UC San Diego

UCSD Molecule Pages

Title

MAp44

Permalink

https://escholarship.org/uc/item/4028n4n3

Journal

UCSD Molecule Pages, 2(2)

Authors

Chandrasekhar, Anjana Dinasarapu, Ashok Reddy Matsushita, Misao et al.

Publication Date

2013

Supplemental Material

https://escholarship.org/uc/item/4028n4n3#supplemental

Copyright Information

Copyright 2013 by the author(s). This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/3.0/

doi:10.6072/H0.MP.A008392.01 Volume 2, Issue 2, 2013 Copyright UC Press, All rights reserved.

Review Article Open Access

MAp44

Anjana Chandrasekhar¹, Ashok Reddy Dinasarapu¹, Misao Matsushita², Shankar Subramaniam³

MAp44 is a ~44 kDa alternate splice product of *MASP1* and is mainly expressed in the heart. Mannose/mannan binding lectin (MBL) associated serine proteases, MASP-1 and MASP-3 are other products of *MASP1*. Similar to MASP-1 (isoform 1 of *MASP1*, which represents the longest transcript), MAp44 has a C1r/C1s/Uegf/bmp1 (CUB) domain, calcium-binding EGF-like domain and complement control protein (CCP) domains. However, it lacks the serine protease domain of MASP-1 and therefore cannot perform MASP-1's functions. MAp44 binds to multimeric pathogen receptors such as MBL and the three ficolins, and is believed to play a regulatory role in the lectin pathway of complement activation.

KEYWORDS

Mannan-binding lectin serine peptidase 1 (C4/C2 activating component of Ra-reactive factor); Mannose-binding lectin-associated protein of 44 kDa; Mannose-binding lectin-associated serine protease 1; Mannose-binding protein-associated serine protease; MAP-1; MAP1; Map44; MASP; MASP1

IDENTIFIERS

Molecule Page ID:A008392, Species:Human, NCBI Gene ID: 5648, Protein Accession:NP_001027019.1, Gene Symbol:MASP1

PROTEIN FUNCTION

MASP-1 (*MASP1* Isoform 1), MASP-3 (*MASP1* Isoform 2) and MAp44 (*MASP1* Isoform 3) are splice products of *MASP1* (Degn *et al.* 2009). MAp44 is also known as MAP-1. Similar to MASP-1, MAp44 circulates in the serum in complex with mannose/mannan-binidng lectin (MBL), L-ficolin or H-ficolin. However, unlike MASP-1 and MASP-3, MAp44 lacks serine protease domain (Skjoedt *et al.* 2010, Skjoedt *et al.* 2011, Skjoedt *et al.* 2012). The only known function of MAp44 is to down-regulate C4 activation by competing with MASP-1 and MASP-2 to bind to pattern recognition molecules such as MBL and ficolins. This further affects downstream complement pathway activation. MAp44 can also disrupt MASP-1-MASP-2 heterodimer and thereby down-regulate complement pathway (Degn *et al.* 2013).

REGULATION OF ACTIVITY

null

INTERACTIONS

MAp44, like other MASP proteins forms a head-to-tail homodimer (Skjoedt *et al.* 2012). The homodimer interacts with MBL, L-ficolin and H-ficolin, with H-ficolin being its preferred partner (Degn *et al.* 2009, Skjoedt *et al.* 2010, Skjoedt *et al.* 2011). MAp44 also interacts with the recently discovered novel collectin, CL-11 (CL-K1) (Ma *et al.* 2013).

The experimental methods used to characterize these interactions are documented in CMAP, a complement map database (Yang *et al.* 2013).

PHENOTYPES

No SNPs or disease associations have been documented so far.

MAJOR SITES OF EXPRESSION

MAp44 is mainly expressed in the myocardial fibers followed

by the skeletal muscle, unlike other MASP proteins (MASP-1, MASP-2 and MASP-3), which are mainly expressed in the liver (Degn *et al.* 2009, Skjoedt *et al.* 2010).

SPLICE VARIANTS

MAp44 transcript (MASP1 isoform 3) is an alternative splice variant of MASP1 (Degn et al. 2009). MASP1 also encodes for two more proteins, MASP-1 (MASP1 isoform 1) and MASP-3 (MASP1 isoform 2) (Dahl et al. 2001). MASP1 encodes for six domains: two C1r/C1s/Uegf/bone morphogenetic protein 1 (CUB), an epidermal growth factor (EGF)-like, two complement control proteins (CCPs) and a serine protease domain. The first five domains (encoded by exons 1-11) together form the heavy (or 'A') chain, while the serine protease domain forms the light (or 'B') chain (encoded by exons 12-18) (Fujita et al. 2002). MAp44 is formed by alternative splicing at the ninth exon of MASP1. Thus, MAp44 has two CUB domains, EGF, one CCP domain, a unique C-terminal domain of 17 a.a (encoded by exon 9) and importantly lacks the serine protease domain (Degn et al. 2009, Skjoedt et al. 2010). Please refer to MASP-1 and MASP-3 Molecule Pages at www.signalinggateway.org for more information.

REGULATION OF CONCENTRATION

MAp44 is found in human serum at 0.24 μ g/ml (Skjoedt et al. 2011) or 1.4 μ g/ml in Ca²⁺-dependent complexes with MBL and ficolins (Degn *et al.* 2009).

ANTIBODIES

Commercial antibody specific to MAp44 is available from Hycult Biotech.

Table 1: Functional States

STATE DESCRIPTION	LOCATION	REFERENCES
MAp44	extracellular space	
2(MAp44)	extracellular space	Skjoedt MO et al. 2012
2(MAp44) - glycosylated	extracellular space	Skjoedt MO et al. 2011
2(MAp44)/MBL	extracellular space	Skjoedt MO et al. 2011; Skjoedt MO et al. 2010; Skjoedt MO et al. 2012
2(MAp44)/L-FCN	extracellular space	Degn SE et al. 2009; Skjoedt MO et al. 2011; Skjoedt MO et al. 2010
2(MAp44)/H-FCN	extracellular space	Degn SE et al. 2009; Skjoedt MO et al. 2011; Skjoedt MO et al. 2010
2(MAp44)/CL-K1	extracellular space	Ma YJ et al.

Volume 2,Issue 2, 2013 23

ACKNOWLEDGEMENTS

The UCSD Signaling Gateway Molecule Pages (SGMP) is funded by NIH/NIGMS Grant 1 R01 GM078005-01. The authors thank Dr. John D. Lambris, University of Pennsylvania, Philadelphia, UCSD-SGMP editorial board member, for extensive discussions.

SUPPLEMENTARY

Supplementary information is available online.

REFERENCES

Dahl MR, Thiel S, Matsushita M, Fujita T, Willis AC, Christensen T, Vorup-Jensen T, Jensenius JC (2001). MASP-3 and its association with distinct complexes of the mannan-binding lectin complement activation pathway. *Immunity*, 15, 1.

Degn SE, Hansen AG, Steffensen R, Jacobsen C, Jensenius JC, Thiel S (2009). MAp44, a human protein associated with pattern recognition molecules of the complement system and regulating the lectin pathway of complement activation. *J Immunol*, 183, 11.

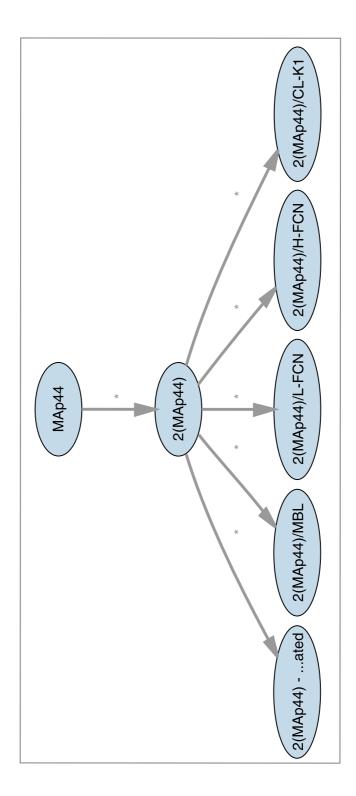
Degn SE, Jensen L, Olszowski T, Jensenius JC, Thiel S (2013). Co-complexes of MASP-1 and MASP-2 associated with the soluble pattern-recognition molecules drive lectin pathway activation in a manner inhibitable by MAp44. *J Immunol*, 191, 3.

Fujita T (2002). Evolution of the lectin-complement pathway and its role in innate immunity. *Nat Rev Immunol*, 2, 5.

Ma YJ, Skjoedt MO, Garred P (2013). Collectin-11/MASP complex formation triggers activation of the lectin complement pathway--the fifth lectin pathway initiation complex. *J Innate Immun*, 5, 3.

Skjoedt MO, Hummelshoj T, Palarasah Y, Hein E, Munthe-Fog L, Koch C, Skjodt K, Garred P (2011). Serum concentration and interaction properties of MBL/ficolin associated protein-1. *Immunobiology*, 216, 5.

Skjoedt MO, Hummelshoj T, Palarasah Y, Honore C, Koch C, Skjodt K, Garred P (2010). A novel mannose-binding lectin/ficolin-associated protein is highly expressed in heart and skeletal muscle tissues and inhibits complement activation. *J Biol Chem*, 285, 11.


Skjoedt MO, Palarasah Y, Munthe-Fog L, Jie Ma Y, Weiss G, Skjodt K, Koch C, Garred P (2010). MBL-associated serine protease-3 circulates in high serum concentrations predominantly in complex with Ficolin-3 and regulates Ficolin-3 mediated complement activation. *Immunobiology*, 215, 11.

Skjoedt MO, Roversi P, Hummelshøj T, Palarasah Y, Rosbjerg A, Johnson S, Lea SM, Garred P (2012). Crystal structure and functional characterization of the complement regulator mannose-binding lectin (MBL)/ficolin-associated protein-1 (MAP-1). *J Biol Chem*, 287, 39.

Yang K, Dinasarapu AR, Reis ES, Deangelis RA, Ricklin D, Subramaniam S, Lambris JD (2013). CMAP: Complement Map Database. *Bioinformatics*, 29, 14.

Volume 2,Issue 2, 2013 24

This molecule exists in 7 states , has 6 transitions between these states and has 0 enzyme functions.(Please zoom in the pdf file to view details.)

Volume 2,Issue 2, 2013 25