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Results on Finite Time Stability for A Class of Hybrid Systems

Yuchun Li and Ricardo G. Sanfelice

Abstract— This paper introduces notions and tools for finite
time stability of closed sets for a class of hybrid systems. The
proposed finite time stability notion consists of both Lyapunov
stability and finite time convergence. Several sufficient condi-
tions for a closed set to have such a property for a hybrid
system are established. Robustness of finite time stability to
small perturbations is studied by the regularity of the system
data. Relationships between finite time stability and asymptotic
stability of sets are also investigated. Examples illustrating the
results are discussed throughout the paper.

I. INTRODUCTION

In contrast to asymptotic stability, which pertains to

asymptotic convergence to a point (or a set), finite time

stability is a concept that requires convergence of solutions

in finite time. More precisely, a closed set A is finite time

stable if the distance between any maximal solution and the

set has stable behavior and converges to zero in finite time.

For a continuous-time system ẋ = f(x), the uniform version

of such a property for a closed set A can be captured by the

following GKL estimate: every solution t 7→ φ(t) satisfies

|φ(t)|A ≤ β(|φ(0)|A, t) (1)

for each t in the domain of definition of φ, where β is

a class-GKL function1; see, e.g., [1], [2]. The bound (1)

implies that the Euclidean distance between the solution

φ and the set A is upper bounded by a function of their

initial distance and also decreases to zero in finite time.

Over the past few decades, much work has been dedicated to

this concept. In [2], necessary and sufficient conditions for

finite time stability in continuous-time systems are explored

when solutions are unique in forward time. In [3], finite-

time converging controllers were developed for dynamical

systems given in terms of continuous finite time differential

equations. The authors in [4] established several necessary

and sufficient conditions for continuous-time nonautonomous

systems using Lyapunov functions. Finite time stability-like

properties have been used in the design of observers [5],

[6], consensus algorithms for multi-agent systems [7], and

finite-time converging feedback controllers [8].

Unfortunately, the aforementioned finite time stability re-

sults cannot be applied directly to systems with variables
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1A function β : R≥0×R≥0→R≥0 is a generalized KL-function (GKL-
function) if, for each fixed t ≥ 0, the function s → β(s, t) is strictly
increasing and continuous with β(0, t) = 0; for each fixed s ≥ 0, the
function t → β(s, t) is continuous and decreases to zero as t → T for
some T <∞.

that can change continuously and, at times, jump. These

systems, known as hybrid systems, are capable of modeling a

wide range of complex dynamical systems, including robotic,

automotive, and power systems as well as natural processes.

While a set stability theory in terms of Lyapunov functions is

available, see [9], [10], finite time stability for such systems

has not been thoroughly studied. The effort in [11] provides

sufficient conditions for finite time stability of the origin

for impulsive dynamical systems using scalar and vector

Lyapunov functions, but its focus is on sufficient conditions

that pertain to the continuous dynamics of the impulsive

systems; in particular, finite time stability through jumps is

not addressed. It should be noted that converse Lyapunov

theorems and robustness results for finite time stability of

general hybrid systems are also lacking.

Motivated by the applications of finite time stability and

recent advancements in hybrid systems theory, in this paper,

we introduce and study notions of finite time stability for a

class of hybrid systems. In particular, this paper makes the

following contributions to this problem:

1) For a class of hybrid systems in the framework of

[9], we introduce uniform and nonuniform finite time

stability notions for closed sets.

2) For the proposed finite time stability notions, sufficient

Lyapunov-type conditions are presented. In particular,

we provide conditions guaranteeing that maximal solu-

tions to a hybrid system may converge to a finite time

stable closed set via flows, jumps, or both.

3) Conditions assuring robustness to small perturbations

of finite time stability of closed sets are presented.

These results are illustrated in examples throughout the

paper.

The remainder of this paper is organized as follows.

In Section II, some preliminaries on the hybrid systems

framework and nonsmooth Lyapunov functions are briefly

discussed. In Section III, the proposed notion and sufficient

conditions for a set being finite time stable are presented and

illustrated by examples. The results on robustness of finite

time stability are in Section IV. Proofs will be published

elsewhere due to space constraints.

II. PRELIMINARIES

A. Notation

Given a set S ⊂ R
n, the closure of S is the intersection

of all closed sets containing S, denoted by S; conS is

the closure of the convex hull of the set S. Given vectors

ν ∈ R
n, w ∈ R

m, |ν| defines the Euclidean vector norm

|ν| =
√
ν⊤ν, and [ν⊤ w⊤]⊤ is equivalent to (ν, w). Given a



function f : Rm → R
n, its domain of definition is denoted

by dom f , i.e., dom f := {x ∈ R
m : f(x) is defined}.

The range of f is denoted by rge f , i.e., rge f := {f(x) :
x ∈ dom f}. The right limit of the function f is defined

as f+(x) := limν→0+ f(x + ν) if it exists. The function

f is said to belong to C2 if its derivative is continuously

differentiable. Given a point x ∈ R
n and a closed set

A ⊂ R
n, |x|A := infy∈A |x−y|. A function α : R≥0 → R≥0

is a class-K function, also written α ∈ K, if α is zero at zero,

continuous, strictly increasing; it is said to belong to class-

K∞, also written α ∈ K∞, if α ∈ K and is unbounded; α
is positive definite, also written α ∈ PD, if α(s) > 0 for

all s > 0 and α(0) = 0. A function ϕ : R≥0 × R≥0 →
R≥0 is a class-KL function, also written ϕ ∈ KL, if it

is nondecreasing in its first argument, nonincreasing in its

second argument, limr→0+ ϕ(r, s) = 0 for each s ∈ R≥0,

and lims→∞ ϕ(r, s) = 0 for each r ∈ R≥0. Given a matrix

A ∈ R
n×n, eig(A) is the set of eigenvalues of A. Given a

real number x ∈ R, ceil(x) denotes the next larger integer of

x. The set of positive semidefinite matrices with dimension

p× p is denoted by SPp×p.

B. Preliminaries on Hybrid Systems

In this paper, a hybrid system H has data (C,F,D,G)
and is defined by

ż ∈ F (z) z ∈ C,

z+ ∈ G(z) z ∈ D,
(2)

where z ∈ R
n is the state, F : R

n
⇒ R

n defines

the flow map capturing the continuous dynamics and C
defines the flow set on which F is effective. The map

G : Rn
⇒ R

n defines the jump map and models the discrete

behavior, while D defines the jump set, which is the set

of points from where jumps are allowed. A solution φ to

H is parametrized by (t, j) ∈ R≥0 × N, where t denotes

ordinary time and j denotes jump time.2 A solution to H
is called maximal if it cannot be extended, i.e., it is not a

truncated version of another solution. It is called complete

if its domain is unbounded. A solution is Zeno if it is

complete and its domain is bounded in the t direction. A

solution is precompact if it is complete and bounded. The

set SH contains all maximal solutions to H, and the set

SH(ξ) contains all maximal solutions to H from ξ. A hybrid

system H is said to satisfy the hybrid basic conditions if

it satisfies [9, Assumption 6.5]. The definition of uniform

global pre-asymptotic stability (UGpAS) for a set is given in

[9, Definition 3.6].

We refer the reader to [9] for more details on these notions

and the hybrid systems framework.

2A solution to H is defined in [9, Definition 2.6]. The domain dom φ ⊂
R≥0 × N is a hybrid time domain if for every (T, J) ∈ dom φ, the
set dom φ ∩ ([0, T ] × {0, 1, . . . , J}) can be written as the union of sets⋃J

j=0
(Ij × {j}), where Ij := [tj , tj+1] for a time sequence 0 = t0 ≤

t1 ≤ t2 ≤ · · · ≤ tJ+1. The tj ’s with j > 0 define the time instants when
the state of the hybrid system jumps and j counts the number of jumps.

C. Preliminaries on Nonsmooth Lyapunov Functions

For a hybrid system H, let V : O → R be continuous

on O and locally Lipschitz on a neighborhood of C. The

generalized gradient (in the sense of Clarke) of V at z ∈ C,

denoted by ∂V (z), is a closed, convex, and nonempty set

equal to the convex hull of all limits of the sequence ∇V (zi),
where zi is any sequence converging to z while avoiding

an arbitrary set of measure zero containing all the points

at which V is not differentiable (as V is locally Lipschitz,

∇V exists almost everywhere). The (Clarke) generalized

directional derivative of V at z in the direction of v can

be expressed as

V ◦(z, v) = max
ζ∈∂V (z)

〈ζ, v〉. (3)

Then, for any solution t 7→ z(t) to ż ∈ F (z),

d

dt
V (z(t)) ≤ V ◦(z(t), ż(t)) (4)

for almost all t in the domain of definition of z, where
d
dt
V (z(t)) is understood in the standard sense since V is

locally Lipschitz. For more details on generalized gradient,

see, e.g., [12].

To bound the increase of the function V along solutions to

the hybrid system H, following [13], we define the function

uC : O → [−∞,+∞) as

uC(z) :=

{
max

v∈F (z)
max

ζ∈∂V (z)
〈ζ, v〉 z ∈ C

−∞ otherwise
(5)

In particular, for any solution φ to H, and any t where
d
dt
V (φ(t, j)) exists, we have

d

dt
V (φ(t, j)) ≤ uC(φ(t, j)). (6)

Moreover, in order to bound the change in V after jumps,

we define the following quantity:

uD(z) :=

{
max

ζ∈G(z)
V (ζ)− V (z) z ∈ D

−∞ otherwise
(7)

Then, for any solution φ to H and for any (tj+1, j), (tj+1, j+
1) ∈ domφ, it follows that

V (φ(tj+1, j + 1))− V (φ(tj+1, j)) ≤ uD(φ(tj+1, j)). (8)

Note that when F is a single-valued map, uC(z) =
V ◦(z, F (z)) for each z ∈ C. When G is a single-valued

map, uD(z) = V (G(z))− V (z) for each z ∈ D.

III. FINITE TIME STABILITY

A. Finite Time Stability Notions

Inspired by the notion in [2], we introduce the following

finite time stability notion for hybrid systems H.

Definition 3.1: Consider a hybrid system H on R
n, a

closed set A ⊂ R
n, an open neighborhood N of A, and a

function T : N → [0,∞), called the settling-time function.

The closed set A is said to be

1) stable for H if for every ε > 0, there exists δ > 0
such that for every φ ∈ SH(N ) with |φ(0, 0)|A ≤ δ,

we have |φ(t, j)|A ≤ ε for all (t, j) ∈ domφ;



2) uniformly stable for H if there exists a function α ∈
K∞ such that any solution φ ∈ SH(N ) satisfies

|φ(t, j)|A ≤ α(|φ(0, 0)|A) for all (t, j) ∈ domφ;

3) finite time attractive (FTA) for H if for every solution

φ ∈ SH(N ), sup(t,j)∈domφ t ≥ T (φ(0, 0)) and

lim
(t,j)∈domφ:t+jրT (φ(0,0))

|φ(t, j)|A = 0; (9)

4) finite time stable (FTS) for H if it is stable and FTA

for H;

5) uniformly finite time stable (UFTS) if it is uniformly

stable and FTA for H.

The global version of the notions defined in Definition 3.1

can be obtained when the set N is chosen as N = R
n.

Remark 3.2: Note that for a given φ ∈ S(N ) with

φ(0, 0) = ξ, T (ξ) can be decomposed as T (ξ) = T ⋆(ξ) +
J⋆(ξ) for some functions T ⋆ : N → R≥0 and J⋆ : N → N,

with

lim
(t,j)∈domφ:t+j→T⋆(ξ)+J⋆(ξ)

|φ(t, j)|A = 0.

Moreover, (T ⋆(ξ), J⋆(ξ)) ∈ domφ if domφ is a compact

hybrid time domain.

The following examples illustrate the notions in Defini-

tion 3.1.

Example 3.3: Inspired from [14, Example 14], consider

the hybrid system H = (C,F,D,G) with state z = (x, τ) ∈
R× [0, 1] and data given by3

F (z) =

[
−k|x|α sgn(x)

1

]
z ∈ C = R× [0, 1],

G(z) =

[
−x
0

]
z ∈ D = R× {1},

(10)

where α ∈ (0, 1) and k > 0. Each maximal solution φ =
(φx, φτ ) to H from φ(0, 0) = (x0, τ0) satisfies

φ(t, 0) =
(
|x0|1−α − k(1− α)t

) 1
1−α sgn(x0) (11)

for all 0 ≤ t ≤ min
{
1− τ0,

|x0|
1−α

k(1−α)

}
. Let N̄ be such that

|x0|1−α

k(1− α)
+ τ0 − 2 ≤ N̄ ≤ |x0|1−α

k(1− α)
+ τ0 − 1,

where N̄ is an integer. If N̄ ≤ −1, we obtain

|x0|1−α

k(1 − α)
≤ 1− τ0.

From (11), we have that φ(t⋆, 0) = 0 where t⋆ = |x0|
1−α

k(1−α) .

Furthermore, φ(t, j) = 0 for all (t, j) ∈ domφ such that

t ≥ t⋆ according to (10). When N̄ ≥ 0, we have

φ(1−τ0, 1)=−
(
|x0|1−α−k(1−α)(1−τ0)

) 1
1−α sgn(x0). (12)

Moreover, after N̄ + 1 jumps,

|φ(1 − τ0 + N̄, N̄ + 1)|
=

∣∣∣
(
|x0|1−α − k(1− α)(1 − τ0 − N̄)

) 1
1−α

∣∣∣ .
(13)

3The function sgn : R → {−1, 1} is defined as sgn(x) = 1 if x ≥ 0,
and sgn(x) = −1 otherwise.

Therefore, using the property that

1− τ0 + N̄ ≤ |x0|1−α

k(1− α)
≤ 1− τ0 + N̄ + 1,

it implies that φ converges to 0 between the (N̄+1)-th jump

and the (N̄ + 2)-th jump. In fact,

φ

( |x0|1−α

k(1− α)
, N̄ + 1

)
= 0

and φ(t, j) = 0 for all (t, j) ∈ domφ such that t ≥ |x0|
1−α

k(1−α) .

Therefore, the set {0} × [0, 1] is FTA. △
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Fig. 1. The trajectories of the states x1, x2 for two fireflies in (14) and the
Euclidean distance between them. Parameters used are γ = 0.7, x1(0, 0) =
0, x2(0, 0) = 0.3 and ε̃ = 0.1.

Example 3.4: Consider the model of interacting fireflies

in [10, Example 25]. The time of flashes of a firefly is

determined by the firefly’s internal clock. In between flashes,

the internal clock gradually increases at a common rate

γ > 0. When it reaches a certain threshold, a flash occurs

and the clock is instantly reset to 0. In a group of fireflies,

the flash of one firefly affects the internal clock of all other

fireflies. That is, when a firefly witnesses a flash from another

firefly, its internal clock instantly increases to a value closer

to the threshold. To model the internal clock of the i-th firefly

and to simplify the analysis, we consider a normalized clock,

namely, the clock, denoted by xi, takes values in the interval

[0, 1] and flashes occur when xi reaches the threshold 1. In

between flashes, the clock state flows toward the threshold

according to ẋi = γ. The resulting hybrid system H for two

fireflies has state x = (x1, x2) ∈ R
2 and data

F (x) :=

[
γ
γ

]
∀x ∈ C,

G(x) :=

[
g((1 + ε̃)x1)
g((1 + ε̃)x2)

]
∀x ∈ D,

(14)

where C := [0, 1]×[0, 1] and D := {x ∈ C : max{x1, x2} =
1}. The parameter ε > 0 represents the effect on the timer of

a firefly when another firefly’s timer expires, i.e., the timer

increases (1+ ε̃) times its current value. The set-valued map

g is defined as g(s) = s when s < 1, g(s) = 0 when s > 1
and g(s) = {0, 1} when s = 1. Then, the set of interest is

A = {x ∈ C : x1 = x2}, which defines the situation when

both fireflies flash at the same time, namely, synchronized

flashing. It can be shown that the compact set A is finite

time stable for the system H from any open subsets Ñ ⊂



{x ∈ C : |x1 − x2| 6= (1 + ε̃)/(2 + ε̃)}4 such that A ⊂ Ñ .

A rigorous analysis will be carried out in Example 3.11. A

simulation is shown in Figure 1. 5 △
B. Sufficient Conditions for Finite Time Stability

In this section, we propose sufficient conditions that guar-

antee finite time stability of a closed set for a hybrid system

H. The following result characterizes the scenario where,

during flows, the distance of each solution φ ∈ SH(N ) to a

closed set A strictly decreases, where the set N is an open

neighborhood of A.

Theorem 3.5: Consider a hybrid system H on R
n and a

closed set A⊂N ⊂R
n with N open such that G(N ) ⊂ N .

The set A is UFTS for H if there exist a continuous function

V : N →R≥0, locally Lipschitz on an open neighborhood

of C ∩ N , and c1>0, c2∈ [0, 1) such that

1) for every ξ ∈ N ∩ (C ∪ D) \ A, each φ ∈ SH(ξ)
satisfies

V 1−c2(ξ)

c1(1− c2)
≤ sup

(t,j)∈domφ

t;

2) there exist functions α1, α2∈K∞ such that α1(|z|A)≤
V (z)≤α2(|z|A) for all z ∈ (C ∪D∪G(D))∩N and

uC(z) + c1V
c2(z) ≤ 0 ∀z ∈ C ∩ N , (15)

uD(z) ≤ 0 ∀z ∈ D ∩ N , (16)

where the functions uC and uD are defined in (5) and (7),

respectively. Furthermore, for each φ ∈ SH(N ∩ (C ∪D))
with φ(0, 0) = ξ:

a) the settling-time function T : N ∩ (C ∪D) → [0,∞)
satisfies

T (ξ) ≤ T ⋆(ξ) + J⋆(ξ),

where T ⋆(ξ) = V 1−c2 (ξ)
c1(1−c2)

, and J⋆(ξ) is such that

(T ⋆(ξ), J⋆(ξ)) ∈ domφ;

b) |φ(t, j)|A = 0 for all (t, j) ∈ domφ such that t ≥
T ⋆(ξ).

Remark 3.6: Assumption 1) in Theorem 3.5 is satisfied

if the domain of each φ ∈ SH(N ) is unbounded in the t
direction. A result in a similar spirit, but for small ordinary

time asymptotic stability can be found in [15, Proposition

3.2]. Moreover, when the jump set is empty and the flow set

is such that N ⊂ C, H reduces to a continuous-time system

on N , and the result in Theorem 3.5 reduces to a result for

continuous-time systems; see, e.g., [2].

Remark 3.7: From Definition 3.1, if a closed set A is

(uniformly) FTS for H with settling-time function T :
N ∩ (C ∪ D) → R≥0, where N is an open neighborhood

of A, then the set A is also (respectively, uniformly) pre-

asymptotically stable (see [9, Definition 3.6]) for H with

basin of attraction N . However, the reverse implication is

not true.

The following example illustrates Theorem 3.5.

4Solutions from the set {x ∈ C : |x1 − x2| = (1 + ε̃)/(2 + ε̃)} do not
converge to A.

5Code at https://github.com/HybridSystemsLab/FTSFireflies

Example 3.8: Consider the system in Example 3.3, the

function V : R × [0, 1] → R≥0 given by V (z) = 1
2x

2 for

each z ∈ C, and the compact set A = {0}× [0, 1]. We have

that, for each z ∈ C,

〈∇V (z), F (z)〉 = −k|x|1+α = −2
1+α
2 kV (z)

1+α
2 . (17)

Then, condition (15) is satisfied with N = R × R, c1 =
2

1+α
2 k > 0 and c2 = 1+α

2 ∈ (0, 1). Moreover, for all z ∈ D,

V (G(z))− V (z) = 0, (18)

which verifies the condition in (16). Note that the condition

in item 1) follows since every maximal solution to H in (10)

is complete (with its domain of definition unbounded in the t
direction); e.g., by applying [9, Proposition 6.10]. Therefore,

by Theorem 3.5, the set {0} × [0, 1] is UFTS. △
Inspired by Example 3.4, the following result characterizes

the scenario where the distance of a solution φ ∈ SH to a

closed set A strictly decreases after jumps.

Theorem 3.9: Consider a hybrid system H on R
n and a

closed set A ⊂ N ⊂ R
n with N open such that G(N ) ⊂ N .

The set A is UFTS for H if there exist a continuous function

V : N →R≥0, locally Lipschitz on an open neighborhood

of C ∩ N , and c > 0 such that

1) for every ξ ∈ N ∩ (C ∪ D) \ A, each φ ∈ SH(ξ)
satisfies

ceil

(
V (ξ)

c

)
≤ sup

(t,j)∈domφ

j;

2) there exist functions α1, α2 ∈ K∞ with α1(|z|A) ≤
V (z) ≤ α2(|z|A) for each z ∈ (C ∪D ∪G(D)) ∩ N
such that

uC(z) ≤ 0 ∀z ∈ C ∩ N ,
uD(z) ≤ −min {c, V (z)} ∀z ∈ D ∩N .

(19)

Furthermore, for each φ∈SH(N∩(C∪D)) with φ(0, 0)=ξ:

a) the settling-time function T : N ∩ (C ∪D) → [0,∞)
satisfies

T (ξ) ≤ T ⋆(ξ) + J⋆(ξ),

where J⋆(ξ) = ceil
(
V (ξ)
c

)
and T ⋆(ξ) is such that

(T ⋆(ξ), J⋆(ξ))∈dom φ and (T ⋆(ξ), J⋆(ξ)−1)∈domφ;

b) |φ(t, j)|A=0 for all (t, j)∈dom φ such that j≥J⋆(ξ).

A similar result is established when the set A is asymp-

totically stable.

Theorem 3.10: Consider a hybrid system H on R
n and a

closed set A ⊂ N ⊂ R
n with N open such that G(N ) ⊂ N .

The set A is UFTS to H if

1) the set A is uniformly asymptotically stable with basin

of attraction including N ,

2) there exists a neighborhood U ⊂ N of A such that:

2.1) for every φ ∈ SH(U ∩ (C ∪D)), (t, 1) ∈ domφ
for some t ∈ R≥0;

2.2) G((D ∩ U) \ A) ⊂ A.

The following example illustrates Theorem 3.10.

Example 3.11: Consider the system in Example 3.4. To

show the FTS property of the set A, let k = ε̃
2+ε̃

and consider



the function

V (x) := min{|x1−x2|, 1+k−|x1−x2|} ∀x ∈ X , (20)

where

X :=
{
x ∈ R

2 : V (x) < 1+k
2

}
=

{
x ∈ R

2 : |x1 − x2| 6= 1+k
2

}
.

This function V is continuously differentiable on the open

set X \A and it is Lipschitz on X . Following [10, Example

25], let m⋆ = 1+k
2 and m ∈ (0,m⋆), Km = {x ∈ C ∪D :

V (x) ≤ m}, and define Cm = C∩Km and Dm = D∩Km.

By definition of V , it follows that

〈∇V (x), F (x)〉 = 0 ∀x ∈ Cm \ A. (21)

Now consider x ∈ Dm. Since V is symmetric on the

variables x1 and x2, without loss of generality, consider the

case x = (1, x2), where x2 ∈ [0, 1] \ {1/(2 + ε̃)}. Then,

V (x) = min{1− x2, k + x2}, (22)

V (G(x)) = min{g((1+ε̃)x2), 1+k−g((1+ε̃)x2)}. (23)

When g((1 + ε̃)x2) = (1 + ε̃)x2, there are two cases

• if x2<1/(2+ε̃), V (x)=k+x2>(1+ε̃)x2≥V (G(x));
• if x2>1/(2+ε̃), V (x)=1−x2≥V (G(x)).

Therefore, the set A is globally asymptotically stable for the

system Hm = (Cm, F,Dm, G) and using [9, Proposition

6.10], every maximal solution to Hm is complete. Further-

more, given ε̃ > 0, for ε = ε̃/(1 + ε̃) and pick m such that

(A+εB)∩C ⊂ Cm, we have that for all x ∈ Dm∩(A+εB),

G(x) = 0 ∈ A. (24)

Then, it follows from Theorem 3.10 that A is finite time

stable for the system Hm = (Cm, F,Dm, G) with N =
{x ∈ C ∪D : V (x) < m}. △

Next, we establish a result similar to Theorem 3.9 when

maximal solutions converge to a closed set A through jumps.

Proposition 3.12: Consider a hybrid system H =
(C,F,D,G) on R

n and a closed nonempty set A ⊂ R
n.

If a nonempty set Ã is globally finite time attractive for H,

and there exists δ > 0 such that Ã+ δB ⊂ G−1(A) and no

flows from the set (Ã+ δB) \A are possible, then the set A
is globally FTA, where G−1(A) := {z ∈ D : G(z) ⊂ A}.

Remark 3.13: A sufficient condition guaranteeing that no

flows from the set (Ã + δB) \ A are possible is when the

flow set C is closed and F (z) ∩ TC(z) = ∅ for all z ∈
C ∩ ((Ã+ δB) \ A).

The following corollary considers the situation when the

hybrid system H has linear flow and jump dynamics with a

dwell-time behavior.

Corollary 3.14: Consider a hybrid system H with state

z=(x1, x2)∈R
n1×R

n2 and the closed set A={0}×R
n2⊂

R
n1 ×R

n2 . The set A is globally FTA for H if the following

holds:

1) the flow map and jump map are single valued and their

x1 components are linear, i.e., F (z) = (Ax1, f(x2))
for all z ∈ C and G(z) = (Bx1, g(x2)) for all z ∈ D
with A ∈ R

n1×n1 , B ∈ R
n1×n1 , f : Rn2 → R

n2 , and

g : Rn2 → R
n2 ;

2) for each φ ∈ SH, sup(t,j)∈domφ j ≥ n1 + 1, where

n1 is the dimension of x1 component, and the flow

time between every two consecutive jumps after the

first jump are identical, i.e., there exists γ > 0 such

that tj+1− tj = γ for all j ∈ N\ {0} and j ≤ n1+1;

3) the matrix B exp(Aγ) is nilpotent, where A,B come

from item 1) and γ from item 2).

Furthermore, for each φ∈SH(N∩(C∪D)) with φ(0, 0) = ξ:

a) there exists a settling-time function T : R
n1 ×

R
n2 → [0,∞) satisfying T (ξ) ≤ T ⋆(ξ) + J⋆(ξ),

where J⋆(ξ) = n1 + 1 and T ⋆(ξ) is such that

(T ⋆(ξ), J⋆(ξ)) ∈ domφ and (T ⋆(ξ), J⋆(ξ) − 1) ∈
domφ;

b) |φ(t, j)|A=0 for all (t, j)∈dom φ such that j≥J⋆(ξ).

Remark 3.15: The second component x2 of the state in

the system in Corollary 3.14 can be arbitrary, but it would

typically be involved in a mechanism that guarantees that

the property in item 2) holds. Due to this, x2 may include

variables that behave like a timer. If the hybrid system H
with linear flow and jump dynamics in Corollary 3.14 is

such that C = ∅, then, the result in Corollary 3.14 is similar

to the results about deadbeat convergence for discrete-time

systems; see, e.g., [16].

Example 3.16: Consider a hybrid system with state z =
(x1, x2), x1 = (x11, x12) and z ∈ X := R

2 × [0, 1], its data

H = (C, f,D, g) is given by

ż =




0 1 0
−1 0 0
0 0 0


 z+




0
0
−1


 z ∈ C

z+ =

[
G 0
0 0

]
z+



0
0
1


 z ∈ D

(25)

where C = {z ∈ X : x2 ∈ [0, 1]}, D = {z ∈ X : x2 = 0},

and

G =
1

5

[
2 cos(1)− sin(1) − cos(1)− 2 sin(1)
4 cos(1)− 2 sin(1) −2 cos(1)− 4 sin(1)

]
. (26)

Consider the set A = {0} × {0} × [0, 1] and a solution

φ = (φx1 , φx2) ∈ SH. Then, φx1(t, 0) = exp(At)φx1 (0, 0)
for all t ∈ [0, 1− φx2(0, 0)], where

A =

[
0 1
−1 0

]
. (27)

Furthermore, after three jumps,

φx1(3− φx2(0, 0), 3)

= (G exp(A))2G exp(A(1 − φx2(0, 0)))φx1(0, 0).

Note that G exp(A) is a nilpotent matrix, i.e., all eigenvalues

are located at zero. In fact, since

exp(A) =

[
cos(1) sin(1)

− sin(1) cos(1)

]
,

which is an invertible matrix, we have that G =
G0(exp(A))

−1 for any given nilpotent matrix G0. By letting

G0 =

[
2/5 −1/5
4/5 −2/5

]
,



we obtain (26). Then, (G exp(A))2 = 0. Therefore, the

solution φ converges to A within 3 jumps. Furthermore, since

the time between two consecutive jumps is equal to one, A is

uniformly finite time stable to H with T = 3. A simulation
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Fig. 2. The trajectories of components x11, x12 of solutions to (25). Initial
condition is z(0, 0) = (3, 3, 1).

is shown in Figure 2, where finite time convergence is

approached within 2 jumps.6 Note that the trajectory shown

in Figure 2 reaches A after the second jump due to the fact

that G exp(A)G is zero in this example. △

IV. ROBUSTNESS OF FINITE TIME STABILITY

In this section, we explore the robustness of finite time

stability to perturbations. In particular, we consider the

following perturbed system

ż ∈ F (z + d1) + d2 (z + d1) ∈ C
z+ ∈ G(z + d1) + d2 (z + d1) ∈ D

(28)

where d1 denotes the perturbation on the state z and d2
captures the unmodeled dynamics. By defining v = (d1, d2),
the system in (28) can be written as a hybrid system Hv

given by

ż ∈ Fv(z, v) (z, v) ∈ Cv

z+ ∈ Gv(z, v) (z, v) ∈ Dv
(29)

where Cv = {(z, v) : z + d1 ∈ C}, Dv = {(z, v) : z + d1 ∈
D}, Fv(z, v) = F (z+d1)+d2 and Gv(z, v) = G(z+d1)+
d2. Then, a function ρ : Rn → R≥0 is used to define the

ρ-perturbation [9, Definition 6.27] of H in (2), denoted Hρ,

and given by {
ż ∈ Fρ(z) z ∈ Cρ

z+ ∈ Gρ(z) z ∈ Dρ
(30)

where

Cρ = {z ∈ R
n : (z + ρ(z)B) ∩ C 6= ∅},

Fρ(z) = conF ((z + ρ(z)B) ∩C) + ρ(z)B

for all z ∈ R
n,

Dρ = {z ∈ R
n : (z + ρ(z)B) ∩D 6= ∅},

Gρ(z) = {ν ∈ R
n : ν ∈ g+ρ(g)B, g ∈ G((z+ρ(z)B)∩D)}

for all z ∈ R
n. Using results from [9, Lemma 7.20], we have

the following robustness result for perturbations (d1, d2) of

size ρ.

6Code at https://github.com/HybridSystemsLab/FTSNilpotency

Theorem 4.1: Suppose H satisfies the hybrid basic con-

ditions and a compact set A is FTS for H. Then, the

compact set A is semiglobally practically robustly KL pre-

asymptotically stable for H, i.e., for each ε > 0, every

continuous function ρ : Rn → R≥0 that is positive on N \A,

and each compact set K ⊂ N , there exist β ∈ KL and

δ ∈ (0, 1) such that every φ ∈ SHδρ
(K) satisfies

|φ(t, j)|A ≤ β(|φ(0, 0)|A, t+ j) + ε (31)

for all (t, j) ∈ domφ.

V. CONCLUSION

A notion of finite time stability consisting of both stability

and finite time attractivity was proposed for hybrid systems.

Sufficient conditions guaranteeing the new notion were pro-

posed. The conditions conveniently isolate the properties

needed when finite time convergence occurs via flows or

via jumps. Conditions for robustness of the new notion to

perturbations, though generic, rely on the regularity of the

data of the hybrid system so as to preserve the finite time

stability property semiglobally and practically.
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