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ABSTRACT

Context. Ultra-high energy (UHE) neutrinos and cosmic rays initiateparticle cascades underneath the Moon’s surface. These cascades
have a negative charge excess and radiate Cherenkov radio emission in a process known as the Askaryan effect. The optimal frequency
window for observation of these pulses with radio telescopes on the Earth is around 150 MHz.
Aims. By observing the Moon with the Westerbork Synthesis Radio Telescope array we are able to set a new limit on the UHE
neutrino flux.
Methods. The PuMa II backend is used to monitor the Moon in 4 frequency bands between 113 and 175 MHz with a sampling
frequency of 40 MHz. The narrowband radio interference is digitally filtered out and the dispersive effect of the Earth’s ionosphere
is compensated for. A trigger system is implemented to search for short pulses. By inserting simulated pulses in the raw data, the
detection efficiency for pulses of various strength is calculated.
Results. With 47.6 hours of observation time, we are able to set a limiton the UHE neutrino flux. This new limit is an order of
magnitude lower than existing limits. In the near future, the digital radio array LOFAR will be used to achieve an even lower limit.

Key words. Ultra-high energy neutrino limits; NuMoon; WSRT; Radio detection lunar pulses

1. introduction

The cosmic ray energy spectrum follows a power law distri-
bution extending up to extremely large energies. At the Pierre
Auger Observatory (PAO) cosmic rays (CRs) are observed up to
energies around∼ 1020 eV. Above the Greisen-Zatsepin-Kuzmin
(GZK) energy of 6·1019 eV, CRs can interact with the cosmic mi-
crowave background photons. In the most efficient interaction, a
∆-resonance is produced which decays into either a proton anda
neutral pion or a neutron and a positively charged pion. Charged
pions decay and produce neutrinos. The energy loss length for
∆-resonance production is∼ 50 Mpc (Greisen 1966; Zatsepin
& Kuzmin 1966).

Recent results of the PAO have confirmed a steepening in the
cosmic ray spectrum at the GZK energy (Abraham 2008). This
steepening is not necessarily a clear cut-off, as CRs from local
sources may arrive at Earth with super-GZK energies. Because
of their large energies, these particles will only deflect slightly
in the (extra-) Galactic field during their propagation, andtheir
arrival directions correlate with their sources (Abraham 2007).

Sources at distances larger than 50 Mpc can be found by ob-
serving neutrinos that are produced in GZK interactions. Since
neutrinos are chargeless they will propagate in a straight line
from the location where the GZK interaction took place to the
observer, thus conserving the directional information. Inaddi-

tion, while CRs from distant sources pile up at the GZK energy,
information about the CR spectrum at the source is conservedin
the GZK neutrino flux. Other possible sources of UHE neutrinos
are decaying supermassive dark matter particles or topological
defects. This class of models is refered to as top-down models
(see for example Stanev (2004) for a review).

Because of their small interaction cross section and low flux,
the detection of cosmic neutrinos calls for extremely largedetec-
tors. Assuming the Waxman-Bahcall flux (Waxman & Bahcall
1998; Bahcall & Waxman 2001), even at low energies in the
GeV range, the flux is not higher than a few tens of neutrinos
per km2 per year. Kilometer-scale detectors are not easily built
but can be found in nature. For example, interaction of neutrinos
in ice or water can be detected by the Cherenkov light produced
by the lepton track or cascade. The nearly completed IceCube
detector (Ahrens 2003) will cover a km3 volume of South Pole
ice with optical modules, while Antares (Aslanides 1999) and
its successor KM3NET (Katz 2006) exploit the same technique
in the Mediterranean sea. Even larger volumes can be covered
by observing large detector masses from a distance. The ANITA
balloon mission (Barwick 2006) monitors an area of a million
km2 of South Pole ice from an altitude of∼ 37 km and the
FORTE satellite (Lehtinen et al. 2004) can pick up radio sig-
nals coming from the Greenland ice mass. Alternatively, cosmic
ray experiments like the Pierre Auger Observatory can possi-
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bly distinguish cosmic ray induced air showers from neutrino in-
duced cascades at very high zenith angles where the atmosphere
is thickest and only neutrinos can interact close to the detector.

The Moon offers an even larger natural detector volume.
When CRs or neutrinos hit the Moon they will interact with the
medium. CRs will start a particle cascade just below the Lunar
surface, while neutrinos will interact deeper inside the Moon,
also creating a hadronic shower. The negative charge excessof
a particle cascade inside a dense medium will cause the emis-
sion of coherent Cherenkov radiation in a process known as
the Askaryan effect (Askaryan 1962). This emission mechanism
has been experimentally verified at accelerators (Saltzberg 2001;
Gorham 2000) and extensive calculations have been performed
to quantify the effect (Zas et al. 1992; Alvarez-Muñiz & Zas
1997). The idea to observe this type of emission from the Moon
with radio telescopes was first proposed by Dagesamanskii &
Zheleznyk (1989) and the first experimental endeavours in this
direction were carried out with the Parkes telescope (Hankins
et al. 1996), at Goldstone (GLUE) (Gorham 2004), and with the
Kalyazin Radio Telescope (Beresnyak et al. 2005). LUNASKA
(Lunar UHE Neutrino Astrphysics with the Square Kilometer
Array) is a project that is currently performing lunar Cherenkov
measurements with ATCA (the Australia Telescope Compact
Array) with a 600 MHz bandwidth at 1.2-1.8 GHz (James et al.
2008).

Falcke & Gorham (2003) suggested to use low-frequency
telescopes (like LOFAR) for such an experiment. It is shown
by Scholten (2006) that observing at lower frequencies has the
distinct advantage that radio pulses have a much higher chance
of reaching the observer, as will be explained in the next sec-
tion. In this work we use data recorded with the Westerbork
Synthesis Radio Telescope (WSRT) in the frequency range of
113-168 MHz to set a new limit on the flux of UHE neutrinos. A
first reporting of this limit is made in (Scholten et al. 2009).

2. Detection principle

UHE neutrinos or CRs interact below the lunar surface. In the
case of a CR, all energy is converted into a hadronic shower.
In a neutrino interaction, only about 20% of the energy is con-
verted into a hadronic shower, while the other 80% is carried
off by a lepton (corresponding to the neutrino flavor), which
will not produce any observable radio emission. Muons will not
produce enough charge density, while electromagnetic showers
become elongated at energies aboveELPM = 1018 eV due to
the Landau-Pomeranchuk-Migdal (LPM) effect (Alvarez-Muñiz
& Zas 1998). For these showers the angular spread of the ra-
dio emission around the Cherenkov angle becomes very small,
severely lowering the chance of detection.

For proton energies exceeding 1020 eV it is predicted that the
LPM effect will start to play a role since many of the leptons and
photons which are created as secondary particles have energies
in excess of theELPM. This has the effect of creating a lopsided
hadronic shower with a rather long ’tail’ (Alvarez-Muñiz &Zas
1998). The bulk of the charged particles in the shower is still
present over a length which one would have obtained ignoring
the LPM effect and our estimates should thus apply also to the
hadronic part of showers initiated by neutrinos of energiesrang-
ing up to 1023 eV.

The lateral size of the cascade is of the order of 10 cm so
the radio emission is coherent up to∼ 3 GHz. Former experi-
ments, like GLUE, have observed at high frequencies (2.2 GHz)
where the emission is strongest. For lower frequencies, however,
the angular spread of the emission around the Cherenkov angle

increases due to diffraction. For emission at the Cherenkov an-
gle, only those showers can be observed that hit the rim of the
Moon, under such an angle that the emission will not be inter-
nally reflected at the Lunar surface. With a larger angular spread
in the emission a wider range of geometries is allowed and a
larger part of the lunar surface acts as a radiation source. When
the wavelength is of the order of the shower length, several me-
ters, the emission becomes nearly isotropic and pulses can be
expected to come from the whole Moon (Scholten 2006). In our
experiment we exploit this optimal frequency range around 150
MHz.

The intensity of the radio emission from a hadronic shower
with energyEs in the lunar regolith can be parameterized as (Zas
et al. 1992; Alvarez-Muñiz & Zas 1997; Scholten 2006)

F(θ, ν, Es) = 3.86 · 104 e−Z2

(
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where∆ν is the bandwidth,ν the central frequency andν0 =
2.5 GHz. The average Earth-Moon distancedmoon = 3.844 ·
108 m, d is the distance to the observer. The Cherenkov angle
is given by cosθc = 1/n, wheren is the index of refraction and
θ is the angle under which radiation is emitted relative to thedi-
rection of shower propagation. The spread of radiation around
the Cherenkov angle is given by

∆c = 4.32◦
(

1
ν[GHz]

) (

L(1020eV)
L(Es)

)

, (3)

whereL is the shower length depending on primary energy.
The regolith is the top layer of the Moon and consists of

dust and small rocks. The properties of this layer are known
from samples brought from the Moon by the Apollo missions
(Olhoeft & Strangway 1975). The average index of refraction
is n = 1.8 and the mean attenuation length is found to be
λr = (9/ν[GHz]) m for radio waves (Olhoeft & Strangway 1975;
Heiken et al. 1991). There are sizable differences in, especially,
the reported values of the attenuation length. The effects of this
uncertainty on the extracted limits is discussed in Section7. The
thickness of the regolith is known to vary over the lunar surface.
At some depth there is a (probably smooth) transition to solid
rock, for which the density is about twice that of the regolith.
Wieczorek & Zuber (2001) report that the density is almost ho-
mogeneous down to a depth of 20 km. In Scholten (2006) the
effects of pure rock and regolith are simulated and found to give
very similar detection limits for low frequencies.

As the radiation leaves the Moon it refracts through the sur-
face. In Gorham (2004) and James & Protheroe (2008) the ef-
fects of this refraction for smooth and irregular surfaces are de-
scribed. It is shown that the angular spread∆θ increases due to
this refraction and that this effect is especially strong when the
angle at which the radiation approaches the lunar surface isclose
to the angle of total internal reflection. The larger angularspread
increases the acceptance but also increases the energy threshold
for detection since the radiated power spreads out over a larger
area. Small scale irregularities of the lunar surface make this
effect stronger because variations in the surface tangent within
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the radiation beam will increase the angular spread by refraction
even more. At the frequencies at which we observe, these effects
are of less importance since∆θ is already large at the source due
to diffraction and thus the increase due to surface irregularities
can safely be ignored.

3. Detection with WSRT

The Westerbork Radio Synthesis Telecope (WSRT) is an array
telescope consisting of 14 parabolic telescopes of 25 m on a
2.7 km east-west line. The NuMoon experiment uses the Low
Frequency Front Ends (LFFEs) which cover the frequency range
115–180 MHz. Each LFFE records full polarization data. For
our observations we use the Pulsar Machine II (PuMa II) back-
end (Karuppusamy et al. 2006), which can record a maximum
bandwidth of 160 MHz, sampled as 8 subbands of 20 MHz each.

Only 11 of the 12 equally spaced WSRT dishes are used for
this experiment which means that when the telescopes are added
in phase the resultant beam on the sky is a fan beam (Jansen
2009). The phases required to add the dishes coherently are de-
termined by observations of a known calibrator source, which
at these frequencies is Cassiopeia A. Adjusting the phase rela-
tions between the 8 subbands they can be pointed to any location
within the primary beam of the 25 m dish.

We use two beams of 4 bands each, centered around 123,
137, 151, and 165 MHz. The two beams are aimed at differ-
ent sides of the Moon, each covering about one third of the lu-
nar surface, in order to enlarge the effective aperture and create
the possibility of an anti-coincidence trigger. A lunar Cherenkov
pulse should only be visible in one of the two beams. Because
of overlap in the subbands the total bandwidth per beam is 65
MHz. The system has a real time automatic gain control (AGC)
system, that stabilizes the average gain of the output signal.

For each subband, the time series data is recorded at several
storage nodes with a sampling frequency of 40 MHz.

The data is processed in blocks of 0.1 s, each block being
divided in 200 traces of 20 000 time samples. The signal of in-
dividual WSRT dishes is 2 bit, limiting the dynamic range of
an 11-dish observation to 34. We will discuss the implications
of this limited dynamic range in Sec. 4. There is data for two
beams, each containing 4 frequency bands and 2 polarizationdi-
rections.

The data analysis is performed in the following steps:

– RFI background reduction Radio Frequency Interference
(RFI) is narrow band anthropogenic emission, which can be
responsible for a large part of the received power and has
to be filtered out of the data. For all time traces an FFT is
produced and for each data block the 200 frequency spectra
are added to obtain an integrated frequency spectrum. The
baseline of this spectrum is fitted with a 9th order polyno-
mial function and bins containing a value exceeding the fit by
50% are marked as RFI lines. In each individual frequency
spectrum all bins that are marked as RFI lines are set to zero.
This procedure is carried out separately for each of the 4 fre-
quency bands and the 2 polarizations. The number of RFI
lines per spectrum varies with time and is different for all
frequency bands and polarizations, but does seldom exceed
200. The corresponding loss in bandwidth is∼2% at max-
imum. Figure 1 shows frequency spectra of 10 seconds of
data before RFI removal. In the highest frequency band the
upper end of the spectrum is suppressed by a band pass filter,
lowering the effective bandwidth. In other frequency bands a
similar suppression can be seen, but this is compensated by
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Fig. 1. Frequency spectra of 10 seconds of data for all bands and polar-
izations. The narrow RFI lines that exceed a fit to the curve by50% are
put to zero.

155 165 175 MHz

710

810

X-pol. band 1

Fig. 2. Frequency spectra of 10 seconds of data for band 1 andx po-
larization after RFI removal. The spectrum is composed of 100 spectra
that have been subjected to RFI removal separately. In each spectrum a
frequency sample is set to zero when the amplitude exceeds the fitted
background curve by more than 50%. When a certain sample contains
an RFI line in all 100 spectra, it has value zero in this integrated spec-
tra. Samples that have a non-zero value below the backgroundcurve
correspond to RFI lines that are only present in part of the 100 spectra.

the overlap between the different bands. Our effective band-
width is 55 MHz, ranging from 113 to 168 MHz. An exam-
ple of a ten second frequency spectrum after RFI removal is
shown in Fig. 2.

– Ionospheric de-dispersionAfter the RFI removal the data is
still in the frequency domain. The de-dispersion is performed
by applying a frequency dependent phase shift to the data be-
fore transforming back to the time domain. The Vertical TEC
values, that are needed for the de-dispersion, are provided
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by the DLR Institut für Kommunikation und Navigation1.
These were used to calculate the STEC by compensating for
the Moon elevation. Because of variations in the thickness
of the ionosphere on short timescales and over distance, we
assume the presence of an error in the de-dispersion, result-
ing in an increased time width of the pulses and an offset
between the arrival times of pulses in different frequency
bands. The implications hereof for our analysis are further
discussed in Sec. 4.

– Evaluation of P5 After de-dispersion, an inverse FFT is per-
formed to transform the data back into the time domain. The
cutting of RFI lines increases the noise level in the time sam-
ples close to the edges of the time trace. The de-dispersion
can move this increased noise further backward in time. To
avoid triggering on this noise the first and last 250 time sam-
ples are excluded from analysis, corresponding to 0.25% of
the observation time. Next, we calculateP5, the power inte-
grated over 5 consecutive samples normalized over one trace

P5 =

∑

5 samples

Px

〈

∑

5 samples

Px

〉 +

∑

5 samples

Py

〈

∑

5 samples

Py

〉 , (4)

where the averaging is done over one time trace (20 000 time
samples), andx andy denote the two polarizations. The in-
tegration has been chosen to be over 5 samples, because this
is the typical number of samples over which the power is
spread for a bandwidth limited and Nyquist sampled pulse
with a small dispersion (see Appendix A).

– Pulse searchThe data is scanned for values ofP5 exceed-
ing 5. The meaning of this threshold can be understood from
Eqn. 4. If we defineσ2 as the mean power in one time sam-
ple (assuming for simplicity that it is equal for thex- and
y-polarizations), then the trigger condition can be writtenas

∑

5 samples

Px +
∑

5 samples

Py > 25σ2, (5)

meaning that the total power in ten bins (five in thex polar-
ization and five in they polarization) must add up to a value
larger than 25σ2, where the average is 10σ2. The band with
the highest frequency is first scanned forP5 values exceed-
ing 5. When such a value is found theP5 values of the other
3 frequency bands are evaluated near this position. A time
offset between pulses in the different bands of

∆t = 1.34 · 109 · 0.30 · STEC













1

ν21
− 1

ν22













(6)

is allowed based on an error of 30% on the STEC value.
When aP5 value exceeding 5 is found in all bands the time
trace is permanently stored, together with information on the
RFI lines and the data of the corresponding time trace in the
other beam. No search is done for a second pulse in the same
trace. An estimation of the resulting loss in effective obser-
vation time is given in Sec. 5. For each trigger the location,
maximum value, width and offsets between locations in the
different bands are stored. The width is defined as the num-
ber of consecutiveP5 values that exceed 5. The valueS is
defined as the sum over the maximumP5 values in the 4 fre-
quency bands

S =
∑

4 bands

P5 . (7)

1 http://www.dlr.de/kn
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Fig. 3. Number of triggers per block is plotted against the number of
the data block for one hour of data of the June 7, 2008 observation
(top) and for one hour of the second observations of August 29, 2008
(bottom). Only values exceeding 20 are plotted. The maximumvalue of
200 indicates completely saturated data.

Observations

Table 1 contains a list of the 22 observation runs performed be-
tween June 9, 2007 and November 11, 2008. The number of raw
triggers per hour is much higher than usual for the runs of June
9, 2007 and June 7/8, 2008. The top panel in Figure 3 shows
the number of triggers per data block for one hour of one of
these runs. The number of triggers is only plotted when it ex-
ceeds 20. The maximum number of triggers per block is equal
to the number of traces: 200. This maximum is often reached,
which means the run is not reliable. The bottom panel shows the
number of triggers per block for one hour of data of a regular
observation period. The observation runs for which the number
of triggers per data block is exceptionally high for a long period
of time have been excluded from the analysis.

Figure 4 shows the distribution ofS for the triggered events.
The top curve corresponds to the raw triggers. Several additional
cuts are applied:

– Timer signal (T) The data contains short strong pulses that
repeat at a regular interval. They can be visualized by plot-
ting a distribution of pulse times folded by an appropriate
time interval. Figure 5 shows the number of triggers in 10
seconds of data against the number of the time sample folded
by 390,625. This corresponds to a frequency of 102.4 s−1.
The specific time interval of these pulses suggest a technical
origin. Cutting out the time intervals in which these pulses
occur corresponds to a loss of∼10% of observation time.

– P5 width (W) We define the width of a pulseW as the num-
ber of consecutiveP5 values exceeding the threshold. For a
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Table 1.Observation runs

Date Hours STEC (lo/hi) No. raw triggers No. triggers after cuts (S >23) No. triggers Gaussian noise (S >23)
2007 Jun 9a 4.7b 11.8/16.6 200 427 49 679 8 943
2007 Sep 21 2 15.6/19.5 668 917 26 812 13 128
2008 Jan 13 1.3b 18.0/24.3 119 032 6 951 6 001
2008 Jun 7a 4.25 11.7/17.5 1 961 907 170 672 21 752
2008 Jun 8a 5 9.8/11.3 1 313 378 80 140 12 815
2008 Aug 24 5 3.5/7.5 792 979 36 314 4 029
2008 Aug 29 3 6.5/7.0 563 692 45 214 3 331
2008 Aug 29 2 8.0/8.3 602 049 29 554 4 317
2008 Aug 29a 4.8 6.5/9.7 1 719 443 96 998 7 425
2008 Sep 2 5 12.8/15.3 880 508 51 329 18 937
2008 Sep 16 3.75 5.5/11.0 233 192 23 733 6 616
2008 Sep 16 5 5.9/7.2 163 819 20 138 4 841
2008 Sep 21 4.5 3.3/4.8 244 276 27 388 3 451
2008 Sep 21a 5 4.0/12.8 1 282 457 76 573 9 728
2008 Sep 28 3.7 10.5/12 65 725 67 910 10 345
2008 Sep 28 3.8 11.6/13.7 622 598 47 580 11 958
2008 Oct 14 4.5 5.9/9.9 566 611 58 127 6 531
2008 Oct 14 4.5 5.9/7.4 217 113 30 346 4 165
2008 Nov 11 3.7 3.5/7.4 941 369 27 160 2 624
Totalc 51.1 3.3/24.3 6 681 880 430 646 100 274

a Excluded from analysis due to exceptional amount of raw triggers.
b Only single beam data available.
c Not counting excluded runs.
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distribution of raw triggers. The other distribution represent, in order of
decreasing number of contained events, the T, TW, and TWA cut. The
black area corresponds to the distribution of triggers thatare expected
for a background of pure Gaussian noise.

real lunar pulse,W should be limited. However, for increas-
ingly tighter cuts onW, the probability of excluding a proper
pulse grows. The value for the cut onW was determined by
examining the efficiency for recovering pulses in a simula-
tion, as is explained in Section 4, showing a recovery rate of
over 80% by choosingW < 12 for all four frequency bands.
Since this value is not obtained by optimizing the distribu-
tion of S we have avoided to introduce a bias by following
this procedure.

– Anti-coincidence (A)A lunar pulse should be visible in only
one of the two beams. An anti-coincidence trigger is set up
by excluding events for which a pulse was found in both
beams in the same time trace.
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Fig. 5. Number of triggers vs. time sample folded by 390,625 samples.
With this folding many triggers occur at the same time, probably having
a local technical origin. Triggers that occur at the positions of the peaks
are excluded in the timer cut.

Figure 4 displays distributions ofS after application of only the
timer cut (T), the timer and width cut (TW), and a combination
of all cuts (TWA). The line enclosing the black area in Fig. 4
corresponds to the distribution of triggers that are expected if the
background is pure Gaussian noise (see Appendix B for details
of the calculation). After all cuts have been applied the number
of triggers for whichS > 23 is a factor of 3-4 higher than the
amount of triggers expected for Gaussian noise, while the largest
S value in the distribution is about three times as large as the
highestS value for Gaussian noise. Apparently, the background
includes pulsed noise that produces triggers and contains pulses
that are narrow enough to survive the cut on width. The prop-
erties of these pulses are further explored in Sec. 8. Due to the
pulsed noise, the limit that we derive for the neutrino flux isless



6 Buitink et al.: UHE neutrino limits

S
40 45 50 55 60 65 70 75 80

N
o.

 o
f t

rig
ge

rs

1

10

100

Fig. 6. Distribution of highest values forS corresponding to a cutW <
10 (dark) andW < 12 (light). Cut on timer and anti-coincidence is
applied in both cases.

stringent than estimated in Scholten (2006), where the existence
of this background was not anticipated.

For reference, Fig. 6 shows the difference between the tails
of the distribution ofS for a W < 10 and aW < 12 cut. In the
latter case the highest value ofS is larger, but the corresponding
decrease in detection efficiency makes this cut unfavorable (see
Section 4)

4. Simulations

4.1. Pulse recovery

The efficiency with which pulses are found by the analysis pro-
cedure and the effects of data cuts and ionospheric dispersion are
simulated by adding pulses to raw data. The received power and
the power after RFI reduction are different for all bands and po-
larizations and change with time due to the dynamic gain match-
ing in the electronics of WSRT. To correct for this the pulsesare
normalized following the same procedure as in the analysis de-
scribed in the previous sections i.e. the pulse strength, denoted
by S i, is expressed in dimensionless units as defined in Eq. (7).
These pulses are delta peaks inserted at random times with a
random phase. Because the pulses are band width limited, the
bulk of the power in such a pulse typically spreads out over a
few time samples (see Appendix A). The pulse is dispersed cor-
responding to a particular TEC value, named simTEC, and the
amplitudes are rounded off towards nearest integer within the
dynamic range, after adding it to the raw (i.e. before RFI mitiga-
tion) data. For the simulations we have inserted 1000 pulsesin a
few different 10 seconds segments of raw WSRT data.

We define the detection efficiency (DE) as the fraction of
inserted pulses that is retrieved after applying the trigger con-
ditions and the cuts that are used in the analysis. Fig. 7 shows
the DE for inserted pulses of strength varying fromS i = 36
to S i = 140. Each pulse is inserted in the x-polarization and
dispersed with a simTEC=12. The de-dispersion is done with
STEC=10 to simulate a practically unavoidable error in the
STEC value. The blue, red, and green lines in Fig. 7 show the DE
for recovering pulses with strength exceedingS th > 50,S th > 60
andS th > 70 respectively. Due to interference with the back-
ground the recovered pule strength differs from the input value
S i. The dotted lines show the DE without any width cut applied.
Solid lines represents the DE with width cutW < 8, dashed lines
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Fig. 7. The detection efficiency is shown as function of pulse strength
for various settings of the trigger conditions as discussedin the text. The
colors correspond to different values for the pulse-strength thresholds
S th and the line styles correspond to different maximum widths. The
dotted curve indicates the efficiency when no width cut is applied. All
pulses are simulated with simTEC=12 and analysed with TEC=10.
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Fig. 8. The detection efficiency for pulses of strengthS i = 80 and
simTEC=10 is shown as function of the STEC value used in the analy-
sis. The colors correspond to different thresholds.

show width cutW < 10, whereas width cutW < 12 is shown by
dash-dotted lines.

From Fig. 7 it can be seen that the DE tends to saturate to
unity for large pulses, as is to be expected. However one alsosees
that the width cut may severely limit the DE which even worsens
with increasingS i. The reason for this is that with increasing
pulse strength the width (as defined in this work) increases.For
really large pulses the signal may saturate causing an additional
broadening of the recovered pulse. In general one also sees that
the input pulse has to be about 10 units in magnitude larger that
the threshold to be recovered with more than 50% efficiency.

The effect on the DE of the difference between the STEC
value used in the generation of the pulse (simTEC) and the value
used in the analysis is studied in Fig. 8 for pulses of strengthS i =

80, width cutW < 12 and simTEC=10. There are two effects
playing a role here. Firstly, a larger error in the STEC results in
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Fig. 9. Same as Fig. 7 however a Faraday rotation of the polarization
direction is taken into account.

a more dispersed pulse for which the power is divided over more
time samples. Secondly, the range of time samples scanned in
the different frequency bands after a trigger has been found in
the first band, depends on the STEC value. If simTEC is much
smaller than the actual STEC value, the pulse may be located
outside the scanning range and is not found. When simTEC is
higher than the actual value, this problem does not occur, causing
an asymmetry in Fig. 8.

Due to the presence of the Earth magnetic field, the polarized
radio signal is subject to a Faraday Rotation in the ionosphere
(see Appendix C.2) which induces a rotation of the angle of lin-
ear polarization across the frequency band. On Earth the pulse
will thus be polarized in the x-direction for certain frequencies
while in the y-direction for another frequency. In each polariza-
tion direction the signal will thus cover a rather limited band
width causing a broadening of the pulse and thus to a possible
decrease in the DE. Fig. 9 shows the DE as function of the pulse
strength including the effect of Faraday rotation. A rather large
decrease in the DE is seen when width cuts are applied. This be-
havior is observed for all values ofS th. We therefore adopt the
W < 12 cut to be used on the analysis of the data.

We have observed a sizable dependence of the determined
DE on the data trace which was used. First we have investigated
a possible correlation of the DE value with RFI-power but this
was not conclusive. We found however a very pronounced cor-
relation between the DE and the number of raw triggers in the
time trace. To show this we have determined the DE for a wide
selection of raw time traces. We concentrated on the case where
pulses of strengthS i = 100, simTEC=12, STEC=10, were
added to time traces taken from observations of June 7th 2008,
June 8th 2008, and Nov. 11th 2008. We have processed 12 con-
secutive traces each of 10 s. The pulses above a threshold of
S th = 65 were recovered using a width cutW < 12. We found
a clear anti-correlation between the DE and the raw trigger rate,
see Fig. 10. On the basis of this analysis the data of June 7th 2008
and June 8th 2008, have been excluded from analysis because
of the large number of triggers. Other observations show a raw
trigger rate of less than 40 per time trace of 0.1 s. The observed
correlation can be understood from the fact that if the algorithm
finds a pulse in a spectrum, this spectrum will not be searched
any further for the occurrence of another pulse. Thus if each
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Fig. 10. The detection efficiency for pulses added with strength 25,
simTEC 12, STEC 10 to different data traces of 10 s each is plotted
v.s. the number of triggers in the data trace before additionof the pulse.
The colors correspond to observation runs at different dates.

spectrum in a 0.1 s time trace generates a trigger, the chance
of recovering the added pulse will be vanishingly small.

5. Effective observation time

The effective observation time is decreased by a number of ef-
fects. After we have excluded the two observation runs which
harbour exceptionally large numbers of raw triggers, we have
51.1 hours of dual-beam observation time left. In the data anal-
ysis some files are missing or are not usable due to various rea-
sons, such as hardware and software failures, corresponding to a
loss of 3.5 hours.

When a trigger is found the rest of the time trace is not
scanned for pulses. Per raw trigger this corresponds to a mean
lost time of 250µs (single beam). Because of the coincidence
cut, the whole time trace in the other beam should also be
counted as lost time, resulting in another 500µs (single beam).
For 7.6 million raw triggers this adds up to 0.8 hours (dual
beam).

The cut on the timer pulses should be regarded as cutting out
observation time, but this has already been accounted for inthe
previous step. Each time the system triggers on the timing pulse
750µs (single beam) is lost, as is the case for any other trigger.

After RFI removal the first and last 250 samples of a time
trace have to be neglected due to FFT edge effects, correspond-
ing to a 0.25% loss of observation time.

The total observation time is therefore (51.1− 3.5 − 0.8) ×
0.9975= 46.7 hours of dual beam data. Each beam covers about
a third of the lunar area.

6. Background

For a radio antenna, the 1σ noise power densityFn [Jy] is given
by

Fn =
2kTsys√
∆t∆νAeff

1026Jy, (8)

wherek is the Boltzmann constant (1.38× 10−23 Joules),Tsys
is the antenna effective temperature in Kelvins,∆t and∆ν are
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Fig. 11. The detection efficiency for a detection thresholdS th = 77 is
shown as a function of pulse strength for various settings ofthe trigger
conditions as discussed in the text. The dotted curve indicates the effi-
ciency when no width cut is applied. The effect of Faraday rotation has
been taken into account

the time and frequency bins of the measurement, andAeff is the
effective area of the telescope in m2. For the 14 Westerbork an-
tennas we used,Aeff = 491 m2. For the measuring band which
we need, the LFFE measuring between 113 and 170 MHz, one
has aTsys of 400 - 700 K. We use 11 antennas, yielding for the
noise power per Nyquist time sample,∆t∆ν = 0.5,

Fn =
2× 1.38× 10−23

11
√

0.5
1026

(

Tsys

491

)

= 349

(

Tsys

491

)

Jy, (9)

which covers the range 286 - 500 Jy. In the following we have
adopted the value ofσ2 = 400 Jy as the average of the observing
bandwidth.

7. Results

In 46.7 hours of data no triggers were found with a strength
exceedingS th = 77. To convert this into a probability for not
observing the Moon we calculate the DE curve for a detection
thresholdS th = 77 including the effects of Faraday rotation, see
Fig. 11. From this figure it can be seen that the DE reaches a
value of 87.5% for pulses in excess ofS i > 120 and width cut
W < 12. This corresponds to 120σ2 × 5 = 240 kJy. For pulses
of lower strength the DE drops rapidly due to interference with
the background. For comparison we will also consider the case
for detecting pulses with a strength ofS i > 90 for which the DE
has dropped to 50%.

The lack of pulses stronger than a certain magnitude implies
a new limit on the flux of ultra-high energy neutrinos. To obtain
the limit requires a calculation of the acceptance which takes
into account the attenuation of the radio signal inside the Moon,
the transmission at the lunar surface and the angle with respect
to the arrival direction of the neutrino. On basis of the simu-
lations which are described in Scholten (2006), the 90% confi-
dence level flux limit has been determined. In arriving at this the
model-independentprocedure described in Lehtinen et al. (2004)
has been followed.

In Fig. 12 the 90% confidence limits are given for the two
cases we have analyzed,S i > 120 corresponding to a DE=87.5%
andS i > 90 (DE=50%). As can be seen the gain in DE is far
more important in setting the neutrino flux limit than the loss
in sensitivity. Only at the lowest neutrino energies the result is
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Fig. 12. Neutrino flux limit currently established with 46.7 hours of
WSRT data. The brown (red) line is calculated for a minimum pulse
strength ofS = 120 (S = 90), corresponding to a DE of 87.5% (50%).
Limits set by ANITA (Gorham et al. 2009) and FORTE (Lehtinen
et al. 2004) are included in the plot as well as the Waxman-Bahcall
flux (Waxman & Bahcall 1998) and a TD model prediction (Protheroe
& Stanev 1996).

reversed. In the rest of this work we will therefore base all ar-
guments on theS i > 120 limit. In arriving at this limit the same
assumptions have been made as in Scholten (2006), in particu-
lar that the neutrino cross sections equal the prediction given in
Gandhi (2000).

The current limits in the UHE region are established by
ANITA (Gorham et al. 2009) and FORTE (Lehtinen et al. 2004).
Near the bottom of Fig. 12 two model predictions are plotted,
the Waxman-Bahcall limit (Bahcall & Waxman 2001) and a top-
down model (Protheroe & Stanev 1996) for exotic particles of
massMX = 1024 eV.

Calculation of the flux of UHECRs and UHE neutrinos
from the decay of topological defects is very model dependent.
Parameters of such scenarios include, mass of the topological
defectMX , energy spectra, and final state composition of the de-
cay products, and cosmological evolution of the injection rate
of topological defects. The freedom provided by the reasonable
range of values of these parameters is constraint by limits on the
gamma ray flux at GeV-TeV energies and neutrinos at energies
above 1020−21 eV. The curve plotted in Fig. 12 corresponds to
a MX = 1024 scenario based on Protheroe & Stanev (1996). If
future limits can constrain the neutrino flux by another order of
magnitude this will put constraints on the degrees of freedom of
top-down models.

The acceptance calculations have been done at a frequency
of 140 MHz which is central in the observing bandwidth. Since
the acceptance depends on the third power of the frequency, it
varies considerably over the bandwidth as shown in Fig. 13,
however the average agrees with the calculation at 140 MHz.

The systematic error on the acceptance is dominated by three
uncertainties: the density profile, attenuation length, and stop-
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Fig. 13. Same as Fig. 12. The limits are calculated for the central fre-
quency and the upper and lower limit of our band-width.

ping power of the lunar regolith. Some of these errors have been
estimated in Ref. Scholten (2006). In particular the effect of den-
sity was considered which is rather complicated as an increase in
the density reflects in an increased value for the index of refrac-
tion, a shorter shower length and thus a larger angular spread,
more attenuation, and a lower mean neutrino interaction depth.
Many of these effects appear to compensate each other result-
ing in an acceptance that is almost density independent, only
slightly raising the minimal energy for neutrino detection. The
error due to unknown variations in the density profile is there-
fore estimated to be 10% in threshold energy (which is the dif-
ference between the ’full’ and the ’rock’ calculation in Fig. 10
of Scholten (2006)).

In Olhoeft & Strangway (1975) the loss tangent is expressed
in terms of the FeO and TiO2 content of the samples. On the
basis of this we arrive an uncertainty in the attenuation length
for radio waves of about 40% which directly reflects in a similar
error in the flux determination. Also the stopping power of the
regolith depends on the chemical composition where we have
used a radiation length of 22.1 g/cm2. An typical variation of
the radiation length for the lunar regolith amounts to 0.5 g/cm2.
Since the angular spread is proportional to the shower length
and the acceptance goes with the third power of the spread, this
corresponds to a variation in the acceptance of 10%. As argued
before, surface roughness is not very important at our wave-
length and may contribute not more than 10% to the uncertainty
in determining the flux. The error in the Moon coverage of the
two beams is estimated at 20%. Adding these errors in quadra-
ture gives a systematic error on the flux of 50% as indicated in
Fig. 14.

From the non-observation of short radio pulses coming from
the Moon, limits can also be set on the flux of UHE cosmic
rays. This will be discussed in a future article as special atten-
tion has to be devoted to the calculation of the formation length

10
2

10
3

10
4

10
5

5

10
-7

2

5

10
-6

2

5

10
-5

2

ANITA’08

FORTE

WSRT

TD, Mx=10
24

WB

E [10
20

eV]

E
2

dN
/d

E
[G

eV
/c

m2 /s
r/

s]
Fig. 14. [color online] Same as Fig. 12. The band shows the systematic
error.

for Cherenkov radiation which is important for a shower thatis
close to the lunar surface.

8. Discussion of the large peaks

We have investigated the nine strongest pulses that survivethe
applied cuts. Figures 15 and 16 are typical examples of the time
traces of such pulses. The pulses are from different observation
runs and theirP5 values are plotted as a function of bin number
(bin size is 25 ns) for all frequency bands and both beams. At
this stage the RFI has already been mitigated and the signal has
been de-dispersed.

For both example events, the trigger was found in the right-
hand beam. For the event in Figure 15 the maximumP5 value
increases with decreasing frequencies. This could be due toa
stronger signal at lower frequencies or an increase of pulsed
background at higher frequencies (remember that theP5 value
is normalized over a 500µs time trace for each individual band).
Although the signal is clearly much smaller in the left beam,
it should be noted that three out of four bands actually have a
pulse that exceeds trigger level (P5 > 5). The event displayed
in Fig. 16 has a strong signal in both beams and the only reason
this event was not discarded by the anti-coincidence criterion is
that the highest frequency band has a very small signal-to-noise
ratio. In this band, the signal is suppressed and happens to be
just above threshold in the right-hand beam but below threshold
in the left-hand beam. This way, strong temporary increasesin
background radiation are responsible for several of the largest
events that pass our criteria.

Although the event in Figure 15 has a curious dependence on
frequency, it has the properties of a proper lunar pulse of the type
we are looking for, which are: i) present in all frequency bands,
ii) strong polarization, iii) short after dispersion correction, and
iv) present in one beam only. In order to study the possibility of
the pulse to originate from the Moon we can impose an addi-
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Fig. 16.Like Fig. 15, different pulse. The similar features in both beams
exclude the pulse as a proper lunar pulse candidate.

tional condition that the Faraday rotation of the polarization is
of the correct magnitude.

The Faraday rotation going through a plasma with STEC=5
in the Earth magnetic field is aboutπ/4 radian over 30 MHz (cor-
responding to the difference in the centroids of bands 1 and 3) at
the frequencies of interest for the present study. For a pulse fully
polarized in the x-direction in the center of band 1 one would
thus expect about equal strength in the x and y polarization for
band 3. We have examined whether or not the ratio between the
pulse strengths in the x and y polarization in the different fre-
quency bands corresponds to the ratios expected on the basisof

the STEC value. This criterion disqualifies the pulse in Figure
15 as originating from outside the ionosphere.

We have studied the nine strongest pulses withS > 62 and
found that all of them are unlikely to come from the Moon, be-
cause they either have a strong signal in both beams or do not
have the frequency dependent behavior expected from Faraday
rotation. As a result we can safely state that we see no pulses
originating from a particle cascade in the Moon with a strength
larger thanS = 62. Because this analysis is done a posteriori, the
threshold used for the determination of the neutrino flux limit is
kept atS = 77. In future studies, additional cut criteria based on
temporary power surges in the background and Faraday rotation
of the signal in the ionosphere can be implemented to further
understand and reduce the background.

9. Outlook

The next phase in the NuMoon experiment will be to use
LOFAR, the Low Frequency Array (Falcke et al. 2006), that is
under construction in the Netherlands. LOFAR is a network of
low frequency omni-directional radio antennas communicating
over a fiber optics network. It will feature two types of antennas
operating at different frequencies, the Low Band (LB) antennas
cover a band of 30–80 MHz while the High Band (HB) antennas
cover the regime 110–240 MHz. The latter will be used for the
NuMoon observations. LOFAR is organized in 35 stations each
containing 48 LB and 96 HB antennas. Half of the stations are
located inside the 2 km×2 km core with a total collecting area
of ∼0.05 km2. Multiple beams can be formed to cover the sur-
face of the Moon, resulting in a sensitivity that is about 25 times
better than the WSRT (Singh et al. 2008).
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Alvarez-Muñiz, J. & Zas, E. 1997, Phys. Lett. B, 411, 218
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Appendix A: Bandwidth limited pulses

To give an idea of the behaviour of bandwidth limited, Nyquist
sampled pulses we show the sampling of pulse with the shape of
a delta peak. Like in our analysis we take a time trace of 20 000
timebins, where each timebin is 25 ns wide. We add a pulse at
a random location with a random phase by setting the amplitude
of all frequency bins to the same positive value and the phaseΦi
of the frequency bini to

Φi = Φ0 + 2πi
[

1−
( t
20000

)]

(A.1)

whereΦ0 is a random phase andt is a random time between 0
and 20 000. The shape of the pulse in time domain is found by
performing a reverse FFT. ForΦ0 = 0 and an integer value oft,
all timebins are zero except timebint, which contains a positive
value. For a randomΦ0 or a non-integer value oft the pulse has
a complicated shape in the time domain.

The top panel of Figure A.1 shows how such a pulse typ-
ically spreads out over many timebins. In most cases the bulk
of the pulse power is inside 2 or 3 timebins. When the pulse is
dispersed the power is spread out over even more timebins. The
middle and bottom panel show the pulse broadening for TEC
values of 4 resp. 10. In our analysis we have defined the width of
the pulse as the number of consecutiveP5 values that exceed the
threshold. It should be noted that this differs in general from the
actual width of the pulse. For example, a very large amplitude in
one single timebin can give 5 consecutiveP5 triggers, while the
same pulse spread out over 5 timebins will maybe produce only
one threshold exceedingP5 value.

Appendix B: Statistics

We carry out a statistical analysis to establish the expected
amount of triggers and the distribution ofS , the sum of theP5
values over 4 frequency bands, for Gaussian background noise.
When the amplitudes follow a Gaussian distribution, the proba-
bility density of the power is a chi-squared distribution

P(x, k) =
xk/2−1e−x/2

2k/2Γ(k/2)
, (B.1)

wherex is the power in units of the standard deviationσ andk
is the number of degrees of freedom. The trigger condition for a
single band isP5 > 5, whereP5 is given by Eq. 4. For Gaussian
noise with the same standard deviationσ in both polarizations
this condition becomes

P5 =

∑

10 bins

x

〈

∑

5 bins

x

〉 =
1
5

∑

10 bins

x > 5, (B.2)

or
∑

10 bins

x > 25. (B.3)
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Fig. A.1.Top: Time sampling of a delta peak pulse at time 5257.96 with
phase 1.17π. Middle: same pulse, dispersed with TEC value 4. Bottom:
Same pulse dispersed with TEC value 10.

The trigger chance for a single frequency band is therefore

Ptrigger =

∫ ∞

25
P(x, k = 10) dx ≈ 0.00535. (B.4)

ConsecutiveP5 values have 8 overlapping timebins (4 in both
polarizations) and we have to distinguish the chance to find a
trigger that comes after another trigger,Pxx, and a trigger after a
non-trigger,Pox. A trigger will be found after a non-trigger if:

– The eight overlapping bins add up to less than the trigger
value by a certain valueA.

– The two bins for the non-trigger add up to a valuesmaller
than A.

– The two bins for the trigger add up to a valuelarger than A.

To find the total probability we integrate over all possible values
of A

Pox =

∫ 25

0
P(25− A, k = 8)

[∫ A

0
P(x, k = 2) dx

]

[∫ ∞

A
P(x, k = 2) dx

]

dA (B.5)

≈ 0.00283≈ 0.53Ptrigger.
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Table B.1.Predicted and simulated trigger chance

STEC (N2,N3,N4) pred. chance sim. chance
5 (3,5,7) 1.5 · 10−8 1.5 · 10−8

10 (5,7,11) 3.6 · 10−8 3.8 · 10−8

15 (5,9,15) 6.3 · 10−8 6.0 · 10−8

The chance of finding a trigger after another trigger is

Pxx = Ptrigger− Pox ≈ 0.00252≈ 0.47Ptrigger, (B.6)

so about half of the triggers is found clustered together which
has consequences for our analysis.

For a complete trigger the trigger condition has to be met in
all 4 frequency bands. In bands 2, 3, and 4 a range ofP5 values
will be scanned based on the STEC value. Suppose in the first
band a trigger is found after a non-trigger. The chance to finda
trigger in band no.i is

Pi = Ptrigger+ (Ni − 1) · Pox + O(P2
trigger), (B.7)

whereNi is the number of values scanned in bandi. Terms of the
order ofP2

trigger arise from properly adding the chances of finding
a trigger in one of theNi bins and deviations in the chance of
finding a trigger in a certain bin depending on the number of bins
without a trigger than precede it. The chance to find a triggerin
the three upper bands isP2 · P3 · P4 for this case.

When, however, the trigger in band 1 came after another trig-
ger in band 1, the chance to find a trigger in the three upper
bands is smaller because we know that for the previous trigger
in band 1, not all upper bands had a trigger. If that were the
case the pulse search would have skipped the rest of the time
trace. The range of timebins that is scanned in the upper bands is
overlaps with scan after the previous trigger in band 1. Actually,
in each band only one new timebin is scanned. The chance to
find a trigger in the upper bands is therefore now reduced to
P2 · P3 · P4 · (1− Preduce), wherePreduceis the chance that there
was also a trigger in the previous scan. To not have a trigger in
the previous scan, at least one of bands should have the trigger
in the last timebin, because this is the only bin that is unique for
the new scan. In other words, the previous scan also had a trig-
ger when for each upper band the trigger is located in any but
the last scanned timebin. The chance for the trigger to be in the
last timebin of bandi is Pox/Pi, so we find

Preduce=

(

1− Pox

P2

) (

1− Pox

P3

) (

1− Pox

P3

)

+ O(Ptrigger), (B.8)

where we neglect terms of orderPtrigger that arise from the pos-
sibility that a trigger is in the last timebin, but also in thefirst
timebin of the previous scan. The complete chance of finding a
trigger in all four bands is given by

P4trig = PoxP2P3P4 + PxxP2P3P4(1− Preduce) + O(P5
trigger). (B.9)

In Table B.1 the values ofP4trig are given for different STEC
values. In the calculation higher order terms are incorporated.
The rightmost column shows the simulated trigger chance that is
found by applying our data analysis code on generated Gaussian
noise. In the code the Gaussian noise is rounded off to the nearest
of the 34 values that are part of the dynamic range of the PuMa-
II system. This is the main reason for the discrepancy between
analytic predictions and the simulation results, which is smaller
than 5%.

To arrive at the (not normalized) probability distributionof
S , we take 4 probability distributions of valuesa throughd,and
integrate to find the distribution ofx = a + b + c + d

P(x) =
∫ x−75

25
da

∫ x−a−50

25
db

∫ x−a−b−25

25
dc P(c, k = 10)

P(b, k = 10) P(a, k = 10) P(x − a − b − c, k = 10), (B.10)

where the limits of the integral are chosen in such a way that
a,b,c andd all exceed 25 individually. By normalizing the dis-
tribution P(x) with the total amount of triggers projected with
Eq. B.9 and substituteS = x/5 (see Eq. B.2), we arrive at the
analytical noise background prediction that is plotted in Figure
4.

Appendix C: Ionospheric effects

The ionosphere is a plasma where the density of free electrons
affects the propagation of electromagnetic waves which may
show as a dispersion of the signal or a frequency-dependent ro-
tation of the linear polarization.

C.1. Dispersion

As the radio signal propagates through the Earth’s ionosphere it
is dispersed by

φ(ν) = 2π
∫

dz ν





















√

1−
ν2p

ν2
− 1





















/c, (C.1)

where∆φ is the phase shift at frequencyν. The integral is taken
over the traversed distancez, c is the speed of light in vacuum,
andνp is the the plasma frequency

ν2p =
nee2

4π2ǫ0me
= 8.07 · 1017STEC/∆z, (C.2)

wherene is the electron number density,e the elementary charge,
ǫ0 the permittivity of vacuum, andme the electron mass. For the
ionosphereνp ≈ 3MHz and

∫

ν2p

2c
dz = 1.34× 109S T EC, (C.3)

where we use the Slanted Total Electron Content (STEC), which
is the electron density integrated along the distance the pulse has
traveled through the ionosphere. The STEC is given in TEC units
(TECU) where 1TECU= 1016 electrons/m2. The phase shift is
approximately

φ(ν) ≈ 2π
1.34 · 109STEC

ν
, (C.4)

corresponding to a time offset of

∆t = 1.34 · 109 · STEC













1

ν21
− 1

ν22













, (C.5)

between two frequency componentsν1 andν2. For an interval
of 20 MHz (140-160 MHz) and STEC=10 the difference in time
delay is∆t ≈ 1.6×10−7 s, which corresponds to 6.4 time samples
for a 40 MHz sampling frequency.
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C.2. Faraday rotation

In the presence of a magnetic field the linear polarization direc-
tion of an electromagnetic signal will rotate over a finite angle.
This Faraday rotation is usually expressed in terms of a rotation
measure (RM)

βF = RMλ2 = RMc2/ν2 . (C.6)

In units of radians per square meter (rad/m2), RM is calculated
as

RM =
e3

8π2ε0m2c3

∫ d

0
neB ds = 2.62× 10−13

∫ d

0
neB ds

= 2.62× 103 × S T EC × B‖ (C.7)

with B in teslas (T), andne in m−3.
The difference in the Faraday rotation angle for two fre-

quency componentsν1 and ν2 can be related to the difference
in time delay as∆βF =

eB
mec c∆t = 5.27×106∆t. For an interval of

20 MHz (140-160 MHz) and an STEC=10 [tecu] we obtain for
the difference in Faraday rotation angles

∆βF = 3× 108/50× ∆t = 0.96

which is appreciable.
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