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Abstract

In this article, we establish a connection between a stochastic dynamic model (SDM) driven by a 

linear stochastic differential equation (SDE) and a Chebyshev spline, which enables researchers to 

borrow strength across fields both theoretically and numerically. We construct a differential 

operator for the penalty function and develop a reproducing kernel Hilbert space (RKHS) induced 

by the SDM and the Chebyshev spline. The general form of the linear SDE allows us to extend the 

well-known connection between an integrated Brownian motion and a polynomial spline to a 

connection between more complex diffusion processes and Chebyshev splines. One interesting 

special case is connection between an integrated Ornstein–Uhlenbeck process and an exponential 

spline. We use two real data sets to illustrate the integrated Ornstein–Uhlenbeck process model 

and exponential spline model and show their estimates are almost identical.

Keywords

Brownian motion; Ornstein–Uhlenbeck process; reproducing kernel Hilbert space; smoothing 
splines; stochastic differential equations

1. INTRODUCTION

There exists a one-to-one correspondence between a reproducing kernel Hilbert space 

(RKHS) and Gaussian stochastic processes by the Kolmogorov consistency theorem 

(Cramér & Leadbetter, 1967; Wahba, 1990). This correspondence has led to the 

development of connections between general smoothing spline models and Gaussian 

stochastic processes which enables researchers to borrow strength across different fields. For 

example, stochastic models corresponding to smoothing splines have been used to derive the 

generalized maximum likelihood estimate of smoothing parameters and to construct 
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Bayesian confidence intervals (Wahba, 1990). A specific connection between an L-spline 

and an integrated Brownian motion has been explored to develop efficient O(n) algorithms 

(Wecker & Ansley, 1983).

Specific connections between more complex processes and related smoothing splines have 

not been studied extensively. The purpose of this article is to establish a connection between 

a stochastic dynamic model (SDM) driven by a linear stochastic differential equation (SDE) 

and a Chebyshev spline. We construct a differential operator for the penalty function and 

develop an RKHS corresponding to the SDM and the Chebyshev spline. The general form of 

the SDE allows us to establish a connection between more complex diffusion processes and 

Chebyshev splines. As an interesting special case, an integrated Ornstein–Uhlenbeck 

process will be connected to an exponential spline.

The extended connection between the SDM driven by a linear SDE and a Chebyshev spline 

can be explored to motivate new SDMs based on spline models, and vice versa. As an 

illustration, we will present a partial spline model motivated by an SDM and an SDM 

motivated by logistic spline. We differ from the smoothing spline literature where one 

usually builds SDMs that connect to spline models of interest; here we will build spline 

models that connect to SDMs. We will present the construction of penalties corresponding 

to SDMs, which may be regarded as priors for regression functions in non-parametric 

regression models.

Estimation and computational methods for Chebyshev splines may be used to compute the 

posterior means of the corresponding SDMs, and vice versa. We will use two real data sets 

to show that the posterior mean of the integrated Ornstein–Uhlenbeck process in an SDM 

matches the penalized least squares estimate of the corresponding exponential spline.

Gaussian stochastic models have been widely used in many fields including physics, 

engineering, finance and biology (Ansley & Kohn, 1986; Rue & Martino, 2009; Stuart, 

2010; Griebel & Hegland, 2010; Lindgren, Rue, & Lindstrom, 2011; Papaspiliopoulis et al., 

2012). Some of the interesting special cases are given in Bishwal (2008). On the other hand, 

much work has been done in the area of smoothing splines. For instance, Pintore, Speckman, 

& Holmes (2006) used an RKHS representation to derive the smoothing spline with a 

particular inhomogeneous differential operator penalty; Furrer & Nychka (2007) built a 

framework to understand the asymptotic properties of Kriging and splines; in this 

framework Kriging estimators are interpreted as generalized smoothing splines. The 

differential operator L = Dq in Pintore, Speckman, & Holmes (2006) is a special case of that 

considered in this paper.

The remainder of this article is organized as follows. In Section 2, we introduce the SDM. In 

Section 3, we compute mean and covariance functions for a general class of Gaussian 

models driven by a linear SDE and construct corresponding Chebyshev splines. We extend 

the SDM in Section 4 with general differential operators and connect them to general 

Chebyshev splines. We use two real data sets to confirm the theoretical results in Section 5 

and conclude with some remarks in Section 6.
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2. STOCHASTIC DYNAMIC MODELS

We present an SDM driven by an SDE in the Section 2.1. Then we develop an equivalent 

stochastic integration equation and use this equivalent model to compute the mean and 

covariance functions of the dynamic system in Section 2.2.

2.1. Stochastic Dynamic Models

Consider a temporal SDM

(1)

where Y(t, ω) is the observation at time t, U(t, ω) is a latent stochastic process of interest 

observed at time t on the path ω, ε(t, ω) is an error term, Ω is the sample path probability 

space, and T is a positive real number which may be the right end point of time in 

consideration. We assume that U(·) and ε(·) are independent and ε(·) is a Gaussian white 

noise process with variance σ2.

In this paper, we will first consider the following stochastic dynamic system for the latent 

stochastic process U(·)

(2)

where Uk = dkU(0)/dtk for k = 0, …, q are initial values of U(·) and its derivatives up to the 

order q, and a0(t) and b(t) are integrable deterministic functions. We assume that U0, …, Uq 

are mutually independent and square integrable random variables. A more general equation 

for U(·) that corresponds to the general Chebyshev splines will be considered in Section 4.

We assume that the stochastic process V(·) in (2) is independent of U0, …, Uq and is driven 

by the following SDE

(3)

where β(t, V(t, ω)) is a drift term, σ2(t, V(t, ω)) is a diffusion coefficient, and B(t, ω) is a 

standard Brownian motion observed at time t on the path ω. We assume that the SDE (3) has 

a unique, continuous and adapted strong solution, and V(·) has finite moments of any order p 

∈ [1,∞). This assumption holds when the coefficients in (3) satisfy the Lipschitz condition, |

σ(t, x) − σ(t, y)|2 + |β(t, x) − β(t, y)|2 ≤ c1(T)|x − y|2, and the growth condition, |σ(t, x)|2 + |β(t, 

x)|2 ≤ c2(T)(1 + x2) for all x, y ∈ R and t ∈ [0, T], where c1(T) and c2(T) are positive 

constants depending on T only (Ikeda & Watanabe, 1989).

Together, Equations (1), (2) and (3) define the SDM we study in this paper. The SDE (3) is a 

parametric Itô SDE with initial value equal to zero. The assumption about the initial value 

may be removed (see Remark 3.1). Zhu, Song, & Taylor (2011) considered a similar SDM 

with a0(t) = 0 and b(t) = 1 in the stochastic dynamic system (2) without the initial condition 

V(0) = 0, and used an Ornstein–Uhlenbeck process V(·) to model the rate of changes of 
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prostate specific antigen profiles. We consider the more general Equation (2) for the 

connection to Chebyshev splines.

It is noteworthy that a special case of the SDM has been connected to polynomial smoothing 

splines. Specifically, let a0(t) = b(t) = 1, β(t, V(t)) = 0 and σ(t, V(t)) = σV, then U(·) is the 

same as the random effects model (1.5.8) in Wahba (1990) for a polynomial spline of order 

q + 1 (refer to Section S.5 in the Supplementary Materials for details). When q = 1 and V(·) 

is a standard Brownian motion, then U(·) is an integrated Brownian motion. Alternatively, 

one may want to use an Ornstein–Uhlenbeck process V(·) to model exponentially decreasing 

correlation. In this case, U(·) is an integrated Ornstein–Uhlenbeck process.

2.2. An Equivalent Stochastic Integration Equation

In this section, we first introduce a stochastic integration equation that is equivalent to the 

stochastic dynamic system (2). We then use the stochastic integration equation to compute 

the mean and covariance functions of the stochastic process U(·).

When q = 0, the stochastic dynamic system (2) has the form

(4)

and it is straightforward to compute the mean and covariance functions of U(·) in this case.

In the following discussion, we assume that q ≥ 1.We will show that the following stochastic 

integration equation is equivalent to the stochastic dynamic system (2)

(5)

where ψi(t) ≜ ti/i!, , and V(·) is a stochastic process driven by 

the SDE defined in (3). We first show that (5) can be rewritten as

(6)

To see that (5) can be rewritten as (6), applying Itô formula to b(s)V(s)(t − s)q, s ≤ t, leads to

Hence, we have

(7)
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Suppose that U(·) is given by the stochastic integration Equation (5). By Equation (7), we 

have the expression (6).

When q = 1, it is easy to see that taking the derivative on both sides of (6) with respect to t 

leads to (2). When q ≥ 2, taking the derivative on both sides of (6) with respect to t leads to

Continuing this process to calculate higher order derivatives, we get dqU(t)/dtq = a0(t)Uq + 

b(t)V(t). Therefore, the stochastic integration Equation (5) or (6) implies the stochastic 

differential system (2).

Conversely, assuming that U(·) is given by the stochastic differential system (2) and 

reversing the process above, it is not difficult to show that U(·) satisfies the stochastic 

integration Equation (5) or (6). The following lemma summarizes the above discussion.

Lemma 2.1—Suppose that the stochastic process V(·) is driven by the SDE (3). Then, the 

stochastic dynamic system (2) is equivalent to the stochastic integration Equation (5) or (6).

Note that when a0(t) = b(t) = 1 and V(t) = σV B(t), we have Aq(t) = ψq(t) and 

 which is the stochastic process corresponding to 

the polynomial spline of order q + 1 (Kimeldorf & Wahba, 1970a,b; Wahba, 1990).

The mean and covariance functions of U(·) listed in the following proposition can be 

computed directly based on (4) when q = 0 or by applying the Fubini’s theorem to Equation 

(6) when q ≥ 1.

Proposition 2.1—For the stochastic process U(·) defined in (2) or equivalently in (5) or 

(6), when q ≥ 1, we have

where μi ≜ E Ui and  When q = 0, we have E U(t) = a0(t)μ0 + b(t) E V(t) and 

.
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There exists a unique RKHS that is congruent to the Hilbert space generated by the 

stochastic process U(·) (Berlinet & Thomas-Agnan, 2004). In the next section, we will make 

specific connections between Gaussian processes driven by a linear SDE and an RKHS.

3. GAUSSIAN PROCESS DRIVEN BY A LINEAR SDE AND CONNECTION TO 

CHEBYSHEV SPLINES

The stochastic process V(·) driven by the SDE (3) is a Markovian process. However, it is not 

necessarily a Gaussian process. In this section, we consider a Gaussian process driven by the 

following linear SDE

(8)

where β0(t), β1(t) and σ(t) are deterministic, measurable, and bounded functions of time t 

(Karatzas & Shreve, 1988). The SDE (8) is a special case of (3) when β(t, V(t, ω)) is linear in 

V(·) and σ(t, V(t, ω)) is deterministic.

In this section, we establish a connection between the SDM where V(·) is driven by the 

linear SDE (8) and Chebyshev splines. In Section 3.1, we apply results in Section 2.2 to 

compute the mean and covariance functions for Gaussian processes driven by the linear 

SDE. In Section 3.2, we build connections between Gaussian processes and Chebyshev 

splines. In the subsections, we provide examples of some specific SDMs and their 

corresponding spline models.

3.1. Gaussian Process Driven by the Linear SDE (8)

Denote . By the Itô formula, one can show that (Karatzas & Shreve, 

1988, pp. 354–355)

(9)

Lemma 3.1—Suppose that the stochastic process V(·) is a Gaussian process driven by the 

linear SDE (8). Then, we have

The proof of Lemma 3.1 can be found in the Supplementary Materials. For q ≥ 1, denote
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where I(u ≤ t) = 1 when u ≤ t and 0 otherwise. Combining results in Proposition 2.1 and 

Lemma 3.1, we have the following theorem.

Theorem3.1—Suppose that the stochastic process V(·) is a Gaussian process driven by the 

linear SDE (8) and  for i = 0, …, q. Then, the stochastic process U(·) is a 

Gaussian process with the following mean and covariance functions

where, for q = 0, we take , A0(t) ≜ a0(t), and F(t, u) ≜ b(t) Ψ(t)I(u ≤ t).

The proof of Theorem 3.1 is provided in the Supplementary Materials.

Remark 3.1—We have assumed that V(0) = 0 in the SDE (8). This assumption can be 

removed from the construction as follows. Let

Then, V̄(·) satisfies

(10)

When a0(t) = Ψ(t), b(t) = 1, and V(·) is a solution of linear SDE (8), the stochastic 

differential system (2) is equivalent to

(11)

This means that dqU(t)/dtq is equal to the solution V ̄(t) of the linear SDE (10) which starts 

from Uq. Both V̄(·) and U(·) defined in (11) are Gaussian processes.
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3.2. Construction of a Chebyshev Spline Model

We now construct a Chebyshev spline model such that, up to a known function, the 

penalized least squares estimate equals the best linear unbiased estimator of the SDM 

defined by (1), (2) and (8).We note that the following development is in the opposite 

direction of the common approach employed in the spline literature where one constructs a 

stochastic process to connect with a smoothing spline model.

Define a differential operator

(12)

We may write L as Lf (u) = D [Dqf (u)/Ψ(u)] where Dq = dq/dtq is the qth derivative 

operator. The differential operator L is a special case of the general differential operator Lq+1 

defined in Equation (4.64) of Gu (2013) for the Chebyshev spline with wi(t) = 1 for i = 1, …, 

q and wq+1(t) = Ψ(t). Then, from Equation (4.65) in Gu (2013), the Chebyshev system on [0, 

T] is ψ0(t), ψ1(t), …, ψq−1(t), ψ̃
q(t) and they span the null space ℋ0 = span{ψ0(t), ψ1(t), …, 

ψq−1(t), ψ̃
q(t)} of the differential operator L, where

Under an inner product , {ψ0(t),ψ1(t), …, ψq−1(t),ψ̃
q(t)} forms an 

orthonormal basis of the null space ℋ0. Furthermore, it can be shown that the Green’s 

function associated with the differential operator L is

which is given by the relation (4.67) in Gu (2013).

Consider the model space

(13)

with an inner product

(14)

where h(u) ≜ (Ψ(u)/σ(u))2 is a weight function. Following the same arguments as in Section 

4.5.2 of Gu (2013), we have the following result.
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Theorem 3.2—Assume that a0(t) = Ψ(t) and b(t) = 1. Then,  is an RKHS. Let us 

denote the kernel of L as . Then, ψ0(t), ψ1(t), …, ψq−1(t), 

Aq(t) = ψ̃
q(t) form an orthonormal basis of ℋ0, and  can be decomposed into 

, where

The reproducing kernels of ℋ0 and ℋ1 are respectively given by

The proof of Theorem 3.2 is straightforward based on the fact that Aq(t) = ψ̃
q(t) and G(t, u) = 

F(t, u) when a0(t) = Ψ(t) and b(t) = 1.

Remark 3.2—In Theorem 3.2 we assumed that a0(t) = Ψ(t). In general, assume that a0(t) is 

strictly positive and a0(0) = 1. It is not difficult to check that Diψj(0) = 1 if i = j and 0 

otherwise for 0 ≤ i, j ≤ q − 1. Furthermore, Dqψj(0) = 0 for 0 ≤ j ≤ q − 1, DiAq(0) = 0 for 0 ≤ 

i ≤ q − 1, and DqAq(0) = a0(0) = 1. Then {ψ0(t), ψ1(t), …, ψq−1(t), Aq(t)} forms an 

orthonormal basis of a subspace of  under the inner product . 

In addition, we have Lψi(t) = 0 for i = 0, 1, …, q− 1. It is easy to check that DqAq(t) = a0(t). 

Therefore, LAq(t) = 0 iff a0(t) = Ψ(t). Consequently, Aq(t) does not belong to the space 

 when a0(t) ≠ Ψ(t). Nevertheless, when a0(t) ≠ Ψ(t), a partial 

spline model may be constructed. See Section 3.3.2 for an example.

Consider the following nonparametric regression model

(15)

Assume that . A Chebyshev spline is the solution to the following penalized 

least Squares
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(16)

where λ is a smoothing parameter and L is given in (12). Let y = (Y1, …, Yn)′, 

, and M = Σ + nλIn, where In is 

an n × n identity matrix. The solution to (16) can be represented as (Wang, 2011)

(17)

Where

Now consider n observations based on the SDM (1)

(18)

where the stochastic processes U(·) and V(·) are defined in (2) and (8), respectively. The best 

linear unbiased estimator of U(t) is the posterior mean E (U(t)|Y(ti), i = 1, …, n) (Wahba, 

1990). Denote

(19)

In this article, we assume that μ(t) is known. Subtracting μ(ti) on both sides of (18) and 

following the same arguments as in Wahba (1990) and Gu (2013), we have the following 

connection between the Chebyshev spline and the best linear unbiased estimator of U(t).

Proposition 3.1—Assume that a0(t) = Ψ(t), b(t) = 1, and U0, …, . Denote

as the posterior mean where the dependence on the variance a is expressed explicitly. For 

any fixed t ∈ [0, T], when λ = σ2/n, we have

(20)

where f̂λ (t) in (20) is the penalized least squares solution to (16) with observations y = 

(Y(t1) − μ(t1), …, Y(tn) − μ(tn))′.
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Remark 3.3—The penalty can be simplified as follows

(21)

It is clear that the construction of RKHS including inner product, basis function of the space 

ℋ0 and reproducing kernel of the space ℋ1 is independent of the function β0(t), while 

whether there exists a drift term μ(t) defined in (19) depends on if β0(t) = 0. The condition n 

λ = σ2 does not depend on σ(t) since σ(t) is involved in the penalty. When σ(t) is a constant, 

say σV, it may be absorbed into the smoothing parameter and then we have the standard 

condition .

Remark 3.4—Assume that β0(t) = 0. Then μ(t) = 0. Proposition 3.1 states that the best 

linear unbiased estimator of U(t) coincides with the smoothing spline estimate as a → ∞. 

This link has been explored to derive the generalized maximum likelihood (restricted 

maximum likelihood) estimate of the smoothing parameter λ. The variance function of Ûa(t) 

as a → ∞ has been used to construct Bayesian confidence intervals. See Wang (2011) for 

details.

Remark 3.5—Proposition 3.1 extends existing results to the case when μ(t) ≠ 0. Denote

as the best linear unbiased estimates at design points, Y = (Y(t1), …, Y(tn))′, and μ = (μ(t1), 

…, μ(tn))′. Then, it can be seen that

Where H (λ) = In − nλM−1[In − S(S′M−1S)−1S′M−1] is the smoothing matrix. Thus, Û has the 

typical form of a shrinkage estimator.

3.3. Ornstein–Uhlenbeck Process and Exponential Spline

Consider an Ornstein–Uhlenbeck process V(·) that satisfies the SDE

(22)

where μ is the equilibrium value of the process, θ > 0 is the speed of reversion, and σV is the 

volatility. It is easy to see that the Ornstein–Uhlenbeck process is a special case of (8) with 

β0(t) = μθ, β1(t) = −θ, and σ(t) = σV.

The mean and covariance functions of V(·) are
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In this subsection we assume that q ≥ 1. See Remark 3.7 for the exponential spline with q = 

0. It is easy to check that Ψ(t) = exp(−θt),  and 

. Assume that . Then the mean and 

covariance functions of U(·) are

The differential operator in (12) reduces to Lf(u) = [f(q+1)(u) + θf(q)(u)] eθu. Therefore, the 

penalty term in (16) is equal to . Note that f(q+1) + θf(q) = 

Dq−1(D2 + θD)f, where D2 + θD is differential operator for exponential spline (Wang, 2011).

3.3.1. Exponential spline—Consider a special case of model (2) with a0(t) = e−θt and 

b(t) = 1. When q = 1, the stochastic process U(·) can be represented as a summation of drift 

terms and an integrated Ornstein–Uhlenbeck process

(23)

The penalty  is the same as that for an exponential spline. It is easy to 

check that the basis functions of the space ℋ0 in Theorem 3.2 are ψ0(t) = 1 and A1(t) = (1 − 

e−θt)/θ, and the reproducing kernel of the space ℋ1 is

(24)

which is equivalent to that of an exponential spline (Wang, 2011, pp 41–44). Furthermore,

(25)

Therefore, when μ = 0, the integrated Ornstein–Uhlenbeck process U(·) defined in (23) is the 

corresponding stochastic process for the exponential spline. The case when μ ≠ 0 provides 

an extension of the exponential spline. We note that the integrated Ornstein–Uhlenbeck 
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stochastic process with drift U(t) represents a major deviation from existing spline literature 

which involves the Brownian motion only.

The mean function of stochastic process U(·) is

When μ = 0,  in Remark 3.1 satisfies

Therefore,  and E[U(t)] = μ0 + μ1(1 − e−θt)/θ.

When q > 1, the stochastic process U(·) can be represented as

(26)

The penalty  adds polynomials up to the order q − 1 to the kernel 

space ℋ0. Specifically, the orthonormal basis functions of ℋ0 are ψ0(t), ψ1(t), …, ψq−1(t), 

and Aq(t), where . The function Aq(t) can be calculated 

recursively by Aq(t) = ψq−1(t)/θ − Aq−1(t)/θ and A1(t) = (1 − e−θt)/θ. The Chebyshev spline in 

this case may be called a polynomial-exponential spline.

3.3.2. Partial exponential spline—Consider another special case of model (2) with a0(t) 

= b(t) = 1. For q ≥ 1, the stochastic process U(·) can be represented as

(27)

Replacing a Brownian motion by the Ornstein–Uhlenbeck process V(·), the stochastic 

process U(·) in (27) extends the stochastic model for polynomial splines (Wahba, 1990) (see 

Eq. (S.5) in the Supplementary Materials). The mean and covariance of the stochastic 

process U(·) are
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where .

For simplicity, we now consider the special case when q = 1. The stochastic process U(·) is 

given by

(28)

The integrated Ornstein–Uhlenbeck process in (28) extends the integrated Brownian motion 

[see (S.6) in Section S.5 of the Supplementary Materials]. The mean and covariance 

functions are

(29)

where R1 is given by (24).

Note that Theorem 3.2 does not apply in this case since a0(t) ≠ Ψ(t). Compared with the 

exponential spline model, the basis function (1 − exp(−θt))/θ in ℋ0 has been replaced by the 

function ψ1(t) = t which is not orthogonal to the space ℋ1 (Remark 3.2). Nevertheless, the 

stochastic process U(·) defined in (28) can be connected to the following partial spline 

model

(30)

Assume that  under the inner product (14) with 

Lf (u) = [D2f (u) + θDf(u)] eθu and . Let α̂1, α̂
2 and f̂λ(t) be the solution to the 

following penalized least squares

(31)

Following similar arguments as in Section 3.2 one can show that lima→∞ Ûa(t) = μ(t)+ α̂
1 + 

α̂
2t + f̂λ(t), where α̂1, α̂2 and f̂λ(t) are the penalized least squares solutions to (31) with 

observations Yi = Y(ti) − μ(ti) for i = 1, …, n where μ(t) is given in (25).
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3.4. Logistic Spline and Its Corresponding SDM

The logistic spline is a special case of the Chebyshev spline with q = 0 and penalty 

, where

(32)

To construct the corresponding SDM, consider a process V(·) driven by the following linear 

SDE

(33)

Equation (33) is a special case of (8) with β0(t) = 0, β1(t) is given in (32), and σ(t) = σV. It is 

not difficult to check that μ(t) = 0, Ψ(t) = (1 + γ)/(1 + γe−θt), and

Then, E V(t) = 0 and

(34)

According to (21), the penalty  is the same 

as that for the logistic spline up to a multiplying constant which can be absorbed into the 

smoothing parameter λ (Wang, 2011). Consider the special case of stochastic dynamic 

system (2) with a0(t) = Ψ(t) and b(t) = 1. The basis function of the space ℋ0 is Ψ(t) and the 

Green’s function is Ψ(t)I(u ≤ t). Then, the reproducing kernel for the space ℋ1 is 

. R1 has the form in (34) which is the same as the 

reproducing kernel for the logistic spline (Eq. (2.61) in Wang (2011)). Thus, the SDM (1), 

(2) and (33) consist of the stochastic model for the logistic spline.

Remark 3.6—When q = 1, following similar argument it can be shown that the SDM (1), 

(2) and (33) is the stochastic model for the logistic spline discussed by Gu (2013, p. 161). 

The cases when q > 1 can be regarded as extensions of the logistic spline where basis 

functions ψ0(t), …, ψq−1(t) are added to the null space ℋ0.

Remark 3.7—The connection between an SDM driven by (33) and a Chebyshev spline 

discussed in this section holds for a general function β1(t). Specifically, consider the SDE 

(33) with an unspecified β1(t). Assume that q = 0, a0(t) = Ψ(t) and b(t) = 1. Then, 

 and . According to 
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Theorem 3.2, the RKHS , where ℋ1has the reproducing kernel 

. The penalty of the corresponding Chebyshev spline 

is . The logistic spline is a special case with β1(t) = θγe−θt/(1 + 

γe−θt). It is not difficult to check that the function β1(t) = −θ corresponds to the exponential 

spline with β0(t) = 0. Other functions may be considered for β1(t). For example, β1(t) = −θt 

corresponds to a Chebyshev spline with the kernel space spanned by Ψ(t) = e−θt2/2, the 

Gaussian function.

4. EXTENDED STOCHASTIC DYNAMIC MODELS AND THEIR 

CONNECTIONS TO CHEBYSHEV SPLINES

Motivated by the Chebyshev splines (Karlin & Ziegler, 1966; Kimeldorf & Wahba, 1971; 

Gu, 2013), we now consider a more general dynamic system by replacing Dq in (2) with the 

following differential operator

(35)

where a1, …, aq are strictly positive and (i + 1)th differentiable functions with ai(0) = 1. 

Specifically, we assume the following stochastic dynamic system for U(·)

(36)

As in previous sections, we will consider two types of models for V(·): the general diffusion 

process determined by the SDE (3) and the Gaussian model driven by the linear SDE (8).

The following stochastic differential system has been considered by Kimeldorf & Wahba 

(1971):

(37)

where  is a (q + 1)-order differential operator of Chebyshev 

splines (Wahba, 1978, 1990). The stochastic dynamic system (37) is equivalent to ΠqU(t) = 

a0(t)[ΠqU(0) + B(t)]. The stochastic dynamic system (36) extends (37) in two aspects: (1) 

Brownian motion B(t) is replaced by a general solution V(·) of an SDE, and (2) the 

coefficient b(t) of V(·) does not necessarily equal to a0(t).

4.1. General Stochastic Dynamic Models

Following Kimeldorf & Wahba (1971) and Wahba (1990), denote
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where I is the identity operator. In addition, define the following functions:

Note that for i, j = 0, 1, 2, …, q, we have

(38)

Define

(39)

We note a typo in Equation (7.3) of Kimeldorf & Wahba (1971) where … 

should be … .

Following similar arguments as in the Section 2.2, the stochastic differential system (36) is 

equivalent to the following stochastic integration equation

(40)
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where Ui = ΠiU(0). Let μi = EUi and . Applying the Fubini’s Theorem to the 

stochastic integration equation (40), we have the following results which extends 

Proposition 2.1.

Proposition 4.1—Suppose that U(·) is given by the stochastic integration equation (40), 

where V(·) is driven by the SDE (3). Then,

4.2. Gaussian Models Driven by a Linear SDE

Denote

The following results extend Theorem 3.1 when the SDM is driven by the linear SDE (8).

Theorem 4.1—Suppose that the stochastic process V(·) is a Gaussian process driven by 

the linear SDE (8) and  for i = 0, …, q. Then, the stochastic process U(·) given 

by (36) or (40) is a Gaussian process with the following mean and covariance functions

The proof of Theorem 4.1 is provided in the Supplementary Materials.
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4.3. Connection to Chebyshev Splines

Again, let  and h(t) ≜ (Ψ(t)/σ(t))2 be a weight function. Consider the 

following differential operator

Consider the model space

with inner product

(41)

Theorem 4.2—Assume that a0(t) = Ψ(t) and b(t) = 1. Then, the space  is an 

RKHS with inner product (41). Let  be the kernel of L̃. Then, 

{ω0, ω1,…, ωq} forms an orthonormal basis of ℋ̃
0 and  can be decomposed into 

, where

The reproducing kernels of ℋ̃
0 and ℋ̃

1 are respectively given by

The proof of Theorem 4.2 is provided in the Supplementary Materials.

Now consider the nonparametric regression model (15) where . A general 

Chebyshev spline is the solution to the penalized least squares (16) with  and L 
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being replaced by  and L̃, respectively. Again, up to a constant function, the 

smoothing spline estimate equals the posterior mean of the SDM (1), (8) and (36). 

Specifically, assume that U0, …, . Denote Ûa = E(U(t)|Y(ti), i = 1, …, n) and 

f̃λ(t) as the penalized least squares solution with observations (Y(t1) − μ̃(t1), …, Y(tn) − μ̃(tn))

′, where

Then for any fixed t ∈ [0, T], when λ = σ2/n, it can be shown that lima→∞ Ûa(t) = μ̃(t) + 

f ̃λ(t).

4.4. Chebyshev Splines to Stochastic Dynamic Models

In the previous sections we started with SDE driven SDMs and built corresponding 

Chebyshev splines. We now describe a strategy that builds an SDE driven SDM that 

corresponds to the general Chebyshev spline defined in Section 4.3.

With the general Chebyshev spline, a0(t), …, aq(t) and a general weight function h(t) > 0 are 

given. Assume that  for i = 0, …, q are strictly positive functions with 

ai(0) = 1. From SDMs to Chebyshev splines, we have set  and 

h(t) = (a0(t)/σ(t))2 in the previous sections, where β1(t) and σ(t) are given in the linear SDE 

(8). Reversely, now we set  and . Consider the 

following stochastic dynamic system

(42)

(43)

with initial conditions Ui = ΠiU(0) for i = 0, …, q. Then, it is not difficult to show that the 

general Chebyshev spline equals the posterior mean of the SDM (1), (42), and (43).

5. APPLICATIONS

Proposition 3.1 implies that with appropriate choices of parameters in the SDM and the 

smoothing parameter, the posterior mean coincides with the corresponding Chebyshev 

spline estimate. In particular, as discussed in Section 3.3.1, with U0, , a → ∞ 

and , the posterior mean of the integrated Ornstein–Uhlenbeck process (23) 

coincides with the exponential spline estimate, in which σ2 is the variance of ε(t, ω) the 

measurement error in Equation (1) and  is the volatility term of integrated Ornstein–

Uhlenbeck process (23), reflecting the fluctuation of the process. We now use two real data 

applications to illustrate this theoretical result.
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Glomerular filtration rate (GFR) measures the flow rate of filtered fluid through the kidney. 

Progression of kidney disease is often assessed by change in GFR. Therefore it is important 

to estimate the trajectory of GFR based on observations (Li et al., 2014). The left panel of 

Figure 1 shows estimated GFR (eGFR) from a patient with chronic kidney disease. We first 

consider an exponential spline model discussed in Section 3.3.1 since the profile is close to 

exponential decay. To estimate the speed of reversion parameter θ, as in Wang (2011), we 

first fit a nonlinear regression model which is motivated by Equation (25) as yi = β1 + β2 

exp(−β3ti) + εi, i = 1, …, 62, and then set θ = β̂3 where β3̂ is the non-linear least square 

estimate of β3.We then fit the exponential spline using the ssr function in the R ASSIST 

package (Wang, 2011) with θ = β̂
3 and smoothing parameter selected by the generalized 

maximum likelihood method. The exponential spline fit is shown in the left panel of Figure 

1 as the solid blue line.

The Ornstein–Uhlenbeck process provides a natural model for a process stabilizing around 

some equilibrium point. Such phenomena is often observed in the biological or biomedical 

application. For example, we consider modelling the eGFR profile by the SDM with 

integrated Ornstein–Uhlenbeck process (23), for which the parameters have natural 

interpretations in terms of the convergence of process. This is a special case of the stochastic 

velocity model with Ornstein–Uhlenbeck process discussed in Zhu, Song, & Taylor (2011). 

Thus the Markov chain Monte Carlo (MCMC) algorithm developed in Zhu, Song, & Taylor 

(2011) can be used to compute the posterior mean of the integrated Ornstein–Uhlenbeck 

process. Since patients will eventually lose renal function, we set the equilibrium value μ = 

0.We estimated the parameter θ as the posterior mean of MCMC samples of θ, and set U0, 

. The MCMC was run for 45,000 iterations, in which the first 35,000 runs are 

discarded as the burn in and every 10th draw is saved. The posterior mean is shown in the 

left panel of Figure 1 as the red dashed line. As expected from the theoretical result, the 

exponential spline estimate is almost identical to the posterior mean of the integrated 

Ornstein–Uhlenbeck process.

We further present another real data application for the prostate specific antigen (PSA) 

profile commonly used to monitor recurrence of prostate cancer after treatment. Different 

from the GFR example, the rate of change of the PSA profile converges or the slope of the 

PSA profile is stabilized at a non-zero value (Figure 1, Zhu, Song, & Taylor, 2011). It’s 

reasonable to fit an SDM with integrated Ornstein–Uhlenbeck process and non-zero μ. For 

such a case, we illustrate that exponential spline can also be applied with a simple 

transformation. To make the estimates by two methods comparable, we fix θ̂; = 1. 15 and μ̂ 

= 0. 385 (posterior means in Table 3, Zhu, Song, & Taylor, 2011), while other parameters 

were estimated either by the MCMC algorithm for SDM or generalized maximum likelihood 

method for the exponential spline. To fit the exponential spline, the transformed variable z(t) 

= y(t)− μ̂{t + (e−θ̂t − 1)/θ̂} is used as observations. The right panel of Figure 1 shows the 

observations and estimated profiles. Again, the exponential spline estimate is almost 

identical to the posterior mean of the integrated Ornstein–Uhlenbeck process.
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6. DISCUSSION

Under the general framework of isometric mapping between the Hilbert space spanned by a 

second order stochastic process and the RKHS generated by its covariance kernel, we 

establish a specific connection between an SDM driven by a linear SDE and the Chebyshev 

spline. This connection provides a statistical structure and mechanism for estimating sample 

paths in a stochastic dynamic model as well as a justification for the somewhat ad hoc 

penalty in a penalized least squares. Our results extend the well-known connection between 

the integrated Brownian and the polynomial spline to the connection between an SDM and 

the Chebyshev spline, which is mutually beneficial for these two different areas. For 

example, fitting spline models with large data can be computationally expensive. Instead, we 

may fit the corresponding SDMs with efficient algorithms based on the Markov property 

(Kohn & Ansley, 1987; Zhu, Song, & Taylor, 2011).

In this paper we have assumed σ(t), β0(t), and β1(t) in (8) are known, which in practice need 

to be estimated. Under the assumption of a0(t) = Ψ(t) and b(t) = 1, the SDM (1), (2) and (8) 

are determined by σ(t), β0(t), and β1(t). Similarly, the Chebyshev spline model may contain 

unknown parameters _ (Heckman & Ramsay, 2000). For example, the parameter θ in the 

penalty  of the exponential spline is usually unknown and corresponds to 

an unknown speed of reversion in the integrated Ornstein–Uhlenbeck process. Estimation 

methods have been proposed for parameters in Chebyshev spline models (Heckman & 

Ramsay, 2000; Wang & Ke, 2009 and references therein) and SDMs (Zhu, Song, & Taylor, 

2011, and references therein). Connection and comparison between these parameter 

estimation methods in these two different fields will be studied in the future.

One important feature of the SDM considered in this paper is that the process V(·) can be 

non-stationary which makes it more flexible. For special cases discussed in this paper, we 

have assumed that σ(t) is a constant. With a general σ(t), Equation (21) corresponds to an 

adaptive penalty for spatial inhomogeneous functions (see Pintore, Speckman, & Holmes, 

2006; Liu & Guo, 2010, and references therein). As a future research topic, we will explore 

the corresponding non-stationary processes to fit spline models with varying smoothing 

parameters.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
GFR (a) and PSA (b) examples. Circles are observations, posterior means are dashed red 

lines, and exponential spline fits are solid blue lines.
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