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Abstract
The human cerebral cortex is highly regionalized, and this feature emerges from morphometric gradients in the cerebral
vesicles during embryonic development. We tested if this principle of regionalization could be traced from the embryonic
development to the human life span. Data-driven fuzzy clustering was used to identify regions of coordinated longitudinal
development of cortical surface area (SA) and thickness (CT) (n = 301, 4–12 years). The principal divide for the developmental
SA clusters extended from the inferior–posterior to the superior–anterior cortex, corresponding to the major embryonic
morphometric anterior–posterior (AP) gradient. Embryonic factors showing a clear AP gradient were identified, and we
found significant differences in gene expression of these factors between the anterior and posterior clusters. Further, each
identified developmental SA and CT clusters showed distinguishable life span trajectories in a larger longitudinal dataset
(4–88 years, 1633 observations), and the SA and CT clusters showed differential relationships to cognitive functions. This
means that regions that developed together in childhood also changed together throughout life, demonstrating continuity
in regionalization of cortical changes. The AP divide in SA development also characterized genetic patterning obtained in an
adult twin sample. In conclusion, the development of cortical regionalization is a continuous process from the embryonic
stage throughout life.
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Expansion of cortical surface area (SA) in human development
is highly regionalized (Amlien et al. 2016). According to the pro-
tomap (Rakic 1988) and radial unit models (Rakic et al. 2009),
the blueprint for this regional cortical expansion is established
already in early embryonic development. Cortical neurons are
not born within the cerebral cortex itself but migrate from the
ventricular zone to their final destination. The major morpho-
metric gradient governing areal identity runs along the ante-
rior–posterior (AP) axis (Rakic et al. 2009). However, it is not
known if the governing principles of embryonic brain develop-
ment apply to cortical expansion in children. In the present
study, we tested this hypothesis, which would show a continu-
ity of cortical expansion from the early fetal to the latest stages
of development in the pre-teen years.

Moreover, the related tenet that late-life brain health and
cognitive function have developmental origins is getting
increasing support (Jagust 2016; Walhovd et al. 2016). Adult
genetic SA topography—the delineation of regions influenced
by the same genes—is characterized by an AP gradient, likely
due to prenatal factors (Rakic 2009; Walhovd et al. 2012), corre-
sponding to our hypothesis for organization of SA develop-
ment. Thus, an intriguing possibility is that the fundamental
organizational principles for regional brain development in
children, likely reflecting patterns from embryonic develop-
ment, can be traceable also in higher age. This would mean
that anatomical regions that develop together also show dis-
tinct life span trajectories of adult cortical change and decline
in aging. We know that cortical maturation to some degree pro-
ceeds along functional and structural networks established in
adults (Zielinski et al. 2010; Raznahan, Lerch, et al. 2011;
Alexander-Bloch et al. 2013; Walhovd et al. 2015; Krongold et al.
2017; Sotiras et al. 2017), but not whether brain regions that
develop together also change together through the rest of life.
Testing this was the second main aim of the project.

These hypotheses were addressed through several steps.
First, a data-driven fuzzy clustering approach was used to par-
cellate longitudinal change in SA and apparent thickness (CT)
of the cerebral cortex into regions of coordinated development.
CT and SA develop differently (Raznahan, Shaw, et al. 2011;
Amlien et al. 2016; Walhovd et al. 2017) and have different
genetic and molecular foundations (Rakic 1988; Panizzon et al.
2009; Rakic et al. 2009). We selected an age range when SA still
expands and apparent CT is continuously declining, that is,
4–12 years (n = 301). Clustering was based on 1.5 years of longi-
tudinal change to avoid confounds from cross-sectional differ-
ences. The principal axes of the developmental clusters were
extracted and tested against the AP morphometric gradient
from gene expression patterns in embryonic development,
identified by Rakic et al. (2009).

The developmental clusters were further tested against
genetic cortical topography established in an adult sample of
twins (Chen et al. 2012, 2013). CT shows more age change and
is more affected by later-life events than SA (Engvig et al. 2010;
Wenger et al. 2012; Storsve et al. 2014), and the original genetic
patterning work predicted that CT clusters, more than SA clus-
ters, would show genetic relatedness with clusters of similar
maturational timing (Chen et al. 2013). Thus, we hypothesized
that developmental SA change would adhere more closely to
prenatal gene expression gradients, while CT change clusters
would be more similar to genetic clusters obtained from adult
twins (Fjell et al. 2015).

Next, we tested if the developmental clusters showed differ-
ent age trajectories in a longitudinal dataset covering more
than 8 decades (4.1–88.5 years, n = 974, 1633 scans). On the

assumption of continuity between fetal and child development
and lasting impacts of early-life factors on later brain changes,
we hypothesized that the residual variance in each develop-
mental cluster would be differentially related to age when the
common variance shared among the clusters was accounted
for. This means that we expected each developmental cluster
to show different life span trajectories.

Finally, we tested whether the developmental clusters
showed differential relationships to 4 empirically derived
domains of cognitive function—episodic memory, executive
speed, working memory, and general cognitive ability (GCA).
These domains were identified from a principal component
analysis (PCA) of multiple cognitive scores from an extended
longitudinal dataset (4.1–93.4 years, 4065 observation). As SA
and CT have different early determinants and show different
developmental and life span trajectories, we hypothesized dif-
ferent relationships to cognition. We expected the SA clusters
to relate to GCA, which is likely heavily influenced by early-life
factors and shows high life span stability (Lyons et al. 2009;
Deary et al. 2012; Vuoksimaa et al. 2015; Walhovd et al. 2016).
The scores included in the GCA component (matrix reasoning
and vocabulary) load strongly on the g-factor (Deary et al. 2010)
and have previously been found to correlate more with SA than
CT (Vuoksimaa et al. 2015; Walhovd et al. 2016). As likely more
amendable to environmental influences through life, CT was
hypothesized to correlate more strongly with more specific cog-
nitive functions, indicated by lower loadings on the g-factor.
These could include episodic memory and executive speed,
which show different change trajectories across people
(Salthouse 2016) and are less strongly related to global cognitive
change (Tucker-Drob 2011).

Materials and Methods
Sample

A total of 1633 valid scans from 974 healthy participants (508
females/466 males), 4.1–88.5 years (mean visit age 25.8, SD 24.1),
were drawn from 3 Norwegian studies coordinated by the
Research Group for Lifespan Changes in Brain and Cognition;
The Norwegian Mother and Child Cohort Neurocognitive Study
(MoBa)/Neurocognitive Development (ND)/Cognition and Plasticity
Through the Lifespan (CPLS) (see Supplementary Material for
details). 635 participants had 2 scans and 24 had 3 (mean scan
interval 2.3 years [0.2–6.6]). The sample is identical to Fjell et al.’s
(2015). All were screened for conditions assumed to affect CNS
function. Number of observations in different age spans is pro-
vided in Table 1.

The cluster-forming sample consisted of all MoBa partici-
pants with 2 scans (n = 301, 602 scans in total, mean age 7.3
years [range 4.1–12.0], mean scan interval 1.5 years [1.0–2.2]).
This is a population-based sample, with participants recruited
by the Norwegian Medical Birth Registry through the national
Norwegian Mother and Child Cohort Study (82), see (8, 83) and

Table 1 Number of observations

Obs n Agea Follow-up interval

<20 years 1021 644 9.2 (4.1–19.7) 1.7 (1.0–3.2)
20–50 years 234 136 35.2 (20–50) 3.2 (0.2–6.3)
>50 years 378 194 64.8 (50.5–85.3) 1.6 (0.2–6.6)

aAge at baseline.

Note: Obs, number of observations; n, number of participants.
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Supplementary Material for details. The age range is well cov-
ered, with good sample density across.

The twin sample used to generate the genetic clusters con-
sisted of 406 middle-aged men (55.8 years [51–59]), including
110 monozygotic and 93 dizygotic twin pairs, from the Vietnam
Twin Study of Aging (see Supplementary Material and (Kremen
et al. 2013) for details).

Cognitive Testing

All participants underwent extensive neuropsychological test-
ing. Cognitive test scores were entered into a PCA with varimax
rotation with Kaiser normalization. The following test scores
were included in the analysis: verbal learning (California Verbal
Learning Test [CVLT], sum of trials 1–5), 30-min recall and 30-
min recognition (Delis et al. 2000), Stroop reading, Stroop color
naming and Stroop incongruent color naming (MacLeod 1992),
digit span forward and backward (Wechsler 2008), vocabulary
and matrix reasoning (Wechsler 1999), see Supplementary
Material for details about the tests. In contrast to the measured
scores, the PCA-derived components are free of measurement
errors. To obtain a stable and generalizable component solu-
tion, the PCA was run on a larger healthy sample from the
same research center, screened with the same instruments as
the MRI subsample, containing 4065 participant observations
(age 4.1–93.4 years, 2285/1722 females/males observations),
inclusive of those used in the present study. In the case of
missing values, the “mean substitution” method was used.
Inspection of the scree plot revealed that both 3 and 4 compo-
nents were reasonable solutions. The 4-component solution
gave most sense from a neuropsychological perspective, and
the 4-component solution was thus chosen for further analy-
ses, yielding 81.53% explained variance. See Table 2 and
Supplementary Material for details.

To ensure that the PCA from the larger samples was repre-
sentative also for the subsample used in the present paper,
Procrustes rotation was used to assess the degree of dissimilar-
ity. This procedure rotates a matrix to maximum similarity
with a target matrix minimizing the sum of squared differ-
ences. 10.000 permutations were run, yielding a P-value of
9.999e−05, sum of squares of 0.099, and a correlation for a sym-
metric Procrustes rotation of 0.95, indicating excellent corre-
spondence between the matrices. This was further confirmed
by a Mantel permutation test for similarity of 2 matrices,

yielding an observed r of 0.95 and a simulated P-value of
9.999e−05 for 10.000 permutations. Thus, applying the PCA solu-
tion from the larger sample to the MRI subsample was clearly a
valid approach.

MRI Data Acquisition and Analysis

Imaging data (except VETSA) were acquired using a 12-channel
head coil on 2 1.5-Tesla Siemens Avanto scanners (Siemens
Medical Solutions, Erlangen, Germany), yielding 2 repeated 3D
T1-weighted magnetization prepared rapid gradient echo
(MPRAGE): TR/TE/TI = 2400ms/3.61ms/1000ms, FA = 8°, acqui-
sition matrix 192 × 192, FOV = 240mm, 160 sagittal slices with
voxel sizes 1.25 × 1.25 × 1.2mm. For most children 4–9 years
old, integrated parallel imaging (iPAT) was used, acquiring mul-
tiple T1 scans within a short scan time with the same para-
meters as above, enabling us to discard scans with residual
movement and average the scans with sufficient quality.
Previous studies have shown that accelerated imaging does not
introduce significant measurement bias in surface-based mea-
sures when using FreeSurfer for image analysis, compared with
a standard MPRAGE protocol with otherwise identical voxel
dimensions and sequence parameters (97), which is in accor-
dance with our own analyses.

MRI data (except VETSA) were processed and analyzed with
FreeSurfer 5.3 (http://surfer.nmr.mgh.harvard.edu/) (Dale and
Sereno 1993; Dale et al. 1999) longitudinal stream (Fischl and
Dale 2000; Reuter and Fischl 2011; Reuter et al. 2012). SA maps
were smoothed using a circularly symmetric Gaussian kernel
with a full width at half maximum (FWHM) of 26mm and CT
maps with a kernel of 21 FWHM. Movement is a major concern
(Reuter et al. 2015), so scans were manually rated 1–4, and only
1 or 2 (no visible or only very minor possible signs of move-
ment) were included. Also, all reconstructed surfaces were
inspected and discarded if they did not pass internal quality
control. This led to the exclusion of 46 participants from MoBa-
Neurocog and 9 from ND, reducing the total sample to the
reported 1633 scans.

For VETSA, images were acquired on 2 Siemens 1.5-Tesla scan-
ners. Sagittal T1-weighted MPRAGE sequences were employed
with a TI = 1000ms, TE = 3.31ms, TR = 2730ms, flip angle = 7°,
slice thickness = 1.33mm, voxel size 1.3 × 1.0 × 1.3mm. Similar to
the other data, the scans were run through FreeSurfer and manu-
ally inspected and quality checked, with minimal manual editing
performed. Details about the VETSA MRI processing can be found
here (Chen et al. 2013).

Fuzzy Clustering

The fuzzy clustering procedure was performed using the “clus-
ter” package implemented in R (www.r-project.org/). The indi-
vidual de-meaned annualized symmetrized percentage change
(APC) maps were fed into the cluster algorithm. The APC maps
were computed by calculating the difference in thickness/area
for each vertex between timepoints, divide by the mean thick-
ness/area across timepoints for that vertex, and multiply by
100. Clustering methods partition the dataset into clusters
based on the chosen proximity relations. We calculated pair-
wise correlations of thickness and area change between every 2
vertices on the cortex for the left and right hemispheres sepa-
rately. To reduce computation time, we subsampled the stan-
dardized cortical surface tessellation from the original
163.842–2.562 vertices per hemisphere. We then transformed
the change correlation matrix into the distance matrix by

Table 2 Rotated component matrix

Memory Excecutive
speed

Working
memory

GCA

Recall 30min 0.86
Learning 0.82
Recognition 0.81
Stroop words 0.92
Stroop colors 0.85
Stroop colors/ words 0.83
Digit span forward 0.87
Digit span backward 0.78
Vocabulary 0.82
Matrix reasoning 0.47 0.69

Note: Values below 0.40 are suppressed. Rotation method: varimax with Kaiser

normalization. Rotation converged in 5 iterations. GCA, general cognitive abil-

ity. Recall, learning and recognition from CVLT, vocabulary and matrix from

WASI.
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subtracting each correlation from 1. In fuzzy clustering, objects
can belong to more than one cluster and with different degrees
of membership to the different clusters, between 0 and 1. Thus,
the memberships of objects at the overlapping boundaries will
typically express the ambiguity of the cluster assignment.
Fuzzy clustering aims to minimize the objective function
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where n is the number of observations, k is the number of clus-
ters, r is the membership exponent, u is the cluster member-
ship, and d(i, j) is the dissimilarity between observations i and j
(Kaufman and Rousseeuw 1990). The cluster memberships u
are non-negative and sum to one for a given data point. To
investigate the stability of the clustering in relation to initiali-
zation, we randomly initialized the algorithm for 100 runs and
picked the cluster solution that maximized the likelihood
function.

In addition, we generated random clusters to compare with
the power of the real clusters. The performance of the develop-
mental clusters was compared with randomly generated clus-
ters for a 3-cluster solution, since the 3-cluster solution was
used for the life span analyses (see the following). The random
clusters were generated using k-means algorithm implemented
in MATLAB (R2015b). The spatial locations of the cerebral cortex
mesh were partitioned into 15 clusters using the squared
Euclidean distance metric and k-means++ algorithm for cluster
center initialization. One of the clusters resulted in capturing
the whole temporal lobe, therefore, it was further subdivided
into 4 clusters using the same procedure. The final 18 clusters
were merged into 3 clusters of similar size to the empirically
derived clusters.

Genetic Clustering

The developmental clusters were compared with previously
published genetic clusters (Chen et al. 2013), made accessible
for formal comparisons to the present study. The genetic clus-
ters were derived using a similar Fuzzy clustering approach to
the one described above. The clustering was performed on
genetic correlation maps for cortical thickness and area based
on the VETSA sample. The resulting clusters represent bound-
aries of cortical divisions that are maximally under control of
shared genetic influences. The present 2- and 3-cluster solu-
tions for cortical thickness and area development were com-
pared with the genetic 2- and 3-cluster thickness and area
solutions by use of the Rand Index (see the following).

Gene Expression Analyses

Cortical gene expression data were obtained from the
BrainSpan Atlas of the Developing Human Brain (2010) (www.
brainspan.org) (Miller et al. 2014), which provides a transcrip-
tome of the developing human brain. We rated 31 transcription
factors assumed responsible for shaping the partitioned neo-
cortex (Rakic et al. 2009) according to how well their expression
patterns were aligned to the AP axis. 18 factors showed a clear
and 4 a partial AP gradient, yielding evidence that the AP axis
constitutes a major regionalization gradient in early cortical
development. To test whether this cluster gradient could be
detected in later human gene expression patterns, we selected
the candidate with the most established AP expression pattern,
PAX6 (Bishop et al. 2000), and the candidate with the most

pronounced AP expression pattern, P75 (Rakic et al. 2009).
Thirty-four out of the 42 donor brains in the BrainSpan Atlas
had valid probe data from at least one cortical region within
each of the empirically derived developmental clusters (see the
following). Mean expression values for cortical regions falling
within the developmental clusters were extracted for the 34
participants from the BrainSpan Atlas. For each donor, the
average PAX6/P75 expression was estimated through mean
averaging of normalized expression values (Reads Per Kilobyte
Million; RPKM) from cortical samples overlapping with the
developmental clusters.

Statistical Analyses

Analyses were run in R (https://www.r-project.org) using
Rstudio (www.rstudio.com) IDE, except the PCA (SPSS v25). The
Rand index (RI) and Silhouette plots (Rand 1971), in combina-
tion with visual inspections, were used to inform the choice of
specific cluster solutions. RI is a number between 0 and 1 that
quantifies the degree of similarity between 2-cluster solutions
by computing the proportion of vertices that are given the
same cluster label in both solutions. It is possible for some ver-
tices to have the same cluster label by chance, and this is
accounted for in the adjusted RI. Adjusted RI was used to com-
pare area with thickness clusters, and the developmental clus-
ters to the genetic clusters.

To characterize each 2-cluster solution according to the main
axes (AP, inferior–superior [IS], lateral-medial [LM]), the cortical
surface was divided in 20 bins along each axis. The mean proba-
bility of all the vertices within each bin along the AP axis to
belong to a given cluster was calculated, and the same for the IS
and LM axes. These values were then correlated with the axis
bin numbers (from 1 to 20), yielding an objective measure of
how much of the variance of the different cluster solutions that
could be explained by each of the 3 principal axes.

Generalized Additive Mixed Models (GAMMs) implemented
in R (www.r-project.org) using the package “mgcv” (Wood 2006,
2011) were used to derive age functions for morphometric and
cognitive variables. Akaike information criterion (AIC) (Akaike
1974) and the Bayesian information criterion (BIC) were used to
guide model selection and help guard against overfitting. The
smoothness of the age curve is estimated as a part of the model
fit, and the resulting effective degree of freedom (edf) was taken
as a measure of deviation from linearity. The P-values associ-
ated with the smooth terms are only approximate, as they are
based on the assumption that a penalized fit is equal to an
unpenalized fit with the same edf, and do not take into account
uncertainty associated with the smoothing parameter estima-
tion. The major advantage of GAMM in the present setting is
that relationships of any degree of complexity can be modeled
without specification of the basic shape of the relationship, and
GAMM is thus especially well suited to map life span trajecto-
ries of neurocognitive variables which can be assumed to be
nonlinear and where the basic form of the curve is not known
(Fjell et al. 2010). Sex was used as a covariate in the area analy-
ses, as sex is related to area but less to thickness (Fjell et al.
2009).

Results
Clusters of Cortical Change in Development of 4–12
Years

Clusters are presented in Fig. 1 (SA) and Fig. 2 (CT). The
2-cluster SA solution followed a clear AP (correlation with the
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AP axis r = 0.91) and IS (r = 0.97) gradient, with less influence
from the LM (r = 0.19) axis. The AP division was tilted 19° from
the base plane, causing the strong IS correlation. The posterior
cluster covered the central sulcus and the adjacent anterior
regions of the frontal cortex (premotor cortex), extending back
to encapsulate the dorsolateral occipital cortex, and inferiorly
down to the cingulum. For the 3-cluster solution, an occipital-
limbic cluster emerged. In the 4-cluster solution, a new cluster
appeared inferior to the first posterior cluster, distinguishing
this cluster from the rest of the clusters both medially and
laterally.

The 2-cluster CT solution showed a very strong IS gradient
(r = 0.97), with less AP (0.39) and LM (0.46) influence. With 3
clusters, an occipital-limbic cluster emerged. In the 4-cluster
solution, the superior cluster was split in 2 clusters. For both
CT and SA, the silhouette values flattened after 4 clusters, sug-
gesting that 5 clusters were too many (see Supplementary
Material). The adjusted Rand Index (adj RI) showed substantial

overlap between the 2-cluster SA and CT solutions (adj RI =
0.88), with less similarity for 3 (adj RI = 0.27) and 4 (adj RI =
0.22) clusters. Still, the medial limbic cluster and the prefron-
tal–anterior–temporal relationship was similar between SA and
for CT across the 3- and 4-cluster solutions.

To validate the Fuzzy clustering results, we ran seed point
analyses from 360 seeds based on a multimodal parcellation
scheme (Glasser et al. 2016). The critical features of the cluster
results were confirmed, including the AP axis for SA, the IS axis
for CT, and the prefrontal–temporal relationship and delinea-
tion of the limbic clusters for both SA and CT (see
Supplementary Material).

Adherence of SA Development to Early Morphometric
Gradients

Mean expression values for PAX6/ P75 in cortical regions falling
within the anterior and the posterior developmental clusters

Figure 1. Surface area. Left panel: Clusters of coordinated SA in development, 2- (top), 3- (middle), and 4-cluster (bottom) solutions. Right panel: The life span trajecto-

ries of each cluster from the 3-cluster solution. Top: Trajectories residualized on age (x-axis). Bottom: The residual age relationship (y-axis) for each cluster accounting

for the other 2 clusters. These curves show the relationship between each cluster and age, if the common variance shared with the other clusters are accounted for.

Relative to the other clusters, the anterior cluster shows a slight increase with age (larger cluster area goes with older age), while the limbic cluster shows a linear

decline (larger cluster area goes with younger age). The colors of the curves correspond to the cluster color in the left figure. The shaded area denotes ±2 standard

errors of the mean.

Figure 2. Cortical thickness. Left panel: Clusters of coordinated cortical thickness in development, 2- (top), 3- (middle), and 4-cluster (bottom) solutions. Right panel:

The life span trajectories of each cluster from the 3-cluster solution. Top: Trajectories residualized on age (x-axis). Bottom: The residual age relationship (y-axis) for

each cluster accounting for the other 2 clusters (see Fig. 1 legend for explanation). The colors of the curves correspond to the cluster color in the left figure. The

shaded area denotes ±2 standard errors of the mean.
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were extracted for 34 participants from the BrainSpan Atlas
(www.brainspan.org). Five samples from the atlas fell within
the superior–anterior cluster: samples from dorsolateral pre-
frontal cortex, ventrolateral prefrontal cortex, orbital frontal
cortex, inferolateral temporal cortex, and anterior cingulate
cortex. Four samples fell within the inferior–posterior cluster:
primary motor cortex, primary somatosensory cortex, postero-
ventral parietal cortex, and primary auditory cortex. Difference
in expression between the superior–anterior cluster and the
inferior–posterior cluster was assessed for PAX6 and P75(NGFR)
separately using paired-samples t-tests. Expression values of

PAX6 were significantly higher (t = 4.24, df = 33, P < 0.0002) in
the anterior than the posterior development cluster, while the
opposite was found for P75 (t = −3.03, df = 33, P < 0.005) (Fig. 3).
Put together, this shows that traces of the major expression
patterns in embryonic development can be recovered in later
childhood, and that the gene expression patterns in humans
follow cortical change in ways predicted from early embryonic
development. It was not given that genes with strong AP gradi-
ents during embryonic brain development would also adhere to
an empirically derived AP cluster solution based on cortical
changes during childhood development.

Resemblance to Cortical Genetic Patterning

After having established that SA development follows the main
AP gradient identified in embryonic development, we tested
how similar the developmental SA and CT clusters were to
mid-life genetic cortical topography (Chen et al. 2013) (Fig. 4).
Genetic topography represents the delineation of regions influ-
enced by the same genes. RI suggested low overlap (adj RI <
0.10 for 2- and 3-cluster solutions) between genetic topography
and the developmental clusters. The AP division was seen for
both, but the boundary between the clusters was shifted from
inferior–posterior to anterior–superior for the development
clusters (−71° from the perpendicular axis) compared with infe-
rior–anterior to superior–posterior (+38°) for the genetic clus-
ters. Adherence to the AP axis was slightly higher for the
genetic (r = 0.96) versus the developmental (r = 0.91) clusters,
and slightly lower for the IS axis (r = 0.82 for genetics versus r =
0.91 for development).

Figure 3. Genetic patterns. (A) SA-developmental clusters, top view. (B) AP gra-

dient of PAX6 (left) and P75 (right) from (Rakic et al. 2009). The error bar plot

(bottom) shows higher expression of Pax6 in the anterior cluster and higher

expression of P75 in the posterior cluster in the Lifespan database.

Figure 4. Comparison of developmental and genetic clusters. Thickness clusters in the left panel, area clusters in the right panel. first column is the development

clusters (left hemisphere only shown), middle column is the genetic clusters from (Chen et al. 2013), right column is a conjunction map of the concordance/discrep-

ancy of development versus genetics. Vertices belonging to the same cluster across the developmental and the genetic clusters are shown in blue/red/yellow.

Vertices that are discordant between the developmental and the genetic clusters are shown in green. Thus, the size of the green area represents the amount of dis-

crepancy between the developmental and the genetic cluster solutions. As can be seen, the overlap is better for the 2-cluster solution compared with the 3-cluster

solution, and better for thickness than area.
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Comparing the developmental and the genetic CT clusters,
the same IS division was seen for the 2-cluster solution (r =
0.96 for genetics vs. 0.93 for development, RI = 0.69, adj RI =
0.39). The genetic clusters also followed the AP (r = 0.90) and to
a lesser extent the LM (r = 0.25) gradient. For the 3-cluster solu-
tion, the medial delineation of the limbic developmental cluster
included the medial temporal lobe and the cingulum as well as
the occipital cortex, while the genetic homolog cluster did not
include the occipital lobe but more of the prefrontal cortex lat-
erally and medially. RI indicated similar genetic-developmental
overlap (RI = 0.68) for the 3-cluster solutions, but adj RI dropped
to 0.31, with a further drop to the 4-cluster solution (RI = 0.70,
adj RI = 0.23). Thus, the overlap between CT development and
genetic topography dropped with higher number of clusters.

Life Span Trajectories of Developmental Clusters

Mean CT and SA values in each cluster from the 3-cluster solu-
tions were extracted for each participant and timepoint in the
full MRI sample from 4.1 to 88.5 years, yielding 1633 observa-
tions. GAMMs with cluster as a dependent variable, age as a
predictor, and a random effect for intercept showed that all

clusters showed highly nonlinear relationships to age (all P’s <
2e−16, edf for all > 5). SA differed as a function of sex (Amlien
et al. 2016) and was included as a nuisance covariate in the SA
analyses. As expected, CT clusters showed mainly monotonous
negative relationships to age (Fig. 2), with steeper reductions in
childhood and adolescence, while SA increased in the first part
of the age span (Fig. 1), peaking in early teenage years, followed
by reductions for the rest of the life span.

To test whether the clusters showed unique age trajectories,
analyses were repeated with all clusters for each modality (SA,
CT) as simultaneous predictors of age. For SA, this yielded
highly significant residual age relationships for all clusters (all
P’s ≤ 4.07−5). The limbic cluster showed residual reductions
with higher age throughout the whole age span, while the ante-
rior cluster showed slight increases and the posterior a
U-shaped trajectory (Fig. 1, right panel, bottom). The analyses
were also rerun without the cluster-forming development sam-
ple, and all clusters were still highly significantly related to age
when run separately (all P’s < 2e−16) and simultaneously (n =
502, 860 observations, all P’s < 0.05), both for CT and SA.

Random Clusters

To test whether the independent life span trajectories of the
developmental clusters reflected an inherent feature of any
cortical cluster of a given size, we created random clusters of
approximately the same size and repeated the GAMMs with all
clusters as simultaneous predictors of age (Fig. 5). The develop-
mental clusters performed substantially better than the ran-
dom clusters on all model fit measures (CT: developmental
clusters–random clusters, ΔAIC = −150.75, ΔBIC = –150.75,
logLik = 75.38; SA: ΔAIC = −53.57, ΔBIC = –53.58, logLik = 26.79).

In conclusion, we were able to detect large cortical regions
with unique and independent trajectories across the life span
through data-driven clustering of longitudinal change in chil-
dren. We proceeded to test whether the clusters were related to
cognitive performance.

Figure 5. Random clusters. The random clusters generated using the k-means

algorithm.

Figure 6. Cognitive relationships. (A) Each cognitive domain plotted against age, residualized on timepoint to remove retest effects. For trajectories of the tests loading

highly on GCA (matrix reasoning, vocabulary) see Supplementary Material. (B) Heat maps of F-values illustrating the relationship between each cluster and each cog-

nitive function, regressed on age and sex (SA). (C) Examples of brain cognition relationships for the limbic cluster for thickness (2 plots to the left) and area (2 plots to

the right). Plots for all variables are presented in Supplementary Material. The shaded area denotes ±2 standard errors of the mean.
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Cognitive Components—Relationship to Developmental
Clusters

All cognitive components showed highly significant (P < 2e−16)
and nonlinear (edf ≥ 4.9) age trajectories (Fig. 6A, Table 3). Each
component was then used as a dependent variable in separate
GAMMs, with age and each developmental cluster as predic-
tors, intercept as a random effect, and subject timepoint as a
covariate to control for retest effects. Selected results are pre-
sented in Fig. 5C and numeric results in Tables 4 and 5 (full
results in Supplementary Material). All SA clusters were posi-
tively related to GCA (P < 0.0002). The anterior cluster was also
related to working memory span (P = 0.008), while the limbic
(P = 0.03) and posterior (P = 0.018) did not survive Bonferroni
corrections. None were related to memory or executive speed.
In contrast, the CT superior cluster (P = 0.005) was related to
memory, while the limbic and inferior (both P’s = 0.02) did not
survive corrections. The limbic (P = 0.01) and inferior (P = 0.005)
were related to executive speed (after corrections). The rela-
tionships were nonlinear, as would be expected based on the
monotone negative thickness–age relationships coupled with

the typical inverse U-shaped cognition–age relationships. The
differential relationships between cognitive function and CT
and SA are illustrated in the heat maps in Fig. 6B.

Discussion
The present results show that cortical expansion in childhood
development follows the major gene expression patterns of
factors responsible for shaping the partitioned and specialized
human neocortex during prenatal development (Rakic et al.
2009). Through a data-driven parcellation of the cerebral cortex
based on longitudinal change in SA in 4–12-year-old children,
we were able to detect the major AP-developmental gradient
known from embryonic development (Bishop et al. 2000). This
demonstrates a continuity in cortical expansion from the earli-
est stages to the period when regional arealization reaches its
peak. While this represents continuity between the fundamen-
tal principles for embryonic brain development (Rakic 1988;
Rakic et al. 2009) and later childhood SA maturation, in line
with known influences of neonatal characteristics on SA
(Walhovd et al. 2012), CT change more strongly followed adult
genetic organization principles, as predicted from previous
work on genetic cortical patterning (Chen et al. 2013).
Importantly, the developmental clusters showed statistically
distinguishable trajectories through more than 8 decades of
life, in accordance with the view that fundamental principles
governing brain development in children have lasting impact
on the brain. Thus, brain regions that develop together also
change together through the rest of life. Finally, since SA is
highly determined by prenatal factors, we expected correlations
with GCA, which loads highly on the g-factor (Deary et al. 2010)
and has high between-person life span stability (Lyons et al.
2009; Deary et al. 2012). This was confirmed, in contrast to CT,
which was more strongly related to cognitive domains with
lower loading on the g-factor (Deary et al. 2010), such as

Table 3 Effects of age on the cognitive components

edf F’s (age) P’s(age) R2 (adj) model

Memory 7.36 89.5 <2e−16 0.62
Executive speed 8.25 44.9 <2e−16 0.77
Working memory 4.90 38.8 <2e−16 0.36
GCA 7.01 405.5 <2e−16 0.78

Note: GAMMs were run with age as a smooth term, subject timepoint as a linear

covariate, and subject as a random effect. Adjusted R2 refers to the full model

including covariates. GCA, general cognitive ability; edf, effective degrees of

freedom for the smooth term.

Table 4 Effects of cluster SA on the cognitive factors in the full
sample

edf F P

Memory
Limbic 1.00 3.4 0.07
Posterior 1.00 2.8 0.09
Anterior 1.00 2.5 0.12

Executive speed
Limbic 1.04 0.0 0.88
Posterior 1.00 0.0 0.84
Anterior 1.00 0.1 0.80

Working memory
Limbic 1.00 4.3 0.03
Posterior 1.00 5.6 0.018
Anterior 1.00 7.1 0.008

GCA
Limbic 1.00 15.0 0.0001
Posterior 1.00 14.3 0.0002
Anterior 1.00 14.5 0.0001

Note: GAMMs were run with age as a smooth term and cluster as a linear pre-

dictor. Subject timepoint was included as a linear covariate and subject as a

random effect variable.

Bold: P < 0.05 corrected (adjusted Bonferroni correction for 4 cognitive factors

and 3 clusters taking between-cluster correlations into account) Bold italics: P <

0.05 uncorrected.

GCA, general cognitive ability; edf, effective degrees of freedom for the smooth

term (a measure of deviation from linearity).

Table 5 Effects of cortical thickness on the cognitive factors in the
full sample

edf F P

Memory
s(Limbic) 2.16 3.8 0.02
s(Superior) 2.70 6.7 0.005
s(Inferior) 2.70 4.4 0.02

Executive speed
s(Limbic) 3.39 8.3 0.01
s(Superior) 2.04 3.4 0.10
s(Inferior) 2.93 9.9 0.005

Working memory
s(Limbic) 1.00 2.3 0.13
s(Superior) 1.00 4.7 0.03
s(Inferior) 1.00 2.2 0.14

GCA
s(Limbic) 2.16 2.9 0.06
s(Superior) 1.00 0.0 0.98
s(Inferior) 1.00 0.0 0.90

Note: GAMMs were run with age and each cluster as smooth terms. Subject

timepoint was included as a linear covariate and subject intercept as a random

effect variable.

Bold: P < 0.05 corrected (adjusted Bonferroni correction for 4 cognitive factors

and 3 clusters taking between-cluster correlations into account) Bold italics: P <

0.05 uncorrected.

GCA, general cognitive ability; edf, effective degrees of freedom for the smooth

term.
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memory and executive speed. This suggest that cortical charac-
teristics (arealization and thickness) beyond anatomical bound-
aries are the more important in defining relationships to
cognition.

Parcellation of the Developing Human Cerebral Cortex

The results showed that the cortex can be parcellated in mean-
ingful ways based on developmental change data alone. The AP
SA axis followed the major gene expression gradient identified
in animal studies (Bishop et al. 2000; Rakic et al. 2009). This link
was further supported in the present study through the finding
of significantly different gene expression in the anterior versus
the posterior cluster for PAX6 and P75, both established ante-
rior gradient factors in embryonic development (Bishop et al.
2000). Such correspondence between childhood SA maturation
and cortical ontogenesis is in line with the protomap (Rakic
1988) and radial unit tenets (Rakic et al. 2009). According to
these, neural progenitors in the ventricular zone form a mosaic
of proliferative units that establish an embryonic cortical map
in early development. During the migration of neurons into the
cortex, their position is then retained by restraints imposed
through the radial glial scaffolding. However, it has not been
established that these principles laid down in the first stages of
CNS development are reflected in cortical maturation in later
childhood in humans.

Although there was good overlap between SA and CT for the
2-cluster solution, this dropped substantially with higher clus-
ter numbers. CT and SA are shaped by independent genes
(Rakic 1988; Panizzon et al. 2009) and different neurobiological
mechanisms in early fetal life (Rakic et al. 2009), and they also
follow fundamentally different trajectories in development
(Raznahan, Shaw, et al. 2011; Amlien et al. 2016; Walhovd et al.
2017) and aging (Storsve et al. 2014). As expected, there was a
fundamental difference in the principal axis distinguishing CT
and SA even for the 2-cluster solution, with the CT clusters
adhering to an IS axis, with the plane of the cluster division
tilted 19° for SA. While the AP SA division was seen also in a
previous developmental study, the IS CT axis was not
(Krongold et al. 2017). This could possibly result from methodo-
logical differences, for example, that the previous study used
both combined cross-sectional and longitudinal information. A
second longitudinal study with an alternative analysis
approach reported indirect evidence for an IS gradient in CT
development (Alexander-Bloch et al. 2013), and it has previ-
ously been suggested that such a division could be due to
cytoarchitectonic features and connectivity patterns (Chen
et al. 2013).

The 3- and 4-cluster solutions revealed additional interest-
ing patterns. Not only local clusters were seen but also relation-
ships between functionally connected regions crossing lobar
boundaries. For instance, lateral prefrontal cortex and the lat-
eral anterior temporal cortex were included in the same SA and
CT clusters. This frontotemporal connection fits earlier obser-
vations (Raznahan, Lerch, et al. 2011; Krongold et al. 2017) and
would be expected from structural connections represented by
the uncinate fasciculus (Schmahmann and Pandya 2006).
A limbic cluster encapsulating the medial temporal lobe, the
cingulum and insula, and extending backward covering the lin-
gual gyrus, cuneus, and occipital cortex was also seen for both
SA and CT. This demonstrates that cortical maturation not nec-
essarily follows lobar boundaries but rather extends beyond
what would be expected from anatomical proximity. Similarly,
SA of auditory cortex in the superior temporal lobe clustered

together with somatosensory, motor and visual cortices in the
2-cluster solution, that is, mimicking functional clusters. Still,
morphological change did not follow functional boundaries in a
clear-cut manner, as calcarine sulcus (V1) and ventral visual
areas clustered with the inferior/anterior cortex, not the rest of
the visual cortex.

Importantly, the developmentally defined clusters showed
statistically distinct life span trajectories. Although the general
form of the trajectories is well known (Fjell et al. 2015; Walhovd
et al. 2016), the analyses revealed residual age relationships for
single clusters independently of other clusters. This finding
was in accordance with the hypothesis that variations in corti-
cal development has lifelong impacts, and consequently that
regions that develop together tend to change together through
the rest of life. We have previously shown that correlations
between longitudinal changes in CT across predefined smaller
ROIs are similar in development and aging (Fjell et al. 2015).
Here, we show that the trajectories of clusters based solely on
coordinated developmental change, with no anatomical restric-
tions imposed on the clustering, can be delineated in a sample
spanning more than 80 years, both for SA and CT. Cluster solu-
tions above 4 were not stable, which caused the clusters to be
anatomically extensive. Consequently, they encompassed sub-
regions found in previous research to show partly different
developmental trajectories (Fjell et al. 2015; Amlien et al. 2016).
Importantly, however, the clusters consist of regions of corre-
lated developmental change, not necessarily regions with simi-
lar trajectories. These main regions of coordinated change will
naturally generalize across subregions, but the coordination of
change across the subregions was not stable enough to allow
identification of coordinated change across anatomically more
fine-grained regions.

Adherence to Genetic Patterning

The clusters were tested against genetic cortical patterning
results (Chen et al. 2013). For CT, we found overlap between
developmental and genetic patterns. This fits with our previous
finding that regional differences in cortical thinning adhered to
genetic organizational principles (Fjell et al. 2015). In the pres-
ent study, we defined clusters based on developmental change,
independently of the genetic patterning. Although the genetic
overlap was lower with a higher number of clusters, certain
similarities between developmental and genetic organization
patterns remained, for instance, the prefrontal–temporal rela-
tionship (Chen et al. 2013). Thus, partly the same genes seem to
govern absolute frontal and temporal CT. A genetic frontotem-
poral relationship was also seen in a developmental twin sam-
ple for CT and SA (Schmitt et al. 2017).

In contrast, there was a limited overlap between the devel-
opmental SA clusters and the genetic clusters, revealing inter-
esting differences. Genetic SA relationships seem local or lobar,
lacking strong long-distance or cross-region correlation pat-
terns, with generally lower—and more age-invariant—correla-
tions across the cortex (Chen et al. 2011; Schmitt et al. 2017;
Strike et al. 2018). The developmental organizational patterns
crossed anatomical boundaries, such as the frontotemporal
and the limbic clusters. Another difference was that premotor
and postcentral/somatosensory regions clustered together in
development, as seen in previous fetal work (Johnson et al.
2009) but have distinct adult genetic patterns (Chen et al. 2013).
Notably, the genetic-developmental similarity for CT is in line
with the prediction from the original genetic patterning paper
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that CT clusters would show genetic relatedness with clusters
of similar maturational timing (Chen et al. 2013).

The difference in genetic overlap for CT and SA further illu-
minates the developmental origins hypothesis. We expected
SA change to adhere to major gradients from embryonic devel-
opment, and CT change to overlap with genes responsible for
CT at a later point in life. SA reaches its maximum expansion
in early adolescence (Amlien et al. 2016), with the major deter-
minant likely being the number of cell division cycles of the
neural stem cell pool at the premitotic stage of neural develop-
ment (Rakic 2009). The width of the cortical minicolumn at
birth is around one-third of its adult size (Buxhoeveden and
Casanova 2002), and expansion of cortical SA in childhood can
likely be explained by growth of these (Lyall et al. 2015). The
developmental SA clusters likely reflect the last part of an
expansion that can be traced back to embryonic stage, as also
evidenced by the demonstrated adherence to the AP gradient
of gene expression patterns. In contrast, CT ceases to increase
early afterbirth and reaches 97% of adult values in 2 years (Lyall
et al. 2015). Early CT is affected by asymmetric cell division
cycles of the cortical founder pool, determining the number of
cells within each column (Rakic 2009). However, the number of
neurons in each column is hardly a determinant of cortical
changes after the initial CT increase, which rather can be attri-
buted to dendritic branching, synaptogenesis and gliogenesis
(Huttenlocher and Dabholkar 1997). Thus, CT change from 4 to
12 years likely reflects either different processes or differences
in the relative contributions of the same processes compared
with CT change in very early development. Studies show that
the genetic contribution to CT but not SA changes during devel-
opment (Schmitt et al. 2017; Teeuw et al. 2018), and CT shows
steeper slopes during adolescent development (Amlien et al.
2016) and later aging (Storsve et al. 2014) than SA. We argue
that CT to a greater extent than SA reflects accumulated life-
long genetic and environmental impact. Thus, SA is usually
more strongly related to early-life factors and CT relatively
more also to later-life factors. Empirical support comes from
studies showing larger effects of birthweight and other obstet-
ric factors on SA than CT (Martinussen et al. 2005; Raznahan
et al. 2012; Walhovd et al. 2012; Jha et al. 2018), and environ-
mental interventions affecting CT (Engvig et al. 2010; Wenger
et al. 2012).

Cognitive Correlates of Developmental Clusters

SA and CT were expected to correlate with different cognitive
domains. We hypothesized that SA would be related to GCA,
which shows high between-person stability across life (Lyons
et al. 2009; Deary et al. 2012), likely due to the impact from
early-life factors. Accordingly, we found highly significant life
span relationships between GCA and the SA clusters, but not
CT clusters, in line with previous observations (Vuoksimaa
et al. 2015; Walhovd et al. 2016). In contrast, we speculated that
since CT is more strongly related to age and sensitive to envi-
ronmental influences, it would be related to more specific cog-
nitive functions with lower loadings on the g-factor and less
established lifelong between-person stability. Episodic memory
and executive speed have lower g-loadings than GCA (Deary
et al. 2010) and declines steeply with age (Salthouse 2004). We
found relationships between these components and all CT clus-
ters. No significant relationships were seen between executive
speed and SA, while the relationships between SA and memory
were just significant (limbic and posterior clusters) or showed a
trend (P = 0.06, anterior cluster). Working memory span, which

was relatively invariant during adult life, showed comparable
relationships with CT and SA. Importantly, however, greater
age effects do not equal less between-person stability, and it is
as of yet not clear whether memory and executive speed show
less between-person stability over the life course than GCA.
People differ in the amount of change in memory and speeded
tasks over time (Salthouse 2016), and change in GCA is more
strongly related to “global cognitive” change than changes in
episodic memory and speed are (Tucker-Drob 2011). Still, corre-
lations of change within and across cognitive domains tend to
increase with age (Tucker-Drob et al. 2014), and a recent meta-
analysis showed that 59% of the variance in change is shared
across abilities (Tucker-Drob et al. 2018). In any case, a conclu-
sion from the present results is that relationships between cog-
nitive function and cortical morphometry adhere more strongly
to modality than anatomical region. Vertex-wise analyses
across the cortex could potentially detect more anatomically
specific relationships with cognition, but at the levels of major
clusters, measurement type seems more important than ana-
tomical location.

Conclusion
In conclusion, cortical SA expansion during childhood was
organized according to an AP gradient, seen also during early
embryonic development, and related to gene expression and
genetic patterning. Clusters of cortical development showed
statistically distinct trajectories through 8 decades of life, and
correlated with cognitive function in predictable ways, demon-
strating continuity of human cortical development from early
to late stages of life.

Supplementary Material
Supplementary material is available at Cerebral Cortex online.
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