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1. Introduction
When Voyager 1 and Voyager 2 flew by Enceladus they revealed a surprisingly young and active world (Smith 
et al., 1982). More than two decades later, the Cassini spacecraft discovered water plumes erupting from Ence-
ladus' South Polar Terrain (SPT) (Porco et al., 2006), showed that the SPT radiates ∼10 GW of energy to space 
(Howett et  al., 2011), and demonstrated that Enceladus has a global subsurface ocean (Postberg et al., 2011; 
Thomas et al., 2016).

Explaining the high geological activity of Enceladus remains challenging (Nimmo et  al.,  2018). The moon's 
activity is linked to diurnal tides (e.g., Yoder,  1979). Enceladus is currently in a 2 : 1 mean-motion orbital 
resonance with Dione that forces its orbital eccentricity, causing time-varying tides that periodically deform the 
moon. As Enceladus is not perfectly elastic, part of the tidal energy is transformed into heat, a process known as 
tidal heating. Energy dissipation in Enceladus is ultimately dependent on tidal dissipation in Saturn. Dissipation 
within the planet causes a phase-lag in Saturn's tidal bulge; consequently, rotational energy is transferred to Ence-
ladus and Dione where part of it is dissipated (e.g., Nimmo et al., 2018).

Abstract The inferred density of Enceladus' core, together with evidence of hydrothermal activity within 
the moon, suggests that the core is porous. Tidal dissipation in an unconsolidated core has been proposed 
as the main source of Enceladus' geological activity. However, the tidal response of its core has generally 
been modeled assuming it behaves viscoelastically rather than poroviscoelastically. In this work, we analyze 
the poroviscoelastic response to better constrain the distribution of tidal dissipation within Enceladus. A 
poroviscoelastic body has a different tidal response than a viscoelastic one; pressure within the pores alters 
the stress field and induces a Darcian porous flow. This flow represents an additional pathway for energy 
dissipation. Using Biot's theory of poroviscoelasticity, we develop a new framework to obtain the tidal 
response of a spherically symmetric, self-gravitating moon with porous layers and apply it to Enceladus. 
We show that the boundary conditions at the interface of the core and overlying ocean play a key role in the 
tidal response. The ocean hinders the development of a large-amplitude Darcian flow, making negligible the 
Darcian contribution to the dissipation budget. We therefore infer that Enceladus' core can be the source of its 
geological activity only if it has a low rigidity and a very low viscosity. A future mission to Enceladus could 
test this hypothesis by measuring the phase lags of tidally induced changes of gravitational potential and surface 
displacements.

Plain Language Summary With a young surface, a subsurface water ocean and water plumes rising 
above its limb, tiny Enceladus is one of the most interesting bodies in the Solar System. The moon's geological 
activity is likely powered by Saturnian tides that periodically deform Enceladus, producing internal heat due 
to friction by a process known as tidal dissipation. Data from the Cassini mission shows that Enceladus' core is 
likely a porous medium throughout which water can circulate. We develop a model to study the tidally induced 
deformation of the core and how water flows within it. We find that for tidal heating to explain the moon's 
geological activity, Enceladus' core must be exceptionally weak. We show how a future mission could measure 
whether this is the case or not.
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Astrometric observations of the Saturnian system can be used to constrain the phase-lag of Saturn's tidal bulge 
and estimate the amount of energy dissipated in the moons (Meyer & Wisdom, 2007). They suggest that Ence-
ladus is in orbital and thermal equilibrium (Fuller et al., 2016; Lainey et al., 2012). If the moon is in thermal 
equilibrium, ice-shell thickness estimates combined with measurements of the SPT thermal flux can be used to 
obtain the total energy produced within the moon, which adds up to ∼35 GW (Hemingway et al., 2018). However, 
explaining where and how this much energy is dissipated within Enceladus has been problematic (e.g., Nimmo 
et al., 2018), giving rise to Enceladus' energy puzzle.

Enceladus' ice shell is most likely brittle and conductive, limiting the amount of heat that can be dissipated 
within it to about 1 GW (Beuthe, 2019; Souček et al., 2019). Frictional heating along Enceladus' tiger stripes 
can contribute an additional 0.1–1 GW of energy dissipation (Pleiner Sládková et al., 2021), but, overall, tidal 
heating in the ice shell can only account for roughly 10% of the observed SPT thermal output. Ocean tides have 
been proposed as an additional heating mechanism (Tyler, 2011), but they only become important if Enceladus 
has an orbital obliquity two orders of magnitude higher than the expected value (Chen & Nimmo, 2011); or 
the ocean is unrealistically thin, radially stratified or turbulent (Chen et  al., 2014; Hay & Matsuyama, 2019; 
Matsuyama, 2014; Rekier et al., 2019; Rovira-Navarro et al., 2019, 2020; Tyler, 2020; Wilson & Kerswell, 2018). 
Modeling the core as a purely solid, viscoelastic body, tidal dissipation produced within it can only account for 
the observed thermal output if the core has a viscosity of ηc < 10 13 Pa s, much lower than that characteristic of 
rock. Because of this, substantial tidal dissipation in the core was first disregarded. However, Roberts (2015) and 
Choblet et al. (2017) recently suggested that a low enough viscosity can be attained if Enceladus' core is porous.

An Enceladan porous core is consistent with observations. The density of the core inferred from gravity data, 
2.4 g cm −3 (e.g., Beuthe et al., 2016), is low compared to that of the minerals expected to form the bulk of the core 
(Choblet et al., 2017). Furthermore, the detection of salt-rich particles (Postberg et al., 2009, 2011), silicon-rich 
nanoparticles (Hsu et al., 2015) and molecular hydrogen (Waite et al., 2017) in material ejected by Enceladus' 
plumes suggests that the ocean interacts with the silicate core in hydrothermal systems. Taken together, these 
observations suggest that the moon's core is a porous, water-saturated matrix of silicates or loosely packed rock 
pieces through which water can circulate.

Even though Roberts (2015) and Choblet et al. (2017) attributed Enceladus' activity to a porous core, they did 
not explicitly model how a porous core responds to tides. Instead, they modeled the core as a viscoelastic, rocky 
solid. The response of a porous, permeable, water-saturated body to tidal forces differs from that of a pure solid. 
The deformation of the matrix induces a flow of water through the permeable interior, which in turns affects the 
response of the solid matrix and modifies the dissipation in the solid. Furthermore, the viscous flow of water 
through the pores adds an additional source of dissipation that may not be negligible.

While the tidal response of solid and liquid layers have been thoroughly examined (e.g., Beuthe, 2016; Chen 
et  al.,  2014; Jara-Orué & Vermeersen,  2011; Kaula,  1964; Love,  1911; Matsuyama et  al.,  2018; Renaud & 
Henning, 2018; Rovira-Navarro et al., 2019; Segatz et al., 1988; Tyler, 2008), the tidal response of bodies with 
porous layers has been subjected to much less scrutiny. Wang et al. (1999) estimated energy dissipation due to 
tidally induced flows in Earth's permeable seafloor and showed it to be negligible; Vance et al. (2007) applied 
the same approach to Enceladus' hydrothermal systems and reached a similar conclusion for the icy moon. Liao 
et al. (2020) developed a more complete approach based on Biot's theory of poroviscolasticity (Biot, 1941) and 
argued that the interaction between solid and liquid phases lead to a heat production that can easily exceed 10 GW 
and thus solve Enceladus' energy puzzle.

The model presented by Liao et al. (2020) included several simplifications that require further examination: (a) 
only the tidal response of the core was considered instead of that of the whole moon (core, ocean and ice shell); 
(b) the authors forced the problem via an imposed surface strain derived from viscoelastic models and only 
considered one component of the eccentricity tide instead of forcing the core with the complete tidal potential; 
(c) the authors neglected the effect of self-gravity, the body force arising from the tidal deformation itself; and (d) 
they assumed that the displacement field was irrotational.

In this paper, we relax the assumptions of Liao et al. (2020) and develop a self-consistent model to compute the 
tidal deformation and fluid flow of self-gravitating bodies with porous layers (Section 2) that can be applied to 
Enceladus and other bodies with internal porous layers. The new approach is an extension of the standard theory 
of tides for self-gravitating viscoelastic bodies (Love, 1906; Peltier, 1974; Sabadini et al., 2016; Saito, 1974; 
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Takeuchi et al., 1962) to bodies with poroviscoelastic layers. We apply the 
new model to Enceladus (Section 3), and examine the circumstances under 
which sufficient tidal dissipation can be produced within the core to explain 
the thermal energy radiated by the moon. In Section  4 we conclude that 
Darcy dissipation is likely negligible in Enceladus' thermal budget, leaving a 
low-viscosity, low-rigidity core as the most plausible avenue for substantial 
tidal dissipation in the rocky core. We propose how future missions could test 
this hypothesis.

2. Methods
Our aim is to obtain the linear, periodic, tidal response of a body with internal 
porous layers to a tidal perturbation. We assume the moon is composed of N 
spherically symmetric layers of uniform properties. The boundary between 
a layer i and i + 1 is at radius ri. We consider layers that are either purely 
liquid, purely solid, or a contiguous solid matrix with a permeable network 
of liquid-filled pores. We use a viscoelastic model of the solid. The model 
can include as many layers as required to approximate the interior structure 
of the moon under consideration. Figure 1 shows the interior structure that 
is thought to be valid for Enceladus, consisting of an icy shell, a subsurface 
ocean and a porous core.

Liao et  al.  (2020) applied Biot's theory of poroviscoelasticity to the tidal 
problem. However, the present work is the first derivation of a self-consistent 

model of body tides in porous media; we therefore provide a detailed formulation of the problem, highlight key 
assumptions, and explain how it differs from the standard tidal theory for viscoelastic solids and the work of 
Liao et al. (2020). To this end, we start by presenting the governing equations for porous media in detail, show 
how they reduce to those of a pure solid, and discuss how internal liquid layers are modeled (Section 2.1); then 
we introduce the tidal potential and boundary conditions (Section 2.2); and, finally, sketch the solution method 
(Section 2.3), leaving full details of the mathematical formulation to the Appendices.

2.1. Governing Equations

We use the volume-averaged mass and momentum conservation equations for a parcel of the moon. The parcel 
contains a solid and a liquid phase of densities ρs and ρl and volumes Vs and Vl, respectively. The parcel is at least 
one order of magnitude bigger than the typical grain size. This way, we can use continuum mechanics rather than 
explicitly modeling the microphysical interactions of grains within the parcel. Thus, the variables that follow 
should be understood as averages. The porosity of the parcel is simply defined as the ratio between the liquid (Vl) 
and total (V) volumes:

Φ =
𝑉𝑉𝑙𝑙

𝑉𝑉
. (1)

The mass conservation equations for the liquid and solid phases can be written as (e.g., Ganesan & Poirier, 1990)

𝜕𝜕Φ𝜌𝜌𝑙𝑙

𝜕𝜕𝜕𝜕
+ ∇ ⋅ [Φ𝜌𝜌𝑙𝑙𝒗𝒗𝑙𝑙] = 0, (2a)

𝜕𝜕(1 − Φ)𝜌𝜌𝑠𝑠

𝜕𝜕𝜕𝜕
+ ∇ ⋅ [(1 − Φ)𝜌𝜌𝑠𝑠𝒗𝒗𝑠𝑠] = 0. (2b)

Equations 2a and 2b can be added to obtain

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ ∇ ⋅ [𝜕𝜕𝑙𝑙𝒒𝒒 + 𝜕𝜕𝒗𝒗𝑠𝑠] = 0. (3)

Figure 1. Interior structure of Enceladus consisting of three layers: a porous 
core, a subsurface ocean and an ice shell. The porous core boundary is 
assumed to be permeable.
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ρ is the bulk density, ρ = Φρl + (1 − Φ)ρs; and q is the segregation flux given by the relative velocity of the liquid 
phase with respect to the solid phase, q = Φ(vl − vs). We additionally introduce the variation of fluid content, 
defined as the amount of liquid entering the solid frame per unit of the solid frame (Cheng, 2016),

𝜁𝜁 = Φ∇ ⋅ (𝒖𝒖𝑠𝑠 − 𝒖𝒖𝑙𝑙) , (4)

with u being a displacement vector.

The momentum equation in a frame rotating with the moon’s angular velocity (ω) is given by (McKenzie, 1984)

Φ𝜌𝜌𝑙𝑙

(

D𝒗𝒗𝑙𝑙

D𝑡𝑡
+ 2𝝎𝝎 × 𝒗𝒗𝑙𝑙

)

= ∇ ⋅Φ𝝈𝝈𝑙𝑙 − Φ𝜌𝜌𝑙𝑙∇𝜙𝜙 − 𝑭𝑭 , (5a)

(1 − Φ)𝜌𝜌𝑠𝑠

(

D𝒗𝒗𝑠𝑠

D𝑡𝑡
+ 2𝝎𝝎 × 𝒗𝒗𝑠𝑠

)

= ∇ ⋅ (1 − Φ)𝝈𝝈𝑠𝑠 − (1 − Φ)𝜌𝜌𝑠𝑠∇𝜙𝜙 + 𝑭𝑭 . (5b)

σ is the stress tensor, ϕ is a potential that includes gravitational forces and the centrifugal force. F is an interaction 
force between the solid and liquid phases given by

𝑭𝑭 = Φ
𝜂𝜂𝑙𝑙

𝜅𝜅
𝒒𝒒 − 𝑝𝑝∇Φ. (6)

p is the pore pressure and ηl is the liquid viscosity. κ is the matrix permeability, which depends on the geometry 
of the solid matrix. For a solid matrix made of uniform, spherical grains of size dg, a commonly used expression 
is the Kozeny-Carman law (Carman, 1997; Kaviany, 1995):

𝜅𝜅 =
Φ

3

180(1 − Φ)
2
𝑑𝑑
2

𝑔𝑔 (7)

The inertial terms in the momentum equations (Equation 5) can be neglected. For the solid phase, the high viscos-
ity and the long period of tidal forces as compared to seismic waves imply that the solid is in quasi-equilibrium. 
In a porous medium, the interaction force is generally larger than inertial terms in Equation 5b, which in turn 
results in a small Reynolds number. Summing the two momentum equations, an equation for the bulk or total 
stress is obtained

∇ ⋅ 𝝈𝝈 − 𝜌𝜌∇𝜙𝜙 = 0, (8)

with the total stress tensor being

𝝈𝝈 = (1 − Φ)𝝈𝝈𝑠𝑠 + Φ𝝈𝝈𝑙𝑙 . (9)

We assume that deviatoric stresses in the liquid fluctuate on the pore scale and hence they volume-average to 
zero, except for their contribution to the interaction force (Equation 6). The stress tensor of the liquid phase is thus 
isotropic and given by the pore pressure,

𝝈𝝈𝑙𝑙 = −𝑝𝑝𝑰𝑰 , (10)

with I being the identity matrix. Using the interaction force expression, the liquid phase momentum equation 
reduces to Darcy's law,

𝒒𝒒 = −
𝜅𝜅

𝜂𝜂𝑙𝑙
(∇𝑝𝑝 + 𝜌𝜌𝑙𝑙∇𝜙𝜙) . (11)

Note that if the porosity is zero, we recover the mass and momentum conservation equations for a solid.

A constitutive equation relating the stress tensor and pore pressure to kinematic variables is needed. We define 
the strain tensor as

𝝐𝝐 =
1

2

[

∇𝒖𝒖 + (∇𝒖𝒖)
𝑇𝑇
]

, (12)
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where u is the volume average of the solid displacement (us). The stress and strain tensors can be split into a mean 
and a deviatoric component:

𝝈𝝈 = −𝑃𝑃𝑰𝑰 + 𝝈𝝈
𝑑𝑑
, (13a)

𝝐𝝐 = 𝜖𝜖
𝑀𝑀
𝑰𝑰 + 𝝐𝝐

𝑑𝑑
, (13b)

with ϵ M = tr(ϵ)/3 and P = −tr(σ)/3; tensile stress is taken to be positive.

In a compressible poroviscoelastic solid, deformation is associated with an effective stress σ′ (Biot,  1941; 
Cheng, 2016),

𝝈𝝈
′
= 𝝈𝝈 + 𝛼𝛼𝛼𝛼𝑰𝑰 . (14)

α is Biot's constant, the meaning of which will become evident later. We consider that the material is viscoelas-
tic. Different rheological laws can be used to consider the behavior of a viscoelastic material (e.g., Renaud & 
Henning, 2018). We consider the Maxwell model, in which case effective stress and strain are related as

d𝝈𝝈
′

d𝑡𝑡
+

𝜇𝜇

𝜂𝜂
𝝈𝝈
′
−

1

3

𝜇𝜇

𝜂𝜂
tr
(

𝝈𝝈
′
)

𝑰𝑰 = 2𝜇𝜇
d𝝐𝝐

d𝑡𝑡

(

𝐾𝐾 −
2

3
𝜇𝜇

)

d tr(𝝐𝝐)

d𝑡𝑡
𝑰𝑰 , (15)

or, in terms of total stress,

d𝝈𝝈

d𝑡𝑡
+

𝜇𝜇

𝜂𝜂
𝝈𝝈 −

1

3

𝜇𝜇

𝜂𝜂
tr(𝝈𝝈)𝑰𝑰 = 2𝜇𝜇

d𝝐𝝐

d𝑡𝑡
+

(

𝐾𝐾 −
2

3
𝜇𝜇

)

d tr(𝝐𝝐)

d𝑡𝑡
𝑰𝑰 − 𝛼𝛼

d𝑝𝑝

d𝑡𝑡
𝑰𝑰 . (16)

Here, μ and η are the shear modulus and viscosity of the two-phase aggregate, respectively. The Maxwell model 
does not capture the anelastic behavior of ices and silicates, which can become especially important when the 
forcing period is much smaller than the Maxwell time η/μ (Efroimsky, 2012). It is for this reason that recent 
studies have considered the Andrade rheological model (Andrade & Trouton, 1910) for ices (e.g., Castillo-Rogez 
et al., 2011; Gevorgyan et al., 2020; Rambaux et al., 2010; Rhoden & Walker, 2022; Shoji et al., 2013) and sili-
cates (e.g., Bierson & Nimmo, 2016; Efroimsky, 2012; Renaud & Henning, 2018; Rovira-Navarro et al., 2021; 
Walterová & Běhounková, 2017). In Appendix F we discuss how more complex rheology models can be incor-
porated into our theory and demonstrate this using the Andrade model.

One further constitutive equation relates the pore pressure with the isotropic strain and the variation of fluid 
content as (Cheng, 2016),

𝑝𝑝 =
𝐾𝐾𝑢𝑢 −𝐾𝐾

𝛼𝛼
tr(𝝐𝝐) +

𝐾𝐾𝑢𝑢 −𝐾𝐾

𝛼𝛼2
𝜁𝜁𝜁 (17)

where Ku and K are the bulk modulus of the material in undrained (ζ = 0) and drained (p = 0) conditions, respec-
tively. These are effective properties of the two-phase medium; the drained modulus depends on the mechanical 
properties of the solid matrix; in contrast, the undrained modulus depends on both the properties of the liquid and 
the solid phases. If the material is microscopically homogeneous and isotropic, K, Ku and α can be obtained using 
the bulk modulus of the solid Ks and liquid Kl phases, and the bulk modulus of porosity KΦ, which measures the 
resistance to grain rearrangement, (e.g., Cheng, 2016),

� =
1 + Φ(1 − Φ)2�Φ∕��

1 + (1 − Φ)2�Φ∕��,
 (18a)

� =
(1 − Φ)3�Φ∕��

1 + (1 − Φ)2�Φ∕��
�� = (1 − �)��, (18b)

�� = � +
��(�� −�)2

��(�� −�) + Φ�� (�� −��)
. (18c)

With this definition, it becomes apparent that the Biot parameter α relates the resistance to compression of the 
solid constituent and the porous matrix. A strong porous matrix (e.g., spherical holes) has a small α while an 
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easily deformable matrix (i.e., slit or crack-shaped pore spaces) has an α close to 1. If the solid is much less 
compressible than the frame, KΦ/Ks → 0 and therefore α → 1.

The previous set of constitutive equations define a material that, upon a stress perturbation, exhibits an elastic 
response and viscous creep. Moreover, a perturbation produces a pore pressure field that drives Darcian porous 
flow. Viscous creep and Darcian flow result in energy dissipation. The rate of volumetric tidal dissipation aver-
aged over a tidal cycle due to these two processes is (e.g., Liao et al., 2020)

�̇�𝐸𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 =
1

𝑇𝑇 ∫
𝑇𝑇

0

(

𝝈𝝈 ∶
𝜕𝜕𝝐𝝐

𝜕𝜕𝜕𝜕
+ 𝑝𝑝

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

)

d𝜕𝜕𝑣 (19a)

�̇�𝐸𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 =
1

𝑇𝑇 ∫
𝑇𝑇

0

𝜂𝜂𝑣𝑣

𝜅𝜅
(𝒒𝒒 ⋅ 𝒒𝒒) d𝑡𝑡𝑣 (19b)

respectively.

If the body has an internal liquid layer (i.e., ocean), alternate equations are required for that layer. We assume 
internal liquid layers are inviscid, incompressible and in hydrostatic equilibrium and the radial displacements 
follow equipotential surfaces,

𝒖𝒖 ⋅ 𝒆𝒆𝑟𝑟 = −𝜙𝜙∕𝑔𝑔𝑔 (20)

except at solid-liquid interfaces, where this might be hindered (Jara-Orué & Vermeersen, 2011). er is the radial 
unit vector, and g the gravitational acceleration. Under these assumptions, surface (e.g., Hay & Matsuyama, 2017; 
Matsuyama,  2014; Rovira-Navarro et  al.,  2020; Tyler,  2011) and internal waves (Rekier et  al.,  2019; Rovi-
ra-Navarro et al., 2019) are excluded from the solution.

In all layers, the gravitational potential of the body can be computed using Poisson's equation,

∇
2
𝜙𝜙 = 4𝜋𝜋𝜋𝜋𝜋𝜋𝜋 (21)

2.2. Tidal Forcing and Boundary Conditions

We consider a synchronously rotating moon of radius R with an orbital frequency ω and eccentricity e. As the 
obliquity of Enceladus is expected to be very small (Chen & Nimmo, 2011), we focus on eccentricity tides and 
ignore obliquity tides. The tidal potential at a point with co-latitude and longitude θ, φ located at radial distance 
r from the center of the moon is given by (e.g., Jara-Orué & Vermeersen, 2011; Kaula, 1964)
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+ �
(
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)

.
 (22)

𝐴𝐴 𝐴𝐴
𝑚𝑚

𝑙𝑙
 are normalized, real spherical harmonics of degree l and order m (Equation A2).

To solve the previous set of equations, boundary conditions at the moon's surface are required. The normal and 
shear stress at the surface are zero,

𝜎𝜎𝑟𝑟𝑟𝑟(𝑅𝑅) = 𝜎𝜎𝑟𝑟𝑟𝑟(𝑅𝑅) = 𝜎𝜎𝑟𝑟𝑟𝑟(𝑅𝑅) = 0. (23)

the potential, ϕ, is continuous at the surface but its gradient is not. Using Poisson's equation and applying Gauss' 
theorem for an infinitesimal control volume surrounding the surface layer, we find

∫
𝑆𝑆

∇𝜙𝜙 ⋅ 𝒆𝒆𝑟𝑟𝑑𝑑𝑆𝑆 = 4𝜋𝜋𝜋𝜋 ∫
𝑆𝑆
∫

𝑅𝑅+𝛿𝛿

𝑅𝑅−𝛿𝛿

𝜌𝜌d𝑟𝑟d𝑆𝑆𝑆 (24)
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We note that Liao et al. (2020) considered only the zonal component of the tidal potential (m = 0). Furthermore, 
the tidal forcing was imposed via a prescribed strain at the surface of the core instead of via the tidal potential ϕ T 
as explained here, and the no-stress boundary conditions (Equation 23) were not used. The distinct effect of each 
of these boundary conditions will be explored in Section 3.

Additional boundary conditions must be prescribed at internal boundaries. For the core–ocean and ocean–ice 
shell interfaces, we use the boundary conditions discussed in Jara-Orué and Vermeersen (2011) and given in 
Appendix A. Nevertheless, an additional boundary condition should be provided at the porous layer interface (rp). 
Two different boundary conditions can be considered: no radial Darcy flux

𝒒𝒒 (𝑟𝑟𝑝𝑝) ⋅ 𝒆𝒆𝑟𝑟 = 0, (25)

or force balance and continuity of fluid pressure. In the latter case, the ocean pressure at the core surface is 
balanced by the radial component of the stress tensor and the pore pressure equals the ocean pressure,

𝜎𝜎𝑟𝑟𝑟𝑟 (𝑟𝑟𝑝𝑝) = −𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, 𝑝𝑝 (𝑟𝑟𝑝𝑝) = 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, (26)

which implies p(rp) + σrr(rp) = 0. For Enceladus, we consider that the core–ocean boundary is permeable and thus 
use the second boundary condition.

2.3. Perturbation Theory and Solution Method

To make the analysis tractable, we linearize the equations of motion using perturbation theory. We split the 
density, stress tensor and potential force into a background and a perturbed component. The background compo-
nent corresponds to the pre-stressed, hydrostatic state arising from the self-gravity of the body; the perturbed 
component is the result of the time-dependent tidal potential,

𝝈𝝈 = −𝑃𝑃0𝑰𝑰 + 𝝈𝝈
Δ
, (27a)

𝑝𝑝 = 𝑝𝑝0 + 𝑝𝑝
Δ
, (27b)

𝜌𝜌 = 𝜌𝜌0 + 𝜌𝜌
Δ
, (27c)

𝜌𝜌𝑙𝑙 = 𝜌𝜌𝑙𝑙𝑙0 + 𝜌𝜌
Δ

𝑙𝑙
𝑙 (27d)

𝜙𝜙 = 𝜙𝜙0 + 𝜙𝜙
Δ
. (27e)

Here, ϕ0 is the gravitational potential of the unperturbed body and ϕ Δ includes both the perturbing tidal potential 
and the potential arising from self-gravitation of the perturbed body. In the unperturbed state, Equations 8 and 11 
are given by:

∇𝑃𝑃0 + 𝜌𝜌0∇𝜙𝜙0 = 0, (28a)

∇𝑝𝑝0 + 𝜌𝜌𝑙𝑙𝑙0∇𝜙𝜙0 = 0𝑙 (28b)

with ∇ϕ0 = ger.

Using the previous definitions and linearizing by assuming that the products of perturbation variables are negli-
gible, the momentum equations can be written as:

∇ ⋅ 𝝈𝝈
Δ
− ∇ (𝜌𝜌0𝑔𝑔𝒖𝒖 ⋅ 𝒆𝒆𝑟𝑟) − 𝜌𝜌0∇𝜙𝜙

Δ
− 𝜌𝜌

Δ
𝑔𝑔𝒆𝒆𝑟𝑟 = 0, (29a)

𝒒𝒒 = −
𝜅𝜅

𝜂𝜂𝑙𝑙

(

∇𝑝𝑝
Δ
+ 𝜌𝜌𝑙𝑙𝑙0∇𝜙𝜙

Δ
+ 𝑔𝑔𝜌𝜌

Δ

𝑙𝑙
𝒆𝒆𝑟𝑟

)

. (29b)

The mass conservation equation can be obtained by linearizing Equation  3 and assuming that under small 
displacements the Lagrangian and Eulerian derivatives are approximately equal,

𝜌𝜌
Δ

𝜌𝜌0
= −∇ ⋅ 𝒖𝒖 +

𝜌𝜌𝑙𝑙𝑙0

𝜌𝜌0
𝜁𝜁𝜁 (30)
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Similarly, using the definition of the variation in liquid content (Equation 4), 
and the segregation flux, we obtain:

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= −∇ ⋅ 𝒒𝒒. (31)

Finally, the density change of the liquid phase can be obtained using the defi-
nition of the liquid bulk modulus,

𝜌𝜌
Δ

𝑙𝑙

𝜌𝜌𝑙𝑙𝑙0
=

𝑝𝑝
Δ

𝐾𝐾𝑙𝑙

. (32)

The perturbed gravitational potential is obtained by solving the linearized 
Poisson's equation,

∇
2
𝜙𝜙
Δ
= 4𝜋𝜋𝜋𝜋𝜋𝜋

Δ
. (33)

Equations 29–33 reduce to those used in Liao et al. (2020) if the solid and 
liquid phases are assumed to be massless (ρ0, ρl,0 = 0). If the layer is purely 
solid (Φ = 0, α = 0), we recover the classic equations used for a viscoelastic 
solid (Sabadini et al., 2016).

To obtain the tidal response of the body, the momentum Equation 29, mass 
conservation Equations 30 and 31, and Poisson's Equation 33 together with 
constitutive Equations 16 and 17 should be solved under appropriate bound-
ary conditions (Section 2.2). As the tidal forcing is periodic, we solve the 
equations of motion in the Fourier domain. We assume a solution propor-
tional to exp(iωt) and transform the previous set of equations to the Fourier 
domain. Because of the symmetry of the problem, we solve the previous set 
of equations using spherical harmonics. We obtain stress and strain tensors, 
the pore pressure and Darcy flow, and we compute tidal dissipation in the 
solid and liquid phases using Equation 19. Further details can be found in 
Appendices A–D.

3. Application to Enceladus
To understand how the predictions of this model differ from the previous treatment of Liao et al.  (2020) we 
consider three different cases: (a) Enceladus' core forced via a prescribed surface strain as in Liao et al. (2020); 
(b) Enceladus' core with a free surface and forced with the tidal potential; and (c) a complete model of Enceladus 
consisting of a porous core, an ocean, and an ice shell, forced with the tidal potential. We begin by examining the 
simpler cases 1 and 2 to illustrate the effect of the boundary conditions used by Liao et al. (2020) (Section 3.1) 
and then move to the more complex, multilayered model to show how the ocean and ice shell affect the core's 
tidal response (Section 3.2).

We assume a core density of 2.4  g cm −3 consistent with gravity observations (Beuthe et  al.,  2016). Choblet 
et al.  (2017) obtained a core porosity of 20–30% for realistic core compositions; we use a value of 20%. For 
a consolidated silicate core, the shear modulus is ∼1–10 GPa and the viscosity is ∼10 20 Pa s or higher at low 
homologous temperature. However, if the core is unconsolidated, it can become weaker and the shear modulus 
and viscosity can be orders of magnitude lower than the typical values of silicates (Choblet et al., 2017; Goldreich 
& Sari, 2009; Nimmo et al., 2018). The parameters used are summarized in Table 1.

3.1. Core-Only Model

Liao et al. (2020) studied the response of Enceladus' core to a prescribed radial strain imposed at the core's surface 
(in this section, R = rc). The strain was given by a degree-2 order-0 field of the form: 𝐴𝐴 𝐴𝐴𝑟𝑟𝑟𝑟(𝑅𝑅𝑅 𝑅𝑅𝑅 𝑅𝑅) = 𝐴𝐴(𝑅𝑅)𝑌𝑌

0

2
 . 

Quantity Symbol Value Units

Surface radius R 252.1 km

Mass M 1.08 ⋅ 10 20 kg

Ocean thickness a hocean 38 km

Ice shell thickness a hice 23 km

Average core's density a ρcore 2422 kg m −3

Ocean's density ρocean 1000 kg m −3

Ice viscosity b ηice 1 ⋅ 10 18 Pa s

Ice shear modulus b μice 3.3 GPa

Ice bulk modulus Kice 33 GPa

Core shear modulus μs 0.01–10 GPa

Core solid phase bulk modulus c Ks 10 GPa

Core viscosity ηs 10 10–10 20 Pa s

Biot's constant α 0–1 −

Water viscosity c ηl 1.9 ⋅ 10 −3 Pa s

Water bulk modulus c Kl 2.2 GPa

Core permeability c κ 10 −8 − 10 −4 m 2

Core porosity Φ 0.2 -

Eccentricity e 0.0047 -

Orbital Period T 33 h

 aBeuthe et al. (2016).  bHussmann and Spohn (2004).  cLiao et al. (2020).

Table 1 
Enceladus Physical and Mechanical Properties
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The amplitude of the strain was estimated from the theory of viscoelastic 
tides (Murray & Dermott, 2000). For a homogeneous body in which rigidity 
dominates over self-gravity, the maximum radial strain attained at the poles is 

𝐴𝐴 𝐴𝐴𝑟𝑟𝑟𝑟(𝑅𝑅𝑅 0
◦

) =
9

4𝜋𝜋

𝜔𝜔
2

𝜌𝜌𝜌𝜌
𝑒𝑒
5

3

|𝑘𝑘2| , where 𝐴𝐴 𝐴𝐴2 =
3∕2

1+19�̂�𝜇∕2𝜌𝜌𝜌𝜌𝜌𝜌
 is the gravitational potential 

Love number and 𝐴𝐴 𝐴𝐴𝐴 is the complex rigidity. Additionally, Liao et al. (2020) 
assumed the displacement field to be irrotational, ∇ × u = 0, and considered 
the solid and liquid to be massless (ρ, ρl) = 0. For Case 1 we make the same 
assumptions.

Liao et al. (2020) found that for Biot parameter α → 1, tidal dissipation is 
enhanced as compared to standard viscoelastic models. In what follows, we 
assess whether this still holds when the core is forced via the tidal potential 
rather than via a prescribed surface strain. We first take a fixed core permea-
bility (κ = 10 −8 m 2), and compute tidal dissipation for different values of core 
viscosity and Biot parameter α. Changing α for a given porosity is equivalent 
to changing the ratio between the bulk modulus of porosity and the solid bulk 
modulus (Equation 18a), as α approaches 1 the porous matrix becomes more 
compressible. Afterward, we study the role of the core's permeability. While 
we keep the porosity fixed, we note that variations in porosity between 0.2 
and 0.3 result in changes of α and κ much smaller than the ranges explored 
below (Equations 7 and 18).

Figure 2 shows total tidal dissipation in the core for different values of Biot 
parameter α and core viscosity ηs for cases 1 and 2. For Case 1, we reproduce 
the results of Liao et al. (2020). For α = 0.95 tidal dissipation features two 

peaks, one at a core viscosity of ∼10 11 Pa s, also characteristic of the viscoelastic response, and another one 
attained at higher core viscosity ∼10 15 Pa s, only characteristic of the poroviscoelastic model. Around the two 
peaks, most of the energy dissipation occurs in the solid phase, as shown by the thin lines. As core viscosity 
increases further, dissipation in the solid decreases but the total dissipation remains high due to Darcy dissipation. 
This dissipation occurs in a shallow layer close to the core's surface (Figure 3c), where a strong pressure gradient 
develops that drives flows of up to 2 × 10 −5 m s −1. The second dissipation peak is the result of the compressibility 
of the porous matrix. As α → 1, the drained bulk modulus decreases (Equation 18a), the second peak becomes 
more prominent, and Darcy dissipation also increases.

For Case 2, forcing by the tidal potential, the second dissipation peak is not present (heavy dashed line in 
Figure 2). Tidal dissipation reaches its maximum at the same core viscosity as in the non-porous, viscoelastic 
case and then decreases as viscosity increase until Darcy dissipation becomes dominant. However, as opposed to 
(1), the amount of heat resulting from Darcy dissipation is less sensitive to the porous-matrix compressibility and, 
more importantly, it is severely reduced. The prominent pressure gradients characteristic of Case 1 do not develop 
and the maximum flow velocities attained are reduced by two orders of magnitude. This suggests that explaining 
Enceladus' thermal budget in terms of poroviscoelastic dissipation may be more problematic. However, a highly 
permeable core may mitigate this to some extent.

The permeability dictates how easily water can flow through the core. Figures 3a and 3b show the total amount of 
internal heat production for cases 1 and 2 for different values of core permeability. As before, for both cases we 
observe the high dissipation band characteristic of a viscoelastic core with a low viscosity (∼10 11 Pa s). As core 
viscosity increases Darcian dissipation becomes dominant and the total tidal dissipation becomes independent of 
core viscosity. In this regime, dissipation increases with permeability and the flow velocity is controlled by the 
dimensionless number ΩD = ωR 2ηl /κμ, which can be understood as a ratio between the timescale of Darcy flow 
(R 2ηl /κμ) and of the tidal perturbation (1/ω). When ΩD ≪ 1, high flow velocities are attained (𝐴𝐴 𝒒𝒒 ∝ Ω

−1

𝐷𝐷
 , Equa-

tion 11) which in turn results in high values of tidal dissipation (𝐴𝐴 �̇�𝐸𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∝ Ω
−1

𝐷𝐷
 , Equation 19b). We note that when 

ΩD becomes very high, some of the terms in the equations (e.g., the term A87 in Equation B1) can become very 
large, causing numerical problems. This limits the lowest value of permeability we can attain under our current 
formulation to ∼10 −9 m 2. Nevertheless, we derive an analytical expression for Darcian dissipation in the limit 
of an incompressible porous matrix and liquid (Appendix E) that presents good agreement with the numerical 

Figure 2. Tidal dissipation in Enceladus' core when forced with a prescribed 
surface strain (solid lines) or the tidal potential (dashed line) for different 
values of Biot coefficient α. The thin lines indicate tidal dissipation in the solid 
layer, the gray line shows the amount of Darcy dissipation for incompressible 
solid and liquid phases obtained using Equation E4.
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results (Figure 2) and shows that Darcian dissipation can be expected to further decrease for lower permeability 
values.

While dissipation increases with permeability in both cases, Darcy dissipation in the tidally forced case is lower 
than in the case where a surface strain is prescribed. In Case 1) a high surface stress follows from the imposed 
strain, producing a large gradient in pore pressure and driving high-amplitude Darcian flow; in contrast, in Case 
2 the no-stress boundary conditions prevent this from occurring. To produce an amount of heat similar to that 
observed, a permeability of κ > 10 −5 m 2 is required (Figure 3b). These are high permeability values compared to 
the permeability of Earth's hydrothermal systems, which can reach values of about 10 −8 m 2 (Lauer et al., 2018). 
However, it is possible that Enceladus' core does not resemble such a system, but is instead akin to an unconsoli-
dated rubble pile. In that case, Enceladus' core would be made up of loosely packed material through which water 
can easily circulate.

If Enceladus' core has a porosity of ∼0.2–0.3, a permeability of ∼10 −5 m 2 requires grain sizes of about ∼10–50 cm 
(Equation 7). This blocky structure could be the relic of a violent formation process such as Enceladus forming 
after a series of collisions of a previous generation of moons (Asphaug & Reufer, 2013; Ćuk et al., 2016).

Figure 3. Total tidal dissipation in an Enceladan core with a free surface for various values of core viscosity and 
permeability. In (a) the core is forced via a prescribed strain field of order degree 2 and order 0, in (b) via the tidal potential. 
The contour for 𝐴𝐴 �̇�𝐸 = 10 GW is indicated in both plots. (c) and (d) show tidal dissipation in the liquid and solid phases for a 
meridional cut at longitude 0° for the two points indicated in (a) and (b). Both points have a viscosity of 10 18 Pa s and result in 
the same amount of tidal dissipation (28 GW). For all cases we assume μ = 1 GPa, Ks = 10 GPa, Kl = 2.2 GPa and α = 0.95.
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3.2. Multi-Layered Model

We now move to the more realistic multi-layered model consisting of a porous core, a subsurface ocean and an 
ice shell (Case 3). Although Enceladus' ice shell is of variable thickness (e.g., Beuthe et al., 2016; Hemingway 
& Mittal, 2019; Čadek et al., 2016), we consider an ice shell of constant thickness equal to its average value. For 
the core radius, core density, and ice and ocean thicknesses we use values in agreement with gravity, shape and 
libration data (Beuthe et al., 2016). We keep these values and the rheological properties of the ice constant and 
vary the properties of Enceladus' core (Table 1).

As in the previous cases, we compute the tidal response of the moon for different values of core viscosity and 
permeability. The results are shown in Figure 4; they demonstrate that the presence of an ocean reduces the tidal 
response of the core. As in Cases 1 and 2, we find a peak in tidal dissipation for a core viscosity of ∼10 11 Pa s. 
Around this value, tidal heating is compatible with Enceladus' thermal output. However, the high-dissipation 
band is narrower than for Cases 1 and 2—the presence of an ocean and an ice crust reduces the tidal deformation 
of the core (Beuthe, 2015). Most importantly, the amount of Darcian dissipation is drastically reduced.

As opposed to Case 2, Darcian dissipation is small even for a highly permeable core. The reduction in Darcian 
dissipation is due to the presence of the overlying ocean and ice shell. They impose a non-zero pressure at the 
core surface that largely balances the forcing of the tidal potential. The Darcian flow q is driven by the modified 
pressure p* = p Δ + ρl,0ϕ Δ (Equation 29b). Without an ocean, the pressure at the surface p Δ is 0 and the tidal force 
drives the Darcian flow, p* = ρl,0ϕ Δ. In contrast, if there is an overlying ocean and ice shell, the pressure at the 
core–ocean boundary is not zero. To understand this, consider a core that is just covered by an ocean. Under our 
assumptions, the ocean surface follows the equilibrium tide −ϕ Δ/g while the core–ocean boundary has a radial 
displacement of u. As a result, the pressure perturbation at the core–ocean boundary is p Δ = ρl,0g(−u − ϕ Δ/g). 
This ocean pressure partially compensates the driving tidal potential, leading to a modified pressure p* propor-
tional to the the core radial displacement  −ρl,0gu. Writing this in terms of h2, the radial displacement Love 
number, p* = ρl,0h2ϕ Δ. Because of its rigidity, the radial displacement of the core is generally much smaller 
than the equilibrium tide (h2 ≪ 1), explaining why Darcy dissipation is greatly reduced when considering an 
ocean-covered core.

Figure 4. Total tidal dissipation in Enceladus' core for different values of core viscosity and permeability. We assume 
μ = 1 GPa, Ks = 10 GPa, Kl = 2.2 GPa and α = 0.95. The contour for 𝐴𝐴 �̇�𝐸 = 10 GW is indicated.
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The presence of an ice shell above the ocean inhibits the ocean surface from following the equilibrium tide 
by imposing a pressure load. If the ice shell is completely rigid (no surface displacements), the pressure load 
compensates the equilibrium tide and is given by −ρl,0ϕ Δ. Hence the ice shell imposes a pressure equivalent to 
that imposed by the water column in an ice-free ocean, leading to the same reduction in effective pressure at the 
core. Appendix E provides analytical solutions for an incompressible core with and without a free surface that 
further demonstrate the role of the pressure at the core–ocean boundary.

3.3. An Unconsolidated Core

In light of the reduced tidal dissipation in Enceladus' porous core in comparison to the findings of Liao et al. (2020), 
we reconsider the low viscosity band where dissipation is enhanced. In all cases, we found that tidal dissipation 
peaks at ∼10 11 Pa s. Close to this viscosity value, the amount of heat dissipated within the core is compatible with 
Enceladus' observed thermal output. Such a low viscosity is incompatible with the viscosity characteristics of 
silicates (Roberts & Nimmo, 2008). However, Choblet et al. (2017) proposed that low effective viscosity values 
can be attained if Enceladus' core is unconsolidated. If this is the case, friction between grains can give rise to 
substantial dissipation. We next reconsider this hypothesis and discuss its plausibility and remaining unknowns.

If strains are small, a granular material essentially behaves as a monolith. The grains deform elastically and 
stresses are transmitted at the grain boundaries. Some viscous deformation can also occur mainly due to diffusion 
creep. Under higher strains, grain–grain sliding becomes important and, combined with inter-granular friction, 
it can result in enhanced energy dissipation (Lambe & Whitman, 1969). Instead of using μ and ηs to characterize 
the rheology, a granular material is normally characterized in terms of an effective shear modulus (μeff) and a 
damping coefficient (𝐴𝐴 𝐴𝐴 ) (e.g., Choblet et al., 2017; Seed et al., 1986). These two variables are related to the shear 
modulus and the solid viscosity introduced before as

𝜇𝜇 =
𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒

√

1 − 4𝜐𝜐2
, (34a)

𝜂𝜂𝑠𝑠 =
𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒

2𝜔𝜔𝜔𝜔
. (34b)

Figure 5 shows the amount of tidal dissipation in the core as function of μeff and υ. For υ > 0.1 more than 10 GW 
can be generated in Enceladus' core, provided the shear modulus is low enough. The values of the damping coeffi-
cient and effective shear modulus depend on factors that include the amplitude of the deviatoric strain, the confin-
ing pressure, and the forcing frequency (Faul & Jackson, 2005; Lambe & Whitman, 1969; Seed et al., 1986).

Goldreich and Sari (2009) showed that the effective rigidity of an unconsolidated body is smaller than that of 
a monolith due the concentration of stresses in sharp contact points. They proposed that the shear modulus is 
controlled by the curvature radius at these contact points, which in turn depends on the yield strain of the material 

ϵY, and showed that the effective rigidity of an unconsolidated body can be estimated as 𝐴𝐴 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒 =

(

2𝑔𝑔𝑔𝑔𝑔𝑔

19

𝐴𝐴

𝜖𝜖𝑌𝑌

)1∕2

 , 
with R and g the surface radius and gravity and ρ the bulk density. This expression is consistent with an increase 
in shear modulus with confining pressure seen in the laboratory (Goddard, 1990). Using values representative of 
Enceladus's core (μ ∼ 1 GPa, ϵY = 10 −2), we find μeff ∼ 0.7 GPa—a value much higher than that required to attain 
high values of tidal dissipation for moderate values of damping coefficient υ (Figure 5).

Laboratory experiments can also be used to bound υ and μeff. If the material experiences high deviatoric strains, υ 
increases. Laboratory data shows a pronounced increase of υ for ϵ > 0.01%; υ can reach values higher than 0.15 
for ϵ > 0.1% (e.g., Seed et al., 1986; Rollins et al., 1998). For Enceladus' tidal amplitude, these high strains are 
only attained if the material has a low effective shear modulus (μeff ∼ 10 7 − 10 8 Pa) (Figure 5). The shear modulus 
increases with increasing overburden pressure and decreases with the amplitude of the deviatoric strain. For small 
strains (ϵ < 0.001%), the shear modulus of typical sand mixtures at Enceladus' core pressure (5–50 MPa) is on the 
order of 10 9 Pa (Seed et al., 1986), incompatible with enhanced dissipation. Strains on the order of 0.01%–0.1% 
can reduce the effective shear modulus by around 50% (Rollins et al., 1998; Seed et al., 1986). Furthermore, the 
effective shear modulus is expected to decrease and the damping coefficient to increase at lower forcing frequen-
cies (Faul & Jackson, 2005). Unfortunately, laboratory data is only available for a frequency range (0.01–1 Hz) 
much higher than Enceladus' tidal frequency (∼10 −5 Hz). It remains to be seen if such changes are sufficient to 
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access the high-dissipation region of Figure 5. Laboratory experiments at Enceladus-like conditions (high confin-
ing pressure, low forcing frequency) are required to assess whether Enceladus' core is in the highly deformable 
state required for the generation of the observed thermal activity.

A more direct measurement of Enceladus' core viscosity could be provided by a future Enceladan mission. Due 
to the viscosity of the core and the ice shell, their tidal responses are characterized by phase lags with respect to 
the forcing. The ice-shell and core phase lags affect the gravity field and the surface displacements of the moon 
in different ways. Because the ocean decouples the ice shell from the core, the phase lag of the moon's surface 
displacement is mostly dependent on the viscosity of the ice shell; in contrast, the phase lag of the moon's gravity 
field depends on both the viscosity of the core and the ice shell. A low-viscosity core leads to a large gravity phase 
lag but has a much smaller effect on the surface-displacement phase lag; in contrast, a low viscosity ice shell 
produces phase lags in the gravity field and surface displacements of similar magnitude. Therefore, by measuring 
the difference between gravity and surface displacement phase lags, we can distinguish between a low-viscosity 
and a high-viscosity core. Hussmann et al.  (2016) proposed this strategy to constrain Europa's core viscosity 
and the viscosity of high-pressure ice layers within Ganymede; a similar technique could be used for Enceladus 
(Marusiak et al., 2021).

The gravity and surface-displacement phase lags are given by the phase lags of the gravitational and radial 
displacement Love numbers k2 and h2. Figure 6 shows the difference in gravity and surface-displacement phase 
lags, 𝐴𝐴 𝐴𝐴𝑘𝑘2 − 𝐴𝐴ℎ2 . If the core has a low viscosity, phase-lag differences up to 50° are attained. This also holds if the 
more complex Andrade rheology is considered (Appendix F). The gravity phase lag 𝐴𝐴 𝐴𝐴𝑘𝑘2 could be measured by 

Figure 5. Total tidal dissipation in Enceladus' core for different values of core effective shear modulus and damping 
coefficient. A viscoelastic core and ice shell are assumed. The red lines indicate the maximum deviatoric strain attained 
within the core.
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precise tracking of a single or dual orbiter around Enceladus (e.g., Erma-
kov et  al.,  2021). The surface-displacements phase lag 𝐴𝐴 𝐴𝐴ℎ2 could be meas-
ured using a laser or radar altimeter (Steinbrügge et al., 2015, 2018). Such 
measurement would help to constrain Enceladus' core viscosity and settle the 
long-standing puzzle of where Enceladus' heat is coming from.

4. Conclusions
Several observations suggest that Enceladus' core likely is a porous silicate 
matrix throughout which water can permeate. The tidal response of a porous 
core is expected to be markedly different from that of a non-porous one: the 
presence of pores renders the body more compressible, pressure within the 
pores can alter the stress field, and water can flow within the core adding 
an additional dissipation mechanism. For a non-porous core, tidal dissipa-
tion is only high if the core has a rigidity and a viscosity significantly lower 
than those expected for a monolithic silicate core. Recently, Liao et al. (2020) 
presented an analysis of the tidal response of Enceladus' porous core using 
Biot's theory of poroviscoelasticity and showed that poroviscoelastic effects 
can increase tidal dissipation for core properties compatible with those of 
silicates.

Liao et  al.  (2020) cautioned that their model relies in some assumptions 
that required further scrutiny: they considered the tidal response only of the 
core and ignored the overlying ocean and ice shell, neglected the effects of 
self-gravity, and forced the problem via a prescribed surface strain rather 
than via the tidal potential. In this paper, we extended the model of Liao 
et al. (2020) by combining the theory of poroviscoelasticity (e.g., Biot, 1941; 

Cheng, 2016) with the theory commonly used to obtain the tidal deformation of viscoelastic, self-gravitating 
bodies (e.g., Love, 1906; Sabadini et al., 2016).

With this theory, we assessed the relevance of the assumptions made by Liao et  al.  (2020), and studied the 
subspace of core properties for which tidal heating can explain Enceladus' thermal output. We started by consid-
ering a model of Enceladus' core without an overlying ocean and ice shell and showed that the boundary condi-
tions at the core boundary play a central role. If the core is forced via a prescribed radial strain —as done in Liao 
et al. (2020)— tidal dissipation in both the solid and liquid phases can be orders of magnitude higher compared 
to that given by standard viscoelastic models. However, if a free surface is assumed (no-stress) and the core is 
forced via a tidal body force, dissipation in both liquid and solid phases is reduced. In this scenario, Enceladus' 
thermal output can only be explained by tidal dissipation in the solid phase if the core viscosity is very low 
(ηs ∼ 10 9–10 12 Pa s) compared to that characteristic of silicates or via Darcian dissipation in the fluid if the core is 
highly permeable (κ > 10 −5 m 2). We then considered a more realistic multi-layered model consisting of a porous 
core, a subsurface ocean and an ice-shell. We showed that the presence of a hydrostatic ocean hinders the tidal 
response of the core. More importantly, tidal dissipation due to Darcy flow is severely reduced, making it difficult 
to reconcile tidal dissipation in Enceladus' rocky core with the observed thermal output.

Dissipation within the solid phase can still account for Enceladus' thermal output if the core is weak and has a low 
viscosity. This requirement appears to be incompatible with a monolithic, silicate core. Yet Choblet et al. (2017) 
ascribed the low shear modulus and viscosity to grain–grain friction in a fragmented core akin to a rubble pile. 
While it is true that a low viscosity can arise from this process, it only occurs if the tidal strain is sufficiently large, 
which requires a low shear modulus that is difficult to reconcile with laboratory experiments (Rollins et al., 1998; 
Seed et al., 1986). However, available laboratory data is not representative of Enceladus' core conditions, which 
points to the need for further laboratory work. Alternatively, we show that a future Enceladus mission could 
probe the core's viscosity by measuring the phase lag of tidally induced changes in the gravity field and surface 
deformation.

Other tidally active worlds might also have porous regions. Vigorous tidal heating can partially melt the mantle 
of a planet or a moon forming a porous sublayer filled with magma. Galileo's magnetometer data suggests that 

Figure 6. Difference in gravity and surface-displacements phase lags for 
different values of core and ice shell viscosity. The thick and thin black 
contours show combinations of parameters for which tidal heating is 10 and 
1 GW, respectively. A shear modulus of 1 GPa is assumed for the core; the 
properties of the ice shell are those given in Table 1, except for the viscosity, 
which we vary. Maxwell rheology is assumed for both ice shell and core.
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Io has a partially molten asthenosphere with a melt fraction of 20% (Khurana et al., 2011) (although alterna-
tive explanations have been proposed for the magnetometer data (Blöcker et al., 2018; Roth et al., 2017)). Io is 
the closest example of a magma-rich world (Khurana et al., 2011; Peale et al., 1979; Spencer et al., 2020), but 
extrasolar worlds experiencing higher levels of tidal heating might also be common (e.g., Peters & Turner, 2013; 
Rovira-Navarro et al., 2021). So far, attempts to compute the tidal response of bodies with a partially molten 
asthenosphere have either used the theory of viscoelasticity (e.g., Fischer & Spohn, 1990; Segatz et al., 1988), or 
the Laplace tidal equations commonly employed to model ocean tides (Hay et al., 2020; Tyler et al., 2015). Our 
model opens the door to study the tidal response of these worlds in a new light.

Appendix A: Solution Method
We solve Equations 29–33 in the Fourier domain. Using the spherical symmetry of the problem, we decom-
pose the Fourier-transformed variables using spherical harmonics. Scalar fields such as 𝐴𝐴 �̂�𝜙

Δ , 𝐴𝐴 𝐴𝐴𝐴
Δ are written using 

normalized real spherical harmonics 𝐴𝐴
(

𝑌𝑌
𝑚𝑚

𝑙𝑙

)

 of degree l and order m as

�̂�𝜙
Δ
(𝑟𝑟𝑟 𝑟𝑟𝑟 𝑟𝑟) = �̂�𝜙

Δ

𝑙𝑙𝑙𝑙
(𝑟𝑟)𝑌𝑌

𝑙𝑙

𝑙𝑙
(𝑟𝑟𝑟 𝑟𝑟)𝑟 (A1a)

�̂�𝜌
Δ
(𝑟𝑟𝑟 𝑟𝑟𝑟 𝑟𝑟) = �̂�𝜌

Δ

𝑙𝑙𝑙𝑙
(𝑟𝑟)𝑌𝑌

𝑙𝑙

𝑙𝑙
(𝑟𝑟𝑟 𝑟𝑟)𝑟 (A1b)

with
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𝐴𝐴 𝐴𝐴
𝑚𝑚

𝑙𝑙
 are associated Legendre polynomials of degree l and order m.

The vector fields are similarly expanded using vector spherical harmonics:

�̂�𝒖(𝑟𝑟𝑟 𝑟𝑟𝑟 𝑟𝑟) = �̂�𝑢𝑙𝑙𝑙𝑙(𝑟𝑟)𝑹𝑹
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𝑟 (A3a)
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. (A3b)

𝐴𝐴 𝐴𝐴𝐴𝑙𝑙𝑙𝑙 and 𝐴𝐴 𝐴𝐴𝐴𝑙𝑙𝑙𝑙 , and 𝐴𝐴 𝐴𝐴𝐴𝑙𝑙𝑙𝑙 and 𝐴𝐴 𝐴𝐴𝐴𝑙𝑙𝑙𝑙 are the radial and tangential components of the displacement and flow field, respec-
tively, and 𝐴𝐴 𝑹𝑹

𝑚𝑚

𝑙𝑙
 and 𝐴𝐴 𝑺𝑺

𝑚𝑚

𝑙𝑙
 are vector spherical harmonics,

𝑹𝑹
𝑚𝑚

𝑙𝑙
= 𝑌𝑌
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𝑙𝑙
= ∇𝜃𝜃,𝜃𝜃𝑌𝑌

𝑚𝑚

𝑙𝑙
. (A4)

Using the previous definitions and the constitutive equations, the governing equations can be cast into a first order 
differential equation of the form

d�̂�𝒚

d𝑟𝑟
= 𝑨𝑨�̂�𝒚. (A5)

A is a matrix given in Appendix B and 𝐴𝐴 �̂�𝒚 is a vector containing 8 radial functions:

�̂�𝑦1 = �̂�𝑢𝑙𝑙𝑙𝑙 (A6a)

�̂�𝑦2 = �̂�𝑣𝑙𝑙𝑙𝑙 (A6b)

�̂�𝑦3 = �̂�𝜆𝜆𝜆
𝑉𝑉
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𝐴𝐴 𝐴𝐴𝐴𝑙𝑙𝑙𝑙 is the divergence of the displacement vector given by

𝜖𝜖
𝑉𝑉
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And 𝐴𝐴 𝐴𝐴𝐴 and 𝐴𝐴 �̂�𝜆 are the complex rigidity and complex drained first Lamé parameter,

�̂�𝜇 = 𝜇𝜇
1

1 −
i𝜇𝜇

𝜂𝜂𝜂𝜂

, (A8a)

�̂�𝜆 = 𝐾𝐾 −
2

3
�̂�𝜇𝜇 (A8b)

Note that the radial functions 𝐴𝐴 𝐴𝐴𝐴1−8 are the same radial functions commonly used to solve the viscoelastic tidal 
problem (e.g., Sabadini et al., 2016) except that two extra variables (𝐴𝐴 𝐴𝐴𝐴7 and 𝐴𝐴 𝐴𝐴𝐴8 ) are added, and 𝐴𝐴 𝐴𝐴𝐴6 is modified. 𝐴𝐴 𝐴𝐴𝐴1 
and 𝐴𝐴 𝐴𝐴𝐴2 are respectively the radial and tangential displacements, 𝐴𝐴 𝐴𝐴𝐴3 and 𝐴𝐴 𝐴𝐴𝐴4 correspond to the radial and tangential 
components of the stress tensor (𝐴𝐴 𝐴𝐴

Δ

𝑟𝑟𝑟𝑟 , 𝐴𝐴 𝐴𝐴
Δ

𝜃𝜃𝜃𝜃
 ), 𝐴𝐴 𝐴𝐴𝐴5 is the disturbing potential, and 𝐴𝐴 𝐴𝐴𝐴6 is the so-called potential stress. 𝐴𝐴 𝐴𝐴𝐴7 

is the pore pressure and 𝐴𝐴 𝐴𝐴𝐴8 is proportional to the radial component of Darcy flow.

For incompressible internal liquid layers, it is sufficient to solve Laplace's equation. The problem can be similarly 
cast into a matrix form

d�̂�𝒛

d𝑟𝑟
= 𝑨𝑨𝑜𝑜�̂�𝒛 (A9)

where 𝐴𝐴 𝒛𝒛 = (�̂�𝑧5, �̂�𝑧6)
𝑇𝑇  and z5 and z6 are two radial functions corresponding to the perturbing potential and potential 

stress in the ocean:

�̂�𝑧5 = �̂�𝜙
Δ

𝑙𝑙𝑙𝑙
, (A10a)

�̂�𝑧6 =
d�̂�𝜙

Δ

𝑙𝑙𝑙𝑙

d𝑟𝑟
+

(

𝑙𝑙 + 1

𝑟𝑟
−

4𝜋𝜋𝜋𝜋𝜋𝜋0

𝑔𝑔

)

�̂�𝜙
Δ

𝑙𝑙𝑙𝑙
. (A10b)

Ao follows from Poisson's equation and is given in Appendix B.

The surface boundary conditions, Equations 23–26, should be written in terms of the y functions. The stress 
boundary conditions at the surface are easily obtained. In contrast the boundary condition for the gradient of the 
tidal potential requires some further discussion. Using Equation 30 for the perturbing density, the Fourier-trans-
formed Equation 31 and the divergence theorem, Equation 24 can be written as
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Δ
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𝜔𝜔i
�̂�𝒒 ⋅ 𝒆𝒆𝜕𝜕. (A11)

We split the perturbing potential into the self-gravity and the tidal potential components (ϕ G, ϕ T). In order to 
fulfill Poisson's equation outside of the body (r > R), ϕ G should be of the form

�̂�𝜙
𝐺𝐺
(𝑟𝑟) = 𝜙𝜙
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(𝑅𝑅)

(
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)−𝑙𝑙−1

. (A12)

Furthermore for a tidal forcing of degree l we have
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. (A13)

Plugging Equations A12, A13 into Equation A11, expanding the different fields in spherical harmonics, using 
Darcy's law to compute q (Equation 29b), and taking the limit δ → 0, we get

�̂�𝑦6(𝑅𝑅) =
2𝑙𝑙 + 1

𝑅𝑅
, (A14)

where we have assumed a unit tidal forcing, 𝐴𝐴 𝐴𝐴
𝑇𝑇

𝑙𝑙𝑙𝑙
(𝑅𝑅) = 1 . In a similar way, it can be shown that 𝐴𝐴 𝐴𝐴𝐴6 is continuous at 

solid interfaces. The continuity of 𝐴𝐴 𝐴𝐴𝐴6 and the fact that the boundary condition at the surface for the tidal forcing 
adopts a simple form, make using 𝐴𝐴 𝐴𝐴𝐴6 convenient. Together with the stress boundary condition, the surface bound-
ary conditions are

�̂�𝑦3(𝑅𝑅) = 0, (A15a)

�̂�𝑦4(𝑅𝑅) = 0, (A15b)

�̂�𝑦6(𝑅𝑅) =
2𝑙𝑙 + 1

𝑅𝑅
. (A15c)

As explained in Section 2.2 these boundary conditions are different than those used by Liao et al. (2020). Using 
our notation, Liao et al. (2020) surface boundary conditions translate to:

d�̂�𝑦1(𝑅𝑅)

d𝑟𝑟
= 𝜖𝜖𝑟𝑟𝑟𝑟𝑟0𝑟 (A16a)

d�̂�𝑦2(𝑅𝑅)

d𝑟𝑟
+

�̂�𝑦2(𝑅𝑅) − �̂�𝑦1(𝑅𝑅)

𝑟𝑟
= 0, (A16b)

�̂�𝑦6(𝑅𝑅) = 0. (A16c)

Equation A16a imposes a prescribed strain of amplitude 𝐴𝐴 𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑟0 , Equation A16b imposes an irrotational displace-
ment field, and Equation A16c sets the gravitational tidal perturbation to 0.

The boundary condition at the porous layer interfaces (Equations 25 and 26) are simply:

�̂�𝑦8 = 0, (A17a)

�̂�𝑦3 + �̂�𝑦7 = 0. (A17b)

Continuity of 𝐴𝐴 𝐴𝐴𝐴1 − 𝐴𝐴𝐴6 is assumed at the solid layers boundaries. In case an internal liquid layer is present, addi-
tional boundary conditions are introduced at solid-liquid interfaces: the tangential stress vanishes, the radial 
stress is given by the difference between the radial displacement and an equipotential surface, and the disturbing 
potential is continuous but the potential stress is not (Greff-Lefftz et al., 2000; Jara-Orué & Vermeersen, 2011):

�̂�𝑦4(𝑟𝑟) = 0, (A18a)

�̂�𝑦1(𝑟𝑟) −
�̂�𝑦3(𝑟𝑟)

𝑔𝑔(𝑟𝑟)𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
+

�̂�𝑦5(𝑟𝑟)

𝑔𝑔(𝑟𝑟)
= 0, (A18b)

�̂�𝑦5(𝑟𝑟) − �̂�𝑧5(𝑟𝑟) = 0, (A18c)

�̂�𝑦6(𝑟𝑟) − �̂�𝑧6(𝑟𝑟) − 4𝜋𝜋𝜋𝜋𝜋𝜋𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

(

�̂�𝑦1(𝑟𝑟) +
�̂�𝑧5(𝑟𝑟)

𝑔𝑔(𝑟𝑟)

)

= 0. (A18d)

Starting from the center of the moon or the liquid core-mantle boundary (if the body in question has a liquid core), 
the previous equations are integrated radially using a Runge-Kutta-4 integrator (see Appendix C). Once the radial 
functions are obtained for the different components of the tidal potential, the displacement, flux, stress and strain 
fields can be computed as explained in Appendix D.
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Appendix B: Propagation Matrix
The non-zero elements of the propagation matrix A are:

�11 = −2 �̂
(

2�̂ + �̂
)

�
�51 = −4���0

�12 = �(� + 1) �̂
(

2�̂ + �̂
)

�
�55 = − � + 1

�

�13 =
1

2�̂ + �̂
�56 = 1

�17 =
�

2 ̂̂� + �̂
�58 =

4����,0�
i���

�21 = −1
�

�61 = −
4�(� + 1)��0

�
�22 =

1
�

�62 =
4��(� + 1)��0

�

�24 =
1
�̂

�65 = −
4��(� + 1)��2�,0�

i����2

�31 =
4
�

(

�̂
�
3�̂ + 2�̂
2�̂ + �̂

− �0�
)

+
2����,0

�

(

−�̂
2�̂ + �̂

+ 1
)

�66 =
(� − 1)

�

�32 = −
�(� + 1)

�

(

2�̂
�

2�̂ + 3�̂
2�̂ + �̂

− �0�
)

+
�(� + 1)���,0�

�

(

�̂
2�̂ + �̂

− 1
)

�67 = −
4��(� + 1)���,0�

i����2

�33 =
1

2�̂ + �̂

(

−
4�̂
�

+ ����,0
)

�68 =
4��(� + 1)��,0�

i����

�34 =
�(� + 1)

�
�71 = 4����,0�0

�35 = −�0
� + 1
�

�75 = ��,0
(� + 1)

�
�36 = �0 �76 = −��,0

�37 =
�

2�̂ + �̂

(

−
4�̂
�

+ ��,0��
)

+���,0
(

Φ
��

+ � − Φ
��

)

�77 = −
���,0
��

�38 =
4����,0�0�

i���
�78 = 1 −

4���2�,0�

i���

�41 = −1
�

(

�̂
�

(

2 + 4�̂
2�̂ + �̂

)

− �0�
)

�81 =
2i����
��

(

1 − �̂
2�̂ + �̂

)

�42 =
2�̂
�2

(

�2 + � − 1 +
�(� + 1)�̂
(

2�̂ + �̂
)

)

�82 = −
i�(� + 1)����

��

(

1 − �̂
2�̂ + �̂

)

�43 = −1
�

(

1 −
2�̂

2�̂ + �̂

)

�83 =
i����

�
(

2�̂ + �̂
)

�44 = −3
�

�85 =
�(� + 1)��,0

�2

�45 =
�0
�

�87 =
�(� + 1)

�2
+

i���
�

(

�2

2�̂ + �̂
+ Φ

��
+ � − Φ

��

)

�47 = 2
��̂

�
(

2�̂ + �̂
)

�88 =
−2
�

 (B1)

The propagation matrix of a non-porous incompressible material is recovered if α = 0, Φ = 0, ρl,0 = 0 and 𝐴𝐴 �̂�𝜆 → ∞ . 
Also, by turning-off self-gravity (ρ0, ρl,0 = 0) the equations used in (Liao et al., 2020) are recovered.
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For the ocean propagator matrix Ao, we have (Saito, 1974):

𝐴𝐴𝑜𝑜𝑜11 =
4𝜋𝜋𝜋𝜋𝜋𝜋0

𝑔𝑔
−

𝑙𝑙 + 1

𝑟𝑟

𝐴𝐴𝑜𝑜𝑜12 = 1

𝐴𝐴𝑜𝑜𝑜21 =
2(𝑙𝑙 − 1)

𝑟𝑟

4𝜋𝜋𝜋𝜋𝜋𝜋0

𝑔𝑔

𝐴𝐴𝑜𝑜𝑜22 =
𝑙𝑙 − 1

𝑟𝑟
−

4𝜋𝜋𝜋𝜋𝜋𝜋0

𝑔𝑔

 (B2)

Appendix C: Propagating the Solution
We start integrating Equation A5 at the center of the body (r0 = 0), or at the core-mantle interface (r0 = rc) if the 
moon has a liquid core. In either case, three integration constants 𝐴𝐴 𝑪𝑪0 = (𝐶𝐶1, 𝐶𝐶2, 𝐶𝐶3)

𝑇𝑇  are introduced. The solution 
at r0 is 𝐴𝐴 �̂�𝒚 = 𝑩𝑩0𝑪𝑪0 . B0 is a matrix; if the body does not have a liquid core it is given by

𝑩𝑩0 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0

0 0 0

1 0 0

0 1 0

0 0 0

0 0 1

0 0 0

0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (C1)

otherwise, it is given by (Sabadini et al., 2016)

𝑩𝑩0 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−
3𝑟𝑟

𝑙𝑙−1
𝑐𝑐

4𝜋𝜋𝜋𝜋𝜋𝜋𝑐𝑐

0 1

0 1 0

0 0
4𝜋𝜋𝜋𝜋𝜋𝜋

2
𝑐𝑐
𝑟𝑟𝑐𝑐

3

0 0 0

𝑟𝑟
𝑙𝑙

𝑐𝑐 0 0

2(𝑙𝑙 − 1)𝑟𝑟
𝑙𝑙−1

𝑐𝑐 0 4𝜋𝜋𝜋𝜋𝜋𝜋𝑐𝑐

0 0 0

0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (C2)

with ρc and rc the core density and radius. An integration constant C4 is introduced for the porous layer so that 
y7(rp) = C4. At interfaces between solid layers continuity implies that

�̂�𝒚
𝑖𝑖
(𝑟𝑟𝑖𝑖) = 𝑷𝑷 �̂�𝒚

𝑖𝑖−1
(𝑟𝑟𝑖𝑖) + 𝛿𝛿𝑖𝑖𝑖𝑖𝑩𝑩𝑖𝑖𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝐶𝐶4, (C3)

where δip is the Kronecker delta, the superscript indicates the layer index –p being the index of the porous layer– 
and P and Bporous are two matrices given by
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𝑷𝑷 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (C4)

and

𝑩𝑩𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = (0, 0, 0, 0, 0, 0, 1, 0)
𝑇𝑇
. (C5)

If an internal ocean is present, additional integration constants are introduced. At the ocean base, the solution is 
given by

𝒛𝒛 (𝑟𝑟𝑜𝑜) = 𝑰𝑰𝑰𝑰𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 (C6)

with 𝐴𝐴 𝑪𝑪𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = (𝐶𝐶5, 𝐶𝐶6)
𝑇𝑇  . At the upper-boundary of the ocean (ro), the solution is

𝒚𝒚 (𝑟𝑟𝑜𝑜) = 𝑩𝑩𝑖𝑖𝑖𝑖𝑖𝑖𝑪𝑪 𝑖𝑖𝑖𝑖𝑖𝑖 (C7)

with 𝐴𝐴 𝑪𝑪 𝑖𝑖𝑖𝑖𝑖𝑖 = (𝐶𝐶7, 𝐶𝐶8, 𝐶𝐶9, 𝐶𝐶10)
𝑇𝑇  and Bice being

𝑩𝑩𝑖𝑖𝑖𝑖𝑖𝑖 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 −
1

𝑔𝑔(𝑟𝑟𝑜𝑜)
0

0 1 0 0

𝜌𝜌𝑜𝑜𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝑔𝑔 (𝑟𝑟𝑜𝑜) 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (C8)

Note that y(ro) already satisfies the boundary conditions (Equations A18a and A18b).

The integration constants C1 − C10 are obtained by propagating the solution using Equations A5 and A9 and 
applying the surface boundary conditions (Equations A15, A16 and A17), and, if the moon has an internal liquid 
layer, the boundary conditions at the solid-liquid interfaces (Equation A18).

Appendix D: Building the Solution
Once the radial functions (y, z) are obtained, they can be used to build the complete solution. The displacement 
and flow fields are:

�̂�𝒖(𝑟𝑟𝑟 𝑟𝑟𝑟 𝑟𝑟) = �̂�𝑦1𝑹𝑹
𝑚𝑚

𝑙𝑙
+ �̂�𝑦2𝑺𝑺

𝑚𝑚

𝑙𝑙
𝑟 (D1a)

�̂�𝒒(𝑟𝑟𝑟 𝑟𝑟𝑟 𝑟𝑟) = −
𝜅𝜅

𝜂𝜂𝑓𝑓
�̂�𝑦8𝑹𝑹

𝑚𝑚

𝑙𝑙
−

𝜅𝜅

𝜂𝜂𝑓𝑓

1

𝑟𝑟
(�̂�𝑦7 + 𝜌𝜌𝑓𝑓 �̂�𝑦5)𝑺𝑺

𝑚𝑚

𝑙𝑙
. (D1b)
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Similarly, the different components of the strain tensor are given by:

𝜖𝜖
Δ

𝑟𝑟𝑟𝑟(𝑟𝑟𝑟 𝑟𝑟𝑟 𝑟𝑟) =
d�̂�𝑦1

d𝑟𝑟
𝑌𝑌

𝑚𝑚

𝑙𝑙
𝑟 (D2a)

𝜖𝜖
Δ

𝜃𝜃𝜃𝜃
(𝑟𝑟𝑟 𝜃𝜃𝑟 𝑟𝑟) =

1

𝑟𝑟

{[

�̂�𝑦1 −
𝑙𝑙(𝑙𝑙 + 1)

2
�̂�𝑦2

]

𝑌𝑌
𝑚𝑚

𝑙𝑙
+

�̂�𝑦2

2
𝑋𝑋

𝑚𝑚

𝑙𝑙

}

𝑟 (D2b)

𝜖𝜖
Δ

𝜑𝜑𝜑𝜑(𝑟𝑟𝑟 𝑟𝑟𝑟 𝜑𝜑) =
1

𝑟𝑟

{[

�̂�𝑦1 −
𝑙𝑙(𝑙𝑙 + 1)

2
𝑦𝑦2

]

𝑌𝑌
𝑚𝑚

𝑙𝑙
−

�̂�𝑦2

2
𝑋𝑋

𝑚𝑚

𝑙𝑙

}

𝑟 (D2c)

𝜖𝜖
Δ

𝑟𝑟𝑟𝑟
(𝑟𝑟𝑟 𝑟𝑟𝑟 𝑟𝑟) =

1

2

[

d�̂�𝑦2

d𝑟𝑟
+

�̂�𝑦1 − �̂�𝑦2

𝑟𝑟

]

𝜕𝜕𝜕𝜕
𝑚𝑚

𝑙𝑙

𝜕𝜕𝑟𝑟
𝑟 (D2d)

𝜖𝜖
Δ

𝑟𝑟𝑟𝑟(𝑟𝑟𝑟 𝑟𝑟𝑟 𝑟𝑟) =
1

2

[

d�̂�𝑦2

d𝑟𝑟
+

�̂�𝑦1 − �̂�𝑦2

𝑟𝑟

]

1

sin 𝑟𝑟

𝜕𝜕𝜕𝜕
𝑚𝑚

𝑙𝑙

𝜕𝜕𝑟𝑟
𝑟 (D2e)

𝜖𝜖
Δ

𝜃𝜃𝜃𝜃𝜃
(𝑟𝑟𝜃 𝜃𝜃𝜃 𝜃𝜃) =

�̂�𝑦2

2𝑟𝑟
𝑍𝑍

𝑚𝑚

𝑙𝑙
𝜃 (D2f)

with

𝑋𝑋
𝑚𝑚

𝑙𝑙
= 2

𝜕𝜕
2
𝑌𝑌

𝑚𝑚

𝑙𝑙

𝜕𝜕𝜕𝜕
2

+ 𝑙𝑙(𝑙𝑙 + 1)𝑌𝑌
𝑚𝑚

𝑙𝑙
, (D3a)

𝑍𝑍
𝑚𝑚

𝑙𝑙
= 2

𝜕𝜕

𝜕𝜕𝜕𝜕

(

1

sin 𝜕𝜕

𝜕𝜕𝜕𝜕
𝑚𝑚

𝑙𝑙

𝜕𝜕𝜕𝜕

)

. (D3b)

The different components of the stress tensor are:

�̂�𝜎
Δ

𝑟𝑟𝑟𝑟 = �̂�𝜆𝜆𝜆
𝑉𝑉

𝑙𝑙𝑙𝑙
𝑌𝑌

𝑙𝑙

𝑙𝑙
+ 2�̂�𝜇𝜆𝜆

Δ

𝑟𝑟𝑟𝑟 − 𝛼𝛼�̂�𝛼7𝑌𝑌
𝑙𝑙

𝑙𝑙
, (D4a)

�̂�𝜎
Δ

𝜃𝜃𝜃𝜃
= �̂�𝜆𝜆𝜆

𝑉𝑉

𝑙𝑙𝑙𝑙
𝑌𝑌

𝑙𝑙

𝑙𝑙
+ 2�̂�𝜇𝜆𝜆

Δ

𝜃𝜃𝜃𝜃
− 𝛼𝛼�̂�𝛼7𝑌𝑌

𝑙𝑙

𝑙𝑙
, (D4b)

�̂�𝜎
Δ

𝜑𝜑𝜑𝜑 = �̂�𝜆𝜆𝜆
𝑉𝑉

𝑙𝑙𝑙𝑙
𝑌𝑌

𝑙𝑙

𝑙𝑙
+ 2�̂�𝜇𝜆𝜆

Δ

𝜑𝜑𝜑𝜑 − 𝛼𝛼�̂�𝛼7𝑌𝑌
𝑙𝑙

𝑙𝑙
, (D4c)

�̂�𝜎
Δ

𝑟𝑟𝑟𝑟
= 2�̂�𝜇𝜇𝜇

Δ

𝑟𝑟𝑟𝑟
, (D4d)

�̂�𝜎
Δ

𝑟𝑟𝑟𝑟 = 2�̂�𝜇𝜇𝜇
Δ

𝑟𝑟𝑟𝑟, (D4e)

�̂�𝜎
Δ

𝜃𝜃𝜃𝜃
= 2�̂�𝜇𝜇𝜇

Δ

𝜃𝜃𝜃𝜃
. (D4f)

The variation in fluid content ζ can be obtained using

𝜁𝜁 = 𝛼𝛼𝛼𝛼
𝑉𝑉

𝑙𝑙𝑙𝑙
𝑌𝑌

𝑙𝑙

𝑙𝑙
+

𝛼𝛼
2

𝐾𝐾𝑢𝑢 −𝐾𝐾𝑑𝑑

�̂�𝑝
Δ

𝑙𝑙𝑙𝑙
𝑌𝑌

𝑙𝑙

𝑙𝑙
. (D5)

The approach presented above allows us to obtain the internal response of a moon to a unit tidal forcing of degree 
l and order m 𝐴𝐴

(

𝜙𝜙
𝑇𝑇
= 𝑌𝑌

𝑚𝑚

𝑙𝑙

)

 . For a satellite in an eccentric orbit, the tidal potential contains terms of degree 2 and 
orders 0, −2 and 2 (Equation 22). As the equations are linear, to obtain the tidal response we can compute the 
radial functions for l = 2 and combine them considering the amplitude of the different terms. To obtain the total 
tidal response for a given field 𝐴𝐴 𝐴𝐴𝐴 (e.g., displacement vector, stress tensor, strain tensor, etc.), we use

�̂�𝑎(𝑟𝑟𝑟 𝑟𝑟𝑟 𝑟𝑟) = (𝜔𝜔𝜔𝜔)
2
𝑒𝑒

(

3

√

𝜋𝜋

5
�̂�𝑎20(𝑟𝑟𝑟 𝑟𝑟𝑟 𝑟𝑟) − 3

√

3𝜋𝜋

5
�̂�𝑎22(𝑟𝑟𝑟 𝑟𝑟𝑟 𝑟𝑟) + 4

√

3𝜋𝜋

5
i�̂�𝑎2−2(𝑟𝑟𝑟 𝑟𝑟𝑟 𝑟𝑟)

)

𝑟 (D6)

where alm are the solution for degree l and order m. The solution in the time domain is
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𝑎𝑎(𝑟𝑟𝑟 𝑟𝑟𝑟 𝑟𝑟𝑟 𝑟𝑟) = (𝜔𝜔𝜔𝜔)
2
𝑒𝑒Re

{(

3

√

𝜋𝜋

5
�̂�𝑎20(𝑟𝑟𝑟 𝑟𝑟𝑟 𝑟𝑟) − 3

√

3𝜋𝜋

5
�̂�𝑎22(𝑟𝑟𝑟 𝑟𝑟𝑟 𝑟𝑟) + 4

√

3𝜋𝜋

5
i�̂�𝑎2−2(𝑟𝑟𝑟 𝑟𝑟𝑟 𝑟𝑟)

)

exp(i𝜔𝜔𝑟𝑟)

}

. (D7)

Once the solution is obtained, we can compute the volumetric energy dissipated in the solid,

�̇�𝐸𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = −
𝜔𝜔

2

[

Re
(

�̂�𝝈
Δ
)

∶ Im
(

�̂�𝝐
Δ
)

− Im
(

�̂�𝝈
Δ
)

∶ Re
(

�̂�𝝐
Δ
)

+ Re
(

�̂�𝑝
Δ
)

Im
(

𝜁𝜁
)

− Im
(

�̂�𝑝
Δ
)

Re
(

𝜁𝜁
)]

𝑣 (D8)

and liquid phase,

�̇�𝐸𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 =
1

2

𝜂𝜂𝑣𝑣

𝜅𝜅

(

|𝑣𝑣𝑟𝑟|
2
+ |𝑣𝑣𝜃𝜃|

2
+ |𝑣𝑣𝜑𝜑|

2
)

. (D9)

The total energy dissipated in the solid and the liquid is obtained by numerically integrating Equations D8 and D9. 
Alternatively, it can also be found by plugging the radial functions 𝐴𝐴 (�̂�𝒚) into (Equations D1, D2 and D4) and then 
using Equations D8 and D9. Using that

∫
𝑆𝑆

𝑹𝑹
𝑚𝑚

𝑙𝑙
⋅𝑹𝑹

𝑚𝑚
′

𝑙𝑙′
d𝑆𝑆 = 𝛿𝛿𝑙𝑙𝑙𝑙𝑙′𝛿𝛿𝑚𝑚𝑙𝑚𝑚′ (D10)

and

∫
𝑆𝑆

𝑺𝑺
𝑚𝑚

𝑙𝑙
⋅ 𝑺𝑺

𝑚𝑚
′

𝑙𝑙′
d𝑆𝑆 = 𝑙𝑙(𝑙𝑙 + 1)𝛿𝛿𝑙𝑙𝑙𝑙𝑙′𝛿𝛿𝑚𝑚𝑙𝑚𝑚′ 𝑙 (D11)

we obtain the angular averaged of the volumetric power 𝐴𝐴
(

�̇�𝐸𝑠𝑠

)

 :

�̇�𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑟𝑟) =
Im (�̂�𝜇)𝜔𝜔

8𝜋𝜋𝑟𝑟2
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+𝑠𝑠(𝑠𝑠 + 1)

|

|

|

|

𝑟𝑟�̂�𝑦4

�̂�𝜇

|

|

|

|

2

+ 𝑠𝑠(𝑠𝑠 + 1)(𝑠𝑠(𝑠𝑠 + 1) − 2)|�̂�𝑦2|
2

)

 (D12a)

�̇�𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑟𝑟) =
1

8𝜋𝜋𝑟𝑟2

𝜅𝜅

𝜂𝜂𝑠𝑠

(

𝑟𝑟
2
|�̂�𝑦8|

2
+ 𝑠𝑠(𝑠𝑠 + 1)|�̂�𝑦7 + 𝜌𝜌𝑠𝑠𝑠0�̂�𝑦5|

2
)

 (D12b)

The first expression is equivalent to that obtained by Beuthe (2013) and Tobie et al. (2005) for a viscoelastic body. 
The total tidal dissipation 𝐴𝐴 �̇�𝐸𝑡𝑡 can then be obtained by performing the radial integral of (Equation D12):

�̇�𝐸𝑡𝑡 = 4𝜋𝜋 ∫
𝑅𝑅

0

𝑟𝑟
2
�̇�𝐸𝑠𝑠d𝑟𝑟𝑟 (D13)

For a tidal forcing of the type given by Equation 22, we find

�̇�𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
336𝜋𝜋2

5
𝜔𝜔

5
𝑅𝑅

4
𝑒𝑒
2 ∫

𝑅𝑅

0

𝑟𝑟
2
�̇�𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡d𝑟𝑟𝑟 (D14a)

�̇�𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
336𝜋𝜋2

5

𝜔𝜔
4
𝑅𝑅

4
𝜅𝜅

𝜂𝜂𝑡𝑡
𝑒𝑒
2 ∫

𝑅𝑅

0

𝑟𝑟
2
�̇�𝐸𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡d𝑟𝑟𝑟 (D14b)

Appendix E: Incompressible Core Solution
If we consider that both the liquid and the porous matrix are incompressible (Ks → ∞, Kl → ∞), we can obtain an 
analytical expression for the flow field in the porous layer. Mass conservation implies that ζ → 0 (Equation 31), 
and the pore pressure field can simply be obtained by solving the Laplace equation (Equation 29)

∇
2
(

𝑝𝑝
Δ
+ 𝜌𝜌𝑙𝑙𝑙0𝜙𝜙

Δ
)

= ∇
2
𝑝𝑝
∗
= 0. (E1)

with p* a modified pressure. Solving Laplace's equation in spherical coordinates we find

𝑝𝑝
∗
=
(

𝐴𝐴𝑙𝑙𝑟𝑟
𝑙𝑙
+ 𝐵𝐵𝑙𝑙𝑟𝑟

−𝑙𝑙−1
)

𝑌𝑌
𝑚𝑚

𝑙𝑙
(𝜃𝜃𝜃 𝜃𝜃)𝜃 (E2)
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where 𝐴𝐴 𝐴𝐴
𝑚𝑚

𝑙𝑙
 is a spherical harmonic of degree l and order m and Al and Bl are two integration constants to be found 

using the boundary conditions. The solution should be regular at r = 0, which implies that Bl = 0. Additionally, 
at the boundary we impose the boundary conditions given by Equation 26 to find Al. If there is no ocean, we have 
p*(r1) = ρl,0ϕ Δ(r1); in contrast, if there is an ocean, we have p*(r1) = Pocean(r1) + ρl,0ϕ Δ(r1). The pressure at the 
core-ocean boundary is given by the difference between the equipotential surface − ϕ Δ/g and the radial displace-
ment at the core ocean-boundary ur(r1) (Equation A18). Using these boundary conditions, we can obtain Al for a 
core with a free surface or one overlaid by an ocean:

𝐴𝐴
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑙𝑙
=

𝜌𝜌𝑙𝑙𝑙0𝜙𝜙
Δ

𝑙𝑙
(𝑓𝑓1)

𝑓𝑓
𝑙𝑙

1

; 𝐴𝐴
𝑜𝑜𝑜𝑜𝑓𝑓𝑜𝑜𝑜𝑜

𝑙𝑙
= −ℎ𝑙𝑙 (𝑓𝑓1)

𝜌𝜌𝑙𝑙𝑙0𝜙𝜙
Δ

𝑙𝑙
(𝑓𝑓1)

𝑓𝑓
𝑙𝑙

1

𝑙 (E3)

where hl is the radial displacement Love number.

We can now use Equation D14b to compute the total amount of Darcian dissipation,

�̇�𝐸
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
=
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𝜋𝜋
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𝜔𝜔
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𝜅𝜅𝑓𝑓
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𝜂𝜂𝑙𝑙
𝑙 (E4a)
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𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
=

84

5
ℎ
2

2
(𝑅𝑅𝑜𝑜)𝜋𝜋

𝑅𝑅
5

𝑜𝑜𝜌𝜌
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𝑙𝑙𝑙0
𝜔𝜔

4
𝜅𝜅𝑜𝑜

2

𝜂𝜂𝑙𝑙
. (E4b)

The previous expressions provide a good approximation to the compressible cases presented in Section 3 (see 
Figure 2). Bearing in mind that |hl(r1)|≪ 1, we find that Darcy dissipation is severely reduced by the presence of 
an ocean.

Appendix F: Andrade Rheology
Alternative rheology laws can be introduced using the correspondence principle. If Andrade rheology is consid-
ered, the complex shear modulus (Equation A18), is given by

�̂�𝜇 =

(

1

𝜇𝜇
−

i

𝜂𝜂𝜂𝜂
+

𝜇𝜇
𝛽𝛽−1

𝛽𝛽!

(i𝜂𝜂𝜂𝜂𝜂𝜂)
𝛽𝛽

)−1

. (F1)

β is a constant that takes values between 0.1 and 0.4 (e.g., Renaud & Henning, 2018) and χ a parameter that 
depends on the ratio between the anelastic and the Maxwell time (Efroimsky, 2012). If diffusion creep domi-
nates, χ ≈ 1, which is commonly assumed for ices (Castillo-Rogez et al., 2011; Rhoden & Walker, 2022; Shoji 
et al., 2013).

We obtain the gravity and surface-displacement phase lags using the Andrade rheology (Equation F1), we use 
β = 0.3 and χ = 1 for both ice and rock. As in Shoji et al. (2013), we find that Andrade rheology increases tidal 
dissipation in the ice shell for viscosities with a Maxwell time higher than the forcing frequency. The difference 
in phase lag remains similar as those found using the Maxwell model (Section 3.3, Figure 6, Figure F1).
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Figure F1. Same as Figure 6 but for Andrade rheology. β = 0.3 and χ = 1 are assumed for the ice shell and the core.

Data Availability Statement
The code developed for this manuscript and used to obtain the results presented here can be accessed in https://
doi.org/10.5281/zenodo.6403046 (Rovira-Navarro, 2022).
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