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ABSTRACT

We describe the BeyondPlanck project in terms of motivation, methodology and main products, and provide a guide to a set of
companion papers that describe each result in fuller detail. Building directly on experience from ESA’s Planck mission, we implement
a complete end-to-end Bayesian analysis framework for the Planck Low Frequency Instrument (LFI) observations. The primary
product is a full joint posterior distribution P(ω | d), where ω represents the set of all free instrumental (gain, correlated noise,
bandpass etc.), astrophysical (synchrotron, free-free, thermal dust emission etc.), and cosmological (CMB map, power spectrum
etc.) parameters. Some notable advantages of this approach compared to a traditional pipeline procedure are seamless end-to-end
propagation of uncertainties; accurate modeling of both astrophysical and instrumental effects in the most natural basis for each
uncertain quantity; optimized computational costs with little or no need for intermediate human interaction between various analysis
steps; and a complete overview of the entire analysis process within one single framework. As a practical demonstration of this
framework, we focus in particular on low-` CMB polarization reconstruction with Planck LFI. In this process, we identify several
important new effects that have not been accounted for in previous pipelines, including gain over-smoothing and time-variable and
non-1/ f correlated noise in the 30 and 44 GHz channels. Modelling and mitigating both previously known and newly discovered
systematic effects, we find that all results are consistent with the ΛCDM model, and we constrain the reionization optical depth
to τ = 0.066 ± 0.013, with a low-resolution CMB-based χ2 probability-to-exceed of 32 %. This uncertainty is about 30 % larger
than the official pipelines, arising from taking into account a more complete instrumental model. The marginal CMB Solar dipole
amplitude is 3362.7 ± 1.4 µK, where the error bar is derived directly from the posterior distribution without the need of any ad-
hoc instrumental corrections. We are currently not aware of any significant unmodelled systematic effects remaining in the Planck
LFI data, and, for the first time, the 44 GHz channel is fully exploited in the current analysis. We argue that this framework can
play a central role in the analysis of many current and future high-sensitivity CMB experiments, including LiteBIRD, and it will
serve as the computational foundation of the emerging community-wide Cosmoglobe effort, which aims to combine state-of-the-art
radio, microwave, and submillimeter data sets into one global astrophysical model. All software is made publicly available under an
OpenSource license, and both codes and products may be obtained through http://beyondplanck.science.

Key words. ISM: general – Cosmology: observations, polarization, cosmic microwave background, diffuse radiation – Galaxy:
general

Contents

1 Introduction 2
1.1 CMB cosmology . . . . . . . . . . . . . . . . . 2

? Corresponding author: H. K. Eriksen; h.k.k.eriksen@astro.
uio.no

1.2 Planck . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Large-scale CMB polarization, the reionization

optical depth, and systematic errors . . . . . . . . 4
1.4 Lessons learned from Planck . . . . . . . . . . . 5
1.5 The next frontier: Primordial gravitational waves 6
1.6 The BeyondPlanck program . . . . . . . . . . . 6

Article number, page 1 of 61

ar
X

iv
:2

01
1.

05
60

9v
2 

 [
as

tr
o-

ph
.C

O
] 

 1
2 

Se
p 

20
22

http://beyondplanck.science
h.k.k.eriksen@astro.uio.no
h.k.k.eriksen@astro.uio.no


A&A proofs: manuscript no. BP_Global_Bayesian_Analysis_of_Planck_LFI

1.7 From BeyondPlanck to Cosmoglobe . . . . . . . 7

2 BeyondPlanck analysis strategy and organization 7
2.1 End-to-end Bayesian CMB analysis . . . . . . . 7
2.2 Commander . . . . . . . . . . . . . . . . . . . . 8
2.3 Paper organization . . . . . . . . . . . . . . . . 8

3 Parameterizing the microwave sky 9
3.1 Conventions: Stokes parameters, pixelization,

spherical harmonics, and units . . . . . . . . . . 9
3.2 Cosmic microwave background anisotropies . . . 10
3.3 Galactic foreground emission . . . . . . . . . . . 10

3.3.1 Synchrotron emission . . . . . . . . . . 10
3.3.2 Free-free emission . . . . . . . . . . . . 11
3.3.3 Thermal dust emission . . . . . . . . . . 11
3.3.4 Spinning dust (or anomalous mi-

crowave) emission . . . . . . . . . . . . 12
3.3.5 Carbon monoxide emission . . . . . . . 12

3.4 Extra-galactic compact sources . . . . . . . . . . 13
3.5 Default sky model . . . . . . . . . . . . . . . . . 13

4 Instrument characterization 14
4.1 Ideal instrument model . . . . . . . . . . . . . . 14
4.2 Spectral response, bandpass averaging, and unit

conversion . . . . . . . . . . . . . . . . . . . . . 14
4.2.1 Bandpass uncertainties and corrections . 15

4.3 Beam and pixel window convolution . . . . . . . 16
4.4 Gain and analog-to-digital conversion . . . . . . 17
4.5 Instrumental noise . . . . . . . . . . . . . . . . . 18

5 Data 19
5.1 LFI instrument overview . . . . . . . . . . . . . 20

5.1.1 Instrument configuration . . . . . . . . . 20
5.1.2 Stabilization . . . . . . . . . . . . . . . 20
5.1.3 LFI signal model . . . . . . . . . . . . . 21
5.1.4 Naming convention . . . . . . . . . . . . 22

5.2 Implementation details . . . . . . . . . . . . . . 22
5.2.1 Unprocessed Level-1 data . . . . . . . . 22
5.2.2 Level-2 data pre-processing . . . . . . . 22
5.2.3 1 Hz spike correction . . . . . . . . . . . 23

5.3 Pixel-domain data . . . . . . . . . . . . . . . . . 23
5.3.1 Planck HFI data . . . . . . . . . . . . . 23
5.3.2 Wilkinson Microwave Anisotropy Probe . 24
5.3.3 Low-frequency surveys . . . . . . . . . . 24

6 Bayesian analysis and MCMC sampling 24
6.1 Metropolis sampling . . . . . . . . . . . . . . . 25
6.2 Metropolis-Hastings sampling . . . . . . . . . . 26
6.3 Gibbs sampling . . . . . . . . . . . . . . . . . . 26

7 Global model specification 26
7.1 Global parametric model . . . . . . . . . . . . . 27
7.2 Deterministic quantities . . . . . . . . . . . . . . 28

7.2.1 Frequency maps and leakage corrections 28
7.2.2 Spurious leakage maps . . . . . . . . . . 29
7.2.3 Orbital dipole . . . . . . . . . . . . . . . 29
7.2.4 Far sidelobe corrections . . . . . . . . . 29

8 The BeyondPlanck Gibbs sampler 30
8.1 Global posterior distribution . . . . . . . . . . . 30
8.2 Overview of Gibbs chain . . . . . . . . . . . . . 30
8.3 Specification of conditional sampling steps . . . 30

8.3.1 Gain and calibration sampling . . . . . . 30
8.3.2 Correlated noise sampling . . . . . . . . 32
8.3.3 Noise PSD sampling . . . . . . . . . . . 34
8.3.4 Bandpass sampling . . . . . . . . . . . . 34
8.3.5 Diffuse component spectral parameter

sampling . . . . . . . . . . . . . . . . . 35
8.3.6 Diffuse component amplitude sampling . 36
8.3.7 Compact source sampling . . . . . . . . 37
8.3.8 C` and cosmological parameter sampling 37

8.4 Computational requirements and optimization . . 39
8.4.1 Low-level optimization . . . . . . . . . . 39
8.4.2 High-level parallelization and optimization 42

9 Results 43
9.1 Instrumental parameters . . . . . . . . . . . . . . 43
9.2 Frequency maps . . . . . . . . . . . . . . . . . . 45
9.3 Astrophysical component posteriors . . . . . . . 49
9.4 CMB temperature posteriors . . . . . . . . . . . 52
9.5 CMB polarization posteriors . . . . . . . . . . . 53

10 Reproducibility and Open Science 54
10.1 Reproducibility . . . . . . . . . . . . . . . . . . 55
10.2 Software . . . . . . . . . . . . . . . . . . . . . . 55

11 Conclusions, summary and outlook 56

A Review of frequently used textbook sampling algo-
rithms 60
A.1 Univariate and low-dimensional Gaussian sam-

pling . . . . . . . . . . . . . . . . . . . . . . . . 60
A.2 High-dimensional Gaussian sampling . . . . . . 60
A.3 Inversion sampling . . . . . . . . . . . . . . . . 61

1. Introduction

1.1. CMB cosmology

According to the current cosmological concordance model, the
observable universe came into existence some 13.8 billion years
ago in a process often referred to as the Big Bang. While the
physical laws underpinning this singular event remain unknown,
it is a testament to the success of modern cosmology that physi-
cists today are able to measure and model the evolution and en-
ergy content of the universe to exquisite precision, starting only
a fraction of a second after the Big Bang.

Among the most important cosmological observables is the
cosmic microwave background (CMB), first detected by Penzias
& Wilson (1965). This leftover heat from the Big Bang fills the
entire universe, and may today be observed as a nearly isotropic
blackbody signal with a temperature of 2.7255 K (Fixsen 2009).
Initially, CMB photons were trapped locally within a dense
electron–proton plasma by Thomson scattering. However, once
the mean plasma temperature fell below 3000 K as the Universe
expanded, electrons and protons combined into neutral hydrogen
atoms, and the photons were free to move throughout the en-
tire observable universe, with almost no further scattering. This
event took place some 380 000 years after the Big Bang, at a
time often referred to as the recombination epoch. To any ob-
server, the resulting photons appear to come from a so-called
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Fig. 1. Planck 2018 Commander CMB temperature (top panel) and ther-
mal dust polarization amplitude (bottom panel) maps. Reproductions
from Planck Collaboration IV (2018).

last-scattering surface, a sphere corresponding to a light travel
distance of just under the entire history of the universe.

While the CMB field is very nearly isotropic, it does exhibit
small spatial variations at the O(30 µK) level (e.g., Hu & Do-
delson 2002, and references therein). These fluctuations are pro-
duced primarily by variations in the local gravitational potential,
temperature, density, and velocity at the last-scattering surface.
Smaller amplitude fluctuations arise from various secondary in-
teractions taking place after the photons leave the last-scattering
surface, for instance through gravitational lensing or Thomson
scattering in the hot, ionized medium in clusters of galaxies. It
is precisely by measuring and modelling all these small varia-
tions that cosmologists are able to decipher the history of the
universe in ever greater detail. The current best-fit cosmological
model derived from this work is often referred to as the ΛCDM
model, which posits that the universe is isotropic and homoge-
neous on large scales; that it started in a hot Big Bang; that it un-
derwent a brief period of exponential expansion called inflation
that seeded the universe with Gaussian random density fluctua-
tions drawn from a scale-invariant power spectrum; and that the
energy contents of the universe comprise 4.9 % baryonic mat-
ter, 26.5 % cold dark matter, and 68.5 % dark energy (Planck
Collaboration VI 2020). Flat spatial curvature is also frequently
assumed.

The rich cosmological information embedded in the CMB
is not, however, easy to extract. Even the most dominant phys-
ical effects produce only temperature fluctuations at the 10−5–
10−4 level in the CMB. A primary goal for next-generation CMB
experiments is the detection of primordial gravitational waves
through the subtle polarization they imprint on the CMB (e.g.,
Kamionkowski & Kovetz 2016, and references therein). These

so-called B-modes are likely to have an amplitude no larger than
30 nK, or a relative amplitude smaller than O(10−8).

The fact that current CMB observations reach the µK level
in the face of instrument noise and systematics is a testament to
the effort of many scientists and engineers in this field, and to
the time and money they have spent. Here, we list only a few of
the results of five decades of observational milestones. NASA’s
COBE mission produced the first highly accurate measurement
of the thermal spectrum of the CMB (Mather et al. 1994) and
the first detection of large scale fluctuations in the CMB (Smoot
et al. 1992). The first high-fidelity map of smaller scale CMB
fluctuations was made by the BOOMERanG team (de Bernardis
et al. 2000), and the first detection of polarized fluctuations by
DASI (Kovac et al. 2002). These are among the more than 50
past and present CMB projects, all of which have contributed to
technological innovations or scientific breakthroughs.

Two space missions, however, are primarily responsible for
today’s cosmological concordance model. They are NASA’s
Wilkinson Microwave Anisotropy Probe (WMAP; Bennett et al.
2013) and ESA’s Planck (Planck Collaboration I 2020) satellite
missions. WMAP was the first experiment to take full advan-
tage of the exquisite thermal stability at Earth’s second Lagrange
point (L2), and observed the CMB sky for nine years (2001–
2010) in five frequency bands (23–94 GHz) with precision un-
precedented at the time.

1.2. Planck

The state-of-the-art in all-sky CMB observations as of 2022
is defined by ESA’s cosmology flagship mission called Planck
(Planck Collaboration I 2020). Planck observed the CMB sky for
four years (2009–2013) in nine frequency bands (30–857 GHz),
with three times higher angular resolution and ten times higher
sensitivity than WMAP. Its original design goal was to measure
the primary CMB temperature fluctuations with a precision lim-
ited only by fundamental physical processes, including cosmic
variance, not by instrumental sensitivity (Planck Collaboration
2005).

Planck comprised two separate instruments within a com-
mon focal plane. One was the Low Frequency Instrument (LFI;
Planck Collaboration II 2020), which employed coherent High
Electron Mobility Transistor (HEMT) radiometers with center
frequencies near 30, 44 and 70 GHz, each with a fractional band-
width of roughly 20 %. The other was the High Frequency In-
strument (HFI; Planck Collaboration III 2020), which employed
spider-web and polarization sensitive bolometers with center fre-
quencies of 100, 143, 217, 353, 545 and 857 GHz, each with a
fractional bandwidth of 25 %.

Two different detector technologies were required to span
Planck’s frequency range. The use of two very different detector
technologies also provided crucial cross-checks against subtle
instrumental errors. Planck’s wide frequency range fully cov-
ered most of the spectrum of a 2.7255 K blackbody, but more
crucially allowed for the removal of contaminating foreground
signals (e.g., Leach et al. 2008). These arise from synchrotron
emission from relativistic electrons moving in the magnetic field
of the Galaxy, thermal emission from warm Galactic dust and
bremsstrahlung emission from ionized gas, as well as microwave
emission from extra-galactic sources. This list is not exhaustive;
but each mechanism for foreground emission has a unique spa-
tial distribution on the sky and a unique, non-blackbody spec-
trum which allows it to be distinguished from the CMB. The
preferred method for separating cosmological fluctuations in the
CMB from astrophysical foreground signals is to map the sky
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at multiple frequencies, and then perform a joint fit to this set of
maps while taking into account the particular spatial and spectral
behaviour of each foreground. These considerations drove the
design of Planck (Planck Collaboration 2005). The capability to
detect polarized signals was added at the seven lowest frequency
bands, from 30 to 353 GHz. Figure 1 shows the CMB tempera-
ture fluctuation and the polarized thermal dust emission maps as
derived from Planck observations, which rank among the most
iconic results from the experiment.

The Planck satellite was launched to L2 on May 14th 2009
and deactivated on October 23rd 2013; it thus completed in total
almost 4.5 years of observations (Planck Collaboration I 2020).
Unlike the case for WMAP, both Planck instruments were cryo-
genically cooled. The last 18 months of operation included only
LFI science measurements, as HFI exhausted its cooling capac-
ity in January 2012.

The first Planck data release (denoted either “PR1” or 2013
here; Planck Collaboration I 2014) took place in March 2013,
and was based on the first 15.5 months of data, covering the full
sky twice. By and large, these measurements confirmed the cos-
mological model presented by WMAP and other previous exper-
iments, but with significantly higher signal-to-noise ratio. This
higher sensitivity also supported several truly groundbreaking
results, two of which were a 25σ detection of gravitational lens-
ing of CMB anisotropies (Planck Collaboration XVII 2014), and
a revolutionary new image of polarized thermal dust emission in
the Milky Way (Planck Collaboration XI 2014).

The 2013 release, however, did not include any CMB polar-
ization results. In addition, the initial angular power spectrum
of CMB anisotropies exhibited a ∼2 % shift in amplitude com-
pared to the earlier WMAP power spectrum (Planck Collabo-
ration XV 2014). Both of these issues had a common origin,
namely incompletely controlled systematic errors arising from
instrumental effects (Planck Collaboration I 2016). As noted ear-
lier, CMB observations are not easy: even small errors in as-
sumptions made about foregrounds or instrumental behaviour
can have dramatic effects on the recovered CMB signal. Exam-
ples of instrumental effects include: uncertainties in the beam
shape and far sidelobes; mis-estimation of the frequency re-
sponse of detectors, which can introduce temperature to polar-
ization leakage; unaccounted-for non-linearity in the analog-to-
digital converters (ADCs) used in each detector chain; and un-
certainties in the polarization properties of detectors.

The Planck team grappled with all of these, as well as un-
certainties in foreground contamination, in the years between
2013 and the release of the final Planck results in 2020 (Planck
Collaboration I 2020). Very substantial investments of time and
money were made to develop increasingly accurate models of
the two Planck instruments; these allowed for more precise and
robust science results. We emphasize that the official LFI and
HFI pipelines evolved step-by-step in the post-launch period as
instrument-specific effects emerged due to increased calibration
accuracy. BeyondPlanck builds on all this accumulated expe-
rience in implementing a global approach to the data analysis
problem.

A major milestone in this iterative process was the second
Planck data release (“PR2” or 2015; Planck Collaboration I
2016), which for the first time included the full set of Planck ob-
servations (50 months of LFI data and 27 months of HFI data).
At this point, the polarization properties of both the LFI and
HFI instruments were sufficiently well understood to allow for
a direct measurement of CMB polarization on intermediate and
small angular scales (Planck Collaboration XI 2016). For HFI,
however, accurate large-scale polarization was still out of reach

due to systematic errors, and only LFI provided such constraints.
The original power spectrum discrepancy relative to WMAP was
tracked down to inaccuracies in the calibration procedure and
reference dipole values used for the Planck 2013 analysis, and
these were subsequently corrected in the 2015 release. With this
second data release, Planck finally fulfilled its promise of mea-
suring the primary CMB temperature fluctuations to the limits
set by astrophysical and cosmological effects (Planck Collabo-
ration I 2016).

1.3. Large-scale CMB polarization, the reionization optical
depth, and systematic errors

Planck analysis continued beyond 2015, with a particular em-
phasis on reducing large-scale polarization systematics (Planck
Collaboration I 2020). Both the importance and difficulty of this
specific issue may be summarized in terms of the reionization
optical depth, τ (e.g., Planck Collaboration Int. XLVII 2016).
This parameter is directly related to the epoch during which the
first stars were born, often called the epoch of reionization (e.g.,
Loeb & Barkana 2001, and references therein). According to de-
tailed measurements of the abundance of neutral hydrogen in the
universe from quasar spectra (the so-called “Lyman alpha for-
est”; Gunn & Peterson 1965), this event cannot have happened
later than about 1 billion years after the Big Bang, corresponding
to an optical depth of τ & 0.048. However, an independent mea-
surement of τ may also be derived through CMB observations,
by noting that the first stars or galaxies ionized their surrounding
medium, and thereby released large numbers of free electrons
off which CMB photons could scatter. Detailed models predict
a CMB polarization signal with an amplitude of about 0.5 µK
on angular scales larger than 10◦ (e.g., Alvarez et al. 2006, and
references therein).

While the scientific potential in establishing robust large-
scale polarization measurements is very high, potentially pin-
pointing a critical epoch in the history of the universe, the tech-
nical challenges are massive. The expected curl-free E-mode po-
larization signal is only about 1 % of the corresponding CMB
temperature fluctuations, and the signal is only clearly visible on
large angular scales. Among all parameters in the cosmological
concordance model, the reionization optical depth is the most
susceptible to systematic errors, and for this reason it is often
adopted as a monitor for residual errors.

To illustrate the difficulties associated with measuring τ, it is
interesting to consider its value as reported in the literature as a
function of time. The first CMB constraint was reported in the
first-year WMAP release, which claimed τ = 0.17 ± 0.04 cor-
responding to a reionization epoch of tr = 180+220

−80 Myr (Kogut
et al. 2003). Such an early reionization epoch imposed strong
limits on galaxy formation processes, and was not immediately
compatible with standard theories. However, this preliminary
measurement was based on the cross-correlation between tem-
perature and polarization fluctuations for which uncertainties
and degeneracies are large. Furthermore, it also did not account
for bias introduced by foreground emission.

After adding more data, and, critically, allowing more time
for understanding the data and controlling systematic errors, the
3-year WMAP data release resulted in a significantly revised es-
timate of τ = 0.089 ± 0.03, nearly doubling the time allowed
for structure formation (Page et al. 2007). This estimate was
derived directly from polarization-only measurements, and in-
cluded proper foreground corrections. Based on further improve-
ments and additional data, the reported 5-year WMAP posterior
mean value was τ = 0.085 ± 0.016 (Komatsu et al. 2009), while
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in the 7-year release it was τ = 0.088 ± 0.015 (Larson et al.
2011), before finally settling on τ = 0.089 ± 0.014 in the 9-year
release (Hinshaw et al. 2013). This represented the state-of-the-
art before Planck in terms of large-scale CMB polarization mea-
surements.

As already mentioned, no CMB polarization measurements
were included in the first Planck 2013 release (Planck Collabo-
ration I 2014). However, from temperature measurements alone,
the best-fit optical depth was constrained to τ = 0.097 ± 0.038,
in seemingly excellent agreement with the final WMAP polar-
ization results (Planck Collaboration XVI 2014). Then, in the
Planck 2015 release, the LFI data allowed the first indepen-
dent constraint on large-scale CMB polarization since WMAP
(Planck Collaboration XI 2016). At the same time, the HFI polar-
ization observations provided new and powerful constraints on
Galactic polarized thermal dust (Planck Collaboration X 2016),
to which the WMAP experiment was only marginally sensitive.
The combination of LFI CMB and HFI thermal dust polariza-
tion measurements alone resulted in τ = 0.064+0.022

−0.023, or 1.1σ
lower than the 9-year WMAP value. Furthermore, when com-
bining the WMAP large-scale polarization CMB data with the
same HFI polarization foreground data, the best-fit value was
τ = 0.067 ± 0.013, in full agreement with LFI.

The HFI large-scale CMB polarization data were not con-
sidered sufficiently mature for scientific analysis until 2016,
when new calibration, mapmaking, and simulation procedures
had been implemented in a code called SROLL (Planck Collabo-
ration Int. XLVIII 2016). Taking advantage of these new devel-
opments, and leveraging the higher statistical power of the HFI
data, the reported estimate of the reionization optical depth was
adjusted further down by HFI to τ = 0.055 ± 0.009. In paral-
lel, the LFI procedure was improved by merging calibration and
component separation into one framework. Combined, these new
analysis procedures formed the basis for the third official Planck
release (Planck Collaboration I 2020), for which a final value of
τ = 0.053 ± 0.009 was reported. The good agreement with the
lower limit imposed by quasar measurements, τ > 0.048, implies
both that reionization by the first generation of stars occurred rel-
atively late, and that we can pin down the epoch of reionization
with precision.

While a stable and internally consistent ΛCDM model, in-
cluding τ, had emerged by the official end of the Planck con-
sortium in 2018, one could still see clear signatures of residual
systematics present in various subsets of the data. For HFI, sev-
eral internal cross-correlations did not agree with each other to
statistical precision (Planck Collaboration III 2020). For LFI the
44 GHz channel failed internal null tests (Planck Collaboration
II 2020), and there were clear discrepancies between the raw fre-
quency maps as seen by LFI and WMAP (Planck Collaboration
IV 2018), indicating that there were still issues to be resolved
within either LFI or WMAP, or both.

The last effort of the Planck collaboration to resolve these
questions was organized within Planck Release 4 (PR4; also
sometimes referred to as “Data Release 4” — DR4 — or simply
NPIPE1; Planck Collaboration Int. LVII 2020). One unique fea-
ture of this pipeline was its ability to analyze both LFI and HFI
jointly within the same framework. Combining some of the most
powerful features from each of the instrument analysis pipelines,
this approach led to further reduction of systematic errors in both
data sets. The resulting best-fit estimate of the reionization op-

1 This name is short for “NERSC pipeline”, a name deriving from the
computer facilities at which it is executed, namely the National Energy
Research Scientific Computing Center (NERSC).

tical depth from DR4 reads τ = 0.058 ± 0.006 (Tristram et al.
2021).

An independent initiative to improve the Planck processing
was SROLL2 (Delouis et al. 2019), which was a direct continu-
ation of the HFI SROLL effort (Planck Collaboration III 2020).
A defining feature of this approach is improved ADC correc-
tions, which in particular leads to more robust large-scale polar-
ization estimates. From the SROLL2 polarization analysis alone,
the current best-fit estimate of the reionization optical depth is
τ = 0.0566+0.0053

−0.0062 (Pagano et al. 2020).
A second independent initiative is called BeyondPlanck, and

this is the primary focus of the current paper and suite of com-
panion papers. The scope of this project is significantly different
than the previous efforts, as BeyondPlanck aims at building a
complete integrated end-to-end analysis pipeline for current and
future CMB experiments. The current work focuses in particular
on the Planck LFI data set, although significant effort is spent
ensuring that the tools are generalizable to other experiments.
Indeed, one example of this is already presented within the cur-
rent project in the form of a preliminary application to WMAP
(Bennett et al. 2013; Watts et al. 2022).

Because instrumental systematics and residual foreground
contamination have such a dramatic impact on the large-scale
CMB polarization estimates, in this paper we will use the reion-
ization optical depth as a direct demonstration of the Beyond-
Planck framework, and our ultimate scientific goal is to estimate
the posterior distribution P(τ | d) from Planck LFI and WMAP
observations, d. The posterior summarizes our knowledge about
τ in the form of a probability distribution, and we will estimate
P(τ | d) within a strict Bayesian framework, with as few approx-
imations and little data selection as possible. We will avoid the
use of cross-spectrum techniques, which frequently are used to
reduce the sensitivity of the final products to instrumental sys-
tematics (e.g., Planck Collaboration V 2020). In this project, we
aim to do the opposite, and highlight the impact of residual sys-
tematics, such that, if needed, they can be addressed at a lower
level of the analysis. As such, internal consistency, goodness-of-
fit and χ2 tests will play critical roles.

1.4. Lessons learned from Planck

To understand the background, historical context, and motiva-
tion for the BeyondPlanck program, it is useful to revisit the
“Lessons learned from Planck,”2 as compiled by the Planck con-
sortium in 2016. In Section 9.6 (“Understanding the data”) one
can read the following:

In a project like Planck, “understanding the data” is
certainly the most significant driver of the quality of the
final products and science it can produce. This activity
must be at the core of the data processing. It covers a lot
of ground – photometry, optical response, time response,
calibration, systematic effects, etc. – all interlinked is-
sues that can be diagnosed at many different levels in the
data processing pipelines, from raw data streams to fin-
ished maps and scientific products.

(. . . ) In the early phases of Planck, much of the strat-
egy was based on separating the various elements of the
problem into independent parts. This was adequate for
a first treatment of the data. However, as the quality of
the data improved, it became harder to find and analyse
subtler non-ideal effects, and to do so required a more in-

2 https://www.cosmos.esa.int/web/planck/lessons-learned
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tegrated approach, where a variety of effects were treated
simultaneously.

(. . . ) An example is the influence of foregrounds on
calibration: initially model foreground templates were
used to isolate the CMB dipole signal (the calibrator),
but in later stages the template had to be iterated within
the calibration pipeline to include and self-consistently
reduce the effects of polarization, sidelobes, dipoles, etc.

(. . . ) As understanding of the data progresses, analy-
sis – and the teams doing it – need to become more and
more integrated, pulling in parts of the pipeline which
initially could be separated out.

As described in these paragraphs, the analysis approach
adopted by Planck became gradually more and more integrated
as the effective sensitivity of the data set improved through more
refined analysis, and new systematic effects were uncovered. In-
deed, only toward the end of the Planck mission period did it be-
come evident that the single most limiting factor for the overall
analysis was neither instrumental systematics nor astrophysical
foregrounds as such, but rather the interplay between the two. In-
tuitively speaking, the problem may be summarized as follows:
One cannot robustly characterize the astrophysical sky without
knowing the properties of the instrument, and one cannot char-
acterize the instrument without knowing the properties of the as-
trophysical sky. The calibration and component separation pro-
cedures are intimately tied together. By the time this issue was
fully understood, there were neither sufficient resources nor time
to redesign a complete Planck analysis pipeline from bottom-up.
An important organizational goal of the BeyondPlanck program
has therefore been to provide a financial structure that allows the
team to consolidate this experience into practical computer code,
and make this publicly available to the general community.

1.5. The next frontier: Primordial gravitational waves

While a statistically coherent analysis of existing data is un-
doubtedly both interesting and useful in its own right, it is impor-
tant to emphasize that none of the developments detailed in this
work are likely to impact the overall cosmological concordance
model to any significant degree. Indeed, looking at the big pic-
ture, the cosmological model has been remarkably stable even
before WMAP and Planck provided their high-precision mea-
surements; see, e.g., Wang et al. (2003) for a summary of pre-
WMAP measurements and constraints. The main achievement of
WMAP and Planck has been to refine this model to the level at
which cosmology now is a high-precision science within which
competing theoretical models can be tested and rejected at high
statistical significance.

Planck has for all practical purposes completed the study of
primary CMB temperature fluctuations. Currently, however, an-
other frontier is driving the CMB field, namely the search for pri-
mordial gravitational waves created during inflation. These are
predicted to exist by most inflationary theories, although their
predicted amplitudes can vary by many orders of magnitude, de-
pending on the precise details of the assumed inflationary model
(e.g., Kamionkowski & Kovetz 2016). Typically, this amplitude
is quantified in terms of the tensor-to-scalar ratio, r, which mea-
sures the ratio in fluctuation power attributable to gravitational
waves and ordinary density perturbations, respectively.

If such gravitational waves do exist, one generically expects
a specific imprint in the CMB polarization field in the form of
a large-scale “divergence-free” or B-mode polarization signal.
The observational challenges associated with gravitational wave

detection are essentially the same as those for measuring τ. How-
ever, the state-of-the-art upper limits on the tensor-to-scalar ratio
are r < 0.036 (Ade et al. 2021) and r < 0.032 (Tristram et al.
2022), both at 95 % confidence, which immediately implies that
the B-mode signal must be more than one order of magnitude
smaller than the E-mode signal, and thus no more than a few
tens of nK in amplitude.

With such a small target amplitude, it is safe to assume that
an integrated analysis approach will no longer be optional for fu-
ture CMB missions, but rather a strict prerequisite. Establishing
both the experience and appropriate code required to implement
such an approach for future CMB missions is a main long-term
scientific motivation for the BeyondPlanck program; current ex-
periments such as Planck and WMAP provide real-world test-
beds that ensure that the BeyondPlanck approach is both realis-
tic and practical.

1.6. The BeyondPlanck program

We are now ready to formulate the main goal of the Beyond-
Planck program:

BeyondPlanck aims to implement and apply a sin-
gle statistically coherent analysis pipeline to Planck and
other CMB data sets, processing raw uncalibrated time-
ordered data into final astrophysical component maps,
angular power spectra, and cosmological parameters
within one single code.

Important secondary goals include

1. to model and propagate instrumental uncertainties from raw
time-ordered data into final high-level Planck LFI scientific
results;

2. to provide a computationally convenient interface to the raw
Planck LFI data that can be accessed and extended by exter-
nal users;

3. to develop a framework that allows joint analysis of Planck
LFI with other data sets; and

4. to prepare for next-generation CMB experiments, in partic-
ular those aiming to detect primordial gravitational waves
through their imprint on large-scale polarization of the CMB.

The “BeyondPlanck” name serves as a reminder that this work
builds directly on several decades of Planck efforts and experi-
ence, while at the same time highlights the fact that it aims to
apply the Planck methodology to data sets beyond Planck, both
archival and future.

Clearly, this is a very ambitious program that will require
long-term and dedicated support. The first stage of the pro-
gram, which is reported in the current suite of papers, has been
funded within an EU-based Horizon 2020 action called “Lead-
ership in Enabling and Industrial Technologies” (LEIT), as well
as through various individual grants. This funding only covers
end-to-end analysis of the Planck LFI data, which is smaller in
volume than HFI data, and therefore serves as a convenient real-
world test case for development purposes, while still represent-
ing a very important scientific data set in its own right.

As detailed in the H2020 LEIT contract, the BeyondPlanck
program started on March 1st 2018, and ended formally on
November 30th 2020; the total duration of the funded program
was thus strictly limited to two years and nine months. During
this period, large amounts of software, products and documen-
tation had to be written from scratch. Indeed, a first fully opera-
tional pipeline was completed as late as June 2020, and the first
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data release took place during an online conference on Novem-
ber 20-22 2020; the conference was remote due to COVID-19
travel restrictions. However, as discussed during that conference,
the first BeyondPlanck data products were significantly affected
by important unresolved systematic effects, including a notable
power excess in the Southern Galactic hemisphere. Understand-
ing those effects has been the main focus of the collaboration
since that time, and, as will be detailed in the following and in
a suite of companion papers, we now finally believe that all pre-
viously reported issues have been successfully understood and
resolved.

1.7. From BeyondPlanck to Cosmoglobe

The amount of funding and human effort spent on mapping the
sky at radio, microwave, and submillimeter frequencies during
the last few decades has truly been massive (Gerakakis et al.
2022), and an experiment like Planck alone represents an invest-
ment of about e700 M for the spacecraft, payload, launch, and
operations. The cost of WMAP was about $150 M, while a typ-
ical ground-based or sub-orbital CMB experiment costs about
10 M euros or dollars; LiteBIRD’s cost cap is $300 M, while the
future CMB-S4 project is likely to cost about $500 M.

Optimally exploiting these expensive data is clearly of the
essence for the field as whole. In particular, it is important to re-
alize that each experiment is unique in its own way, and teaches
us something new about the astrophysical sky. Some experi-
ments have very broad frequency coverage, while others have
very high angular resolution; some provide absolutely calibrated
data, while others have very low amounts of correlated noise.
Some are designed for intensity observations, while others are
optimized for polarization measurements. At the same time, each
experiment invariably has its own “blind-spots” or degeneracies.
For instance, both Planck and WMAP have their own so-called
“poorly measured modes”, which correspond to sky modes that
are not well measured by their respective scanning strategies
(Planck Collaboration I 2020; Bennett et al. 2013; Watts et al.
2022).

The ultimate solution to breaking such degeneracies is
through joint analysis of complementary data sets; WMAP can be
used to constrain the largest polarization modes and thereby im-
prove Planck’s gain model (Planck Collaboration II 2020), while
Planck can be used to constrain WMAP’s transmission imbal-
ance parameters (Jarosik et al. 2007). Similarly, for future Lite-
BIRD or CMB-S4 analyses, Planck and WMAP must be used as
models of the temperature sky, while the new experiments will
provide an entirely new view of the polarization sky. And once
those new polarization measurements become available, it will
be essential to re-analyze the Planck and WMAP measurements,
taking into account the new polarization information, to further
reduce their systematic uncertainties.

In general, the most cost-efficient and productive way for the
field as a whole to make progress in the future is through joint
and global analysis of all available experiments. Cosmoglobe3
represents an Open Science platform for this work, which main
goal is to establish a global model of the radio, microwave, and
submillimeter sky through joint analysis of all available state-
of-the-art data sets. This project builds directly on the current
BeyondPlanck efforts, and will use the computational machin-
ery developed in the following as the starting point for its multi-
experiment analysis. All interested parties and collaborations are
highly encouraged to participate in the Cosmoglobe effort.

3 https://cosmoglobe.uio.no

2. BeyondPlanck analysis strategy and organization

2.1. End-to-end Bayesian CMB analysis

Recognizing the lessons learned from Planck as summarized in
Sect. 1.4, the defining design philosophy of BeyondPlanck is
tight integration of all steps from raw time-ordered data process-
ing to high-level cosmological parameter estimation. Tradition-
ally, this process has been carried out in a series of weakly con-
nected steps, pipelining independent executables with or without
human intervention. Some steps have mostly relied on frequen-
tist statistics, employing forward simulations to propagate un-
certainties, while other steps have adopted a Bayesian approach,
using the posterior distribution to quantify uncertainties. For in-
stance, traditional mapmaking is a typical example of the for-
mer (e.g., Ashdown et al. 2007b), while cosmological parameter
estimation is a typical example of the latter (e.g., Lewis & Bri-
dle 2002); for component separation purposes, both approaches
have been explored in the literature (e.g., Planck Collaboration
Int. XLVI 2016).

BeyondPlanck is the first real-world CMB analysis pipeline
to adopt an end-to-end Bayesian approach. This solution was in
fact first proposed by Jewell et al. (2004). However, it took more
than 15 years of computational and algorithmic developments to
actually make it feasible.

Perhaps the single most important advantage of a uniform
Bayesian approach is that it allows seamless propagation of un-
certainties within a well-established statistical framework. This
aspect will become critically important for future experiments,
as demonstrated by Planck. For most CMB experiments prior to
Planck, the dominant source of uncertainty was noise; for most
CMB experiments after Planck, the dominant source of uncer-
tainty will be instrumental systematics, foreground contamina-
tion, and the interplay between the two. As a logical consequence
of this fact, BeyondPlanck adopts a consistent statistical frame-
work that integrates detailed error propagation as a foundational
feature.

The Bayesian approach also has several notable advantages
in terms of intuition and transparency. In particular, the most crit-
ical step for any Bayesian analysis is the definition of the data
model. This may often be described in terms of a handful of
equations, and these equations subsequently serve as a road-map
for the entire analysis. While the complexity of the numerical
implementation may vary from model to model, the posterior
distribution itself has a very intuitive and direct interpretation.

At a practical level, integrating the entire pipeline into a sin-
gle computational code also has significant advantages in terms
of net computational speed and resources. Not only are slow
disk operations reduced to a minimum by performing all opera-
tions within one single code, but more importantly, all interme-
diate human interactions are eliminated from the process. This
both saves significant amounts of human time required for “code
shepherding” and file transfers, and it significantly reduces the
risk of human errors. Thus human resources are saved that can
be better spent on fundamental modelling aspects.

A fourth significant advantage of end-to-end integration is
increased transparency of implicit and explicit priors. For a dis-
tributed analysis process, it is critically important to communi-
cate all assumptions made in each step to avoid errors, while
in an integrated approach internal inconsistencies become much
more visible; there are simply fewer opportunities for misun-
derstandings to propagate undetected throughout an integrated
analysis pipeline.
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Table 1. Overview of BeyondPlanck and preliminary Cosmoglobe papers.

Reference Title

Pipeline
BeyondPlanck (2022) . . . . . . . . . . . . . I. Global Bayesian analysis of the Planck Low Frequency Instrument data
Keihänen et al. (2022) . . . . . . . . . . . . . II. CMB mapmaking through Gibbs sampling
Galloway et al. (2022a) . . . . . . . . . . . . III. Commander3
Brilenkov et al. (2022) . . . . . . . . . . . . IV. On end-to-end simulations in CMB analysis — Bayesian versus frequentist statistics

Instrument characterization
Herman et al. (2022a) . . . . . . . . . . . . . V. Minimal ADC Corrections for Planck LFI
Ihle et al. (2022) . . . . . . . . . . . . . . . . . VI. Noise characterization and modelling
Gjerløw et al. (2022) . . . . . . . . . . . . . . VII. Bayesian estimation of gain and absolute calibration for CMB experiments
Galloway et al. (2022b) . . . . . . . . . . . . VIII. Efficient Sidelobe Convolution and Correction through Spin Harmonics
Svalheim et al. (2022a) . . . . . . . . . . . . IX. Bandpass and beam leakage corrections

Cosmological and astrophysical results
Basyrov et al. (2022) . . . . . . . . . . . . . . X. Planck LFI frequency maps with sample-based error propagation
Colombo et al. (2022) . . . . . . . . . . . . . XI. Bayesian CMB analysis with sample-based end-to-end error propagation
Paradiso et al. (2022) . . . . . . . . . . . . . XII. Cosmological parameter estimation with end-to-end error propagation
Andersen et al. (2022) . . . . . . . . . . . . . XIII. Intensity foregrounds, degeneracies and priors
Svalheim et al. (2022b) . . . . . . . . . . . . XIV. Polarized foreground emission between 30 and 70 GHz
Herman et al. (2022b) . . . . . . . . . . . . . XV. Limits on Large-Scale Polarized Anomalous Microwave Emission from Planck LFI and WMAP

Cosmoglobe
Gerakakis et al. (2022) . . . . . . . . . . . . From BeyondPlanck to Cosmoglobe: Open Science, reproducibility, and data longevity
Watts et al. (2022) . . . . . . . . . . . . . . . . From BeyondPlanck to Cosmoglobe: Preliminary WMAP Q-band analysis

2.2. Commander

We adopt Commander2 (Eriksen et al. 2004, 2008; Seljebotn
et al. 2019), a well-established Bayesian CMB Gibbs sampler
developed for Planck, as the starting point of our pipeline. As
demonstrated in Planck Collaboration IV (2018), this code al-
ready supports Bayesian multi-resolution component separation,
which is precisely the operation that connects low-level map-
making to high-level cosmological parameter estimation. A main
implementational goal for BeyondPlanck is thus to extend this
framework to incorporate Bayesian calibration and mapmaking,
as well as to connect component separation and cosmological
parameter estimation.

We will refer to three different versions of the Commander
code in the following. Commander1 refers to the original im-
plementation described by Eriksen et al. (2004, 2008), which
at the beginning of the BeyondPlanck project represented the
most mature version in terms of foreground spectral parameter
fitting. However, a major limitation of that code is a requirement
of common angular resolution among all data sets. Commander2
removes this limitation through explicit beam convolution for
each frequency map during component separation, as detailed
by Seljebotn et al. (2019), and thereby allows for full resolu-
tion analysis of the Planck data. Due to the much higher com-
putational cost associated with increased angular resolution, the
development of Commander2 required a re-implementation of
the original algebra from scratch, adopting a much more fine-
grained parallelization strategy than Commander1.
Commander3 (Galloway et al. 2022a) refers to the time-

domain version of the algorithm, as developed in BeyondPlanck,
and is a direct generalization and extension of Commander2 in
terms of code implementation. As a result, Commander2 is no
longer an independent code, but we will still refer to it in cases
where it might be convenient for pedagogical purposes to dis-
tinguish between multi-resolution component separation in the
pixel-domain versus the time-domain. All Commander source

codes are available under a GNU Public Library (GPL) Open-
Source license.4

2.3. Paper organization

The BeyondPlanck methodology and results are described in a
suite of companion papers, as listed in Table 1. The present paper
provides a broad overview in terms of motivation, algorithms,
and main results. However, it is not intended to be comprehen-
sive, and specific details are deferred to the relevant companion
papers.

The remaining papers may be divided into four main cate-
gories, namely 1) pipeline papers; 2) instrument characterization
papers; 3) cosmological and astrophysical results papers; and 4)
joint BeyondPlanck–Cosmoglobe papers. The first category of
papers provides a comprehensive overview of the current imple-
mentation of the BeyondPlanck pipeline, at a level that is hope-
fully sufficiently detailed to allow external users to understand
intuitively its statistical and computational basis, what assump-
tions it relies on, and what its limitations are. The ultimate goal
of these papers is that external users should be able to repeat and
extend the work that is presented here.

The second category of papers address the various rele-
vant instrumental parameters required to process the raw time-
ordered data into sky maps. These include noise characteriza-
tion, gain estimation, sidelobe corrections, and bandpass and
beam mismatch modelling. Each paper aims both to provide an
intuitive understanding of the effect in question, and to show how
it impacts the final results. These papers also demonstrate how to
quantitatively model each instrumental effect, and how to prop-
agate uncertainties into other parameters. Particular emphasis is
placed on building intuition regarding leading internal parameter
degeneracies, both among the various instrumental parameters
and with astrophysical and cosmological parameters.

4 https://github.com/Cosmoglobe/Commander
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The third category of papers present the main scientific re-
sults in terms of frequency and component maps, as well as an-
gular power spectra and cosmological parameters. Consistency
between the BeyondPlanck products and non-Planck sets is also
considered in this category of papers.

The fourth category includes papers that aim to generalize
the BeyondPlanck data model to other data sets within the Cos-
moglobe framework. One worked example is provided in the
form of a preliminary WMAP Q-band reanalysis (Watts et al.
2022).

We note that, in the spirit of reproducibility and accessibility
(Gerakakis et al. 2022), a significant emphasis is put on intuition
and background throughout the BeyondPlanck papers. The pa-
per suite is intended to be largely self-contained, and detailed
knowledge of the Planck publication list is not an assumed pre-
requisite. As such, a substantial amount of review material is
included, both in terms of general background material and al-
gorithmic details. The style of the papers is consciously tuned
toward Ph.D. students and early postdoctoral fellows, rather than
seasoned CMB experts.

3. Parameterizing the microwave sky

As already noted, the single most important component in any
Bayesian analysis is the parametric model that is fitted to the
data. In our case, this model consists of both astrophysical and
instrumental components. In this section we consider the cos-
mological and astrophysical parameters, before introducing the
instrumental parameters in the next section.

3.1. Conventions: Stokes parameters, pixelization, spherical
harmonics, and units

In order to characterize each astrophysical component quantita-
tively, we need to introduce some general notation and conven-
tions. First, each astrophysical component will be described in
terms of three Stokes parameters, namely intensity (denoted ei-
ther I or T ) and two linear polarizations (denoted Q and U). We
will ignore circular polarization (V) for now, but we note that
this may be added in future work.

To discretize the Stokes parameters on the sphere, we adopt
the HEALPix pixelization5 (Górski et al. 2005). This pixeliza-
tion has several highly desirable properties, including equal-
area pixels and support for fast spherical harmonics transforms,
and is now effectively a standard in modern CMB analysis.
The HEALPix pixel resolution is controlled through a param-
eter called Nside, and the total number of pixels on the sky is
Npix = 12N2

side. We organize the Stokes parameters into vectors
of length 3Npix, simply by stacking {T,Q,U} into a map vector
s(n̂), where n̂ is a unit direction vector.

Unless otherwise noted, we define the Stokes parameters
with respect to Galactic coordinates. We adopt the cosmologi-
cal convention for the polarization angle, γ, in which γ = 0 for
vectors pointing north and increases westward. This is opposite
to the IAU convention used in most other fields of astronomy, in
which γ increases eastward. To convert from one convention to
the other, one must multiply Stokes U by −1.

The Stokes polarization parameters Q and U form a spin-2
field, which intuitively may be interpreted as a “headless vector
field”. In contrast, the intensity T is a spin-0 field, and does not
change under rotations. Thus, when rotating Stokes parameters

5 http://healpix.jpl.nasa.gov

by an angle α, the transformed Stokes parameters are T ′
Q′
U′

 =

 1 0 0
0 cos 2α − sin 2α
0 sin 2α cos 2α


 T

Q
U

 . (1)

As described by Zaldarriaga & Seljak (1997), the polariza-
tion Stokes parameters may be expanded into spherical harmon-
ics through the following relations,

T (n̂) =

`max∑
`=0

∑̀
m=−`

a`mY`m(n̂) (2)

(Q ± iU)(n̂) =

`max∑
`=2

∑̀
m=−`

±2a`m ±2Y`m(n̂), (3)

where ka`m are called (spin-k) spherical harmonic coefficients.
The polarization coefficients are often combined algebraically
into E and B coefficients,

aE
`m = −

1
2

(2a`m + −2a`m) (4)

aB
`m =

i
2

(2a`m − −2a`m) , (5)

which each form a spin-0 field, fully analogous to the intensity
T .

From the spherical harmonic coefficients we may compute
the observed angular power spectrum as

σXY
` =

1
2` + 1

∑̀
m=−`

(
aX
`

)∗
aY
`m, (6)

where {X,Y} ∈ {T, E, B}. These quantify the strength of fluctua-
tions at a given multipole ` as directly measured from some sky
map. In addition, we define the ensemble-averaged power spec-
trum as

CXY
` ≡

〈(
aX
`

)∗
aY
`m

〉
=

〈
σXY
`

〉
, (7)

where brackets indicate an average over statistical realizations.
This function is thus independent of the observed sky, and only
depends on the model that describes the field in question.

Finally, each sky map s must be quantified in terms of a phys-
ical unit. In the following work, we will encounter many differ-
ent conventions for this, depending on the particular application
in question. However, three conventions are more common than
others, and we limit our discussion here to these special cases.

The first measure is surface brightness per solid an-
gle, which simply measures the amount of energy emit-
ted by some source per surface area, per frequency inter-
val, per sky solid angle. This is often measured in units of
MJy sr−1 ≡ 10−20 W m−2 Hz−1sr−1, and it quantifies the specific
intensity Iν of a given source as a function of wavelength, ν.

The second measure we will use is thermodynamic tempera-
ture. In this case, we identify the intensity with that emitted by a
blackbody source with temperature T ,

Iν = Bν(T ) =
2hν3

c2

1

e
hν
kT − 1

, (8)

where h is Planck’s constant, c is the speed of light, and k
is the Boltzmann constant. This measure is particularly useful
for CMB applications, because the CMB is itself a near-perfect
blackbody, and a single temperature T (n̂) therefore uniquely
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specifies its intensity at any wavelength at a given position. The
unit for thermodynamic temperature is denoted KCMB or simply
K.

Our third and final measure is the brightness temperature
or Rayleigh-Jeans temperature, TRJ. This is defined by the long
wavelength limit (hν � kT ) of Eq. (8), such that

Iν =
2ν2kTRJ

c2 . (9)

While the thermodynamic temperature is convenient to de-
scribe the CMB, most astrophysical foreground signals have a
non-blackbody nature, and are more naturally quantified in terms
of brightness temperature. In particular, while the spectral en-
ergy density of many foregrounds can span many tens of or-
ders of magnitude when expressed in KCMB, they are usually
limited to a few orders of magnitude when expressed in either
MJy sr−1 or KRJ. To avoid numerical problems, all astrophysical
components are therefore expressed in units of KRJ internally
in Commander, and only converted to the respective natural unit
before outputting results to disk. Monochromatic conversion be-
tween KRJ and MJy sr−1 is performed through Eq. (9), while
monochromatic conversion between KRJ and KCMB is given by

∆TCMB =
(ex − 1)2

x2ex TRJ, (10)

where x = hν/kT0, and T0 = 2.7255 K is the mean CMB tem-
perature (Fixsen 2009). Note that this conversion applies only
to small temperature variations around the CMB mean value,
∆T ≡ T − T0, which is precisely the form of most CMB temper-
ature maps in common use today.

We are now ready to write down parametric models for each
of the main astrophysical components that are relevant for the
Planck frequency range. Each component will be described in
terms of a spectral energy density (SED) in brightness temper-
ature units, and, in some cases, in terms of an angular power
spectrum or some other similar spatial coherence measure.

3.2. Cosmic microwave background anisotropies

We start our survey with the CMB component, which is the sci-
entifically most important one for Planck. For this, we first de-
fine sCMB to be a 3Npix sky vector of CMB Stokes parameters as
described above. Second, we assume that the CMB SED may be
approximated as a blackbody. As such, its brightness tempera-
ture SED is given by Eq. (10),

sCMB
RJ (ν) ∝

x2ex

(ex − 1)2 sCMB, (11)

where x = hν/kT0. (Note that we define the effective SED only
up to a normalization constant, as we will typically parameterize
each component in terms of an amplitude map at a given refer-
ence frequency times the SED normalized to unity at the refer-
ence; any normalization factor is therefore accounted for in the
amplitude coefficient.)

In addition to the pure cosmological blackbody SED, the
CMB component exhibits a relativistic correction due to our mo-
tion with respect to the CMB monopole. This effect is frequency
dependent, and is primarily dominated by quadrupole correction
(Notari & Quartin 2015). Unlike the official Planck sky maps
(Planck Collaboration II 2020; Planck Collaboration LVII 2020),
we do not subtract this component from the frequency maps
(Basyrov et al. 2022), but rather include it as part of the signal
model (Andersen et al. 2022).

For component separation purposes, these are the only as-
sumption we make regarding the CMB. However, for cosmo-
logical parameter estimation purposes, we make two important
additional assumptions, namely that the CMB temperature flucu-
tations are both Gaussian distributed and statistically isotropic.
The assumption of Gaussianity determines the conditional prob-
ability distribution for the CMB signal,

P(s | C`) ∝
e−

1
2 stS−1 s
√
|S|

, (12)

where S is the covariance matrix of the CMB fluctuation field,
and we have dropped the “CMB” superscript for convenience.
The assumption of statistical isotropy implies that S is fully
specified in terms of the angular power spectrum,

SXY
`m,`′m′ ≡

〈(
aX
`

)∗
aY
`′m′

〉
= CXY

`m δ``′δmm′ . (13)

For practical parameter estimation purposes, both of these as-
sumptions have been shown to be excellent approximations to
the true CMB sky (see, e.g., Planck Collaboration VII 2020;
Planck Collaboration IX 2020, and references therein).

The connection to cosmological parameters, such as the
Hubble constant H0 or the reionization optical depth τ, is made
through cosmological Boltzmann codes, such as CMBfast (Sel-
jak & Zaldarriaga 1996) or CAMB (Lewis et al. 2000). These
deterministically calculate the ensemble-averaged CMB power
spectrum based on well-understood physics given some specific
set of cosmological parameters, ξ. However, this calculation is
only straightforward going from ξ to C`; it is highly nontrivial
to go directly from C` to ξ. Instead, Markov Chain Monte Carlo
(MCMC) methods such as CosmoMC (Lewis & Bridle 2002) are
typically employed to perform the inversion, in which a series of
parameter combinations are proposed and rejected or accepted,
ultimately resulting in a set of parameter samples that jointly rep-
resents the final parameter posterior distribution. As described
in Sect. 1.6, the goal of the BeyondPlanck program is to im-
plement a similar MCMC method that accounts for the entire
process from raw time-ordered data to final cosmological pa-
rameters with full Bayesian end-to-end error propagation.

3.3. Galactic foreground emission

The second most important class of sky emission components
consists of diffuse Galactic foregrounds. These all originate from
within the Milky Way, and are due to particles (electrons, ions,
dust, etc.) associated with various processes such as star forma-
tion or supernova explosions. Furthermore, these particles all in-
teract with the same magnetic field, and as a result they produce
correlated polarized emission. In this section, we provide a brief
survey of each of the main physical emission mechanisms, with
a particular focus on parametric models.

3.3.1. Synchrotron emission

At low microwave frequencies, synchrotron emission dominates
the radio sky. This emission is mostly due to relativistic electrons
ejected from supernova, spiralling in the magnetic field of the
Milky Way. CMB observations are typically made at frequencies
in the range of tens or hundreds of GHz, and at these frequencies,
the synchrotron SED falls rapidly with increasing frequency. In-
deed, detailed models and observations both suggest that the ef-
fective spectrum may be closely approximated by a power-law
at frequencies higher than a few gigahertz, with some evidence
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for possible curvature. In this work, we therefore follow Kogut
(2012), and adopt a general SED model of the form

ss
RJ(ν) ∝

(
ν

ν0,s

)β+C ln ν/ν0,s

, (14)

where ν0,s is a reference frequency, β is a power-law index, and
C is a curvature parameter. However, in most cases we set C = 0,
as the signal-to-noise ratio for this parameter is very low with the
limited data set considered in this work (Svalheim et al. 2022b).

When the local magnetic field is highly structured, syn-
chrotron emission can be highly polarized, with a theoretical
maximum polarization fraction of p = 75 %. In practice, this
value is decreased due to line-of-sight and volume integration
effects, and according to Planck and WMAP, more typical values
are . 15 % at high Galactic latitudes, with extreme cases reach-
ing 30–50 % only in a few large-scale supernova remnants that,
when projected on the sky, take the form of so-called “Galactic
spurs” (Planck Collaboration XXV 2016).

At low frequencies, polarized synchrotron emission is also
significantly affected by Faraday rotation (e.g., Beck et al. 2013,
and references therein). This effect is caused by circular bire-
fringence, i.e., left- and right-handed circular polarized emission
travel at different speeds through a magnetic field embedded in
an ionized medium, resulting in a net rotation of the polarization
angle of linearly polarized emission. The polarization angle ro-
tation is proportional to the magnetic field strength as well as to
the square of the wavelength of the emission. Numerically, the
rotation angle is typically a few degrees at 23 GHz at low Galac-
tic latitudes (Carretti et al. 2019; Fuskeland et al. 2021), and we
neglect it for the higher-frequency Planck and WMAP surveys
considered here.

3.3.2. Free-free emission

Free-free emission (or bremsstrahlung) arises primarily from
free electrons scattering off protons without being captured, and
emitting a photon in the process. Since free electrons only ex-
ist in appreciable amounts when the temperature of the medium
is comparable to the hydrogen binding energy, corresponding to
103 − 104 K, free-free emission predominantly traces hot H ii re-
gions and, as such, active star forming regions. Free-free emis-
sion is particularly important for CMB experiments because it
is the only foreground component that is non-negligible at all
frequencies between 1 and 1000 GHz, and it is therefore partic-
ularly sensitive to degeneracies with respect to both the CMB
and other foreground components.

The free-free SED depends primarily on the number of free
protons and electrons along the line of sight, which typically is
quantified in terms of the emission measure (EM), i.e., the inte-
gral of the square electron density along the line of sight,

EM ≡
∫ ∞

0
n2

e dl, (15)

where the number densities of free protons and electrons are as-
sumed to be equal. The conventional unit adopted for the EM is
pc cm−6, and typical values for the Milky Way range between 0
and 1000 (Planck Collaboration X 2016).

Assuming local thermodynamic equilibrium and first con-
sidering an optically thick medium, the free-free SED is deter-
mined by a blackbody spectrum given its electron temperature,
Te, alone. Since the optical depth drops rapidly with increasing
frequency, however, free-free emission in astrophysical contexts

and at CMB frequencies is optically thin. Hence, the effective
SED can be expressed as

sff
RJ(ν) = Te (1 − e−τ). (16)

As shown by Dickinson et al. (2003) and Draine (2011), τ may
be very well approximated by

τ = 0.05468 · T−3/2
e · ν−2

9 · EM · gff , (17)

where

gff = log
{
exp

[
5.960 −

√
3/π log(ν9 · T

−3/2
4 )

]
+ e

}
(18)

is called the Gaunt factor, and ν9 and T4 are the frequency and
the electron temperature measured in units of GHz and 104 K,
respectively.

This SED is a nonlinear function of EM and Te. A complete
free-free model therefore corresponds to a complicated proba-
bility distribution with expensive special-purpose sampling al-
gorithms, as for instance employed in Planck Collaboration IX
(2016). In this work, we instead adopt a simpler linearized ver-
sion of Eq. (16) that is only strictly valid in the optically thin
case, τ � 1, namely

sff
RJ(ν) ∝

gff(Te)
ν2 , (19)

and we correspondingly quantify the free-free amplitude in
terms of the observed signal at a given reference frequency in
µKRJ, as opposed to the full nonlinear EM parameter described
above.

There is essentially no effective alignment mechanism for
thermal electrons in a hot medium, and large-scale free-free
emission is therefore expected to be nearly unpolarized. The
main exception to this are sharp edges around hot H ii regions,
which do introduce a preferred direction in the emission geom-
etry. However, even these are only expected to be mildly polar-
ized, and over large angular scales, the net polarization fraction
is expected to be well below 1 % (see discussion in Keating et al.
1998). In the following, we thus assume that free-free emission
is completely unpolarized.

3.3.3. Thermal dust emission

The interstellar medium (ISM) is filled not only with hydrogen
and electrons, but also with tiny dust grains ranging in diameter
from less than a nanometer (i.e., a few atoms across) to roughly
a micron (i.e., thousands of atoms across). Dust grains typically
condense from stellar outflows and ejecta, and so dust abundance
is correlated with star formation. Newly-formed dust is rapidly
mixed in the dynamic, turbulent ISM, where it undergoes sig-
nificant processing. Dust is therefore ubiquitous in the Galaxy,
found wherever there is interstellar gas.

It is known from spectroscopic features that dust is made
from, at minimum, silicate and carbonaceous materials. How-
ever, the precise grain composition is likely to vary with lo-
cal environment. Dust grains are heated by ambient stellar ra-
diation, and large grains accounting for the bulk of the dust
mass equilibriate to a steady-state temperature ranging between
10 and 30 K. This energy is thermally re-emitted with a peak
wavelength in the sub-mm frequency range, typically between
1000 and 3000 GHz. Since these grains are inefficient radiators
at longer wavelengths, the thermal dust SED falls rapidly at fre-
quencies below the peak, where CMB observations are typically
carried out. The varied composition and geometry of ISM dust
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particles makes the thermal dust SED significantly more com-
plicated to model from first principles, when compared to the
free-free emission described above; for recent examples of such
modelling efforts, see, e.g., Guillet et al. (2018) and Hensley &
Draine (2022).

In practice, simpler fitting formulae are therefore usually
adopted for practical analyses, and one particularly popular class
of models is the so-called modified blackbody spectrum, which
in intensity units reads

Id
ν ∝ τν

βd Bν(Td). (20)

This function is simply a blackbody spectrum with tempera-
ture Td, modulated by a power-law having index βd. In physi-
cal terms, this corresponds to dust having an opacity that scales
as νβd, a reasonable approximation for wavelengths longer than
∼ 20 µm (Hensley & Draine 2020).

The amplitude is, as for free-free emission, given by the op-
tical depth, τ, which depends directly on the surface density of
particles along the line of sight. Typical numerical values for
these three parameters are τ ∼ 10−6, βd ∼ 1.6, and Td ∼ 20 K. In-
tuitively speaking, βd determines the slope (or first derivative in
log-log space) of the SED below 200 GHz, while Td determines
the SED peak position, and second derivative at lower frequen-
cies. However, we will model thermal dust emission in terms of
brightness temperature, and in these units the effective SED may
be written in the form

sd
RJ(ν) ∝

νβd+1

ehν/kTd − 1
. (21)

Interaction with gas and radiation torques up grains, and they
tend to rotate about their axis of greatest moment of inertia, i.e.,
their short axis. Dust grains having unpaired electrons can de-
velop a non-zero magnetic moment anti-parallel to their angu-
lar velocity through the Barnett effect (Dolginov & Mitrofanov
1976). Dissipative processes act to align the rotation axis with
the local magnetic field. For a more detailed discussion of grain
alignment, see Andersson et al. (2015).

The preferential alignment of the short axes of grains with
the local magnetic field leads to significant net polarization from
the ensemble of grains. Thermal dust polarization fractions as
large as 20 % are found using the high frequency Planck po-
larization measurements (Planck Collaboration XI 2020). We
therefore include all three Stokes parameters in our thermal dust
model. At the same time, we note that the highest polarization-
sensitive Planck frequency channel is 353 GHz, and this does not
provide sufficient frequency range to allow an independent esti-
mate of the thermal dust temperature in polarization. We there-
fore assume the same Td for intensity and polarization, while βd
is allowed to be different.

3.3.4. Spinning dust (or anomalous microwave) emission

Dust grains rotate with rotational kinetic energy of order the
thermal energy in the ambient gas. Consequently, sub-nanometer
grains can achieve rotational frequencies of tens of GHz. If these
grains possess an electric dipole moment, as generally expected
for particles of this size (Macià Escatllar & Bromley 2020),
this rotation produces emission in the microwave frequency
range, as first predicted theoretically by Erickson (1957), and
described quantitatively by Draine & Lazarian (1998). The spin-
ning dust mechanism currently provides the most popular the-
oretical explanation for so-called “anomalous microwave emis-
sion” (AME) observed around 20 GHz in CMB surveys, as first
identified and named by Leitch et al. (1997).

In this work, we will adopt a spinning dust model for this
component, starting from an SED template, ssd

0 (ν), computed
with the SpDust2 code (Ali-Haïmoud et al. 2009; Ali-Haïmoud
2010; Silsbee et al. 2011) for environmental parameters typi-
fying the Cold Neutral Medium. This spectrum is intrinsically
computed in intensity units, in which it peaks at 30 GHz. Af-
ter converting to brightness temperature by scaling with ν−2, as
given by Eq. (9), the peak shifts to 17.4 GHz, and the overall
spectrum is less than 1 % of its peak value at frequencies below
1.3 GHz or above 66 GHz. To fit this SED model to the data, we
follow Bennett et al. (2013), and introduce a peak position pa-
rameter, νp, that shifts the spectrum rigidly in log ν–log s space,

ssd
RJ(ν) ∝ ν

−2 ssd
0

(
ν ·

30.0 GHz
νp

)
(22)

We note, however, that this emission component is associ-
ated with large uncertainties, both in terms of the physical mech-
anism that is actually responsible for the observed emission, and
in terms of detailed modelling within the chosen paradigm. In
general, we assume this component to be unpolarized, and we
adopt the spinning dust model in Eq. (22) for the AME compo-
nent.

Despite sensitive searches in individual objects (Génova-
Santos et al. 2015, 2017) and over large sky areas (Macellari
et al. 2011), polarization has not been detected in the AME.
In principle, AME could be highly polarized if small spinning
grains are efficiently aligned. Theoretical estimates of the align-
ment efficiency of ultrasmall grains vary widely, with predicted
AME polarization fractions ranging from . 1% (Hoang et al.
2013) to completely negligible (Draine & Hensley 2016). We
perform a detailed study of AME polarization in Herman et al.
(2022b), but assume it to be unpolarized in all other analysis.

3.3.5. Carbon monoxide emission

In the same way that rotating dust particles can emit radio emis-
sion, so can molecules with a non-zero electric dipole moment.
One particularly important example of such molecules is carbon
monoxide (CO), which resides primarily in dense clouds where
it is shielded from destruction by UV radiation. The most com-
mon isotopologe of CO is 12C16O (abbreviated 12CO), which is
typically 10–100 times more abundant than 13C16O (abbreviated
13CO) (Szűcs et al. 2014).

For a simple system such as CO, quantum mechanical effects
are highly significant. In particular, only very specific rotational
states are allowed by quantization of angular momentum. Let us
denote the masses of the two atoms by mC and mO, respectively,
and the corresponding atomic distances from their center of mass
by rC and rO. We also define rCO = rC + rO to be the effective
atom size and mCO = mCmO/(mC + mO) its reduced mass.

With this notation, the moment of inertia of the CO molecule
is I = mCr2

C + mOr2
O. The corresponding eigenvalues of the

Schrödinger equation are given by

Erot =
J(J + 1)~2

2I
, (23)

where J = 0, 1, . . . is the angular momentum quantum num-
ber. Quantum mechanically allowed energy changes are given
by ∆J = ±1, and each such transition either absorbs or emits a
photon with wavelength

ν0 =
∆Erot

h
=
~J
2πI

=
~J

2πmCOr2
CO

, J = 1, 2, . . . (24)
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For the 12CO J=1←0 transition, one finds ν0 = 115.27 GHz,
while for the 13CO J=1←0 transition, it is ν0 = 110.20 GHz.
Higher-order transitions, such as J=2←1, are very nearly multi-
ples of these frequencies.

The width of CO lines is small compared to the broad Planck
bandpasses, and so we model the corresponding SED by a delta
function at the respective frequency,

sCO
RJ (ν) ∝ δ(ν − ν0). (25)

We note that specific intensity units are not appropriate for CO
emission since all of the energy is being emitted in a narrow
spectral range. Instead, CO emission is conventionally quantified
in terms of K km s−1. Because the central frequency is known
from theory, emission away from line center can be attributed
to radial motion with a definite mapping between frequency and
velocity. The line intensity in brightness temperature units is in-
tegrated over all velocities, yielding K km s−1.

CO emission is expected to be only weakly polarized, with a
polarization fraction around 1 % in molecular clouds (Greaves
et al. 1999). Detecting such low levels of true polarization is
challenging with the currently available Planck data, primar-
ily due to instrumental temperature-to-polarization leakage. For
now, we assume CO line emission to be fully unpolarized, but
note that this is likely to change in future analysis.

Finally, we note that although the base CO frequencies do
not lie within the Planck LFI frequency bands themselves, CO
emission is nevertheless indirectly important for LFI because of
its prevalence in the HFI channels, and these are in turn critical
to model thermal dust emission for LFI.

3.4. Extra-galactic compact sources

In addition to the Galactic foreground emission mechanisms dis-
cussed in Sect. 3.3, several extra-galactic effects are also im-
portant for CMB frequencies, including cosmic infrared back-
ground (CIB) radiation (Hauser & Dwek 2001) and the Sunyaev-
Zeldovich effect (Sunyaev & Zeldovich 1972), and there are also
contributions arising from within the Solar system, namely zodi-
acal light emission (Kelsall et al. 1998; Planck Collaboration X
2016; San et al. 2022). However, the Planck LFI data have a very
low signal-to-noise ratio to any of these effects, and we therefore
ignore these in the following.

For LFI frequencies, the most important class of extra-
galactic components are compact radio sources. All the emis-
sion mechanisms listed above operate in external galaxies, but
the radio source population is dominated by active galactic nu-
clei (AGN). Radio emission from AGN is largely synchrotron,
and comes from either the galactic nucleus itself or from jets and
lobes associated with the nucleus. While the morphology of in-
dividual sources may be complicated, few are resolved by most
CMB experiments and hence can be treated as “point” sources.
Thus, while individual components of an AGN may exhibit po-
larized microwave emission, the emission from an unresolved
source as a whole is rarely strongly polarized; typical polariza-
tion fractions are a few percent (Datta et al. 2019).

AGN have a wide range of SEDs, but most AGN spectra at
CMB frequencies can be adequately modeled by a simple power
law with a spectral index determined primarily by the energy
spectrum of the relativistic electrons generating the synchrotron
emission. The spectral indices (in brightness) typically range
from 0 to −1, and most fall in a narrower range of −0.5 to −0.7.
Hence we adopt a simple power law SED as our model for radio
sources, and fit for the amplitude and spectral index of the radio

source contribution,

ssrc
RJ (ν) ∝

(
ν

ν0,src

)α−2

(26)

Here νsrc is a fixed reference frequency, and α is the spectral
index defined in intensity units; the conversion between intensity
and brightness temperature is proportional to ν2.

As we move to higher CMB frequencies, or to more sensi-
tive experiments, the counts of extra-galactic sources begin to
include dusty galaxies. These objects emit modified blackbody
radiation, like Galactic dust, but typically at higher temperatures.
Emission from this class of objects is included in the cosmic in-
frared background discussed below.

Unlike the dusty galaxies, which tend to be clustered,
synchrotron-dominated radio sources are quite randomly dis-
tributed on the sky, and hence have a flat angular power spec-
trum. On the other hand, the emission of synchrotron dominated
sources is frequently variable, on time scales ranging from days
to years. Time variability is not accounted for in the current
model, and variable sources are therefore likely to leave resid-
uals in the final maps. For this reason, we will apply a dedicated
point source mask during the final CMB parameter estimation,
to minimize contamination in the final cosmological parameters.

3.5. Default sky model

Based on the above survey, and unless specified otherwise, the
default BeyondPlanck astrophysical sky model (in brightness
temperature units) reads as follows,

sRJ =
(
aCMB + aquad(ν)

) x2ex

(ex − 1)2 + (27)

+ as

(
ν

ν0,s

)βs

+ (28)

+ aff

(ν0,ff

ν

)2 gff(ν; Te)
gff(ν0,ff ; Te)

+ (29)

+ aame

(ν0,ame

ν

)2 fame

(
ν · 30.0 GHz

νp

)
fame

(
ν0,ame ·

30.0 GHz
νp

)+ (30)

+ ad

(
ν

ν0,d

)βd+1 ehν0,d/kBTd − 1
ehν/kBTd − 1

+ (31)

+ UmJy

Nsrc∑
j=1

a j,src

(
ν

ν0,src

)α j,src−2

, (32)

where x = hν/kT0 and ν0,i is the reference frequency for compo-
nent i; UmJy is a conversion factor between flux density in milli-
jansky and brightness temperature. Thus, ai is the amplitude of
component i in units of µKRJ, as observed at a monochromatic
frequency ν0,i. The sum in line 32 runs over all sources brighter
than some flux threshold as defined by an external source cat-
alog, and both the amplitude and spectral index are fitted indi-
vidually per source. We adopt the same catalog as Planck Col-
laboration IV (2018), which is hybrid of the AT20G (Murphy
et al. 2010), GB6 (Gregory et al. 1996), NVSS (Condon et al.
1998) and PCCS2 (Planck Collaboration XXVI 2016) catalogs
comprising a total of 12 192 individual sources.

Only {sRJ, aCMB, as, ad} are assumed to be polarized in
this model, and these comprise 3-component vectors including
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Stokes T , Q, and U parameters. The remaining amplitudes pa-
rameters, {aff , aAME, a

j
src}, are assumed unpolarized, and have

vanishing Stokes Q and U parameters.
For algorithmic reasons, we distinguish between lin-

ear and nonlinear parameters. The former group includes
{aCMB, as, aff , aAME, ad, asrc}, collectively denoted a; as de-
scribed in Sect. 8.3.6, this set of parameters may be estimated
jointly and efficiently through a multivariate Gaussian Monte
Carlo sampler. In contrast, the nonlinear parameters include
{βs,Te, νp, βd,Td, βsrc}, and these must be estimated indepen-
dently and with computationally far more expensive algorithms;
see Sect. 8.3.5 for specific details. In practice, we fit individual
compact source amplitudes jointly with the corresponding spec-
tral indices using a general sampling algorithm, since these are
much more correlated with these than with any of the diffuse
component parameters.

4. Instrument characterization

We now turn to the second half of the parametric model em-
ployed in the BeyondPlanck analysis, which describes the in-
strument used to collect the measurements. So that the Beyond-
Planck analysis may freely be used by others, we aim to keep
the presentation and notation as general as possible, and only in-
troduce BeyondPlanck and LFI-specific notation where strictly
necessary. We start our discussion by first defining an ideal de-
tector response model, and then increase the level of realism
step-by-step, until we reach the final instrument model.

4.1. Ideal instrument model

Let us first consider an ideal monochromatic detector observ-
ing at frequency ν a stationary sky signal with local Stokes pa-
rameters {T,Q,U} at Galactic coordinates (l, b) and polarization
angle ψ. We also initially assume infinite angular resolution. In
this ideal case, the signal recorded by the detector as a function
of time t may be written as

d(t) = g(t)
[
T + Q cos 2ψ + U sin 2ψ

]
+ n(t), (33)

where g is a multiplicative factor called the gain, which converts
between physical signal units (which in our case will be KCMB)
and digitized instrumental detector units (which in our case will
be V), and n denotes instrumental noise.

In order to obtain data that may be processed on a computer,
it is necessary to discretize the measurements by averaging over
some (short) time period, ∆t. For most CMB experiments, typi-
cal samples rates are between 10 and 200 Hz. A single recorded
datum, dt, thus corresponds to the detector output averaged over
a period typically between 0.005 and 0.1 s.

For an ideal detector, the noise may be approximated as
Gaussian and uncorrelated in time, and, as such, its variance de-
creases proportionally to 1/∆t. We define the standard deviation
of a single time sample to be σ0.

A CMB experiment scans the sky according to some scan-
ning strategy, p(t) = [l(t), b(t), ψ(t)], while continuously record-
ing the signal dt. To describe this behaviour in a convenient nota-
tion, we first discretize the sky as described in Sect. 3.1, s = sp,
and then re-write Eq. (33) in vector form as follows,

d = G Ps + n, (34)

where d = [d1, d2, . . . , dnTOD ]t and n = [n1, n2, . . . , nnTOD ]t are
time-domain vectors of length NTOD, and G is a diagonal NTOD×

NTOD matrix with gt on the diagonal. The scanning strategy is en-
coded in an NTOD × 3Npix matrix that contains (1, cos 2ψ, sin 2ψ)
in the columns that correspond to pixel p that happens to be ob-
served at time t, and zero elsewhere, i.e.,

P =


0 1 0 . . . 0 cos 2ψ1 0 . . . 0 sin 2ψ1 0
1 0 0 . . . cos 2ψ2 0 0 . . . sin 2ψ2 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
0 0 1 . . . 0 0 cos 2ψ1 . . . 0 0 sin 2ψ1

.
(35)

This matrix is called the pointing matrix.6 Correspond-
ingly, the sky vector consists of the three pixelized
Stokes parameter maps stacked into a single vector,
s = [T1, . . . ,TNpix ,Q1, . . . ,QNpix ,U1, . . . ,UNpix ]t.

Equation (34) describes an ideal instrument that cannot be re-
alized in actual hardware. The remainder of this section is there-
fore dedicated to generalizing this equation to the point that it
actually does serve as a useful model for real-world CMB exper-
iments.

4.2. Spectral response, bandpass averaging, and unit
conversion

The first generalization we will consider is the assumption of
monochromaticity. No real detector can measure a single fre-
quency signal, but it is instead sensitive to a range of frequen-
cies. This sensitivity is described by a so-called bandpass pro-
file or spectral transmission, τ(ν), which quantifies how much
of the radiation at a given frequency is actually recorded by the
detector. We define τ to be normalized to unity when integrated
across all frequencies. Adopting brightness temperature units for
all quantities (i.e., τ, d, and the monochromatic sky signal, s(ν)),
the data model in Eq. (34) generalizes to

d = GP
∫

s(ν)τ(ν) dν + n, (36)

after taking into account the bandpass effect.7
However, most data sets are not provided in terms of bright-

ness temperature units, but more often in either thermodynamic
temperature or intensity units. As described in detail in Planck
Collaboration IX (2014), in order to convert from unit conven-
tion Xi to unit convention X j, one must multiply with a unit con-
version factor that is given by

Ui j =

∫
τ(ν) dIν

dXi
dν∫

τ(ν) dIν
dX j

dν
, (37)

where dIν/dXi is the intensity derivative expressed in unit con-
vention Xi. In particular, the conversion factors from brightness
temperature to thermodynamic temperature and intensity units
are given by

UKRJ→KCMB =

∫
τ(ν) 2kν2

c2 dν∫
τ(ν) b′ν dν

(38)

UKRJ→MJy sr−1 =

∫
τ(ν) 2kν2

c2 dν∫
τ(ν) νc

ν
dν

, (39)

6 Only the nonzero entries need to be stored in the pointing matrix, and
memory requirements are therefore manageable.
7 Note that many experiments, including Planck HFI, defines the band-
pass profile in intensity units rather than brightness temperature units,
and in this case an additional factor of 2hν2/c2 must be included in the
integral, as given by Eq. (9); see Planck Collaboration IX (2014) for
details.
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where

b′ν =
∂B(T, ν)
∂T

∣∣∣∣∣
T=T0

(40)

is the derivative of the blackbody function with respect to tem-
perature, evaluated at the CMB temperature T0, and νc is an
arbitrary selected reference frequency for the channel in ques-
tion. For other conversions, including to K km s−1 and the SZ
y-parameter, we refer the interested reader to Planck Collabora-
tion IX (2014). Taking into account both bandpass integration
and unit conversion, the instrument model reads

d = UGP
∫

s(ν)τ(ν) dν + n. (41)

We aim to constrain s given d. It is therefore important to be
able to quickly evaluate the integral and unit conversion factors
in Eq. (41). With this in mind, we consider signal component
i as defined by the sky model in Sect. 3.5, and write it in the
general form si(ν) = ai fi(ν; ν0, β), where ai is the linear ampli-
tude relative to some reference frequency, ν0,i, and fi(ν; β) is the
frequency scaling from that reference frequency to an arbitrary
frequency ν, which depends on some set of spectral parameters
β. The total signal measured by detector j may then be written
as

s j =

Ncomp∑
i=1

ai

[
U j

∫
fi(ν; β) τ j(ν) dν

]
≡

Ncomp∑
i=1

M j
i ai = M j a, (42)

where M j
i is called the mixing matrix. In order to take into ac-

count bandpass integration and unit conversion, the idealized
data model in Eq. (34) must be generalized as follows,

d = GPMa + n. (43)

It is evident that M depends only on the spectral parameters
β and the bandpass τ, but not the amplitudes. Since most signal
components are parameterized with limited number of spectral
parameters (see Sect. 3), and these parameters are typically also
fairly uniform on the sky, it is possible to pre-compute accu-
rate lookup tables for M for each component and detector. In our
current code, we adopt (bi-)cubic splines with regular grids for
these lookup tables, and the computational cost of performing a
full bandpass integral is thus equal to that of a simple polynomial
evaluation.

4.2.1. Bandpass uncertainties and corrections

While the bandpass integral described by Eq. (36) may look sim-
ple enough at first glance, it does lead to a wide variety of impor-
tant complications in practice. The most important among these
is the fact that the exact shape of the bandpass profile itself is
unknown. In particular, it is highly nontrivial to measure τ ac-
curately in a laboratory for a combined multi-component instru-
ment, and it is obviously impossible to do so after commission-
ing for satellite missions.

As a concrete real-world illustration of this, Fig. 2 shows the
laboratory-determined (normalized) bandpass profiles after av-
eraging over all radiometers for a given LFI channel. First, we
see that the profiles for both 44 and 70 GHz are truncated, and
therefore significant response is likely present outside the mea-
sured range. Second, for all three channels we see notable small
scale ripples, which are due to standing waves. These may be
due to real standing waves within the optical assembly of the
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Fig. 2. Detector averaged bandpass profiles, τ, for the three Planck LFI
frequency channels.

LFI instrument itself; but some part of them may also be due to
standing waves in the test equipment used to make the measure-
ments. These artefacts were already noted by Zonca et al. (2009),
but they were never actually corrected during the course of the
official processing; this is now done as part of the current re-
processing, as described by Svalheim et al. (2022a). In addition
to these visually obvious effects, there may also be systematic
errors in the actual shape, for instance in the form of a smooth
slope across the bands, or in the precise position of the peaks
within the band.

As described in Sect. 8.3.1, the CMB dipole serves as our pri-
mary calibrator for BeyondPlanck, following both WMAP and
the official Planck pipelines. Because the CMB SED very closely
follows a blackbody spectrum, which translates into a frequency
independent scaling in thermodynamic units, the precise shape
of the bandpass is irrelevant for the CMB component. Instead,
errors in the bandpass shape effectively translate into incorrectly
estimated foreground components, and introduce inaccuracies in
the relative foreground SEDs between different frequency chan-
nels. In turn, foreground errors can affect the CMB reconstruc-
tion.

To account for the uncertainties noted above, we introduce
one or more free parameters that can modify the bandpass shape,
and allow the data to inform us about, and hence mitigate, poten-
tial inaccuracies in the laboratory bandpass measurements. The
simplest and most common model we adopt is a simple linear
shift, ∆bp, in frequency space,

τ(ν) = τ0(ν + ∆bp), (44)

where τ0 is the default laboratory measurement. One value of
∆i

bp is allowed per radiometer i, but (in most cases) either with
the prior that

∑
i ∆i

bp = 0, or that one particular channel is held
fixed. Without any priors, the bandpass parameters are fully de-
generate with the spectral parameters β of the foreground model,
and no stable solution can be found. Various choices of both
bandpass models and priors are considered by Svalheim et al.
(2022a). In general, we note that the impact of ∆bp is essentially
to scale the amplitude of foregrounds, while leaving the CMB
unchanged. At CMB dominated frequency channels, the band-
pass shift is therefore non-degenerate with respect to the gain,
while at foreground-dominated channels, it is virtually impossi-
ble to distinguish between a bandpass error and a gain error.
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Fig. 3. (Top:) Scanning beam (or main beam) of the 30 GHz LFI 27S
radiometer in local telescope coordinates, i.e., the instantaneous spatial
sensitivity to a point source centered at the beam maximum. Bottom:
Corresponding 4π beam map, oriented such that the main beam is lo-
cated on the north pole. The main Planck far sidelobes are caused by
spillover from (i.e., diffraction around) the primary and secondary mir-
rors. The beams are normalized such that their combined integral over
the full sky equals unity.

In addition to this fundamental uncertainty in the band-
pass profile for each detector, we note, first, that different de-
tectors within the same frequency band observe different sky
signals, and if not properly accounted for, this can create so-
called bandpass mismatch errors in co-added frequency maps
(see Sect. 7.2.2). Second, as discussed in the next section, the in-
strumental beam is also intrinsically frequency dependent, with
an angular resolution of the main beam that is inversely propor-
tional to the frequency for diffraction-limited observations, as
is the case for LFI. In addition, far sidelobes can vary rapidly
with frequency through complicated diffraction patterns. Unless
properly accounted for, all these effects can potentially compro-
mise final estimates. In BeyondPlanck we account for sidelobes
as modelled by the Planck team (Planck Collaboration IV 2016),
but we do not explore uncertainties in the beam model itself.

4.3. Beam and pixel window convolution

In the same way that no real detector can measure the signal
from only a single monochromatic frequency, no real detector
can measure the signal from a single point on the sky. Rather,
each detector is associated with a so-called “point spread func-
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Fig. 4. Azimuthally symmetric and normalized beam transfer functions,
b` for each co-added Planck LFI frequency channel (thick colored lines)
and for each radiometer (thin colored lines). The former include the ef-
fects of non-Gaussian tails, while the latter are strictly Gaussian approx-
imations. Black curves show the HEALPix pixel window functions for
Nside = 512 and 1024, respectively.

tion” (PSF) or “beam”, b(n̂), that characterizes its instantaneous
spatial sensitivity. Conventionally, we define b(n̂) to be normal-
ized by setting the full-sky integral equal to unity, and to be ori-
ented such that its maximum value is centered on the north pole.

The recorded value of the sky signal, sbeam
t , as seen through

the beam at time t is then given as the convolution of b and s,

sbeam
t =

∫
4π

bt(n̂)s(n̂) dΩ, (45)

where bt(n̂) = Rt(n̂, n̂′)b(n̂′), and Rt is a time-dependent rotation
matrix that rotates the beam as given by the scanning strategy of
the instrument. Since convolution is a linear operation, we may
define a matrix operator, B, such that sbeam = Bs, and the data
model in Eq. (43) may therefore be generalized further into its
final form,

d = GPBMa + n, (46)

where the position of the operator is defined by noting that the
beam only acts on the true sky signal, and not on instrumental
effects such as gain or noise.

Noting that modern CMB maps typically comprise up to
several hundred million pixels, Eq. (45) is prohibitively expen-
sive to evaluate directly in pixel space. Instead, we take advan-
tage of the convolution theorem, which states that any convolu-
tion in pixel space may be expressed as a multiplication in har-
monic space, and vice versa. As first demonstrated by Wandelt
& Górski (2001), and later optimized by Prézeau & Reinecke
(2010), Eq. (45) may be computed efficiently through reduced
Wigner matrices, reducing the cost by a factor of O(

√
Npix) per

evaluation for a general b. A particularly computationally con-
venient formulation of this algorithm is presented by Galloway
et al. (2022b) as part of the current BeyondPlanck work.

Another substantial saving can be made if we additionally
assume that b is azimuthally symmetric. In that case, the spher-
ical harmonics expansion of b is independent of m, and may be
expressed in terms of its Legendre transform, b`. The full convo-
lution may (by the convolution theorem) in this case be written
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as8

sbeam(n̂) =

`max∑
`=0

∑̀
m=−`

b`s`mY`m(n̂), (47)

where s`m are the spherical harmonics coefficients of s. Often, b`
is referred to as the beam transfer function.

Note that the bandlimit, `max, in Eq. (47) should be selected
sufficiently large that b` ≈ 0 as compared to the noise level of the
instrument. Conversely, if a too low value of `max is adopted for
analysis, the most notable artifacts arising from the convolution
is ringing around bright point sources, resulting from premature
harmonics truncation.

Note also that sbeam(n̂) in Eq. (47) is written as a function
of position rather than time in the above expression, which is
only possible in the case of an azimuthally symmetric beam. To
obtain the time-dependent signal, one simply reads off the value
of sbeam(n̂) given by the beam center position at time t. In this
approximation, a full real-space convolution may be carried out
at the cost of only two spherical harmonics transforms.

As discussed in Sect. 3.1, all CMB sky maps are pixelized in
order to allow for efficient analysis on a computer. Such pixeliza-
tion corresponds to an additional smoothing operation of the true
sky signal that can be approximated with a top-hat convolution
kernel of a given pixel size. For HEALPix, the effect of this ker-
nel in harmonic space is described in terms of a pixel window
function, p`, that is provided with the library. Implementation-
ally, it is often convenient to redefine b` → b`p` internally in
computer codes, as the beam and pixel window affect the sig-
nal in the same way, and accounting for the pixel window can
therefore usually be done with no additional computational cost
compared to beam convolution.

In Euclidean space, the Nyquist theorem assures that any
bandwidth limited signal may be reconstructed exactly with at
least two samples per bandwidth. No corresponding exact the-
orem exists on the sphere. Instead, a rough rule of thumb for
smooth spherical fields is to allow for at least two or three pix-
els per beam width. Likewise, no exact multipole bandlimit ex-
ists for given a HEALPix pixelization; however, numerical ex-
periments suggest that multipoles above ` & 2.5Nside are poorly
resolved on the HEALPix grid. Combined, these rules of thumb
provide useful relationships between a given beam width and the
corresponding appropriate values of Nside and `max.

Figure 3 shows the beam of the Planck 27S radiometer
(Planck Collaboration IV 2014). The bottom panel shows the
full 4π beam, while the top panel shows a zoom-in on the north
pole. Clearly, this beam pattern is not azimuthally symmetric.
However, in this respect it is useful to distinguish between the
main beam, which is highlighted in the top panel, and the side-
lobes, which are highlighted in the bottom panel. Furthermore,
since convolution is a linear operation, contributions from the
main beam and sidelobes may be computed separately.

The sidelobes are caused by optical imperfections, typically
by diffraction around the main optical elements. In the case of
Planck, these are the primary and secondary mirrors (see Fig. 3).
As such, the resulting beam structures tend to be highly fre-
quency dependent, and also cover large angular scales. While
they clearly cannot be described as azimuthally symmetric in
any meaningful way, they are associated with relatively modest
bandlimits, `max, and this leads to acceptable computational costs
for treating this component.
8 This expression applies to temperature convolution; polarization con-
volution is notationally slightly more involved, but mathematically fully
analogous.

The main beam, on the other hand, can often be described
reasonably well as azimuthally symmetric, when centered on the
north (or south) pole. Of course, the LFI 27S beam shown in the
top panel of Fig. 3 exhibits a substantial ellipticity of ε ≈ 1.3, but
this instantaneous beam profile is at least partially symmetrized
by averaging due to the scanning strategy. The remaining effects
of beam asymmetries may be accounted for, at least in terms
of power spectrum bias, by adjusting the transfer function b`
through simulations, as described by, e.g., Mitra et al. (2011).

For simplicity or because of low signal-to-noise, the
beam profile is also sometimes approximated in terms of a
two-dimensional Gaussian with some full-width-half-maximum
(FWHM), or σFWHM, in the following expressed in radians. In
the Gaussian case, one can derive an explicit expression for the
beam transfer function in the form

b` = e−
1
2 `(`+1)

σ2
FWHM
8 ln 2 , (48)

where the factor 8 ln 2 simply accounts for the conversion be-
tween the square of the FWHM and the variance for a Gaussian.

Figure 4 compares the azimuthally symmetric beam transfer
functions of the three Planck LFI channels, co-added over all ra-
diometers, as well as the Gaussian approximations to the individ-
ual radiometer beam transfer functions. For reference, we also
show the HEALPix window transfer functions for Nside = 512
and 1024, which are the typical pixelizations used for LFI and
WMAP analysis.

We see that the general azimuthal approximations tend to
have slightly heavier tails than the Gaussian approximations,
and this is important to account for when estimating the CMB
power spectrum, C`. At the same time, we also see that for
applications for which only percent-level accuracy is required,
the Gaussian approximations may very well be sufficient. In
the following analyses, we will adopt the general azimuthally
symmetric approximations for co-added frequency maps, which
will be used for component separation and CMB estimation pur-
poses, but Gaussian approximations for radiometer-specific sig-
nal modelling during time-domain processing, where the signal-
to-noise ratio per sample is low, and sub-percent precision is ir-
relevant. The reason for the latter approximation is simply that
the Planck collaboration only provides FWHM estimates for in-
dividual radiometers, not full transfer functions.

In the current work, we assume that the transfer functions
provided by the Planck collaboration are exact, and do not assign
dedicated stochastic parameters to them. This is neither a realis-
tic description, nor a testament to the accuracy of the provided
products, but only a statement of currently limited human re-
sources; a high-priority task for future work is to implement full
support for dynamic beam modelling and error propagation. As
presented in this work, however, beam convolution is assumed to
be a fully deterministic operation, dependent on officially avail-
able beam characterizations alone.

4.4. Gain and analog-to-digital conversion

While the instrument model in Eq. (46) is structurally complete
in terms of components, we still need to introduce a few gener-
alizations before we can apply it to our data. The first regards the
gain g, simply by reemphasizing that this should be interpreted
as a truly time-dependent object, gt.

To understand why this is the case, it is useful to consider its
origin and physical interpretation, and to focus the discussion we
will consider the special case of a perfect total-power receiver.
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The output voltage of such a device is given by

P = GkTsys∆ν, (49)

where G is a unit-less gain factor, and ∆ν is the width of the
bandpass. The system temperature is defined as Tsys = Tant +
Trecv, where Tant = TCMB + Tfg is the antenna temperature, and
Trecv is the receiver temperature; the latter essentially defines the
intrinsic noise level of the receiver.

For a Planck LFI 30 GHz radiometer, the bandwidth is
6 GHz, and the receiver temperature is typically 10 K. The
antenna temperature is dominated by the CMB temperature,
TCMB = 2.7 K, as other sky components typically only make
up a few mK at most. Assuming, therefore, a system tempera-
ture of about 13 K, Eq. (49) predicts that the power measured
by this device is P = 1.1 pW or P = −90 dBm,9 assuming
no amplification (G = 1). However, current microwave detec-
tors are typically only able to reliably record power levels larger
than P & −30 dBm. For this reason, the signal level must be ac-
tively amplified by a factor of 60 dB or more between the optical
assembly and the detector. For Planck LFI, such amplification
is achieved through the use of high-electron-mobility transistors
(HEMTs).

HEMTs provide high gain factors, while adding only very
low levels of additional noise to the data. However, they are not
perfectly stable in time. Rather, their effective gains exhibit time-
dependent drifts with typical overall variations at the O(10−6)
level, and correlations in time that are often well described by
a so-called 1/ f spectrum (see Sect. 4.5). Unless explicitly ac-
counted for in the model, these time-dependent gain fluctuations
can and will bias the derived sky model.

The gain defined by our original instrument model in
Eq. (46), denoted G, is in principle the same gain as in Eq. (49),
but with two important differences. First, while G is defined as
a pure power amplification, and therefore unit-less, G takes into
account the end-to-end conversion from a raw sky signal to final
recorded data values. As such, G has units of V K−1, in order to
be dimensionally correct.

As far as measuring the actual gain from a given experiment
at high precision is concerned, an important practical aspect is
suppressing measurement noise through various gain smoothing
algorithms. The official Planck processing employed a simple
boxcar average algorithm for this purpose (Planck Collaboration
II 2016; Planck Collaboration VI 2020). As shown by Gjerløw et
al. (2022), this method can lead to striping in the final map by av-
eraging over real variations. The current BeyondPlanck process-
ing therefore replaces the boxcar algorithm with a tuned Wiener
filter which allows variations on much finer time-scales, and this
greatly suppresses gain-induced striping. In fact, this modifica-
tion represents the single most important algorithmic improve-
ment in the BeyondPlanck analysis in terms of improving data
quality, and it was a key step in understanding long-standing is-
sues regarding the LFI 44 GHz channel (Planck Collaboration II
2020; Planck Collaboration V 2020).

Second, G additionally takes into account the digitization
process that converts analog signals to digital bits stored on
a computer. This process takes place in a so-called analog-to-
digital converter (ADC). An ideal ADC is perfectly linear. Un-
fortunately, many real-world ADCs exhibit important imperfec-
tions, for instance in the form of smooth nonlinear conversion
within given signal ranges, or, as for LFI, sharp jumps at specific
signal or bit values.

9 The unit dBm measures power ratios, x, in decibel relative to 1 mW,
i.e., x = 10 log10

P
1 mW .

Overall, ADC errors are indistinguishable from gain fluc-
tuations in terms of their direct impact on the recorded data.
However, there is one critical difference between the two effects:
While gain fluctuations are stochastic and random in time, and
do not correlate with the sky signal, ADC errors are perfectly re-
producible, and depend directly on the sky signal. Consequently,
while the archetypical signature of unmitigated gain fluctuations
are coherent stripes or large-scale features in the final sky maps,
the corresponding unique signature of unmitigated ADC errors
is an asymmetry in the amplitude of the CMB dipole along its
positive and negative directions. This effect can be used to char-
acterize and mitigate ADC non-linearity, as done both for Planck
LFI and HFI (Planck Collaboration II 2020; Planck Collabora-
tion III 2020; Planck Collaboration Int. LVII 2020). For a discus-
sion of ADC corrections within the BeyondPlanck framework,
see Herman et al. (2022a).

4.5. Instrumental noise

We complete our review of the instrument model by considering
the properties of the instrumental noise, n. This component may
be decomposed into two main contributions, called correlated
and white noise,

n = ncorr + nwn. (50)

Both terms may be approximated as Gaussian, but they have dif-
ferent covariances.

The dominant physical source of white noise is Johnson (or
thermal) noise, typically excited by thermal electron motions
within the electric radiometer circuits. This noise is temperature
dependent, and cryogenic cooling is usually required to achieve
sufficient sensitivity. The dominant source of the correlated noise
term are rapid gain fluctuations modulating the system tempera-
ture, Tsys, as discussed in Sect. 8.3.1.

Based on this decomposition, the standard deviation of the
total instrumental noise term for a sample of duration ∆t (i.e., σ0
in Eq. (34)) may be estimated through the so-called radiometer
equation,

σ0 = Tsys

√
1

∆ν∆t
+

(
∆g
g

)2

. (51)

Here, ∆g is the root-mean-square gain variation over ∆t, and
∆ν is as usual the receiver bandwidth. Intuitively speaking, this
equation summarizes the following facts. First, the noise level is
proportional to the system temperature, in recognition of the fact
that Johnson noise scales with temperature. Second, the white
noise term is inversely proportional to the square root of both
bandwidth and integration time; this is simply by virtue of col-
lecting more photons, and noting that Gaussian errors add in
quadrature. Third and finally, the correlated noise component is
proportional to the overall gain fluctuation level. Typical values
of σ0 for the LFI radiometers range between 600 and 1700 µK
per sample in temperature units, or between 50 and 200 µV in
detector units. If Nobs independent observations are made of the
same sky pixel p, then the effective noise of the corresponding
pixel integrates down roughly as σp = σ0/

√
Nobs.

The different correlation structures of the white and cor-
related noise terms are most conveniently described in fre-
quency domain through the noise power spectrum density
(PSD), Pn( f ) =

〈
|n f |

2
〉
, where n f are the Fourier coefficients

of nt. This PSD is often modelled in terms of a so-called 1/ f
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Fig. 5. PSD of signal subtracted data from radiometer 26S, averaged
over ten PIDs (at intervals of 100 PIDs) in the ranges 12 000–13 000
(black) and 32 000–33 000 (grey). We see that there is significantly more
power in the frequency range 0.1–10 Hz in the later period. For further
discussion, see Ihle et al. (2022).

profile, which takes the form

Pn( f ) = σ2
0

[
1 +

(
f
fk

)α]
. (52)

Here, fk is the knee frequency at which the variance of the cor-
related noise equals that of the white noise, and α is the slope of
the spectrum at low frequencies. Typical best-fit values for LFI
radiometers are fk ≈ 10 mHz and α ≈ −1. However, this model
is obviously only approximate; if for no other reasons, the real
spectrum has to flatten at low frequencies by energy consider-
ations, whereas the power predicted by this model would ap-
proach infinity at low frequencies.

An important novel result that emerged from the current Be-
yondPlanck reprocessing is that the correlated noise for the LFI
30 and 44 GHz in fact cannot be adequatly described by this
simple 1/ f model (Ihle et al. 2022). Rather, for most detectors
we find a significant noise excess for frequencies between 0.01
and 1 Hz that may be described, at least phenomenologically,
through the addition of a log-normal power term of the form,

P( f ) = Ap exp

−1
2

(
log10 f − log10 fp

σdex

)2 , (53)

where Ap is a freely fitted amplitude, and fp represents the peak
frequency of the log-normal term. An example of this power ex-
cess for a 44 GHz radiometer is shown in Fig. 5; the black line
shows the measured noise power spectrum for a period of time in
which the power excess is negligible, while the gray line shows
the same for a period in which it is large. Properly modelling
this term yields a significantly better χ2, in particular on angular
scales that are important for large-scale polarization measure-
ments; for further discussion, see Ihle et al. (2022).

5. Data

The instrument discussion has until this point for the most part
been kept general and applicable to a wide range of different data

sets. In this section, we specialize our discussion to Planck LFI.
As discussed in Sect. 2, only this data set will be considered in
the time-domain, while external data sets will be considered in
the form of processed pixelized maps.

We note that the minimal sky model summarized in Sect. 3.5
includes seven distinct astrophysical components, three polar-
ized and four unpolarized. Considering that there are only three
LFI frequency channels, we immediately recognize that the LFI
data must be augmented with at least four external frequency
channels, just in order to make the model minimally constrained.
In the default analysis configuration, we therefore include select
observations also from Planck HFI (Planck Collaboration Int.
LVII 2020) and WMAP (Bennett et al. 2013), as well as from
some ground-based surveys. In this section, we provide a brief
overview of these data sets, and refer the interested reader to the
respective papers for full details.

The precise combination of data sets used in any particular
BeyondPlanck analysis will depend on the goal of the respective
application. For instance, the main scientific goal of the current
paper is to introduce the concept of Bayesian end-to-end CMB
analysis, and provide a first demonstration of this framework as
applied to the LFI observations. Consequently, we here only in-
clude a minimal set of external observations, allowing LFI to
play the dominant role, in particular with respect to CMB con-
straints. Specifically, in this paper we include only

– Planck 857 GHz to constrain thermal dust emission in inten-
sity;

– Planck 353 GHz in polarization to constrain polarized ther-
mal dust emission;

– WMAP 33, 41, and 61 GHz (called Ka, Q and V-bands, re-
spectively) in intensity at full angular resolution to constrain
free-free emission and AME;

– the same WMAP channels in polarization to increase the
signal-to-noise ratio of polarized synchrotron emission, but
only at low angular resolution, where a full noise covariance
matrix is available; and

– Haslam 408 MHz (Haslam et al. 1982) to constrain syn-
chrotron emission in intensity.

That is, we include neither intermediate HFI channels nor the
WMAP K-band (23 GHz) channel, because of their higher
signal-to-noise ratio relative to the LFI channels. The WMAP
W-band is excluded because of known systematics effects (Ben-
nett et al. 2013), and it does not have particularly unique features
with respect to the signal model that are not already covered by
other data sets.

We also note that Andersen et al. (2022), Svalheim et al.
(2022b), and Herman et al. (2022b) focus on general foreground
constraints, and these papers therefore also consider additional
channels. The ultimate long-term goal of the global Bayesian
CMB analysis program in general is of course to integrate as
many data sets as possible into a single coherent sky model, and
thereby produce the strongest possible constraints on the true
astrophysical sky. One leading example of such an effort is the
Cosmoglobe10 project, which specifically aims to combine many
state-of-the-art experiments with the ones listed above, includ-
ing CHIPASS (Calabretta et al. 2014), COBE-DIRBE (Hauser
et al. 1998) and FIRAS (Mather et al. 1994), PASIPHAE (Tas-
sis et al. 2018), SPIDER (Gualtieri et al. 2018), and many more.
The BeyondPlanck methodology presented here represents an
ideal statistical framework for performing such global data inte-
gration.

10 http://cosmoglobe.uio.no
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Fig. 6. Flight model of the Planck spacecraft. The satellite size is about
4.2 × 4.2 m, and its mass at launch was 1950 kg. Planck was launched
on May 14, 2009, and operated for 4.4 years from a Lissajous orbit
around the Lagrangian point L2 of the Sun–Earth system. Shown are
the approximate temperatures of different critical parts of the satellite
during nominal operation in space (see Planck Collaboration II 2011).

5.1. LFI instrument overview

5.1.1. Instrument configuration

We now provide a synthetic description of the LFI instrument
configuration, which directly impacts the structure of the LFI
data and the potential systematic effects addressed in the Be-
yondPlanck analysis. For more details on the LFI instrument,
its ground calibration and in-flight performance, see Bersanelli
et al. (2010), Mennella et al. (2011), and references therein; the
overall LFI programme is described by Mandolesi et al. (2010).

The heart of the LFI instrument is an array of 22 differen-
tial receivers based on high-electron-mobility transistor (HEMT)
low noise amplifiers. The instrument operates in three frequency
bands, nominally centred at 30, 44 and 70 GHz, with angular
resolutions of about 32′, 28′, and 13′ FWHM, respectively. The
front end of the receivers is cooled to 20 K, which dramatically
reduces the noise temperature of the HEMT amplifiers and of the
overall system. In each receiver, the signal coming from different
directions of the sky, intercepted by the telescope as the satellite
spins, is compared to a stable internal blackbody reference load
at 4 K. It is this differential scheme that allows the LFI to achieve
its excellent stability.

Radiation from the sky is coupled to 11 corrugated feed
horns, shown in Fig. 7. Each horn is followed by an orthomode
transducer (OMT), which splits the incoming radiation into
two perpendicular linear polarizations that propagate through
two independent differential radiometers; see Fig. 8. The OMT
provides exquisite polarization purity, with typical isolation of
< −30 dB. Each radiometer pair has a front-end module (FEM),
cooled to 20 K, and a back-end module (BEM), operated at

Fig. 7. Top view of the Planck focal plane. The central array contains
the HFI feed-horns, cooled to 4 K, feeding bolometric detectors cooled
to 0.1 K. The LFI horns in the outer part of the array are labelled with
numbers; they are cooled to 20 K. The LFI horn numbers 18–23, 24–26,
and 27–28 correspond to the 70 GHz, 44 GHz, and 30 GHz channels,
respectively.

300 K. The FEM is connected to the BEM by four composite
wave-guides (two for each radiometer), thermally coupled to
the three Planck V-groove radiators to minimize parasitic heat
transfer to the cold focal plane (see Fig. 6). The cryogenically
cooled front-end modules include the first stage HEMT ampli-
fiers and the differencing system, while the back-end modules
provide further radio frequency amplification. Detection is made
via two square-law detector diodes for each radiometer.

After detection, an analog circuit in the data acquisition elec-
tronics is used to adjust the offset to obtain a nearly null DC
output voltage, and a programmable gain is applied on-board to
match the signal level to the analog-to-digital converter (ADC)
input range. After the ADC, data are digitally down-sampled,
re-sampled to match beam resolution (> 3 samples per beam),
compressed, and assembled into telemetry packets, which are
then downlinked to the ground station.

5.1.2. Stabilization

Cryogenic HEMT amplifiers exhibit excellent low-noise perfor-
mance, but are affected by significant instability in terms of gain
and noise-temperature fluctuations, typically modelled in terms
of a 1/ f spectrum as discussed in Sect. 4.5. The LFI system is
designed to efficiently reject such fluctuations in the radiometer
response. The main differential process responsible for radiome-
ter stabilization takes place in the front-end modules. The signals
from the sky and 4 K reference load are injected into a hybrid
coupler, which splits the two signals, and redirects them to both
of its output ports (see inset of Fig. 8). Then the two mixed sig-
nals are amplified by ∼30 dB by the two amplifier chains. Thus,
any fluctuation in the FEM amplifiers affects both the sky and
the reference load components in exactly the same way. Af-
ter amplification, a second hybrid coupler reconstructs the sky
and reference components, which now contain the same fluctu-
ations. Then the signals are transported by the wave-guides in
the warm back-end modules, where they are further amplified
and detected by the diodes. Finally, when taking the difference
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Fig. 8. Schematic of an LFI radiometer chain, consisting of a feedhorn
and OMT, and the two associated radiometers, each feeding two diode
detectors. The insets show details of a front-end module (top) and of a
back end module (bottom).

between the two diodes, the FEM fluctuations cancel out. This
“pseudo-correlation” scheme reduces front-end fluctuations by a
factor of O(103).

However, instabilities downstream of the FEMs, particularly
those originating in the back-end amplifiers and in the detec-
tor diodes, would still affect the measurements. For this reason,
a further level of stabilization is built into the LFI design. A
phase shifter, alternating between 0◦ and 180◦ at a frequency
of 4096 Hz, is applied in one of the two amplification chains
within the front-end modules, as shown in Fig. 8. In this way,
the DC output from each diode rapidly alternates the sky and
reference signals, with opposite phase in the two detectors. By
taking the difference between time-averaged values of sky and
reference, any residual fluctuations on time scales longer than
∼ (1/4096) s = 0.244 ms are removed.

Of course, any non-ideality in the receiver components will
introduce some level of residual fluctuations. Further strategies
to suppress remaining instabilities and potential systematics in-
troduced by the receiver are described below.

5.1.3. LFI signal model

Based on the above description, the differential power output for
each of the four diodes associated with a feedhorn can be written
as the following special case of Eq. (49),

Pdiode
out,0 = a Gtot k ∆ν

[
Tsky + Tnoise − r (Tref + Tnoise)

]
, (54)

where Gtot is the total gain, k is the Boltzmann constant, ∆ν the
receiver bandwidth, and a is the diode constant. Tsky and Tref
are the sky and reference load antenna temperatures at the inputs
of the first hybrid and Tnoise is the receiver noise temperature,
averaged over an appropriate integration time. The gain modu-
lation factor, r, is a factor of order unity (0.8 < r < 1.0 de-
pending on channel) used to balance in software the temperature

offset between the sky and reference load signals. This has the
important effect of minimising the residual 1/ f noise and other
non-idealities in the differential data stream. In the DPC analy-
sis (Planck Collaboration II 2020) r was determined using the
approximation

r =
Tsky + Tnoise

Tref + Tnoise
≈

Vsky

Vref
, (55)

and we adopt the same procedure without modification in Be-
yondPlanck for now. However, we do note that the NPIPE anal-
ysis pipeline implements an alternative approach in which Vref
is low-pass filtered prior to differencing, and this reduces the
amount of high frequency noise in the final maps. Future Be-
yondPlanck versions can and should implement a similar solu-
tion.

Although somewhat counter-intuitive, the sensitivity of the
LFI radiometers does not depend significantly on the absolute
temperature of the reference load. In fact, to first order, the white
noise spectral density at the output of each diode is given by

∆T diode
0 =

2 (Tsky + Tnoise)
√

∆ν
. (56)

However, a large imbalance between Tsky and Tref would have
the effect of amplifying residual fluctuations in the differential
signal. For this reason the LFI reference loads are cooled to about
4 K, exploiting the HFI pre-cooling stage.

The above description holds for the ideal case where all
front-end amplifiers and phase switches have perfectly balanced
properties. In presence of some level of mismatch, the separation
of the sky and reference load signals after the second hybrid is
not perfect and the outputs are slightly mixed. If the front-end
imbalance is small, Eq. (56) may be written as(
∆T diode

)2
≈

(
∆T diode

0

)2
(
1 ±

εA1 − εA2

2
+ αεTn

)
, (57)

where εTn is the imbalance in front end noise temperature be-
tween the two radiometer arms, and εA1 and εA2 are the imbal-
ance in signal attenuation in the two states of the phase switch.
Eq. (57) shows that the output is identical for the two diodes
apart from the sign of the term (εA1 − εA2 )/2, representing the
phase switch amplitude imbalance. For this reason, the LFI sci-
entific data streams are obtained by averaging the voltage outputs
from the two diodes in each radiometer,

V rad
out = w1Vdiode 1

out + w2Vdiode 2
out , (58)

where w1 and w2 are inverse-variance weights calculated from
the data. Thus, the diode-diode anti-correlation is cancelled, and
the radiometer white noise becomes

∆T rad ≈
∆T diode

0
√

2

(
1 + αεTn

)1/2 . (59)

In Eqs. (57) and (59), ε � 1, while α is a term of order unity
defined by a combination of the input signals and noise temper-
ature of the radiometer; for details, see Eq. (8) in Mennella et al.
(2011).

In the current BeyondPlanck processing, we follow the
LFI DPC procedure for all these steps. Future versions of the
framework may also account for these pre-processing steps, and
jointly estimate r, α, εi, and wi, but this is left for future work,
simply due to the strong time limitations of the current project
(see Sect. 1.6).

Article number, page 21 of 61



A&A proofs: manuscript no. BP_Global_Bayesian_Analysis_of_Planck_LFI

5.1.4. Naming convention

As described in the previous section, LFI has 11 horns and as-
sociated OMTs, FEMs and BEMs; 22 radiometers (two for each
horn); and a total of 44 detectors (two for each radiometer). For
historical reasons, the 11 horns are labelled by numbers from 18
to 28 as shown in Fig. 7.

The radiometers associated with each horn are labelled as
“M” or “S” depending on the arm of the OMT they are connected
to (“Main” or “Side”, as shown in Fig. 8). Each radiometer has
two output diodes that are labelled with binary codes “00”, “01”
(radiometer M) and “10”, “11” (radiometer S), so that the four
outputs of each radiometer pair can be named with the following
sequence; M-00, M-01, S-10, S-11.

As the telescope scans, the observed region of the sky sweeps
across the focal plane in the horizontal direction as appearing in
Fig. 7. Since the reconstruction of the polarization information
requires at least two horns, every pair of horns aligned in the
scan direction are oriented such that their linear polarizations
are rotated by 45◦ from each other (with the exception of LFI-
24, which is an unpaired 44 GHz horn). Thus, LFI can produce
independent polarization measurements from the “horn pairs”
18–23, 19–22, 20–21 (at 70 GHz); 25–26 (at 44 GHz); and 27–
28 (at 30 GHz).

5.2. Implementation details

Since the BeyondPlanck project aims to establish an open-
source, reproducible and externally extendable analysis frame-
work, it is no longer possible to rely on direct access to the exist-
ing LFI-DPC database, which both employs proprietary software
and runs on one specific computer. To circumvent this issue,
we convert the LFI TOD into a convenient HDF5 format (Gal-
loway et al. 2022a) that may be accessed using publicly available
tools. This, however, does lead to some adjustments in the scien-
tific pre-processing pipeline, which now uses this new interface.
At the same time, we have converted the scientific pipeline to
C++11, and a number of optimizations are applied at the same
time, exploiting the new possibilities given by that language.

5.2.1. Unprocessed Level-1 data

The extraction of time-ordered Level-1 data from the LFI-DPC
database and the conversion to HDF5 format only need to be per-
formed once within the LFI-DPC environment. We create one
file for each LFI horn for each Operational Day, i.e., the time
between two consecutive daily telecommunication periods. The
extracted file contains sky, reference load and quality flags for
each of the diodes of the horn and timing information, including
On-Board Time, Spacecraft Event Time (SCET) and Modified
Julian Date (MJD). It also contains attitude information that is
critical for the analysis; Pointing Period ID (PID); start and end
time of each Pointing Period; end time of the maneuver of each
Pointing Period; and number of data samples.

To optimize the computational time of Level-2 processing,
various deterministic operations are implemented during extrac-
tion. For instance, missing data are added back into the time
streams and flagged as bad data; this ensures that all the time-
lines for each frequency are of the same length. Also, planet tran-
sits are flagged, and instrumental flags are added to the extracted
data.

5.2.2. Level-2 data pre-processing

In the DPC pipeline, the main pre-processing of the LFI data
occurs at the Level-2 stage (see Planck Collaboration II 2020
and references therein). The same is true in the BeyondPlanck
framework, although this is now implemented as an integrated
component in the full algorithm. The first step in this process
is to correct the low-level diode observations for ADC non-
linearities.

The analog signal from each detector is processed by an
analog-to-digital converter (ADC), which ideally provides a dig-
itized output exactly proportional to the applied voltage. If the
voltage step sizes between successive binary outputs of the ADC
are not constant, then the ADC introduces a nonlinear response
that leads to calibration errors. In differential measurements such
as those of LFI, small localized distortions due to ADC non-
linearity can have a significant impact, since the calibration re-
construction depends on the gradient of the ADC response curve
at the point at which the differential measurements are made.

A non-linearity of the ADC produces a variation in the white
noise level of a detector which does not correspond to a variation
in the input voltage level, as one would expect if the effect were
due to a gain shift. This subtle effect was observed in some of the
LFI radiometer data for the first time in flight, where drops of a
few percent were observed in the voltage white noise but not in
the output level over periods of few weeks (Planck Collaboration
III 2014). Because of their lower detector voltages, the 44 GHz
channels showed the strongest effect, reaching levels of 3 to 5 %.
The typical amplitude of the region where the non-linearity oc-
curs is on the order of 1 mV, corresponding to about three bits in
the ADC.

The ADC non-linearity effect has been characterised from
flight data and removed from the data streams. The correct re-
sponse curves is reconstructed by tracking how the noise ampli-
tude varies with the apparent detector voltage in the TOD. Un-
der the assumption that the radiometers are stable, the intrinsic
white noise is taken to be constant, so any voltage variations are
taken to be due to a combination of gain drift and ADC effects. A
mathematical model of the effect and the details of the correction
method are described in Appendix A of Planck Collaboration III
(2014). In BeyondPlanck, we adopt a very similar algorithm, but
with one notable improvement: While the DPC algorithm allow
for one correction per narrow voltage bin across the full observed
range, the BeyondPlanck ADC model instead introduces a low-
dimensional parametric model for each ADC glitch. As such,
the BeyondPlanck model has many fewer degrees of freedom,
and there is correspondingly less risk of over-fitting non-ADC-
related artefacts; for further details, see Herman et al. (2022a).

The next low-level step is to compute a gain modulation fac-
tor, r, from the data streams, and apply this to minimize 1/ f
noise as given by Eq. (55). The outputs from the two detector
diodes of each radiometer are then combined with appropriate
noise weights, to remove the effect of phase switch mismatch, as
given by Eq. (58). For now, we adopt the same weights as in the
official processing. However, we note that future work should
aim to implement a frequency-dependent weighting scheme as
introduced by Planck PR4, which leads to about 8 % lower white
noise (Planck Collaboration LVII 2020).

In the current BeyondPlanck implementation, neither the
ADC correction nor diode weighting algorithms depend on the
assumed sky model, and there is therefore no feedback from
higher-level analysis steps to these steps. Accordingly, these
low-level operations are performed as one-time pre-processing
steps, saving both CPU time and RAM. Only the co-added and
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ADC-corrected TOD are actually stored in memory during the
main processing.

5.2.3. 1 Hz spike correction

The output signal of the LFI receivers exhibits a set of narrow
spikes at 1 Hz and harmonics with different amplitude and shape
for each detector. These subtle artifacts are due to a common-
mode additive effect caused by interference between scientific
and housekeeping data in the analog circuits of the LFI data
acquisition electronics. The spikes are present at some level in
the output from all detectors, but affect the 44 GHz data most
strongly because of the low voltage and high post-detection gain
values in that channel. The spikes are nearly identical in sky
and reference load samples, and therefore almost completely re-
moved by the LFI differencing scheme. However, a residual ef-
fect remains in the differenced data, which needs to be carefully
considered in the data processing.

These features are synchronous with the On-Board time,
with no measurable change in phase over the entire survey,
allowing construction of a piecewise-continuous template by
stacking the data for a given detector onto a one second inter-
val, and fitting a single overall amplitude. In the DPC analysis
the spikes were deemed to produce negligible effects in the 30
and 70 GHz channels, and were removed only from the 44 GHz
time-ordered data via template fitting, while the Planck PR4 pro-
cessing corrected all three channels. One notable difference be-
tween the two algorithms is that while the DPC analysis created
the template shape by binning the TOD in time-domain, the PR4
analysis instead fitted a series of Fourier modes.

The BeyondPlanck 1 Hz correction algorithm combines as-
pects from both the DPC and PR4 analysis, and also introduces
one new feature. First, and similar to the DPC analysis, we build
the template shapes in time-domain, and fit one single over-
all amplitude across the full mission. Second, and in contrast
to the DPC method, we do correct all three channels, similar
to PR4. However, and unlike both the DPC and PR4, we per-
form the 1 Hz correction on the co-added time streams. The
main advantage of this is that the precise binning used to con-
struct the shape template does not need to be aligned between
diodes to avoid edge effects, while the main disadvantage is
that the ADC correction makes the 1 Hz effect in principle time-
dependent. However, this latter issue a second-order correction,
and, as shown by Basyrov et al. (2022), the full magnitude of
the 1 Hz correction is anyway several orders of magnitude lower
than any other systematic effect, and typically amounts to only a
∼ 0.3 µKcorrection in map domain; a second-order ADC correc-
tion with respect to this is entirely negligible.

5.3. Pixel-domain data

In addition to time-domain LFI data, we consider several exter-
nal data sets in the pixel domain, as described in the introduction
to this section, simply in order to be able to constrain the full
astrophysical sky model as defined in Sect. 3.5.

5.3.1. Planck HFI data

The first external data set we consider is Planck HFI, primarily in
order to constrain thermal dust emission in the LFI frequencies.
The HFI measurements were taken during the first 29 months of
Planck observations, from August 2009 until January 2011, at
which time the helium coolant was depleted. The HFI instrument

includes a total of six frequency bands, centered on 100, 143,
217, 353, 545, and 857 GHz, respectively. The first four channels
are polarized, while the latter two are (at least nominally) only
sensitive to intensity.

While LFI employs coherent radiometers and HEMTs for
signal detection, HFI employs bolometers. One important differ-
ence between these two detector types is that while the former
records both the phase and the amplitude of the incoming elec-
tric field, the latter is sensitive only to the amplitude. In practice,
this difference translates into different sensitivity as a function
of frequency, as well as different instrumental systematics. Gen-
erally speaking, bolometers have lower noise levels than coher-
ent radiometers over relevant CMB frequencies, but they also
tend to be more susceptible to various systematic errors. For in-
stance, for the LFI 70 GHz radiometers the noise equivalent tem-
perature11 is 152 µKCMB s−1/2 (Planck Collaboration II 2016),
while it for the HFI 143 GHz bolometers is 57.5 µKCMB s−1/2

(Planck Collaboration VII 2016). At the same time, the size of
CMB detectors typically scales with wavelength, and it is there-
fore possible to fit a larger number of high frequency detectors
than low-frequency detectors into the same focal plane area. In
sum, HFI nominally has more than six times higher sensitivity
than LFI with respect to CMB fluctuations, as measured in terms
of white noise alone. However, a non-negligible fraction of this
sensitivity advantage is lost because of higher sensitivity to cos-
mic rays, ADC non-linearities, and long-duration bolometer time
constants (Planck Collaboration III 2020).

Several different HFI analysis pipelines were developed
within the nominal Planck collaboration period, as detailed
by Planck Collaboration VI (2014), Planck Collaboration VII
(2016), and Planck Collaboration III (2020). The two most
recent and advanced efforts are summarized in terms of the
SROLL2 (Delouis et al. 2019) and NPIPE (Planck Collaboration
Int. LVII 2020) pipelines. For BeyondPlanck, we adopt by de-
fault the NPIPE processing as our HFI data set, which is the most
recent among the various available options. However, we note
that most analyses here will only consider the highest frequency
channels (857 GHz in temperature and 353 GHz in polarization),
in order to constrain thermal dust emission, and the precise de-
tails of the HFI processing are largely irrelevant for these pur-
poses.

The HFI data are pre-processed as follows before integra-
tion into the BeyondPlanck pipeline. First, we note that the HFI
frequency channels have angular resolutions ranging between
9.7 arcmin at 100 GHz and 4.4 arcmin at 857 GHz. The natu-
ral HEALPix pixel resolution for HFI is thus either Nside = 2048
or 4096. While our computational codes do support full resolu-
tion analysis, such high resolution is computationally wasteful
for the purposes of LFI analysis. We therefore smooth the HFI
maps to a common angular resolution of 10′ FWHM (which is
still smaller than the 14′ beam of the 70 GHz channel), and we
re-pixelize each map at Nside = 1024. Overall, this reduces both
CPU and memory requirements for the component separation
phase of the algorithm by about one order of magnitude. Sec-
ond, we subtract estimates of both zodiacal light and the kine-
matic CMB quadrupole from each sky map prior to analysis,
following Planck Collaboration Int. LVII (2020), but exclude the
quadrupole from the astrophysical sky model for these channels.

11 The noise equivalent temperature (NET) represents the noise stan-
dard deviation, σ0, expressed in thermodynamic units of µKCMB with
an integration time of ∆t = 1 s.
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5.3.2. Wilkinson Microwave Anisotropy Probe

Second, we consider observations from the Wilkinson Mi-
crowave Anisotropy Probe (WMAP; Bennett et al. 2013), pri-
marily in order to constrain synchrotron, free-free, and anoma-
lous microwave emission. WMAP was funded by the National
Aeronautics and Space Administration (NASA), and operated
for 9 years between 2001 and 2010. WMAP observed the mi-
crowave sky in five frequency bands, centered on 23, 33, 41,
61, and 94 GHz, with an angular resolution varying from 53′ at
23 GHz to 13′ at 94 GHz, and with sensitivities that range be-
tween 0.8 and 1.6 mK s−1/2.

Like LFI, the WMAP detectors are based on coherent HEMT
technology. However, there are (at least) two critical differences
between the practical implementation of the two experiments.
First, while the LFI detectors measure the difference between
the sky signal in a single direction and that from an internal 4 K
reference load, the WMAP detection chain is intrinsically differ-
ential. That is, each radiometer is coupled to two independent
feedhorns that are separated by an angle of 141◦ on the sky, and
each TOD sample is given by the difference between the signals
recorded by those two horns. For this reason, each WMAP chan-
nel is often referred to as a “differencing assembly” (DA), rather
than a radiometer. Second, while the basic Planck scanning strat-
egy is fixed by its single reaction wheel, supporting smooth rota-
tion only around a single axis, the WMAP satellite carried three
orthogonal reaction wheels that allow for much more tightly in-
terconnected scanning strategies. In sum, these differences lead
to independent instrumental systematics between the two instru-
ments and consequently to different strategies to minimise their
impact. The two data sets are thus complementary, and can be
used to break each other’s internal degeneracies.

As discussed above, we will in this paper only use enough
external data to break parameter degeneracies that cannot be re-
solved by Planck LFI alone, thereby leaving enough room to
allow this data set to provide the main CMB constraints. There-
fore, we include in the following only the WMAP channels be-
tween 33 and 61 GHz. In intensity, we use the WMAP 9-year full-
resolution maps with a diagonal noise covariance matrix, while
in polarization we use the low-resolution maps with full noise
covariance. No pre-processing is applied to any WMAP data be-
fore integration into the BeyondPlanck pipeline.

5.3.3. Low-frequency surveys

As discussed by Planck Collaboration X (2016), because of the
roughly similar shapes of the synchrotron, free-free and AME
SEDs between 20 and 70 GHz, Planck and WMAP are not able to
resolve these components on their own. Rather, it is critically im-
portant to complement these data with at least one low-frequency
survey in order to establish a statistically non-degenerate model.

In BeyondPlanck, we follow Planck Collaboration X (2016),
and include the celebrated 408 MHz survey by Haslam et al.
(1982). Although this is widely believed to suffer more from
instrumental systematic errors than comparable recent surveys,
such as S-PASS (Carretti et al. 2019) or C-BASS (King et al.
2014), it also has the distinct advantages of both being publicly
available and covering the full sky. This full-sky coverage was
achieved by combining observations taken by the Jodrell Bank
MkI 76 m telescope, the Bonn 100 m telescope, and the Parkes
64 m telescope during the 1960’s and 1970’s. A second advan-
tage is its very low frequency, which allows for a very clean sep-
aration of synchrotron emission, with only a minor additional
contribution from free-free emission.

We adopt the reprocessed version of the Haslam map that
was presented by Remazeilles et al. (2015) for our analyses, and,
following Planck Collaboration X (2016), we model the uncer-
tainty of this map with a uniform standard deviation of 0.8 K per
pixel, added in quadrature to 1 % of the amplitude in that pixel.
Finally, we adopt the monopole and dipole corrections presented
by Wehus et al. (2017) to fix the largest angular scales.

6. Bayesian analysis and MCMC sampling

We have now defined an effective parametric model of the as-
trophysical sky in Sect. 3.5, and an effective instrument model
in Eq. (46), and we seek to constrain these models using
the data summarized in Sect. 5. Let us for convenience de-
note the combined set of all free parameters by ω, such that
ω ≡ {g,∆bp, ncorr, ai, βi,C`, . . .}. In BeyondPlanck, we choose
to work within the well-established Bayesian framework, and
as such, our main goal is to estimate the posterior distribution,
P(ω | d), where d denotes all available data, both in the form
of time-ordered LFI observations and pre-pixelized external sky
maps.

Clearly, this distribution involves billions of non-Gaussian
and highly correlated parameters. Figure 9 is an informal attempt
to visualize some of the main degeneracies of this distribution.
Thick arrows indicate particularly strong correlations, while thin
arrows indicate weaker ones. This chart is just intended to be
a rough illustration, based on our practical experience, rather
than a formal posterior exploration, and so it is obviously in-
complete. Still, it may serve as useful reminder for new readers
about how individual parameters affect other parts of the sys-
tem. To consider one specific example, the gain has a direct and
strong impact on both the CMB and foreground maps by virtue
of multiplying the TOD, and this impact goes both ways; if the
current CMB or foreground parameters are biased, then the esti-
mated gains will also be biased. The same observations also hold
with respect to the correlated noise and bandpasses, although at
a lower level. On the other hand, the gains are only weakly de-
pendent on the monopoles or sidelobes. The sidelobes do affect
the CMB dipole, however, which is a critically important com-
ponent for the gain estimation, and so there is a second-order de-
pendency. Similar observations hold for most other parameters;
the distribution is tightly integrated, and each parameter affects a
wide range of the full model, either directly or indirectly. This in-
tegrated nature of the full posterior distribution emphasizes the
importance of global end-to-end analysis with full propagation
of uncertainties, as implemented in the following.

To start our formal exploration of this full posterior distribu-
tion, we write down Bayes’ theorem,

P(ω | d) =
P(d | ω)P(ω)

P(d)
∝ L(ω)P(ω), (60)

where P(d | ω) ≡ L(ω) is called the likelihood; P(ω) is called
the prior; and P(d) is a normalization factor usually referred to
as the “evidence”. By virtue of being independent of ω, the ev-
idence is irrelevant for parameter estimation purposes, and we
ignore it in the current work, although we note that it is impor-
tant for model selection applications.

For a one-, two-, or three-dimensional parametric model, the
simplest way to numerically evaluate the posterior distribution
is often to compute the right-hand side of Eq. (60) over some
grid in ω. However, this approach quickly becomes computa-
tionally expensive in higher-dimensional parameter spaces, since
the number of grid points grows exponentially with the num-
ber of parameters. For models with more than three parameters,
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Fig. 9. Schematic overview of the primary parameters and external data sets considered in the current BeyondPlanck analysis and their inter-
dependencies. This chart is intended to visualize the deeply integrated nature of a modern CMB analysis problem; changing any one of these
parameter can lead to significant changes in a wide range of other parameters, and tracing these joint uncertainties is critically important for
high-precision experiments.

it is common practice to resort to Markov Chain Monte Carlo
(MCMC) sampling techniques rather than grid techniques. The
main advantage of these techniques is that computing resources
are mostly spent on exploring the peak of the posterior, which is
the region in parameter space that actually matters for final pa-
rameter estimates. In contrast, gridding techniques spend most
of their time evaluating probability densities that are statistically
equivalent to zero. In this section, we will briefly review three
particularly important examples of such MCMC sampling tech-
niques, as they play a fundamental role in the BeyondPlanck
pipeline.

6.1. Metropolis sampling

By far the most commonly applied, and widely known, MCMC
algorithm is the Metropolis sampler (Metropolis et al. 1953). Let
ωi denote the ith sample in a Markov chain,12 and T (ωi+1 | ωi) be
a stochastic transition probability density for ωi+1 that depends
on ωi, but not on earlier states. Assume further that T is sym-
metric, such that T (ωi+1 | ωi) = T (ωi | ωi+1). The most typical
example of such a transition rule is a Gaussian distribution with
mean equal to ωi and with some predefined standard deviation
(or “step size”), σ.

With these definitions, the Metropolis sampling algorithm
can be summarized in terms of the following steps:

1. Initialize the chain at some arbitrary parameter set, ω0.

12 A Markov chain is a stochastic sequence of parameter states, {ωi}, in
which ωi only depends on ωi−1, but not earlier states.

2. Draw a random proposal13 for the next sample based on the
transition rule, i.e., ωi+1 ← T (ωi+1 | ωi).

3. Compute the acceptance probability, a, defined by

a = min
(
1,

P(ωi+1 | d)
P(ωi | d)

)
(61)

4. Draw a random number, η, from a uniform distribution,
U[0, 1]. Accept the proposal if η < a; otherwise, set
ωi+1 = ωi.

5. Repeat steps 2–4 until convergence.

The critical component in this algorithm is the acceptance
rule in Eq. (61). On the one hand, this rule ensures that the chain
is systematically pushed toward the posterior maximum by al-
ways accepting proposals that are more likely than the previous
step. In this sense, the Metropolis sampler can be considered a
nonlinear optimization algorithm that performs a random walk
in the multidimensional parameter space. However, unlike most
standard optimization algorithms, the method also does allow
samples with lower probability density than the previous state.
In particular, by accepting samples with a probability given by
the relative posterior ratio of the two samples, one can show that
the time spent at a given differential parameter volume is propor-
tional to the underlying distribution density at that state. Thus,
the multidimensional histogram of MC samples produced with
this algorithm converges to P(ω | d) in the limit of an infinite
number of samples.

13 The symbol “←” indicates setting the symbol on the left-hand side
equal to a sample drawn from the distribution on the right-hand side.
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6.2. Metropolis-Hastings sampling

We note that there is no reference to the proposal distribution T
in the Metropolis acceptance probability as defined by Eq. (61).
This is because we have explicitly assumed that T is symmetric.
If we were to choose an asymmetric transition distribution, this
equation would no longer hold, as proposals within the heavier
tail would be systematically proposed more often than proposals
within the lighter tail, and this would overall bias the chain.

For asymmetric transition distributions, we need to replace
Eq. (61) with

a = min
(
1,

P(ωi+1 | d)
P(ωi | d)

T (ωi | ωi+1)
T (ωi+1 | ωi)

)
, (62)

as shown by Hastings (1970). Without further changes, the al-
gorithm in Sect. 6.1 is then valid for arbitrary distributions T ,
and the algorithm is in this case called Metropolis-Hastings sam-
pling.

6.3. Gibbs sampling

While the Metropolis and Metropolis-Hastings samplers are
prevalent in modern Bayesian analysis applications, they do re-
quire a well-tuned proposal distribution T in order to be com-
putationally efficient. If the step size is too small, it takes a pro-
hibitive number of proposals to move from one tail of the distri-
bution to another, whereas if the step size is too large, then all
proposals are in effect rejected by the acceptance rate. The latter
issue is particularly critical in high-dimensional spaces, and for
this reason Metropolis-type samplers are usually only applied to
moderately high-dimensional parameter spaces, for instance 20
or 50 dimensions. For millions of dimensions, traditional non-
guided Metropolis sampling becomes entirely intractable.

In order to achieve acceptable efficiencies in such cases, one
must typically exploit additional information within the transi-
tion probability. For instance, the Hamiltonian sampler exploits
the derivative of the posterior distribution to establish proposals
(e.g, Liu 2008), while the Langevin Monte Carlo algorithm can
also incorporate second-order derivatives (Girolami & Calder-
head 2011).

Another effective way of improving computing efficiency is
to decompose complicated high-dimensional joint distributions
into its various conditional distributions, a process that is called
Gibbs sampling (Geman & Geman 1984). In this case, one ex-
ploits the shape of the posterior distribution itself to make pro-
posals, but only in the form of conditionals. To illustrate the pro-
cess, let us for the sake of notational simplicity consider a two-
dimensional distribution P(α, β). In that case, the Gibbs sam-
pling transition probability takes the form

TGibbs(αi+1, βi+1 | αi, βi) = P(αi+1 | βi) δ(βi+1 − βi), (63)

where δ(x) denotes the Dirac delta function, which vanishes for
x , 0, but has a unit integral. The δ function in Eq. (63) ensures
that βi+1 = βi, i.e., that β is kept fixed.

This is an asymmetric proposal distribution, and the corre-
sponding acceptance probability is therefore given by inserting

Eq. (63) into the Metropolis-Hastings rule in Eq. (62):

a =
P(αi+1, βi+1)

P(αi, βi)
TGibbs(ωi | ωi+1)
TGibbs(ωi+1 | ωi)

(64)

=
P(αi+1, βi+1)

P(αi, βi)
P(αi | βi+1) δ(βi − βi+1)
P(αi+1 | βi) δ(βi+1 − βi)

(65)

=
P(αi+1, βi)
P(αi, βi)

P(αi | βi)
P(αi+1 | βi)

βi+1 = βi (66)

=
P(αi+1 | βi) P(βi)
P(αi | βi) P(βi)

P(αi | βi)
P(αi+1 | βi)

P(α, β) = P(α | β)P(β) (67)

= 1, (68)

where we have used the definitions of both conditional14 and
marginal15 distributions; the equations marked in gray indicate
which relation is used in a given step. From this calculation, we
see that when proposing samples from a conditional distribution
within a larger global joint distribution, the Metropolis-Hastings
acceptance rate is always unity. Consequently, there is no need
to even compute it, and this can save large amounts of comput-
ing time for complex distributions. However, one does of course
have to propose from the proper conditional distribution for this
result to hold.

It is also important to note that only a sub-space of the full
distribution is explored within a single Markov step with this al-
gorithm. To explore the full distribution, it is therefore necessary
to iterate through all possible conditionals, and allow changes in
all dimensions. Note, however, that there are no restrictions in
terms of order in which the conditionals are explored. Any com-
bination of sampling steps is valid, as long as all dimensions are
explored sufficiently to reach convergence.

The Gibbs sampling algorithm forms the main computational
framework of the BeyondPlanck analysis pipeline. However,
within this larger framework a large variety of different samplers
are employed in order to explore the various conditionals. For
convenience, Appendix A provides a summary of the most im-
portant samplers, while specific implementation details are de-
ferred to the individual companion papers.

We conclude this section by noting that Gibbs sampling only
works well for uncorrelated and weakly degenerate distributions.
For strongly degenerate distributions, the number of Gibbs it-
erations required to explore the full distribution becomes pro-
hibitive, as the algorithm only allows parameter moves parallel
to coordinate axes. In such cases, it is usually necessary either
to reparametrize the model in terms of less degenerate parame-
ters; or, if possible, sample the degenerate parameters jointly. A
commonly used solution in that respect is to exploit the identity
P(α, β) = P(α | β)P(β), which tells us that a joint sample may
be established by first sampling β from its marginal distribution,
and then α from the corresponding conditional distribution as
before. The marginal sampling step ensures the Markov chain
correlation length becomes unity. This method is used in several
places in the BeyondPlanck Gibbs chain, for instance for the
combination of instrumental gain and correlated noise (Gjerløw
et al. 2022), and for the combination of astrophysical component
amplitudes and spectral parameters in intensity (Andersen et al.
2022), both of which are internally strongly correlated.

7. Global model specification

The previous section provides a very general overview of our
analysis strategy. In this section, we provide a detailed specifica-
14 Definition of a conditional distribution: P(α | β) ≡ P(α, β)/P(β)
15 Definition of a marginal distribution: P(β) ≡

∫
P(α, β) dα
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tion of the parametric BeyondPlanck model that is appropriate
for actual implementation and processing.

7.1. Global parametric model

Following the general model introduced in Sects. 3–4, we adopt
the following time-ordered data model,

d j,t = g j,tPtp, j

Bsymm
pp′, j

∑
c

Mc j(βp′ ,∆
j
bp)ac

p′ + B4π
j,t sorb

j + Basymm
j,t sfsl

t

 +

+a1Hzs1Hz
j + ncorr

j,t + nw
j,t.

(69)

Here j represents a radiometer label, t indicates a single time
sample, p denotes a single pixel on the sky, and c represents one
single astrophysical signal component. Further,

– d j,t denotes the measured data value in units of V;
– g j,t denotes the instrumental gain in units of V K−1

cmb
– Ptp, j is the NTOD × 3Npix pointing matrix defined in Eq. (35),

where ψ is the polarization angle of the respective detector
with respect to the local meridian;

– B j denotes the beam convolution in Eq. (45) in the form of
a matrix operator, either for the (symmetric) main beam, the
(asymmetric) far sidelobes, or the full 4π beam; note that for
computational efficiency reasons we only take into account
beam asymmetries for the sidelobes and orbital dipole in this
paper;

– Mc j(βp,∆bp) denotes element (c, j) of an Ncomp × Ncomp mix-
ing matrix defined in Eq. (42), describing the amplitude of
component c as seen by radiometer j relative to some ref-
erence frequency j0 when assuming some set of bandpass
correction parameters ∆bp;

– ac
p is the amplitude of component c in pixel p, measured at

the same reference frequency as the mixing matrix M, and
expressed in brightness temperature units;

– sorb
j is the orbital CMB dipole signal in units of Kcmb, includ-

ing relativistic quadrupole corrections;
– s1Hz

j represents the electronic 1 Hz spike correction;
– sfsl

j denotes the contribution from far sidelobes, also in units
of Kcmb;

– ncorr
j,t denotes correlated instrumental noise, as defined by

Eqs. (50) and (52); and
– nw

j,t is uncorrelated (white) instrumental noise.

For notational convenience, we also define

ssky
j =

∑
c

Mc j(β,∆
j
bp)ac (70)

to be the sky model for detector j without beam convolution, but
integrated over the bandpass.

For external data sets, which are defined in terms of pre-
pixelized maps, this model simplifies to

d j,p = g jB
symm
pp′, j

∑
c

Mc j(βp′ ,∆
j
bp)ac

p′ + nw
j,p, (71)

which is identical to the Commander2 data model considered by
Seljebotn et al. (2019).

The free parameters in Eq. (69) are {g,∆bp, ncorr, a, β}. All
other quantities are either provided as intrinsic parts of the orig-
inal data sets (e.g., the pointing matrix, the beam profile, and the
orbital dipole), or given as a deterministic function of already

available parameters (e.g., the mixing matrix and the far side-
lobe component). The only exception to this is the white noise
component, which is neither fitted explicitly nor given by prior
knowledge, but is simply left as a stochastic uncertainty in the
model.

In addition to the parameters defined by Eq. (69), our model
includes a handful of parameters that describe the statistical
properties of the stochastic random fields included in the model.
Specifically, we associate each of the astrophysical component
maps ac with a covariance matrix Sc, which in most cases is as-
sumed to be statistically isotropic. Expanding ac

p =
∑
`m ac

`mY`(p)
into spherical harmonics, this matrix may then be written as

S c
`m,`′m′ ≡

〈
ac
`mac,∗

`′m′

〉
= Cc

`δ``′δmm′ , (72)

where Cc
` denotes the angular power spectrum of component c.

(Here we have for notational simplicity assumed that the com-
ponent in question is unpolarized; the appropriate generaliza-
tion to polarization is straightforward, and will be discussed in
Sect. 8.3.8.) This power spectrum is a stochastic parameter on
the same footing as a or β, and may as such be included in the
model fitted to the data. Alternatively, the power spectrum may
be modelled in terms some smaller set of parameters, ξ, through
some deterministic function C`(ξ), in which case ξ is the set
of stochastic parameters included in the model. For notational
simplicity, we will only include the power spectrum in the var-
ious posterior distributions below, but we note that C` may be
replaced with ξ without loss of generality.

Finally, similar considerations hold for the two noise compo-
nents. First, the white noise component is assumed to be piece-
wise stationary and Gaussian distributed with vanishing mean
and a covariance matrix equal to Nw

tt′ = σ2
0δtt′ . In the following,

we will assume the stationary period to be given by PIDs, and σ0
will be fitted independently for each period. Second, the corre-
lated noise component is also assumed to be piece-wise station-
ary and Gaussian distributed with zero mean, but with a nontriv-
ial covariance structure in time. Traditionally, this has been de-
scribed by the 1/ f model in Eq. (52) for Planck LFI, but as dis-
cussed by Ihle et al. (2022), the BeyondPlanck processing has
identified an additional component at intermediate frequencies
in the 30 and 44 GHz channels between 0.01 and 1 Hz. In this
current analysis, this is modelled in terms of a log-normal con-
tribution, and the full noise power spectral density (PSD) reads

P( f ) = σ2
0

[
1 +

(
f

fknee

)α]
+ Ap exp

−1
2

(
log10 f − log10 fp

σdex

)2 ,
(73)

where Ap is the peak amplitude of the additional term, fp isthe
peak frequency, and σdex is the width; for now, the latter two
are fixed at fiducial values, but this may change in future anal-
yses. With this approximation, the total noise PSD for the 30
and 44 GHz channels is modelled in terms of a total of four free
parameters, namely the white noise level σ0, a knee frequency
fknee, a low-frequency spectral slope α, and the amplitude of the
log-normal contribution. We denote the spectral noise parame-
ters collectively as ξn. For the 70 GHz channel, the log-normal
term is omitted.

So far, the discussion has been kept general, aiming to fit
all necessary parameters into one succinct and computationally
convenient framework. However, at this point it is useful to re-
mind ourselves that one of the astrophysical component carries
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particular importance in this work, namely the CMB. This com-
ponent is accommodated in Eq. (69) in the form of a = acmb and
Mcmb = 1 in thermodynamic temperature units, with an angu-
lar CMB power spectrum defined as C` =

〈
|acmb|2

〉
. Computing

P(C` | d) (or P(ξ | d), where ξ represents a set of cosmological
parameters) properly marginalized over all relevant astrophys-
ical and instrumental parameters, is the single most important
scientific goal of the current algorithm.

In summary, the total set of free stochastic parameters
adopted in this work is ω ≡ {g,∆bp, ncorr, ξn, a, β,C`}, where
each symbol collectively represents a larger set of individual pa-
rameters, typically depending on radiometer, time, pixel, or com-
ponent. For notational convenience, we will usually suppress in-
dividual indices, unless explicitly required for context. Likewise,
we also note that in most cases, each of the parameters and quan-
tities discussed above is associated with its own technicalities,
which have been omitted in the above discussion. Such details
will be provided in dedicated companion papers, with appropri-
ate references given where appropriate. Finally, a full specifi-
cation of the astrophysical component model considered in this
analysis is provided in Sect. 3.5.

7.2. Deterministic quantities

Before considering the posterior distribution P(ω | d), it is use-
ful to introduce some extra notation regarding various quantities
that may either be derived deterministically from ancillary infor-
mation or from other parameters in our model. These quantities
are not stochastic variables in their own right within our model,
and are as such not associated with independent degrees of free-
dom, but they are simply computationally convenient auxiliary
variables.

7.2.1. Frequency maps and leakage corrections

Our first derived quantity are frequency maps, which we will de-
note mν. In our framework, frequency maps are not stochastic
parameters, but instead they represent a deterministic compres-
sion of the full data set from time-ordered data into sky pixels,
conditioning on any parameter or quantity that is not stationary,
such as the gain, correlated noise, and the orbital dipole.

In order to construct frequency sky maps, we start by com-
puting the following residual calibrated TOD for each detector,

r(0)
j,t =

d j,t − ncorr
j,t − s1Hz

j,t

gt, j
−

(
sorb

j,t + sfsl
j,t

)
. (74)

According to Eq. (69), r j,t now contains only stationary sky sig-
nal and white noise, given the current estimates of all other pa-
rameters.

In principle, r(0)
j,t could be individually binned into a pixelized

map for each radiometer j given the pointing information in P j
tp.

Unfortunately, due to the poor cross-linking properties of the
Planck scanning strategy, it is very difficult to solve for three
independent Stokes parameters per pixel based on only informa-
tion from a single radiometer. In practice, four radiometers are
required in order to obtain well-conditioned maps with robust
statistical properties. In the following we will mostly consider
full-frequency maps, combining all four, six and twelve LFI ra-
diometers into respective 30, 44 and 70 GHz maps.

Unfortunately, combining multiple radiometers into a sin-
gle pixelized map carries its own complications. Since each ra-
diometer has its own separate bandpass and beam profile, the

observed sky will appear slightly different for each radiometer.
However, when creating a single joint frequency map, only one
single value per pixel is allowed. Any deviation from this mean
value will be interpreted within the data model as either corre-
lated or white noise, and consequently be filtered according to ξn
or down-weighted according to σ0 during processing, or be split
among the various other free parameters, including the CMB
map. This typically gives rise to artifacts proportional to the to-
tal signal amplitude, but modulated by the scanning strategy of
the instrument. These effects are often referred to as bandpass or
beam mismatch contamination, respectively. Informally speak-
ing, this is also often referred to as “temperature-to-polarization
leakage,” in recognition of the fact that the temperature signal
is orders of magnitude brighter than the polarization signal, and
therefore even a small bandpass or beam difference can induce a
large spurious polarization signal.

Fortunately, with the model described above, which includes
a full and explicit model of the astrophysical sky signal as part of
its parameter space, it is possible to correct for such leakages. As
described by Svalheim et al. (2022a), we adopt a very straight-
forward approach by simply subtracting a correction from each
detector TOD, prior to map binning, of the form

δsleak
j,t = P j

tpB j
pp′

(
ssky

jp′ −
〈
ssky

jp′

〉)
, (75)

where ssky
j denotes the sky model as seen by detector j, account-

ing for separate bandpass profiles, and angle brackets indicate
an average over all radiometers included in the map. For com-
putational efficiency reasons, the beam is here approximated as
azimuthally symmetric, which allows the average over detector
indicated by brackets in the equation to be performed pixel-by-
pixel. However, since δsleak is already a difference between two
very similar sky models with slightly different bandpasses, the
error due to asymmetric beams is a second-order effect, and com-
pletely negligible compared to instrumental noise.

In order to correct for bandpass and beam leakage effects, we
modify Eq. (74) accordingly,

r j,t =
d j,t − ncorr

j,t − s1Hz
j,t

gt, j
−

(
sorb

j,t + sfsl
j,t + δsleak

j,t

)
. (76)

After applying this correction, all detector TODs exhibit the
same net sky signal, up to the accuracy of the instrument model,
which itself is sampled over within the Markov chain. At the
same time, the mean signal is not affected by this correc-
tion, independent of the accuracy of the instrument model, as〈
δsleak

〉
= 0 when averaged over all detectors.

With calibrated and cleaned TOD ready at hand which con-
tain exclusively equalized signal and white noise for each de-
tector, optimal mapmaking is performed simply by solving the
corresponding normal equations pixel-by-pixel (see, e.g., Ap-
pendix A.2 or Ashdown et al. 2007a),∑

j∈ν

Pt
j(N

w
j )−1P j

 mν =
∑

j

Pt
j(N

w
j )−1d j. (77)

For our pointing matrix definition and white noise covariance
matrix, this equation may for a single pixel be written explicitly
as

∑ 1
σ2

0, j

∑ cos 2ψ j,t
σ2

0, j

∑ sin 2ψ j,t
σ2

0, j∑ cos 2ψ j,t
σ2

0, j

∑ cos2 2ψ j,t
σ2

0, j

∑ cos 2ψ j,t sin 2ψ j,t
σ2

0, j∑ sin 2ψ j,t
σ2

0, j

∑ sin 2ψ j,t cos 2ψ j,t
σ2

0, j

∑ sin2 2ψ j,t
σ2

0, j


 T

Q
U

 =



∑ d j
σ2

0, j∑ d j cos 2ψ j,t
σ2

0, j∑ d j sin 2ψ j,t
σ2

0, j


, (78)
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where the sums run over both detector j and all time samples
t that point toward pixel p. The associated inverse white noise
pixel-pixel covariance matrix, N−1

pp′ , is given simply by the in-
verse of the matrix on the left-hand side of Eq. (77).

It is important to note that the frequency maps defined by
Eq. (77) have a slightly different statistical interpretation than
those delivered by earlier CMB analysis pipelines, for instance
from the Planck DPCs or WMAP science team. With our def-
inition, mν represents one possible realization of the frequency
sky map assuming perfect knowledge about the correlated noise,
gain, bandpass, leakage effects, among others; the only unmiti-
gated stochastic quantity is instrumental white noise. The uncer-
tainties due to all those other effects are instead accounted for
by the fact that we produce an entire ensemble, mi

ν, each with
different combinations of systematic effects. For full error prop-
agation, it is thus important to analyze the full set of available
frequency maps, not just one single realization. In contrast, tra-
ditional frequency maps represent an approximation to the over-
all maximum likelihood solution, and error propagation can only
be achieved through analysis of end-to-end simulations.

We conclude this section by emphasizing that sleak as defined
above is not a separate stochastic parameter within our model. It
neither increases the total uncertainty in the system, nor does it
induce new parameter degeneracies; it is a simple determinis-
tic correction that removes a known bias in co-added frequency
maps.

7.2.2. Spurious leakage maps

The correction for spurious leakages from bandpass and beam
mismatch defined in Eq. (75) is only exact to the extent that the
assumed bandpass and beam profiles are accurate. In order to
monitor the efficiency of the leakage correction, it is therefore
useful to establish a dedicated goodness-of-fit statistic for this
correction. For this purpose, we adopt the “spurious map” ap-
proach pioneered by Page et al. (2007), and later adapted within
various pipelines, including Planck Collaboration II (2020) and
Planck Collaboration Int. LVII (2020).

The central idea underlying this approach is to modify the
pointing matrix to allow for a set of additional temperature maps,
each corresponding to the difference between the temperature
sky as seen by radiometer j and the temperature sky as seen by
the mean of the detectors at that frequency. However, to prevent
the linear mapmaking equation from becoming degenerate, one
can at most include Ndet − 1 such spurious maps for a configu-
ration involving Ndet detectors. Thus, we generalize the pointing
model for a single observation in terms of the Stokes parameters
and spurious maps as follows,

s j = T + Q cos 2ψ j + U sin 2ψ j +

Ndet−1∑
i=1

S i δi j. (79)

Given this definition, the mapmaking equation in Eq. (77) gen-
eralizes straightforwardly, and for the special case of three de-
tectors, the contribution of a single sample from detector j takes
the schematic form


1 cos 2ψ sin 2ψ δ1 j δ2, j
cos 2ψ cos2 2ψ cos 2ψ sin 2ψ cos 2ψ δ1 j cos 2ψ δ2, j
sin 2ψ sin 2ψ cos 2ψ sin2 2ψ sin 2ψ δ1 j cos 2ψ sin 2ψ δ2, j
δ1 j cos 2ψ δ1i sin 2ψ δ1 j δ1 j 0
δ2 j cos 2ψ δ2i sin 2ψ δ2 j 0 δ2 j




T
Q
U
S 1
S 2

 =


d

d cos 2ψ
d sin 2ψ

d δ1 j
d δ2 j

 . (80)

For WMAP, it is in fact possible to solve this equation pixel-
by-pixel, due to the highly interconnected WMAP scanning strat-
egy (Page et al. 2007). The resulting Stokes parameter maps
solved jointly with S were therefore released as primary mission

products (Bennett et al. 2013). Unfortunately, the same is not
possible for Planck without inducing an unacceptable increase
in the overall noise level, as the coupling matrix in Eq. (80) is
poorly conditioned over most of the sky. However, the resulting
S maps are still very useful for monitoring purposes, and we will
in fact use these maps to optimize a small number of bandpass
parameters, for which a high level of noise is of no concern; see
Svalheim et al. (2022a) and Sects. 4.2 and 8.3.4 for further de-
tails.

7.2.3. Orbital dipole

The third derived quantity we will need is the orbital dipole, sorb
j,t .

Including a relativistic quadrupole correction, this has a closed
form as given by

sorb
j,t =

TCMB

c

(
vsat · n̂j,t + q(vsat · n̂j,t)2

)
, (81)

where

q =
x(e2x + 1)

e2x − 1
; x =

hν
2kTCMB

(82)

is the frequency dependency of the relativistic quadrupole
term. The CMB temperature is in our analysis fixed to
TCMB = 2.7255 K, following Fixsen (2009). Finally, c is the
speed of light, h is Planck’s constant, k is Boltzmann’s constant,
vsat is the satellite velocity, and n̂j,t is the pointing vector of de-
tector j at time t. The satellite velocity is known with an ab-
solute precision better than 1 cm s−1 (Planck Collaboration Int.
LVII 2020). An efficient convolution algorithm for this compo-
nent that takes into account the full 4π beam is described by
Galloway et al. (2022b).

It is important to note the critical role of this particular sig-
nal term. Depending only on the velocity of the satellite (which
is known to exceedingly high precision) and the CMB temper-
ature (which is known to a precision of 0.02 %; Fixsen 2009),
it provides the best absolute calibration source in microwave as-
tronomy, if not all of astronomy. For BeyondPlanck, as for both
Planck and WMAP, this signal is therefore used to determine the
overall absolute calibration of the entire data set.

7.2.4. Far sidelobe corrections

The last derived quantity we will need at this stage is the far
sidelobe correction, sfsl, as defined in Sect. 4.3. As shown by
Planck Collaboration IV (2016), the Planck LFI optics have sev-
eral significant sidelobes at large angles from the optical axis.
The most important is due to spillover around the main reflec-
tor, and located about 85◦ from the main beam. The second most
important is due to spillover around the secondary reflector, and
located about 20◦ from the main beam. To account for these, we
convolve the parametric sky model with the (near-)4π beam pro-
file, B, of each radiometer (regions closer than 5◦ from the main
beam are excluded),

sfsl
j,t =

∫
4π

[R(Ωt)B(Ω)] ssky
j (Ω) dΩ, (83)

where R(Ωt) is a rotation matrix that rotates the beam as speci-
fied by the satellite pointing at time t. To evaluate this integral,
we employ an algorithm that is algebraically equivalent to the
conviqt approach described by Prézeau & Reinecke (2010),
but implemented in terms of spin harmonics, as described by
Galloway et al. (2022b).
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We stress, however, that uncertainties in the far-sidelobe
model are not yet accounted for, and this represents a significant
model uncertainty in the current analysis. Generalizing the para-
metric model in Eq. (69) to allow for new beam-related degrees
of freedom is an important goal for future algorithm develop-
ment.

8. The BeyondPlanck Gibbs sampler

8.1. Global posterior distribution

Given the global parametric model defined in Sect. 7.1, and the
ancillary quantities summarized in Sect. 7.2, we are now finally
ready to consider the full global BeyondPlanck posterior dis-
tribution, P(ω | d), and describe the computational algorithms
required to map it out. In practice, this entails writing down ex-
plicit expressions for the likelihood and priors in Eq. (60), as
well as specifying an explicit Gibbs chain that is able to explore
the posterior distribution efficiently.

Starting with the likelihood, L(ω), we first note that the data
model defined in Eqs. (69)–(71) is given as a linear sum of var-
ious components, all of which are specified precisely in terms
of our free parameters ω. This applies even to the correlated
noise component, ncorr, which for the purposes of the likelihood
is fully equivalent to any of the other physical components. As
such, we may symbolically write d = stot(ω) + nw, where stot(ω)
is the sum of all model components in Eq. (69), whether they
have a cosmological, astrophysical or instrumental origin. With
this notation, we immediately see that

P(d | ω) ∝ P(nw | ω) ∝ exp

−1
2

(
d − stot(ω)

σ0

)2 , (84)

since nw = d − stot(ω), P(nw) ∝ N(0, σ2), and stot is determinis-
tically given by ω.

Next, the prior P(ω) should encapsulate all our prior knowl-
edge about any of the model parameters. For instance, we may
use this term to introduce information regarding the instrumen-
tal gain from temperature measurements of the 4 K load onboard
the Planck satellite during the calibration stage; or we can use it
to impose prior knowledge regarding the CIB zero-level ampli-
tude at each frequency during component separation; or we may
introduce a prior on the Hubble constant during cosmological
parameter estimation; or we may use it to regularize posterior
volume effects through the application of a Jeffreys ignorance
prior (Jeffreys 1946). A detailed breakdown of the priors used in
this particular analysis will be presented in association with the
respective steps.

8.2. Overview of Gibbs chain

As already discussed, the posterior distribution defined by Eq. 60
involves millions of tightly correlated and non-Gaussian param-
eters, and it is clearly unfeasible to optimize or sample from it
directly. We therefore resort to the Gibbs sampling algorithm de-
scribed in Sect. 6.3: We compute a Markov chain of correlated
samples by initializing on some arbitrary parameter combina-
tion, ω0, and then iteratively sample from each conditional dis-
tribution from the full distribution. In practice, most runs are ini-
tialized on the outcome of an earlier analysis, in order to save
burn-in time.

The BeyondPlanck Gibbs chain may be written schemati-
cally as follows,

g ← P(g | d, ξn, a1Hz,∆bp, a, β,C`) (85)

ncorr ← P(ncorr | d, g, ξn, a1Hz,∆bp, a, β,C`) (86)

ξn ← P(ξn | d, g, ncorr, a1Hz,∆bp, a, β,C`) (87)

a1Hz ← P(a1Hz | d, g, ncorr, ξn, ∆bp, a, β,C`) (88)

∆bp ← P(∆bp | d, g, ncorr, ξn, a1Hz, a, β,C`) (89)

β ← P(β | d, g, ncorr, ξn, a1Hz,∆bp, C`) (90)

a ← P(a | d, g, ncorr, ξn, a1Hz,∆bp, β,C`) (91)

C` ← P(C` | d, g, ncorr, ξn, a1Hz,∆bp, a, β ), (92)

where the conditional variables have been vertically aligned for
clarity only. As usual, the symbol← means setting the variable
on the left-hand side equal to a sample from the distribution on
the right-hand side. For convenience, in the following we also
define the notation “ω \ ξ” to imply the set of parameters in ω
except ξ.

Note that the first conditional in this Gibbs chain,
P(g | d, . . .) represents a marginal distribution with respect to
ncorr. As such, g and ncorr are in effect sampled jointly in the Be-
yondPlanck Gibbs chain (Gjerløw et al. 2022; Ihle et al. 2022),
using the properties discussed in Sect. 6.3. The reason for this
choice is that these two parameters are particularly strongly de-
generate, and joint sampling therefore leads to a much shorter
overall correlation length than strict Gibbs sampling. This out-
weighs by far the somewhat higher computational cost per it-
eration that is required for sampling the gain from its marginal
distribution.

The same method is applied when sampling astrophysical
component parameters, a and β in the case of intensity maps. In
this case, we first sample β marginalized over a, and then a con-
ditionally on β (Andersen et al. 2022). Since a is a set of linear
parameters, the integral over a may be computed analytically, as
first exploited for CMB component separation purposes in the
Miramare code (Stompor et al. 2009; Stivoli et al. 2010). For
polarization, we still sample β conditionally on a, as described
by Svalheim et al. (2022b), because the low-resolution WMAP
data with full covariance matrix prohibits smoothing to a com-
mon angular resolution, as needed for the marginal sampling ap-
proach.

We will now describe each of these distributions in turn, with
the main goal being to build intuition regarding each distribu-
tion. For specific implementational details we refer the interested
reader to companion papers.

At this point, we note that if a joint maximum likelihood es-
timate is required as opposed to a sample set, the same method-
ology applies as described below, with the exception that one
should then maximize each conditional, rather than sample from
it. The algorithm then becomes equivalent to a (slow but com-
putationally convenient) steepest descent nonlinear optimizer. In
our codes, we have implemented support for both modes of op-
eration.

8.3. Specification of conditional sampling steps

8.3.1. Gain and calibration sampling

We start our review of the various Gibbs sampling steps with the
gain, gt. In this paper, we only summarize the main central steps,
and we refer the interested reader to Gjerløw et al. (2022) for full
algorithmic details.
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Fig. 10. Random correlated noise Stokes Q Gibbs sample, ncorr, for the
44 GHz frequency channel, smoothed to an effective angular resolution
of 5◦ FWHM. The top figure shows the map resulting from a boxcar
smoothed gain solution, whereas the bottom figure is the map which re-
sults from smoothing the gain solution with a Wiener filter. Reproduced
from Gjerløw et al. (2022)

The gain is among the most critical parameters in our model
in terms of the overall resulting data quality, and even relative er-
rors at the O(10−4) level are highly significant. At the same time,
it is also one of the parameters we have the least prior informa-
tion about, as it is entirely specific for each individual instru-
ment. To estimate the gain robustly, we therefore exploit the fol-
lowing observations: First, we note that the orbital CMB dipole
(see Sect. 7.2.3) depends only the satellite velocity, which is
known to a precision of 10−6 (Godard et al. 2009), and the CMB
monopole value, which is known to a precision of 0.02 % (Fixsen
2009). The orbital dipole therefore by far provides the most ro-
bust constraints on the mean calibration.16 However, since the
Earth’s orbital velocity is 30 km s−1 and the CMB monopole is
2.7255 K, the absolute amplitude of the orbital dipole is only
270 µK, which is small compared to typical signal and noise
variations. As a result, the orbital dipole is not strong enough
to directly determine the gain alone on short time scales.

In contrast, the amplitude of the solar CMB dipole is 3 mK,
about ten times brighter than the orbital dipole. Of course, the
true solar CMB dipole parameters are unknown, and must be
estimated jointly with everything else; but we do know that all
detectors observe the same solar dipole. We also know that its
frequency spectrum is given by a perfect blackbody with tem-
perature TCMB. Together, these two facts provide a strong handle
on relative gain variations, both between detectors and in time.

16 The term “calibration” refers in this paper to the time average of the
gain.

Fig. 11. Processing masks used in gain and correlated noise estimation
for each frequency channel. The allowed 30 GHz sky fraction (blue)
is 0.73, the 44 GHz sky fraction (green) is 0.81, and the 70 GHz sky
fraction (red) is 0.77. Reproduced from Gjerløw et al. (2022).

First, we note that the fundamental data model in Eq. (69)
may for each detector be written in the form

dt = gt stot
t + s1Hz

t + ncorr
t + nw

t (93)

where

stot
t = Ptp

[
Bsymm

pp′ ssky
p′ + Basymm

pp′
(
sorb

t + sfsl
t

)]
(94)

is the total sum of all true astrophysical signals entering through
the optical assembly of the instrument. Noting that both the gain
and correlated noise a priori are unknown quantities with no and
weak priors, respectively, it is clear from the structure of Eq. (93)
that these two parameters are highly degenerate: significant vari-
ations in g can be accounted for by adjusting ncorr with only a
small penalty in terms of total goodness-of-fit through the noise
power spectrum, ξ.

Recognizing the importance of this degeneracy, and the
resulting sensitivity to potential modelling errors, we decom-
pose the full time-dependent gain function into three compo-
nents, and sample each of these with a special-purpose sampler.
Specifically, we write the full gain for detector i in the form
gi

t = g0 + ∆gi + δgi
t, where g0 is the gain averaged both over all

detectors within a given frequency map and over time; ∆gi is the
mean gain differential for detector i averaged over time, with the
additional requirement that

∑
i ∆gi = 0; and δgi

t represents the
time dependence in gain, with the additional requirement that∑

t gi
t = 0 for each i. In addition, when sampling the these gain

parameters, we marginalize over the correlated noise compo-
nent, as discussed in Sect. 8.3.1, in order to minimize the Gibbs
chain correlation length. In total, the data model used for gain
sampling therefore reads

di
t = (g0 + ∆gi + δgi

t)stot
t + s1Hz

t + ntot
t , (95)

where ntot
t = ncorr

t + nwn
t is the total noise contribution with a full

covariance matrix given by ξn.
Formally speaking, the statistically optimal sampling algo-

rithm for any of the three gain parameters is given by correlating
the full sky signal with the observed data. In effect, this direct ap-
proach was adopted by the LFI DPC pipeline (Planck Collabora-
tion II 2020). A significant disadvantage of this direct approach,
however, is sensitivity to foreground and bandpass mismatch er-
rors. Instead, we adopt the following three-step approach, which
is structurally similar to the NPIPE algorithm (Planck Collabo-
ration Int. LVII 2020).

First, we sample g0 with the orbital CMB dipole alone as
calibration source, based on the residual

ri
t ≡ di

t − ĝ(stot
t − sorb)− (∆ĝi + δĝi

t)sorb
t − s1Hz

t = g0sorb
t + ntot

t , (96)
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where the symbol “^” denotes the respective estimate from the
previous Gibbs iteration. Noting that ntot is a Gaussian field with
covariance N and sorb is a deterministic quantity, the sampling
algorithm for g0 is given by that of a univariate Gaussian distri-
bution as described in Appendix A.1,

g0 =

∑
i sorb,t

i N−1
i rorb

i∑
i sorb,t

i N−1
i sorb

i

+
η√∑

i sorb,t
i N−1

i sorb
i

, (97)

where the sum runs over all detectors in the frequency map, and
η ∼ N(0, 1). We note that this expression represents a formal
violation of the Gibbs chain, since g0 in reality affects both stot

and sorb. By fitting only to sorb we effectively achieve robustness
with respect to modelling errors at the cost of increased statisti-
cal uncertainty.

Note that the noise covariance matrices in Eq. (97) in-
clude both correlated and white noise contributions; this is al-
gebraically equivalent to marginalizing over ncorr as described
above. In constrast, in a classic Gibbs sampling algorithm we
would subtract ncorr from ri in Eq. (98), and then only include
the white noise component in Ni. This, however, would lead to
a much longer Markov correlation length, since the joint uncer-
tainties between g0 and ncorr then would have to be explored by
sampling, rather than algebraically.

Second, we sample the detector dependent calibration fac-
tors, ∆gi, based on the residual

ri
t ≡ di

t − (g0 + δĝi
t)stot

t − s1Hz
t = ∆gistot

t + ntot
t , (98)

for each detector, which now includes contributions from both
the solar CMB dipole and astrophysical foregrounds, and there-
fore supports a significantly higher signal-to-noise ratio than the
orbital dipole alone. At the same time, we impose the additional
linear constraint that∑

∆gi = 0, (99)

such that possible contamination in this step does not affect the
absolute mean calibration of the full frequency channel. The total
system may be solved using the Lagrange multiplier technique
(e.g., Bertsekas 1996) with a Lagrangian of the form

L(∆gi, λ) =
∑

i

(
ri − ∆gistot

)t
N−1

i

(
ri − ∆gistot

)
+ λ

∑
i

∆gi,

(100)

where λ is a Lagrange multiplier. The maximum posterior so-
lution is found by solving the linear equations resulting from
setting ∂L/∂xi = 0 with xi = {∆gi, λ}.

Third and finally, the time-dependent gain fluctuations are
sampled starting from the residual

ri
t ≡ di

t − (g0 + ∆gi) stot
t − s1Hz

t = δgistot
t + ntot

t , (101)

where δgi
t is assumed to be constant within each PID period, but

free to vary between consecutive PIDs. Unfortuately, the noise
on the estimated gain per PID is very large, and in practice,
these estimates must be smoothed. For a fully stationary sys-
tem, the mathematically optimal approach to do so would be to
sample δgi

t from a multivariate Gaussian distribution, taking into
account their known 1/ f power dependency and associated tem-
poral correlations. This would correspond to an optimal Wiener
filter, and the optimal sampling algorithm takes the following
form (Gjerløw et al. 2022),

(G−1 + N−1)δ ĝ = N−1
i ri + N−1/2

i η1 + G−1/2η2. (102)

In this expression, G is the covariance matrix of the Gaussian
prior on δgi, Ni is the noise covariance of the individual gain
measurements, and η1 and η2 are two independent vectors drawn
from a normal distribution with unity variance.

Motivated by the fact that gain fluctuations originate from
the same 1/ f fluctuations as correlated noise, we adopt a similar
functional form in Fourier space for G as the correlated noise
component,

G( f ) = σ2
0

(
f
f0

)α
, (103)

where α and σ0 are parameters to be determined, while f0 is just
a reference frequency. These two parameters effectively deter-
mine the smoothness of the resulting solution; for instance, the
lower the value of σ0, the smoother the final gain estimate will
be. In principle, these parameters could be fitted directly from
the data, fully analogous to the correlated noise parameters dis-
cussed in the next section. However, the time-dependent gain
shows clear evidence of non-thermal variations, for instance in
the form of sharp jumps due to abrupt changes in the thermal or
electronic environment. To avoid over-smoothing these, we in-
stead choose values that impose less temporal smoothing than
dictated by the stationary 1/ f behaviour; for further details, see
Gjerløw et al. (2022).

For comparison, the official Planck LFI DPC processing
adopted a boxcar average algorithm for smoothing the gain
(Planck Collaboration II 2016), effectively averaging over a glid-
ing window in time. The main difference between these two al-
gorithms is illustrated in Fig. 10, which compares the correlated
noise components that results from the two methods: The boxcar
averaging introduces significant striping by over-smoothing real
gain fluctuations, which in turn biases the estimated CMB Solar
dipole and Galactic foregrounds for the relevant time periods.
The novel Wiener-filter smoothing algorithm presented by Gjer-
løw et al. (2022) represents one of the most important individual
algorithmic improvements in BeyondPlanck with respect to the
official Planck processing, and it was key to understanding the
long-standing issues with the 44 GHz frequency channel (Planck
Collaboration II 2020).

To prevent foreground modelling errors from affecting the
various gain estimates, we apply the processing masks indicated
in gray in Fig. 11 in each of the above equations. Any sample
that falls within the masked region is omitted from the corre-
sponding inner product, and does not contribute to the overall
estimate. The same applies to any sample that may be flagged
by the instrument database. Removing individual samples, how-
ever, does introduce a slight computational complication because
of the Ntot = Ncorr + Nwn operator, which denotes a dense noise
covariance matrix that includes both correlated and white noise.
Application of this operator at full temporal TOD resolution is
computationally expensive. However, we note that since the gain
is defined only by a single value per PID, small-scale fluctuations
can be averaged down with minimal loss of information in all the
above equations. We therefore down-sample each time-ordered
data object to 1 Hz before evaluating the above equations, and
this reduces the overall computational cost for gain sampling by
almost two orders of magnitude; see Gjerløw et al. (2022) and
Ihle et al. (2022) for further details.

8.3.2. Correlated noise sampling

Since the gain is sampled from a marginal distribution with re-
spect to correlated noise, not a conditional distribution, it is es-
sential to sample the correlated noise immediately following the
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gain; otherwise the Gibbs chain would end up in an internally in-
consistent state. However, as far as the actual sampling algorithm
for the correlated noise is concerned, this is a normal conditional
with respect to the gain, akin to any other standard Gibbs step,
and was first described in a CMB setting by Wehus et al. (2012).
The same algorithm has now also, for the first time, been used to
solve the CMB mapmaking problem by Keihänen et al. (2022).

To derive the appropriate sampling equation for ncorr, we re-
turn to the full data model in Eq. (69), and note that it may be
written on the form

rt ≡ dt − gt stot
t − s1Hz

t = ncorr
t + nw

t , (104)

where stot
t is defined in Eq. (94). As discussed in Sect. 7.1, ncorr is

assumed to be Gaussian distributed with zero mean and covari-
ance Ncorr, while the white noise term is uncorrelated Gaussian
with variance σ2

0. Eq. (104) therefore also describes a correlated
Gaussian distribution, and the sampling equation is in this case
given by Eq. (A.11) with a template matrix T = 1, a signal co-
variance matrix S = Ncorr, a noise covariance matrix N = Nw,
and data d = r.

Let us first consider the ideal case of a single PID with no
missing data due to either instrument flags or processing mask.
In that case, Eq. (A.11) can be solved very conveniently in the
Fourier domain, and the appropriate sampling equation for the
kth Fourier mode reads

nk =
rk + η1σ

2
0/

√
Pcorr

k + η2σ0

1 + σ2
0/P

corr
k

. (105)

For this case, we note that the computational cost is equivalent
to two Fourier transforms of the full time-ordered data.

As usual, the first term in the numerator of Eq. (105) is sim-
ply a Wiener filtered version of the residual, r. As such, it repre-
sents a biased estimate of ncorr, with a noise suppression factor
given by the relative inverse signal-to-noise ratio, Pcorr

k /σ2
0. The

two last terms are stochastic random fluctuations that ensure that
the resulting sample has the appropriate covariance structure.

Equation (105) only applies to data with no missing time
samples, as the Fourier transforms require continuous inputs. In
practice, however, we drop all samples that are removed by ei-
ther the instrument flags or by the processing mask shown in
Fig. 11. In this case, the optimal solution is therefore given by
Eq. (A.11), where rows and columns corresponding to masked
samples are set to zero in N−1. The resulting equation is there-
fore solved efficiently by a Conjugate Gradient (CG) technique,
as described by Keihänen et al. (2022). As reported by Galloway
et al. (2022a), and summarized in Table 2, this particular step
accounts for about 40 % of the total computational cost of the
BeyondPlanck Gibbs sampler, and it is as such by far the most
expensive single component in the entire analysis.

In the current framework, correlated noise estimation plays
the role of the traditional CMB mapmaking problem with cor-
related noise in a traditional pipeline. In this respect, it is worth
noting that the correlated noise sample is constructed based on
the signal-subtracted data, r, alone. Under the assumption of a
perfect signal model, inaccuracies in the correlated noise model
can therefore not introduce any signal bias. Using the analogy
of traditional destriping codes (e.g., Maino et al. 1999; Keihä-
nen et al. 2004, 2005, 2010), the signal subtraction plays the
same role in the Gibbs sampling approach as the projection op-
erator Z = I − P(PtN−1P)−1PtN−1 does for destriping, shielding
any stationary signal from the noise filter. The main fundamental
difference between the two approaches lies in the fact that while
the traditional destriper only exploits information from a single

frequency channel at any given time, the Gibbs sampling ap-
proach simultaneously exploits information from all frequencies
to construct a joint signal model, which then is used to shield the
signal during correlated noise estimation. The Gibbs sampling
approach is thus mathematically equivalent to destriping all fre-
quencies at once. The effect of this global correlated noise esti-
mation will become evident later, in the form of lower correlated
noise residuals in the joint approach.

Second, it is important to note that the correlated noise solu-
tion resulting from Eq. (105) is moderately robust against model
errors, whether they are due to foreground modelling errors or
inaccuracies in the bandpass or beam profile. The reason is sim-
ply that Eq. (105) is a Wiener filter, and therefore has greatly
suppressed power in any frequency mode for which Pcorr

k � σ2
0.

Intuitively, this means that any feature that cannot be readily
identified in the raw time-ordered data as compared with σ0, will
only be weakly affected by the correlated noise component. Mi-
nor errors in the signal model, beam or bandpass profiles are
therefore mostly negligible.

There are, however, two important exceptions to this general
rule. First, some point sources, such as Tau A or the Galactic cen-
ter, are sufficiently bright that uncertainties in the beam or fore-
ground model can be large compared to the white noise level. If
so, the resulting errors will typically translate into bright stripes
passing through the respective source, extending along the scan-
ning path of the satellite. To avoid this, it is critically important
to mask all bright sources as part of the processing mask, and
replace those regions with a proper constrained realization as
described above.

The second important exception is the CMB dipole. This sig-
nal is both bright, with a peak-to-peak amplitude of about 3 mK,
and concentrated at a very low frequency that corresponds to the
satellite spin rate of 1/60 Hz. This is typically comparable to (or
lower than) the correlated noise knee frequencies (Planck Col-
laboration II 2020). Furthermore, the ring-based Planck scan-
ning strategy provides minimal modulation of the dipole signal
on frequencies beyond the spin frequency. The combination of
these facts leads to a strong degeneracy between the CMB dipole
parameters, the time-dependent gain, and the correlated noise.
Indeed, experience shows that Planck is, for all practical pur-
poses, unable to break this degeneracy through statistical power
alone. Instead, various strong priors are typically imposed to reg-
ularize these degeneracies. For instance, the LFI DPC processing
impose the requirement that mD · m = 0, where mD is a map of
the CMB dipole and m is the sky map; this effectively leaves the
full instrumental noise component aligned with the CMB dipole
in the final sky map (Planck Collaboration V 2016). Addition-
ally, the LFI pipeline makes no explicit corrections for bandpass
mismatch during gain calibration. For the HFI 2018 DPC pro-
cessing, the dominant assumption is that the gain is fully inde-
pendent of time, and the only source of apparent gain fluctua-
tions are ADC non-linearities (Planck Collaboration III 2020).
For NPIPE, two important assumptions are that polarized fore-
grounds at frequencies between 44 and 217 GHz may be fully
modelled in terms of the signal observed by 30 and 353 GHz,
and that CMB polarization may be ignored during calibration
(Planck Collaboration Int. LVII 2020). Obviously, none of these
assumptions are formally correct, and they will necessarily lead
to systematic biases at some level.

In BeyondPlanck, we adopt a different approach to the prob-
lem, by actually exploiting information beyond Planck. Specif-
ically, as described in Sect. 5, we will in the following perform
a joint analysis of WMAP and Planck observations, and thereby
take advantage of information in one experiment to break de-
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generacies in the other. Most notably, the WMAP scanning strat-
egy covers 70 % of the sky every hour, as compared to less than
1 % per hour for Planck. This strategy is thus obviously better
suited for measuring the very largest angular scales on the sky,
despite higher white noise. On the other hand, the differential
structure of the WMAP differencing assemblies leads to particu-
larly large uncertainties for some specific modes, including E`=5
and B`=3 (Jarosik et al. 2011). In BeyondPlanck we therefore
choose to combine Planck and WMAP data while taking into ac-
count the full covariance information of each experiment, and
thereby optimally leverage the individual strengths of each ex-
periment. Still, we emphasize the importance of visually inspect-
ing binned sky maps of ncorr for dipole-like residuals, which is
the archetypical signature of calibration errors; such residuals
may occur if the assumed signal model is inadequate for the data
set in question.

8.3.3. Noise PSD sampling

The third conditional distribution, P(ξn | d, ω \ ξn), in the Be-
yondPlanck Gibbs chain describes the noise power spectrum
density parameters, Pk and σ0, collectively denoted ξn. In the
following, we will make the assumptions that ξn is constant
within each PID and uncorrelated between PIDs. Being closely
connected to the previous sampling step, the following proce-
dure was also first presented for CMB applications by Wehus
et al. (2012).

To sample from P(ξn | d, ω \ ξn), we recall that ncorr ∼

N(0,Ncorr). Therefore,

P(ξ | d, ω \ ξn) ∝ P(ξ | ncorr) (106)

∝
e−

1
2 nt

corrN
−1
corr ncorr

√
|Ncorr|

, (107)

where Ncorr = Ncorr(ξn). To sample from this distribution, we
could for instance run a Metropolis sampler over ξn, using
Eq. (107) to define the acceptance probability. However, at this
stage we introduce an approximation to the exact solution, trad-
ing a small amount of statistical optimality for increased robust-
ness to modelling errors and minimal parameter degeneracies.
Specifically, we decouple the white noise variance from the cor-
related noise model simply by defining

σ2
0 ≡

Var(rt − rt−1)
2

, (108)

where we define

rt ≡ dt − gstot
t − ncorr

t − s1Hz
t (109)

to be the residual time stream after subtracting both the current
total sky signal and correlated noise estimates. Thus, we take the
variance of the difference between any two neighboring residual
samples to be our white noise variance. On the one hand, this
represents the single most robust estimate of the total white noise
level one can form from a finite data set. On the other hand, it
is of course only an approximation to the true white noise level,
since the correlated noise component may also happen to include
a flat and non-negligible power spectrum density at the highest
frequency mode. This situation typically arises more often for
bolometers (as for instance employed by the Planck HFI detec-
tors) than for coherent detectors (as employed by the Planck LFI
detectors and considered here), but the principle is the same both
cases.

Thus, we define the component of the correlated noise at half
the Nyquist frequency to be part of the white noise, and the cor-
related noise is consequently defined as the difference between
the total noise and the white noise. For error propagation into
other parameters in the model, only the sum of the two compo-
nents is significant. This split is thus essentially just a compu-
tational short-cut that eliminates internal degeneracies between
the two noise components, and maximizes the relative contribu-
tion of the white noise component. This has two main numeri-
cal advantages. First, noting that white noise marginalization is
performed algebraically, while correlated noise marginalization
is done through sampling, a high relative white noise fraction
leads to a shorter overall Markov chain correlation length for all
steps in the algorithm. Second, by fixing the white noise level,
we break degeneracies within the ξn parameters, which other-
wise lead a very long correlation length between σ0, α, fknee and
Ap (see Sect. 4.5), making convergence assessment difficult.

Given this definition of the white noise variance, the corre-
lated noise level may now be sampled from Eq. (107) by fixing
Nw. Specifically, as discussed by Ihle et al. (2022), the condi-
tional posterior may be written in Fourier space as

− ln P(ξn) =
∑
f>0

 |ncorr
f |

2

Pcorr( f )
+ ln Pcorr( f )

 , (110)

up to an irrelevant constant, where ncorr
f are the Fourier coeffi-

cients of the correlated noise estimate, ncorr, and Pcorr( f ) repre-
sent all non-white contributions to the noise PSD. We sample
from this distribution with a simple inversion sampler (see Ap-
pendix A.3), iteratively Gibbs sampling over α, fknee, and Ap.
Masking and in-painting is handled by the ncorr sampling step
described in Sect. 8.3.2.

8.3.4. Bandpass sampling

Next, we consider the bandpass correction conditional distribu-
tion, P(∆bp | d, ω \ ∆bp), and in the following we will consider
the most basic form of bandpass correction, namely a linear shift
as defined by Eq. (44); see Svalheim et al. (2022a) for further de-
tails.

Similar to the gain case, we find it useful to decompose the
full bandpass shift for detector j as follows,

∆
j
bp = ∆̄bp + δ

j
bp. (111)

Here the first term is the average over all radiometers within a
given frequency channel and the second term is constrained by∑

j δ
j
bp = 0. The motivation for this decomposition is that the two

terms impact the data in qualitatively different ways. The average
bandpass shift, ∆̄bp, change the overall effective frequency of the
full frequency channel, and is as such highly degenerate with the
foreground SED parameters; a given bandpass frequency shift
may often be counteracted by adjusting the values of the syn-
chrotron or thermal dust spectral indices. This mean bandpass
shift does not in general change the polarization properties of
the resulting frequency map. The relative bandpass corrections,
however, have a strong impact in terms of polarization through
temperature-to-polarization leakage, as discussed in Sect. 4.2
and by Svalheim et al. (2022a).

For this reason, we have implemented two different sampling
algorithms for these parameters. First, the mean bandpass cor-
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rection is sampled with the full time-domain residual on the form

r j = d j − ncorr
j − G jP jB

asymm
j

(
sorb

j + sfsl
j

)
− s1Hz

j (112)

= G jP jB
symm
j

∑
c

Mc j(β,∆
j
bp)ac + nw

j . (113)

Clearly, this residual is highly nonlinear in ∆bp, and no ana-
lytic distribution or sampler exist. We therefore once again re-
sort to the Metropolis sampler described in Sect. 6.1. Specif-
ically, we propose small variations to the current mean band-
pass shift (while keeping the relative differences between ra-
diometers fixed); we compute the resulting mixing matrices M
and sky maps for the new proposals; and we finally then ap-
ply the Metropolis acceptance rule as given by the resulting χ2.
Only samples within the small processing mask in Fig. 11 are in-
cluded in the χ2. Since mixing matrix updates are computation-
ally expensive, bandpass corrections are among of the most dif-
ficult parameters to explore within the entire model. However, as
discussed by Svalheim et al. (2022a), the degeneracies between
CMB, free-free, AME and ∆̄bp are too strong to support a robust
determination of ∆̄bp when including only LFI and WMAP data.
In the final BeyondPlanck production runs, we therefore adopt
priors based on the Planck 2015 analysis (Planck Collaboration
X 2016), which used HFI data to break these degeneracies. In
practice, we only apply an overall mean correction of 0.24 GHz
to the 30 GHz channel, and no mean corrections to the 44 and
70 GHz channels. In future analyses also including the full HFI
set, these priors will obviously be removed.

For the relative bandpass corrections, δbp, we adopt an al-
ternative approach that is specifically tuned to increase robust-
ness in the final polarization maps. Specifically, after propos-
ing changes to each of the detector-specific bandpasses (under
the constraint that their sum vanishes), we compute the resulting
IQUS map that was defined in Eq. (80) for both the old and new
parameter values. Next, we define a special purpose χ2 of the
form

χ2 =

Ndet−1∑
j=1

∑
p

(
S j(p)
σ j(p)

)2

, (114)

where S j(p) is the spurious map corresponding to radiometer j
in pixel p, and σ j(p) is the associated uncertainty resulting from
the IQUS solution. This χ2 defines the Metropolis acceptance
probability as follows,

a = min
(
1, e−

1
2 (χ2

prop−χ
2
i−1)

)
, (115)

where χ2
prop and χ2

i−1 are the χ2’s of the proposed and previous
parameter states, respectively.

Overall, this approach builds on the same fundamental ideas
as the IQUS approach pioneered by WMAP (Page et al. 2007),
but using vastly fewer free parameters: Rather than fitting one
free parameter per pixel, this algorithm introduces only one ad-
ditional free parameter per radiometer. To achieve acceptable
precision, it instead uses the current foreground model to pre-
dict the resulting corrections in each pixel. Thus, while the di-
rect IQUS method is not applicable for Planck due to its poorly
interconnected scanning strategy, our approach implements the
same basic idea but without excessively increasing the overall
white noise level of the final maps. For further discussion of the
method, we refer the interested reader to Svalheim et al. (2022a).

8.3.5. Diffuse component spectral parameter sampling

The fifth conditional distribution in the BeyondPlanck Gibbs
chain concerns the foreground SED parameters, P(β | d, ω \ β).
Noting that the linear amplitudes a and spectral parameters β are
in general highly degenerate for high signal-to-noise models, we
employ the same computational method for intensity sampling
as for the gain and correlated noise, and sample these jointly. In
practice, this is achieved by first sampling β from the marginal
probability distribution with respect to a, and then a condition-
ally on β. For specific details regarding the following algorithm,
we refer the interested reader to Andersen et al. (2022). For
polarization, we employ a standard Metropolis sampler that is
conditional on the foreground amplitudes; see Svalheim et al.
(2022b) for details.

For CMB component separation applications, the two-step
marginal sampling approach was first described by Stompor
et al. (2009) and later implemented in the Miramare code by
Stivoli et al. (2010). To see how their methodology connects with
our notation, as defined by Eq. (69), we can write the relevant
residual in the following form,

r j =
(
d j − ncorr

j − s1Hz
j

)
/g j −

(
sorb

j + ssl
j

)
= g jP jB js

sky
j (β) + nw

j . (116)

The left-hand side in this equation is identical to the residual
in Eq. (74), which is the input to the binned mapmaker defined
by Eq. (77). Under the assumption of azimuthally symmetric
beams,17 B j, this expression may therefore be rewritten in terms
of binned sky maps on the form

mν = Aν(β)a + nw
ν , (117)

where A(β) ≡ BνMν(β) is an effective mixing matrix that ac-
counts for both beam convolution and astrophysical component
SEDs. Given this expression, the marginal log-posterior for β
then reads (Stompor et al. 2009)

−2 ln P(β | m) =
∑
ν

(
At
νN
−1
ν mν

)t (
At
νN
−1
ν Aν

)−1 (
At
νN
−1
ν mν

)
.

(118)

However, the derivation of this expression relies on an assump-
tion of identical beam responses across all frequency channels,
and it is therefore necessary to smooth all input maps to a com-
mon angular resolution before evaluating this expression. We
therefore use this expression only for intensity sampling, cou-
pled to a tuned Metropolis sampler.

For polarization, we employ a likelihood given by the origi-
nal residual defined by Eq. (117),

−2 ln P(β | m, a) =
∑
ν

(
mν − Aν(β)a

σν(p)

)2

(119)

where σν(p) is the standard deviation map of channel ν. When
estimating the spectral index of synchrotron emission, we par-
tition the sky into four large disjoint regions, and sample one
constant value of βs per region, while still allowing for smooth
transitioning between regions. Sky partitioning allows us both
to tune the signal-to-noise ratio per fitted parameter, and also to

17 In the current BeyondPlanck implementation, we assume az-
imuthally symmetric beams for all component separation steps, follow-
ing all previous CMB analysis pipelines.
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reduce the overall computational cost. All other free spectral pa-
rameters are fitted using a single constant value across the full
sky. For both temperature and polarization, we employ tuned
Metropolis samplers to explore the posterior distribution (An-
dersen et al. 2022; Svalheim et al. 2022b).

Finally, we note that even with low-dimensional spectral pa-
rameter models, it is useful to impose additional priors on β to
stabilize the fits. Specifically, we consider two types of priors in
the following. First, in order to be able to pre-compute efficient
mixing matrix lookup tables for each parameter, we impose a
hard uniform prior on each parameter as discussed in Sect. 8.3.8.
Second, we impose informative Gaussian priors on β, with pa-
rameters informed from the literature; see Andersen et al. (2022)
and Svalheim et al. (2022b) for further details.

8.3.6. Diffuse component amplitude sampling

Since we sample β from a marginal distribution with respect to
a for the intensity case, we must also sample P(a | d, ω \ a) di-
rectly following β. The relevant data model for a is (similar to
β) given by Eq. (117), but this time interpreted as a function of a
instead of β. As applied to CMB estimation, this model was first
introduced into the CMB literature by Jewell et al. (2004), Wan-
delt et al. (2004), and Eriksen et al. (2004), and later generalized
to joint CMB power spectrum estimation and astrophysical com-
ponent separation by Eriksen et al. (2008). With the uniformized
notation defined above, the same formalism applies both to CMB
and diffuse astrophysical foregrounds, just with different para-
metric forms for the mixing matrices, M, signal covariance ma-
trices, S, and optional priors.

Noting that nw
ν represents Gaussian white noise and

∑
ν BνMν

is a deterministic linear operation given ω \ a, the appropri-
ate sampling equation for a is yet again given by the multi-
variate Gaussian sampler in Eq. (A.11) with a template matrix
T =

∑
ν BνMν, i.e.,(

S−1 +
∑
ν

Mt
νB

t
νN
−1
ν BνMν

)
a =∑

ν

Mt
νB

t
νN
−1
ν mν+S−1µ +

∑
ν

Mt
νB

t
νN
−1/2
ν ην + S−1/2η0. (120)

Here we have included the signal covariance matrix, S = S(C`),
which is a prior that depends on the angular power spectrum of
the respective component. If no spatial prior is desired, S−1 may
simply be set to zero.

Equation (120) arguably represents the single most challeng-
ing step in the entire BeyondPlanck analysis pipeline in terms
of computational complexity. Fortunately, an efficient iterative
solver was recently developed by Seljebotn et al. (2019) for pre-
cisely this equation, and this algorithm forms the computational
engine of Commander2 (see Sect. 2.2). The main new idea in
that work is the use of a pseudo-inverse preconditioner coupled
to a Conjugate Gradient (CG) solver that easily supports multi-
resolution observations, as required for Eq. (120). For specific
details, we refer the interested reader to Seljebotn et al. (2019).

Computationally speaking, the main complicating factor as-
sociated with Eq. (120) is the application of an analysis mask.
For CMB likelihood estimation purposes, it is necessary to ex-
clude pixels with particularly bright astrophysical foregrounds
by setting N−1

ν = 0, in order not to contaminate the resulting
CMB map. Unfortunately, this makes the coefficient matrix on
the left-hand side of Eq. (120) poorly conditioned, and the result-
ing CG search expensive. At the same time, we are also scien-
tifically interested in the properties of astrophysical foregrounds

inside the Galactic mask, and simply discarding all this useful
information is clearly undesirable.

Rather than directly applying a processing mask, we there-
fore instead choose to solve Eq. (120) twice. First, within the
main Gibbs loop (as defined in Sect. 8.2) we solve Eq. (120)
imposing neither a spatial prior on the CMB component, nor
an analysis mask. In this configuration the CG search converges
typically within O(102) iterations, which corresponds to a com-
putational cost that is smaller than the TOD processing steps by
one order of magnitude (Galloway et al. 2022a). The resulting
CMB sky map samples correspond to prior-free, full-sky CMB
maps, similar to those produced by classic component separation
algorithms; see, e.g., Planck Collaboration IX (2016) and Planck
Collaboration IV (2018).

However, in order to produce the clean full-sky CMB
map and power spectrum samples that are required for high-
resolution CMB likelihood estimation purposes (see Sect. 8.3.8
and Colombo et al. 2022), we additionally solve Eq. (120) with
S−1 and a mask, but condition on all non-CMB parameters. Sta-
tistically speaking, this is equivalent to writing the full joint pos-
terior distribution in Eq. (60) in the form

P(aCMB, ω \ aCMB | d) = P(aCMB | d, ω \ aCMB)P(ω \ aCMB | d),
(121)

and using the first main Gibbs loop to draw samples from the
second factor on the right-hand side, and the second solution of
Eq. (120) to sample from the first factor.

Formally speaking, we note that this approach is only ap-
proximate, since C` should in principle also be conditioned upon
in the second factor in Eq. (121). The penalty of not doing so is
slightly more noise in the non-CMB parameters, since the prior-
free CMB sky map sample is less smooth than it is with the prior.
However, the practical benefits gained by separating the TOD
processing steps from the CMB likelihood estimation step more
than outweighs a small increase in statistical uncertainties for
several reasons: 1) it greatly reduces overall computational costs
for the joint Gibbs chain; 2) it allows CMB estimation from in-
dividual frequency channels or channel combinations; and 3) it
allows rapid exploration of different analysis masks and/or cos-
mological models without having to rerun the costly TOD pro-
cessing steps. Thus, this split plays the same role in the Beyond-
Planck pipeline as the split between mapmaking and likelihood
estimation does in a traditional CMB analysis pipeline.

We employ a similar method also for low-resolution likeli-
hood analysis, and re-sample CMB multipoles below ` ≤ 64,
while conditioning on all higher multipole CMB modes and
other parameters. In this case, we do not impose the C` prior
term, but rather set S−1 = 0 as in the original analysis. This
allows us to generate tens of thousands of low-resolution sam-
ples at a greatly reduced computational cost, and derive a well-
converged brute-force low-` likelihood from a relatively limited
number of full-scale samples. For further details, see Sect. 9.4,
Colombo et al. (2022), and Paradiso et al. (2022).

For two of the astrophysical foregrounds, namely free-free
emission and AME, we use informative priors to stabilize the
model (Andersen et al. 2022). For free-free emission, we adopt
the Planck 2015 model (Planck Collaboration X 2016) as a spa-
tial template for the prior mean, while the AME prior is based
on the Planck HFI 857 GHz map, but with a free scaling fac-
tor, under the assumption that the AME surface brightness cor-
relates strongly with thermal dust emission (Planck Collabora-
tion X 2016). In both cases, the signal covariance matrices are
empirically tuned to allow sufficient variations to statistically fit
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the data, while at the same time not introducing too many un-
constrained degrees-of-freedom.18

8.3.7. Compact source sampling

The two previous sections described sampling algorithms for dif-
fuse components (such as CMB, synchrotron or thermal dust
emission) in terms of their amplitude and SED parameters.
These algorithms are strongly tuned toward global modelling in
terms of spherical harmonics expansions through the use of com-
putationally efficient spherical harmonics transforms. However,
as discussed in Sect. 3.4, a multitude of compact objects also
scatters the sky, and some of these are extremely bright. For-
mally speaking, these may of course also be described in terms
of a spherical harmonics decomposition, since the instrumen-
tal beam ensures that they are indeed bandwidth limited in the
observed data. However, in practice this would require an ex-
tremely high bandwidth limit for the diffuse components, and
this is therefore impractical because of the high associated com-
putational costs.

Instead, we follow Planck Collaboration IV (2018), and in-
dividually model the brightest compact sources based on a pre-
existing catalog of object candidates. Each source candidate is
mathematically modelled spatially as a delta function convolved
with the instrumental beam evaluated at the source location, and
with a power-law SED given by an amplitude, asrc, and a spec-
tral index, α. For Planck frequencies, we take into account the
full asymmetric beam profiles as evaluated with FEBeCOP (Mi-
tra et al. 2011), while for non-Planck frequency maps, we adopt
azimuthally symmetric beams.

The conditional posterior for the ith compact object is given
by subtracting all diffuse components and all other compact ob-
jects from the map-based data model in Eq. (117), such that the
effective residual at frequency ν reads

ri = mν −
∑
c,i

BνMc
νac, (122)

where c runs both over all diffuse components and all compact
objects except the i’th source. The likelihood then takes the form

−2 ln P(ai, αi | m, ω \ {ai, αi}) =
∑
ν


mν − Uνai

(
ν

νptsrc

)α−2

i
ti
ν

σν(p)


2

,

(123)

where νptsrc is the reference frequency adopted for the point
source component, ti

ν is the spatial (pre-computed) beam tem-
plate for the current source, and Uν is the unit conversion factor
for frequency ν. (As usual, bandpass integration is suppressed in
the notation for readability, but is of course taken into account in
the actual calculations, as described in Sect. 4.2.)

In addition, we impose a Gaussian prior on the spectral index
of P(α) = N(−0.1, 0.32), motivated by Bennett et al. (2013), and
a positivity prior on the amplitude, ai ≥ 0.

The full conditional posterior is sampled using a Metropolis
sampler for (ai, αi), running 100 MCMC steps for each source,
while completing 3 full scans through the full source set per full

18 Note that S plays a fully analoguous role in a multivariate Gaussian
prior as the usual standard deviation in a univariate Gaussian prior, and
can be used to adjust the strength of the prior.

Gibbs cycle. This step represents a relatively minor computa-
tional cost, due to extensive pre-computation of both effective
beam and bandpass profiles.

8.3.8. C` and cosmological parameter sampling

The final conditional distribution in the BeyondPlanck Gibbs
chain concerns the angular power spectrum, C`, of each com-
ponent, possibly as parameterized in terms of a smaller number
of general parameters. In the following, we will actually apply
this only to the angular CMB power spectrum, but we note that
the formalism applies without changes to any other statistically
isotropic component, for instance the CIB.

Before we start the discussion, we remind the reader that, as
mentioned in Sect. 8.3.6, we apply three different sampling steps
for the CMB amplitude map:
1. full-resolution solution of Eq. (120) with no spatial CMB

prior, S−1
CMB = 0; the resulting samples are primarily used for

CMB prior-free component separation and deriving unbiased
frequency maps, but not directly for cosmological parameter
estimation;

2. low-resolution solution of Eq. (120) with no spatial CMB
prior,19 S−1

CMB = 0, but only including multipoles ` ≤ 64,
and conditioning on all other parameters; typically, 50
low-resolution samples are drawn based on each high-
resolution sample. These samples form the basis for the low-
` temperature-plus-polarization CMB likelihood described
below.

3. full-resolution solution of Eq. (120) with a spatial CMB
prior, S−1

CMB , 0, where C` is sampled with an inverse
Wishart sampler as summarized below. The resulting sam-
ples form the basis for our high-` temperature likelihood.

In practice, the first step is run together with the full Gibbs anal-
ysis, including both TOD and component separation steps, while
the other two are performed by re-running the code after the
main run has been completed. From the point of view of CMB
estimation alone, the primary purpose of the main Gibbs run is
thus to derive an ensemble of frequency maps and correspond-
ing astrophysical sky models, that later can be re-sampled with
respect to CMB parameters.

Low-resolution temperature-plus-polarization likelihood
From step 2 above, we typically have a sample set of O(104)
CMB-only samples, each corresponding to one possible com-
bination of TOD, foreground and high-` CMB parameters.
Clearly, the information contained in this sample set may be
combined into an effective CMB likelihood in many different
ways, each with its own algorithmic advantages and disadvan-
tages. For instance, they could form the basis of a highly robust
cross-spectrum estimator, by analysing two halves of the data
set at a time, and cross-correlating the resulting CMB map; for a
recent example of such cross-spectrum approach applied to the
Planck data, see, e.g., Planck Collaboration V (2020).

However, since our main goal of this work is to introduce
a statistically well-motivated end-to-end Bayesian approach, we
prefer to stay as close as possible to the exact Bayesian solu-
tion. And, practically speaking, that corresponds most closely to
a Gaussian multivariate distribution on the form,

P(C` | ŝCMB) ∝
e−

1
2 ŝt

CMB(S(C`)+N)−1 ŝCMB

√
|S(C`) + N|

, (124)

19 In practice, we do formally apply a prior also in this case, but with a
sufficiently large numerical value that S−1

CMB ≈ 0.

Article number, page 37 of 61



A&A proofs: manuscript no. BP_Global_Bayesian_Analysis_of_Planck_LFI

where ŝCMB represents a CMB-plus-noise map and N is its corre-
sponding effective noise covariance map.20 Since we at this point
have access to a full ensemble of low-resolution CMB samples
that span the full allowed posterior volume, we may estimate
these quantities as

ŝCMB =
〈
si

CMB

〉
(125)

N =
〈
(si

CMB − ŝCMB)(si
CMB − ŝCMB)t

〉
, (126)

where brackets indicate average over the sample set. In the limit
of an infinite number of samples, these quantities will converge
to the Gaussian approximation of the full pixel-based CMB pos-
terior. The resulting covariance matrices are shown and dis-
cussed by Colombo et al. (2022).

This approach is conceptually very similar to that adopted by
both the Planck LFI DPC Planck Collaboration V (2020) and the
WMAP science team Hinshaw et al. (2013) for low-` likelihood
estimation, both of which rely on brute-force likelihood estima-
tion according to Eq. (124). However, there is one critically im-
portant difference: with our approach, all sources of uncertainty
that are sampled over in the Gibbs chain with ω are seamlessly
propagated to the CMB likelihood, including gain and bandpass
uncertainties; foreground uncertainties; correlated noise etc. For
the traditional approaches, typically only correlated noise and
overall calibration is accounted for in the covariance matrix.

An important question regarding the practicality of Eq. (124)
is how many samples are required for convergence. As discussed
by Sellentin & Heavens (2016), an absolute minimum criterion
for a sampled n × n covariance matrix simply to be invertible is
that Nsamp > n. However, this is by no means sufficient to obtain
a robust estimate, and, more typically, numerical experiments
indicate that many times this is required for matrices of moderate
size and relatively weak correlations; the precise value, however,
is something that must be tested on a case-by-case matrix.

In any case, since we have a relatively limited number of
samples available, it is of great interest to compress the rele-
vant information in ŝCMB into as few spatial modes as possible,
while still retaining the lion’s share of its full information con-
tent. With this in mind, we note that the main scientific target for
low-` likelihood estimation for Planck is the reionization optical
depth, τ. In this case, τ typically only depends on the first 6 or
8 multipoles, because of the limited sensitivity of the instrument
(Planck Collaboration V 2020). As such, a first natural compres-
sion is to retain only modes with ` ≤ 8, which corresponds to
a total of 3(`max + 1)2 ≈ 240 modes. However, many of these
modes fall within a typical analysis mask (Colombo et al. 2022),
and therefore carry no statistical weight in the final answer.

One particularly convenient method of isolating the actually
useful modes is through Karhunen-Loève compression, as dis-
cussed by Tegmark et al. (1997) and Gjerløw et al. (2015). This
approach essentially corresponds to retaining the eigenvectors
of S + N with the highest eigenvalues, where S is evaluated
for a typical model of interest. Adopting the notation of Gjer-
løw et al. (2015), we organize the eigenmodes with eigenvalues
higher than some user-specified threshold row-by-row into a pro-
jection operator, P, and apply this to the CMB samples derived
20 We note that this expression does not correspond to the exact
Bayesian solution, strictly speaking, because the true uncertainty of a
given pixel may be non-Gaussian due to the presence of both fore-
grounds and TOD corrections. To account for this, cosmological param-
eters should ideally be sampled within the full-resolution Gibbs chain,
for instance using the algorithms proposed by Racine et al. (2016); this,
however, is left for future work, and we adopt a Gaussian approximation
for now.

above. The compressed data and covariance matrix then reads

s̃CMB = PŝCMB (127)

Ñ = PNPt (128)

S̃ = PSPt. (129)

Adopting a multipole threshold of `max = 8 and a signal-to-noise
threshold of 10−6 typically leaves around 170 spatial modes in
the full data set, for which we that convergence is typically
reached with about 100 000 fast samples, corresponding to 2000
full samples including all systematic effects; see Paradiso et al.
(2022). The computational cost of a single likelihood evalua-
tion is also correspondingly reduced because of this compres-
sion, and only takes a few hundredths of a second.

High-resolution Blackwell-Rao estimator The above estimator
can only be employed at low angular resolution because of its
strong dependence on the size of the covariance matrix. For high
angular resolution analysis, we use another well-established so-
lution, namely the Blackwell-Rao estimator (Chu et al. 2005),
which works very well for high signal-to-noise data. In practice,
we only use this for temperature analysis in the current paper,
since the signal-to-noise ratio for high-` polarization is very low
with only LFI and WMAP data. However, we keep the following
presentation general, such that it can be used for both tempera-
ture and polarization analysis for other experiments.

To derive the appropriate sampling algorithm for
P(C` | d, ω \C`) from first principles, we first note that
P(C` | d, ω \C`) = P(C` | aCMB); if the true CMB map, sCMB, is
perfectly known, then no further knowledge regarding the mea-
sured data can possibly provide more useful information about
the angular CMB power spectrum, C`. Second, as discussed in
Sect. 3.2, we assume that the CMB fluctuation field is isotropic
and Gaussian distributed, and its probability distribution is
therefore given by Eq. (12). Noting that individual a`m’s are
statistically independent by the assumption of isotropy, we can
write (Wandelt et al. 2004)

P(C` | aCMB) ∝ P(aCMB | C`)P(C`) (130)

=
∏̀
m=−`

e−
1
2 a†

`mC−1
` a`m

√
|C` |

P(C`) (131)

=
e−

2`+1
2 tr(σ`C−1

` )

|C` |
2`+1

2

P(C`), (132)

where a`m = {aT
`m, a

E
`m, a

B
`m} and

C` ≡

 CTT
` CT E

` CT B
`

CT E
` CEE

` CEB
`

CT B
` CEB

` CBB
`

 ; (133)

σ` ≡
1

2` + 1

∑̀
m=−`

 (aT
`m)∗aT

`m (aT
`m)∗aE

`m (aT
`m)∗aB

`m
(aE
`m)∗aT

`m (aE
`m)∗aE

`m (aE
`m)∗aB

`m
(aB
`m)∗aT

`m (aB
`m)∗aE

`m (aB
`m)∗aB

`m

 . (134)

We typically adopt uniform priors on C` (although for a discus-
sion of non-uniform priors, see Larson et al. 2007), and the dis-
tribution in Eq. (132) is then known as the inverse Wishart dis-
tribution, which has a very simple sampling algorithm:

1. Draw 2`−n Gaussian random vectors, ηi, from the empirical
covariance matrix (2`+1)σ`, each of length n, where n is the
dimension of C`;
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2. Compute the outer product of these vectors, ρ` =
∑2`−n

i=1 ηiη
t
i;

3. Set C` = σ`/ρ`.

Note that if C is block-diagonal, as for instance is the case if
CT B
` = CEB

` = 0, then this algorithm should be applied sepa-
rately block-by-block. Also, if binning is desired, for instance
to increase the effective signal-to-noise ratio of a given power
spectrum coefficient, this is most conveniently done in terms of
D` = C` `(` + 1)/2π; for details, see Larson et al. (2007).

The above algorithm describes a self-consistent Gibbs-based
approach to CMB power spectrum sampling, as originally sug-
gested by Wandelt et al. (2004). The product from this proce-
dure is a set of joint samples (sCMB,C`)i. However, the algo-
rithm does not specify how to constrain cosmological parame-
ters from these samples. Indeed, many different approaches may
be adopted for this purpose, each making different assumptions
and choices with regard to computational cost and robustness to
systematic errors. Some approaches presented in the literature
include

– the Blackwell-Rao estimator (Chu et al. 2005): Direct aver-
aging overσ` samples given the analytic smoothing kernel in
Eq. (132). Exact, but converges slowly in low signal-to-noise
regime. Used by WMAP low-` TT likelihood (Hinshaw et al.
2013).

– the Gaussianized Blackwell-Rao estimator (Rudjord et al.
2009): Multivariate Gaussian approximation to the above,
following a Gaussian change-of-variable defined by univari-
ate marginal distribution. Converges much faster than direct
Blackwell-Rao estimator, and is highly accurate for typical
masks. Used by Planck low-` TT likelihood (e.g., Planck
Collaboration V 2020).

– joint Metropolis-Hastings sampling of {a`m,C`} (Jewell et al.
2009; Racine et al. 2016): Efficient in both low and high
signal-to-noise regimes; may be applied to both C` and cos-
mological parameter estimation.

The first two of these methods define a CMB power spectrum
likelihood function, L(C`), which then must be coupled to a
cosmological parameter estimation code. We employ the widely
employed CosmoMC (Lewis & Bridle 2002) code for this purpose,
as detailed in Paradiso et al. (2022). In contrast, when applied to
cosmological parameter estimation, the third method requires a
means to convert between cosmological parameters and angular
power spectra, such as CAMB (Lewis et al. 2000). In this paper, we
adopt the Gaussianized Blackwell-Rao estimator as our default
solution, and leave the full integrated MCMC sampling approach
for future work.

8.4. Computational requirements and optimization

The end-to-end algorithm summarized in the last few sections
represents a significant computational challenge, both in terms of
fundamental hardware requirements and in terms of software op-
timization. In this section we briefly review some critical compu-
tational features implemented in the current code, while in-depth
presentations are provided by Galloway et al. (2022a) and Ger-
akakis et al. (2022). In addition, we highly recommend the inter-
ested reader to consult the source code.21 At the same time, we
emphasize that these codes are most definitely works in progress,

21 The BeyondPlanck software is available under a GNU Pub-
lic Library (GPL) open-source license at https://github.com/
Cosmoglobe/Commander.

and still undergo rapid development. Nearly every single compo-
nent and function have room for further improvement and opti-
mization. However, it is our hope and intention that by provid-
ing all codes to the general community under an open-source
license, new collaborations, efforts and ideas will emerge, and
this will leading to more mature, efficient and generally applica-
ble code.

With these caveats in mind, Table 2 summarize the overall
computational cost of the current implementation, both in terms
of initialization and cost per sample. These benchmarks were
obtained by running the pipeline on a single compute node with
128 AMD EPYC 7H12 2.6 GHz cores and 2 TB of RAM. All
time related costs are provided in units of wall-time, and must
therefore be multiplied with 128 to convert to CPU time.

Overall, the computational complexity of the BeyondPlanck
Gibbs sampler is determined by three fundamentally different
types of operations. First, the low-level analysis is dominated by
TOD memory management. Second, the high-level amplitude
sampling step is dominated by spherical harmonic transforms.
Third, the spectral index sampling step is dominated by map-
based operations, typically either spherical harmonic transforms
or χ2 evaluations. Efficient parallelization of each of these three
types of operations is therefore the critical design driver for the
current implementation. We now briefly review how the Beyond-
Planck pipeline optimizes each of these aspects, and refer the
interested reader to Galloway et al. (2022a) for further details.

8.4.1. Low-level optimization

Starting with the low-level TOD-oriented operations, we first
note in Table 2 that the full data volume of four years of Planck
LFI observations is 8 TB. This number includes all science and
housekeeping data. A single read of the full data set from spin-
ning disks on a typical intermediate-sized high-performance
computing (HPC) cluster therefore requires a few hours of wall
time, assuming O(1 GB s−1) read speed. While acceptable as a
one-time initialization cost, integrating such expenses into the
Gibbs loop clearly leads to impractical run times. A first re-
quirement for efficient end-to-end TOD processing is thus that
the entire data set may be stored in RAM. Likewise, noting that
the memory bus from the RAM to the CPU is relatively slow
compared to CPU operations, a corollary requirement is that the
overall memory footprint should be aggressively minimized.

With these observations in mind, we first choose to read only
those parts of the data that are strictly required for the analysis
in question; all unnecessary housekeeping data are omitted. For
each Planck LFI radiometer the only retained quantities there-
fore include 1) differenced detector voltages, dt (one float per
sample); 2) pointing, Pt (three double precision values per sam-
ple); and 3) flags, ft (one integer per sample). Nominally, a total
of 32 bytes/sample/radiometer are required to store the TOD in-
formation.

However, as detailed by Galloway et al. (2022a), because
the pointing and flags are both very smooth functions of time,
they lend themselves to highly efficient compression. We exploit
this by transforming and discretizing each relevant quantity into
integers; taking the difference between consecutive samples to
minimize their dynamic range; and finally Huffman compress-
ing (Huffman 1952) the resulting time streams, i.e., we assign
bit patterns of variable lengths to each integer according to their
relative frequency. The average number of bits per sample is
thus reduced by a factor of 5–6. These compressed TOD ar-
rays are then stored in memory PID-by-PID, and only decom-
pressed when needed. The total data volume is in this way re-
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Table 2. Computational resources required for end-to-end BeyondPlanck processing. All times correspond to CPU hours. All reported times are
averaged over more than 100 samples, and vary by . 5 % from sample to sample. Reproduced from Galloway et al. (2022a).

Item 30 GHz 44 GHz 70 GHz Sum Reference

Data volume
Uncompressed TOD volume . . . . . . . . . . . . . . . . . . 761 GB 1 633 GB 5 522 GB 7 915 GB
Compressed TOD volume . . . . . . . . . . . . . . . . . . . . 86 GB 178 GB 597 GB 861 GB
Non-TOD-related RAM usage . . . . . . . . . . . . . . . . . 659 GB
Total RAM requirements . . . . . . . . . . . . . . . . . . . . 1 520 GB

Processing time (cost per run)
TOD initialization/IO time . . . . . . . . . . . . . . . . . . . . 3.8 h 4.3 h 12.5 h 20.6 h
Other initialization . . . . . . . . . . . . . . . . . . . . . . . . . 43.4 h
Total initialization . . . . . . . . . . . . . . . . . . . . . . . . . 64.0 h

Gibbs sampling steps (cost per sample)
Huffman decompression . . . . . . . . . . . . . . . . . . . . . 1.1 h 1.8 h 7.1 h 10.0 h Galloway et al. (2022a)
TOD projection (P operation) . . . . . . . . . . . . . . . . . . 0.3 h 0.7 h 3.1 h 4.1 h BeyondPlanck (2022)
Sidelobe evaluation (ssl) . . . . . . . . . . . . . . . . . . . . . . 1.1 h 2.1 h 6.5 h 9.7 h Galloway et al. (2022b)
Orbital dipole (sorb) . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 h 1.1 h 4.6 h 6.2 h Gjerløw et al. (2022)
Gain sampling (g) . . . . . . . . . . . . . . . . . . . . . . . . . . 0.6 h 0.7 h 4.7 h 6.0 h Gjerløw et al. (2022)
1 Hz spike sampling (s1hz) . . . . . . . . . . . . . . . . . . . . 0.2 h 0.3 h 1.9 h 2.4 h BeyondPlanck (2022)
Correlated noise sampling (ncorr) . . . . . . . . . . . . . . . 1.7 h 3.6 h 24.8 h 30.1 h Ihle et al. (2022)
Correlated noise PSD sampling (ξn) . . . . . . . . . . . . . 3.3 h 4.0 h 1.1 h 8.4 h Ihle et al. (2022)
TOD binning (Pt operation) . . . . . . . . . . . . . . . . . . . 0.2 h 0.5 h 4.1 h 4.8 h Basyrov et al. (2022)
Sum of other TOD processing . . . . . . . . . . . . . . . . . 1.3 h 2.5 h 10.9 h 14.7 h Galloway et al. (2022a)
TOD processing cost per sample . . . . . . . . . . . . . . 10.4 h 17.4 h 69.1 h 96.9 h
Amplitude sampling, P(a | d, ω \ a) . . . . . . . . . . . . . 23.9 h Andersen et al. (2022)
Spectral index sampling, P(β | d, ω \ β) . . . . . . . . . . . 40.3 h Svalheim et al. (2022b)
Other steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.6 h BeyondPlanck (2022)
Total cost per sample . . . . . . . . . . . . . . . . . . . . . . . 163.9 h

duced from 8 TB to 861 GB, which fits into the RAM of a sin-
gle modern compute node. The decompression cost accounts for
about 5 % of the total analysis wall time, which we consider well
worth the memory savings. However, as discussed by Galloway
et al. (2022a), this compression does have notable implications
in terms of the overall Gibbs sampling structure, as the full de-
compressed TOD set can never be stored in memory at once, nor
is it possible to store multiple copies of the TOD. Accordingly,
careful relative ordering of the various Gibbs sampling steps is
necessary. In practice, four full scans are made through the en-
tire TOD within each Gibbs iteration, where each scan corre-
sponds to sampling one global TOD-related parameter, namely
three gain components (see Sect. 8.3.1) and the bandpass cor-
rection parameter; none of these can be sampled simultaneously
without breaking the Gibbs chain.

Next, the low-level parallelization scheme for TOD pro-
cessing is organized according to PIDs, such that each com-
puting core processes a distinct subset of PIDs. Load balanc-
ing is achieved by first measuring the effective computing time
for each PID, and then distributing them according to cost in a
round-robin manner among the various computing cores.

Inspecting the costs of individual steps in Table 2, we see
that the dominant TOD operation is associated with sampling
ncorr, which makes intuitive sense: While most operations scale
linearly in the number of samples, O(Ntod), the correlated noise
step requires two Fourier transforms, and therefore scales as
O(Ntod log Ntod). To optimize this step, we first of all employ
the FFTW library (Frigo & Johnson 2005) for all FFT operations.
Second, we note that the speed required for a single FFT trans-
form depends sensitively and highly non-linearly on Ntod. Values
of Ntod that happen to factorize into particularly favorable combi-
nations of primes may happen to be, say, three to five times faster
than neighboring values. We exploit this by first measuring the

time required per FFT for every length between 1 and 106, and
construct a table of optimal lengths, with at least one value per
100th sample. At read time, we then truncate the length of each
PID until it equals the closest lower optimal length. As such, we
lose on average one second of data per PID, corresponding to
about 0.03 % of the total data volume, while gaining a factor of
three or more in overall TOD processing time.

After the FFT-based operations, the dominant TOD opera-
tions are the sidelobe and orbital dipole evaluations, as well as
the pointing projections operators, P and Pt. Here it is worth not-
ing that the TOD analysis is currently memory-bus limited. That
is, the cost is associated simply with transferring data from RAM
into the CPU. As such, the specific algorithmic details of each
step are largely irrelevant, and the important factor is simply the
total data volume. To improve the performance of these steps,
the best approach would be to run across multiple nodes, which
thereby increase the number of memory buses available. On the
other hand, this also leads to lower performance for the CPU
dominated operations, and most notably the spherical harmonics
transforms. A future optimal solution should implement a better
tuned parallelization strategy where SHTs are parallelized within
nodes, while TOD operations are parallelized across nodes; this
is left for future development.

Next, the two TOD projection operators warrant a few com-
ments. First, we recall that P converts a map into a time stream.
This represents a computational challenge in itself, because each
core then needs access to all pixels in the map. However, actually
storing the full map per core would require substantial amounts
of memory. To solve this, we exploit a MPI-3 shared memory
feature, and only store one copy of the map per compute node,
rather than one per core. However, we do observe that the mem-
ory access speed associated with these shared-memory arrays is
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Fig. 12. Time-ordered data segment for the 30 GHz LFI 27M radiometer. From top to bottom, the panels show 1) raw calibrated TOD, d/g; 2) sky
signal, ssky; 3) calibrated correlated noise, ncorr/g; 4) orbital CMB dipole signal, sorb; 5) sidelobe correction, ssl; 6) electronic 1 Hz spike correction,
s1Hz; 7) leakage mismatch correction, sleak; and 8) residual TOD, dres = (d − ncorr − s1Hz)/g − ssky − sorb − sleak − ssl. Note that the vertical range
vary significantly from panel to panel. Reproduced from Basyrov et al. (2022).

typically five times slower than for local arrays, and further op-
timizations are therefore possible.

In contrast, the Pt operation co-adds samples in a time-
stream into a map. In terms of practical code, this is a more com-
plex operation than P, since all cores need to update the values
stored in each sky map pixel, not only read them. This can easily
lead to race conditions in which different cores simulatenously
write to the same parts of memory, resulting in corrupt data, and
a direct shared array approach is therefore impractical. At the
same time, allocating a full sky map per core is not an option
due to the same memory constraints discussed above. As a com-

promise, we instead first scan the full pointing stored by each
core, and accumulate a list of all locally observed pixels. Due
to the sparse Planck scanning strategy, this typically amounts to
only 5–10 % of all pixels for each core. Allocating and maintain-
ing a sub-map of this limited size is acceptable in terms of total
memory footprint. Co-addition over cores is then achieved using
a combination of shared arrays within each computing node, and
a single MPI_ALLREDUCE operation between nodes. Clearly, fur-
ther optimization is very likely possible also with respect to this
operation.

Article number, page 41 of 61



A&A proofs: manuscript no. BP_Global_Bayesian_Analysis_of_Planck_LFI

−
1

0
1

2
3

χ
2

(σ
)

Chain 1

Chain 2

Chain 3

Chain 4

77
.8

78
.0

g
(m

V
K
−

1
)

20
0

30
0

∆
b

p
(M

H
z)

11
8

12
0

12
2

σ
0

(µ
V

)

−
0.

8
−

0.
7
−

0.
6

α

0 100 200 300 400 500

Gibbs iteration

0.
1

0.
2

0.
3

0.
4

f k
n

ee
(H

z)

Fig. 13. Example of TOD parameters Gibbs chain for the 30 GHz LFI
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duced χ2 for a single Pointing Period; gain for the same PID in units
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lated noise slope, α; and correlated noise knee frequency, fknee. The four
different colored curves correspond to independent Gibbs chains.

8.4.2. High-level parallelization and optimization

Next, we consider optimization of the high-level routines, and
in particular of the amplitude and spectral index sampling steps.
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a function of PID. From top to bottom the panels show 1) normalized
reduced χ2; 2) gain, g; 3) white noise level,σ0; 4) correlated noise slope,
α; and 5) correlated noise knee frequency, fknee.

These are largely overlapping in terms of essential low-level rou-
tines, and so we will also discuss them jointly.

The single most important computational routine involved
in these operations is the spherical harmonics transform, needed
both for solving the Wiener filter defined by Eq. (120) and for
smoothing maps to a common angular resolution as required for
Eq. (118). Indeed, the importance of this operation is so criti-
cally important that we base our entire map parallelization strat-
egy of our codes around it. With this in mind, we adopt the
libsharp2 (Reinecke & Seljebotn 2013) spherical harmonics
library for all harmonic transforms, which is the most efficient
library for this purpose available today. This library is based on
a deep parallelization level in both pixel and harmonic space,
distributing both constant-latitude rings and constant-m harmon-
ics across different cores. We adopt these parallelization conven-
tions without modification.

The second most important operation involved in these op-
erations is multiplication with the mixing matrix, M(β; ∆bp). As
described in Sect. 4.2, this expression involves integration of an
ideal parametric SED with the bandpass of each instrumental de-
tector. It also varies from pixel-to-pixel, depending on the local
properties of the spectral parameters, β. For this reason, we pre-
compute the full mixing matrix prior to each full amplitude sam-
pling step, pixel-by-pixel. Taking advantage of the libsharp
parallelization scheme, which distributes rings across all avail-
able cores, the memory requirements for this is fairly limited.
Furthermore, employing the spline-based library discussed in
Sect. 4.2, the actual evaluation of this matrix only carries a cost
equal to a polynomial evaluation per pixel. However, it is im-
portant to note that actually changing the bandpass correction
parameters, ∆bp, requires a full re-evaluation of the underlying
splines, as well as all higher-level mixing matrices, and this par-
ticular operation is therefore very computationally intensive. As
a result, it is done as infrequently as possible.
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Fig. 15. Estimated bandpass corrections for each LFI radiometer. Error
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to have vanishing mean within each frequency, and are as such strongly
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Finally, as described above, many of the various sampling
steps are carried out with a standard Metropolis sampler. Al-
though conceptionally and implementationally straightforward,
this sampler does have the drawback of requiring specific tuning
of the step size to be efficient. For most of these samplers, we
therefore typically run a short tuning chain during the first itera-
tion, if the computational cost of the sampler is limited (which,
for instance, is the case for the point source sampler), or insert a
pre-calculated proposal matrix into the run through a parameter
file (which, for instance, is the case for the bandpass correction
sampler). Such tuning is essential to achieve acceptable mixing
for the overall chain.

9. Results

We are now finally ready to present the main results resulting
from applying the algorithms summarized in Sects. 7–8 to the
data combination described in Sect. 5. For the analysis shown
here, we have produced a total of four independent Monte Carlo
Markov chains of samples drawn from the posterior distribution
P(ω | d), as described in Sect. 8.2. Each chain has 1000 samples,
and we conservatively discard the first 200 samples for burn-in.
We thus retain a total of 3200 accepted samples for final process-
ing. With a computational cost of 1.3 wall hours/sample (Gal-
loway et al. 2022a), this set took about three months of continu-
ous run time to produce on two nodes, for a total computational
cost of 670 000 CPU hours. Although not directly comparable, it
is still interesting to note that the production of the Planck FFP8
simulation set required a total of 25 million CPU hours, and the
cost of constructing only a single component of a single Monte
Carlo realization of the 70 GHz channel cost 9360 CPU-hours
(Planck Collaboration XII 2016). The full analysis shown in the
following thus carries a total computational cost that is equiva-
lent to about 70 Planck FFP8 70 GHz simulations. This clearly
demonstrates the computational feasibility of the Bayesian end-
to-end approach, and the algorithms shown here do not require
the use of a massive super-computer center to be useful. At the
same time, it is also clear that future work should concentrate
on increasing the concurrency of the current implementation
through better parallelization schemes, such that the wall time
can be reduced to hours or days, as opposed to months, when
more resources are available.

9.1. Instrumental parameters

We start our review by inspecting the data and model at the low-
est level, and for this purpose we select the 30 GHz channel as
a reference test case, for which the foreground contamination is
the largest, and therefore the calibration challenge the hardest.
The top panel of Fig. 12 (reproduced from Basyrov et al. 2022)
shows a 3 minute chunk of the 30 GHz LFI 27M TOD, in which
the only pre-processing steps are differencing with the 4 K load
signal and ADC corrections (see Sect. 5 for details).

The top panel shows the raw measurements, which are vi-
sually dominated by the CMB dipole, as seen by the slow si-
nusoidal oscillations; the Galactic plane, as seen by the sharp
spikes; and instrumental noise. The second panel shows the es-
timated sky signal for one random sample; here we see small-
amplitude perturbations in addition to the large dipole and galac-
tic contributions, and these are dominated by the CMB tempera-
ture fluctuations, which are the main scientific target of the entire
analysis. Rows 3–7 show various corrections arising from cor-
related noise, the orbital CMB dipole, sidelobes, the 1 Hz spike
signal, and bandpass and beam leakage. The last panel shows the
residual after subtracting all the above terms from the raw data,
and this highlights anything that is not explicitly captured by the
parametric model; overall, this is largely consistent with white
noise, except for a few spikes near the Galactic plane crossings,
which are masked both in low-level and high-level processing.
For further discussion of this plot, see Basyrov et al. (2022).

Figure 12 represents one single Gibbs sample in the full
chain. In contrast, Fig. 13 shows samples from all four Gibbs
chains for the instrumental parameters for one PID, but this time
plotted as a function of Gibbs iteration. For perfect Markov chain
mixing, these should all scatter around a well-defined mean
value with a short correlation length.

The top panel shows the normalized reduced χ2 as defined
by

χ2 ≡

∑Ntod
t=1

(
dt−stot

t
σ0

)2
− Ntod

√
2Ntod

. (135)

Recalling that the χ2 distribution with n degrees of freedom con-
verges towards a Gaussian with mean equal to n and variance
equal to 2n, this quantity should be approximately distributed as
N(0, 1) for ideal data, with deviations measured in units of σ.
We adopt this χ2 as a convenient goodness-of-fit measure. We
see that the mean value is χ2 ≈ 0.5σ, which indicates good a
good fit overall.

The second panel shows the gain g for the same PID. In this
case, the Markov correlation length appears very short. Consid-
ering that we have 3200 full Gibbs samples available, this im-
plies that the number of independent gain samples per PID is
quite high, and their histogram provides a useful estimate of the
true underlying distribution; in this case the marginal posterior
may be summarized as g = 77.85 ± 0.02 mV K−1. For further
discussion of the gain posteriors, see Gjerløw et al. (2022).

The third panel shows the bandpass shift, ∆bp, for the 30 GHz
LFI 27M radiometer. As already noted in Sect. 4.2, this param-
eter is the single most difficult quantity to estimate in the en-
tire framework, because of the highly non-linear, non-Gaussian
and global nature of its impact; virtually all stochastic variables
in the entire model depend on the instrumental bandpass in one
form or another, and changes in this parameter therefore take a
substantial amount of time to propagate throughout the model.
Furthermore, the sampling algorithm used for this parameter is
a basic Metropolis sampler, simply because of a lack of better
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alternatives. The result is a long correlation length of about 100
samples, resulting in perhaps as few as 32 uncorrelated samples
in the full sample set. Still, even with this crude sampler, we do
see that the four chains mix reasonably well, and it is possible
to establish a useful estimate for the marginal posterior, which
in this case may be summarized as ∆bp = 240 ± 30 MHz. How-
ever, in this case the sampling uncertainty accounts for a large
fraction of the error bar. For further discussion of the bandpass
posteriors, see Svalheim et al. (2022a).

The three last panels show the three noise PSD parameters,
σ0, α and fknee, for the same radiometer. These also show long
correlation lengths. However, as discussed by Brilenkov et al.
(2022); Ihle et al. (2022), this long correlation length is due to
internal degeneracies among the correlated noise parameters, ξn,
and since all other parameters, such as the gain or CMB com-
ponent, only care about the total noise power spectral density,
Pn( f ), and not the individual ξn parameters, this poor mixing
does not represent a significant limitation for the analysis; see
Fig. 15 in Brilenkov et al. (2022). For further discussion of the
noise posteriors, see Ihle et al. (2022).

Figure 14 shows corresponding values as a function of PID
for one single Gibbs sample, this time for the 30 GHz LFI 28M
radiometer. The top panel shows the normalized reduced χ2, as
defined by Eq. (135). As discussed above, this function should
ideally be independent between PIDs, and distributed according
to N(0, 1). This plot is therefore a powerful monitor for iden-
tifying unmitigated and non-stationary instrumental systematic
effects in a given radiometer. In this case, the distribution scat-
ters around zero with roughly the expected variations, although
there is a slight shift towards positive values of about 0.5–1σ;
overall, the model appears to perform wellx.

The second panel shows the gain for the same 28M radiome-
ter as a function of PID. Here we see clear evidence of a sys-
tematic oscillation with a period of one year, and a maximum
variation of about 1–2 % throughout the mission. The oscillatory

behaviour is primarily due to variations in the incoming solar ra-
diation during the year, effectively changing the heating of the
instrument depending on its precise orientation with respect to
the Sun.

The three bottom panels of Fig. 14 show corresponding plots
of the three 1/ f noise parameters as a function of PID. Similar
features as observed in the gain are seen also here, although with
lower signal-to-noise ratio. Overall, it is visually obvious that
the noise properties of this channel are not stationary throughout
the mission, but rather vary significantly in time. In particular,
the white noise level varies by 3–4 % throughout the mission,
and mirrors the gain variations seen above. For the slope, α, the
most noteworthy feature are overall steeper values between PIDs
11 000 and 15 000; as shown by Ihle et al. (2022), these can be
traced to changes in the thermal environment of the satellite us-
ing house-keeping data.

Next, Fig. 15 shows the marginal posterior mean and stan-
dard deviation for the bandpass correction, ∆bp, of each ra-
diometer (Svalheim et al. 2022a). Recalling that we fix the ab-
solute corrections for the 44 and 70 GHz at zero and only fit
the 30 GHz offset, we find an overall 30 GHz frequency shift
of 0.24 ± 0.03 GHz, in agreement with Planck Collaboration X
(2016). Regarding the relative corrections, we note that these are
depend sensitively on the foreground amplitude at a given fre-
quency, and as a result, the relative bandpass uncertainties are
small at 30 GHz, where the foregrounds are bright, while they
are large at 70 GHz, where the foregrounds are weak.

Next, we consider the spatial structure of each of the vari-
ous TOD model terms in pixel space, and Fig. 16 shows each
of the TOD objects binned into a 3-component Stokes IQU sky
map for the 30 GHz channel and one arbitrarily selected Gibbs
sample. This plot corresponds essentially to a binned version of
Fig. 12, and shows, from top to bottom, 1) the raw data; 2) cor-
related noise; 3) the orbital dipole; 4) bandpass and beam leak-
age corrections; 5) far sidelobe corrections; 6) 1 Hz spike correc-
tions; and 7) the total unmodelled residual. Note that the various
terms are plotted with very different color ranges, and, for in-
stance, the range used for the 1 Hz correction is only 0.3 µK, and
this correction is therefore for most practical purposes negligi-
ble. On the other hand, the range of the polarized bandpass leak-
age correction is 30 µK, and this represents as such the single
most important large-scale polarization correction.

Figure 17 summarizes the uncertainty of each systematic ef-
fect for the 30 GHz channel and for the EE angular power spec-
trum. The black line shows the power spectrum of the full am-
plitude map, while the thick red line shows the corresponding
posterior standard deviation, which essentially summarizes the
total systematic uncertainty. The thin colored lines break down
this into individual contributions. Here we see that for EE polar-
ization at the Planck 30 GHz channel, the three dominant uncer-
tainty contributions are correlated noise (orange), gain fluctua-
tions (through the orbital dipole; blue), and bandpass corrections
(thin red). All these are roughly of the same order of magnitude
at ` . 10, and jointly accounting for all three is therefore essen-
tial in order to properly capture the full uncertainties. For ref-
erence, we note that only the correlated noise contribution was
fully accounted in the official LFI low-resolution covariance ma-
trices. A complete survey of similar maps and power spectra for
all three LFI frequencies is provided by Basyrov et al. (2022).

9.2. Frequency maps

We now turn our attention to co-added frequency maps, as solved
for deterministically through Eq. (77). For many users, these rep-
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Fig. 18. Posterior summary maps for the LFI 30 GHz channel. Columns show the temperature and Stokes Q and U parameters, while rows show,
from top to bottom, the posterior mean, the posterior standard deviation, the white noise rms per pixel, and the difference between two random
individual Gibbs samples. The polarization maps in the two two rows have been smoothed to an angular resolution of 1◦ FWHM to visually reduce
the noise level, while the bottom row is smoothed to 7◦ FWHM.

resent the most convenient form of the BeyondPlanck products,
and we provide these maps both in the form of individual sam-
ples, each corresponding to one possible realization of all mod-
elled systematic effects, and as more traditional posterior mean
and standard deviation maps,

m̂ν =
〈
mi
ν

〉
(136)

σν(p) =

√〈(
mi
ν(p) − m̂ν(p)

)2
〉
, (137)

where brackets indicate averaging over Monte Carlo samples.
Note that σν, as defined here, only accounts for systematic un-
certainties per pixel, not white noise uncertainties as defined by
the diagonal of the inverse coupling matrix in Eq. (77), σwn

ν (p).

To obtain the full uncertainty, these two terms must be added in
quadrature,

σtot
ν (p) =

√
σν(p)2 + σwn

ν (p)2. (138)

We stress, however, that analysis of these posterior mean maps
is likely to be sub-optimal for most scientific applications, and
will not exploit the full power of the BeyondPlanck framework.
Instead, we highly recommend users to analyze the full ensemble
of individual posterior samples; that is by far the most robust
and statistically correct method for propagating BeyondPlanck
uncertainties into any higher-level analysis.

With these caveats in mind, Fig. 18 shows various poste-
rior summary maps for the 30 GHz channel; the full set of maps
are shown and discussed by Basyrov et al. (2022). From top to
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panel labels. A constant offset has been removed from the temperature maps, while all other modes are retained. The 2018 maps have been scaled
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bottom, the various rows show the posterior mean, the posterior
standard deviation, the white noise rms, and a straight difference
map between two independent Gibbs samples. The polarization
maps in the top two rows have been smoothed to an angular res-
olution of 1◦ FWHM to reduce noise, while the bottom row has
been smoothed to 7◦ FWHM.

Regarding the posterior mean map, perhaps the most strik-
ing feature is that the BeyondPlanck temperature map retains
the CMB dipole, similar to Planck PR4 Planck Collaboration
Int. LVII (2020), but contrary to the Planck 2018 and WMAP
frequency maps. Leaving this component in the maps ensures

that the full information content of the data is available for sub-
sequent component separation and calibration applications.

The posterior standard deviation maps in the second row
summarize the combined effect of all the various systematic cor-
rections made to the frequency map. The most striking features
include:

1. a large monopole variation in the 30 GHz temperature map,
resulting in a nearly uniform morphology dipole variations;

2. excess variance for rings aligned with the Galactic plane in
polarization, reflecting the higher uncertainties in the time-
variable gain resulting from the processing mask;
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3. excess variance along the Galactic plane, reflecting the
higher uncertainties here due to gain and bandpass varia-
tions;

all of which are super-imposed on the general Planck scan-
ning pattern, which itself reflects correlated noise variations. We
also note that the upper limit of the temperature color scale is
only 2 µK, which indicates that these variations are much lower
than the intrinsic variance of the CMB temperature fluctuations,
which is about 30 muK on these angular scales, and minor de-
tails in the systematic model are therefore unlikely to affect final
cosmological results. In contrast, the standard deviation of the
polarization maps at high Galactic latitudes is typically about
0.5 µK, which is of the same order of magnitude as the expected
polarization imprint from cosmic reionization.

The third row shows the corresponding white noise standard
deviation maps. These maps are fully specified by the detector
white noise level σ0, the time-variable gains gt, and the number
of observations per pixel. An important point regarding these
white noise rms maps is that their amplitude scales directly with
the pixel size, while the posterior standard deviation maps in the
second row do not. When smoothed over sufficiently large angu-
lar scales, the systematic uncertainties will therefore eventually
start to dominate over the white noise level.

The bottom row shows the difference between two frequency
map samples, smoothed to a common angular resolution of 7◦
FWHM. Here we clearly see correlated noise stripes along the
Planck scan direction in all three frequency channels, but sig-
nificantly more pronounced in the 30 GHz channel than in the
other two frequencies. We also see fluctuations along the Galac-
tic plane, which are dominated by uncertainties in the bandpass
correction parameters, ∆bp. Clearly, modelling such correlated
fluctuations in terms of a single standard deviation per pixel is
unlikely to be adequate for any high-precision analysis, and the
only way to robustly propagate uncertainties is through analysis
of the full ensemble of Gibbs samples.

Figure 19 shows differences between the BeyondPlanck fre-
quency maps and those presented in the Planck 2018 and NPIPE
data releases. To ensure that this comparison is well defined, the
2018 maps have been scaled by the uncorrected beam efficien-
cies, and the best-fit Planck 2018 solar dipole has been added
to each map, before computing the differences. Overall, we see
that the BeyondPlanck maps agree with the other two pipelines
to . 10 µK in temperature, and to . 4 µK in polarization. In tem-
perature, we see that the main difference between NPIPE and Be-
yondPlanck is an overall dipole, while differences with respect
to the 2018 maps show greater morphological differences. The
sign of the NPIPE dipole differences changes with frequency.
This result is consistent with the original characterization of the
NPIPE maps derived through multi-frequency component sep-
aration in Planck Collaboration Int. LVII (2020); that paper re-
ports a relative calibration difference between the 44 and 70 GHz
channel of 0.31 %, which corresponds to 10 µK in the map-
domain. Overall, in temperature BeyondPlanck is thus morpho-
logically similar to NPIPE, but it improves a previously reported
relative calibration uncertainty between the various channels by
performing joint analysis.

In polarization, the dominant large-scale structures appear to
be dominated by effectively different offset determinations per
PID, which may originate from different gain or correlated noise
solutions. It is worth noting that the overall morphology of these
difference maps is structurally similar between frequencies, and
that the apparent amplitude of the differences falls with fre-
quency. This strongly suggests that different foreground mod-

elling plays a crucial role. In this respect, two observations are
particularly noteworthy: First, while both the Planck 2018 and
NPIPE pipelines incorporate component separation as an exter-
nal input as defined by the Planck 2015 data release (Planck Col-
laboration X 2016), BeyondPlanck performs a joint fit of both
astrophysical foregrounds and instrumental parameters. Second,
both the LFI DPC and the NPIPE pipeline consider only Planck
observations alone, while BeyondPlanck also exploits WMAP
information to establish the sky model, which is particularly im-
portant to break scanning-induced degeneracies in polarization.

In Fig. 20 we show the high-` auto-correlation spectra for
each of the three generations of Planck LFI maps (2018, PR4,
and BeyondPlanck) as computed with PolSpice (Chon et al.
2004). In all cases, we apply the Planck 2018 common com-
ponent separation confidence mask (Planck Collaboration IV
2018), which accepts a sky fraction of 80 %. The most notable
features here are, first, that the overall noise levels of the Beyond-
Planck maps are slightly lower than in the Planck 2018 maps,
but also somewhat higher than PR4. Secondly, we also note that
the BeyondPlanck spectra are notably flatter than the other two
pipelines, and in particular than NPIPE, which shows a clearly
decreasing trend toward high multipoles.

As discussed by Planck Collaboration Int. LVII (2020) and
Basyrov et al. (2022), Planck PR4 achieves lower noise than
Planck 2018 primarily through three modifications, namely use
of the Planck repointing periods (which accounts for 8 % of the
total data volume); use of the so-called “ninth survey” (which
accounts for 3 % of the total data volume); and by smoothing
the LFI reference load data prior to diode differencing. Among
these, BeyondPlanck only implements the repointing period ex-
tension, for which we find no measurable issues. For the ninth
survey data, on the other hand, we find that the TOD χ2 statis-
tics vary more strongly from PID to PID, which suggests poorer
instrumental stability. We therefore exclude these data, follow-
ing Planck 2018. Finally, we note that the decreased white noise
floor that results from load smoothing also comes at a cost of in-
creased colored (or correlated) noise at high multipoles, and this
is both computationally expensive to model properly. For further
discussion regarding these frequency maps and power spectra,
see Basyrov et al. (2022).

9.3. Astrophysical component posteriors

We now turn our attention to the astrophysical component pos-
teriors. However, before presenting the results, we recall that a
main design feature of the current analysis was to let the LFI data
play the main role in the CMB reconstruction. In practice, this
means that neither the CMB-dominated HFI frequencies, nor the
WMAP K-band observations, are included in the analysis. As a
result, we note that the derived foreground posterior constraints
shown here are significantly weaker than those presented by the
Planck team in Planck Collaboration X (2016), Planck Collabo-
ration IV (2018), and Planck Collaboration Int. LVII (2020). Full
joint analysis of all data sets is left for future work.

With that caveat in mind, Fig. 21 shows the posterior mean
maps for each of the four modelled temperature foregrounds,
namely synchrotron, free-free, AME, and thermal dust emission.
As discussed by Andersen et al. (2022), these are consistent with
earlier results of the same type (Planck Collaboration X 2016),
but with notably higher uncertainties, because of the more lim-
ited data set employed here.

Similarly, Fig. 22 shows the posterior mean amplitude for
polarized synchrotron emission, and Fig. 23 summarizes the pos-
terior mean (left panel) and standard deviation (right panel) for
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Fig. 21. Posterior mean maps of the amplitude of each of the four intensity foreground components included in the BeyondPlanck analysis. (Top
left:) Synchrotron amplitude, evaluated at 30 GHz and smoothed to 2◦ FWHM resolution. (Top right:) Free-free amplitude, evaluated at 40 GHz
and smoothed to 30′ FWHM resolution. (Bottom left:) AME amplitude, evaluated at 22 GHz and smoothed to 2◦ FWHM resolution. (Bottom
right:) Thermal dust amplitude, evaluated at 545 GHz and smoothed to 10′ FWHM resolution. Note that the color bars vary between panels. See
Andersen et al. (2022) for further discussion of these maps.
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Fig. 22. Posterior mean maps of polarized synchrotron amplitude derived from BeyondPlanck, evaluated at 30 GHz and smoothed to an angular
resolution of 1◦ FWHM. The two columns show Stokes Q and U parameters, respectively; see Svalheim et al. (2022b) for further discussion of
these maps.

the power-law index of polarized synchrotron emission. In this
case, it is worth pointing out that the Planck team never pub-
lished a joint polarized synchrotron solution that included both
Planck and WMAP observations, for the simple reason that these
data sets could never made to agree statistically to a satisfac-
tory degree when analyzed separately; when attempting to fit a
single synchrotron spectral index across both data sets, the re-
sulting constraints were clearly nonphysical, and led to large χ2

excesses.

Thus, the BeyondPlanck analysis represents the first reduc-
tion of the Planck LFI data set for which a joint foreground
polarization analysis with WMAP yields statistically meaningful
results. However, as shown by Svalheim et al. (2022b), even the
combination of the two data sets does not constrain the spec-
tral index very strongly, and for this reason we choose to fit
only a small number of independent spectral indices across the
sky. Specifically, we partition the sky into four disjoint regions,
corresponding to the Galactic Center (GC), the Galactic Plane
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Fig. 23. Posterior mean and standard deviation maps for the spectral index of polarized synchrotron emission, βs. Note that βs is fitted in terms of
four disjoint regions, each with a constant value but smoothed with a 10◦ FWHM Gaussian beam to avoid edge effects. The effect of this smoothing
is seen in both the mean and standard deviation maps. Reproduced from Svalheim et al. (2022b).
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Fig. 24. Posterior mean CMB BeyondPlanck temperature map, smoothed to an angular resolution of 14′ FWHM. Reproduced from Colombo et
al. (2022).

(GP), the North Galactic Spur (NGS), and High Galactic Lati-
tudes (HGL), and treat each region separately. Adopting Planck
Collaboration X (2016) as a reference, we enforce a Gaussian
prior of βs ∼ N(−3.1, 0.12). Finally, each spectral index sample
is smoothed with a Gaussian beam of 10◦ FWHM to avoid edge
effects.

For the GP and NGS regions, which both have significant
signal-to-noise ratio with respect to polarized synchrotron emis-
sion and low systematic effects, we fit βs using the full posterior
distribution as described in Sect. 8.3.5. However, for the HGL
region, in which the effective synchrotron signal-to-noise ratio is
very low, we simply marginalize over the prior, and exclude the
likelihood term. The reason for this is simply that unconstrained
degeneracies with other parameters, such as the gain, tend to bias

βs toward high values (βHGL
s ≈ −2.5; see Svalheim et al. 2022b)

when fitted freely.
We also do the same for the GC region, for which

temperature-to-polarization leakage and bandpass effects are
particularly important, and the synchrotron signal may also be
biased by Faraday rotation. When fitting this region freely, we
find an effective spectral index of βGC

s ≈ −4, which is also clearly
unphysical. Rather than letting these unmodelled systematic ef-
fects feed into the other components, we marginalize over the
physically motivated prior.

This leaves us with two main regions usable for scien-
tific interpretation, and these may be seen as blue regions
in the standard deviation map in Fig. 23. Specifically, we
find βGP

s = −3.03 ± 0.07 and βNGS
s = −3.17 ± 0.06, respectively

(Svalheim et al. 2022b). We note that these values are broadly
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Fig. 25. Difference map between the BeyondPlanck and the Planck
2018 Commander CMB temperature map (Planck Collaboration IV
2018), smoothed to a common angular resolution of 1◦ FWHM.

consistent with previous temperature-only constraints, such as
those reported by Planck Collaboration X (2016), who found
βs = −3.1. They are also consistent with the observation that
the spectral index is flatter towards the Galactic plane than in the
North Galactic Spur (e.g., Kogut 2012; Fuskeland et al. 2014,
2021), although the statistical significance of this observation is
marginal. In this respect, it is worth noting that the low Galac-
tic latitudes are particularly sensitive to both systematic and as-
trophysical modelling errors, both in temperature and polariza-
tion. For a full discussion of these results, we refer the interested
reader to Svalheim et al. (2022b).
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Fig. 26. CMB dipole amplitude as a function of sky fraction, reproduced
from Colombo et al. (2022). The gray band indicates the 68 % posterior
confidence region.

9.4. CMB temperature posteriors

Finally, we arrive at the main scientific target application of the
paper, the CMB posteriors. For a full discussion of the following
results, we refer the interested reader to Colombo et al. (2022);
Paradiso et al. (2022), and here we only provide a brief overview
of the main points.

First, Fig. 24 shows the marginal CMB temperature fluctua-
tion posterior mean map as derived in BeyondPlanck, given the
data, model and priors described above. This map is massively
dominated by the CMB solar dipole, with only a small imprint of
the Galactic plane being visible in the very center. At high lati-
tudes, CMB temperature fluctuations may be seen as tiny ripples
superimposed on the dipole.

Figure 25 shows, from top to bottom, the BeyondPlanck pos-
terior mean temperature map (after subtracting the CMB solar
dipole), the posterior standard deviation, and the difference with
respect to the Planck 2018 Commander CMB map. Both the pos-
terior mean and standard deviation maps show clear evidence
for foreground residuals near the Galactic plane, but these are
well covered by the confidence mask. The differences seen in
the bottom panel range between ±10 µK, which is the same or-
der of magnitude as observed between the various component
separation algorithms used internally in the Planck collaboration
(Planck Collaboration IV 2018).

Next, Fig. 26 shows the CMB Solar dipole amplitude as de-
rived from masks with different sky fractions, ranging between
20 and 95 %, and the value corresponding to the fiducial analy-
sis mask of a 68 % sky fraction is tabulated in Table 3. Overall,
we see that the BeyondPlanck estimates agree well with previ-
ous estimates, both in terms of amplitude and direction, although
there is a 1.5σ shift in the . The main difference between the Be-
yondPlanck and previous results lies thus not in central values,
but rather in their uncertainties. In particular, it is important to
note that the CMB dipole is within the BeyondPlanck frame-
work estimated on completely the same footing as any other
mode in the CMB sky, and is represented in terms of three spher-
ical harmonic coefficients in sCMB. No special-purpose compo-
nent separation algorithms are applied to derive the CMB dipole,
nor are there any ad-hoc instrumental uncertainty corrections in-
volved in the estimation of the error bars; both the posterior mean
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Table 3. Comparison of Solar dipole measurements from COBE, WMAP, and Planck.

Galactic coordinates

Amplitude l b
Experiment [ µKCMB] [deg] [deg] Reference

COBEa,b. . . . . . . . . 3358 ± 23 264.31 ± 0.16 48.05 ± 0.09 Lineweaver et al. (1996)
WMAP c. . . . . . . . 3355 ± 8 263.99 ± 0.14 48.26 ± 0.03 Hinshaw et al. (2009)
LFI 2015 b . . . . . . 3365.5 ± 3.0 264.01 ± 0.05 48.26 ± 0.02 Planck Collaboration II (2016)
HFI 2015 d . . . . . . 3364.29 ± 1.1 263.914 ± 0.013 48.265 ± 0.002 Planck Collaboration VIII (2016)
LFI 2018 b . . . . . . 3364.4 ± 3.1 263.998 ± 0.051 48.265 ± 0.015 Planck Collaboration II (2020)
HFI 2018 d . . . . . . 3362.08 ± 0.99 264.021 ± 0.011 48.253 ± 0.005 Planck Collaboration III (2020)
Bware . . . . . . . . 3361.90 ± 0.40 263.959 ± 0.019 48.260 ± 0.008 Delouis et al. (2021)
Planck PR4 a,c. . . . . 3366.6 ± 2.6 263.986 ± 0.035 48.247 ± 0.023 Planck Collaboration Int. LVII (2020)
BeyondPlanck e . . 3362.7 ± 1.4 264.11 ± 0.07 48.279 ± 0.026 Colombo et al. (2022)

a Statistical and systematic uncertainty estimates are added in quadrature.
b Computed with a naive dipole estimator that does not account for higher-order CMB fluctuations.
c Computed with a Wiener-filter estimator that estimates, and marginalizes over, higher-order CMB fluctuations jointly with the dipole.
d Higher-order fluctuations as estimated by subtracting a dipole-adjusted CMB-fluctuation map from frequency maps prior to dipole evaluation.
e Estimated with a sky fraction of 68 %. Error bars include only statistical uncertainties, as defined by the global BeyondPlanck posterior frame-

work, and they thus account for instrumental noise, gain fluctuations, parametric foreground variations etc.
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Fig. 27. (Top:) Angular CMB temperature power spectrum, DTT
` , as de-

rived by BeyondPlanck (black), Planck (red), and WMAP (blue). The
best-fit Planck 2018 ΛCDM power spectrum is shown in dashed gray.
(Middle:) Residual power spectrum relative to ΛCDM, measured rela-
tive to full quoted error bars, r` ≡ (D` − DΛCDM

` )/σ`. For pipelines that
report asymmetric error bars, σ` is taken to be the average of the up-
per and lower error bar. (Bottom:) Fractional difference with respect to
the Planck ΛCDM spectrum. In this panel, each curve has been boxcar
averaged with a window of ∆` = 100 to suppress random fluctuations.

and standard devation are evaluated directly from the Gibbs sam-
ples.

Figure 27 shows the angular temperature power spectrum de-
rived from the sample set with a Blackwell-Rao estimator (Chu
et al. 2005; Colombo et al. 2022), and compared with the similar
spectra presented by Planck (Planck Collaboration V 2020) and
WMAP (Hinshaw et al. 2013). For reference, the gray dashed line
shows the best-fit Planck 2018 ΛCDM spectrum. The middle
panel shows the difference of each measured spectrum with re-
spect to the model spectrum in units of each pipeline’s respective

error bars, while the bottom panel shows the corresponding frac-
tional difference with respect to the best-fit Planck 2018 ΛCDM
spectrum in units of percent. At ` . 500, where these data sets
are all signal-dominated, the three spectra follow each other al-
most `-by-`, while at higher multipoles, where WMAP becomes
noise-dominated, larger variations are seen within multipoles.
Overall, the agreement between the three estimates is very good,
both as measured by fractional differences and in units ofσ. Cor-
respondingly, standard ΛCDM parameter constraints from the
BeyondPlanck analysis are fully compatible with those derived
from the standard Planck processing when considering the same
multipole ranges (Paradiso et al. 2022).

9.5. CMB polarization posteriors

Turning to low-resolution polarization estimation, which we
stated served as the main scientific target of the entire Beyond-
Planck processing, we start by showing a slice through the CMB
Stokes Q covariance matrix in the bottom panel Fig. 28; for com-
parison, the top panel shows the corresponding DPC 70 GHz co-
variance matrix that takes into account correlated noise and fore-
ground template subtraction. These matrices are sliced through
the pixel marked in gray in the upper right quadrant. As dis-
cussed by Colombo et al. (2022), the dominant features in the
BeyondPlanck matrix are 1) correlated noise at high latitudes,
tracking the same scanning path as seen in the DPC matrix; 2)
bandpass and foreground uncertainties along the Galactic plane;
and 3) gain and calibration uncertainties at high latitudes. For the
LFI 30 GHz, the latter effect is in fact slightly stronger than the
correlated noise contribution, as already pointed out in Fig. 17,
and neglecting this contribution significantly underestimates the
total uncertainties.

Figure 29 compares the posterior distribution for the opti-
cal depth of reionization, τ, with similar estimates derived using
different data sets and methods, while Table 4 compares numer-
ically τ, r, and the reduced χ2 goodness-of-fit statistics for the
same analyses. First and foremost, we see in Fig. 29 that the Be-
yondPlanck estimates of τ agree very well with previous analy-
ses in terms of the posterior mean value for τ, with a central value
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Table 4. Summary of cosmological parameters dominated by large-scale polarization and goodness-of-fit statistics. Columns list, from left to right,
1) analysis name; 2) basic data sets included in the analysis; 3) effective accepted sky fraction; 4) posterior mean estimate of the optical depth of
reionization with 68 % error bars; 5) upper limit on tensor-to-scalar ratio at 95,% confidence; 6) χ2 goodness-of-fit statistic as measured in terms
of probability-to-exceed; and 7) primary reference. Reproduced from Paradiso et al. (2022).

Analysis Name Data Sets f pol
sky τ rBB

95 % χ2 PTE Reference

WMAP 9-yr . . . . . . . . . . . . . . . . . WMAP Ka–V 0.76 0.089 ± 0.014 Hinshaw et al. (2013)
Natale et al. . . . . . . . . . . . . . . . . . LFI 70, WMAP Ka–V 0.54 0.069 ± 0.011 < 0.79 Natale et al. (2020)
Planck 2018 . . . . . . . . . . . . . . . . HFI 100×143 0.50 0.050 ± 0.009 < 0.41 Planck Collaboration V (2020)
SROLL2 . . . . . . . . . . . . . . . . . . . . HFI 100×143 0.50 0.059 ± 0.006 Pagano et al. (2020)
NPIPE (Commander CMB) . . . . . . LFI+HFI 0.50 0.058 ± 0.006 < 0.16 Tristram et al. (2021)
BeyondPlanck, ` = 2–8 . . . . . . . . LFI, WMAP Ka–V 0.68 0.066 ± 0.013 < 0.84 0.32 Paradiso et al. (2022)
BeyondPlanck, ` = 3–8 . . . . . . . . LFI, WMAP Ka–V 0.68 0.066 ± 0.014 < 1.0 0.32 Paradiso et al. (2022)

QLFI 2018

QBP

−0.03 0.03µK2

Fig. 28. Single column of the low-resolution CMB noise covariance ma-
trix, as estimated by the LFI DPC (top row) and BeyondPlanck (bottom
row). The column corresponds to the Stokes Q pixel marked in gray,
which is located in the top right quadrant near the ‘Q’ label. Note that
the DPC covariance matrix is constructed at Nside = 16 and includes a
cosine apodization filter, while the BeyondPlanckmatrix is constructed
at Nside = 8 with no additional filter.

of τ = 0.066 ± 0.013. We also see that the tensor-to-scalar ratio
is consistent with zero, and the χ2 statistic has a probability-to-
exceed of 32 %, both of which suggests that the adopted model
performs well.

In particular, the agreement in terms of τ is very close
with respect to Natale et al. (2020), who reported a value of
τ = 0.069±0.011 using an almost identical data selection. How-
ever, as discussed by Paradiso et al. (2022), it is important to note
that the BeyondPlanck uncertainty is in fact significantly larger
than that reported by Natale et al. (2020). Not only is the actu-
ally reported values 18 % larger in itself, but the BeyondPlanck
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Fig. 29. Comparison of (unnormalized) marginal posterior distribu-
tions of the reionization optical depth from BeyondPlanck (solid black
line) and various previously published estimates (colored dotted/dashed
curves). Reproduced from Paradiso et al. (2022).

analysis mask is also more permissive, allowing 68 % of the sky
to be used, which is to be compared with a sky fraction of 54 %
in the previous analysis. When accounting for all effects, the Be-
yondPlanck uncertainty is about 30 % larger than the Natale et
al. result, and we interpret this as being caused by marginalizing
over a more complete set of uncertainties.

This effect is explicitly demonstrated in Fig. 30 by analyz-
ing different models within the BeyondPlanck framework alone:
The blue curve shows the posterior distribution when only ac-
counting for white noise; the red curve shows the same when
additionally marginalizing over foreground uncertainties; and,
finally, the black curve shows the posterior distribution with
marginalizing over all sources of uncertainty; white noise, fore-
grounds, and instrumental parameters. Neglecting the instru-
mental effects, such as gain and bandpass uncertainties, signif-
icantly under-estimates the true uncertainty, and properly ac-
counting for all these effects is a main goal of the BeyondPlanck
framework.

10. Reproducibility and Open Science

As discussed in Sect. 1, the main long-term scientific goal and
motivation of the BeyondPlanck program is to establish an end-
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Fig. 30. Estimates of τ under different uncertainty assumptions. The
blue curve shows marginalization over white noise only; the red curve
shows marginalization over white noise and astrophysical uncertainties;
and, finally, the black curve shows marginalization over all contribu-
tions, including low-level instrumental uncertainties, as in the final Be-
yondPlanck analysis.

to-end analysis framework for CMB observations that, we hope,
will be useful for the general community. This framework is de-
signed to be sufficiently flexible to allow analysis of different and
complementary experiments, and thereby exploit the strengths of
one instrument to break degeneracies in another. Organizing and
promoting this work is a key goal for the Cosmoglobe project,
which aims at performing a similar analysis as BeyondPlanck,
but for a much wider selection of datasets, and eventually build
a single statistically consistent and multi-experiment model of
the radio, microwave, and sub-millimeter sky. An early exam-
ple of this work has already been demonstrated in the current
paper suite by Watts et al. (2022), who have extended the cur-
rent framework to re-analyze the WMAP Q-band data with very
promising results.

For this project to succeed, substantial efforts have been
spent within the BeyondPlanck program on the issue of re-
producibility. These efforts are summarized by Gerakakis et al.
(2022), both in terms of the internal process itself and some
lessons learned, and also in terms of the final practical solutions
that have been implemented. Here we provide a brief summary
of the main points.

10.1. Reproducibility

For the BeyondPlanck and Cosmoglobe framework to be use-
ful for other experiments it must be reproducible: Researchers
outside of the current collaboration must be able to repeat our
analysis, before improving and extending it. To support this, we
have focused on four main items:

1. Documented open-source code – the full Commander22

source code, as well as various pre- and post-processing
tools,23 are made publicly available in a GitHub repository
under a GPL license, and may be freely downloaded and
extended within the general restriction of that license. Pre-

22 http://beyondplanck.science
23 https://github.com/cosmoglobe/c3pp

liminary documentation is provided,24 although it is under
continuous development, as is the source code itself.

2. Cmake compilation – easy compilation is supported through
the Cmake environment; required external libraries are auto-
matically downloaded and compiled.

3. Data downloader – a Python-based tool is provided that
automatically downloads all BeyondPlanck input data to a
user-specified directory, together with the parameter files that
are needed to run the code.

In addition, all main results (both full chain files and selected
post-processed posterior mean and standard deviation maps)
are available from the Cosmoglobe homepage,25 and eventually
through the Planck Legacy Archive.26 For further details regard-
ing the reproducibility aspects of the work, we refer the inter-
ested reader to Gerakakis et al. (2022).

10.2. Software

A second requirement for the BeyondPlanck framework to be
useful for other users is that the software is computationally ef-
ficient so that it can be run on generally available hardware, and
also that the source code is extendable without expert knowl-
edge. Regarding the former point, we note that great empha-
sis has been put on minimizing the required computational re-
sources throughout the implementation. This appears to be at
least partially successful, as summarized in Sect. 8.4 and by Gal-
loway et al. (2022a): The full BeyondPlanck analysis, as pre-
sented here, has a computational cost of 670 000 CPU hours,
which is roughly equivalent to the cost of producing 70 end-
to-end Planck FFP8 70 GHz realizations using the traditional
pipeline (Planck Collaboration XII 2016). Furthermore, by com-
pressing the TOD inputs the memory footprint of the LFI data
set has been reduced by about an order of magnitude (see Ta-
ble 2 and Galloway et al. 2022a), and now requires only about
1.5 TB of RAM to run. Computers with this amount of memory
and clock cycles are now available outside super-computing cen-
ters, and a full Planck LFI analysis therefore no longer requires
the use of expensive super-computers – although they will of
course be beneficial when available.

Regarding the software itself, the current main code base is
written in object-oriented Fortran 2003. Clearly, this may repre-
sent a significant hurdle for many users, as most astrophysics stu-
dents today are typically more exposed to languages like Python
or C than Fortran. This choice of language is primarily histor-
ical, and due to the fact that a large part of the legacy code
base was originally written in Fortran, most notably HEALPix
(Górski et al. 2005) and Commander (Eriksen et al. 2004, 2008).
However, a second important motivation for adopting Fortran
is that it remains one of the fastest languages even today in
terms of computational speed and memory management. As far
as readability and extendability goes, the code has been de-
signed with a strong focus on object-orientation, and we be-
lieve that adding support for several types of new sub-classes
is relatively straight-forward. This includes classes for new sig-
nal components; noise or beam representations; or TOD mod-
els. On the other hand, modifying the underlying memory man-
agement, component separation infrastructure, or parallelization
paradigm, is likely to be difficult without expert knowledge. A
guide to the current software is provided by Galloway et al.
(2022a). As a real-world demonstration of the extendability of
24 https://docs.beyondplanck.science
25 https://cosmoglobe.uio.no
26 https://pla.esac.esa.int/
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the framework, we present a preliminary application to WMAP
in (Watts et al. 2022).

As useful as we hope the current version will be, we do be-
lieve that developing a massively parallel version of Commander
in Python would be a useful, interesting and intellectually chal-
lenging task, and we would encourage (and support!) work in
this direction. For reference, the current Commander Fortran
source code spans 45 000 lines,27 which can likely be reduced
by a significant factor if written in a less verbose language; port-
ing this to Python would obviously be a major undertaking, but
certainly feasible for even just a small team of talented and mo-
tivated researchers.

11. Conclusions, summary and outlook

The Planck project represents a landmark achievement in inter-
national cosmology, mapping out the primary temperature fluc-
tuations in the CMB to a precision determined by astrophysical
constraints. This achievement was made possible by the dedi-
cation and long-term contributions from ESA and NASA; from
tens of national funding agencies; and many hundreds of sci-
entists and engineers working for more than two decades. At
the end of the mission, a massive amount of knowledge and
expertise regarding optimal analysis of CMB experiments had
been generated within the collaboration, as clearly demonstrated
through more than 150 refereed scientific publications.

A central goal of the BeyondPlanck project was to translate
a significant part of this aggregated experience into a practical
computer code that can analyse Planck data from end-to-end,
and to make this code available to the community in general.
Main advantages of an integrated end-to-end Bayesian approach
include:

1. Faithful error propagation: BeyondPlanck implements
global end-to-end Bayesian CMB analysis framework. The
single most important advantage of this is faithful propa-
gation of uncertainties from raw TOD to final cosmological
parameters. Instrumental and astrophysical systematic errors
are propagated to the final CMB likelihood on the same foot-
ing as any other nuisance parameter. While already impor-
tant for Planck, this issue will become absolutely critical for
future planned high-precision B-mode experiments, such as
LiteBIRD or PICO.

2. Breaking degeneracies and saving costs by exploiting syn-
ergistic observations: Combining data from complemen-
tary sources is essential to break fundamental degeneracies
within a given experiment. For instance, both Planck and
WMAP have degenerate polarization modes that they can-
not measure well on their own, due to peculiarities in their
respective scanning strategies—but there are no degenerate
modes in the combined data set. In general, however, the
usefulness of joint analysis with external data is often lim-
ited by systematic errors. The BeyondPlanck framework ad-
dresses this by providing a common platform for performing
joint low-level analysis of different experiments. Also not-
ing that the lion’s share of the analysis cost of any real-world
CMB experiment is associated with understanding degenera-
cies and systematic errors, we believe that a global approach
will lead to better and cheaper science for each experiment.

3. Fewer human errors: Tight analysis integration also leads to
many important practical advantages, including less room for

27 Interestingly, only about 6000 lines are directly associated with TOD
processing, while 14 000 lines are directly associated with component
separation; the rest is spent on general data infrastructure and tools.

human errors or miscommunication; greater transparency of
both explicit and implicit priors; better optimization of com-
puting resources; and significantly reduced end-to-end wall-
clock time by eliminating intermediate human interaction.

4. “Faster, better and cheaper” through open-source science:
True inter-experiment global analysis will clearly not suc-
ceed without active contributions and support from a large
part of the general community. For this reason, we make our
source codes publicly available under a GPL open-source li-
cense to ensure long-term stability of the currently released
software. It also means that future improvements must be re-
leased under a similarly generous license, in recognition of
the fact that this project is intended to be collaborative, open,
and inclusive. The use of stakeholder knowledge is critically
important—and we hope that many stakeholders will indeed
be interested in actively contributing to the program, ulti-
mately leading to “faster, better, and cheaper” science for
everyone.

As discussed above, the BeyondPlanck program has focused
on the Planck LFI data. The reasons for doing so were three-fold.
First and foremost, many BeyondPlanck collaborators have been
working with the LFI data for one or two decades, and the aggre-
gated experience with this data set within the collaboration im-
plied a low start-up cost; results could be produced quickly. Sec-
ond, the full LFI data volume is fairly limited in size, comprising
less than 1 TB after compression, which is good for fast debug-
ging and testing. Third, the LFI instrument is based on HEMT
radiometers, which generally both have a relatively high noise
contribution and low systematic errors per sample. The combi-
nation of these three points made LFI a natural starting point for
the work.

However, now that the computational framework already ex-
ists, it will require substantially less effort to generalize it to
other and complementary data sets. Currently on-going general-
izations by various teams involve WMAP, LiteBIRD, CHIPASS,
and COBE-DIRBE, and we warmly welcome initiatives target-
ing any other experiment as well. In this respect, it may be useful
to distinguish between four types of experiments, each with their
own set of algorithmic complexities.

First, many radio, microwave and sub-millimeter experi-
ments may be modelled within nearly the same sky and in-
strument model as BeyondPlanck. Examples include C-BASS,
QUIET and QUIJOTE, all of which simply provide additional
signal-to-noise and/or frequency coverage, as far as the underly-
ing algorithms are concerned. For these, analysis within the Be-
yondPlanck framework may turn out to amount simply to writ-
ing one or more TOD processing modules (for instance using the
current LFI module as a template) to take into account the var-
ious instrument-specific systematic effects of the experiment in
question. These experiments should be, relatively speaking, the
easiest to integrate into the current framework.

Other experiments may build on the same sky model and
component separation procedures as BeyondPlanck, but require
a different mapmaking algorithm. One prominent example of
this is WMAP, which is differential in nature, and therefore re-
quires a different Conjugate Gradient mapmaking algorithm to
translate cleaned TOD into pixelized maps; this work is already
on-going (Watts et al. 2022). Experiments of this type should
also be relatively straighforward to integrate.

A third class of experiments are those that can use the same
type of sky models, but requires a significantly different in-
strumental model. The most prominent example of such are
TES bolometer-based instruments. These often have both higher
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Fig. 31. Brightness temperature (top panel) and polarization amplitude (bottom panel) RMS as a function of frequency and astrophysical com-
ponent, and as derived from the BeyondPlanck and Planck sky models. Vertical bands indicate the frequency ranges of various experiment. All
components have been evaluated at a common angular resolution of 1◦ FWHM. The widths of each confidence region correspond to the spread
when evaluating the RMS over two different masks with sky fractions of 88 and 27 %, respectively. The cyan curve shows the level of CMB
fluctuations evaluated for the best-fit Planck ΛCDM spectrum. In the current BeyondPlanck analysis, only the three LFI channels are modelled
in the time-domain. For polarization, the spinning dust component (orange curve) indicates an upper limit as presented by Herman et al. (2022b),
not a detection. A long-term future goal is to include all publicly available and relevant data (for instance WMAP and Planck HFI) into this model;
preferably in the form of time-ordered data, but if this is not technically or financially possible, then at least in the form of pre-processed sky maps.
This work will be organized within the Cosmoglobe project.

signal-to-noise ratios and systematic errors per sample, and
therefore require a richer set of systematics corrections. They
also typically have a significant multiplicative transfer function,
which means that unbiased maps cannot be produced simply by
introducing additive TOD corrections, as is done in the current
implementation. Instead, they will also require a dedicated Con-
jugate Gradient mapmaker to take into account the multiplicative
effects. Examples of potentially relevant experiments include for

instance BICEP2, CLASS, SPIDER, and LiteBIRD. Integrating
these will thus be more challenging than HEMT-based experi-
ments like LFI or WMAP, but it should certainly be feasible, and
the scientific rewards will be massive.

The fourth and final group of experiments are those that
either produce massive amounts of time-ordered data, or very
high-resolution data. Important examples are ACT , SPT, Simons
Observatory, and CMB-S4. These will all require a fundamental
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redesign of the existing code base, simply to handle the massive
amounts of memory and network communication efficiently. Ad-
ditionally, experiments that observe only a fraction of the sky, but
at high angular resolution, cannot employ the spherical harmon-
ics basis that we currently use for component separation without
introducing large degeneracies and singular modes; all spatial
modes need to be constrained by at least one experiment for the
current implementation to work properly. Developing a new ver-
sion of the Bayesian framework that can handle higher levels of
parallelization, and also use more general basis sets, is thus an
important goal for future work.

Returning to the specific scientific results derived by the
BeyondPlanck project, we note that cosmological constraints
derived from LFI and WMAP alone will never be competitive
in terms of overall uncertainties as compared to an HFI-based
analysis. Nevertheless, many interesting results have been estab-
lished during the course of the project. Some of the most note-
worthy among these are the following:

1. We have succeeded in integrating the LFI 44 GHz channel
into a statistically viable low-` CMB likelihood. Two key al-
gorithmic steps that were required for this were, firstly, to im-
plement a more flexible gain smoothing algorithm stiff than
a hard boxcar average, and, secondly, to model a previously
unknown additional correlated noise contribution on 0.01–
1 sec time scales. Less important, but still notable, improve-
ments include more efficient ADC corrections and removal
of known bandpass artefacts. After making all these correc-
tions, we are not currently aware of any significant outstand-
ing systematic effects in the Planck LFI data.

2. We have for the first time constructed full dense low-
resolution CMB and frequency map covariance matrices that
account for marginalization over a wide range of important
systematic time-ordered effects, including gain, bandpass,
and foreground corrections, and correlated noise. This results
in a low-` polarization likelihood that yields results consis-
tent with the latest HFI analyses, and a best-fit value of the
reionization optical depth of τ = 0.066 ± 0.013. The associ-
ated χ2 goodness-of-fit statistics are statistically acceptable,
although there might be weak hints of excess power, possibly
due to the break-down of the 1/ f noise model.

3. We have produced a statistically consistent and joint estimate
of the CMB dipole using both Planck and WMAP data. The
best-fit dipole amplitude of 3362.7±1.4 µK is consistent with
all published results, including the latest HFI-based measure-
ments, and the quoted error estimate is derived strictly within
the well-defined Bayesian statistical framework.

4. We are for the first time able to fit a physically meaningful
spectral index of polarized synchrotron emission using both
WMAP and Planck. This is the direct result of performing a
truly joint analysis with LFI and WMAP as described above,
using information from one experiment to break degenera-
cies within the other.

While the BeyondPlanck project itself contractually ended
on November 30th, 2020, the work will in general continue with
various alternative funding sources, and, we hope, also with the
help of a continuously growing community of supporting collab-
orators and experiments. Figure 31 shows a compilation of the
current BeyondPlanck sky model and data sets in both temper-
ature (top panel) and polarization (bottom panel) together with
selected external products. The long-term goal of this work is
to populate this plot with all available experimental data, and
thereby gradually refine the sky model. The ERC-funded Cos-
moglobe project aims to coordinate these efforts, and will serve

as a stable platform for all parties interested in global Bayesian
CMB analysis. Cosmoglobe will also serve as the long-term
home for all BeyondPlanckmaterial and products, long after the
current BeyondPlanck web portal vanishes.

Finally, we end with an important caveat emptor, and empha-
size that Commander is very much a work-in-progress—and it
will remain so for all foreseeable future. Essentially every single
step in the pipeline can and will be replaced by smarter and more
capable sampling algorithms; the user-interface could most cer-
tainly be made more intuitive; and so on. This is an unavoidable
side-effect of being at the cutting edge of algorithmic research,
where new ideas are continuously being explored, implemented
and tested. However, at the same time, it is also our belief that
the current platform is now finally sufficiently mature to allow
external users and developers to use it productively for their own
analyses, and to extend it as they see fit. In other words, we be-
lieve that now is the right time for Bayesian end-to-end CMB
analysis to go OpenSource, and we invite all interested parties to
participate in this work.
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Appendix A: Review of frequently used textbook
sampling algorithms

As described in Sect. 6.3, the BeyondPlanck pipeline is de-
signed in the form of a Gibbs sampler in which each parame-
ter is sampled conditionally on all other parameters. Each pa-
rameter must therefore be associated with a specific sampling
algorithm that samples from the correct distribution. In this ap-
pendix, we therefore review some of the most common sampling
techniques that are used in the BeyondPlanck framework, while
noting that all of this is textbook material; this is just provided for
reference purposes. In all cases below, we assume that samplers
for both the uniform distribution, U[0, 1], and the standard uni-
variate normal (Gaussian) distribution, N(0, 1), are already avail-
able through some numerical library; we use routines provided
in HEALPix.

Appendix A.1: Univariate and low-dimensional Gaussian
sampling

Perhaps the single most common distribution in any Bayesian
pipeline is the univariate Gaussian distribution N(µ, σ2) with
mean µ and standard deviation σ. A sample x from this distri-
bution can be trivially generated by

x = µ + ση, (A.1)

where η ∼ N(0, 1) is a standard normal variate. Note that 〈x〉 = µ,
because 〈η〉 = 0 and

〈
(x − µ)2

〉
= σ2 because

〈
η2

〉
= 1.

A sample from a multivariate normal distribution N(µ,C)
with mean vector µ and covariance matrix C may be produced
in a fully analogous manner,

x = µ + C
1
2 η, (A.2)

where now η is a vector of independent N(0, 1) variates, and C
1
2

denotes some matrix for which C = C
1
2 (C

1
2 )t. The two most typi-

cal examples are the Cholesky decomposition (C = LLt for posi-
tive definite matrices, where C

1
2 = L) and singular-value decom-

position (C = VΣVt for singular matrices, where C
1
2 = VΣ

1
2 Vt).

A notable advantage regarding the latter is that it is symmetric,
and therefore less bug-prone than the Cholesky factor; on the
other hand, it is slightly more computationally expensive.

Appendix A.2: High-dimensional Gaussian sampling

It is important to note that evaluating a “square root” of a matrix,
whether it is through Cholesky or eigenvector decomposition,
is an O(n3) operation, where n is the dimension of the matrix.
As such, the direct approach is only computationally practical
for relatively low-dimensional distributions, and just with a few
thousand elements or less. For distributions with millions of cor-
related variables, the above prescription is entirely impractical.
In the following, we therefore describe a widely used method
to sample from high-dimensional distributions, effectively by in-
verting the covariance matrix iteratively by Conjugate Gradients.

Again, let x be a random Gaussian field of n elements with
an n × n covariance matrix S, i.e., x ∼ N(0,S). Further, to put
the notation into a familiar context, we assume we have some
observations d that can be modeled as

d = Tx + n, (A.3)

where n is a stochastic noise vector of size nd (which in general
is different from n) which is drawn from a Gaussian distribution

with zero mean and covariance N, and T is a matrix of size nd ×

n, which effectively translates x into the vector space of d. In
other words, we assume that the data may be modelled as a linear
combination of x plus a well-defined noise contribution.

Note that this assumption about d does not preclude the cases
where we have observations that can be written as d = Tx+n+b,
where b is known and independent of x - in this case, we are
free to redefine d: d′ → d − b, in which case our assumption in
Eq. (A.3) would be met for d′.

In general, T will not depend on x. In the context of the Gibbs
framework of this paper, however, T typically will depend on
other quantities that we do sample, but which we assume to be
known with respect to the current conditional of the Gibbs chain.

Our goal is then to draw a sample from P(x | d,T,S,N), the
posterior of x, given d and the other quantities, denoted P(x | d)
as a shorthand. Using Bayes’ theorem, we can write this as

P(x | d) ∝ P(d | x)P(x). (A.4)

Here P(x) is a prior for x, which we assume takes the form
N(0,S), whereas the likelihood term, P(d | x), is simply given
by a Gaussian distribution with covariance N and mean Tx. This
gives (neglecting the pre-factors of the exponentials, as they are
independent of x and end up as normalization constants)

−2 ln P(x | d) = xtS−1x + (d − Tx)tN−1(d − Tx)

= xtS−1x + dtN−1d + xtTtN−1Tx−

dtN−1Tx − xtTtN−1d

= xt(S−1 + TtN−1T)x − 2xtTtN−1d, (A.5)

where, in the last transition, we neglect also the terms that do not
include x. We also use the identity atCb = btCa, which is valid
for a symmetric matrix C, in order to gather the terms that are
linear in x.

This expression for P(x | d) can be written as a Gaussian
distribution by “completing the square”: We are looking for a
matrix F and a vector c such that

P(x | d) = exp
[
−

1
2

(x − c)tF−1(x − c)
]

∝ exp
[
−

1
2

(
xtF−1x − 2xtF−1c

)]
. (A.6)

Comparing terms in Eqs. (A.5) and (A.6), we find that the terms
that are quadratic in x enforce

F−1 = S−1 + TtN−1T. (A.7)

Inserting this into the terms that are linear in x, we find

c = (S−1 + TtN−1T)−1TtN−1d. (A.8)

Thus, the posterior of x is a Gaussian distribution with co-
variance given by Eq. (A.7) and mean (and mode) given by
Eq. (A.8).

In order to draw a sample, x̃, from this distribution, we can
in principle use the standard prescription for sampling from mul-
tivariate Gaussian distributions,

x = (S−1 + TtN−1T)−1TtN−1d + (S−1 + TtN−1T)−1/2η, (A.9)

as summarized in the previous section. However, inverting the
covariance matrix, S−1 + TtN−1T, is once again an O(n3) opera-
tion. To circumvent this problem, we instead consider the same
equation in the form

(S−1 + TtN−1T)x = TtN−1d + (S−1 + TtN−1T)1/2η. (A.10)
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Since the matrix on the left-hand side is both symmetric and
semi-positive definite, this equation can be solved iteratively by
Conjugate Gradients; for a brilliant review of this algorithm, see
Shewchuk (1994). Additionally, to obtain the correct covariance
structure, one can instead add one random zero-mean covariance
term for each element in the covariance matrix to the right-hand
side of the equation,

(S−1 + TtN−1T)x = TtN−1d + TtN−1/2η1 + S−1/2η2. (A.11)

With this definition, 〈x〉 = c, and
〈
xxt〉 = (S−1 + TtN−1T)−1 = F,

as desired.
A fully analogous calculation may be done also with a non-

zero prior mean, m, in which case an additional term is intro-
duced on the right-hand side of Eq. (A.10),

(S−1 +TtN−1T)x = TtN−1d+S−1m+TtN−1/2η1 +S−1/2η2. (A.12)

The relative strength of the data and prior terms is thus effec-
tively determined by the overall signal-to-noise ratio of the data
as measured by S and N, and in the limit of vanishing signal-
to-noise (i.e., N−1 → 0), 〈x〉 = m, as desired. Note, also, that S
quantifies the covariance of the fluctuations around the mean, not
the co-variance of the entire field x itself. In the limit of S → 0
(or, equivalently, S−1 → ∞), we therefore also have 〈x〉 = m.
Thus, the magnitude of S represents a direct handle for adjust-
ing the strength of the prior.

Appendix A.3: Inversion sampling

The samplers discussed in the two previous sections only con-
cerns Gaussian distributions. In contrast, the so-called inversion
sampler is a completely general sampler that works for all uni-
variate distributions.

Let P(x) be a general probability distribution for some ran-
dom variable x. The inversion sampler is then defined as follows:

1. Compute P(x) over a grid in x, making sure to probe the tails
to sufficient accuracy.

2. Compute the cumulative probability distribution,
F(x) =

∫ x
−∞

P(x′) dx′.
3. Draw a random uniform variate, η ∼ U[0, 1].
4. Solve the nonlinear equation η = F(x) for x.

Clearly, this is a computationally very expensive algorithm,
noting that it actually requires the user to map the full distribu-
tion, P(x), in the first step. This typically requires a preliminary
bisection search to first identify a sufficiently wide region in x to
cover all significant parts of P. Then another 50–100 evaluations
are required to grid the (log-)probability distribution.

However, the facts that this sampler requires no manual tun-
ing, and that it produces independent samples, make it an attrac-
tive component in many Gibbs samplers; typically, the overall
computational cost of the entire Gibbs chain is dominated by
completely different operations.
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