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Our ability to measure and map plant function at multiple ecological scales is critical for understanding current
and future changes in Earth's ecosystems and the global carbon budget. Conventional plant functional types
(cPFTs) based on a few productivity-related traits have been previously used to simplify and representmajor dif-
ferences in global plant functions, but more recent research has directly focused on the use of functional trait in-
formation. Still, sampling limitations have constrained efforts to truly understand the variance and covariance of
functional traits globally. Reflectance spectra offer a fast, repeatable, simultaneousmeasurement of awide variety
of leaf functional traits and could be used to optically define leaf functional types. To evaluate this concept, we
measured leaf reflectance from awide range of species in a diverse set of ecosystems across central and northern
California, including observations frommultiple individuals, sites, and seasons. Using principal components anal-
ysis, we analyzed spectral variation in relation to categorical attributes such as species and cPFTs, as well as to a
set of functional trait metrics calculated from the spectra.We found the first three principal components (PCs) to
be weakly related to categorical attributes and more strongly related to spectrally-derived functional metrics.
Each PC wasmore strongly associated with different portions of the spectrum and contained different functional
information. We applied a hybrid clustering algorithm to the PC coordinates of the observations to define poten-
tial optical leaf functional types. Twelve spectral clusters were identified, and these did not correspond directly to
either single cPFTs or species. However, each cluster had a unique functional metric profile. Clusters represented
both inter- and intra-species and cPFT functional differences driven by taxonomy, trait evolution and environ-
mental responses, demonstrating their value as optical leaf functional types and the value of the clustering ap-
proach used here for defining optical types from leaf spectra. Our findings support the notion that cPFTs do not
adequately capture differences in leaf function. They demonstrate that spectralmeasurements can be used to im-
prove both the definition of PFTs as well as our knowledge regarding the covariance of functional traits within
these classes.

© 2016 Published by Elsevier Inc.
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1. Introduction

Plant functioning plays a central role in biosphere-atmosphere inter-
actions (e.g., gas and energy exchange), community assembly and bio-
diversity, and ecosystem services and resilience (Reichstein et al.,
2014). The current rates of environmental change place even greater
importance on improving our ability to measure, map, and model
plant function across Earth's surface (Schimel et al., 2013). Within ecol-
ogy, scientists have long sought to represent and understand observed
patterns by grouping the diversity of plant life based on major differ-
ences in biological or ecological functioning, termed Plant Functional
Types (PFTs) (Smith et al., 1997; Woodward & Cramer, 1996). While
the literature on how to define PFTs and how to assign species to
them is extensive (see Duckworth et al., 2000; Semenova and Van Der
Maarel, 2000; Wilson, 1999), the climate and terrestrial biosphere
modeling community has been particularly reliant on relatively simple
conventional PFTs (cPFTs), based on a few, easily observed physiological
and morphological attributes (i.e., photosynthetic pathway, leaf type,
leaf phenology and life form) (Bonan et al., 2002; Moorcroft, 2006).
Using this concept, individual plant species are assigned to a single
cPFT based on these attributes. However, cPFTs have important limita-
tions. There are many potential sets of cPFTs, and the categorical attri-
butes they rely upon may not be those most strongly related to
functioning (Wright et al., 2006). Assigning constant attributes to
cPFTs makes predicting continuous variation in function impossible
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anddoes not allow for changes in function in response to environmental
changes (Van Bodegom et al., 2012; Yang et al., 2015). These categoriza-
tions also ignorewithin-cPFT functional variability driven by differences
among individual species, as well as by interactions with climate and
weather, and changes throughout the growing season (Caldararu et
al., 2015). In fact, biosphere-modeling studies are finding more and
more frequently cPFTs are insufficient for capturing variation in plant
function (Alton, 2011; Groenendijk et al., 2011; Pavlick et al., 2012).

To address these shortcomings, among others, ecologists have
shifted focus from cPFTs toward functional traits to quantify processes
and define more appropriate PFTs (Bernhardt-Römermann et al.,
2008; Kattge et al., 2011; Violle et al., 2007). The characterization of
plants based on measureable attributes, or traits, has a long history
within ecology. Functional traits are considered to be those 1) measured
at the level of the individual and 2) having the potential to influence fit-
ness (Pérez-Harguindeguy et al., 2013). Examples include leafmass area
(LMA), water content, and pigment content. A wealth of studies have
examined how functional traits covary and relate to biospheric func-
tioning and model parameterization (Pappas et al., 2014; Reichstein et
al., 2014; Sakschewski et al., 2015; Van Bodegom et al., 2014; Westoby
&Wright, 2006). Researchers have explored themajor axes of function-
al trait spectra with relation to evolution, life history strategies, and cli-
mate, demonstrating functional tradeoffs between productivity and
stress tolerance (i.e., “quick” vs. “slow” return on investment of dry
mass and nutrients) (Adler et al., 2014; Reich et al., 2003; Shipley et
al., 2006; Wright et al., 2004). Functional traits are also frequently
used to investigate patterns of community assembly, biodiversity and
ecosystem function (Ackerly & Cornwell, 2007; Cadotte et al., 2009;
Laughlin & Laughlin, 2013; Lavorel & Garnier, 2002; Violle & Jiang,
2009).

Despite widespread success, several challenges remain for using
functional traits to further our understanding of functional patterns.
Two stand out among these: 1) incorporating functional trait variation
across biological and ecological scales; and 2) adequate sampling of
functional traits across the globe (necessary for #1). Most often, mean
trait values for single species are used in large-scale analyses of func-
tional trait spectra, ignoring sometimes significant intraspecific varia-
tion (Albert et al., 2012), although there is plenty of evidence to
demonstrate this variation is an important consideration when using
traits to estimate function, quantify diversity, and understand commu-
nity composition (Albert et al., 2010a; Albert et al., 2010b; Wright &
Sutton-Grier, 2012). Substantial functional trait variation can also
occur at different ecological scales (i.e., within individuals, populations
and sites) (Messier et al., 2010). In order to address this variation (and
understand its drivers), we need spatially and temporally extensive
measurements of functional traits across many individuals, species,
and ecosystems. Even though we have larger databases of these mea-
surements than ever before (e.g., TRY; Kattge et al., 2011), the sampling
of Earth's biomes has been uneven and bias (Sandel et al., 2015; Schimel
et al., 2015).

Given the impossibility of sampling the entire globe, remote sensing
is necessary to address these shortcomings andmove toward the previ-
ously-described goals by providing spatially explicit, repeatable mea-
surements of many of these traits (Asner, 2013; Schimel et al., 2013).
Historically, remote sensing data have been used to map PFT composi-
tion (Bonan et al., 2002; Sun et al., 2008), but due to the sensitivity of
multispectral sensors, only generalized cPFTs could bemapped. Howev-
er, the development of high fidelity imaging spectrometers has enabled
scientists to differentiate among more specific taxonomic classes and
move toward the direct estimation of specific leaf functional traits
(Schaepman et al., 2009). Because the interactions of light with leaves
aremediated by leaf traits (Asner, 1998; Féret et al., 2008), spectroscopy
has been successfully used to estimate and predict a wide range of leaf
traits from many ecosystems at both leaf and canopy scales (Asner et
al., 2015; Homolová et al., 2013; Ustin et al., 2004, 2009). Thus leaf spec-
tral measurements can serve as a proxy for some leaf functional traits,
and spectra can be rapidly measured for many leaves on many individ-
uals in the field, providing a standardized, quantitative measurement
that can be compared across locations and through time.

Beyond directly estimating traits and separating pre-defined classes
(e.g., cPFTs or species), it has been proposed that spectra could be used
to directly define “optical functional types” (i.e., PFTs defined from opti-
cal remote sensing data) (Ustin & Gamon, 2010). Because the spectrum
is sensitive to changes in functional traits, classes defined based on spec-
tral information should capture key functional trait patterns and thus
account for inter- and intra- species and cPFT variation. Unsupervised
clustering analysis is one approach that can be used to define such opti-
cal functional types. It has been applied in aquatic studies to define op-
tical water types (Shi et al., 2013), benthic habitat types (Garcia et al.,
2015), and phytoplankton pigment assemblages (Torrecilla et al.,
2011). Although clustering has been previously used to generally assess
patterns of spectral and functional similarity among terrestrial plant
species (Asner & Martin, 2009; Asner et al., 2009; Hesketh &
Sánchez-Azofeifa, 2012), it has not, to our knowledge been used to de-
fine discrete optical functional classes at leaf-level.

Our main objective in this research was to summarize and interpret
the information contained in a diverse set of leaf spectra and assess our
ability to definenovel optical leaf functional typeswith these data.More
specifically, we sought to:

1) evaluate the relationship of observed leaf spectral variance with
commonly used categorical attributes (e.g., cPFTs and species), and
with functional metrics calculated from the spectra

2) define distinct optical groups (clusters) using an unsupervised hy-
brid clustering approach

3) investigate the correspondence of these spectrally-defined clusters
with species, cPFTs, and functional metrics

This study aims to improve our understanding of how leaf spectra
can be used to define unique functional groups. Because of the large
amount of functional trait variance observed within cPFTs, and even
within individual species, in prior studies, we hypothesized that classes
defined based on spectral measurements alone (optical functional
types), can better capture functional trait differences, andprovide great-
er insight into patterns of functional trait covariance within and among
species and cPFTs, and across ecosystem types and multiple seasons.

2. Methods

2.1. Study sites and sample collection

Our nine field sites were located across northern and central Califor-
nia (Fig. 1). These sites were selected in support of NASA's
Hyperspectral Infrared Imager (HyspIRI) Preparatory Science initiative,
which collected hyperspectral imagery over large sections of the state
in spring, summer, and fall of 2013, 2014, and 2015. The sites cover sev-
eral of California'smost prominent ecosystem types aswell as a range of
environmental conditions (e.g., the same ecosystem type but located
much further north or south). Ecosystem types visited included agricul-
ture (Russell Ranch and Gallo Vineyard) and pasture (Sherman Island-
Pasture), oak savanna/oak woodland (Tonzi Ranch and San Joaquin Ex-
perimental Range), mixed conifer and broadleaf forest (Blodgett Forest
and Soaproot Saddle), montane conifer forest (Teakettle) and wetlands
(Sherman Island-Wetland). At each study site, we identified and select-
ed the set ofmost dominant plant species (Table 1).While more species
are present at each site, we faced a tradeoff among the number of sites,
species, and individuals that could be reasonably collected and properly
processed while coinciding with the HyspIRI aerial data acquisitions. As
such, the cPFTs included in our study are a result of the species selected
and were defined based on commonly used combinations of life form,
leaf form, and leaf duration, similar to those found in Bonan et al.
(2002). The species measured on a particular visit were determined
based on the expected seasonal change in traits of interest. For example,



Fig. 1. Map of California showing the nine study site locations.
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we expected greater seasonal change for broadleaf deciduous trees than
for evergreen needleleaf trees. Although not all species were measured
on every date, every effort was made to capture the full seasonal profile
of each species. In 2013, samples were collected from large patches
dominated by one or two species to facilitate later single-species analy-
sis at image level. In 2014, we expanded our sampling locations to cover
a wider spatial distribution and greater range of site conditions to test
future image-level modeling more rigorously. No image analysis is pre-
sented here.

On each field visit, we collected sets of fully expanded leaves from at
least five individuals per species (one sample per individual). For all
trees, leaveswere collected from the upper, sunlit portion of the canopy.
For conifers, collection was restricted to second and third year needles
under the assumption that these represent the majority of mature can-
opy needles. Leaves were immediately placed in foil packets, to ensure
no light reached them, and stored on blue ice (or in a lab refrigerator)
until labmeasurements weremade (b48 h.).We also recorded categor-
ical attributes for each sample, including collection information (e.g.,
species, site) and some of the functional attributes used to define the
cPFTs used in this study (Table 2). This information can provide context
for observed spectral differences among samples.

2.2. Leaf spectral data collection and processing

In the lab, leaf directional-hemispherical reflectance from 350 to
2500 nm was measured for three to five replicates from each sample
using an ASD FieldSpec Pro (1–2 nm sampling interval, with 3–10 nm
resolution) attached to a Licor 1800-12 integrating sphere with a 6 V
10W3100 K illumination source (LI-COR, 1983). For broadleaf samples,
five leaves were selected at random as sample replicates. For needles
and other species whose leaves did not cover the entire sample port of
the LI-1800, three sample replicates were created by arranging leaves
as close together as possible with no overlap (i.e., minimizing gaps be-
tween leaves) and sealing the ends of the leaves using either black rub-
ber gaskets or black electric tape. All spectra, including a LI-1800
compacted BaSO4 powder standard and a sphere stray light measure-
ment, were collected in radiance. Absolute reflectance (Rsample) was cal-
culated for each leaf spectrum using its measured radiance (Ireflected),
corresponding standard measurement (Ireference), correcting for stray
light (Istray) and multiplying by the efficiency of the BaSO4 standard
(Rreference) (Eq. (1)).

Rsample ¼
Ireflected−Istray
� � � Rreference

Ireference−Istray
� � ð1Þ

For replicates with potential gaps between leaves, a high resolution
(12MP+) digital photo was collectedwhile the replicate was mounted
in the integrating sphere port. AMatlab thresholding algorithmwas de-
veloped to estimate the fraction of gap within the area illuminated in
the sphere. Using this gap fraction estimate, we corrected the reflec-
tance spectrum following the approach used in Mesarch et al. (1999)
and further tested in Yáñez-Rausell et al. (2014a, 2014b). In this



Table 1
The table shows the conventional plant functional types (cPFTs), species, ecosystem types, field sites, and seasons for which leaf spectra were collected. RURA, Russell
Ranch; GALL, Gallo Vineyard; SHIP, Sherman Island-Pasture; SHIW, Sherman Island-Wetland; TEAK, Teakettle; BLOF, Blodgett Forest; SOAP, Soaproot Saddle; TONZ,
Tonzi Ranch; SJER, San Joaquin Experimental Range. Sp, Sm, and F refer to the season (Spring, Summer, and Fall, respectively) inwhich data were collected at a particular
site for each species.

cPFT and species Ecosystem type Field sites (and seasons)

Broadleaf annual crop
Zea mays Agriculture RURASm

Deciduous broadleaf shrub
Vitis vinifera Agriculture GALLSm/F

Perennial herb
Lepidium latifolium Pasture SHIPSp/Sm/F

Wetland emergent perennial
Schoenoplectus acutus Wetland SHIWSp/Sm/F

Typha spp. Wetland SHIWSp/Sm/F

Evergreen needleleaf tree
Abies magnifica Montane conifer forest TEAKSm/F

Abies concolor Mixed conifer-broadleaf forest; montane conifer forest BLOFSp/Sm/F, SOAPF, TEAKSm/F

Calocedrus decurrens Mixed conifer-broadleaf forest BLOFF, SOAPF
Pinus jeffreyi Montane conifer forest TEAKSm/F

Pinus ponderosa Mixed conifer-broadleaf forest BLOFSp/Sm/F, SOAPSm/F

Pinus lambertiana Mixed conifer-broadleaf forest SOAPF
Pinus sabiniana Oak woodland-savanna TONZSp/Sm/F, SJERSm/F

Evergreen broadleaf tree
Quercus chrysolepsis Mixed conifer-broadleaf forest SOAPSp/Sm/F

Quercus wislizeni Oak woodland-savanna SJERSp/Sm/F

Deciduous broadleaf tree
Quercus douglasii Oak woodland-savanna TONZSp/Sm/F, SJERSp/Sm/F

Quercus kelloggii Mixed conifer-broadleaf forest BLOFSp/Sm/F, SOAPSp/Sm/F

Evergreen broadleaf shrub
Arctostaphylos viscida Mixed conifer-broadleaf forest SOAPSm/F

Ceanothus cordulatus Montane conifer forest TEAKSm/F
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correction, reflectance is linearly scaled by the fraction of leaf cover
within the sample port using the equation below in which ρ is leaf re-
flectance, ρtotal is the measured reflectance, and GF is the gap fraction
(Eq. (2)).

ρ ¼ ρtotal

1−GFð Þ ð2Þ

All processed spectra were averaged by sample. The hemispheric
scattering of light in the integrating sphere did reduce the spectrometer
signal and increased the noise, evenwith substantial increases in the in-
tegrating period (number of spectra averaged for each measurement),
particularly for longer wavelengths. Furthermore, the BaSO4 spectrum
is somewhat noisy in this region (N2000 nm). The SWIR portion of the
spectrum (1600–2500 nm) was smoothed using a Savitzky-Golay filter
(Savitzky & Golay, 1964). This filter type was used because we could
control the amount of smoothing by fine tuning the parameters, and it
is known to remove noise while preserving absorption features
(Ruffin & King, 1999). For our data, we first smoothed the 1600–
2500 nm wavelengths using a second degree polynomial and a kernel
size of±25nm. After examining the resulting spectra, we applied a sec-
ondary smoothing to the 1960–2500 nm wavelengths, again using a
Table 2
List and description of the categorical attributes recorded for each leaf sample, including
the potential values for a given attribute or reference to another table containing this
information.

Attribute Description

Species Species from which sample was collected
cPFT Conventional plant functional type (see Table 1)
Leaf form Broadleaf, needleleaf, or other
Leaf duration Annual, deciduous, evergreen, or perennial
Life form Graminoid, herbaceous, shrub, or tree
Campaign Combination of month and year sample was collected
Season Spring, summer, or fall
Ecosystem type Ecosystem type from which sample was collected (see Table 1)
Site Site at which sample was collected (see Table 1)
second degree polynomial with a kernel size of ±50 nm. Similar
smoothing approaches have been used in a number of leaf spectra stud-
ies to reduce noise (e.g., Stimson et al., 2005; Atzberger et al., 2010;
Rautiainen et al., 2012). Visual assessment of smoothed spectra con-
firmed that absorption features remained intact. The resulting spectral
library contained 505 individual plant spectra, representing observa-
tions from eight cPFTs, eighteen species, six ecosystem types and nine
sites (with multiple seasons for most species and sites).

Using the leaf spectra, we calculated a suite of nearly one hundred
spectral functional metrics. These metrics approximate, or are sensitive
to, a range of leaf functional traits (e.g., water, pigments, drymatter, leaf
structure). They included reflectance at a given wavelength, simple ra-
tios, normalized differences indices, optimized indices, spectral features
and trait estimates based on published empirical equations. We exam-
ined the cross-correlations among this large group ofmetrics and select-
ed a subset of eleven to represent a range of ecologically relevant leaf
functional traits in our study (Table 3). We recognize the resulting
values are not directly measured traits, but are quantitative character-
izations of the leaf traits in our data set, and are interpreted in the pub-
lished literature (Table 3) to represent the traits we describe.

2.3. Analysis

2.3.1. Overview
We have provided a work flow diagram (Fig. 2) to outline the steps

taken in our analysis. First, we summarized the spectral data using Prin-
cipal Components Analysis (PCA) and evaluated the association of the
resulting principal components (PCs) with categorical attributes and
spectral functional metrics. We then applied agglomerative hierarchical
clustering and Dynamic Hybrid Clustering to the standardized PC coor-
dinate values to define spectral clusters. We tested the validity and sta-
bility of these clusters using an iterative subsampling approach, and
finally assessed the clusters' membership (using categorical attributes)
and functional profiles. All statistical analyseswere doneusing theR sta-
tistical software package (R Core Team, 2015), implemented in RStudio
(RStudio Team, 2015).We also used the R package ‘dynamicTreeCut’ for
the hybrid clustering (Langfelder et al., 2014).



Table 3
List of the functionalmetrics calculated from the spectra. These included single band values, simple ratios, optimized indices and empirical estimates. Thewavelengths used in eachmetric
and the appropriate references are listed.

Trait Metric type Wavelength(s) used (nm) Reference

Leaf structure Single band 800 Sims & Gamon (2002)
Surface scattering Single band 445 Sims & Gamon (2002)
Lignin Simple ratio 1028, 2101 Almeida & De Souza Filho (2004)
Equivalent water thickness (EWT) Empirical estimation 1062, 1393 Féret et al., 2011
Leaf mass area (LMA) Empirical estimation 1368, 1722 Féret et al. (2011)
Pigments Narrow-band normalized difference index 660, 800 Sims & Gamon (2003)
Total chlorophyll Optimized index 680–730; 755–780; 780–800 Féret et al. (2011)
Chlorophyll a Simple ratio 638, 807 Almeida & De Souza Filho (2004)
Chlorophyll b Simple ratio 648, 807 Almeida & De Souza Filho (2004)
Carotenoids Empirical estimation 530, 800 Féret et al. (2011)
Pigment ratios Narrow-band normalized difference index 531, 570 Sims & Gamon (2002)
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2.3.2. Summarizing and interpreting information in the leaf spectra
We used PCA both to assess the spectral variability within the data

and to summarize the information present in the spectra. PCA trans-
forms the data by maximizing the variance explained by each orthogo-
nal component, and it has beenwidely used in remote sensing to reduce
spectral dimensionality (e.g., Féret & Asner, 2014; Hesketh &
Sánchez-Azofeifa, 2012). Reducing the dimensionality of the spectra is
also essential for clustering analysis because high dimensional data cre-
ate sparse distance matrices, leading to poor results (Berkhin, 2006;
Steinbach et al., 2004).

In order to determine which PCs to retain in our analysis, we exam-
ined the scree plot of variance explained by each component, as well as
the cumulative spectral variance explained as new components were
added. The first three PCs explained N98% of the cumulative variance,
and each of these PCs explained N5% of the spectral variance. Additional
PCs explained ≤0.6% of the spectral variance each. Based on these obser-
vations, only the first three PCs were retained for use in subsequent
analyses. In order to evaluate the spectral information represented by
these PCs, we calculated the correlation of PCs 1–3 with each wave-
length measured and with the spectral functional metrics previously
calculated (see Table 3). We also calculated the variance explained
(R2) by each categorical variable (see Table 2) within each PC.

2.3.3. Clustering

2.3.3.1. Agglomerative hierarchical clustering. We used the standardized
spectral PC coordinates of each individual sample in our clustering anal-
ysis, rather than an aggregated value (e.g., species' mean). By neither
Fig. 2. Conceptual diagram showing
aggregating nor restricting observations from the same cPFT, species,
site, and sampling date to be in the same cluster, we allowed for intra-
specific and intra-cPFT variance to be incorporated into the clustering.
We applied agglomerative hierarchical clustering analysis because it is
a very flexible algorithm, making no assumptions about data structure
or number of clusters prior to clustering and can use any formof similar-
ity or distancemetric (Berkhin, 2006). It allows users to see nested rela-
tionships among observations, making the results more interpretable
(Chipman& Tibshirani, 2005). Each observation starts as its own cluster,
and observations and clusters are subsequently merged based on a
user-defined linkage until all observations are in a single group
(Kaufman & Rousseeuw, 2005). We calculated the dissimilarity matrix
using Euclidean distance, and spectral clusters were merged using the
Ward method, which combines the two clusters resulting in the mini-
mum increase in the sum of the within cluster variance at each merge
step (Ward, 1963). This method, similar to approaches used in other
studies with spectral data (e.g., Asner et al., 2009; Göttlicher et al.,
2011), results in fairly compact, homogenous clusters, and is less sus-
ceptible to noise and outliers, but can be biased toward spherical clus-
ters (Wishart, 1998).

The resulting clustering solutionwas visualized using a dendrogram,
which represents the clustering structure of the data. The height at
which two clusters merge in the dendrogram corresponds to the dis-
tance between those two clusters. We used two metrics to assess the
quality of the dendrogram, and thus, the strength of the clustering
structure in the data: the cophenetic correlation coefficient and the ag-
glomerative coefficient. The cophenetic correlation coefficient is a mea-
sure of how well the dendrogram represents the dissimilarities in the
the analysis steps for the study.
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original set of observations, with values closer to one indicating better
representation (Sokal & Rohlf, 1962). The agglomerative coefficient is
the average of one minus the distance of each object to its nearest clus-
ter divided by the distance between the final two clusters tomerge, and
greater structure within the data produces values closer to one
(Kaufman & Rousseeuw, 2005).

2.3.3.2. Dynamic Hybrid Clustering. There are some drawbacks to ag-
glomerative hierarchical clustering, particularly for defining hard clas-
ses. The final clusters must be determined by the user (who selects
either a total number of clusters or a height at which to cut the dendro-
gram, somewhat subjectively). Furthermore, clusters are not re-visited
after merging, meaning once an observation is merged into a cluster, it
cannot be placed in a different cluster (Hardle & Simar, 2003;
Langfelder et al., 2008). To overcome these drawbacks, hybrid methods
have been proposed that combine agglomerative hierarchical clustering
with other approaches, such as k-means or divisive hierarchical cluster-
ing, to gain the advantages of each (Chipman & Tibshirani, 2005;
Langfelder et al., 2008; van der Laan & Pollard, 2003). We selected the
Dynamic Hybrid Clustering algorithm proposed by Langfelder et al.
(2008) and implemented in the R package ‘dynamicTreeCut’. In this
method, agglomerative hierarchical clustering is combined with
Partitioning AroundMedoids (PAM) clustering to balance the tendency
of former to create small clusters, with tendency of the latter to create
large ones. The final number of clusters is determined by the algorithm.
Dynamic Hybrid Clustering begins by using the dendrogram created by
agglomerative hierarchical clustering to identify a set of core clusters
meeting the following criteria:

1. contains a set minimum number of observations
2. excludes observations too far from the cluster
3. distinct from surrounding clusters
4. the core (tip of dendrogram branch) is tightly connected

After these core clusters are identified, unassigned observations are
assigned to the nearest cluster if they are sufficiently close. The algo-
rithm allows the user to more finely tune the four criteria above. In
our implementation, we specified the minimum number of observa-
tions within a core cluster to be two (the minimum possible given
that each leaf on the dendrogram represents one single observation).
We explored different settings for the other criteria, and elected to use
the default settings for this analysis, as these parameter settings have
been successfully applied in other applications (Langfelder et al., 2008).

2.3.3.3. Cluster validation and stability assessment. With any clustering
technique, cluster validity and stability are important considerations
for both interpretation and replicability. Ideally, the final clusters are ro-
bust to both samples containing different observations and different
sample sizes. One method for evaluating the validity and stability of
clusters is to use subsampling or bootstrapping (Bhattacharjee et al.,
2001; Monti et al., 2003). Monti et al. (2003) describe one such ap-
proach: consensus clustering. In consensus clustering, a user-defined
number of randomly selected subsets of observations are clustered,
and the agreement among iterations is used to construct a consensus
matrix. This consensusmatrix is used as a similaritymatrix in agglomer-
ative hierarchical clustering to assign a final clustering. We used the R
package ConsensusClusterPlus (Wilkerson & Hayes, 2010), which im-
plements and extends the consensus clustering algorithm by Monti et
al. (2003), allowing users to define their own clustering algorithm.
The final number of clusters was set to the number found by the Dy-
namic Tree clustering based on all observations. We tested the algo-
rithm using eight different sample sizes (60%–95% of observations, in
5% intervals). For each sample size, consensus clustering with Dynamic
Hybrid Clusteringwas run for 1000 random subsamples. Consensusma-
trices and the average itemand cluster consensus values across subsam-
ples were used to assess the validity of the clusters found. The kappa
coefficient of agreement was calculated between the full sample cluster
assignment and each sample size's cluster assignment. Higher kappa
values indicate the clustering solution is insensitive random sampling
at the given sample size, and similar kappa values across sample sizes
would demonstrate the clustering is insensitive to sample size.

To further assess the clustering solution, we calculated 1) the mean
within-cluster distance between observations (a measure of cluster
compactness), 2) the mean distance between observations in a cluster
to those in other clusters (a measure of cluster separation), and 3) the
mean cluster silhouette coefficient (a combined metric) (Rousseeuw,
1986). The silhouette coefficient was calculated for each observation
(i) using the equation below, where ai is the average dissimilarity of i
with all other observations within the same cluster and bi is the lowest
average dissimilarity of i to any other cluster (Eq. (3)):

si ¼
bi−aið Þ

max ai; bif g ð3Þ

To evaluate the spectral similarity/dissimilarity among the resulting
clusters, we calculated the spectral angle (cosine distance) between
each pair of cluster mean spectra. This metric allows us to determine if
two clusters differ in their mean spectral shape, rather than just in
magnitude.

2.3.4. Cluster correspondence with categorical attributes and functional
metrics

To interpret cluster membership, we compared cluster correspon-
dence to sample metadata (see Table 2), using the Adjusted Rand
index. This index measures the agreement between two sets of parti-
tions, accounting for chance agreement when group size is unequal
(Hubert & Arabie, 1985; Milligan & Cooper, 1986). The index ranges
from zero to one, with one representing perfect correspondence, and
zero representing the expected correspondence between two random
partitions. We also calculated the Fowlkes-Mallows Index, or the prob-
ability that a pair of observations in the same group of one partition set
are found together in the other partition set (Fowlkes &Mallows, 1983).
To identify which species and cPFTsweremost strongly relatedwith in-
dividual clusters, we calculated the point-biserial correlation coefficient
between each cluster and class.

Lastly, we evaluated the functional profiles of the clusters by exam-
ining and comparing their respective distributions of spectral functional
metrics. To test for significant differences in the means and dispersions
of these metrics among clusters, we used permutational MANOVA
(PERMANOVA) and permutational dispersion analysis (PERMDISP).
These two approaches compare cluster data to those of random permu-
tations to determine if the clusters explain significantly more variance
than would be expected from random partitions.

3. Results

3.1. Summarizing and interpreting information in the leaf spectra

The correlations between the PCs 1–3 and the wavelengths mea-
sured show that each PC carries information from different regions of
the spectrum. While the entire spectrum was moderately correlated
with the first PC, the strongest correlations were found with the near-
infrared (NIR) region, approaching one for most wavelengths between
750 and 1400 nm (Fig. 3). The second PC was most strongly correlated
with the shortwave-infrared (SWIR) region, and the third PC with the
visible (VIS) region.

Plotting the individual observations in PC space,we visually assessed
how they grouped by cPFT (Fig. 4a–b) and species (Fig. 4c–d).While we
observed somedifferentiation among cPFTs and species, there appeared
to be substantial overlap among observations from different groups on
all three PC axes, indicating that some observations from different spe-
cies, or even different cPFTs, were very spectrally similar. For example,
separation is evident between evergreen needleleaf trees and deciduous



Fig. 3. Graph showing the correlation coefficient between eachwavelengthmeasured and
the first three PCs: PC1 in solid line; PC2 in dotted line; PC3 in dashed line.

Fig. 4. Scatterplots show the PC coordinates of the observations for PC1 v. PC2 (a & c

Table 4
Variance explained (R2) by each categorical variable (defined in Table 2) for each PC.

PC1 PC2 PC3

Species 0.20 0.80 0.47
cPFT 0.15 0.68 0.24
Leaf form 0.01 0.53 0.04
Leaf duration 0.12 0.55 0.05
Life form 0.10 0.11 0.02
Campaign 0.48 0.23 0.08
Season 0.04 0.02 0.05
Ecosystem type 0.15 0.35 0.04
Site 0.18 0.38 0.09
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broadleaf trees, but separation between deciduous broadleaf trees and
deciduous broadleaf shrubs is less clear. Looking at species, overlap oc-
curs on all axes for observations from Zea mays (corn) and Quercus
kelloggii (black oak).

We can assess howmuch information each PC carries about the sam-
ples' categorical attributes (defined in Table 2) by looking at the vari-
ance explained (R2) (Table 4). It is important to note that these values
do not take into account the inter-relationships among attributes and
only provide a measure of how well a particular attribute is associated
with each PC. cPFT explains the majority (68%) of the variance in PC 2,
aswell as 15% and 24% of the variances in PCs 1 and 3, respectively. Spe-
cies follows a similar pattern, explaining greater proportions of the PC
variances overall (20%, 80% and 47% for PCs 1–3). Other categorical attri-
butes also explained substantial proportions of the variance in the three
) and PC2 v. PC3 (b & d). Points are colored by cPFT (a & b) and species (c & d).



Fig. 5. Fig. shows the correlation coefficient between each spectral functionalmetric and each PC.Metrics related to surface and structure are in blue, related towater and drymatter are in
red, and related to pigments are in green. (For interpretation of the references to in this figure legend, the reader is referred to the web version of this article.)
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PCs. For PC 1, Campaign (i.e., month and year) and Site explained 48%
and 18% of the variance, respectively. All categorical attributes, with
the exceptions of season and life form, explained N35% of the variance
in PC 2; however, leaf form and leaf duration explained N50% of the var-
iance. Species and cPFT were the only variables to explain N10% of the
variance in PC 3.

We also examined the correlations between spectral functionalmet-
rics (see Table 3 for definitions) with each of the PCs to determinewhat
functional information is carried by each. PC 1 was strongly correlated
with leaf internal structure, somewhat correlated with surface reflec-
tance, andweakly correlatedwith LMA (Fig. 5). PC 2was strongly corre-
lated with lignin, EWT, and LMA, and PC 3 was strongly correlated with
pigments. These correlations can be interpreted in light of the previous-
ly observed individual wavelength correlations with each of the PCs.
They demonstrate that PC 1mainly contains information about leaf sur-
face and internal structure; PC 2 contains information onwater, dry/leaf
structure, and PC 3 contains information on pigments.

3.2. Leaf spectral clusters

The dendrogram resulting from hierarchical agglomerative cluster-
ing had a cophenetic correlation of 0.6 and an agglomerative coefficient
of 0.99, indicating moderate to strong clustering structure in the data.
Dynamic Hybrid Clustering resulted in twelve clusters, ranging in size
from 12 to 75 observations (Fig. 6). The height at which two clusters
merge indicates their similarity (i.e., more similar clusters merge first
because they are closer together in data space). Clusters 8 and 9 were
the most similar, then 11 and 12, followed by 6 and 7, then 1 and 2. At
approximately the same distances, Clusters 3 and 4 merged, Cluster 5
mergedwith 6 and 7 and Cluster 10merged with 11 and 12. Next, Clus-
ters 8–9merged with Clusters 10–12. At the furthest distances, Clusters
5–7 merged with 8–12, followed by 3–4, and finally, Clusters 1–2
merged with the entire set. Average within-cluster distance between
observations ranged from 0.12 to 0.27, and average distance from
observations within a cluster to members of other clusters ranged
from 0.32 to 0.77 (Table 5). Cluster mean silhouette coefficients ranged
from 0.05 (Cluster 9) to 0.48 (Cluster 5). These results demonstrate that
the values within the majority of clusters are relatively homogeneous,
and differences between most cluster pairs are larger than within clus-
ter differences.

Varying subsamples and subsample sizes with consensus clustering
demonstrated this solution to be stable and valid, with all subsample
proportions having high (and similar) agreement with the clustering
of the entire data set (Table 6). Furthermore, the cluster consensus
values (i.e., average consensus value between all observation pairs in a
given cluster, 0–1) were high for all subsample proportions.

The cluster spectral signatures appeared to differ across most wave-
lengths (Figs. 6 and 7).The within cluster spectral variance also differed
across clusters and wavelengths (Fig. 6). Some clusters, such as Clusters
10–12, had very low variance across most wavelengths, while others,
such as Clusters 2, 6 and 7 had higher variance. For most clusters, spec-
tral variance was highest in the NIR region of the spectrum, and the VIS
and SWIR regions had similar variance.We calculated the spectral angle
(SA; cosine distance) between pairs of cluster mean spectra to compare
similarities in spectral shape. An SA value of 0.0 indicates two spectra
are the same shape and differ only in amplitude. SA values varied
from 0.01 (between Clusters 1 and 4) to 0.335 (between Clusters 2
and 7), with an overall average of 0.145 (Table 7).

3.3. Cluster correspondence with categorical attributes

There was generally low correspondence observed between cate-
gorical attributes (defined in Table 2) and spectral clusters (Table 8).
The Adjusted Rand Index (1.0 denotes perfect agreement) ranged
from0.041 (season) to 0.274 (cPFT), and the Fowlkes-Mallows Index in-
dicated that for nearly all categorical attributes, two observations from
the same category had a 0.25–0.40 probability of being assigned to the
same spectral cluster. In particular, the twelve spectral clusters were



Fig. 6. Dendrogram showing the clustering of the spectral observations into twelve clusters. The dendrogram axis is in Euclidean distance. The solid lines in the spectral plots show the
mean spectrum for each cluster, and the shaded areas represent ± one standard deviation.
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not consistent with individual cPFTs or species, though differentiation
between groups of cPFTs was observed (Fig. 8). For example, Clusters
Table 5
Individual cluster values for the three clustering assessment metrics.

Mean within-cluster
distance

Mean distance to other
clusters

Mean silhouette
coefficient

1 0.16 0.43 0.34
2 0.23 0.49 0.08
3 0.14 0.38 0.40
4 0.15 0.50 0.38
5 0.20 0.58 0.48
6 0.18 0.49 0.45
7 0.27 0.77 0.28
8 0.12 0.32 0.36
9 0.19 0.41 0.05
10 0.14 0.41 0.37
11 0.16 0.49 0.36
12 0.14 0.37 0.21
1–4 were dominated by evergreen needleleaf tree observations, while
broadleaf trees observation were found more frequently in Clusters 6–
12. Still, observations from the same species had approximately a 33%
probability of being clustered together, and observations from the
same cPFTwere clustered together with a probability of ~39% (Table 8).
Table 6
Kappa coefficients between the clustering of all observations and for each subsample pro-
portion tested to establish cluster stability and validity.

Subsample proportion Kappa coefficient with full data set clustering

60% 0.80
65% 0.82
70% 0.82
75% 0.82
80% 0.82
85% 0.82
90% 0.83
95% 0.83



Fig. 7.Mean reflectance for each of the twelve clusters.

Table 7
Spectral angle values between each pair of cluster mean spectra (0–1). Lower values indicate two mean spectra are more similar.

2 3 4 5 6 7 8 9 10 11 12

1 0.078 0.015 0.010 0.118 0.184 0.262 0.086 0.108 0.143 0.213 0.136
2 0.067 0.078 0.175 0.260 0.335 0.157 0.174 0.212 0.275 0.202
3 0.012 0.121 0.195 0.272 0.099 0.121 0.154 0.225 0.148
4 0.113 0.186 0.263 0.092 0.114 0.147 0.220 0.142
5 0.159 0.211 0.143 0.166 0.174 0.251 0.186
6 0.092 0.123 0.124 0.090 0.140 0.115
7 0.209 0.209 0.175 0.202 0.199
8 0.025 0.062 0.131 0.053
9 0.053 0.109 0.032
10 0.089 0.034
11 0.081

238 K.L. Roth et al. / Remote Sensing of Environment 184 (2016) 229–246
Despite this lack of correspondence to single cPFTs or species, signif-
icant correlations between clusters and certain species and cPFTs were
observed (Table 9; p = 0.05*, 0.01** and 0.005***). The majority of
cPFTs were significantly correlated with several clusters, the exceptions
being deciduous broadleaf shrub and evergreen broadleaf shrub. The
evergreen broadleaf tree, perennial herb and wetland emergent
Table 8
Correspondencemetric values between each categorical variable (defined in Table 2) and
the twelve spectral clusters.

Adjusted Rand Index Fowlkes-Mallows Index

Species 0.255 0.326
cPFT 0.274 0.394
Leaf Form 0.133 0.377
Leaf Duration 0.168 0.358
Life form 0.115 0.336
Campaign 0.168 0.276
Season 0.041 0.255
Ecosystem type 0.150 0.289
Site 0.166 0.267
perennial cPFTs were significantly correlated with two clusters each,
and broadleaf annual crop, deciduous broadleaf tree and evergreen
needleleaf tree cPFTs were significantly correlated with four clusters
each. Likewise, the majority of species were significantly correlated
with two or three different spectral clusters. Arctostaphylos visicida,
Quercus chrysolepsis, and Schoenoplectus acutus were the exception to
this observation, having just one significant cluster each (Clusters 5, 9,
and 2, respectively).

In general, Clusters 1, 3, and 4 were mainly correlated with ever-
green needleleaf trees, Cluster 2 with wetland emergent perennials,
and Clusters 5–12 with broadleaf species. The most spectrally similar
Clusters, 8 and 9, were dominated by small-leaved deciduous (Q.
douglasii) and evergreen (Q. wislizeni, Q. chrysolepsis) oaks. Cluster 8
was also significantly correlatedwith C. cordulatus (evergreen broadleaf
shrub) and Lepidium latifolium (perennial herbaceous), and Cluster 9
with Calocedrus decurrens. Clusters 11 and 12 were dominated by
large-leaved annual and deciduous species, with Cluster 11 being al-
most entirely Q. kelloggii, and Cluster 12 havingmainly agricultural spe-
cies (Vitis vinifera, Zea mays). Joining Clusters 11 and 12 later in the
clustering process (Fig. 6), Cluster 10 was strongly correlated with Z.
mays. The next most spectrally similar pair of Clusters, 6 and 7, also



Fig. 8. Figures show the cPFT (a) and species (b) membership of each of the twelve spectral clusters.
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both contained Q. kelloggii and Z. mays. Cluster 5 was the next closest
cluster to these and contained almost solely A. viscida. Cluster 1, the
largest cluster, was dominated by pine species (Pinus ponderosa, P.
Table 9
Correlation coefficient between each group (rows) and each cluster (columns) (p=0.05*, 0.01

1 2 3 4 5

cPFT
Broadleaf annual crop – – – – –
Deciduous broadleaf shrub – – – – –
Deciduous broadleaf tree – – – – –
Evergreen broadleaf shrub – – – – 0.59**
Evergreen broadleaf tree – – – – –
Evergreen needleleaf tree 0.50*** 0.05*** 0.27*** 0.33*** –
Perennial herb – – 0.24*** – –
Wetland emergent perennial – 0.49*** 0.11* – –

Species
Abies concolor – 0.26*** 0.11* 0.18*** –
Abies magnifica 0.17*** – – 0.20*** –
Arctostaphylos manzanita – – – – 0.90**
Calocedrus decurrens – – – 0.1* –
Ceanothus cordulatus – – – 0.1* –
Lepidium latifolium – – 0.24*** – –
Pinus jeffreyi 0.16*** – 0.20*** 0.03* –
Pinus lambertiana – – 0.18* – –
Pinus ponderosa 0.32*** – 0.11** 0.06* –
Pinus sabiniana 0.32*** – 0.11*** 0.13*** –
Quercus chrysolepsis – – – – –
Quercus douglasii – – – – –
Quercus kelloggii – – – – –
Quercus wislizeni – – – – –
Schoenoplectus acutus – 0.60*** – – –
Typha spp. – 0.11* 0.17** – –
Vitis vinifera – – – – –
Zea mays – – – – –
sabiniana, P. jeffreyi) and Abies magnifica. The next most similar cluster
was Cluster 2, which was most strongly correlated with emergent wet-
land perennial species (primarily S. acutus) and Abies concolor. Clusters
**, 0.005***). For clarity, correlations not found to be significant at p=0.05 are not shown.

6 7 8 9 10 11 12

0.20*** 0.07* – – 0.65*** – 0.12*
– – – – – – 0.61***
– 0.17* 0.18* 0.23* – 0.30*** –

* – – – – – – –
– – 0.04* 0.47*** – – –
– – – – – – –
– – 0.13*** – – – –
– – – – – – –

– – – – – – –
– – – – – – –

* – – – – – – –
– – 0.06* 0.15*** – – –
– – 0.25*** – – – –
– – 0.13** – – – –
– – – – – – –
– – – – – – –
– – – – – – –
– – – – – – –
– – – 0.38*** – – –
– – 0.29*** 0.37*** – – –
– 0.29* – – – 0.48*** –
– – 0.08*** 0.26*** – – –
– – – – – – –
– – – – – – –
– – – – – – 0.61***
0.20*** – – – 0.65*** – 0.12*



Fig. 9. Panels show the density distributions for the entire range of values for six spectral functional metrics by cluster (a: leaf structure; b: water; c: chlorophyll; d: surface scattering; e:
LMA; f: carotenoids). Black dots indicate the median value, and white boxes indicate the 25th to 75th quantile range.
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3 and 4 were also both dominated by evergreen needleleaf tree species,
particularly Pinus spp. in Cluster 3 and Abies spp. in Cluster 4. Cluster 3
was also significantly correlated with L. latifolium and Typha spp.,
while Cluster 4 was significantly, but weakly, correlated with C.
decurrens and C. cordulatus.

3.4. Cluster spectral functional profiles

The twelve spectral clusters also differed functionally from one
another. Fig. 9 shows the density distributions for a subset of six
of the spectral functional metrics: leaf internal structure, leaf sur-
face reflectance LMA, EWT, total chlorophyll, and carotenoids.
Fig. 10 shows the distributions for all functional metrics for each
cluster.

Considering the threemetric types associatedwith each PC (leaf sur-
face/interior structure, dry matter/water, and pigments), we observed
variation in cluster values across the range of each of these axes.
Clusters 1 and 2 had very high internal structure values, and
high and average surface reflectance values, respectively. Clus-
ters 5, 8 and 9 had high internal structure values, but varied in
their surface reflectance values (very high, high and average,
respectively). We observed average internal structure values for
Clusters 6, 7 and 11, but Clusters 6 and 7 had high surface reflec-
tance values, while Cluster 11 had low values for this metric. Clusters
3 and 12 had low internal structure values, and average and low sur-
face reflectance values, respectively. Lastly, Clusters 4 and 10 had
very low internal structure values and average surface reflectance
values.

Cluster 5 had the highest LMA values, as well as high lignin
and EWT. Clusters 1, 2 and 4 had high LMA, and while Clusters
1 and 4 also had high lignin and EWT, Cluster 2 had very high lig-
nin and EWT values. Clusters 3, 8 and 9 had average LMA values,
but differed in their lignin and EWT values. Cluster 3 had high
lignin and EWT; Cluster 8 had average lignin and low EWT, and
Cluster 9 had low lignin and EWT. Low LMA and very low lignin
values were observed for Clusters 6 and 12, and these clusters
had very low and low EWT values, respectively. Clusters 7, 10
and 11 had very low LMA values. Additionally, Cluster 10 had
low lignin and EWT, while Clusters 7 and 11 had very low lignin
and EWT.

High to very high pigment values were observed for Clusters 2 and
11. In particular, Cluster 2 had very high total chlorophyll and



Fig. 10. Boxplots show the distributions of spectral functional metrics for each cluster (in color) with respect to the global distributions (in grey). All metrics were scaled to 0–1 over their
range. Black dots show themedian value, and boxes show the 25th through 75th quantiles. The number of observations and percent of total observations in each cluster is shown next to
the cluster label.
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carotenoids, and Cluster 11 had very high chlorophyll a and b values.
Both clusters had high pigment ratio values. Half the clusters had aver-
age pigment and pigment ratio values (Clusters 1, 3, 4, 8, 9 and 12), as
did Cluster 10, with the exception of having low carotenoids. Clusters
5, 6 and 7 had very low pigment values overall, but differed in their pig-
ment ratios. Cluster 5 had high pigment ratio values, and Cluster 6 had
average, but widely distributed pigment ratio values. Cluster 7 had
very low, widely distributed values.
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PERMANOVA indicated that the functional profiles (i.e., the unique
combinations of trait metric values) were statistically significantly dif-
ferent for all pairs of clusters (Fig. 10). Spectral clusters explained 69%
of the variance in functional metric profiles, whereas species explained
65% and cPFT explained only 48%, demonstrating that the spectral clus-
ters were better able to represent functional differences among obser-
vations. PERMDISP analysis showed significant differences in the
dispersion of metric profiles for only a few cluster pairs, further
supporting the PERMANOVA analysis. Because these results support
the hypothesis that spectral clusters are functionally distinct, we can
further posit that the dendrogram (Fig. 6) represents the relationship
among functional traits within the data set. Each node of the dendro-
gram should indicate some key functional difference(s) between the
observations split by this node.

The first node in the dendrogram (Fig. 6) separated Clusters 1 and 2
(very high leaf internal structure) from the remaining clusters (low -to-
average internal structure values). These two clusters both generally
had higher LMA, lignin and EWT values, and average-to-high pigment
values. Between the two clusters, Cluster 1 had higher leaf surface re-
flectance values, and Cluster 2 hadmuch higher (andmore variable) lig-
nin, EWT, pigment and pigment ratio values. The secondnode separated
Clusters 3 and 4 from the remaining clusters. These two clusters had
low-to-very low internal leaf structure values along with generally
high LMA, lignin, and EWT, and average pigments/pigment ratios.
They differed from one another mainly in internal structure (Cluster 4
having much lower values), as well as in LMA (Cluster 4 having higher
values). The third node separated Clusters 5, 6 and 7 from Clusters 8–
12. These three clusters weremainly characterized by very low pigment
values. Despite this, Cluster 5was quite unique fromClusters 6 and 7. Its
pigment ratio values were high, and its leaf surface, internal structure,
lignin, LMA and EWT were also very high. Clusters 6 and 7 differed
mainly in that Cluster 7 had lower LMA, pigment and pigment ratio
values, as well as broader distributions of pigment ratios and caroten-
oids. The fourth node separated Clusters 8 and 9 from 10 to 12. These
two clusters both had higher LMA values than did 10–12. Cluster 9
had lower lignin values, and Cluster 8 had higher leaf surface reflec-
tance. The fifth node separated Cluster 10 from Clusters 11 and 12. Clus-
ter 10 was characterized by very low internal structure values, average
surface reflectance, low lignin and EWT, very low LMA and average pig-
ment and pigment ratio values (but low carotenoids). Its very low LMA
and internal structure differentiated it from Clusters 11 and 12. Clusters
11 and 12 both had low surface reflectance values and low-to-very low
lignin, EWT and LMA. Lignin, EWT and LMA values were lower for Clus-
ter 11. Cluster 11 also had higher internal structure values and overall
high pigment values, as compared to Cluster 12′s average pigment/pig-
ment ratio values.

4. Discussion

4.1. Drivers of leaf spectral variability

The threemajor axes of spectral variability foundwithin our data are
supported by well-established relationships between leaf properties
and optical reflectance (Gates et al., 1965; Ollinger, 2011). The majority
of the spectral variation occurred in the NIR wavelength regions, cap-
tured by PC 1; PC 2 represented the SWIR region, and the lowest amount
of variation (PC 3) was in the VIS region. Similar patterns in variance
have been found in other studies of diverse leaf spectra (e.g., Asner et
al., 2014a). PC 1 carried information about the leaf surface and structure
of the cuticle, as well as leaf internal structure. Leaf surface features,
such as wax, hairs, and cuticle roughness and thickness, control light
reflected specularly from and scattered at the leaf surface (Grant et al.,
1993). These surface variations can be related to species or to physiolog-
ical status, but contain no information from the leaf interior (Vanderbilt
et al., 1987), and are a large source of spectral variation (Sims & Gamon,
2002). In our work, this component was most strongly correlated with
campaign (i.e., combination of month and year), but also with species
and site. Others have found species to have unique signatures based
on their surface and structural characteristics (e.g., da Luz, 2006). PC 2
in our study was most strongly correlated with the SWIR region,
which contains information related to water, dry matter and internal
leaf structure (Cheng et al., 2011, 2014; Kokaly & Clark, 1999). As
such, this component was strongly correlated with species and cPFT,
and to a lesser extent, with leaf form and leaf duration. Research by
Clark and Roberts (2012) found several SWIR features to be critical for
differentiating tropical tree species at leaf-level, and Lehmann et al.
(2015) found this portion of the spectrum was best able to identify
Mediterranean shrub and tree species. PC 3, representing the VIS region,
carried information related to pigments andwasmost strongly correlat-
ed with species. Relationships between pigment composition and spe-
cies have been found in many studies (e.g., Asner & Martin, 2009;
Carter & Knapp, 2001; Peñuelas et al., 1995). It is important to note
that the samples in our study consisted mainly of green leaves and in-
cluded only a small proportion of senescing leaves, likely accounting
for weaker correlations between PC 3 and season.

4.2. Interpreting leaf spectral clusters

The combination of information contained within the three PCs re-
sulted in twelve spectrally unique clusters in our data. These clusters
did not correspond directly to species or cPFTs; however, they did ex-
hibit clear functional differences based on spectral metrics. Observa-
tions from a single species or cPFT were often found in multiple
clusters, demonstrating functional variancewithin traditionally defined
classes was captured by the spectra, but represented in various clusters.
Intra-class functional variance is driven by several factors, including tax-
onomic identity, the evolution of functional traits, and trait plasticity, or
adjustmentswith respect to season (i.e., phenology) and environmental
conditions (e.g., elevation, soil type, weather, climate), (Asner et al.,
2014b; Ustin et al., 1993). Our clusters separated observations from spe-
cies with related taxonomy (e.g., same genus), but that have evolved
different traits in response to their respective ecosystem adaptations
(i.e., differences in climate, community composition, etc.). For example,
despite both being deciduous broadleaf oak trees, Q. douglasii and Q.
kelloggii shared no clusters in common. Instead, Q. douglasii observa-
tions were clustered with the evergreen Q. wislizeni in Clusters 8, 9
and 12. Both these oak species grow in the oak savanna ecosystem,
and have developed convergent leaf structural traits (i.e., smaller, some-
what sclerophyllous), perhaps in response to long summer droughts in
this environment (Nixon et al., 2002).

Additionally, our clustering was able to detect seasonal differ-
ences across ecosystems within the same cPFT. Two evergreen
broadleaf oaks, Q. wislizeni and Q. chrysolepsis, have similar leaf mor-
phology, but Q. chrysolepsis grows at higher elevation and gets more
water during the growing season (Nixon et al., 2002). Spring and fall
observations from both species were present in Cluster 9, whereas
summer samples from Q. wislizeni were in Cluster 12 while those
from Q. chrysolepsis were in Cluster 1. This indicates that while
these two oaks may function similarly during the spring and fall,
they seem to differ functionally during the summer. Q. wislizeni is
subject to drier summer conditions, and indeed, Cluster 12 had
much lower EWT than did Cluster 1. Our clusters also captured sea-
sonal changes in function within a single species. For example, Z.
mays, was present in 4 clusters (6, 7, 10 and 12). Cluster 10 contained
mainly May samples; Cluster 12 contained mainly August samples,
and Clusters 6 and 7 contained leaves in two stages of senescence
(early and late, respectively). Similarly, fall observations from the
deciduous Q. kelloggii were grouped into Clusters 6 (from the more
northern Blodgett Forest site) and 7 (from the more southern
Soaproot Saddle site). For this species, site environmental conditions
also appeared to play a role. Cluster 6 contained fall observations
from the more northern site, and Cluster 7 contained those from
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the more southern site. When within-class functional variance was
low, nearly all observations from a species were found within a sin-
gle cluster. The lower functional variance in these observations
could be due to their collection at just one site or due to little differ-
ence across seasons (e.g., S. acutus and A. viscida), or because of very
stable environmental conditions (e.g., V. vinifera). Our results dem-
onstrate that species and cPFTs, while representing some functional
trait differences in general, do not adequately account for differences
among individuals or in response to environmental constraints or
community interactions.

However, our clusters support the notion that unique functional
groups do exist in these data because observations within each cluster
shared similar functional metric profiles. Thus, the clusters represent
optically-defined leaf functional types. For example, observations from
the evergreen broadleaf shrub, A. visicida, which has whitish, thick,
tough leaves, formed a single cluster (5). This cluster was distinguished
by a combination of high surface reflectance, very low pigment values,
and high-to-very high EWT, lignin and LMA, traits that are advanta-
geous in a chaparral species. Two other clusters represented thin,
broad annual or deciduous, leaves in different stages of senescence (6
and 7). These clusters were characterized by low LMA, lignin and
water, and especially low pigment values. The cluster representing
late stages of senescence (7) had extremely low pigment values as
well as much lower pigment ratio values, indicating these leaves have
even lower light use efficiency (Gamon et al., 1997). This ability to ac-
count for temporal change (i.e., phenology) demonstrates a key advan-
tage of optically defined functional types over cPFTs. Another cluster (2)
combined observations from two very different cPFTs: those from wet-
land emergent species with those from the evergreen needleleaf tree A.
concolor. This cluster had very high values for nearly all functional met-
rics including internal structure values, lignin, EWT, LMA, and pigments.
While these species are distinctly different, their leaves share surpris-
ingly similar traits in that they are thick, have rounded surfaces and con-
tain high amounts of water and dry matter. Finally, functional
differences among clusters varied across all metrics, signifying the co-
variance of sets of functional traits are critical in defining cluster
function.

4.3. Additional considerations in defining optical functional types with
clustering

The clusters found in this study varied in their compactness and sep-
aration. This ismainly because both leaf spectra and leaf functional traits
are actually continuous variables, existing across gradients. Assigning
observations to hard classes will always be a challenge. However, if
we accept that spectra represent functional trait space, then some re-
gions of this feature space will be more densely populated due to re-
source limitations and tradeoffs that drive functional strategies. One
potential method for addressing this problem is to use fuzzy clustering
to allow multiple class memberships per observations (Almeida &
Sousa, 2006). Still, there is value in defining clusters (i.e., functional
types). For example, to better model plant functional behavior, we
need distributions of trait values, not onlymean values. Spectral clusters
represent variation in trait values within and across cPFTs and species,
better compartmentalizing actual functionality (i.e., during a given
time of year, in a particular location), and yielding more precise trait
distributions.

The cPFTs and species measured for this study are clearly a small
subset of the diversity of plant species. Thus, the trait variation
encompassed in these data will differ from that of other spectral
data sets, depending on the previously discussed sources of function-
al variance. The clusters defined in our analysis do not represent final
optical leaf functional types, but rather the approach presented here
could be used to identify relevant optical functional types in other
studies (likely resulting in different clusters). Ideally, as larger spec-
tral databases are compiled, this approach could be used to define an
over-arching set of optical functional types along with their respec-
tive trait distributions. Several such database initiatives are under-
way (e.g., EcoSIS, Specchio).

It is important to note thatwhilewe examined cluster differences for
a specific set of functionalmetrics, the leaf spectrum is sensitive tomany
other leaf functional traits not considered in this analysis, including ni-
trogen, phenols, and perhaps others (Asner et al., 2015; Kokaly &
Skidmore, 2015). Some of these will be important for quantifying addi-
tional functional differences among the clusters. However, because
these clusters were created using all spectral information, we assume
these traits were accounted for more completely than if the clusters
were defined by spectral metrics (Asner et al., 2014b). Lastly, spectral
reflectance is not sensitive to all functional traits, (e.g., rooting depth),
representing an unquantified limitation on its use to define PFTs reliant
on such traits. Some of these issueswill be addressed in forthcoming re-
search, which will examine how well spectral clusters correspond with
measured leaf functional traits, and will also compare them with clus-
ters defined using functional traits. We will also use these data to
more precisely evaluate the trait distributions of these optical leaf func-
tional types. Such distributions may be used to constrain both leaf- and
canopy-level radiative transfer inversions, potentially leading to more
accurate estimations of leaf biochemical properties from remote sensing
data.

Lastly, identification of leaf functional traits is only one piece of the
PFT puzzle. Other functional trait differences at the canopy scale, such
as life form or leaf area index, are clearly important for measuring and
mapping plant functions. A similar clustering approach could be taken
at the level of the individual plant or canopy to define optical plant or
ecosystem functional types, bymeasuring spectra at these scales and in-
cluding additional functional metrics in the analysis. Scaling this ap-
proach to the canopy will enable us to evaluate the impact of leaf
traits, canopy structure, and species and cPFT composition on the spec-
tral properties of entire landscapes.
5. Conclusions

We determined that leaf spectral variance, as captured by the first
few PCs, was more closely related to differences in leaf functional traits
than to categorical attributes such as cPFT or species. Clustering these
observations with the Dynamic Hybrid Clustering approach resulted in
valid and stable, ecologically meaningful groups that reflected key func-
tional differences. The clusters did not directly correspondwith cPFTs or
with species, but instead represented common patterns of trait co-var-
iance related to known plant functional strategies.

It is critical to note that simply knowing the cPFTs, or even the spe-
cies, present in an environment is not enough to predict their function-
ing. While species/cPFTs may represent some general trait patterns,
they do not adequately account for differences due to individual vari-
ability within the species or type, or in response to environmental con-
straints or community interactions. We must continue to define PFTs
that allow us to more directly characterize functional differences. Fur-
thermore, it is not enough define PFTs that rely on single traits or even
just a few traits. Instead, we should seek to characterize functional
types by the covariance traits and their distributions. The large number
of observations required to address these goals will require greater use
of remote sensing data, and spectral data in particular. Our research has
demonstrated the promise in using such data to define optical function-
al types at the leaf-level through a novel clustering approach using spec-
tra collected from a broad range of species and cPFTs, and incorporating
samples from a diverse range of ecosystem conditions, multiple sites
and across seasons. This approach uses no a priori information and
groups observations into functionally distinct clusters. Consequently,
membership in spectral clusters and functional profiles will provide
valuable insight into the drivers of functional trait variance within and
among species.



244 K.L. Roth et al. / Remote Sensing of Environment 184 (2016) 229–246
Acknowledgements

Wewould like to thank all thosewho contributed to thiswork, espe-
cially those who helped us collect and process field data especially Mui
Lay, Kristen Shapiro, Roger Stephens, Chris Preston, Shruti Khanna,
Larry Costick, George Scheer, Darren Drewry, Jasmine Shen, and Paul
Brower. This researchwas funded by NASA Grant #NNX12AP87G, Iden-
tification of Plant Functional Types by Characterization of Canopy
Chemistry, as part of the HyspIRI Preparatory Science Campaign. We
also want to thank the three anonymous reviewers who gave their
time and provided excellent feedback in improving this manuscript.

References

Ackerly, D.D., Cornwell, W.K., 2007. A trait-based approach to community assembly:
partitioning of species trait values into within- and among-community components.
Ecol. Lett. 10 (2), 135–145. http://dx.doi.org/10.1111/j.1461-0248.2006.01006.x.

Adler, P.B., Salguero-Gómez, R., Compagnoni, A., Hsu, J.S., Ray-Mukherjee, J., Mbeau-Ache,
C., Franco, M., 2014. Functional traits explain variation in plant life history strategies.
Proc. Natl. Acad. Sci. U. S. A. 111 (2), 740–745. http://dx.doi.org/10.1073/pnas.
1315179111.

Albert, C.H., De Bello, F., Boulangeat, I., Pellet, G., Lavorel, S., Thuiller, W., 2012. On the im-
portance of intraspecific variability for the quantification of functional diversity.
Oikos 121 (1), 116–126 Retrieved from http://dx.doi.org/10.1111/j.1600-0706.2011.
19672.x.

Albert, C.H., Thuiller, W., Yoccoz, N.G., Douzet, R., Aubert, S., Lavorel, S., 2010a. A multi-
trait approach reveals the structure and the relative importance of intra- vs. interspe-
cific variability in plant traits. Funct. Ecol. 24 (6), 1192–1201. http://dx.doi.org/10.
1111/j.1365-2435.2010.01727.x.

Albert, C.H., Thuiller, W., Yoccoz, N.G., Soudant, A., Boucher, F., Saccone, P., Lavorel, S.,
2010b. Intraspecific functional variability: extent, structure and sources of variation.
J. Ecol. 98 (3), 604–613. http://dx.doi.org/10.1111/j.1365-2745.2010.01651.x.

Almeida, T.I.R., De Souza Filho, C.R., 2004. Principal component analysis applied to fea-
ture-oriented band ratios of hyperspectral data: a tool for vegetation studies. Int.
J. Remote Sens. 25, 5005–5023.

Almeida, R.J., Sousa, J.M.C., 2006. Comparison of fuzzy clustering algorithms for classifica-
tion. International Symposium on Evolving Fuzzy Systems, pp. 112–117 (IEEE).

Alton, P.B., 2011. How useful are plant functional types in global simulations of the car-
bon, water, and energy cycles? J. Geophys. Res. Biogeosci. 116, 1–13. http://dx.doi.
org/10.1029/2010JG001430.

Asner, G.P., 1998. Biophysical and biochemical sources of variability in canopy reflectance.
Remote Sens. Environ. 64 (3), 234–253 (Retrieved from bGo to ISIN://
000074765100010).

Asner, G.P., 2013. Biological diversity mapping comes of age. Remote Sens. 5 (1), 374–376.
http://dx.doi.org/10.3390/rs5010374.

Asner, G.P., Martin, R.E., 2009. Airborne spectranomics: mapping canopy chemical and
taxonomic diversity in tropical forests. Front. Ecol. Environ. 7 (5), 269–276. http://
dx.doi.org/10.1890/070152.

Asner, G.P., Martin, R.E., Anderson, C.B., Knapp, D.E., 2015. Quantifying forest canopy
traits: imaging spectroscopy versus field survey. Remote Sens. Environ. 158, 15–27.
http://dx.doi.org/10.1016/j.rse.2014.11.011.

Asner, G.P., Martin, R.E., Carranza-Jiménez, L., Sinca, F., Tupayachi, R., Anderson, C.B.,
Martinez, P., 2014a. Functional and biological diversity of foliar spectra in tree cano-
pies throughout the Andes to Amazon region. New Phytol. http://dx.doi.org/10.1111/
nph.12895.

Asner, G. P., Martin, R. E., Ford, A. J., Metcalfe, D. J., & Liddell, M. J. (2009). Leaf chemical
and spectral diversity in Australian tropical forests. Ecol. Appl., 19(1), 236–253. Re-
trieved from (http://www.ncbi.nlm.nih.gov/pubmed/19323186)

Asner, G.P., Martin, R.E., Tupayachi, R., Anderson, C.B., Sinca, F., Carranza-Jiménez, L.,
Martinez, P., 2014b. Amazonian functional diversity from forest canopy chemical as-
sembly. Proc. Natl. Acad. Sci. U. S. A. 111 (15), 5604–5609. http://dx.doi.org/10.1073/
pnas.1401181111.

Atzberger, C., Guérif, M., Baret, F., Werner, W., 2010. Comparative analysis of three che-
mometric techniques for the spectroradiometric assessment of canopy chlorophyll
content in winter wheat. Comput. Electron. Agric. 73, 165–173.

Berkhin, P., 2006. A survey of clustering data mining techniques. In: Kogan, J., Nicholas, C.,
Teboulle, M. (Eds.), Grouping Multidimensional Data SE - 2. Springer, Berlin Heidel-
berg, pp. 25–71 http://dx.doi.org/10.1007/3-540-28349-8_2.

Bernhardt-Römermann, M., Römermann, C., Nuske, R., Parth, A., Klotz, S., Schmidt, W., &
Stadler, J. (2008). On the identification of the most suitable traits for plant functional
trait analyses. Oikos, 117(10), 1533–1541. (Retrieved from) http://dx.doi.org/10.
1111/j.0030-1299.2008.16776.x

Bhattacharjee, A., Richards, W.G., Staunton, J., Li, C., Monti, S., Vasa, P., ... Meyerson, M.,
2001. Classification of human lung carcinomas by mRNA expression profiling reveals
distinct adenocarcinoma subclasses. Proc. Natl. Acad. Sci. 98 (24), 13790–13795.
http://dx.doi.org/10.1073/pnas.191502998.

Bonan, G.B., Levis, S., Kergoat, L., Oleson, K.W., 2002. Landscapes as patches of plant func-
tional types: an integrating concept for climate and ecosystem models. Glob.
Biogeochem. Cycles 16 (2) (Retrieved from bGo to ISIN://000178887900007).

Cadotte, M.W., Cavender-Bares, J., Tilman, D., Oakley, T.H., 2009. Using phylogenetic, func-
tional and trait diversity to understand patterns of plant community productivity.
PLoS One 4 (5), e5695. http://dx.doi.org/10.1371/journal.pone.0005695.
Caldararu, S., Purves, D.W., Smith, M.J., 2015. The effect of using the plant functional type
paradigm on a data-constrained global phenology model. Biogeosci. Discuss. 12 (20),
16847–16884. http://dx.doi.org/10.5194/bgd-12-16847-2015.

Carter, G., Knapp, A., 2001. Leaf optical properties in higher plants: linking spectral char-
acteristics to stress and chlorophyll concentration. Am. J. Bot. 88 (4), 677–684.

Cheng, T., Rivard, B., Sánchez-Azofeifa, A., 2011. Spectroscopic determination of leaf water
content using continuous wavelet analysis. Remote Sens. Environ. 115 (2), 659–670.
http://dx.doi.org/10.1016/j.rse.2010.11.001.

Cheng, T., Rivard, B., Sánchez-Azofeifa, A.G., Féret, J.-B., Jacquemoud, S., Ustin, S.L., 2014.
Deriving leaf mass per area (LMA) from foliar reflectance across a variety of plant
species using continuous wavelet analysis. ISPRS J. Photogramm. Remote Sens. 87,
28–38. http://dx.doi.org/10.1016/j.isprsjprs.2013.10.009.

Chipman, J., Tibshirani, R., 2005. Hybrid hierarchical clustering with applications tomicro-
array data. Biostatistics 7 (2), 286–301.

Clark, M.L., Roberts, D.A., 2012. Species-level differences in hyperspectral metrics among
tropical rainforest trees as determined by a tree-based classifier. Remote Sens. 4 (6),
1820–1855. http://dx.doi.org/10.3390/rs4061820.

da Luz, B.R., 2006. Attenuated total reflectance spectroscopy of plant leaves: a tool for eco-
logical and botanical studies. New Phytol. 172 (2), 305–318. http://dx.doi.org/10.
1111/j.1469-8137.2006.01823.x.

Duckworth, J.C., Kent, M., Ramsay, P.M., 2000. Plant functional types: an alternative to tax-
onomic plant community description in biogeography? Prog. Phys. Geogr. 24 (4),
515–542 (Retrieved from bGo to ISIN://000165678600003).

Féret, J.-B., Asner, G.P., 2014. Mapping tropical forest canopy diversity using high-fidelity
imaging spectroscopy. Ecol. Appl. 24, 1289–1296. http://dx.doi.org/10.1890/13-1824.
1.

Féret, J.-B., François, C., Gitelson, A.A., Asner, G.P., Barry, K.M., Panigada, C., Richardson,
A.D., Jacquemoud, S., 2011. Optimizing spectral indices and chemometric analysis of
leaf chemical properties using radiative transfer modeling. Remote Sens. Environ.
115, 2742–2750.

Féret, J.-B., François, C., Asner, G.P., Gitelson, A.A., Martin, R.E., Bidel, L.P.R., ... Jacquemoud,
S., 2008. PROSPECT-4 and 5: advances in the leaf optical properties model separating
photosynthetic pigments. Remote Sens. Environ. 112 (6), 3030–3043. http://dx.doi.
org/10.1016/j.rse.2008.02.012.

Fowlkes, E.B., Mallows, C.L., 1983. A method for comparing two hierarchical clusterings.
J. Am. Stat. Assoc. 78 (383), 553. http://dx.doi.org/10.2307/2288117.

Gamon, J.A., Serrano, L., Surfus, J.S., 1997. The photochemical reflectance index: an optical
indicator of photosynthetic radiation use efficiency across species, functional types,
and nutrient levels. Oecologia 112 (4), 492–501 (Retrieved from bGo to ISIN://
A1997YK58000008).

Garcia, R., Hedley, J., Tin, H., Fearns, P., 2015. A method to analyze the potential of optical
remote sensing for benthic habitat mapping. Remote Sens. 7 (10), 13157–13189.
http://dx.doi.org/10.3390/rs71013157.

Gates, D.M., Keegan, H.J., Weidner, V.R., Schleter, J.C., 1965. Spectral properties of plants.
Appl. Opt. 4 (1), 11. http://dx.doi.org/10.1364/AO.4.000011.

Göttlicher, D., Albert, J., Nauss, T., Bendix, J., 2011. Optical properties of selected plants
from a tropical mountain ecosystem – traits for plant functional types to parametrize
a land surface model. Ecol. Model. 222 (3), 493–502. http://dx.doi.org/10.1016/j.
ecolmodel.2010.09.021.

Grant, L., Daughtry, C.S.T., Vanderbilt, V.C., 1993. Polarized and specular reflectance vari-
ation with leaf surface-features. Physiol. Plant. 88 (1), 1–9 (Retrieved from bGo to
ISIN://A1993LH31400001).

Groenendijk, M., Dolman, A.J., van der Molen, M.K., Leuning, R., Arneth, A., Delpierre, N.,
Wohlfahrt, G., 2011. Assessing parameter variability in a photosynthesis model with-
in and between plant functional types using global Fluxnet eddy covariance data.
Agric. For. Meteorol. 151 (1), 22–38. http://dx.doi.org/10.1016/j.agrformet.2010.08.
013.

Hardle, W., Simar, L., 2003. Applied Multivariate Statistical Analysis.
Hesketh, M., Sánchez-Azofeifa, G.A., 2012. The effect of seasonal spectral variation on spe-

cies classification in the Panamanian tropical forest. Remote Sens. Environ. 118,
73–82. http://dx.doi.org/10.1016/j.rse.2011.11.005.

Homolová, L., Malenovský, Z., Clevers, J.G.P.W., García-Santos, G., Schaepman, M.E., 2013.
Review of optical-based remote sensing for plant trait mapping. Ecol. Complex. 15,
1–16. http://dx.doi.org/10.1016/j.ecocom.2013.06.003.

Hubert, L., Arabie, P., 1985. Comparing partitions. J. Classif. 2 (1), 193–218. http://dx.doi.
org/10.1007/BF01908075.

Kattge, J., Diaz, S., Lavoral, S., Prentice, I.C., Leadley, P.W., BÖNISCH, G., ... WIRTH, C., 2011.
TRY - a global database of plant traits. Glob. Chang. Biol. 17 (9). http://dx.doi.org/10.
1111/j.1365-2486.2011.02451.x.

Kaufman, L., Rousseeuw, P.J., 2005. Finding Groups in Data: an Introduction to Cluster
Anlaysis. second ed. John Wiley & Sons, Inc.

Kokaly, R.F., Clark, R.N., 1999. Spectroscopic determination of leaf biochemistry using band-
depth analysis of absorption features and stepwise multiple linear regression. Remote
Sens. Environ. 67 (3), 267–287 (Retrieved from bGo to ISIN://000078472700002).

Kokaly, R.F., Skidmore, A.K., 2015. Plant phenolics and absorption features in vegetation
reflectance spectra near 1.66 μm. Int. J. Appl. Earth Obs. Geoinf. 43, 1–29. http://dx.
doi.org/10.1016/j.jag.2015.01.010.

Langfelder, P., Zhang, B., Horvath, S., 2008. Defining clusters from a hierarchical cluster
tree: the dynamic tree cut package for R. Bioinformatics 24 (5), 719–720. http://dx.
doi.org/10.1093/bioinformatics/btm563.

Langfelder, P., Zhang, B., Horvath, S., 2014. dynamicTreeCut: Methods for Detection of
Clusters in Hierarchical Clustering Dendrograms. R Package Version 1.62. https://
CRAN.R-project.org/package=dynamicTreeCut.

Laughlin, D.C., Laughlin, D.E., 2013. Advances in modeling trait-based plant community
assembly. Trends Plant Sci. 18 (10), 584–593. http://dx.doi.org/10.1016/j.tplants.
2013.04.012.

http://dx.doi.org/10.1111/j.1461-0248.2006.01006.x
http://dx.doi.org/10.1073/pnas.1315179111
http://dx.doi.org/10.1073/pnas.1315179111
http://dx.doi.org/10.1111/j.1365-2435.2010.01727.x
http://dx.doi.org/10.1111/j.1365-2435.2010.01727.x
http://dx.doi.org/10.1111/j.1365-2745.2010.01651.x
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0025
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0025
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0025
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0030
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0030
http://dx.doi.org/10.1029/2010JG001430
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0040
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0040
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0040
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0040
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0040
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0040
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0040
http://dx.doi.org/10.3390/rs5010374
http://dx.doi.org/10.1890/070152
http://dx.doi.org/10.1016/j.rse.2014.11.011
http://dx.doi.org/10.1111/nph.12895
http://dx.doi.org/10.1111/nph.12895
http://www.ncbi.nlm.nih.gov/pubmed/19323186
http://dx.doi.org/10.1073/pnas.1401181111
http://dx.doi.org/10.1073/pnas.1401181111
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0070
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0070
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0070
http://dx.doi.org/10.1007/3-540-28349-8_2
http://dx.doi.org/10.1073/pnas.191502998
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0085
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0085
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0085
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0085
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0085
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0085
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0085
http://dx.doi.org/10.1371/journal.pone.0005695
http://dx.doi.org/10.5194/bgd-12-16847-2015
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0100
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0100
http://dx.doi.org/10.1016/j.rse.2010.11.001
http://dx.doi.org/10.1016/j.isprsjprs.2013.10.009
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0115
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0115
http://dx.doi.org/10.3390/rs4061820
http://dx.doi.org/10.1111/j.1469-8137.2006.01823.x
http://dx.doi.org/10.1111/j.1469-8137.2006.01823.x
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0130
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0130
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0130
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0130
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0130
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0130
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0130
http://dx.doi.org/10.1890/13-1824.1
http://dx.doi.org/10.1890/13-1824.1
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0140
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0140
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0140
http://dx.doi.org/10.1016/j.rse.2008.02.012
http://dx.doi.org/10.2307/2288117
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0155
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0155
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0155
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0155
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0155
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0155
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0155
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0155
http://dx.doi.org/10.3390/rs71013157
http://dx.doi.org/10.1364/AO.4.000011
http://dx.doi.org/10.1016/j.ecolmodel.2010.09.021
http://dx.doi.org/10.1016/j.ecolmodel.2010.09.021
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0175
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0175
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0175
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0175
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0175
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0175
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0175
http://dx.doi.org/10.1016/j.agrformet.2010.08.013
http://dx.doi.org/10.1016/j.agrformet.2010.08.013
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0185
http://dx.doi.org/10.1016/j.rse.2011.11.005
http://dx.doi.org/10.1016/j.ecocom.2013.06.003
http://dx.doi.org/10.1007/BF01908075
http://dx.doi.org/10.1111/j.1365-2486.2011.02451.x
http://dx.doi.org/10.1111/j.1365-2486.2011.02451.x
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0210
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0210
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0215
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0215
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0215
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0215
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0215
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0215
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0215
http://dx.doi.org/10.1016/j.jag.2015.01.010
http://dx.doi.org/10.1093/bioinformatics/btm563
https://cran.r-project.org/packageynamicTreeCut
https://cran.r-project.org/packageynamicTreeCut
http://dx.doi.org/10.1016/j.tplants.2013.04.012
http://dx.doi.org/10.1016/j.tplants.2013.04.012


245K.L. Roth et al. / Remote Sensing of Environment 184 (2016) 229–246
Lavorel, S., Garnier, E., 2002. Predicting changes in community composition and ecosys-
tem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16 (5),
545–556 (Retrieved from bGo to ISIN://000178119300001).

Lehmann, J., Große-Stoltenberg, A., Römer,M., Oldeland, J., 2015. Field spectroscopy in the
VNIR-SWIR region to discriminate between Mediterranean native plants and exotic-
invasive shrubs based on leaf tannin content. Remote Sens. 7, 1225–1241. http://dx.
doi.org/10.3390/rs70201225.

LI-COR, 1983. LI-1800-12 Integrating Sphere Instruction Manual. LI-COR, Inc., Lincoln, NE
(Pub. No. 8305-0034).

Mesarch, M.A., Walter-Shea, E.A., Asner, G.P., Middleton, E.M., Chan, S.S., 1999. A revised
measurementmethodology for conifer needles spectral optical properties: evaluating
the influence of gaps between elements. Remote Sens. Environ. 68 (2), 177–192 (Re-
trieved from bGo to ISIN://000080083800007).

Messier, J., McGill, B.J., Lechowicz, M.J., 2010. How do traits vary across ecological scales?
A case for trait-based ecology. Ecol. Lett. 13 (7), 838–848. http://dx.doi.org/10.1111/j.
1461-0248.2010.01476.x.

Milligan, G.W., Cooper, M.C., 1986. A study of the comparability of external criteria for hi-
erarchical cluster analysis. Multivar. Behav. Res. 21 (4), 441–458.

Monti, S., Tamayo, P., Mesirov, J., Golub, T., Sebastiani, P., Kohane, I.S., Ramoni, M.F., 2003.
Consensus clustering: a resampling-based method for class discovery and visualiza-
tion of gene expression microarray data. Mach. Learn. 52 (i), 91–118. http://dx.doi.
org/10.1023/A:1023949509487.

Moorcroft, P.R., 2006. How close are we to a predictive science of the biosphere? Trends
Ecol. Evol. 21 (7), 400–407. http://dx.doi.org/10.1016/j.tree.2006.04.009.

Nixon, K., Standiford, R., McCreary, D., Purcell, K., 2002. The oak (Quercus) biodiversity of
California and adjacent regions. In: Standiford, R.B., McCreary, D., Purcell, K.L. (Eds.),
Proceedings of the Fifth Symposium on Oak Woodlands: Oaks in California's
Challenging Landscape , pp. 3–20 (Albany, CA. Retrieved from) http://scholar.
google.com/scholar?hl=en&btnG=Search&q=intitle:The+Oak+(+Quercus+)+
Biodiversity+of+California+and+Adjacent+Regions+1#0.

Ollinger, S.V., 2011. Sources of variability in canopy reflectance and the convergent prop-
erties of plants. New Phytol. 189 (2), 375–394. http://dx.doi.org/10.1111/j.1469-
8137.2010.03536.x.

Pappas, C., Fatichi, S., Burlando, P., 2014. Terrestrial water and carbon fluxes across climat-
ic gradients: does plant diversity matter? New Phytol. 16 (i), 3663.

Pavlick, R., Drewry, D.T., Bohn, K., Reu, B., Kleidon, A., 2012. The Jena Diversity-Dynamic
Global Vegetation Model (JeDi-DGVM): a diverse approach to representing terrestrial
biogeography and biogeochemistry based on plant functional trade-offs. Biogeosci.
Discuss. 9 (4), 4627–4726. http://dx.doi.org/10.5194/bgd-9-4627-2012.

Peñuelas, J., Baret, F., Filella, I., Penuelas, J., Baret, F., Filella, I., 1995. Semiempirical in-
dexes to assess carotenoids chlorophyll-a ratio from leaf spectral reflectance.
Photosynthetica 31 (2), 221–230 (Retrieved from bGo to ISIN://WOS:
A1995RK28000008).

Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., ...
Cornelissen, J.H.C., 2013. New handbook for standardisedmeasurement of plant func-
tional traits worldwide. Aust. J. Bot. 61, 167–234.

Core Team, R., 2015. R: A language and environment for statistical computing. R Founda-
tion for Statistical Computing (Vienna, Austria. URL https://www.R-project.org/.).

Rautiainen, M., Mõttus, M., Yáñez-Rausell, L., Homolová, L., Malenovský, Z., Schaepman,
M.E., 2012. A note on upscaling coniferous needle spectra to shoot spectral albedo.
Remote Sens. Environ. 117, 469–474.

Reich, P.B., Wright, I.J., Cavender-Bares, J., Craine, J.M., Oleksyn, J., Westoby, M., Walters,
M.B., 2003. The evolution of plant functional variation: traits, spectra, and strategies.
Int. J. Plant Sci. 164 (S3), S143–S164.

Reichstein, M., Bahn, M., Mahecha,M. D., Kattge, J., & Baldocchi, D. D. (2014). Linking plant
and ecosystem functional biogeography. Proc. Natl. Acad. Sci., (iDiv). doi:http://dx.
doi.org/10.1073/pnas.1216065111

Rousseeuw, P.J., 1986. A visual display for hierarchical classification. In: Diday, E.,
Escoufier, Y., Lebart, L., Pages, J., Schektman, Y., Tomassone, R. (Eds.), Data Analysis
and Informatics 4. North-Holland, Amsterdam, pp. 743–748.

RStudio Team, 2015. RStudio: Integrated Development for R. RStudio, Inc., Boston, MA
URLhttp://www.rstudio.com.

Ruffin, C., King, R., 1999. The analysis of hyperspectral data using Savitzsky-Golay
filtering – theoretical basis (part 1). Proceedings of the IEEE International Geo-
science and Remote Sensing Symposium, Hamburg, Germany (EEE Catalog Num-
ber 99CH36293C).

Sakschewski, B., von Bloh, W., Boit, A., Rammig, A., Kattge, J., Poorter, L., ... Thonicke, K.,
2015. Leaf and stem economics spectra drive diversity of functional plant traits in a
dynamic global vegetation model. Glob. Chang. Biol. 21, 2711–2725. http://dx.doi.
org/10.1111/gcb.12870.

Sandel, B., Gutiérrez, A.G., Reich, P.B., Schrodt, F., Dickie, J., Kattge, J., 2015. Estimating the
missing species bias in plant trait measurements. J. Veg. Sci. 26 (5), 828–838. http://
dx.doi.org/10.1111/jvs.12292.

Savitzky, A., Golay, M.J.E., 1964. Smoothing and differentiation of data by simplified least
squares procedures. Anal. Chem. 36 (8), 1627–1639. http://dx.doi.org/10.1021/
ac60214a047.

Schaepman, M.E., Ustin, S.L., Plaza, A.J., Painter, T.H., Verrelst, J., Liang, S., 2009. Earth
system science related imaging spectroscopy—an assessment. Remote Sens.
Environ. 113 (Supplement 1), S123–S137. http://dx.doi.org/10.1016/j.rse.2009.
03.001.

Schimel, D.S., Asner, G.P., Moorcroft, P., 2013. Observing changing ecological diversity in
the Anthropocene. Front. Ecol. Environ. 11 (3), 129–137. http://dx.doi.org/10.1890/
120111.

Schimel, D.S., Pavlick, R., Fisher, J.B., Asner, G.P., Saatchi, S., Townsend, P., ... Cox, P., 2015.
Observing terrestrial ecosystems and the carbon cycle from space. Glob. Chang. Biol.
21, 1762–1776. http://dx.doi.org/10.1111/gcb.12822.
Semenova, G.V., Van Der Maarel, E., 2000. Plant functional types: a strategic perspective.
J. Veg. Sci. 11 (6), 917–922. http://dx.doi.org/10.2307/3236562.

Shi, K., Li, Y., Li, L., Lu, H., Song, K., Liu, Z., ... Li, Z., 2013. Remote chlorophyll-a estimates for
inland waters based on a cluster-based classification. Sci. Total Environ. 444, 1–15.
http://dx.doi.org/10.1016/j.scitotenv.2012.11.058.

Shipley, B., Lechowicz, M. J., Wright, I. J., & Reich, P. B. (2006). Fundamental trade-offs gen-
erating the worldwide leaf economics spectrum. Ecology, 87(3), 535–41. Retrieved
from (http://www.ncbi.nlm.nih.gov/pubmed/16602282)

Sims, D.A., Gamon, J.A., 2002. Relationships between leaf pigment content and
spectral reflectance across a wide range of species, leaf structures and develop-
mental stages. Remote Sens. Environ. 81 (2–3), 337–354 (Pii S0034-
4257(02)00010-X).

Sims, D.A., Gamon, J.A., 2003. Estimation of vegetation water content and photosynthetic
tissue area from spectral reflectance: a comparison of indices based on liquid water
and chlorophyll absorption features. Remote Sens. Environ. 84 (4), 526–537.

Smith, T.M., Shugart, H.H., Woodward, F.I., 1997. Plant Functional Types: Their Relevance
to Ecosystem Properties and Global Change. International Geosphere-Biosphere Pro-
gramme Book Series. Cambridge University Press, New York.

Sokal, R.R., Rohlf, F.J., 1962. The comparison of dendrograms by objective methods. Taxon
11, 33–40.

Steinbach, M., Ertoz, L., Kumar, V., 2004. The challenges of clustering high dimensional
data. New Directions in Statistical Physics, pp. 273–309 http://dx.doi.org/10.1007/
978-3-662-08968-2_16.

Stimson, H.C., Breshears, D.D., Ustin, S.L., Kefauver, S.C., 2005. Spectral sensing of foliar
water conditions in two co-occurring conifer species: Pinus edulis and Juniperus
monosperma. Remote Sens. Environ. 96, 108–118.

Sun,W.X., Liang, S.L., Xu, G., Fang, H.L., Dickinson, R., 2008. Mapping plant functional types
from MODIS data using multisource evidential reasoning. Remote Sens. Environ. 112
(3), 1010–1024 (Retrieved from bGo to ISIN://000254443700031).

Torrecilla, E., Stramski, D., Reynolds, R.a., Millán-Núñez, E., Piera, J., 2011. Cluster analysis
of hyperspectral optical data for discriminating phytoplankton pigment assemblages
in the open ocean. Remote Sens. Environ. 115 (10), 2578–2593. http://dx.doi.org/10.
1016/j.rse.2011.05.014.

Ustin, S.L., Gamon, J.A., 2010. Remote sensing of plant functional types. New Phytol. 186
(4), 795–816. http://dx.doi.org/10.1111/j.1469-8137.2010.03284.x.

Ustin, S.L., Gitelson, A.A., Jacquemoud, S., Schaepman, M., Asner, G.P., Gamon, J.A., Zarco-
Tejada, P., 2009. Retrieval of foliar information about plant pigment systems from
high resolution spectroscopy. Remote Sens. Environ. 113, S67–S77. http://dx.doi.
org/10.1016/j.rse.2008.10.019.

Ustin, S.L., Roberts, D.A., Gamon, J.A., Asner, G.P., Green, R.O., 2004. Using imaging spec-
troscopy to study ecosystem processes and properties. Bioscience 54 (6), 523.
http://dx.doi.org/10.1641/0006-3568(2004)054[0523:UISTSE]2.0.CO;2.

Ustin, S.L., Sanderson, E.W., Grossman, Y., Hart, Q., Haxo, R., 1993. Relationships between
pigment composition variation and reflectance for plant species from a coastal savan-
nah in California. In: Green, R.O. (Ed.), Fourth Annual JPL Airborne ScienceWorkshop.
NASA Jet Propulsion Laboratory, Washington, D.C., pp. 181–184.

Van Bodegom, P.M., Douma, J.C., Verheijen, L.M., 2014. A fully traits-based approach to
modeling global vegetation distribution. Proc. Natl. Acad. Sci. U. S. A. 111 (38),
13733–13738. http://dx.doi.org/10.1073/pnas.1304551110.

Van Bodegom, P.M., Douma, J.C., Witte, J.P.M., Ordoñez, J.C., Bartholomeus, R.P., Aerts, R.,
2012. Going beyond limitations of plant functional types when predicting global eco-
system-atmosphere fluxes: exploring the merits of traits-based approaches. Glob.
Ecol. Biogeogr. 21 (6), 625–636. http://dx.doi.org/10.1111/j.1466-8238.2011.00717.x.

van der Laan, M.J., Pollard, K.S., 2003. A new algorithm for hybrid hierarchical clustering
with visualization and the bootstrap. Journal of Statistical Planning and Inference
117, 275–303. http://dx.doi.org/10.1016/S0378-3758(02)00388-9.

Vanderbilt, V.C., Grant, L., Daughtry, C.S.T., 1987. Polarization of light scattered by clover.
Proc. IEEE 73 (6), 1012–1024. http://dx.doi.org/10.1016/0034-4257(87)90011-3.

Violle, C., Jiang, L., 2009. Towards a trait-based quantification of species niche. J. Plant Ecol.
2 (2), 87–93. http://dx.doi.org/10.1093/jpe/rtp007.

Violle, C., Navas, M.-L.L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., Garnier, E., 2007. Let
the concept of trait be functional! Oikos 116 (5), 882–892. http://dx.doi.org/10.1111/
j.2007.0030-1299.15559.x.

Ward, J.H., 1963. Hierarchical grouping to optimize an objective function. J. Am. Stat.
Assoc. 58 (301), 236–244.

Westoby, M., Wright, I.J., 2006. Land-plant ecology on the basis of functional traits. Trends
Ecol. Evol. 21 (5), 261–268. http://dx.doi.org/10.1016/j.tree.2006.02.004.

Wilkerson, M.D., Hayes, D.N., 2010. ConsensusClusterPlus: a class discovery tool with con-
fidence assessments and item tracking. Bioinformatics 26 (12), 1572–1573. http://dx.
doi.org/10.1093/bioinformatics/btq170.

Wilson, J.B., 1999. Guilds, functional types and ecological groups. Oikos 86 (3), 507–522
(Retrieved from bGo to ISIN://000082248200011).

Wishart, D., 1998. Efficient hierarchical cluster analysis for data mining and knowledge
discovery. Computer Science and Statistics, pp. 257–263.

Woodward, F.I., Cramer, W., 1996. Introduction. J. Veg. Sci. 7 (3), 306–308 (Retrieved
from) http://www.jstor.org/stable/3236273.

Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., ... Villar, R., 2004.
The worldwide leaf economics spectrum. Nature 428 (6985), 821–827. http://dx.doi.
org/10.1016/j.tree.2010.11.011.

Wright, J.P., Naeem, S., Hector, A., Lehman, C., Reich, P.B., Schmid, B., Tilman, D., 2006. Con-
ventional functional classification schemes underestimate the relationship with eco-
system functioning. Ecol. Lett. 9 (2), 111–120. http://dx.doi.org/10.1111/j.1461-0248.
2005.00850.x.

Wright, J.P., Sutton-Grier, A., 2012. Does the leaf economic spectrum hold within local
species pools across varying environmental conditions? Funct. Ecol. 26 (6),
1390–1398. http://dx.doi.org/10.1111/1365-2435.12001.

http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0240
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0240
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0240
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0240
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0240
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0240
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0240
http://dx.doi.org/10.3390/rs70201225
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0250
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0250
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0255
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0255
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0255
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0255
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0255
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0255
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0255
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0255
http://dx.doi.org/10.1111/j.1461-0248.2010.01476.x
http://dx.doi.org/10.1111/j.1461-0248.2010.01476.x
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0265
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0265
http://dx.doi.org/10.1023/A:1023949509487
http://dx.doi.org/10.1016/j.tree.2006.04.009
http://scholar.google.com/scholar?hln&btnG=earch&qntitle:The+ak++uercus++iodiversityf+aliforniand+djacent+egions+0
http://scholar.google.com/scholar?hln&btnG=earch&qntitle:The+ak++uercus++iodiversityf+aliforniand+djacent+egions+0
http://scholar.google.com/scholar?hln&btnG=earch&qntitle:The+ak++uercus++iodiversityf+aliforniand+djacent+egions+0
http://dx.doi.org/10.1111/j.1469-8137.2010.03536.x
http://dx.doi.org/10.1111/j.1469-8137.2010.03536.x
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0290
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0290
http://dx.doi.org/10.5194/bgd-9-4627-2012
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0300
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0300
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0300
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0300
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0300
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0300
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0300
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0300
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0305
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0305
https://www.R-project.org
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0315
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0315
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0320
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0320
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0325
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0325
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0325
http://www.rstudio.com
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0335
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0335
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0335
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0335
http://dx.doi.org/10.1111/gcb.12870
http://dx.doi.org/10.1111/jvs.12292
http://dx.doi.org/10.1021/ac60214a047
http://dx.doi.org/10.1021/ac60214a047
http://dx.doi.org/10.1016/j.rse.2009.03.001
http://dx.doi.org/10.1016/j.rse.2009.03.001
http://dx.doi.org/10.1890/120111
http://dx.doi.org/10.1890/120111
http://dx.doi.org/10.1111/gcb.12822
http://dx.doi.org/10.2307/3236562
http://dx.doi.org/10.1016/j.scitotenv.2012.11.058
http://www.ncbi.nlm.nih.gov/pubmed/16602282
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0380
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0380
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0380
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0380
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0385
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0385
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0385
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0390
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0390
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0390
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0395
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0395
http://dx.doi.org/10.1007/978-3-662-08968-2_16
http://dx.doi.org/10.1007/978-3-662-08968-2_16
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0405
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0405
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0405
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0410
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0410
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0410
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0410
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0410
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0410
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0410
http://dx.doi.org/10.1016/j.rse.2011.05.014
http://dx.doi.org/10.1016/j.rse.2011.05.014
http://dx.doi.org/10.1111/j.1469-8137.2010.03284.x
http://dx.doi.org/10.1016/j.rse.2008.10.019
http://dx.doi.org/10.1641/0006-3568(2004)054[0523:UISTSE]2.0.CO;2
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0435
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0435
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0435
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0435
http://dx.doi.org/10.1073/pnas.1304551110
http://dx.doi.org/10.1111/j.1466-8238.2011.00717.x
http://dx.doi.org/10.1016/S0378-3758(02)00388-9
http://dx.doi.org/10.1016/0034-4257(87)90011-3
http://dx.doi.org/10.1093/jpe/rtp007
http://dx.doi.org/10.1111/j.2007.0030-1299.15559.x
http://dx.doi.org/10.1111/j.2007.0030-1299.15559.x
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0470
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0470
http://dx.doi.org/10.1016/j.tree.2006.02.004
http://dx.doi.org/10.1093/bioinformatics/btq170
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0485
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0485
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0485
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0485
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0485
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0485
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0490
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0490
http://www.jstor.org/stable/3236273
http://dx.doi.org/10.1016/j.tree.2010.11.011
http://dx.doi.org/10.1111/j.1461-0248.2005.00850.x
http://dx.doi.org/10.1111/j.1461-0248.2005.00850.x
http://dx.doi.org/10.1111/1365-2435.12001


246 K.L. Roth et al. / Remote Sensing of Environment 184 (2016) 229–246
Yáñez-rausell, L., Schaepman, M.E., Member, S., Clevers, J.G.P.W., 2014a. Minimizing Mea-
surement Uncertainties of Coniferous Needle-Leaf Optical Properties, Part I : Method-
ological Review. IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing. 7(2) pp. 399–405.

Yáñez-Rausell, L., Malenovský, Z., Clevers, J.G.P.W., Schaepman, M.E., 2014b. Minimizing
Measurement Uncertainties of Coniferous Needle-Leaf Optical Properties. Part II :
Experimental Setup and Error Analysis. IEEE International Geoscience and Remote
Sensing Symposium 7(2) pp. 406–420.

Yang, Y., Zhu, Q., Peng, C., Wang, H., Chen, H., 2015. From plant functional types to plant
functional traits: a new paradigm in modelling global vegetation dynamics. Prog.
Phys. Geogr. 39 (4), 514–535. http://dx.doi.org/10.1177/0309133315582018.

http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0515
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0515
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0515
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0515
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0520
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0520
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0520
http://refhub.elsevier.com/S0034-4257(16)30272-3/rf0520
http://dx.doi.org/10.1177/0309133315582018

	Leaf spectral clusters as potential optical leaf functional types within California ecosystems
	1. Introduction
	2. Methods
	2.1. Study sites and sample collection
	2.2. Leaf spectral data collection and processing
	2.3. Analysis
	2.3.1. Overview
	2.3.2. Summarizing and interpreting information in the leaf spectra
	2.3.3. Clustering
	2.3.3.1. Agglomerative hierarchical clustering
	2.3.3.2. Dynamic Hybrid Clustering
	2.3.3.3. Cluster validation and stability assessment

	2.3.4. Cluster correspondence with categorical attributes and functional metrics


	3. Results
	3.1. Summarizing and interpreting information in the leaf spectra
	3.2. Leaf spectral clusters
	3.3. Cluster correspondence with categorical attributes
	3.4. Cluster spectral functional profiles

	4. Discussion
	4.1. Drivers of leaf spectral variability
	4.2. Interpreting leaf spectral clusters
	4.3. Additional considerations in defining optical functional types with clustering

	5. Conclusions
	Acknowledgements
	References


