguous values from the
middle of the EEG tracing had minimal effect on the
resulting mean spectral power in the frequency bands, whereas
removing both positive and negative 2.5 SD LVDs significantly
reduced mean spectral power in the alpha and beta bands
(Figure 5; Table 4). Therefore, 2.5 SD LVDs characterized
by DSI contribute substantially to various spectral features in
EEG.

DISCUSSION

EEG-Derived LVDs Exhibit DSI
It has been well-established that power-law dynamics of cortical
neuronal avalanches differ little between in vitro and in vivo
animal models and human MEG (i.e., Plenz and Thiagarajan,
2007; Ribeiro et al., 2010; Shriki et al., 2013). Given that

FIGURE 5 | Removing all 2.5 SD LVDs (positive and negative) reduces
spectral power in alpha and beta frequency bands in waking EEG. EEG:
Whole EEG segment; Cont-: removing 5% of contiguous EEG values from the
middle of each segment; Rand-: removing 5% of EEG values at random; Avs-:
Removing only 2.5 SD positive and negative LVDs from each segment (4.2%
of points total on average). For waking EEG (14 subjects, 8 × 1 min EEG
each), spectral power via FFT was computed in each segment, and averaged
across all subjects and all segments. For each frequency band, the mean sum
of spectral power is displayed. Alpha: 8–13 Hz; Beta: 16–31 Hz; Gamma:
35–45 Hz. ∗p < 0.01 for repeated measures ANOVA vs. whole EEG segment.

the EEG is likely determined by time-dependent dynamical
neuronal avalanches, we reasoned that such structure in the
waking ACF could indicate the loss of some measure of
scale invariance in the neuronal avalanche distribution. The
central finding of our study is that DSI is characteristic of
the PDFs of EEG-derived LVDs in both waking and sleep
stage 2 consciousness (Figure 3). Therefore, there is likely to
be widespread coordination of the sizes of cortical neuronal
avalanches in cortical brain activity, indicating a characteristic
‘‘lacunarity’’ in the power-law distribution (Sornette, 1998,
2006).

DSI is more Prevalent in Waking than Sleep
Stage 2
Our study showed that the total number of significant Lomb-
Scargle peaks of positive and negative 2.5 SD LVDs derived from
1 min EEG segments was greater in waking than in sleep stage
2, and the total significant Lomb-Scargle power was greater in
negative LVDs for waking than sleep stage 2 (Figure 3, Table 2).
These results strongly suggest that improved EEG datasets would
demonstrate a stronger difference in many measures of DSI
between waking and sleep 2. Given that sleep stage 2 EEG
had less overall variance than waking, fewer segments of sleep
stage 2 consciousness gave >50 LVDs per segment than in
waking (Table 1); for the purposes of this study, these segments
were eliminated from further analysis, but this may have led
to overestimating the level of DSI in sleep stage 2 compared
to waking. While this is not proof, it is a strong inference
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TABLE 4 | Removal of 2.5 SD LVDs reduces alpha and beta spectral power.

Power F(1,209) p-value1

Alpha
EEG 0.36 (0.48)
vs.
Avs- 0.23 (0.34) 10.04 0.0018∗∗

Cont- 0.36 (0.49) 0 1
Rand- 0.36 (0.48) 0 1

Beta
EEG 0.071 (0.083)
vs.
Avs- 0.06 (0.065) 12.3 0.0006∗∗

Cont- 0.071 (0.083) 0.002 0.96
Rand- 0.071 (0.083) 0 1

Gamma
EEG 0.018 (0.034)
vs.
Avs- 0.016 (0.028) 1.13 0.29
Cont- 0.018 (0.034) 0 1
Rand- 0.018 (0.034) 0.004 0.95

1Listed p values uncorrected for multiple comparisons. EEG, entire EEG segment.

Avs-, positive and negative 2.5 SD. LVDs removed. Cont-, 5% contiguous segment

of EEG removed from the middle of segment. Rand-, 5% of values removed

randomly from segment. ∗∗p < 0.01 after Bonferroni correction for multiple

comparisons.

that DSI is more prominent in waking, compared to sleep
stage 2.

Limitations
We utilized a small, publicly-available database with limited
demographic and clinical information, so certainly these results
should be repeated on larger, more complete datasets. While
we demonstrated the presence of DSI in EEG-derived LVDs,
we cannot demonstrate at this time that the degree of DSI can
completely account for regular structures in seen in EEG FFT
or ACF analysis (Figures 1, 5). Our definition of EEG-derived
LVDs (derived from a single lead) lacks a spatial component,
which may limit the applicability of these results to other studies
of neuronal avalanche dynamics. While we have observed a
difference in DSI derived from EEG LVDs between waking
and sleep stage 2, these differences may be characteristic only
of sleep, and not characteristic of other unconscious brain
states (i.e., anesthesia, coma). More definitive evidence that

DSI of EEG-derived LVDs is attenuated in states of reduced
conscious awareness will have to await analysis with better
datasets.

DSI of EEG LVDs: a New Clue in the Study
of Consciousness?
The study of consciousness has long fascinated scientists, and
much has been learned about the phenomenology (Boly et al.,
2013) and neurobiology (Edelman and Tonioni, 2000; Baars
et al., 2013) of conscious mental states. Additionally, much
recent work has gone into the role of LRTC in states of
consciousness and brain pathology (Li et al., 2008; Nikulin
et al., 2012; Blythe et al., 2014). However, a neural dynamical
understanding of consciousness has been elusive. We believe
that the finding that DSI is more prominent in conscious
mental states could be an important observation that will lead
a paradigm shift in the understanding of the neurobiology
of consciousness, as it would be able to link the behavioral
manifestations of consciousness with a specific statistical physical
pattern of neuronal activation via EEG. These provocative
findings, while preliminary, do raise the hypothesis that the
degree of DSI in EEG LVDs is intimately linked to cortical
functioning in consciousness. In this hypothesis, conscious brain
states would be characterized by increased DSI as compared to
unconscious brain states. However, this excitement should be
tempered by the preliminary nature of these findings. Certainly
many more studies in both in vitro and in vivo systems are
needed to confirm and expand upon these observations in
order to have a strong indication that LVD DSI is indeed
important for the understanding of consciousness. Nonetheless,
we find these early results compelling, and worthy of future
investigation.
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