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Frequently in evolutionary biology we are interested in how different quan-

titative traits of an organism evolve together over time. In order to properly

understand these relationships, we need to adjust for the shared evolutionary

history of these organisms. Previous methods rely on modeling quantitative

traits as undergoing a high dimensional, correlated multivariate Brownian

diffusion (MBD) down a phylogenetic tree. In order to present a more nuanced

approach to understanding these trait relationships, we develop a phylogenetic

factor analysis (PFA) model on these quantitative traits by assuming that the

relatively low dimensional factors, rather than the traits themselves, undergo

independent Brownian diffusion down a phylogenetic tree. Additionally, we

develop a novel method for inferring the marginal likelihood estimates of

probit models which allows for accurate model selection in the presence of

discrete data. We demonstrate using Bayes factors that this PFA model is a

more probable model than the MBD model. We then continue to develop this

PFA method by relying on a shrinkage prior on the loadings matrix. This

shrinkage prior consists of a normal prior with a global and local standard

deviation component, and a half cauchy prior on these standard deviation

ii



components. With this we can distinguish trait relationships which would

otherwise remain hidden using a standard normal prior on the loadings. Lastly,

when we wish to incorporate a large number of taxa in our MBD and PFA

models, obtaining a complete suite of measurements is difficult. These missing

measurements make these analyses relatively inefficient and difficult to use for

larger problems. To rectify this, we develop a method by which we can evaluate

the likelihood of an MBD model by analytically integrating out missing values,

and then apply similar principles to integrate out the factors in a PFA model.

These innovations allow for massive speedup in our inference.
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CHAPTER 1

Introduction

In comparative biology, we are frequently concerned with the way different

characteristics or traits of an organism relate to each other. The principle con-

founder in these relationships stems from the reality that closely related species

tend to have similar characteristics. Therefore any inference on trait relation-

ships must adjust for this evolutionary history [Felsenstein, 1985]. Felsenstein

[1985] resolved this challenge in the bivariate case by treating each trait as

undergoing correlated Brownian diffusion down a phylogenetic tree. There are

many adaptations to this method including but not limited to [Huelsenbeck and

Rannala, 2003, Lemey et al., 2010, Pybus et al., 2012, Cybis et al., 2015, Vrancken

et al., 2015, Adams, 2014, Revell, 2009]. Many of the methods described in those

papers, as well as this thesis, rely heavily on Bayesian phylogenetic models and

Bayesian phylogenetic inference. Therefore, we begin this thesis in Chapter 2

with a review of phylogenetics models, specifically how to construct likelihoods

from evolutionary histories and sequence data. We then continue on to discuss

Bayesian methods, and methods of Bayesian inference via Markov chain Monte

Carlo, specifically the Metropolis-Hastings and Gibbs sampling algorithms.

Many existing phylogenetic trait methods, such as phylogenetic principle

components analysis (pPCA) from Revell [2009] scale cubicly with the number

of taxa and/or traits and are therefore difficult to use in larger examples.

Others, such as phylogenetic least squares (PGLS) [Adams, 2014], allow for

statistical testing of overall associations, but fall short when trying to evaluate
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pairwise relationships. The Bayesian multivariate Brownian diffusion (MBD)

[Lemey et al., 2010] infers a correlation matrix in the context of a Brownian

diffusion, and does not have these same scaling issues, scaling linearly with

the number of taxa. In spite of this, there are numerous areas where the MBD

can be improved. For example, the MBD model hinges on the assumption that

there is only a single process for all traits which is constant throughout the

tree. Relatedly, the MBD method is unable to account for naturally occurring

variance independent of the evolutionary process.

In order to tackle these issues, in Chapter 5, we develop the phylogenetic

factor analysis (PFA) method. This method is a factor analysis method which

decomposes the trait measurements across taxa into a loadings matrix, a

factor matrix, and an error term independent of evolution. We then make

the assumption that these independent factors undergo Brownian diffusion

down a phylogenetic tree. This allows us to describe different independent

evolutionary processes for a suite of traits through the loadings matrix. Because

this method is Bayesian, we can take advantage both of simultaneous inference

on the phylogeny using Suchard et al. [2001] as well as adapt the probit

model described by Cybis et al. [2015] to handle discrete data. In order to

evaluate the number of independent evolutionary processes, we develop a

novel [Heaps et al., 2014] method for finding the exact marginal likelihood

estimate (MLE) of a probit model using path sampling, by creating a threshold

which softens over the course of the path. This allows us to rely on the path

sampling method described by Gelman and Meng [1998] and implemented

by Baele et al. [2013a,b] to learn about the MLE of these models and use

these estimates to estimate the relative Bayes factors to determine the optimal

number of independent processes. We apply these methods to the examples of

reproduction of Aquilegia flowers, reproduction of fish of the family Poeciliidae

in the presence of missing data, as well as fin morphometry of fish of the family
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Balistidae including ancestral state reconstructions at any point along the tree.

We find, using Bayes factors that the PFA fits the data better than the MBD

method in all of these examples, with modest computational advantages as

well.

In Chapter 4, we are interested in the case where the loadings matrix has

a large number of cells whose posterior mass is concentrated around 0. This

situation often occurs when the number of traits is comparable to or much

larger than the number of taxa. In order to facilitate identifiability, we impose

shrinkage priors, also known as horseshoe priors [Gelman, 2006, Carvalho

et al., 2009] on our loadings matrix which force the marginal posterior of those

loadings cells whose marginal posterior is centered around 0, closer to 0 with a

tighter variance. The shrinkage prior replaces the independent normal prior on

the loadings used in Chapter 5 with independent normal priors with a shared

standard deviation component and a cell specific standard deviation component.

To complete the shrinkage prior, we place a half Cauchy distribution on these

standard deviation components. I apply this new prior scheme to the examples

of Aquilegia flower reproduction and find a more parsimonious result than for

the dense model. We also look at the diversification of Anoles lizards and the

morphometry of Plethodon salamanders and find results using shrinkage priors,

which we are unable to recover using the dense model.

Finally, in Chapter 5 we look at the situation where the number of taxa

is large. Most methods such as pPCA [Revell, 2009] scale cubically with the

number of taxa. PFA, by contrast, scales quadratically which is unfortunately

still too slow for practical use when the number of taxa is large. A concurrent

problem with increasing the number of taxa analyzed arises from the difficulty

in obtaining a full suite of measurements in these circumstances. Other com-

petitors such as PGLS [Adams, 2014] are difficult to adapt in these situations

with many missing measurements. By relying on the MBD model from Lemey

3



et al. [2010] which scales linearly with the number of taxa, we can integrate

out the missing values analytically by assuming a missing value has infinite

variance, and a measured value has no variance. Additionally, this structure

allows us to integrate out latent variables, such as those used to describe the

factors in the PFA model, allowing us to draw inference on the PFA in time

linear to the number of factors. Both of these methods were tested using

measurements of the reproduction of mammals with the hope of being able

to determine whether or not we can categorize mammalian reproduction into

so called fast cycles with many offspring that grow quickly and slow cycles

with few offspring that grow slowly. We find massive speedup for both the

integrated MBD and PFA methods.

Lastly, in Chapter 6 we provide a list of methods which we would like to see

implemented in the future. This includes a structural Equation model designed

to allow us to separate traits into those which are affected by elements inside

the model and those which are not. Additionally, to improve sampling we

would like to explore methods such as Hamiltonian Monte Carlo [Neal, 2010]

to improve performance, and a bouncy particle sampler [Bouchard-Côte and

Vollmer, 2017] to sample the probit model in situations with a mix of discrete

and continuous measurements with a relatively large percentage of discrete

traits. Lastly, we would like to explore how to incorporate repeated measures

at the tips of the tree into my integrated analysis laid out in Chapter 5.
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CHAPTER 2

Review

2.1 Phylogenetics

2.1.1 Representation of Evolutionary History Via a Phylogenetic Tree

We begin this review by discussing how to formally define the evolutionary

history of a series of organisms. We define a phylogeny F on N organisms or

taxa in two parts.

The first part, known as a topology τ, is a bifurcating directed acyclic graph

with a single point of origin. Each vertex in the graph is referred to as a

node. Those nodes with degree 1, i.e. at the end of the graph, represented

by (ν1, . . . , νN) are known as external nodes or tips and generally represent

taxa for which we have measurements pertinent to whatever analysis we may

be interested in performing. Additional nodes (νN+1, . . . , ν2N−2) are of degree

3 and are known as internal nodes. Each internal node represents the most

recent common ancestor between the two species immediately further down on

the graph. A phylogenetic tree may or may not also have an additional node of

degree 2, represented by ν2N−1. Such a node, if it exists is known as the root

and represents the most recent common ancestor of all species in the tree. Trees

with a root node are known as rooted trees. For the analyses in this thesis, all

trees are rooted.

The second part of F is a series of edge weights B = (B1, . . . , B2N−2), which

represent branch times. These edge weights are a function of both measured
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Figure 2.1: An example of a rooted Phylogenetic tree with 3 tips at different heights. ν1, ν2,
and ν3 are external nodes, ν4 is an internal node and ν5 is the root node. Bi refers
to the rate adjusted branch time between node i and its parent.

time as well as a reflection of how different evolutionary processes may speed

up or slow down over the course of history. Note that the distance from the

root to tip of the tree need not be the same for each tip, especially in the case

where the measurements at each tip were taken at significantly different time

points. Figure 2.1 shows an example of a rooted phylogenetic tree where N = 3

and where the tips are of different heights.

2.1.2 Likelihood of a Phylogenetic Tree

Suchard et al. [2001] devises a method which uses Bayesian analysis to recon-

struct not only evolutionary history, but also the parameters related to rates

of evolution and state transitions. In order to do this, we need to discuss how

to efficiently compute the likelihood of a phylogeny with molecular sequence

data at the tips. The measured sequences, {A,G,C,T/U} in the case of DNA
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or RNA respectively, from the N taxa are aligned, with a "-" representing the

spaces which can occur across evolution because of an insertion or deletion

event. These aligned sequences can be arranged into an N × S matrix S, where

S is the sequence length.

In order to evaluate the likelihood of a tree using sequence data, we must

have a generating model for the sequence data given the tree. One model,

popularized by Felsenstein [1981] relies on a continuous time Markov chain

(CTMC), where we define an infinitesimal transition rate matrix Q such that

the probability of a transition between two characters at a branch time B is

p (B) ∝ exp (BQ) . (2.1)

In general we assume that this chain has achieved a steady state. Because of

the Markovian nature of this process, if we define νi`, νj` and νk` as the state

of nodes i, j and k respectively at sequence element `, then the p
(
νj` | νi`, Bj

)
is independent of p (νk` | νi`, Bk), if node i is the parent of the nodes j and k,

and where Bj and Bk are the rate adjusted branch times for nodes j and k

respectively.

We can use Equation 2.1 to compute the probability of p
(
νi` | νj`, νk`, Bj, Bk

)
.

By using Bayes rule we see that

p
(
νi` | νj`, νk`, Bj, Bk

)
∝ p

(
νj` | νi`, Bj

)
p (νk` | νi`, Bk) . (2.2)

Since the internal states are unknown, we average over the potential states

of the internal nodes. Therefore, as first described by Felsenstein [1973], the
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likelihood of a phylogeny for sequence element ` can be defined as

p (F`) =
4

∑
ν2N−1

. . .
4

∑
νN+1

p
(

ν(N+1)` | ν1`, ν2`, B1, B2

)
. . .

p
(

ν(N−1)` | ν(2N−2)`, ν(2N−3)`, B(2N−2), B(2N−3)

)
,

(2.3)

where node N + 1 has children 1 and 2 and node N− 1 has children N− 2 and

N − 3. A naive evaluation of this likelihood would require 4N−1 evaluations,

however Felsenstein [1981] discovered that a post order traversal where we

compute the probability of each sequence possibility at each parent node, and

treated those probabilities as the state of the sequence at that node could

allow us to compute the value of this likelihood in O (NS) time and O (N)

time if these independent sequence calculations are done in parallel through a

program such as BEAGLE [Browning and Browning, 2016].

It is also worth noting that in order to draw inference on Q we need to

make some simplifying assumptions. One model, by Jukes and Cantor [1969]

assumes that all transition probabilities are equally likely at all times. Hasegawa

et al. [1985] describes a model where the transition probabilities are dependent

on the resultant state, with a special penalty for transversions. Other models

are also available, however in general for this thesis when tree reconstruction

is necessary we will rely on Hasegawa et al. [1985]. By placing priors on the

elements of this model and using this likelihood computation, we can learn

about these parameters using standard Bayesian inference tools such as Markov

chain Monte Carlo (MCMC).

2.2 Bayesian Analysis

In general, this thesis will rely on Bayesian analysis, and therefore we will

review the fundamental aspects, definitions and evaluation methods of Bayesian
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statistics. We define Θ as the list of parameters we are interested in learning

about, and Y as a list of observations. We wish to evaluate p (Θ |Y), also

known as the posterior distribution. In order to do this, we must apply Bayes

theorem, such that

p (Θ |Y) = p (Y |Θ) p (Θ)

p (Y)
. (2.4)

The expression p (Y |Θ) is defined as the likelihood because of its analogue

in frequentist statistics. The expression p (Θ) is known as the prior since

it reflects our prior beliefs as to what distribution we believe the parameter

takes. The expression p (Y) reflects the probability of observing the data given

the model. In order to evaluate p (Y), we must evaluate
∫

p (Y |Θ) p (Θ) dΘ.

This expression can often be intractable to evaluate analytically. Additionally,

for a highly multidimensional posterior it may be difficult to learn about the

marginal distribution of any individual parameter. Therefore, we must rely on

approximations to learn about these marginal posterior distributions.

The standard method of approximation used in this context is called Markov

chain Monte Carlo. In MCMC, we draw a series of samples from the posterior

distribution of Θ such that draw k, Θ(k), is dependent on the previous draw,

and is independent of all other earlier draws given the previous draw. Two

different forms of MCMC are described in the next sections.

2.2.1 Metropolis-Hastings

One MCMC method, first defined in Metropolis et al. [1953] is known as

Metropolis-Hastings and relies on randomly selecting a proposal for Θ(k+1)

based on a proposal density q(Θ(k)). This proposal, Θ∗, is accepted with

probability

min

1,
q (Θ∗) p (Θ∗ |Y)

q
(

Θ(k)
)

p
(

Θ(k) |Y
)
 . (2.5)
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If we reject this proposal then Θ(k) = Θk+1. The expression q(Θ∗)/q(Θ(k)) is

known as the Hastings ratio, since it was first proposed in Hastings [1970] and

is included to compensate for asymmetry in the proposal distribution.

2.2.2 Gibbs Sampling

In some cases, with carefully chosen likelihoods and priors, the posterior

distribution is known, and therefore we can sample from the posterior directly

[Geman and Geman, 1984]. However, sometimes we only know the conditional

posterior of p
(

Θi |Y, Θ(−i)

)
, where Θi is parameter i, and Θ(−i) is the list of

parameters without parameter i. For such situations, we may Gibbs sample

for those parameters whose conditional posterior is known, and rely on the

Metropolis-Hastings algorithm otherwise. This is known as Metropolis-within-

Gibbs sampling [Liu et al., 1995], and is featured heavily throughout this

thesis.
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CHAPTER 3

Phylogenetic factor analysis

Phylogenetic comparative methods explore the relationships between quantita-

tive traits adjusting for shared evolutionary history. This adjustment often oc-

curs through a Brownian diffusion process along the branches of the phylogeny

that generates model residuals or the traits themselves. For high-dimensional

traits, inferring all pair-wise correlations within the multivariate diffusion is

limiting. To circumvent this problem, we propose phylogenetic factor analysis

(PFA) that assumes a small unknown number of independent evolutionary

factors arise along the phylogeny and these factors generate clusters of depen-

dent traits. Set in a Bayesian framework, PFA provides measures of uncertainty

on the factor number and groupings, combines both continuous and discrete

traits, integrates over missing measurements and incorporates phylogenetic

uncertainty with the help of molecular sequences. We develop Gibbs samplers

based on dynamic programming to estimate the PFA posterior distribution,

over three-fold faster than for multivariate diffusion and a further order-of-

magnitude more efficiently in the presence of latent traits. We further propose

a novel marginal likelihood estimator for previously impractical models with

discrete data and find that PFA also provides a better fit than multivariate

diffusion in evolutionary questions in columbine flower development, placental

reproduction transitions and triggerfish fin morphometry.
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3.1 Introduction

Phylogenetic comparative methods revolve around uncovering relationships

between different characteristics or traits of a set of organisms over the course of

their evolution. One way to gain insight into these interactions is to analyze un-

adjusted correlations between traits across taxa. However, as insightfully noted

by Felsenstein [1985], unadjusted analyses introduce the inherent challenge

that any association uncovered may reflect the shared evolutionary history

of the organisms being studied, and hence their similar traits values, rather

than processes driving traits to co-vary over time. Thus, studies to identify

co-varying evolutionary trait processes must simultaneously adjust for shared

evolutionary history.

There have been many attempts to accomplish this goal. Felsenstein [1985]

and Ives and Jr. [2010] are two such important examples, but they rely on a

known evolutionary history described by a fixed phylogenetic tree and consider

univariate evolutionary processes giving rise to only single traits. Felsenstein

[1985] treats continuous traits as undergoing conditionally independent, Brow-

nian diffusion down the branches of the phylogenetic tree and Ives and Jr.

[2010] posit a regression model where the tree determines the error structure

in the univariate outcome model. Huelsenbeck and Rannala [2003] adapt

the Brownian diffusion description in a Bayesian framework with the goal of

drawing simultaneous inference on both the tree from molecular sequence

data as well as the correlations of interest related to a small number of traits

through a multivariate Brownian diffusion process. Lemey et al. [2010] extend

the multivariate process by relaxing the strict Brownian assumption along

distinct branches in the tree using a scale mixture of normals representation.

Cybis et al. [2015] jointly model molecular sequence data and multiple traits

using a multivariate latent liability formulation to combine both continuous
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and discrete observations and determine their correlation structure while ad-

justing for shared ancestry. This method is effective, but inference remains

computationally expensive and estimates of the high-dimensional correlation

matrix between traits only allows us to explain the evolution of these traits

through a single process. Additional frequentist methods include, Revell [2009]

who use a phylogenetically adjusted principal components analysis, Adams

[2014] who use a phylogenetic least squares analysis, and Clavel et al. [2015]

who also use a multivariate diffusion method. All of these methods, however

require large matrix inversions which make them ill suited to adaptations to

full Bayesian inference, or bootstrapping to provide measures of uncertainty.

One way to alleviate these problems lies with dimension reduction through

exploratory factor analysis [Aguilar and West, 2000]. Factor analysis is the

inferred decomposition of observed data into two matrices, a factor matrix

representing a set of underlying unobserved characteristics of the subject

which give rise to the observed characteristics and a loadings matrix which

explains the relationship between the unobserved and observed characteristics.

Another form of dimension reduction through matrix decomposition is an eigen

decomposition known as a principal components analysis (PCA). Santos [2009]

provides a method for constructing PCA adjusted for evolutionary history.

This method, however, has the same problems typically associated with PCA,

namely that it is not invariant to the scaling of the data and is not conducive

to Bayesian analysis since it is not a likelihood based method. In a frequentist

setting, the author also provides no approach for simultaneous inference on

the phylogenetic tree that is rarely known without error [Huelsenbeck and

Rannala, 2003]. In addition, there lacks a reasonable prescription for measuring

uncertainty about which traits contribute to which principle components. Rai

and Daume [2008] design a factor analysis method which uses a Kingman

coalescent to construct a dendrogram across a factor analysis for genetic data.
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While this is similar to the idea we will employ, this specific method uses a

dendrogram between, rather than within, factors and is thus ill suited to handle

the important problem we tackle in this paper. Namely, researchers often seek

to identify a small number of relatively independent evolutionary processes,

each represented by a factor changing over the tree, that ultimately give rise

to a large number of observed, dependent traits. This paper provides such a

dimension reduction tool by introducing phylogenetic factor analysis (PFA).

To formulate such a PFA model, we begin with usual Bayesian factor analy-

sis, as posited by Lopes and West [2004] and Quinn [2004], which represents

underlying latent characteristics of a group of organisms through a factor

matrix and maps those latent characteristics to observed characteristics via

a loadings matrix. In a standard factor analysis, the underlying factors for

each species would be assumed to be independent of each other, however this

does nothing to adjust for evolutionary history. Vrancken et al. [2015] describe

how a high-dimensional Brownian diffusion can be used to describe the rela-

tionship between all of these observed traits, however the signal strength of

the results of analyzing this model can be quite poor. By using independent

Brownian diffusion priors on our factors, our PFA model groups traits into a

parsimonious number of factors while successfully adjusting for phylogeny. Sci-

entifically, these diffusions represent independent evolutionary processes. We

use Markov chain Monte Carlo (MCMC) integration in order to draw inference

on our model through a Metropolis-within-Gibbs approach. This facilitates

both a latent data representation [Cybis et al., 2015] for integrating discrete

and continuous traits and a natural method to handle missing data relevant to

our problems. We further rely on path sampling methods [Gelman and Meng,

1998] to determine the appropriate number of factors [Ghosh and Dunson,

2009]. Since the latent, probit model necessitates the use of hard thresholds, we

now have introduced an inherent difficulty in path sampling. In order to get
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around this difficulty, we employ a novel method which relies on softening the

threshold necessitated by the probit model slowly over the course of the path.

We additionally develop a novel method by which to handle identifiability

issues inherent to factor analysis by taking advantage of the fact that correlated

elements in the loadings matrix tend to be correlated across the MCMC chain.

We show that our PFA method performs superiorly to a high-dimensional

Brownian diffusion in both model fit, specifically through Bayes factors, and,

when we are inferring large numbers of latent traits, speed using the examples

of the evolution of the flower genus Aquilegia, as well as the reproduction of

the fish family Poeciliidae that involves trait measurements missing at random.

Lastly, we explore the dorsal, anal and pectoral fin shapes of the fish family

Balistidae in order to explore this method’s ability to handle situations where

the number of traits are large compared to the number of species and to explore

the simultaneous inference on our method along with the evolutionary history

of these organisms with the aid of sequence data. The PFA model and its

inference tools will be released in the popular phylogenetic inference package

BEAST [Drummond et al., 2012].

3.2 Methods

3.2.1 Phenotypic Trait Evolution

Consider a collection of N biological entities (taxa). From each taxon i =

1, . . . , N, we observe a P-dimensional measurement Yi = (Yi1, . . . , YiP) of traits

and, if available, a molecular sequence Si. We organize these phenotypic

traits into an N × P matrix Y = (Y1, . . . , YN)
′ and an aligned sequence matrix

S. These taxa are related to each other through an evolutionary history F ,

informed through S, and we are interested in learning about the evolutionary

processes along this history that give rise to observed traits Y.
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The history F consists of a tree topology τ and a series of branch lengths

B. The tree topology is a bifurcating directed acyclic graph with a single

generating point called the root, representing the most recent common ancestor

of the given taxa, and with end points, each of which corresponds to a different

taxon. The branch lengths correspond to edge weights of the graph, reflecting

the evolutionary time before bifurcations. The history F may be known and

fixed, or unknown and jointly inferred using Y and S. For further details on

constructing the sequence-informed prior distribution p(F | S) and integrating

over F when unknown, see, e.g., Suchard et al. [2001] or Drummond et al.

[2012].

In order to simultaneously model continuous, binary and ordinal traits, we

adapt a latent data representation through the partially observed, standardized

matrix Z with entries

Zij =

 (Yij − Ŷj)/σ̂j if trait j is continuous

Zij if trait j is binary or ordinal,
(3.1)

where Ŷj is the mean of trait j across taxa, σ̂j is its standard deviation for

j = 1, . . . , P and, more importantly, Zij ∈ R is an unknown random variable

that satisfies the restrictions

γj(c−1) < Zij ≤ γjc given Yij = c (3.2)

and c ∈ {1, . . . , mj} for mj-valued binary/ordinal data for trait j. For iden-

tifiability, latent trait cut-points γj = (γj0, . . . , γjmj) take on the restrictions

γj0 = −∞, γj1 = 0 and γjmj = ∞ or are otherwise random and jointly inferred.

Grouping cut-points for all binary or ordinal traits into γ, Cybis et al. [2015]

suggest assuming that differences between the small number of successive,

random cut-points are a priori exponentially distributed with mean 1
2 to de-
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fine their density p (γ). Cybis et al. [2015] also discuss in detail how to treat

categorical data in this sort of analysis. Since we do not use examples which

contain non-ordered categorical data we elect not to describe those methods in

these sections, but we will mention that they are implemented in BEAST and

are easily adapted to fit the methods described in this paper.

In order to uncover the biological relationships amongst traits in Z while

controlling for evolutionary history, previous work relies on a Gaussian process

generative model induced through considering conditionally independent

Brownian diffusion along each branch in F [Felsenstein, 1985]. In a multivariate

setting, a P× P variance matrix Σ and unobserved, P-dimensional root trait

value µR characterize the process. Pybus et al. [2012] identify that analytic

integration of µR is possible by assuming that µR is a priori multivariate

normally distributed with a fixed hyperprior mean µ0 and variance equal to

κ−1
0 Σ, where κ0 is a fixed hyperprior sample-size. Consequentially, given F

and Σ, the latent traits Z are distributed according to a matrix-normal (MN)

Z ∼ MN
(
µ0, Ψ + κ−1

0 J, Σ
)

, (3.3)

where Ψ+ κ−1
0 J is the across-taxa (row) variance and a deterministic function of

phylogeny F , Σ is the across-trait (column) variance, and J is a N × N matrix

of ones [Vrancken et al., 2015]. Traits Z have density function

p (Z |F , Σ) =

exp
{
−1

2 tr
[

Σ−1 (Z− 1′µ0

)′ (
Ψ + κ−1

0 J
)−1 (

Z− 1′µ0

)]}
(2π)NP/2 |Σ|N/2

∣∣∣Ψ + κ−1
0 J
∣∣∣P/2 , (3.4)

where tr [·] is the trace operator and 1 is a N-dimensional column vector of

ones. Tree variance matrix Ψ contains diagonal elements that are equal to the

sum of the adjusted branch lengths in F between the root node and taxon

i, and off-diagonal elements (i, i′) that are equal to the sum of the adjusted
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branch lengths between the root node and the most recent common ancestor of

taxa i and i′, where the adjusted branch lengths represent a function of wall

time and a branch rate accounting for variation in evolutionary rate over the

course of the tree. For our diffusion model, we scale our tree such that from the

root to the most recent tip we say that the process has undergone one diffusion

unit.

Placing a conjugate prior distribution on Σ, such as Σ−1 ∼ Wishartν(ΛR0)

where ν is the hyperprior degrees of freedom and ΛR0 is the hyperprior belief

on the structure of the inverse of the variance matrix Σ, enables inference

about its posterior distribution, shedding light on how the evolution of these

traits relate to each other. Such inference often requires repeated evaluation

of density (3.4), especially when the phylogeny F or variance Σ is random.

This evaluation suggests a computational order O
(

N3 + P3), arising from the

inversion of the N × N variance matrix Ψ + κ−1
0 J and P× P variance matrix

Σ. One easily avoids the latter by parameterizing the model in terms of Σ−1

[Lemey et al., 2010]. To address the former, Pybus et al. [2012] provide an

O
(

NP2) dynamic programming algorithm to evaluate (3.4) without inversion

of the across-taxa variance matrix, similar to Freckleton [2012]. This advance

certainly makes for more tractable inference under these diffusion models as

N grows large, but the quadratic dependence on P still hampers their use

for high-dimensional traits. Inference can often be slow, taking as long as

a day for problems with a dozen traits and about 30 taxa to mix properly

[Cybis et al., 2015]. Finally, direct inference on Σ can often fail to produce

a coherent and interpretable conclusion about the number of independent

evolutionary processes generating the traits if the matrix cannot be reordered

to form approximately separated blocks especially if the signal is too weak to

produce many statistically significant cells.
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3.2.2 Factor Analysis

To infer potentially low dimensional evolutionary structure among traits,

we rely on dimension reduction via a phylogenetic factor analysis (PFA).

This model builds on the premise that a small, but unknown number K �

min (N, P) of a priori independent univariate Brownian diffusion processes

along F provides a more parsimonious description of the covariation in Z than

a P-dimensional multivariate diffusion. We parameterize the PFA in terms of an

N × K factor matrix F = (F1, . . . , FK) whose K columns Fk = (F1k, . . . , FNk)
′ for

k = 1, . . . , K represent the unobserved independent realizations of univariate

diffusion at each of the N tips in F , a K × P loadings matrix L = {Lkj} that

relates the independent factor columns to Z, and an N × P model error matrix

ε, such that

Z = FL + ε. (3.5)

To inject information about and control for shared evolutionary history F , we

specify that

F ∼ MN
(

0, Ψ + κ−1
0 J, IK

)
, and

ε ∼ MN
(

0, Ω, Λ−1
)

,
(3.6)

where I(·) is the identity matrix of appropriate dimension and the residual

column precision Λ is a diagonal matrix with entries (Λ1, . . . , ΛP). Lastly, since

K is unknown, we place a reasonably conservative zero-truncated-Poisson prior

on it, such that p (K = 1) = 1/2.

To better appreciate the details of the PFA model, we briefly compare it

to a typical Bayesian factor analysis. Typical factor analyses assume that all

entries of F are independent and identically distributed (iid) as N(0, 1), normal

random variables with mean 0 and variance 1. In PFA, the shared evolutionary

history F specifies the correlation structure within the N entries of column Fk.

Often, one refers to a given column as a “factor." Across factors, the column
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variance remains IK to reflect our assertion that the underlying evolutionary

processes generating Fk are independent of each other. Note that in this model

the number of parameters undergoing Brownian Diffusion is assumed to be of

dimension K as opposed to of dimension P in the previous model.

To complete model specification of the loadings L and residual error ε, we

assume
Lkj ∼ N(0, 1) for all k ≤ j,

Λj ∼ Γ(αΛ, βΛ) for all trait j continuous, and
(3.7)

otherwise Λj = 1 to preserve identifiability under the scale-free latent model for

discrete traits. Here, Γ(αΛ, βΛ) signifies a gamma distributed random variable

with hyperparameter scale αΛ and rate βΛ.

Without further restrictions on L, any factor analysis remains over-specified.

For example, given an orthogonal K × K matrix T, one may rotate F in one

direction and L in the other and arrive at the same data likelihood, since

FL = FTT′L. To address this identifiability issue, we fix lower triangular

entries Lkj = 0 for k > j [Geweke and Zhou, 1996, Aguilar and West, 2000].

It is also standard practice to apply the restriction Lkk > 0, since otherwise

FL = (-F)(-L). While the constraint yields an identifiable posterior distribution

with respect to F and L, we do not pursue it here because it introduces bias

into our scientific inference on L and, instead, search for an alternative.

The diagonal and upper triangular entries Lkj for k ≤ j of the loadings

L inform the magnitude and effect-direction that the evolutionary process

captured in factor Fk contributes to trait j. As a quantitative measure of

uncertainty about these relationships, we define pkj to equal the absolute

difference between the posterior probability that Lkj > 0 and the posterior

probability that Lkj < 0; this measure ranges from 0 when Lkj is centered

around 0 to 1 when Lkj is either strictly positive or strictly negative with

probability 1. It is possible, and we would argue likely, that Fk has little or no
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influence on the trait arbitrarily labeled k, such that most of the posterior mass

of Lkk lies around and close to 0. Artificially restricting Lkk > 0 forces all of this

mass above 0, signifying a positive association with prior, and hence posterior,

probability 1.

To combat this bias, we recouch these identifiability conditions as a label

switching problem in a mixture model and propose a post hoc relabeling

algorithm [Stephens, 2000]. We require K sign constraints, one for each column-

row outer-product in forming FL, for posterior identification. In our prior, we

modify Equation (3.7) to further assign one non-zero entry Lkj > 0 per row, but

do not specify which one; this assignment mirrors the mixture model labeling.

Hence, we allow the data, not an arbitrary decision, to determine which entry

per row reflects a positive association with probability 1, decreasing potential

bias.

Recalling that continuous traits are standardized in Z to have mean 0 and

variance 1 affords several benefits. First, we can posit a 0-matrix mean for F

in Equation (3.6) without loss of information. But, more importantly, when

we draw inference on Λ, we can interpret traits which have precision elements

that demonstrate considerable posterior mass at or below 1 to be described

insufficiently by the model, since the factors provide no insight beyond a

random normal model. A third advantage is that standardization helps us

select reasonable scales for the non-zero entries in L, namely that these have

variance 1, and hyperparameters for Λ, specifically that αΛ
βΛ

= 1. In practice,

αΛ = 1
3 and βΛ = 1

3 for analyses in this paper. While these hyperparameter

choices are by no means perfect we feel that, under the paradigm of data

scaling, they are reasonable and generalizable across a variety of problems.

This model is a simplified form of the item factor analysis models that are

described by Quinn [2004] in the political science literature and Beguin and Glas

[2001] in the psychology literature with a tree as a prior on the factors instead
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of an independent normal distribution. In fact, the methods for treating binary

and ordinal data described in Quinn [2004] are the same as those described in

Cybis et al. [2015], making for a convenient adaptation of this factor analysis

model to phylogenetics using existing software in BEAST.

3.2.3 Inference

Given the trait measurements Y and aligned sequences S, we strive to learn

about the joint posterior distribution of the number of evolutionary processes

K, factors F, loadings L, column precisions Λ, latent trait cut-points γ and

evolutionary history F

p (K, F, L, Λ,γ, F |Y, S) ∝ p (Y |K, F, L, Λ,γ)× p (F |K, F )× p (F | S)

× p (L |K)× p (Λ)× p (γ)× p (K)

=

(∫
p (Y |Z,γ) p (Z |K, F, L, Λ) dZ

)
p (F |K, F )

× p (F | S)× p (L |K)× p (Λ)× p (γ)× p (K) ,

(3.8)

where p (Y |Z,γ) ∝ 1 (Y|Z,γ) is the indicator function that the restrictions

in Equation (3.2) hold. We accomplish this inference through MCMC, using

a random-scan Metropolis-within-Gibbs scheme [Liu et al., 1995] for fixed K

and a modification of path sampling to then estimate the marginal posterior

p (K |Y, S). For fixed K, our Metropolis-within-Gibbs scheme employs transi-

tion kernels described in Cybis et al. [2015] and references therein to integrate

over the evolutionary history F and unobserved, latent traits Zij and cut-points

γj where trait j is discrete.

Here, we focus on transition kernels within the scheme to integrate over

the factors F, loadings L and residual column precision Λ. Lopes and West

[2004] derive full conditional distributions for the columns of L and diagonals
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of Λ under a traditional factor analysis. These full conditional distributions do

not change under a PFA and we use them for Gibbs sampling. Specifically, for

column j of L, the first k′ = min (j, K) entries are non-zero and, given all other

random variables, distributed according to a multivariate normal (MVN)

(
L1j, . . . , Lk′ j

)′
|Z, F, Λ ∼ MVN

(
M(L)

j , V(L)
j

)
for j = 1, . . . , P, (3.9)

parameterized in terms of its mean

M(L)
j = V(L)

j ΛjF′1:k′Z ej (3.10)

and variance

V(L)
j =

(
ΛjF′1:k′F1:k′ + Ik′

)−1 , (3.11)

where F1:k′ = (F1, . . . , Fk′) is the first k′ columns of F and ej is the unit-vector

in the direction of trait j. Further,

Λj |Z, F, L ∼ Γ
(

αΛ +
N
2

, βΛ +
1
2

e′j (Z− FL)′ (Z− FL) ej

)
, (3.12)

if trait j is continuous. Appendix A provides derivations of these full conditional

distributions. Gibbs sampling all columns of L carries a computation order

O
(

NK2P
)
, arising from the matrix multiplication of F′1:k′F1:k′ for each trait.

The matrix inversion is not rate-limiting here since N � K. Likewise, Gibbs

sampling Λ remains very light-weight at O (NKP), stemming from the sparse

multiplication of FLej for each trait. While we write that the order of both

Gibbs samplers depend on P to be clear that we must iterate over all traits, the

astute reader has already recognized the conditional independence of updates

between traits, such that we may execute updates for each trait in parallel.
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The traditional Gibbs sampler for F fails in the phylogenetic setting for

more than a handful of taxa, since determining the full conditional distribution

of F requires inverting the matrix
(

Ψ + κ−1
0 J
)

. As mentioned previously, but

worth repeating, this task stands as prohibitive with a computational order

O
(

N3) and presents a major challenge for PFA.

We circumvent this difficulty by exploiting the structure of the phylogenetic

tree F . Probability models on directed, acyclic graphs lend themselves well to

dynamic programming for determining marginalized data likelihoods, such

as Felsenstein’s pruning algorithm for sequence data [Felsenstein, 1973] and

related work for Brownian diffusion [Pybus et al., 2012], and conditional predic-

tive distributions, like those obtained for (ancestral) sequence reconstruction.

In extending these conditional distributions to Brownian diffusion, first let

Fi· = (Fi1, . . . , FiK) identify row i of F, more specifically all latent factor values

attributed to taxon i, and let F-i· concatenate the remaining rows. Given that F is

matrix-normally distributed with an across-taxa (row) variance that depends on

the phylogeny F , Cybis et al. [2015] provide a tree-traversal-based algorithm

to determine p (Fi· | F-i·, F ) that remains a multivariate normal distribution.

The algorithm requires first a post-order tree-traversal to determine the joint

distribution of all tip-values descendent to each internal node and then a pre-

order tree-traversal back to taxon i to compute its prior conditional mean µF-i·

and precision ΛF-i· . Since the across-factor (column) variance on F is diagonal,

the dynamic programming algorithm runs quickly in O (NK). Using this result,

we determine the full conditional distribution

F′i· |Z, F-i·, L, Λ, F ∼ MVN
(

M(F)
i , V(F)

i

)
for i = 1, . . . , N, (3.13)
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with mean

M(F)
i = V(F)

i
(
LΛZ′ei + ΛF-i·µF-i·

)
(3.14)

and variance

V(F)
i =

(
LΛL′ + ΛF-i·

)−1 , (3.15)

where ei is the unit-vector in the direction of taxon i. Appendix A delivers

a derivation of this full conditional distribution. The evaluation of this full

conditional distribution runs in O
(
K2P

)
, where the term LΛL′ is rate limiting.

Employing Equations (3.13) - (3.15), we can cycle over i to fabricate a

tractable Gibbs sampler for F with total computational order O
(

N2K + NK2P
)
.

It is fruitful to compare this work with the rate-limiting step for inference

under the non-sparse model. Here, sampling the precision matrix Σ−1 carries a

computational cost of O
(

NP2). From these bounds, it is clear that increasing

numbers of taxa N should limit PFA, while increasing numbers of traits P

should limit the non-sparse model from a computational work per MCMC

iteration perspective. However, per-iterative arguments ignore the posterior

correlation between model parameters and its influence on MCMC mixing

times.

Finally, to maintain identifiability with respect to F and L in the posterior,

we propose a simple post hoc relabeling algorithm [Stephens, 2000]. We sam-

ple (Ft, Lt) from p (K, F, L, Λ,γ, F |Y, S) for MCMC iteration m = 1, . . . , M

assuming a sign-unconstrained prior. From this unconstrained sample, we

select for each row k in L the column element with the fewest number of sign

changes between iterations. Assume for row k, this is column jk. We then

constrain our sample by multiplying Fkt and row k of Lt by the sign of Lkjk t.

No further sample reweighing is necessary because p (F |K, F ) = p (-F |K, F )
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is also invariant to reflection.

Model Selection To estimate the marginal posterior density p (K |Y, S), we

rely on a variant of path sampling that we equip to successfully integrate latent

variable Z when traits are discrete. We employ our variant to approximate each

marginal likelihood p (Y, S |K = k) for k = 1, . . . , S, where S is a relatively small

number such as min{P, 10}, after which we approximate p (Y, S |K > S) =

0. Then, invoking Bayes theorem, p (K = k |Y, S) ∝ p (Y, S |K = k) p (K = k).

Moreover, through this approach, we can address the model selection problem

of how many independent factors do the data support through Bayes factors

[Jeffreys, 1935]:

p (K = k |Y, S)
p (K = k′ |Y, S)

=
p (Y, S |K = k)
p (Y, S |K = k′)

p (K = k)
p (K = k′)

. (3.16)

Lopes and West [2004] and Ghosh and Dunson [2009] have been strong pro-

ponents of Bayes factors to determine the optimal number of factors in a

traditional factor analysis, where Lopes and West [2004] employ a simple har-

monic mean estimator [Newton and Raftery, 1994] to estimate their marginal

likelihoods. This estimator performs poorly in highly structured phylogenetic

models and path sampling has largely supplanted it [Baele et al., 2012].

Path sampling is an MCMC-based integration technique to estimate marginal

likelihoods, such as p (Y, S |K). The technique constructs a series of power pos-

teriors [Friel and Pettitt, 2008] at various temperatures β ∈ [0, 1], where β = 1

corresponds to a joint density l(Y, S, Z, F, L, Λ,γ |K) proportional, but with

an unknown constant, to p (Y, S |K) and β = 0 yields a normalized density

p̂(Z, F, L, Λ, F ,γ |K) that does not depend on the data, often a combination

of the prior and other working distributions, see e.g. [Baele et al., 2016]. The

usual power posterior path is q(β, Y, S, Θ) = l(Y, S, Θ)β × p̂(Θ)1−β, where Θ

is the set of all parameters in the model we are considering. For example, in
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PFA, Θ = {Z, F, L, Λ, F ,γ} .

In latent models with discrete traits, however, the support of the latent

variable Z changes when the data are observed [Heaps et al., 2014]. In particular,

our unnormalized joint density l(Y, S, Θ) is zero for values of Z that are

incompatible with Y because p (Y |Z,γ) = 0, therefore a trait Zij only has

support over (γi(c−1), γic] if Yij = c, while p̂(·) places non-zero density over

all possible values Zij ∈ (−∞, ∞). Our working distribution, for example,

assumes Zij ∼ N(0, 1) when Zij is random. If we factor l(Y, S, Θ) into a

support condition 1 (Y|Z,γ) and the remaining likelihood h(Y, S, Θ), then the

standard path used in this scenario [Heaps et al., 2014] is

q(β, Y, S, Θ) = 1 (Y|Z,γ)× h(Y, S, Θ)β × p̂(Θ)1−β. (3.17)

For the power posterior method to yield the marginal likelihood p (Y |K) , it is

necessary [Friel and Pettitt, 2008] that

∫ {
lim
β→0

q(β, Y, S, Θ)

}
dΘ = 1. (3.18)

Plugging (3.17) into (3.18), we find

∫ {
lim
β→0

q(β, Y, S, Θ)

}
dΘ =

∫
1 (Y|Z,γ)× p̂(Θ)dΘ. (3.19)

If we define Ω as the region where 1 (Y|Z,γ) = 1, then we see that

∫
Ω

p̂(Θ)dΘ < 1, (3.20)

since Ω ( the support of Θ. While it is theoretically possible to construct p̂(Θ)

such that it is normalized to 1 over Ω, previous attempts to do so have failed.

Alternatively, Heaps et al. [2014] attempt to approximate such a distribution by
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fixing γ and ignoring the corresponding integral.

We posit an exact solution by proposing a new path that relies on a softening

threshold. Consider the modified path

q∗ (β, Y, S, Θ) = {1− [1− 1 (Y|Z,γ)] β} × h(Y, S, Θ)β × p̂(Θ)1−β. (3.21)

Following from (3.18), we find that

∫ {
lim
β→0

q∗ (β, Y, S, Θ)

}
dΘ =

∫
p̂(Θ)dΘ = 1, (3.22)

by construction.

Lastly, in order to adapt the power posterior method, at each step in the

series we need to compute the derivative of log q∗ (β, Y, S, Θ) with respect to β.

From Equation (3.21), we see that

∂

∂β
log q∗ (β, Y, S, Θ) =− 1− 1 (Y|Z,γ)

1− [1− 1 (Y|Z,γ)] β

+ log h(Y, S, Θ)− log p̂(Θ),
(3.23)

and observe that there is no singularity at β = 1 since, at that point in the path,

latent variable Z only assumes values in Ω, such that 1 (Y|Z,γ) = 1.

3.3 Empirical Examples

3.3.1 Columbine Flower Development

Columbine genus Aquilegia flowers have attracted at least three different polli-

nators across their evolutionary history: bumblebees (Bb), hawkmoths (Hm)

and hummingbirds (Hb). Whittall and Hodges [2007] question the role that

these pollinators play in the tempo of columbine flower evolution, tracked

28



through the color, length and orientation of different anatomical floral features,

and are particularly interested in how transitions between pollinators relate

to spur length. Cybis et al. [2015] take up this question by examining P = 12

different traits for N = 30 monophyletic populations from the genus Aquilegia

that include 10 continuously valued traits, a binary trait that indicates presence

or absence of anthocyanin pigment and a final ordinal trait indicating the

primary pollinator for that population. Whittall and Hodges [2007] propose

a Bb-Hm-Hb ordering and we use the fixed phylogenetic tree the authors

employ in their analysis. Through fitting a latent multivariate Brownian dif-

fusion (LMBD) model parameterized in terms of a 12× 12 variance matrix Σ,

Cybis et al. [2015] find the data strongly support the proposed ordering over

alternative orderings. We return to the relationship between pollinator and

the other traits and test whether a PFA returns a better understanding of the

evolutionary factors driving their interrelated change compared to an LMBD

model.

Under our PFA, the most probable number of independent evolutionary

processes is K = 2, with a log Bayes factor > 7 over the neighboring K = 1

or K = 3 factor parameterizations (Table 3.1). Further, the PFA with K = 2 is

favored over the LMBD model with a log Bayes factor > 24 when assuming

equal prior probabilities over these two models.

The PFA has high explanatory power for all continuous traits (Table 3.2)

and Figure 3.1 presents our inference on the relationships between traits under

the PFA with K = 2 and compares these findings to inference under the LMBD

model. The first evolutionary process F1 approximately partitions the traits into

two groups. One group includes: orientation, blade brightness, spur brightness,

sepal length, blade length, pollinator type, spur hue, spur length, blade hue,

and expected trait values increase (displayed loadings entries Lkj in purple)

as the factor grows over the phylogeny. The other group includes: blade
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Log marginal
Model likelihood

A
qu

ile
gi

a K = 1 −385.4
K = 2 −366.9
K = 3 −374.3
LMBD −391.1

K = 2 −536.0

Po
ec

ili
id

ae K = 3 −500.7
K = 4 −501.0
K = 5 −505.9
LMBD −592.3

Ba
lis

tid
ae K = 4 −15622.0

K = 5 −15603.5
K = 6 −15610.4
MBD −15673.2

Table 3.1: Log marginal likelihood estimates for the number K of independent factors driving
evolution under a phylogenetic factor analysis (PFA) and a latent multivariate
Brownian diffusion (LMBD) model in Aquilegia, and Poeciliidae and multivariate
Brownian diffusion (MBD) in Balistidae. The K = 2 model for Aquilegia, the
K = 3 and K = 4 model for Poeciliidae and the K = 5 model for Balistidae achieve
the highest marginal likelihoods.
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Figure 3.1: Processes driving columbine flower evolution inferred through phylogenetic factor
analysis (PFA) or latent multivariate Brownian diffusion (LMBD). a) Loadings L
estimates from a K = 2 factor PFA model. Purple circles represent traits positively
associated with traits represented by other purple circles within a loading, and
negatively associated with traits represented by green circles within a loading.
Similarly, traits represented by green circles are positively associated with traits
represented by green circles within a loading. Size represents the magnitude of the
value of the loadings. Opacity represents the posterior probability that the sign
of the given element is equal to the sign of the posterior mean. The greyed out
cell represents a structural 0 introduced for identifiability reasons. The magnitude
for anthocyanins and pollinator type is less relevant since those measurements
are discrete. b) Correlation matrix estimate from a LMBD model. Red represents
positive correlation, blue represents anti-correlation, and opacity represents the
absolute difference in posterior probability of being greater than 0 and less than 0.
Size of the circle represents the magnitude of the correlation. The PFA captures
well two independent processes, while the LMBD groups these processes together.
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chroma, anthocyanins pigment presence and, with less posterior probability,

spur chroma, and expected trait values decrease (green) as the factor grows.

A possible exception to the F1 partitioning is the pollinator trait, where we

estimate only a 0.92 absolute difference in posterior probability of being greater

than 0 versus less than 0.

Ignoring the uncertainty in pollinator trait inclusion for the moment, this

partitioning recapitulates the block structure that Cybis et al. [2015] report

using an LMBD model and an arbitrary thresholding on the posterior mean

estimates of the individual pairwise correlation entries in Σ. However, in

Figure 3.1 we quantify the LMBD uncertainty by shading our inference using

the same probability measure as we do for our PFA model. Taking correlation

uncertainty into consideration we see that, for example the LMBD model would

assert that there is no correlation between blade chroma and spur hue. The

PFA model by contrast offers the more nuanced assessment that these traits are

related through two independent underlying processes, one process of which

has a positive association between these traits, the other of which has a negative

association.

Posterior 95% Bayesian

Trait mean credible interval

Orientation 2.1 [1.0, 3.3]

Spur length 4.4 [2.0, 7.1]

Blade length 3.0 [1.4, 4.8]

A
qu

ile
gi

a

Sepal length 2.6 [1.3, 4.1]

Spur chroma 4.2 [1.8, 6.9]

Spur hue 6.2 [2.6, 10.5]

Spur brightness 2.7 [1.2, 4.3]
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Blade chroma 2.3 [1.1, 3.7]

Blade hue 2.1 [1.0, 3.2]

Blade brightness 3.3 [1.4, 0.6]

Matrotrophy index 14.3 [5.6, 23.2]

Po
ec

ili
id

ae
(K

=
3)

Gonopodium length 9.3 [4.3, 16.1]

Male body length 3.5 [2.4, 4.6]

Male body weight 2.8 [1.9, 3.7]

Female body length 10.5 [5.7, 15.5]

Female body weight 15.1 [8.0, 24.3]

Matrotrophy index 13.8 [5.5, 22.7]

Po
ec

ili
id

ae
(K

=
4)

Gonopodium length 9.1 [4.4, 15.5]

Male body length 3.5 [2.3, 4.8]

Male body weight 2.8 [1.9, 3.8]

Female body length 10.5 [5.8, 15.5]

Female body weight 14.7 [8.2, 22.5]

Table 3.2: Precision Λ posterior mean and 95% Bayesian credible interval estimates under
the latent factor model for the traits in Aquilegia, in Poeciliidae and in Balistidae.
The PFA model explains all of the continuous traits in these models better than a
N(0, 1) distribution on the standardized traits.

In addition to improved uncertainty quantification in the block structure

of traits, our PFA returns a second independent evolutionary process F2 that

relates pollinator with spur length and, in addition, spur and blade chroma and

hue, with posterior probability approaching 1. The existence of two distinct
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processes, one of which directly connects pollinator and spur length, sheds

additional insight into the original hypothesis that Whittall and Hodges [2007]

pose. The LMBD model fails to pick up on this, in addition to returning a

worse fit to the data.

3.3.2 Transitions to Placental Reproduction

The freshwater fish Poeciliidae represent a family of model organisms in which

one can study the transition from non-placental to placental reproduction and

the evolutionary pressures associated with placental introduction. Pollux et al.

[2014] define a matrotrophy index to be the log-ratio of the dry weight of

newborn fish to the dry weight of eggs at fertilization as a proxy measure of

how reliant a fish species is on its placenta for reproduction. Using phylogenetic

generalized least squares (PGLS) [Ives and Jr., 2010], Pollux et al. [2014] find

that Poeciliidae dichromatism, courtship behavior, superfetation, and a sexual

selection index are all correlated over evolutionary history with the matrotrophy

index. Unlike PFA, PGLS as used by Pollux et al. [2014] does not adjust for

potential evolutionary relationships between the traits. Failure to do so can

lead to false positive measures of association between individual traits and the

matrotrophy index.

Pollux et al. [2014] collect from the literature or measure 14 life-history traits

and compile from GenBank or sequence 28 different genes across Poeciliidae

species. In our analysis, we only use P = 11 traits since three of the original

traits are functions of the included ones. Of these traits, five are discrete-valued:

dimorphic coloration (dichromatism), courtship behavior, superfetation, the

presence or absence of ornamental display traits and a count composite of

the presence or absence of three other male behaviors (sexual selection index).

Six are continuous-valued: log weight and log length for males and females,

gonopodium length and matrotrophy index. Considering species with at least
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one trait measurement, there are N = 98 taxa, for which we assume the same

fixed phylogenetic tree that Pollux et al. [2014] estimate and similarly condition

on in their PGLS analysis. Importantly, 182 trait measurements remain missing.

We treat these measurements as missing-at-random in our PFA and do not

need to further prune the tree or impute values that may further introduce bias.

Pollux et al. [2014] find that dichromatism, courtship behavior, superfetation,

and sexual selection index are all correlated with the matrotrophy index. Figure

3.2 shows that this concurs with the results of a K = 2 factor PFA. This small

model fit also highlights a weakness of traditional factor analysis assumptions

that fix the diagonal elements of the loadings matrix to be positive. In particular,

dichromatism is unrelated to the other traits in the second factor, while the

positivity constraint would have forced its inclusion. However, the most

probable number of independent evolutionary processes is K = 3 or K = 4,

with a log Bayes factor in favor K = 3 over K = 2 of 35.3 and a log Bayes factor

in favor of K = 4 over K = 5 of 4.9 (Table 3.1). Since a log Bayes factor of only

0.3 separates the K = 3 and K = 4 models, we include both models in our

results, and the data strongly support these PFA models over the LMBD model

(log Bayes factor ≈ 92).

Loadings for the independent evolutionary process factors F(3)
k and F(4)

k

under the K = 3 and K = 4 PFA models, respectively, recapitulate a nega-

tive assocation between the matrotrophy index and dichromatism, courtship

behavior, and sexual selection index, and a positive association with superfe-

tation (Figure 3.2, first loading). Uncertainty measures pkj are > 0.94 for all

of these trait-factor relationships. However, unlike in Pollux et al. [2014], the

PFA does not recover with high posterior probability a relationship between

matrotrophy index and gonopodium length nor with body weights and lengths,

suggesting that these were false positive findings. For both PFA models, second

independent processes F(3)
2 and F(4)

2 drive dichromatism, courtship behavior,
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Figure 3.2: Processes driving transitions to placental reproduction inferred through PFAs.
Loading L estimates from the a) K = 4, b) K = 3 and c) K = 2 factor models.
Loadings size, coloring and density follow those of Figure 3.1. Note that the
magnitude for dichromatism, courtship behavior, ornamental display traits, sexual
selection index and superfetation is less relevant since those data are discrete. We
include the two factor model for direct comparison to the results of Pollux et al.
[2014]. Loadings in the more probable K = 3 and K = 4 factor models do not
support an association between matrotrophy index and gonopodium length nor
body weights and lengths.
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ornamental display traits and sexual selection index positively and superfe-

tation and gonopodium length negatively, where p2j > 0.9 for each of these

relationships except involving superfetation (p2j = 0.88) and for courtship be-

havior in F(3)
2 (p2j = 0.84). Both models also identify similar third independent

processes F(3)
3 and F(4)

3 relating body lengths and weights. We do however

find more posterior certainty in the F(3)
3 relationships (all p3j > 0.99) than in

the F(4)
3 relationships (all p3j > 0.94). It is perhaps surprising that these size

measurements are unrelated to any of the other reproductive characteristics.

The only marked difference between the K = 3 and K = 4 factor models exists

in the presence of a fourth evolutionary process F(4)
4 in the K = 4 factor model

that controls the presence or absence of superfetation independently of all other

traits.

The precision elements Λ for both the K = 3 and K = 4 factor models are

all significantly greater than 1 and therefore indicate that, for both models,

our PFA provides good insight into the relationship of the continuous traits

(Table 3.2). Further, the precision elements are in broad agreement between the

K = 3 and K = 4 factor models, as we expect due to the negligible difference

in marginal likelihoods.

Frequentist-based factor analysis is only identifiable if the number of pa-

rameters inferred for a variance/covariance matrix is greater than the number

of parameters that need to be inferred for the factor analysis. Interestingly, our

PFA model produces interpretable results in spite of the fact that the correlation

model has 66 free parameters as opposed to 333 free parameters for the K = 3

factor model, and 436 free parameters for the K = 4 factor model.
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3.3.3 Triggerfish Fin Shape

The fish family Ballistidae, commonly know as triggerfish, live mostly in reefs;

however, the particular part of the reef in which they live can vary. This vari-

ability affects not only their diet, but also their mobility needs that fin shapes

well reflect [Dornburg et al., 2011]. To model shape changes through evolu-

tion, phylogenetic morphometrics often relies heavily on principle components

analysis (PCA) [Revell, 2009, Polly et al., 2013]. However, deterministic data

reduction via PCA can introduce bias [Uyeda et al., 2015] and, more impor-

tantly, inference of principal components while simultaneously adjusting for

an uncertain evolutionary history remains a continuing challenge. PFA offers

an alternative approach.

For N = 24 triggerfish species, Dornburg et al. [2011] sequence and align

12S (833 nucleotides, nt) and 16S (563 nt) mitochondrial genes and RAG1 (1471

nt), rhodopsin (564 nt) and Tmo4C4 (575 nt) nuclear genes, and Dornburg et al.

[2008] digitally photograph and mark 13 semi-landmark Cartesian coordinates

for pectoral, dorsal and anal fins, generating P = 78 measurements per species.

Among these morphometric measurements, the species Balistapus undulatus

is missing dorsal and anal fins landmarks, and the species Rhinecanthus assasi

lacks pectoral fin landmarks. For these, we assume the missing data are missing

at random.

To accommodate phylogenetic uncertainty within p (F | S), we concatenate

gene alignments into S and model nucleotide sequence substitution along

the unknown evolutionary history F through the Hasegawa et al. [1985]

continuous-time Markov chain with unknown transition:transversion rate ratio

κ and stationary distribution π. We incorporate across-site rate variation using

a discretized, one-parameter Gamma distribution [Yang, 1994] with unknown

shape α and proportion pinv of invariant sites. To specify prior p (F , κ,π, α, pinv),
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we make relatively uninformative choices, documented in the BEAST extensible

markup language (XML) file in the Supplementary Material.

These triggerfish sequences and traits favor the K = 5 factor model with

a log Bayes factor of 18.5 over the K = 4 factor model and 6.9 over the K = 6

factor model (Table 3.1). Further, these data favor the K = 5 factor model over

the multivariate Brownian diffusion (MBD) model with a log Bayes factor of

69.7. Even if this support were equivocal, we caution against using a MBD to

model these traits. The unknown variance matrix Σ carries P(P + 1)/2 = 3081

degrees-of-freedom that dwarfs the N × P = 1872 possible measurements.

For 2 of the 5 factors in the K = 5 model, Figure 3.3 demonstrates how fin

shape changes as a function of latent factor values. We vary F1 and F3 between

−1 and 1 that approximates their highest posterior density range over their

reconstructed evolutionary history. For F1, increasing values lead to dorsal

and anal fins that become less pointed and more rounded. For F3, increasing

values lead to a counterclockwise rotation of the dorsal fin. Our credible band

decreases in size as the factor value gets closer to 0 since the standard deviation

of the posterior inference on our loadings is multiplied by these factor values

as well.

We also include the corresponding maximum clade credibility (MCC) tree,

colored by factor value, with purple representing positive values and green

representing negative values for the first factor F1, and the blue representing

positive factor values and orange representing negative factor values for F3 in

figure 3.4. This tree shows us that the species Balistes polylepsis and Balistes

vetula, have negative factor values for F1, but those species as well as the rest of

the clade with the genus Balistes and species Pseudobalistes fuscus have positive

factor values for F3, whereas the clade containing the genus Rhinecanthus has

negative factor values for F1, but a close to 0 factor value for F3. Conversely, the

genus Xanthichthys has a negative factor value for F3, and a closer to 0 factor
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Figure 3.3: Expected triggerfish fin shape given a range of a) first factor values F1 and b) third
factor values F3, holding all others constant. Purple dots estimate semi-landmark
locations. Green lines are interpolated to present a clearer outline of the fin shape.
For the relation represented by F1 the dorsal and anal fins go from more pointed to
less pointed. For the relation represented by F3, we see a rotation in the pectoral
fin.
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Figure 3.4: Evolution of independent factors F driving triggerfish fin morphology along in-
ferred phylogeny. The colorings display contemporary and ancestral first F1 and
third F3 factor values under a K = 5 factor PFA model. For F1, green represents
positive values and purple represents negative values. For F3, the scale is orange
to blue. Appendix B contains plots for F2, F4 and F5. Balistes polylepis and
Balistes vetula have negative factor values for the first factor F1, whereas the clade
containing genus Rhinecanthus has positive factor values. In the third factor F3,
the Balistes genus and the species Pseudobalistes fuscus have positive factor values
whereas the genus Rhinecanthus has near 0 factor values. Conversely, the genus
Xanthichthys has a negative factor value for F3, and has a near 0 value for F1. We
display the posterior clade probabilities for probabilities < 99%.
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value for F1. We also display posterior clade probabilities for those clades with

probability < 99%.

For brevity, we have only considered two factors in this section. We selected

F1 and F3 since these factors relate distinctive information, however we include

the results for the remaining factors in Appendix C. We additionally include

our inference on the precision elements in Appendix D as well as our results

on the inference on the other tree parameters in Appendix E.

Lastly, PFA facilitates ancestral shape reconstruction. Figure 3.5 depicts

inferred pectoral, dorsal and anal fin shapes for ancestors of Xanthichthys mento

and Balistes capriscus at arbitrary points into their evolutionary past. We choose

reconstructions at the most recent common ancestor (MRCA) of all 24 species in

our study and 1/4, 1/2 and 3/4 of the expected sequence substitution distance

between the MRCA and both contemporaneous species. Typically, high aspect

ratio fins, or long fins with a small area, are associated with swimming quickly

over large distances. The diet of Xanthichthys mento consists mostly of plankton

and swims above reefs and has a high aspect ratio, perhaps reflecting a need to

hunt down more evasive prey. We see that these low aspect ratio dorsal and

anal fins arose from a moderate MRCA which flatten as the species evolved.

The pectoral fin rotated clockwise as this species evolved. By contrast, Balistes

capriscus has low aspect ratio dorsal and anal fins, reflecting the fact that it

swims more towards the reef floors which may be more useful in navigating

the complex habitat. This species evolved from a species with a moderate

aspect ratio in its dorsal and anal fins which became broader and more pointed

as it evolved. However, the aspect ratio increases again about 3/4 of the way

through its evolution. The pectoral fin rotated counterclockwise as it evolved.

This ancestral reconstruction can provide new insights into the trajectories

of shape change that could be further investigated with biomechanical and

fluid dynamic models.
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b)

a)

Figure 3.5: Inferred ancestral fin shapes at the most recent common ancestor (MRCA) and
1/4, 1/2 and 3/4 of the expected substitution distance between the MRCA and
two contemporaneous triggerfish species. In a), Xanthichthys mento has a flat
dorsal and anal fin with a point, and a clockwise rotated pectoral fin relative to its
ancestors. The dorsal and anal fins become rounder and the pectoral fin rotates
counterclockwise moving backwards in time. In contrast, in b), Balistes capriscus
has a broad pointed dorsal and anal fin, and a counterclockwise anal fin. The
dorsal and anal fins become more pointed and then round out, while the pectoral
fin rotates clockwise.
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3.4 Simulation

We briefly evaluate the performance of PFA in estimating the number of factors

K and loadings matrix L under conditions similar to the Aquilegia example.

Assuming K = 2 and fixing L and Λ to their posterior mean estimates for the

P = 12 traits and using the fixed tree F from this example, we simulate 100

dataset replicates under the PFA model. For each replicate, we then perform

posterior inference and, collectively, examine our ability to recover the true

generative values.

Under these simulation conditions, we recover the true number of factors

with relatively high probability (0.89). With the remaining probability, we re-

cover the more parsimonious K = 1 model.Averaged across all entries in L, we

achieve 79.1% coverage using the 95% highest probability density (HPD) inter-

val estimates; while slightly below nominal, this coverage stands as reasonable

in practice, especially since HPD intervals incorporate prior information and, in

general, return no frequentist guarantees. We also consider the power to detect

an uncertainty measure pkj > 0.95 and find that we deem an arbitrary loading

entry Lkj significant only with probability 0.18. However, the magnitude of

the entries in L vary widely in our examples. Figure 3.10 in Appendix F de-

scribes how the true value of Lkj influences coverage, power and mean-squared

bias. As expected given a prior centered around 0, coverage is lowest for the

largest values of |Lkj| (e.g. > 1.5) and power increases with increasing |Lkj|.

Importantly for the interpretation of our results, many loadings entries had

pkj > 0.95, suggesting that their true values were likely larger in magnitude

than our posterior estimates under the PFA model.

44



3.5 Computational Aspects

To draw posterior inference, we simulate MCMC chains of between 200M and

1B steps, subsampling every 10K steps to eliminate unnecessary overhead and

ensure the rate-limiting computation remains the PFA and L/MDB transition

kernels. For path sampling, we employ 100 path points based on the quantiles

of a beta β (0.3, 1) random variable [Xie et al., 2011], with warm-started chains

of 10M steps at each point. In our examples, the PFA chains generate draws

three- to five-fold faster than the L/MBD chains. Further, with the relatively

large ratio of latent to non-latent traits in the Aquilegia example, we find an

approximately 27-fold larger median effective sample size (ESS) across L, F

and γ than in the latent components of Σ, demonstrating both faster and more

efficient sampling.

3.6 Discussion

This paper merges traditional factor analysis with phylogenetics to provide

a new inference tool for comparative studies. The key connection rests on

modeling each factor independently as a Brownian diffusion along a phylogeny.

The tool we provide not only serves as a dimension reduction technique

in the face of high-dimensional traits, but directly addresses the principal

scientific questions that many comparative studies raise – specifically, how

many independent evolutionary processes are driving these traits? Set in a

Bayesian framework, we succeed in inferring these processes for combinations

of discrete and continuous traits through model selection, while simultaneously

accounting for missing measurements and possible phylogenetic uncertainty.

To make inference under PFA practical, we develop two new MCMC inte-

gration techniques. While we rely on previously proposed Gibbs samplers for
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integrating the loading matrix L and residual trait precisions Λ, we require

an original algorithm based on dynamic programming to integrate the factors

F along the phylogeny efficiently. Second, we extend path sampling through

a softening threshold to handle discrete traits, in which their latent support

depends on the path location β. Such changing support previously has lim-

ited marginal likelihood estimation across many Bayesian models with latent

random variables to combine discrete and continuous observations.

In examples involving columbine flower and fish families Poeciliidae and

Balistidae evolution, inference under the PFA is notably quicker under the

presence of latent traits, more interpretable and consistently favored via model

selection over competing LMBD / MBD models. Interestingly, this success even

holds in the Poeciliidae example, where one might expect an LMBD model to

outperform. Here, the number of parameters inferred in the variance matrix

is small relative to the number of parameters that form a PFA. The Poeciliidae

and Balistidae examples also demonstrate our Bayesian approach’s ability to

integrate missing data if we make a simple missing-at-random assumption.

Unlike many univariate comparative methods, the PFA simultaneously

adjusts for correlation between all traits. This advantage reveals that some

previously identified trait relationships in Poeciliidae evolution may be spurious.

Further, as demonstrated in the columbine flower example, the inferred factors

and their associated loadings probabilistically cluster traits into independent

processes that provide additional scientific insight, often hard to discern from

the correlation matrix that a LMBD model provides.

An important computational limitation of PFA arises when the number of

taxa N is much greater than the number of traits P. For the PFA, computational

cost of our current MCMC integration scales as O
(

N2K + NK2P
)
, while the

cost is O
(

NP2) for the LMBD / MBD models. Nonetheless, the Poeciliidae

example carries N/P ≈ 9 and, still, the PFA model integrates about 3× more
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efficiently due to the example’s large ratio of latent traits. For larger N/P ratios,

we are currently devising algorithms that remain linear in N as future work.

Arguably, PFA reaches its greatest computational potential when the num-

ber of traits stands large relative to the number of taxa – the reputed “large P,

small N” setting.This setting arises commonly in the field of geometric mor-

phometrics where very long series of Cartesian, (semi-) land-mark coordinate

measurements define the shape of the organism. In our Balistidae example,

the PFA identifies a number of independent evolutionary processes driving

pectoral, dorsal and anal fin shapes. With the help of sequence data, the PFA

also simultaneously infers the phylogeny and reconstructs ancestral shapes.

We believe that morphometrics stands poised as a prime beneficiary of PFA.

One potential extension of this method comes from Lemey et al. [2010],

where they place different diffusion rates on different branches. Additionally

we can adapt the methods in Gill et al. [2017] that allow us to incorporate

inference on drift in our factors whose direction changes at different points in

the evolutionary process. Ornstein-Uhlenbeck processes are nested within the

union of both methods that are implemented in BEAST and are therefore easily

adapted for use in PFA.

3.7 Appendix

A Phylogenetic factor analysis Gibbs sampling

While the Gibbs samplers for a standard factor analysis are known and well

documented [Lopes and West, 2004], there are two aspects of our phylogenetic

model that differ sufficiently to require a fresh look at how to draw posterior

inference. First, our prior on F is based on a phylogenetic tree and therefore

requires particular consideration in order to produce an efficient Gibbs sampler.
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Second, our inference on K uses a path sampling approach where we need to

infer L, F, and Λ at each point along the path q∗ (β, Y, S, Θ) , and deriving a

Gibbs sampler that works for any point in the path β will aid this process.

Sampling factors In a standard Bayesian factor analysis, the prior on each

element Fij is N(0, 1), and so the entire matrix F can be Gibbs sampled efficiently

in a single step [Lopes and West, 2004]. For the phylogenetic factor analysis

model, the prior on the factors is defined by Brownian motion on a phylogenetic

tree as defined in (3.6). Thus the conditional density of F|Z, L, Λ in our model

is proportional to

p (Z | F, L, Λ) p (F) ∝ exp
{
−1

2
tr
[
(Z− FL)Λ (Z− FL)′

]}
× exp

{
−1

2
tr
[

FF′
(

Ψ + κ−1
0 J
)−1

]}
.

(3.24)

This expression does not appear to represent a distribution from which we can

easily sample, principally stemming from the fact that Λ is a between-column

precision and Ψ + κ−1
0 J is a between-row precision.

Fortunately, Cybis et al. [2015] devise a pre-order tree-traversal algorithm to

determine the conditional distribution F′i.|F−i. of the factors at a single tip given

all other tip values. This distribution is multivariate normal MVN(µF-i· , ΛF-i·)

with conditional mean µF-i· and conditional precision ΛF-i· . Further, in order to

numerically estimate F at any point along the path q∗ (β, Y, S, Θ) , we define

q∗ (Fi.|β, eiZ, F−i., L, Λ) ∝ l(eiZ|Fi., L, Λ)β p̂(Fi.|F−i.). (3.25)

Substituting in the appropriate densities and completing the square, we find
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that this path is proportional to

q∗ (Fi.|β, ei Z, F−i., L, Λ)

∝ exp
{
−1

2
β
(
e′iZ− Fi·L

)
Λ
(
e′iZ− Fi·L

)′}
× exp

{
−1

2
(
F′i· −µF-i·

)′
ΛF-i·

(
F′i· −µF-i·

)}
∝ exp

{
−1

2
Fi.
(

βLΛL′ + ΛF-i·

)
F′i· − 2Fi·

(
βLΛZ′ei + ΛF-i·µF-i·

)}
∝ exp

{
−1

2

(
F′i. −M(β)

(F)
i

)′ (
V(β)

(F)
i

)−1 (
F′i. −M(β)

(F)
i

)}
,

(3.26)

where

M(β)
(F)
i = V(β)

(F)
i
(

βLΛZ′ei + ΛF-i·µF-i·

)
(3.27)

and

V(β)
(F)
i =

(
βLΛL′ + ΛF-i·

)−1 . (3.28)

Equation (3.26) is proportional to the density of a MVN
(

M(β)
(F)
i , V(β)

(F)
i

)
;

therefore, in order to sample F at a particular point in the path β, we can draw

a row Fi. from the distribution MVN
(

M(β)
(F)
i , V(β)

(F)
i

)
.

Sampling loadings The loadings matrix can be Gibbs sampled using the same

method described by Lopes and West [2004] with an additional adaptation for

use in path sampling. For the examples provided in this paper, we place a

N(0, 1) prior on each cell in the loadings matrix; however, in this section we

prove the Gibbs Sampler for a generic N(µ, λ) prior. To begin, we again define

for a point on the path β,

q∗ (L|β, Z, F, Λ, µ, λ) = l(Z|L, F, Λ, µ, λ)β p̂(L). (3.29)
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Plugging in the proper values for the sampling density and priors, rearranging

and completing the square, we find that

q∗ (L|β, Z, F, Λ, µ, λ)

∝ exp
{
−1

2
βtr
[
(Z− FL)Λ (Z− FL)′

]}
× exp

{
−1

2
tr
[
(L− µ1) λI (L− µ1)′

]}
∝ exp

{
−1

2
tr
[
βFLΛL′F′ − 2βZΛL′F′ + λLL′ − 2λµ1L′

]}
= exp

{
−1

2
tr
[
βL′F′FLΛ + λL′L− 2

(
βΛZ′FL + λµ1′L

)]}
∝

P

∏
j=1

exp
{
−1

2

(
L.j −M(β)

(L)
j

)′ (
V(β)

(L)
j

)−1 (
L.j −M(β)

(L)
j

)}
,

(3.30)

where L.j =
(

L1j, . . . , Lk′ j

)
, 1 is a matrix of 1’s with the same dimensions as L,

M(β)
(L)
j = V(L)

j βΛjF′1:k′Z ej (3.31)

and

V(β)
(L)
j =

(
βΛjF′1:k′F1:k′ + Ik′

)−1 . (3.32)

Hence we find the expression in (3.30) is proportional to a product of indepen-

dent MVN
(

M(β)
(L)
j , V(β)

(L)
j

)
densities. Therefore, if we wish to numerically

sample a loadings column L.j at a point on the path β then we can sample from

the distribution MVN
(

M(β)
(L)
j , V(β)

(L)
j

)
. Since the densities across columns

are independent, we may sample from them in parallel.

Sampling residual precision We wish to sample Λ at any point in our path

q∗ (β, Y, S, Θ) . Let Λc be a matrix equivalent to Λ with rows and columns cor-

responding to discrete traits removed. We then say that Λc =
(

Λ(1), . . . , Λ(P′)

)′
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where Λ(j) models continuous trait j and P′ is the number of continuous traits

in our model. If we define Lc and Zc as the matrices L and Z with the columns

corresponding to discrete traits removed, then we can say Zc ∼ MVN(FLc, Λc).

Our prior on Λ(j) is i.i.d. for different values of j and has distribution Γ(αΛ, βΛ).

For an arbitrary point β in our path q∗ (β, Y, S, Θ) , we then define

q∗ (Λc|β, Zc, F, Lc) ∝ l(Zc|Λc, F, Lc)
β p̂(Λc), (3.33)

with density

q∗ (Λc|β, Zc, F, Lc)

∝
P′

∏
j=1

ΛβN/2
(j) × exp

{
−β

2

[
e′j (Zc − FLc)

′ (Zc − FLc) ejΛ(j)

]}

×
P′

∏
j=1

ΛαΛ−1
(j) × exp

{
−βΛΛ(j)

}
=

P′

∏
i

ΛαΛ+βN/2−1
(j)

× exp
{
−
(

βΛ +
β

2
e′j (Zc − FLc)

′ (Zc − FLc) ej

)
Λ(j)

}
.

(3.34)

The expression in (3.34) is proportional to the density of a gamma

Γ
(

αΛ + βN
2 , βΛ + β

2 e′j (Z− FL)′ (Z− FL) ej

)
random variable, and therefore

we can sample from this gamma distribution in order to sample Λ(j) at a given

point in the path.
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Supplementary figures and tables We perform a phylogenetic factor analysis

(PFA) on N = 24 triggerfish species with 13 (x, y) coordinate measurements on

the pectoral, dorsal and anal fins (P = 78) obtained by Dornburg et al. [2011].

We additionally use 12S (833 nucleotides, nt), and 16S (563 nt) mitochondrial

genes and RAG1 (1471 nt), rhodopsin (564 nt) and Tmo4C4 (575 nt) nuclear

genes obtained by Dornburg et al. [2008] with a Kingman coalescent prior on

the tree topology [Kingman, 1982], an HKY substitution model [Hasegawa

et al., 1985] as well as a discretized, one-parameter Gamma distribution with

unknown shape and proportion of invariant sites [Yang, 1994]. We settle on a

K = 5 factor model.

Additionally we ran 100 replicates simulating F given the fixed phylogenetic

tree used in our Aquilegia example, and subsequently simulate the data matrix

Y given F, L and Λ, fixing L and Λ to the posterior mean estimates of the

corresponding matrices from our Aquilegia example.
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B Remaining loadings plots for triggerfish example

Figure 3.6: Expected triggerfish fin shape given a range of a) F2, b) F4 and c) F5 values,
holding other factor values constant. Purple dots estimate semi-landmark locations.
Green lines are interpolated to present a clearer outline of the fin shape.
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C Remaining factor tree plots for triggerfish example
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Figure 3.7: Maximum clade credibility tree for triggerfish species with teal representing a
negative factor value and red-purple representing larger factor values.
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Figure 3.8: Maximum clade credibility tree for triggerfish species with light purple representing
a negative factor value and brown representing larger factor values.
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Figure 3.9: Maximum clade credibility tree for triggerfish species with yellow representing a
negative factor value and navy blue representing larger factor values.
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D Triggerfish Fin Precision Elements

Label X-mean X-95% BCI Y-mean Y-95% BCI

Pectoral Pt. 1 12.90 [5.27, 21.95] 1.13 [0.46, 1.83]

Pectoral Pt. 2 14.29 [5.72, 24.25] 2.29 [0.99, 3.80]

Pectoral Pt. 3 19.34 [7.53, 32.08] 7.14 [2.80, 11.97]

Pectoral Pt. 4 12.27 [4.97, 20.30] 10.84 [3.90, 18.14]

Pectoral Pt. 5 2.84 [1.14, 4.64] 14.86 [5.93, 25.05]

Pectoral Pt. 6 0.95 [0.43, 1.55] 13.43 [5.56, 22.71]

Pectoral Pt. 7 2.43 [1.01, 4.04] 8.86 [3.39, 15.41]

Pectoral Pt. 8 9.52 [3.80, 16.06] 3.93 [1.37, 7.00]

Pectoral Pt. 9 15.20 [6.36, 26.11] 1.80 [0.63, 3.13]

Pectoral Pt. 10 12.07 [4.53, 20.23] 4.92 [1.96, 8.47]

Pectoral Pt. 11 6.07 [2.62, 10.24] 11.00 [4.87, 18.79]

Pectoral Pt. 12 2.75 [1.11, 4.51] 6.22 [2.55, 10.50]

Pectoral Pt. 13 1.09 [0.49, 1.85] 10.86 [4.33, 18.27]

Dorsal Pt. 1 12.56 [4.82, 21.75] 6.55 [1.89, 12.08]

Dorsal Pt. 2 11.26 [3.83, 18.93] 7.30 [2.48, 12.71]

Dorsal Pt. 3 10.89 [3.88, 18.53] 3.69 [1.43, 6.05]

Dorsal Pt. 4 3.64 [1.40, 6.20] 2.83 [1.22, 4.70]

Dorsal Pt. 5 2.18 [0.80, 3.82] 2.46 [1.02, 4.11]

Dorsal Pt. 6 6.38 [2.01, 11.38] 3.24 [1.20, 5.75]

Dorsal Pt. 7 14.76 [5.16, 25.55] 7.55 [2.19, 13.70]

Dorsal Pt. 8 13.62 [5.09, 22.87] 5.33 [1.53, 10.30]

Dorsal Pt. 9 12.12 [4.19, 21.13] 2.89 [1.04, 5.02]

Dorsal Pt. 10 8.62 [2.19, 16.12] 3.15 [1.24, 5.26]

Dorsal Pt. 11 5.21 [1.50, 9.91] 3.70 [1.44, 6.16]

Dorsal Pt. 12 2.43 [0.95, 4.03] 3.86 [1.55, 6.38]
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Dorsal Pt. 13 1.99 [0.81, 3.33] 3.37 [1.33, 5.80]

Anal Pt. 1 6.32 [2.44, 10.71] 8.15 [2.86, 14.14]

Anal Pt. 2 8.77 [3.46, 15.15] 7.40 [2.87, 13.12]

Anal Pt. 3 10.49 [3.91, 17.73] 2.28 [0.90, 3.74]

Anal Pt. 4 11.81 [4.37, 20.06] 1.70 [0.74, 2.85]

Anal Pt. 5 4.79 [1.67, 8.26] 3.24 [1.22, 5.57]

Anal Pt. 6 3.01 [1.04, 5.11] 4.04 [1.36, 7.08]

Anal Pt. 7 4.34 [1.77, 7.54] 6.13 [2.00, 11.02]

Anal Pt. 8 6.69 [2.56, 11.28] 9.65 [3.27, 16.94]

Anal Pt. 9 14.89 [5.50, 25.09] 9.95 [3.71, 17.29]

Anal Pt. 10 15.39 [6.22, 26.70] 7.76 [2.88, 13.26]

Anal Pt. 11 1.40 [0.58, 2.35] 4.45 [1.68, 7.52]

Anal Pt. 12 4.20 [1.71, 7.04] 3.24 [1.22, 5.46]

Anal Pt. 13 8.29 [3.12, 14.11] 5.50 [2.15, 9.30]

Table 3.3: Triggerfish pectoral, dorsal and anal fin precision element posterior mean and 95%
Bayesian credible interval (BCI) estimates.
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E Phylogenetic character substitution estimates

Posterior 95% Bayesian
Trait mean credible interval

πA 0.275 [0.262, 0.288]
πC 0.259 [0.247, 0.271]
πG 0.221 [0.231, 0.231]
πT 0.245 [0.232, 0.256]

κ 4.304 [3.852, 4.816]
α 0.552 [0.382, 0.753]

Pinv 0.673 [0.627, 0.725]

Table 3.4: Posterior estimates of HKY substitution model [Hasegawa et al., 1985], discretized
Gamma shape α, and proportion of invariant sites Pinv [Yang, 1994]. For the HKY
model, (πA, πC, πG, πT) represent the nucleotide stationary distribution, and κ
represents the rate ratio of transitions to transversions.
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F Simulation study
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Figure 3.10: Relationship between loadings matrix element
∣∣Lkj

∣∣ and a) coverage of 95% high
probability density interval b) power and c) bias2 from our simulation study with
known loadings matrix L.
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CHAPTER 4

Bayesian model selection for phylogenetic factor

analysis

Phylogenetic factor analysis (PFA) provides a Bayesian approach to charac-

terize the relationships between high-dimensional biological traits measured

across multiple organisms, while simultaneously controlling for their uncertain

evolutionary history. Inference under PFA can suffer in cases where the num-

ber of taxa is not overwhelmingly large, as the posterior distribution across

the loadings matrix entries tends to be overly diffuse. To address this short-

coming, we introduce sparsity into the loadings matrix through a shrinkage

prior, whose variance collapses as the conditional value of the loadings en-

tries approaches zero. This shrinkage prior consists of a normal prior with a

half-Cauchy hyperprior on the variance. This grants a sparse and identifiable

loadings matrix that we can efficiently and reliably infer using Markov chain

Monte Carlo. We evaluate inference under this PFA shrinkage prior through

three examples. In examining Aquilegia flower diversity, the sparse model

returns a more parsimonious description of the evolutionary processes guiding

flower evolution as compared to the original dense model. The sparse model

delineates different morphometric evolutionary processes in Anolis lizards that

associate with different habitats; whereas, the dense model fails to make these

determinations. Lastly, we are now able to produce morphometric inference

on Plethodon salamanders allowing us to more confidently assert the lack of

relationship between size and shape on these organisms.
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4.1 Introduction

Comparative biology aims to understand the relationships between measured

characteristics or traits across a set of organisms or taxa. These traits may

display similar patterns across taxa, spuriously owing to their shared evolu-

tionary history, or may co-vary through biologically relevant processes along

their history. Therefore, to properly estimate these processes, one must control

for the shared evolutionary history through a phylogeny [Felsenstein, 1985].

Several methods that attempt phylogenetic adjustment while estimating trait

covariation stand out. These include phylogenetic principal components anal-

ysis (PPCA) [Revell, 2009], phylogenetic least squares (PGLS) [Adams, 2014],

multivariate Brownian diffusion (MBD) along a phylogeny [Felsenstein, 1985,

Huelsenbeck and Rannala, 2003, Lemey et al., 2010] and, recently, phylogenetic

factor analysis (PFA) [Tolkoff et al., 2017]. Unfortunately, PPCA suffers from

the same limitations as principal components analysis generally, namely that

results are not scale-invariant and there is no underlying data generative model

from which to easily infer measures of uncertainty on the associations. Further,

the estimation methods for PPCA currently necessitate large matrix inversions

[Revell, 2009] and, as such, do not scale for large numbers of taxa, specially

when entertaining bootstrapped measures of sampling variability. PGLS pro-

vides analysis of variance style statistical tests to identify associations, but

falls short on measuring pairwise uncertainty between all traits. Finally, like

many frequentist approaches in phylogenetics, these two methods experience

difficulty in simultaneously incorporating uncertainty about the underlying

phylogeny [Suchard et al., 2001].

Readily formulated in a Bayesian framework, MBD and PFA both posit

the observed traits as realizations of diffusion processes running along the

branches of a possible unknown phylogeny to furnish a full probabilistic data
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generate process and simultaneously adjust for shared evolutionary history.

MBD asserts a single, multivariate correlated process and attempts to uncover

pairwise correlation between traits through the marginal posterior distribution

of the off-diagonal entries of the correlation matrix. PFA assumes a small

unknown number of independent, univariate evolutionary processes arise

along the phylogeny and these factors generate clusters of dependent traits. For

large numbers of traits, such as those arising from high-throughput biological

experiments, a smaller number of biologically interpretable processes often

represent a more parsimonious model than the full multivariate diffusion

variance matrix. Model selection using Bayes factors [Jeffreys, 1935] generally

favors PFA over MBD, and the multiple independent groupings of traits under

PFA can offer more nuance and therefore more explanatory power [Tolkoff

et al., 2017]. Despite this improvement, theoretical and practical statistical

issues with PFA remain outstanding, particularly as the number of observed

traits continues to grow.

Standard factor analysis presumes that each factor influences, via non-zero

loadings matrix entries, most traits in a phylogenetic setting. In many biological

applications, our inference on each independent evolutionary process is likely

to be reflected in only a relatively small number of highly correlated traits

when the total number of taxa is small relative to the number of traits. As

a consequence, many loadings entries have small point-estimates or diffuse

marginal posterior distributions in a Bayesian setting, as Tolkoff et al. [2017]

observe. This clouds inference when researchers wish to identify biologically

relevant, covarying clusters of traits. We intend to solve this by inducing

sparsity in the loadings matrix. However, we wish to avoid the typical pitfalls

of sparse factor analyses. Namely, Indian buffet process (IBP) priors [Griffiths

and Ghahramani, 2005] on the loading matrix [Knowles and Ghahramani,

2007] tend to produce estimates with a small number of factors which explain
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relationships between most of the traits along with a large number of factors

which explain only a small number of characteristics [Xu et al., 2016]. An

alternative is the determinental point process prior that penalizes sparsity

patterns across loading matrix rows that are too similar [Xu et al., 2016].

The resulting sparse posterior distribution is often multi-modal [George and

McCulloch, 1993, Ročková and George, 2014, Li and Pati, 2017] and, for large

numbers of traits, Markov chain Monte Carlo (MCMC) estimation of the

posterior may mix poorly.

Instead, we rely on a shrinkage priors, also known as horseshoe priors

[Gelman, 2006, Carvalho et al., 2009]. These distributions, rather than setting

firm sparseness measures, instead shrink the estimate of the posterior variance

towards 0 when the parameter is near 0. This allows both the benefits of having

a sparse distribution, without the drawback of getting stuck in local modes

during MCMC-based posterior estimation.

With more biologically realistic, sparsity-inducing priors , we explore the

benefits of shrinkage PFA (sPFA) over its dense PFA (dPFA) counterpart in

terms of inferring the number of independent processes driving evolution and

how these processes relate to trait inference. Our examples cover associations

between physical characteristics of columbine flowers and their pollinators,

diversification of lizards of the genus Anolis, and allometry of Plethodon sala-

manders. We make our open-source software implementing our methods freely

available through the BEAST package [Drummond et al., 2012].

4.2 Phylogenetic Factor Analysis

Across a set of N biological entities (taxa), we observe P continuous, binary or

ordinal traits Yi = (Yi1, . . . , YiP) and, if available, a molecular sequence Si for

each taxon i = 1, . . . , N. We arrange this information into an N × P trait matrix
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Y = (Y1, . . . , YN)
′ and an aligned sequence matrix S. Scientific interest lies in

understanding the underlying associations between traits after controlling for

the evolutionary history F , informed through S, that relates these taxa.

To model continuous, binary and ordinal traits simultaneously, we first

define a partially observed, standardized matrix Z = {Zij}. If trait j is continu-

ous for j = 1, . . . , P, we set Zij =
(
Yij − µ̂j

)
/σ̂j, where µ̂j is the sample mean,

and σ̂j is the sample standard deviation of trait j. If trait j is discrete, we take

Zij to be an unknown, continuous random variable. Given unknown cutoffs

γj = {γj0, . . . , γjmj}, where mj is the number of different discrete values trait j

realizes, we restrict random Zij such that γjc−1 < Zij < γjc for observed Yij = c.

For identifiability, we fix γj0 = −∞, γj1 = 0, and γjmj = ∞, group all remaining

cutoffs into γ, and assume random cutoffs are a priori i.i.d. exponentially

distributed with mean 1
2 to define their density p(γ).

4.2.1 Phylogenetic Adjustment

Our factor analysis model posits that a small, but unknown number K �

min(N, P) of a priori independent, univariate Brownian diffusion processes

along F provides a parsimonious description of the covariation in Z. To ac-

complish this, we first construct an N× K factor matrix F = (F1, . . . , FK) whose

K columns Fk = (F1k, . . . , FNk)
′ for k = 1, . . . , K identify these unobserved,

independent realizations at each of the N tips in F .

The phylogeny F consists of a topology τ and a series of branch lengths B.

The topology τ is a bifurcating directed acyclic graph for which the initiating

point, called the root, represents the most recent common ancestor of the

observed taxa and the end points, called the tree tips, represent the observed

taxa. The branch lengths B are edge weights that at their simplest represent

physical time between bifurcations, but often modulate physical time by relative
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rates of evolutionary change. The phylogeny may be known and fixed, or

unknown and jointly inferred using Y and S. The latter requires constructing

the sequence-informed prior distribution p(F |S) and integrating over F ; see,

e.g., Suchard et al. [2001] or Drummond et al. [2012].

In its typical characterization in evolutionary biology [Felsenstein, 1985], a

univariate Brownian diffusion process along F generates normally distributed

increments across each branch with variance equaling its branch length. If

we assume that the unobserved root value of the process is also normally

distributed with hyperprior mean 0 and variance κ−1
0 and match Fk to the tip

realizations, then jointly F are distributed according to a matrix-normal (MN)

F ∼ MN
(
0, ρ−1Ψ + κ−1

0 JN, IK

)
, (4.1)

where ρ−1Ψ+ κ−1
0 JN is the across-taxa (row) variance, JN is the N×N matrix of

ones, and IK is the across-traits (column) variance equaling the K-dimensional

identity matrix [Vrancken et al., 2015]. The phylogenetic variance matrix

Ψ = {Ψii′} is a deterministic function of F . Diagonal elements Ψii measure

the sum of the branch lengths between the root and taxon i and off-diagonal

elements Ψii′ sum the branch lengths between the root and the most recent

common ancestor of taxa i and i′. We fix ρ = max{Ψ11, . . . , ΨNN} to say that

the process undergoes one diffusion unit, in line with our standardization of

the continuous traits in Z.

4.2.2 Trait Factorization

We decompose Z such that

Z = FL + ε (4.2)
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where L is a K × P loadings matrix and ε is an N × P residual matrix. We

model the residuals via

ε ∼ MN
(
0, IN, Λ−1

)
, (4.3)

where Λ = diag (Λ1, . . . , ΛP) and, for identifiability, we restrict Λj = 1 if trait j

is discrete. Otherwise we assume a priori Λj are gamma distributed with shape

αΛ and rate βΛ. In practice, we set αΛ = βΛ = 1
3 .

4.3 Shrinkage priors

We now introduce priors on L that favor parsimonious models. One of the

more popular sparsity-inducing priors for factor analysis arises from the Indian

buffet process [Griffiths and Ghahramani, 2005, Knowles and Ghahramani,

2007]. This prior conveniently provides a density on both K and a sparse

loadings matrix along with Gibbs sampling approaches to integrate over K

as well as sparse loadings components of L [Griffiths and Ghahramani, 2011].

The IBP prior, however, carries the undesirable feature that the mass of the

density is overwhelmingly concentrated towards realizations where either all

or none of the random elements within a row of L(0,1) are 1, signifying model

inclusion. The IBP framework also tends to reward structures with many

factors and few traits within each element [Xu et al., 2016]. Another option is to

use determinental point processes [Xu et al., 2016] mixed with non-local priors

[Johnson and Rossell, 2012], however in our experience with this framework,

we could not produce consistent inference on this model using MCMC chains

with different random seed values.

Instead, we mimic the advantages of a sparse L by using shrinkage priors

[Gelman, 2006, Carvalho et al., 2009]. Shrinkage priors place an i.i.d.

Lkj ∼ N
(

0, φ2
kjτ

2
)

, (4.4)
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distribution on Lkj, where φ2
kj is the local component of the variance and τ2 is

the global component of the variance. We place i.i.d. hyper priors on φkj and τ

such that

φkj, τ ∼ C+ (0, 1) , (4.5)

where C+ (·, ·) is a half-Cauchy distribution with a centrality parameter and a

scale parameter.

Since sampling the posterior of φ = (φ11, . . . , φKP) and τ is difficult in this

form, we rely on the equivalent augmented model [Makalic and Schmidt, 2016]

such that

φ2
kj ∼ IG

(
1
2

, νkj

)
τ2 ∼ IG

(
1
2

, ξ

)
,

(4.6)

where ν = (ν11, . . . , νKP) are augmented local parameters and ξ is an aug-

mented global parameter. Finally, we place i.i.d. priors on νkj and ξ, such

that

νkj, ξ ∼ Γ
(

1
2

, 1
)

. (4.7)

4.4 Inference

We aim to draw inference on the joint posterior distribution of the factors F,

loadings L, column precisions Λ, and, in theory, evolutionary history F , given
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trait measurements Y and aligned sequences S,

p (F, L, Λ, F |K, Y, S)

∝ p (Y | F, L, Λ)× p (F |K, F )

× p (F | S)× p (L |K)× p (Λ)

=

(∫∫
p (Y |Z,γ) p (Z | F, L, Λ) p (γ) dZdγ

)
p (F |K, F )

× p (F | S)× p (L |K)× p (Λ) ,

(4.8)

where p (Y |Z,γ) ∝ 1(Y |Z,γ) is the indicator function that the conditions on

Z from section 4.2 hold, and where

p (L |K) =
∫∫

p (L |K,φ, τ)
∫∫

p (φ, τ | ν, ξ) p (ν, ξ) dνdξ × dφdτ. (4.9)

To draw inference on this distribution, we rely on a random-scan Metropolis-

within-Gibbs Markov chain Monte Carlo (MCMC) framework [Liu et al., 1995].

The Metropolis-Hastings [Metropolis et al., 1953, Hastings, 1970] portion of

this framework is invoked through transition kernels on the evolutionary

history F as well as the cut points γ described in Cybis et al. [2015]. To draw

inference on Zij for trait j discrete, we can express Zij|L, F as proportional to

N
(
0, Fi.L.j, 1

)
1 (Y|Z,γ) , where Fi. is row i of F and L.j is column j of L, and

easily simulate from this distribution.

For inference on F, L and Λ we rely on the Gibbs samplers described in

Tolkoff et al. [2017]. For inference on φkj we can use a conditional Gibbs sampler

[Makalic and Schmidt, 2016] such that

φ2
kj|τ, νkj, Lkj ∼ IG

(
1, νkj +

L2
kj

2τ2

)
, (4.10)
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and similarly for τ,

τ2|φ, ξ, L ∼ IG

(
1 + KP

2
, ξ +

1
2 ∑

kj

L2
kj

φ2
kj

)
. (4.11)

Additionally, we can Gibbs sample ν and ξ through the samplers

νkj|φ2
kj ∼ Γ

(
1, 1 +

1
φ2

kj

)
(4.12)

and

ξ|τ2 ∼ Γ
(

1, 1 +
1
τ2

)
(4.13)

respectively.

Lastly, we need to draw inference on K|Y. Since these shrinkage priors rely

on a Cauchy distribution on the variance, φ and τ have no expectation, making

MLE inference on models using these priors difficult. Instead, we infer K under

the dPFA model described by Tolkoff et al. [2017].

4.5 Examples

4.5.1 Columbine Flowers

The perennial plants of the Aquilegia genus bloom across the Northern Hemi-

sphere and their petals display an enormous range of diversity. Whittall and

Hodges [2007] explore how different anatomical floral features adapt to chang-

ing pollinators. The authors examine P = 12 traits consisting of 10 continuous

measures (orientation, blade brightness, spur brightness, sepal length, blade

length, spur hue, spur length, blade hue, blade chroma, and spur chroma)

and 2 discrete measures (the presence/absence of anthocyanins pigment and

ordinal pollinator type) across N = 30 monophyletic populations from the
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genus on a pre-determined (and fixed) phylogeny F . The authors posit that

over evolutionary time-scales the mode of pollination tends to progress from

bumble bee- to hawkmoth- to hummingbird-mediated and that nectar spur

length changes as these plants transition through these pollinators, possibly

owing to a co-evolutionary ‘race’ between spurs and pollinator tongues. Given

the data, the MBD model strongly supports the proposed pollinator ordering

over alternative orderings [Cybis et al., 2015]. Further, dPFA uncovers K = 2

independent processes giving rise the traits [Tolkoff et al., 2017]. Still, some

ambiguity lingers around the relative importance of pollinator type in the first

process and of blade brightness, sepal length, blade length and anythocyanins

presence in the second process.

Mentioned earlier, but worth restating is that we use the same marginal

likelihood estimates from Tolkoff et al. [2017] in order to circumvent issues

relating to the infinite variance of the half Cauchy prior. Therefore, once again,

we favor the K = 2 factor model.

We present the results from the sPFA in figure 4.1. The results for Λ are

shown in Appendix A. We only show results whose Bonferroni corrected 95%

HPD does not contain 0. We find that the first loading, L1 shows a positive

relationship between spur length, spur hue and pollinator type, as displayed

by the green circles. This affirms the relationship of interest from Whittall and

Hodges [2007]. The second loading, L2 shows a positive relationship between

spur chroma, blade chroma and the presence of anthocyanins pigment, as well

as a negative association, as shown in purple, with orientation, blade length,

spur brightness and blade brightness.

This contrasts significantly with the results from Tolkoff et al. [2017], which

found important relationships between all traits, with the possible exception of

pollinator type for one factor, and a positive relationship between pollinator

type, spur hue, spur length, blade hue, and blade chroma. We, by contrast,
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Figure 4.1: Posterior loadings estimate, L, of the process driving the evolution of Aquilegia
flowers under shrinkage phylogenetic factor analysis (sPFA) assumptions. Within
a loading, purple circles are positively associated with other purple circles, and
negatively associated with green circles, and green circles are positively associated
with other green circles. Grayed out cells represent Bonferroni corrected 95% HPD
intervals which contain 0. Size represents the magnitude of the inferred loadings
values for included elements. Size for discrete traits pollinator type and presence
or absence of anthocyanins pigment is less relevant, and therefore we resize these
circles to fit the figure, and displayed these traits in a lighter color. We find
significantly fewer relationships than found in Tolkoff et al. [2017]. L1 preserves
the relationship between spur length and pollinator type, as well as the relationship
with spur hue. L2 finds a positive relationships between orientation, blade length,
spur brightness, and blade brightness, with a negative relationship with spur
chroma, blade chroma, and presence and absence of anthocyanins pigment. Notably,
sepal length and blade hue are unexplained by evolution in this model.

find that sepal length and blade hue are poorly explained through evolutionary

processes, and spur length, spur hue and pollinator type occupy their own

independent evolutionary process, rather than exist to countervail a factor

which uniformly effects all measurements. Therefore, it appears that adding

sparseness to our modeling assumptions increases the parsimony of our results.

4.5.2 Anoles Lizards

Lizards of the genus Anolis, found across South and Central America as well as

in the islands of the Greater Antilles region, are often used as a model organism
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Model MLE

K = 3 165.38

A
no

lis K = 4 259.03
K = 5 219.75

Pl
et

ho
do

n

K = 4 -1136.7
K = 5 -1126.7

K = 6 -1131.7

Table 4.1: Marginal likelihood estimate (MLE) for the Anolis and Plethodon examples. In
order to circumvent issues related to the Cauchy distribution used in the shrinkage
distribution, we use the phylogenetic factor analysis PFA model described by Tolkoff
et al. [2017]. Similarly, the MLE for the Aquilegia example is found in Tolkoff et al.
[2017] and favors the K = 2 model. The Anolis example favors the K = 4 model
and the Plethodon example favors the K = 5 model.

to study diversification [Losos and Schneider, 2009]. Even though mainland

species have as much species richness as their island cousins [Pinto et al., 2008],

the island species are more commonly studied. Mahler et al. [2010] use these

island species to study rates and patterns of phenotypic diversification. Since

certain characteristics, such as climate [Velasco et al., 2015], affect the species

richness of a given niche, we feel that by measuring phenotype relatedness we

can gain a clearer understanding of how those niches manifest themselves in

terms of the morphometry of Anolis lizards.

We rely on the N = 100 and P = 22 continuous log-transformed morphome-

tric measurements collected by Mahler et al. [2010], as well as the phylogenetic

tree which they inferred using mitochondrial sequence data.

We favor the K = 4 model (table 4.1) , shown in figure 4.2 over the K = 3

and K = 5 models with log Bayes factors >93 and >39 respectively. In this

example, all relevant traits within a loadings row are positively associated with

each other. Once again, we gray out results whose Bonferroni corrected 95%
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Figure 4.2: The process driving the evolution of Anolis lizards inferred through the shrinkage
phylogenetic factors analysis (sPFA). Colors and sizes follow from figure 4.1. We
settle on the K = 4 model. The first loading, L1, represents a positive association
between lamella number from toe and foretoe IV, as well as lamella width from toe
IV. While lamella width of foretoe IV is excluded from L1, this may be due to the
conservative nature of the Bonferroni correction. L2 represents leg, toe and tail
length. The third loading, L3, represents head length and height, but not width.
Lastly, L4 represents a general factor of size.
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HPD contains 0. Loading L1 represents the evolutionary process of the lamella,

specifically the lamella number on toe IV and foretoe IV, as well as the lamella

width on toe IV. We exclude the lamella width on foretoe IV, although this

may be due to the conservative nature of the Bonferroni correction. Loading

L2 represents length for the legs, toes, and the tail. Loading L3 represents

head length and height, as well as associated characteristics such as snout

vent length, lower jaw length, jaw opening in-lever length and jaw closing

in-lever length. Loading L4 represents a generic factor of size. The results

for Λ are shown in Appendix A. These results leave us to expect that lamella

characteristics, leg and tail length, head size (but not width), and overall size

are each independent evolutionary factors which may be reflective of how

Anolis species filled different niches when they migrated to the islands of the

Greater Antilles region.

For the dPFA, we find that if we use the identifiability post processing

described by Tolkoff et al. [2017], and use the inclusion criteria described in

this paper, then each loading only contains a single trait. The sPFA produces

more scientifically interesting results than the dPFA, which, in this example

produces results which are difficult to draw scientific meaning from.

4.5.3 Plethodon Salamanders

One issue comparative biology concerns itself with is one of allometry, or the

relation between size and shape. Adams et al. [2009] look at this question in

an attempt to study the diversification rates of Plethodon salamanders. Adams

[2014] look at the question of allometry more specifically in order to analyze

their new PGLS method, as well as to gain a greater understanding of the

diversification rates and competitive effectiveness of Plethodon salamanders.

Adams and Collyer [2015] develop a distance based PGLS (D-PGLS) and

compare it to the permutation test (PICrand) developed by Kingenberg and
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Figure 4.3: The process driving the evolution of Plethodon salamanders inferred through the
shrinkage phylogenetic factors analysis (sPFA) for the first loading L1. Purple
dots represent points whose Bonferroni corrected 95% high probability density
(HPD) intervals do not contain 0 in either the x or y coordinate. Green lines are
interpolated for clarity. We can see that L1 affects eye size, nostril location as well
as mouth shape.

Marugán-Lobón [2013] and find that D-PGLS affirms a significant relationship

between shape and size, versus PICrand, which does not find a significant

relationship, and then further go on to show that D-PGLS produces a false

positive rate which is closer to the nominal rate.

We use the measurements compiled by Adams and Collyer [2015], which

consist of N = 42 taxa, an associated phylogeny, 11 location measurements and

a snout to vent length which functions as a proxy for head size, for a total of

P = 23 traits. We favor the K = 5 model over the K = 4 and K = 6 models with

log Bayes factors ∼ 10 and ∼ 5 respectively (table 4.1). We show our results

for the first loading L1 the sPFA in figure 4.3. Our results for Λ are shown in

Appendix A, and our results for L2 − L5 are shown in the Appendix B.

We find that there is no relationship between size and shape for any of

the five loadings. For L1 we see a difference in nostril location, mouth shape

and eye size. By contrast, the dense model only gives us a single point and a

single direction in each loading, specifically the point/direction selected by the

algorithm described by Tolkoff et al. [2017].
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4.6 Discussion

Our goal is to create a sparse version of the dPFA methodology for comparative

biology devised by Tolkoff et al. [2017]. We maintain the general framework

from Tolkoff et al. [2017], however we introduce a shrinkage prior in order to

induce sparseness on the loadings matrix. This sparseness allows us to cluster

the non-zero posterior mass for a given trait in fewer loadings cells. This allows

us to produce either more parsimonious results, or allows us to tease apart

scientific meaning from results which would otherwise fail to elucidate any

trait relationships. We use the examples of Aquilegia flowers, Anolis lizards

and Plethodon salamanders to study the efficacy of this method. While none of

these examples examine simultaneous inference on the phylogeny, this is easily

adapted in the Bayesian framework using the BEAST software. We include the

XML code for our examples in the supplementary material.

Up to this point, we have not mentioned the typical identifiability issues

associated with factor analysis. These issues arise from the fact that

FL = FTtTL, (4.14)

where T is an arbitrary orthonormal matrix. When we use a sparse L, we

constrain our model somewhat, however we are still vulnerable to the situation

where

FL = FRtRL, (4.15)

where R is a reflection and rotation matrix. In other words, we can freely

rearrange the order of our factors as well as reverse the sign of a loadings row

and corresponding factor column without affecting our evaluation of FL. In

practice we switch between modes infrequently enough that we can excise

a part of the chain, or do post processing to readjust the chain to be in a
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single mode when the loadings MCMC chains switch labels. Tolkoff et al.

[2017] develops a method to handle the situation where the factor column and

loadings row changes sign by negating a draw from a given loadings row based

on criterion from how our posterior was sampled. We are able to adapt this

with shrinkage priors as well. In the future, we hope to adapt the methods for

inducing identifiability in a factor analysis that are described by Holbrook et al.

[2016] and Holbrook et al. [2017]

Future model extensions involve missing data and the situation where a

large percentage of the traits are discrete. In the former case, we can easily

integrate out these values analytically and similarly adapt our sampler. In the

latter case we can similarly integrate out these latent values, however Gibbs

sampling in this framework becomes difficult. Instead, we can rely on a bouncy

particle sampler for sampling latent values [Bouchard-Côte and Vollmer, 2017].

Additionally, future work involves integrating out the latent factors so we no

longer have to infer all of the information at the tips, particularly when the

number of taxa is large. Lastly, we think it is important to be able to infer the

number of factors K under the shrinkage prior model, and also consider this

future work.

4.7 Appendix

We perform a sparse phylogenetic factor analysis on Aquilegia flowers, Anolis

lizards and Plethodon salamanders with N = 30, 100, and 42 respectively, and

P = 12, 22, and 42 respectively.
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A Column Precisions

X-Point X-95% Credible Y-Point Y-95% Credible

Estimate Interval Estimate Interval

Pt. 1 9.32 [3.97, 15.59] 5.3868 [2.71, 9.22]

Pt. 2 4.63 [2.01, 7.78] 2.78 [1.29, 4.35]

Pt. 3 6.72 [3.20, 10.96] 5.38 [2.78, 8.41]

Pt. 4 1.33 [0.79, 2.02] 3.50 [1.74, 5.37]

Pt. 5 3.08 [1.67, 4.77] 23.80 [11.35, 37.96]

Pt. 6 8.97 [3.84, 14.97] 22.78 [11.03, 36.34]

Pt. 7 2.97 [1.50, 4.65] 2.75 [1.36, 4.24]

Pt. 8 2.83 [1.41, 4.43] 4.46 [2.24, 7.26]

Pt. 9 4.03 [1.80, 6.81] 2.49 [1.32, 3.76]

Pt. 10 1.90 [1.06, 2.97] 2.70 [1.46, 3.98]

Pt. 11 10.68 [4.28, 18.44] 13.37 [5.27, 22.79]
Table 4.3: Inference on Λ for the x and y coordinates for the Plethodon salamander morpho-

metrics, along with the associated 95% credible intervals.
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Point Estimate 95% HPD Interval

Orientation 2.31 [1.13, 3.72]

Spur length 5.07 [1.90, 8.84]

Blade length 3.14 [1.44, 5.12]

Sepal length 2.69 [1.27, 4.29]

A
qu

ile
gi

a Spur chroma 4.50 [1.71, 7.92]

Spur hue 5.66 [1.95, 10.09]

Spur brightness 2.49 [1.14, 3.94]

Blade chroma 2.80 [1.13, 4.68]

Blade hue 1.98 [0.95, 3.10]

Blade brightness 3.03 [1.46, 5.52]

Snout vent length 57.30 [41.75, 74.66]

Head length 93.81 [66.91, 122.6]

Head width 53.51 [32.23, 70.02]

Head height 48.26 [33.64, 62.71]

Lower jaw length 101.12 [71.95, 130.66]

Jaw opening in-lever 105.58 [76.71, 138.73]

Jaw closing in-lever 95.09 [67.99, 123.74]

Femur length 57.12 [40.15, 74.54]

Tibia length 63.65 [43.23, 83.80]

A
no

lis

Metatarsal IV length 78.47 [54.40, 103.63]

Toe IV length 46.46 [32.89, 61.30]

Lamella width, toe IV 45.48 [31.52, 59.52]

Humerus length 74.58 [54.13, 98.79]

Radius length 62.70 [44.67, 83.52]

Metacarpal length 40.58 [29.05, 53.22]

Finger IV length 58.96 [41.82, 76.93]

Lamella width, foretoe IV 43.20 [30.25, 57.23]
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Pelvis height 37.97 [26.97, 49.25]

Pelvis width 54.57 [39.43, 72.88]

Lamella number, toe IV 24.46 [15.07, 34.73]

Lamella number, foretoe IV 25.47 [15.70, 35.76]

Tail length 10.82 [7.34, 14.56]

Pl
et

ho
do

n

Snout-vent length 1.96 [1.10, 2.90]

Table 4.4: Inference on Λ and associated 95% high probability density (HPD) intervals for
the examples of Aquilegia flowers, Anolis lizards, and the snout-vent length for
Plethodon salamanders.

B Plethodon Loadings

Figure 4.4: Process driving Plethodon salamanders for the second loading. Purple dots rep-
resent points whose Bonferroni corrected 95% high probability density (HPD)
intervals do not contain 0 in either the x or y coordinate. Green lines are interpo-
lated for clarity.
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Figure 4.5: Process driving Plethodon salamanders for the third loading. The colors in the
figure follow those from figure 4.4

Figure 4.6: Process driving Plethodon salamanders for the fourth loading. The colors in the
figure follow those from figure 4.4

Figure 4.7: Process driving Plethodon salamanders for the fifth loading. The colors in the
figure follow those from figure 4.4
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CHAPTER 5

Phenotypic evolution on large trees with many

missing measurements

In comparative biology, we are often interested in learning about the relation-

ships between different characteristics or traits. In order to properly understand

these relationships we need to study many different taxa while controlling for

the evolutionary history of the organisms.

While there are many methods which can accomplish this, they almost uni-

versally scale poorly as the number of taxa increases. The other challenge arises

from the fact that obtaining a full suite of measurements becomes increasingly

difficult as the number of taxa increases.

Therefore, we propose a model in which we can integrate out missing

and latent values analytically and which scales in linear time by using a post-

order traversal algorithm based on a multivariate Brownian diffusion (MBD)

model. Additionally, we adapt this method to integrate out the factors and

missing values in a phylogenetic factor analysis (PFA) model to obtain results

which take into account multiple independent processes, account for traits

whose variance is not explained through evolution, and scales linearly with the

number of traits.

We test these methods using the example of life history covariation in the

mammalian class. We find support for the hypothesis that there are species

with short reproductive cycles which produce large litters, and vice versa. We
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obtain these results ∼ 10000× faster for the MBD model and ∼ 14.8× faster for

the PFA model.
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5.1 Introduction

In comparative biology, we are often interested in learning about the relation-

ships between different characteristics, or traits of an organism. Felsenstein

[1985] showed, however, that in order to properly understand these pheno-

typic relationships, we must also adjust for the evolutionary history of these

organisms. New genetic sequencing methods have allowed for a greater view

of the tree of life than ever before, allowing us to incorporate phenotypic

measurements from more species than previously possible while properly

adjusting for evolutionary history. Analyses incorporating dense taxonomic

sampling at large scales creates potential for new research examining very

general patterns in phenotypic evolution, key differences between subgroups,

and the relationship between macro and micro-evolutionary dynamics.

Unfortunately, many popular techniques are poorly equipped to handle

situations where the number of taxa are large. The methods described by Revell

[2009] and Adams [2014] scale cubicly with the number of taxa, making them

infeasible for large problems. Similarly, the phylogenetic factor analysis (PFA)

model described by Tolkoff et al. [2017] scales quadratically with the number

of taxa, which is still infeasible.

One of the most difficult challenges that arises as the number of taxa grows

large is that obtaining a complete suite of phenotypic data for each species

becomes increasingly challenging. Without a method for handling missing

data in comparative analyses the consequence is a reduction in the number of

species and/or traits that can be analysed such that only a fraction of the data

relevant to a problem is utilised. One of the ways to handle missing data is to

integrate out the missing values numerically via Markov chain Monte Carlo

(MCMC) [Tolkoff et al., 2017]. While this method produces accurate results if

the values are missing at random, this method is slow, particularly when the
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number of missing traits grows large.

We rely on the multivariate Brownian diffusion (MBD) model described by

Lemey et al. [2010] as the basis for our method, since it scales linearly with the

number of taxa. This method assesses the between trait variance/covariance

matrix of a Brownian diffusion down a phylogenetic tree. In this paper, we

develop a novel technique which allows us to integrate out the missing obser-

vations analytically, greatly speeding up our analyses. We accomplish this by

treating our observed measurements as infinitely precise at the tips, and unob-

served measurements with no precision, and propagating these assumptions

up the tree.

In addition to observed and unobserved measurements, we sometimes have

latent measurements we can integrate out. This is the case with the PFA model

from Tolkoff et al. [2017], where we construct latent factors to help us explain

trait measurements at the tips of the tree. Using this method of integration,

we can integrate out the factors analytically in a way which allows us to infer

our model in time linear to the number of taxa, even with a large quantity of

missing measurements.

We draw inference on the MBD and PFA using the example of life history

covariation across the mammalian class, which is too large to be inferred

efficiently with other methods. We find support for the hypothesis that we

can group the mammalian class into those which have fast reproductive cycles

and produce many offspring, and those with slow reproductive cycles which

produce few offspring. The PFA model reproduces these results but also finds

an additional independent process which shows that an increase in litter size

reduces neonatal body mass and number of litters per year. We were able to

obtain these results with a ∼ 10000× speedup in the MBD model, and a less

spectacular but still impressive ∼ 14.8× speedup in the PFA model. We make

this software freely available in the program BEAST [Drummond et al., 2012].

86



5.2 Phylogenetic Trait Analysis

5.2.1 Multivariate Brownian Diffusion

When biologists wish to study the phenotype relationships between organisms,

it is important to adjust for the shared evolutionary history of these organisms

[Felsenstein, 1985]. To do this, we rely on the method described by Lemey

et al. [2010], which treats each trait as undergoing Brownian diffusion down

a phylogenetic tree and draws inference on the covariance matrix over these

traits. In order to adjust for evolutionary history, we need to first define how

we represent this history. We define a phylogeny F in two components, a tree

topology τ and a series of branch rates B. τ is a bifurcating directed acyclic

graph with ends called tips which represent the observed species, and an

originating point called the root which represents the most recent common

ancestor of these species. B are a series of lengths on this graph which represent

a function of wall time and rates of evolution. In theory we can follow Suchard

et al. [2001] using genetic sequence data to construct a tree simultaneously

along with our inference, however since we are considering a large number of

taxa in our example, we rely on a fixed tree for our analysis.

We arrange our phenotypic measurements into an N × P matrix, Y, where

N is the number of taxa and P is the number of traits, and standardize Y by

the mean and variance of the measured traits. Following from Felsenstein

[1985], we assume that our matrix Y is generated through a Brownian diffusion

process where the traits at the root Y2N−1 are a priori assumed to be

Y2N−1 ∼ N
(
µ0,

1
κ0

Σ

)
, (5.1)

where N (., .) is a multivariate normal distribution with a mean and a variance,

µ0 is the prior mean at the root, which in our example we assume to be 0, Σ is
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the P× P variance/covariance matrix detailing the relationships between traits

and κ0 is the prior sample size. We describe this Brownian process across our

tree by defining the N × N tree variance/covariance matrix Ψ where element

ii′ is the distance from the root to the most recent common ancestor when i 6= i′

and is the distance from the root to tip i when i = i′. Following from Vrancken

et al. [2015] and using this setup, we can describe the generative process on Y

as

Y ∼ MN
(

JNµ
′
0, Ψ +

1
κ0

J, Σ

)
, (5.2)

where MN is a matrix normal with a mean, a between row variance and a

between column variance, J is a conformable matrix of 1’s and JN is an N × 1

vector of 1’s. We place a WishartP (ν, Λ0) prior on Σ−1, with degrees of freedom

ν = P and where Λ0 is a prior matrix which in practice we say is the identity.

The algorithm developed by Lemey et al. [2010] allows us to evaluate the

likelihood of this distribution in O
(

NP2) time when we have complete data.

5.2.2 Partially Missing Traits

One of the greatest challenges for inference on large scale problems is the

prevalence of missing observations. Despite the ever-increasing availability of

trait data, as Y increases in size, the difficulty in obtaining measurements for

each cell increases commensurately. Therefore, in order to analyze problems

with large N, it is necessary to have a way to efficiently manage missing

observations in our analysis.

Typically, in Bayesian problems, these values are integrated out numerically.

The naive way of integrating out these values is to place a random walk

transition kernel on the missing values in Y. This naive method can be slow,

with run time of O
(

NP2M
)

, where M is the number of missing values. Cybis

et al. [2015] developed an algorithm to compute the conditional distributions
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at the tips of a tree given the values at the other tips. By using this method we

can draw inference at a pace of O
(

N2P2) , however when the number of taxa

is large, this method is still prohibitively slow.

Our goal is to integrate out these missing values analytically using a dy-

namic programming algorithm in order to bring our run time down to a much

more manageable O
(

NP2) .

5.2.3 Algorithms

Let Yobs be the trait values that we can observe and Ymis be the missing trait

values. Here, we are interested in evaluating the likelihood p (Yobs |Σ, Ψ,µ0, κ0) .

We compute the likelihood p (Yobs |Σ, Ψ,µ0, κ0) , using a pre-order traversal

and use many of the resulting intermediate calculations to sample Ymis |

Yobs, Ψ, Σ,µ0, κ0. Lastly, we use a post-order traversal to sample

Σ−1 | Y, Ψ,µ0, κ0, ν, Λ0.

To develop an algorithm to efficiently compute the data likelihood, we first

introduce some useful abstractions and notation. At each tip in F , information

about each of the P traits comes in one of three forms: a trait value that may be

directly observed, latent, or completely missing. When directly observed, we

posit without loss of generality that the value arises from a normal distribution

centered at the observed value with zero variance (or infinite precision). We

assume that trait data that arise from latent values are jointly multivariate

normally distributed about the unknown latent values with known or estimable

precision. Finally, a completely missing value arises also without loss of

generality from a normal distribution centered at 0 with infinite variance

(or zero precision). To formalize this, for tip i = 1, . . . , N, we construct a

permutation matrix Qi that groups traits in directly observed, latent and
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completely missing order and populate a pseudo-precision matrix

Pi = Qi diag [∞I, Ri, 0I]Q′i, (5.3)

where diag [·] is a function that arranges its constituent elements into block-

diagonal form, any block may be 0-dimensional depending on the data and Ri

is the latent block precision. This construction arbitrarily forces off-diagonal el-

ements of Pi involving directly observed and completely missing traits to equal

0 and plays an important role in simplifying computations. After permutation

via Qi, we partition Σ into sub-matrix Σ++ that describes the variance between

traits with partial information at node i, sub-matrix Σ00 for exactly observed

traits, sub-matrix Σ∞∞ for completely missing traits, and their corresponding

cross-terms. We additionally define a series of operations which we will find

useful for defining this algorithm. We define the pseudo-inverse

P−i = Qi diag
[
0I, R−1

i , ∞I
]

Q′i. (5.4)

We define the rank as the number of non-zero singular values and the determi-

nant ˆdet () as the product of the non-zero singular values. Lastly, we define δi

as a diagonal matrix of indicators whose diagonal elements take the value 1 for

traits which are either observed or latent and 0 for traits which are completely

missing for node i.

Post-order full precision likelihood: Following from Pybus et al. [2012], we

select a node k, condition on its children, i, j and its parent `, and integrate

the trait values at this node. This allows us to build a pre-order traversal

algorithm to compute the likelihood p (Yobs |Σ, Ψ,µ0, κ0) . Recursively, for node

k = N + 1, . . . , 2N − 1 and its two daughter nodes i and j, we first compute
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branch-deflated pseudo-precisions

P?
i =

(
P−i + tiδiΣδi

)− and

P?
j =

(
P−j + tjδjΣδj

)− (5.5)

along the descent branches. We discuss in detail how to evaluate the pseudo-

inverse in Equation 5.5 in Appendix A. Then, we combine information about

daughters at the current node via

Pk = P?
i + P?

j and

δk = δi ∨ δj,
(5.6)

where ∨ is the element-wise “logical or” operation, and solve for partial mean

mk as a (not necessarily unique) solution to

Pkmk = P?
i mi + P?

j mj (5.7)

using an LU decomposition or singular value decomposition depending on the

rank of Pk. Finally, we update integration remainder

log rk = log ri + log rj + ∆ijk log
(

1√
2π

)
+

1
2

log

 ˆdet
(
P?

i
) ˆdet

(
P?

j

)
ˆdet (Pk)


− 1

2

[
m′iP

?
i mi + m′jP

?
j mj −m′kPkmk

]
,

(5.8)

where the change of informative dimensions ∆ijk = rank
(
P?

i
)
+ rank

(
P?

j

)
−

rank (Pk) in the remainder. At the tips, ri is 1 if all traits are either measured or

missing. In cases where some or all of the elements are latent, the remainder at

the tips is dependent on the problem.

Let Yk be the trait values at node k and Yobs
k be the observations restricted

to all descendant species of k, then we can compute the likelihood of the tree
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from node k downwards using

log p (Yobs
k |Yk, Ψ, Σ) =

log rk −
1
2
(Yk −mk)

′Pk(Yk −mk)−
1
2

rank (Pk) log(2π) +
1
2

ˆdet (Pk) . (5.9)

At the root, we can use this distribution, combined with the prior on Y2N−1

from Equation 5.1 to find that

log p
(
Yobs

2N−1 |Y2N−1, Ψ, Σ
)
+ log p

(
Yobs

2N−1 |Σ,µ0, κ0
)
=

log rfull + log
{
N
(

Y2N−1;
[
κ0Σ−1 + P2N−1

]−1
×[

κ0Σ−1µ0 + P2N−1m2N−1

]
,
[
κ0Σ−1 + P2N−1

]−1
)} (5.10)

where N(x; y, z) signifies the multivariate normal density function with argu-

ment x, mean y and variance z, and

log rfull = log r2N−1 −
1
2

[
µ′0κ0Σ−1µ0 + m′2N−1P2N−1m2N−1

−
(

P2N−1m2N−1 + κ0Σ−1µ0

)′ (
P2N−1 + κ0Σ−1

)−1 (
P2N−1m2N−1 + κ0Σ−1µ0

)
+rank (P2N−1) log(2π) + log

 ˆdet (P2N−1) ˆdet
(

κ0Σ−1
)

ˆdet
(

P2N−1 + κ0Σ−1
)
 . (5.11)

By integrating out the values Y2N−1 at the root, we find that the log likelihood

of the tree is log rfull.

Pre-order missing data augmentation: In the case where all of our data is

either measured or missing, and not latent, in order to Gibbs sample Σ, we

wish to compute

p (Σ |Yobs, Ψ,µ0, κ0, ν, Λ0) =
∫

p (Y |Σ, Ψ,µ0, κ0)× p (Σ | ν, Λ0)× dYmis. (5.12)
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In order to integrate out Ymis in our analysis, we sample Ymis at the tips of the tree

before computing the conditional distribution of Σ. To do this, from Equation

5.10 we see that at the root, we can sample Y2N−1 from the normal distribution

with mean (κ0Σ−1 + P2N−1)
−1(κ0Σ−1µ0 + P2N−1m2N−1) and covariance matrix

κ0Σ−1 + P2N−1. For internal node k = 2N − 2, . . . , N + 1 we can condition

on their parent nodes `, and sample Yk from the normal distribution with

mean [(tkΣ)−1 + Pk]
−1[(tkΣ)−1Y` + Pkmk] and covariance matrix (tkΣ)−1 + Pk.

At the tips, we sample Ymis
k from the normal distribution with mean Ymis

` +

Σ′0∞Σ−1
00 [Y

obs
k − Yobs

` ] and covariance matrix Σ∞∞ − Σ′0∞Σ−1
00 Σ0∞, where Ymis

` and

Yobs
` are the elements of Y` which correspond to the missing and observed

elements of its child node respectively.

From Equation 5.12 we see that the posterior distribution of Σ can be

expressed as

Σ−1 | Y, Ψ,µ0, κ0, ν, Λ0 ∼

WishartP

[
Λ0 +

(
Y− JNµ

′
0
)′ (

Ψ +
1
κ0

J
)−1 (

Y− JNµ
′
0
)

, ν + N

]
. (5.13)

We apply the post-order computation method proposed by Ho and Ané [2014]

to compute (Y− JNµ
′
0)
′
(

Ψ + 1
κ0

J
)−1

(Y− JNµ
′
0). The computational complex-

ity of this method is O(NP2).

5.3 Phylogenetic Factors Analysis

The algorithms described in the previous section can easily be adapted for

other purposes in models which rely on Brownian diffusion. As an example,

we will look at the phylogenetic factor analysis method described by Tolkoff
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et al. [2017]. We assume that

Y = FL + ε, (5.14)

where F is a N× K factor matrix, L is a K× P upper triangular loadings matrix,

and

ε ∼ MN
(

0, I, Λ−1
)

, (5.15)

where Λ is a diagonal precision matrix. We place an i.i.d. N (0, 1) prior on the

non-zero cells of L and i.i.d Γ (1, 1) prior on the diagonal elements of Λ.

We incorporate Brownian diffusion in this model through F by making

the assumption that F follows the form of Equation 5.2, with Σ = I and is

therefore a composed entirely of latent values. Using the algorithm described

in the previous section, we can modify our starting assumptions by treating

the factors as latent unobserved elements, as described in Appendix B. We can

then use this form to integrate out the latent factors analytically.

5.4 Mammalian Life History

A major task for life history theory is to understand the ecological and evolu-

tionary significance of patterns of covariation between life history traits such

as age at sexual maturity, the number of offspring produced at each reproduc-

tive event, and reproductive lifespan [Roff, 2002]. This requires establishing

exactly what these patterns are. Currently, the dominant hypothesis is that

most trait variation occursb on a fast-slow axis [Reynolds, 2003]. Archetypical

fast organisms follow a strategy that invests in current reproduction by pos-

sessing a suite of traits such as early maturity, large broods of small offspring,

and frequent reproduction over a short lifespan, whereas slow species invest

in future reproduction by having the opposite pattern of traits. Numerous
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investigations have used comparative life history data to investigate whether a

fast-slow axis is the primary dimension of trait covariation at the species level

(e.g. mammals: Bielby et al. [2007]; hymenoptera: Blackburn [1991]; lizards:

Clobert et al. [1998]; birds: Sæther and Bakke [2000]; plants: Salguro-Gómez

[2017]; fish: Wiedmann et al. [2014]), with mixed support for the hypothesis.

This may reflect important taxonomic differences in life history evolution, but

there is concern that differences are a consequence of different methodological

approaches and decisions taken by researchers about how to interpret patterns

[Jeschke and Kokko, 2009].

One key issue is that to date the methods for analyzing patterns of covaria-

tion between multiple life history traits have required complete data for each

species. As complete estimates across a rich suite of varied life history traits

are not yet available for most species, this means that researchers must choose

to either reduce the number of traits or reduce the number of species included

in analyses. Reducing the number of traits risks missing important complex

structure in covariance patterns, while reducing the number of species reduces

ability to detect structure. The MBD and PFA models, by integrating out

missing values, provide a solution to this issue. Here we present a reanalysis

of Bielby et al. [2007], who analyzed covariation of mammalian life history

data taken from an early version of the PanTHERIA database [Jones et al.,

2009] using standard factor analysis on (a) body size corrected residuals and

(b) phylogenetic independent contrasts [Felsenstein, 1985]. Following data

cleaning, this resulted in analysis of 267 species with complete data on six

traits. Results suggested that mammalian life history variation lay on two

separate axes; the first described the timing of reproduction, running from

early maturing, frequently reproducing and early weaning species at one end,

to those with the opposite pattern at the other. The second axis described

reproductive output per reproductive event, ranging from species with small
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litters of large offspring and long gestation periods, to those with large litters

of small offspring with short gestation times.

Here we analyze the life history dataset used in Capellini et al. [2015],

which is based largely on the final PanTHERIA dataset [Jones et al., 2009],

supplemented with data from Ernest [2003] and additional sources Capellini

et al. [2015]. The analysis includes all the variables analyzed by Bielby et al.

[2007] (gestation length, weaning age, neonatal body mass, litter size, litter

frequency and age at first birth) plus reproductive lifespan (maximum lifespan

minus age at first birth). We also include female body mass in the PFA analysis

rather than analyze size corrected residuals, as doing so is known to introduce

biases in analysis of covarying data [Freckleton, 2009]. All traits are log10

transformed prior to analysis to normalize trait distributions. The analysis

uses the phylogeny of Fritz et al. [2009], which remains the most complete

phylogeny for mammals. In total, 3690 species in the phylogeny have data on at

least one trait and are included in analyses. The number of species with data on

each trait is: body mass = 3508 (4.93% missing); gestation length = 1427 (61.33%

missing); weaning age = 1253 (66.04% missing); neonatal body mass = 1108

(69.97% missing); litter size = 2538 (31.22% missing); litter frequency = 1231

(66.64% missing); age at first birth = 945 (74.39% missing) and reproductive

lifespan = 748 (79.73% missing), for a total of 12758 data points. 518 species

have data on all 8 traits, thus the ability to include species with partially missing

traits enables inclusion of 208% more data points.

For the MBD model our results are shown in figure 5.1. We color this

such that red is positive correlation, blue is negative correlation, and circle

size reflects magnitude of the correlation. We shade our results based on the

posterior probability of the parameter being of the same sign as the posterior

mean, adjusted to be on a 0 to 1 scale.

We find that we can break these traits into two different categories. The first
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is a positively correlated group of body mass, gestation length, weaning age,

neonatal body mass, age at first birth and reproductive lifespan. The second

group is a positive correlation between litter size and litters per year, and these

two groups are anti-correlated with each other. This supports the hypothesis of

the fast species which produce many offspring quickly, and slow species which

produce few offspring more slowly. While larger species tend to be on the fast

track, this relationship is generally rather weak.

For the PFA model, we favor the full K = 8 model with log Bayes factors

of 51.4 over the K = 7 model. This is in contrast with the > 5000 log Bayes

factors in favor of the factor model over the MBD model. Our results for PFA

are also shown in figure 5.1. Purple circles are positively associated with other

purple circles within a loading, and are negatively associated with green circles.

Similarly, green circles are positively associated with other green circles. Size

represents magnitude. We once again shade based on the posterior probability

of the parameter having the same sign as the posterior mean, adjusted to be

on a 0 to 1 scale. We find that loadings 1 through 3 reaffirm the MBD model

with the exception of the structural 0’s. Loading 4 finds a positive relationship

between neonatal body mass and litters per year, and an anti-association with

litter size. Loading 5 finds a weak anti association between litters per year and

litter size, age at first birth and reproductive lifespan.

Inference on Λ is shown in table 5.1. We say that those traits whose 95% high

probability density intervals do not contain 1 are traits which are explained by

evolution. This is true of all of the traits in this analysis. We will emphasize

that Λ is a model variance, and is therefore in theory not affected by the large

sample size.

The key advantage to this method is the ability to obtain these results faster

than before. We compare this integrated method with a simple random walk

transition kernel on the missing values, with the likelihood evaluated using
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Figure 5.1: Processes driving evolution under assumptions for the multivariate Brownian
diffusion (MBD), and the K = 8 model for the phylogenetic factor analysis
(PFA). For the MBD model, red represents positive correlation, and blue represents
negative correlation. Size represents the estimate of the posterior mean of the
correlation between these traits. For PFA, purple traits are positively associated
with other purple traits within a loading, and negatively associated with green
traits. Similarly, green traits are positively associated with green traits. Size
represents magnitude. We shade these cells by the posterior probability that the
parameter value of the cell is of the same sign as the posterior mean, adjusted to
be on a 0, 1 scale. In the MBD model we find that we can separate the traits into
two groups. Body mass, gestation length, weaning age, neonatal body mass, age at
first birth and reproductive lifespan are all positively correlated with each other.
Additionally, litter size and litters per year are positively correlated with each
other, however these two groups are anti-correlated with each other. In the PFA
model, we recover these relationships in the first three loadings with the exception
of structural 0’s included. Loading 4 shows a relationship between neonatal body
mass and litters per year, but a negative relationship with litter size. Loading 5
also shows a weak negative relationship with litter size and the remaining traits.
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Point Estimate 95% HPD Interval
Body mass 153.9 [132.5, 180.6]

Gestation time 91.6 [ 73.1, 110.5]
Weaning age 10.4 [ 9.2, 12.0]

Neonatal body mass 105.3 [ 87.4, 120.8]
Litter size 17.7 [ 15.0, 20.3]

Litters per year 6.9 [ 5.6, 7.9]
Age at first birth 8.9 [ 7.9, 10.2]

Reproductive lifespan 8.1 [ 6.6, 9.6]

Table 5.1: Inferred value of Λ for the mammals example. We present both point estimate and
95% high probability density interval (HPD). We say that an HPD interval that
does not contain 1, which is true of each trait, indicates a significant influence of
evolution on these traits.

the method described by Pybus et al. [2012]. We find that the median effective

sample size per hour for our analytically integrated method is 16938.8 versus

1.8 for the numerically integrated method resulting in a speedup of almost 5

orders of magnitude. Similarly, for the PFA method, we use the Gibbs samplers

described by Tolkoff et al. [2017] with a simple random walk transition kernel

on each of the missing values. While the speedup for the integrated PFA

method versus the method described by Tolkoff et al. [2017] is not as dramatic,

we still find an improvement to 26.9 effective samples per hour versus 1.8

samples per hour, a speedup of about 14.8 times.

5.5 Discussion

Oftentimes we are interested in phylogenetically adjusted methods for assessing

relationships between traits of organisms. However, frequently when the

number of taxa grows large the level of missing data increases, making inference

challenging. Here, we have developed a method for evaluating the likelihood of

trait relationships given a tree while integrating out missing values analytically.

We compare the speed of these integrated methods with the traditional method

of integrating out these values numerically using the example of mammals.
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This along with an improved Gibbs sampler allows us to draw inference both a

MBD model ∼ 10000× more quickly. Additionally, we are able to integrate out

the missing values and factors in a PFA model allowing us to draw inference

on the PFA model ∼ 14.8× faster.

In Tolkoff et al. [2017] and Cybis et al. [2015], discrete values were included

in the analysis using a latent probit model. While traditional methods of

inferring these latent values were too slow to be included in this analysis,

we still believe that it is important to be able to consider discrete data in

these methods. One candidate method for exploring these latent values is

Hamiltonian Monte Carlo (HMC) [Neal, 2010]. Additionally, we may be able

to use HMC to infer the values of L in the PFA. We have begun exploring this

inference method and consider this future work.

Additionally, we may encounter situations where we have varying numbers

of repeated measures at the tips. In practice, at this point we average together

these measurements, however as future work we consider how to elegantly and

efficiently handle these situations.
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5.6 Appendix

A Matrix inversion computations used in the peeling algorithm.

We need to compute:

P?
i =

(
P−i + tiδiΣδi

)−
= Qi

(diag
[
∞I, P̃i, 0I

])−
+ diag

ti

 Σ00 Σ+0

Σ′+0 Σ++

 , 0I

−Q′i

= Qi

diag
[
0I, P̃i

−1, ∞I
]
+ diag

ti

 Σ00 Σ+0

Σ′+0 Σ++

 , 0I

−Q′i

= Qi

diag

 tiΣ00 tiΣ+0

tiΣ
′
+0 P̃i

−1
+ tiΣ++

 , ∞I

−Q′i

= Qi diag


 tiΣ00 tiΣ+0

tiΣ
′
+0 P̃i

−1
+ tiΣ++

−1

, 0I

Q′i,

(5.16)

An attentive reader should remark that P̃i
−1 may not exist since P̃i can

be singular. This situation occurs, for example, in a factor analysis when the

number of observed traits for a given tip is less than the number of factors,

such that the latent tip precision Ri becomes rank-deficient. However, this is

not problematic; we can determine the final matrix inverse in Equation (5.16)

as a function of P̃i directly through two algebraic slights of hand.

The first trick invokes commonly used expressions for the inverse of a parti-

tioned matrix. Letting Di = P̃i
−1

+ tiΣ++ and Ai = tiΣ00 − tiΣ+0D−1
i tiΣ+0,
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we can re-write

 tiΣ00 tiΣ+0

tiΣ+0 P̃i
−1

+ tiΣ++

−1

=

 A−1
i −A−1

i tiΣ+0D−1
i

−A−1
i tiΣ+0D−1

i D−1
i + D−1

i tiΣ+0Ai−1tiΣ+0D−1
i


(5.17)

if Ai and Di are non-singular.

The second trick revolves around the inverse of the sum of two matrices

and has been discovered and forgotten several times, see e.g. [Henderson et al.,

1959, Henderson and Searle, 1981]. Namely,

(
P̃i
−1

+ tiΣ++

)−1
= P̃i − P̃i

(
P̃i +

1
ti

Σ−1
++

)−1

P̃i. (5.18)

Notice that in Equation (5.18), P̃i +
1
ti

Σ−1
++ represents the sum of a positive-semi-

definite and a positive-definite matrix for ti > 0 and the sum is almost surely a

positive-definite matrix and non-singular. Hence,
(

P̃i
−1

+ 1
ti

Σ++

)−1
exists and

Ai is also non-singular, demonstrating that Equation (5.17) also holds. In the

degenerate case where ti = 0, we note P?
i = Pi. Most commonly, we encounter

cases where either all of our tips are missing or observed or the case where all

of the tips are latent. In the first example, this inverse becomes 1
ti

Σ−1
00 , and in

the latter case it follows to the form of Equation (5.18).

B Integrating factors using tree recursion

In this section we aim to reformulate the PFA model [Tolkoff et al., 2017] in

such a way that we can integrate out the factors using the methods described

in this paper. Following from the fact that the across-row variance of ε equals I,

then if we define Fi as the vector corresponding to the factors at tip i and Λmisi
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as Λ where those diagonal elements corresponding to the missing elements of

Yi are set to 0, then we can factorize

p
(
Y | F, L, Λmisi

)
=

N

∏
i=1

p
(
Yi | Fi, L, Λmisi

)
. (5.19)

Breaking this down by column,

p
(
Yi | Fi, L, Λmisi

)
=N

(
Yi;
(
F′iL
)′ , Λ−misi

)
=

√√√√ ˆdet
(
Λmisi

)
ˆdet
(
LΛmisi L

′) 1
2πP−K

× exp
{
−1

2
(
Y′iΛmisi Yi −µ′iLΛmisi L

′µi
)}

×N
(

Fi;µi,
(
LΛmisi L

′)−) ,

(5.20)

where the conditional mean µi =
(
LΛmisi L

t)− LΛmisi Yi. Note conveniently that

we have already solved the integral

∫ N

∏
i=1
N
(

Fi;µi,
(
LΛmisi L

′)−) p (F | ·) dF (5.21)

in Section (5.2.3) by setting mi = µi Vi =
(
LΛmisi L

′)− for tips i = 1, . . . , N and

recursively invoking the post-order full precision likelihood traversal. Under

this condition the remainder at tip i

ri =

√√√√ ˆdet
(
Λmisi

)
ˆdet
(
LΛmisi L

′) 1
2πP−K

× exp
{
−1

2
(
Y′iΛmisi Yi −µ′iLΛmisi L

′µi
)}

.

(5.22)
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CHAPTER 6

Future Directions

6.1 Structural Equation Models

6.1.1 Introduction

One of the advantages of a phylogenetic factor analysis model is its ability to

scale down large problems. Scientific questions in the field of morphometrics

will regularly produce large numbers of covariates and require phylogenetic

adjustments in order to formulate a proper analysis. One could argue, however,

that covariates related to the specific coordinates of landmarks of an organism

should not be grouped together in a factor analysis with covariates related to

other aspects of an organism such as its size, environment, or any measure of

blood chemistry. However, we may nevertheless wish to infer some relationship

between these two types of variables. Similarly, one may have measurements

on the traits of a series of organisms and may want to make causal statements

about how the genetic makeup of these organisms affect these traits. The

phylogenetic factor analysis model as it is currently constructed does not

handle different types of covariates in a sufficiently sophisticated manner to

distinguish between variable types or infer causal relationships. To deal with

this problem, we wish to implement a phylogenetically structural Equation

model (PSEM).
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6.1.2 Defining a Structural Equation Model

There are many different forms of structural Equation models, however we

choose to proceed with the one described in the review by Dunson et al. [2005]

since it has a similar form to the factor analysis model described in Chapter

5. We define endogenous variables as those variables whose state can be

described by elements within our system. There may be some underlying

factor or factors which give rise to our collection of endogenous variables,

but we assume that these factors can be influenced by other elements within

our system. Exogenous variables are those variables whose state cannot be

explained by elements within our system. Exogenous variables may also be

grouped together through underlying factors.

We intend for our endogenous variables to consist of morphometric informa-

tion, whereas our exogenous variables contain information regarding genetics.

Trait information is typically exogenous, however it can be endogenous if there

is genetic information, since we anticipate genetic information to be causal

to the traits of an organism. The ultimate goal of this model is to provide

covariate adjustments for phylogenetic factor analysis.

We arrange the endogenous measurements into a N× P matrix of outcomes

Y and the exogenous variables into a N × ` matrix of covariates X both of

whose continuous traits are scaled to have mean 0 and variance 1. We again

break down these matrices such that

Y = FYLY + εY (6.1)

and

X = FXLX + εX (6.2)

where LY and LX are K × P and M × ` loadings matrices respectively, FY
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and FX are N × K and N ×M factor matrices respectively and εY and εX are

residual matrices. We say that K and M are the number of factors for the

endogenous and exogenous variables respectively. The matrix εY is an error

matrix distributed MN(0, I, ΛY) and similarly εX is an error matrix distributed

MN(0, I, ΛX), where MN is a matrix normal distribution with a mean, a row

precision and a column precision, and where ΛY and ΛX are P× P and `× `

diagonal matrices respectively.

This model then relates these two separate factor analyses via a regression,

specifically

FY = FYΓ + FXη + ξ, (6.3)

where Γ is a K× K graph relating the outcomes to themselves, η is an M× K

graph relating the covariates to the various outcomes of interest, and ξ is a

residual term distributed MN(0, I, Λξ) and Λξ is a K× K diagonal matrix. The

same priors and restrictions as mentioned previously in Chapter 5 apply to

both loadings matrices, both factor matrices, as well as all three residual terms.

The diagonal elements on the graph Γ are 0 whereas the diagonal elements

on the graph η are positive. Both graphs have i.i.d. N(0, 1) priors for most

elements, and i.d.d. N+(0, 1) priors on the diagonal elements of η, where N+

is positive half-normal distribution.

6.2 Hamiltonian Monte Carlo

In the future, we would like to implement Hamiltonian Monte Carlo (HMC)

methods for more efficient sampling [Neal, 2010]. HMC relies on treating the

posterior distribution as the negative of a potential map. It then treats the

current location of the chain as the location of a particle, gives the particle some

momentum and samples the posterior based on this particle’s ultimate location.

The advantage of this method is that it is useful as long as the potential gradient
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(derivative of the negative log likelihood) is simple to compute.

If we look at the integrated model described in Chapter 5, to compute an

efficient HMC sampler, we need the potential of the posterior. If we can obtain

this, then we can hopefully adapt our HMC to work with Holbrook et al. [2016,

2017] in order to handle the identifiability issues inherent to factor analysis.

The generic HMC [Neal, 2010] relies on treating the values of L and as

the location of a particle in a Hamiltonian system. We draw a momentum, ρ,

associated with this particle from a series of i.i.d. N (0, 1) distributions and

move it across a potential U. This momentum ρ is conformable to the matrix L.

The potential used to infer L, based on the model in Chapter 5 is

U = −log (p (L |Z, Λ) p (L)) . (6.4)

Generally, we use the “leapfrog method" where

ρ(i+1/2) = ρ(i) −
[ε

2

(
∇(L,F)U

)∣∣∣
L(i)

]
(6.5)

(L)(i+1) = ρ(i+1/2) + ε (L)(i) (6.6)

ρ(i+1) = ρ(i+1/2) −
[ε

2

(
∇(L,F)U

)∣∣∣
L(i+1)

]
, (6.7)

where ρ(i) and L(i) are iteration i for ρ and L respectively, and ∇(L,F) is the

derivative with respect to L. We run this algorithm for s steps, and accept this

state with probability

min
[
1, exp

(
−U

(
L′
)
+ U (L)− K

(
ρ′
)
+ K (ρ)

)]
, (6.8)

where L′ and ρ′ are the draw from the HMC of L and ρ respectively, and

K (ρ) =
1
2

vecρ′vecρ. (6.9)
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For my future work, we would like to be able to derive the appropriate potential

for the integrated model described in Chapter 5.

6.3 Bouncy Particle Sampler

In Cybis et al. [2015], these authors lay out a latent liability model for handling

discrete data in the context of a multivariate Brownian diffusion. In Chapter

5 we adapt this probit model to work with the phylogenetic factor analysis

model. While Chapter 5 deals with integrating out latent values, this method is

difficult to adapt to the latent liability model because of the discrete cutpoints

entailed. Instead, we would like to sample these latent values from the tips

of a tree using a bouncy particle sampler [Bouchard-Côte and Vollmer, 2017],

which moves particles in a way similar to Hamiltonain Monte Carlo [Neal,

2010] but allows for bouncing off of cutpoints. I hope this innovation leads to

more efficient computation in these models.

6.4 Repeated Measures

Much of this thesis is devoted to measuring the relationships between traits.

Oftentimes these traits for a given taxa are obtained by measuring many

samples for that taxa and averaging these samples. While this works well as

an approximation, doing this loses the within taxa variance inherent in these

species.

In Chapter 5 we laid out a method for integrating out latent measurements.

By treating each species as having an unknown, latent mean and variance from

which these measurements are drawn we hope to be able to integrate out these

underlying normal distributions in order to gain insight into the relationships

between these traits across species.

108



Bibliography

DC Adams. A method for assessing phylogenetic least squares models for shape

and other high-dimensional multivariate data. Evolution, pages 2675–2688,

2014.

DC Adams and ML Collyer. Permutation tests for phylogenetic comparative

analyses of high-dimensional shape data: What you shuffle matters. Evolution,

69(3):823–829, March 2015.

DC Adams, CM Berns, KH Kozak, and JJ Wiens. Are rates of species diversifi-

cation correlated with rates of morphological evolution? Proceedings of the

Royal Society of London B: Biological Sciences, 2009.

O Aguilar and M West. Bayesian dynamic factor models and portfolio allocation.

Journal of Business and Economic Statistics, 18:338–357, 2000.

G Baele, P Lemey, T Bedford, A Rambaut, MA Suchard, and AV Alekseyenko.

Improving the accuracy of demographic and molecular clock model compar-

ison while accommodating phylogenetic uncertainty. Molecular Evolutionary

Biology, 29(9):2157–2167, 2012.

G Baele, P Lemey, and S Vansteelandt. Make the most of your samples: Bayes

factor estimators for high-dimensional models of sequence evolution. BMC

Bioinformatics, 14(85), March 2013a.

G Baele, WLS Li, AJ Drummond, MA Suchard, and P Lemey. Accurate model

selection of relaxed molecular clocks in Bayesian phylogenetics. Molecular

Evolutionary Biology, 30(2):239–243, 2013b.

G Baele, P Lemey, and MA Suchard. Genealogical working distributions for

Bayesian model testing with phylogenetic uncertainty. Systematic Biology, 65

(2):250–264, 2016.

109



AA Beguin and CAW Glas. MCMC estimation and some model-fit analysis of

multidimensional IRT models. Psychometrika, 66(4):541–562, December 2001.

J Bielby, GM Mace, ORP Bininda-Emonds, M Cardillo, JL Gittleman, KE Jones,

CDL Orme, and A Purvis. The fast-slow continuum in mammalian life

history: An empirical reevaluation. The American Naturalist, 169(6):748–757,

2007.

TM Blackburn. Evidence for a ‘fast-slow’ continuum of life-history traits among

parasitoid hymenoptera. Functional Ecology, 5(1):65–74, 1991.

A Bouchard-Côte and SJ Vollmer. The bouncy particle sampler: A non-reversible

rejection-free Markov chain Monte Carlo method. Journal of the American

Statistical Association, 2017.

BL Browning and SR Browning. Genotype imputation with millions of reference

samples. American Journal of Human Genetics, 98(1):116–126, January 2016.

I Capellini, J Baker, WL Allen, SE Street, and C Vendetti. The role of life history

traits in mammalian invasion success. Ecology Letters, 18:1099–1107, 2015.

CM Carvalho, NG Polson, and JG Scott. Handling Sparsity via the Horseshoe.

In David V. Dyk and Max Welling, editor, Proceedings of the Twelfth International

Conference on Artificial Intelligence and Statistics (AISTATS-09), volume 5, pages

73–80. Journal of Machine Learning Research - Proceedings Track, 2009.

J Clavel, G Escarguel, and G Merceron. mvMORPH: an R package for fitting

multivariate evolutionary models to morphometric data. Methods in Ecology

and Evolution, 6:1311–1319, 2015.

J Clobert, T Garland, and R Barbault. The evolution of demographic tactics in

lizards: A test of some hypotheses concerning life history evolution. Journal

of Evolutionary Biology, 11(3):329–364, 1998.

110



GB Cybis, JS Sinsheimer, T Bedford, AE Mather, P Lemey, and MA Suchard.

Assessing phenotypic correlation through the multivariate phylogenetic

latent liability model. Annals of Applied Statistics, 9:969 – 991, 2015.

A Dornburg, F Santini, and ME Alfaro. The influence of model averaging

on clade posteriors: An example using the triggerfishes (family Balistidae).

Systematic Biology, 57(6):905–919, 2008.

A Dornburg, B Sidlauskas, F Santini, L Sorenson, TJ Near, and ME Alfaro.

The influence of an innovative locomotor strategy on the phenotypic diver-

sification of triggerfish (family: Balistidae). Evolution, 65(7):1912–1926, July

2011.

AJ Drummond, MA Suchard, D Xie, and A Rambaut. Bayesian phylogenetics

with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29:1969–1973,

2012.

DB Dunson, J Palomo, and K Bollen. Bayesian structural equation modeling.

Technical Report 5, Statistical and Applied Mathematical Sciences Institute,

July 2005.

SK Ernest. Life history characteristics of placental nonvolant mammals. Ecology,

84(12):3402, 2003.

J Felsenstein. Maximum likelihood and minimum-steps methods for estimating

evolutionary trees from data on discrete characters. Systematic Zoology, 22(3):

240–249, September 1973.

J Felsenstein. Evolutionary trees from DNA sequences: A maximum likelihood

approach. Journal of Molecular Evolution, 17:368–376, 1981.

J Felsenstein. Phylogenies and the comparative method. The American Naturalist,

125(1):1–15, January 1985.

111



RP Freckleton. The seven deadly sins of comparative analysis. Journal of

Evolutionary Biology, 22(7):1367–1375, 2009.

RP Freckleton. Fast likelihood calculations for comparative analyses. Methods

in Ecology and Evolution, 3(5):940–947, 2012.

N Friel and AN Pettitt. Marginal likelihood estimation via power posteriors.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(3):

589–607, 2008.

SA Fritz, ORP Bininda-Edmonds, and A Purvis. Geographical variation in

predictors of mammalian extinction risk: big is bad, but only in the tropics.

Ecology Letters, 12(6):538–549, 2009.

A Gelman. Prior distributions for variance parameters in hierarchical models

(Comment on article by Browne and Draper). Bayesian Analysis, 1(3):515–534,

2006.

A Gelman and XL Meng. Simulating normalizing constants: From importance

sampling to bridge sampling to path sampling. Statistical Science, 13(2):

163–185, 1998.

S Geman and D Geman. Stochastic relaxation, Gibbs distributions, and the

Bayesian restoration of images. IEEE Trans Pattern Annals of Machine Intelli-

gence, 6(6):721–741, June 1984.

EI George and RE McCulloch. Variable selection via Gibbs sampling. Journal of

the American Statistical Association, 88(423):881–889, September 1993.

J Geweke and G Zhou. Measuring the pricing error of the arbitrage pricing

theory. The Review of Financial Studies, 9(2):557–587, 1996.

112



J Ghosh and DB Dunson. Default prior distributions and efficient posterior

computation in Bayesian factor analysis. Journal of Computational and Graphical

Statistics, pages 306–320, 2009.

MS Gill, LST Ho, G Baele, P Lemey, and MA Suchard. A relaxed directional

random walk model for phylogenetic trait evolution. Systematic Biology, 66

(3):299–319, 2017.

TL Griffiths and Z Ghahramani. Infinite latent feature models and the indian

buffet process. MIT Press, pages 475–482, 2005.

TL Griffiths and Z Ghahramani. The indian buffet process: An introduction

and review. Journal of Machine Learning Research, 12:1185–1224, March 2011.

M Hasegawa, H Kishino, and T Yano. Dating of human-ape splitting by a

molecular clock of mitochondrial DNA. Journal of Molecular Evolution, 22(2):

160–174, 1985.

WK Hastings. Monte Carlo sampling methods using Markov chains and their

applications. Biometrika, 57(1):97–109, April 1970.

SE Heaps, RJ Boys, and M Farrow. Computation of marginal likelihoods with

data-dependent support for latent variables. Computational Statistics & Data

Analysis, 71:392–401, 2014.

CR Henderson, O Kempthorne, SR Searle, and CM von Krosigk. The estima-

tion of environmental and genetic trends from records subject to culling.

Biometrics, 15(2):192–218, June 1959.

HV Henderson and SR Searle. On deriving the inverse of a sum of matrices.

SIAM Reviews, 23(1):53–60, 1981.

LST Ho and C Ané. A linear-time algorithm for Gaussian and non-Gaussian

trait evolution models. Systematic Biology, 63(3):397–408, 2014.

113



A Holbrook, A Vandenberg-Rodes, and B Shahbaba. Bayesian inference on

matrix manifolds for linear dimensionality reduction. arXiv:1606.04478v1,

2016.

A Holbrook, A Vandenberg-Rodes, N Fortin, and B Shahbaba. A Bayesian

supervised dual-dimensionality reduction model for simultaneous decoding

of LFP and spike train signals. Stat, 2017.

JP Huelsenbeck and B Rannala. Detecting correlation between characters in a

comparative analysis with uncertain phylogeny. Evolution, 57(6):1237–1247,

2003.

AR Ives and T Garland Jr. Phylogenetic logistic regression for binary dependent

variables. Systematic Biology, 59(1):9–26, 2010.

H Jeffreys. Some tests of signficance, treated by the theory of probability.

Procedings of the Cambridge Philosophical Society, 29:83–87, 1935.

JM Jeschke and K Kokko. The roles of body size and phylogeny in fast and

slow life histories. Evolutionary Ecology, 23(6):867–878, 2009.

VE Johnson and D Rossell. Bayesian model selection in high-dimensional

settings. Journal of the American Statistical Association, 107(498), 2012.

KE Jones, J Bielby, M Cardillo, SA Fritz, J O’Dell, CDL Orme, K Safi, W Sechrest,

EH Boakes, C Carbone, C Connolly, MJ Cuttis, JK Foster, R Grenyer, M Habib,

CA Plaster, SA Price, EA Rigby, J Rist, A Teacher, ORP Bininda-Emonds,

JL Gittleman, GM Mace, and A Purvis. PanTHERIA: a species-level database

of life history, ecology, and geography of extant and recently extinct mammals.

Ecology, 90(9):2648, 2009.

TH Jukes and CR Cantor. Evolution of protein molecules. Mammalian Protein

Metabolism, pages 21–132, 1969.

114



CP Kingenberg and J Marugán-Lobón. Evolutionary covariation in geometric

morphometric data: Analyzing integration, modularity, and allometry in a

phylogenetic context. Systematic Biology, 62(4):591–610, 2013.

JFC Kingman. On the genealogy of large populations. Journal of Applied

Probability, 19:27–43, 1982.

D Knowles and Z Ghahramani. Infinite sparse factor analysis and infinite

independent components analysis. In Mike E. Davies, Christopher J. James,

Samer A. Abdallah, and Mark D Plumby, editors, Independent Component

Analysis and Signal Separation, volume 4666, pages 381–388, 2007.

P Lemey, A Rambaut, JJ Welch, and MA Suchard. Phylogeography takes a

relaxed random walk in continuous space and time. Molecular Biology and

Evolution, 27(8):1877–1885, 2010.

H Li and D Pati. Variable selection using shrinkage priors. Computational

Statistics & Data Analysis, 107:107–119, March 2017.

JS Liu, WH Wong, and A Kong. Covariance structure and convergence rate of

the Gibbs sampler with various scans. Journal of the Royal Statistical Society.

Series B (Methodological), pages 157–169, 1995.

HF Lopes and M West. Bayesian model assessment in factor analysis. Statistica

Sinica, 14:41–67, 2004.

JB Losos and CJ Schneider. Anolis lizards. Current Biology, 19(19):R316–R318,

April 2009.

DL Mahler, LJ Revell, RE Glor, and JB Losos. Ecological opportunity and the

rate of morphological evolution in the diversification of Greater Antillean

anoles. Evolution, 64(9):2731–2745, September 2010.

115



E Makalic and DF Schmidt. A simple sampler for the horseshoe estimator.

IEEE Signal Processing Letters, 23(1):179–182, January 2016.

N Metropolis, AW Rosenbluth, MN Rosenbluth, and AH Teller. Equation of

state calculations by fast computing methods. The Journal of Chemical Physics,

21(6):1087–1092, June 1953.

RM Neal. Handbook of Markov Chain Monte Carlo. Chapman & Hall/CRC Press,

2010.

MA Newton and AE Raftery. Approximate Bayesian inference with the

weighted likelihood bootstrap. Journal of the Royal Statistical Society. Series B

(Statistical Methodology), 56(1):3–48, 1994.

G Pinto, DL Mahler, LJ Harmon, and JB Losos. Testing the island effect in

adaptive radiation: rates and patterns of morphological diversification in

Caribbean and mainland Anolis lizards. Procedings of the Biological Sciences B,

275(1652):2749–2757, December 2008.

BJA Pollux, RW Meredith, MS Springer, and DN Reznick. The evolution of the

placenta drives a shift in sexual selection in livebearing fish. Nature, 13451,

2014.

PD Polly, AM Lawing, AC Fabre, and A Goswami. Phylogenetic principal

components analysis and geometric morphometrics. Hystrix, the Italian Journal

of Mammalogy, 24(1):33–41, 2013.

OG Pybus, MA Suchard, P Lemey, FJ Bernardin, A Rambaut, FW Crawford,

RR Gray, N Arinaminpathy, SL Stramer, MP Busch, and EL Delwart. Unifying

the spatial epidemiology and molecular evolution of emerging epidemics.

Procedings of the National Academy of Sciences, 109(37):15066–15071, 2012.

116



KM Quinn. Bayesian factor analysis for mixed ordinal and continuous re-

sponses. Political Analysis, 12(4):338–353, 2004.

P Rai and H Daume. The infinite hierarchical factor regression model. Advances

in Neural Information Processing Systems, 2008.

LJ Revell. Size-correction and principal components for interspecific compara-

tive studies. Evolution, 63(12):3258–3268, 2009.

JD Reynolds. Macroecology: concepts and consequences, chapter Life histories and

extinction risk, pages 195–217. Oxford: Blackwell Publishing Ltd., 2003.
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