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Abstract

We adopt the interpretation of rationality according to which
an organism'’s behavior is rational if it is optimally adapted to
its environment (Anderson, 1990, 1991a, 1991b). Rationality,
according to this view, often implies mechanisms that are as
informationally efficient as possible. We interpret the
problem of basic-level categorization (Rosch & Mervis,
1975) as one of data compression within an information
theory framework, to define a framework whereby the best
classification on a set of items is the one that maximally
compresses the description of the similarity structure of these
items. This framework is then used to examine whether
participants in two experiments classified meaningless items
in a way that reflected such a compression bias. In addition to
the implications for human basic-level categorization, an
objective criterion is established for assessing the relative
merits of alternative clustering solutions on the same domain.

Introduction

A fundamental problem for any living creature trying to
survive or for any statistician faced with noisy data, is to
identify how much (if any) useful structure exists in a noisy
input. Classification aims to identify groups of individuals
so that within category similarity is greater than between
category similarity. We have interpreted the classification
problem in information theory terms and used the minimum
description length principle (MDL, Rissanen, 1978) to
specify a framework whereby partitioning a set of objects
into groups is favored to the extent that there is a data
compression advantage. The MDL principle states that
"...the best theory to infer from a set of data is the one which
minimizes the length of the theory and the length of the data
when encoded using the theory as a predictor for the data."
(Quinlan & Rivest, 1989). Lengths of objects refer to a
binary string description of these objects in some arbitrary
programming language; the binary string can be seen a
series of binary questions that would be needed to specify an
object, so that smaller lengths correspond to simpler objects.
Applying the MDL principle to categorization requires
specifying a way to code for the similarity structure in a set
of items (which would give us a measure of the information
content of the domain) and also defining the meaning of
categories. The latter must include the information cost (that
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is the extra code that would be needed) for specifying a
classification of the items in categories, and a description of
how this classification may reduce the description length of
the items.

Quinlan and Rivest (1989) have reported a decision tree
method based on MDL, whereby different exemplars are
partitioned into disjoint groups, with tree structure costs
defined in terms of the information required by an imaginary
computational procedure creating the tree. Our approach is
similar to theirs in spirit, but we have tried to define
clustering-configuration complexity costs and error costs in
more general information-theoretic terms, so that the link
with psychological processes would be more direct.

Rationality and information gain in
psychological models

The traditional views of rationality originate from Aristotle,
whereby rationality was understood to be fundamentally
associated with the capacity to reason according to the rules
of (classical) logic. This view has survived to the present
day (e.g., Brown, 1989), despite overwhelming evidence
that humans very often fall prey to an alarmingly large
number of logical fallacies, and also despite the discovery of
many other logical systems, so that (a priori at least) there
would be no reason why classical logic should provide the
normative model for thought (see, e.g., Braine et. al., 1995,
for an example of a reasoning model based on classical logic
and Evans et al., 1991, for a more general review; Chater &
Oaksford, 1993, consider the suitability of traditional
deductive models of reasoning in more general terms).
Recently another view of rationality has been suggested,
formulated independently of an adherence to any particular
rule system. Anderson (Anderson, 1990, 1991a, 1991b; see
also Stich, 1990) has argued that an organism is rational to
the extent that it is optimally adapted to the environment. An
account of rationality along such lines requires to specify the
nature of the problems an organism is being faced with in its
struggle for survival, so that its behavior can be applauded
as rational (or dismissed) to the extent that these problems
are being overcome or not. A problem common to all living
creatures is that of identifying the underlying regularities in
a noisy input; that is the process through which in a set of
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instances their common characteristics are identified, while
irrelevant individual differences are discarded.

For instance, in the domain of low level perception,
Barlow (1983) has proposed that in the absence of any a
priori expectations on the statistics of the world, the only
means we have in understanding our environment is
encoding it with as little redundancy as possible (that is
minimizing description length). Redundancy in a set of
instances refers precisely to their common features which
would not be needed in describing these instances as
members of the set. In other words, the point of identifying
such features is to simplify the representation of the objects
encoded. For instance, Olshausen and Field (1996):
Minimizing redundancy in any representation leads to
statistical independence so that the relevant entities will be
easier to cope with (as this would enable the segregation of
the perceptual input into objects that have, generally, little in
common, so that they can be processed separately; see also
Barlow, 1974).

Turning to higher level cognitive functions, accounts of
performance on various reasoning tasks have recently been
proposed that are based on information theory (Chater &
Oaksford, submitted; Oaksford & Chater, 1994), suggesting
that data compression might have a central role across a
wide range of cognitive mechanisms.

The above discussion illustrates that rationality in many
contexts implies a process of minimizing description
lengths, or compression, as suggested by the MDL
principle'. Consistent with the above, we will present a
"rational” model of low level categorization, in the sense
that categorization will be seen as a process of extracting as
much redundancy as possible from a given domain. Such a
model is further suggestive of a coherent view of human
rationality/cognition through compression.

Basic Categories

Grouping together a set of items under the same category
label necessarily involves a trade-off between the simplicity
of the category structure, and how informative categories are
relative to their members (Komatsu, 1992). If we want the
members of a category to share as many features as possible
(so that category instances will be more homogeneous), then
we must use many categories; in such a case, labeling a new
instance as a member of a category will be very informative,
because there will instantly be many features one can
assume for this instance. On the other hand, this view taken
to the extreme would readily recommend having a different
category for each instance, so that the obvious objective of
categorization-summaring information about a group of
instances—-would seem to lost. The competing pressures
between few general categories, that would likewise assume
few properties for their members, and many specific

' Moreover, processes that minimize description lengths can
be equivalent to Bayesian inference, which has a number of
justifications other than the ones alluded to here; see Chater,
1996.

categories, which, however, will be less useful, seem to
imply that there may be an optimal level in the
generality/specificity trade-off.

These intuitions have been captured by Rosch and
Mervis's (1975) concept of "basic categories." In their
formulation, "cue validity” was defined as the conditional
probability that an object is in a category, given that it has
some cue (or attribute) associated with the category. On the
assumption that "in the domains of both man-made and
biological objects, there occur information-rich bundles of
attributes that form natural discontinuities” they defined
basic categories as the categories "...for which the cue
validity of attributes within categories is maximized" (Rosch
& Mervis, 1975). That is basic categories are categories
whose elements share the most attributes among themselves
and as few attributes as possible with members of other
categories. Thus, according to Rosch and Mervis, in our
hierarchy of concepts, where higher level concepts are more
general, there exists a level that is optimally suited for
describing our environment. Indeed empirical support for
such a claim is abundant in the psychology literature. For
instance, Murphy and Smith (1982) reported evidence that
basic level concepts are easier to learn than either their
subordinates or superordinates, Rosch et al. (1976) showed
that subjects would agree the most about which attributes are
possessed by the members of basic level categories, etc. (see
Corter & Gluck, 1992, for an overview of basic categories
research).

Our own formulation is aimed towards providing a
criterion to identify basic categories, in a way consistent
with Rosch and Mervis’s intuition that these categories
ought to be optimally descriptive of the domain, neither too
specific nor too general.

Classification by MDL

The problem of identifying the set of groups that best
capture the statistical structure of the domain can be
redescribed as follows. Suppose we are interested in
describing a set of ordered relations among n objects (so that
we have n*(n-1)/2 relations), of the form a<b, a<d, b<c
etc.)”. If we were to describe each relation individually then
we would require n*(n-1)/2 bits (ignoring ties, for each pair
of elements, say for a and b, we have two, a priori equally
probable, possibilities: either a is greater or b is greater;
since we have only two available choices each decision costs
one bit).

If there are regularities in the domain, then it may be
possible to describe it more efficiently by partitioning the
objects into groups, or clusters. Such a framework enables
us to employ the MDL principle: The question of whether
objects fall into clusters becomes a question of whether a
classification of these objects would require less code length

% A description of.the similarity structure among a set of
items in this way is non-parametric; this is a desirable
feature for any model specified over internal representations,
since the scales in such cases are usually entirely arbitrary.
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(i.e. less information), compared to the default choice of
simply specifying all the inequalities individually.

Creating a cluster is equivalent to saying that all the
distances within clusters are less than all the distances
between clusters so that the total number of relations that
needs to be described is reduced. In particular, since we
noted above that knowledge of the relation between any two
distances costs one bit, if s constraints are introduced by a
set of clusters, then the information gain (or compression) is
s bits. However, in general no cluster will be perfect, so that
some of these constraints will be wrong, and also the
particular way clusters divide up the data set needs to be
described.

Therefore, in order to determine the extent to which a
cluster configuration is advantageous, information gain
needs to be balanced against the cost of specifying the errors
in the constraints and the cost of describing the cluster
configuration. If there are e errors in the constraints then the
number of bits required to identify them will be

lg(s+l)+lg(’Cr), as “C, is the number of ways in which

we can select e objects out of s.

To code for the clusters, we first need to specify the
number and sizes of clusters (on the assumption that there
are no empty clusters) and also the particular assignment of
objects to clusters. Thus, we need to take into account all the
possible cluster structures, and for each one of them all the
possible ways we can assign objects to clusters. Assuming
that each such possibility is equally probable, if there are D
of them, then this code will be log2D bits long, where D is
given by Z( I)V_Y (Feller, 1970; n is the number of

(n=v)!v!
nodes and r is the number of items; for a more extensive
discussion see Chater & Pothos, manuscript).

Summing up, the compression associated with
transmitting a cluster solution instead of all relations
individually would be (all relations) { (all relations)
(constraints - costs) } or (constraints-costs) so that we have:
Compression = Constraints  Costs, where Costs are given

b : (” A
Y (log(s+1) +log(*C,)) + ;( 1) e
The above framework allows one to examine the
“goodness"” of cluster configurations partitioning a domain
of objects in different ways: A particular classification is
more successful compared to an alternative one to the extent
that it leads to a greater compression, Figures 1 — 4 show
four data sets and the optimal cluster configurations derived
by clustering algorithms directly optimizing a compression
criterion (Chater & Pothos, manuscript). In the first three
cases the data points are partitioned in the way that seems to
reflect most faithfully the structure of the domains, while in
the fourth case the low information gain associated with the
final configuration suggests what is intuitively obvious,
namely that there is very little structure in this data set.
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Figure 1: Two clusters. Compression: 491 bits , out of a total
unprocessed information content of the domain of 990 bits.

Figure 2: One small cluster and a big one: Compression: 678
bits out of 1485 bits.

N

Figure 3: Three clusters. Compression: 383 bits out of 990.
Smaller compression to before indicates that a two cluster
domain is a more redundant one.

F_

e =

Figure 4: Compression: 181 bits out of 990.




Comparisons with human results

The above data sets were used to construct simple stimuli,
varying along two physical dimensions. In this section we
consider how the optimal clustering solutions suggested by
our framework compare with the way human participants
would classify these stimuli. Note that we assume that the
physical dimensions of the stimuli directly map onto the
dimensions of some internal representation of these items
(e.g., see Shepard, 1987; Shin & Nosofsky, 1992); this
would appear a reasonable approximation since the stimuli
were simple enough to preclude the possibility of
participants selectively encoding them over some subspace
of the relevant dimensions.

Materials

Stars were constructed so that their inner diameters
corresponded to the vertical dimension of the data sets in the
previous section, while their outer diameters corresponded
to the horizontal dimension. Thus, each data point specified
an inner and outer star and these were blended together, to
emphasize the impression of an individual entity, as shown
in Figure 5. The outer diameter on each star could very from
108mm to 198mm, while the inner diameter from 10mm to
100mm. All stars were printed on A4 sheets of paper in
black and ink.

Figure 5: An example of the stimuli constructed from the
data sets presented above.

Procedure

Participants received in succession (order randomized for
each person) sets of stars corresponding to the data sets in
Figures 1 — 4 and were simply asked to partition the stars in
groups. In the first condition, they were only told to divide
the items in a way that seemed "natural and intuitive" and
that there was no limit to how many groups they could use,
but that they should not use more than what would think is
necessary. In the second condition, we presented the
classification problem in a realistic context (stars were
meant to be mailed to customers) and provided extensive
instructions (and visual aids) that made the particular aspects

851

of performance we were interested in as obvious as possible.
This procedure has been motivated from the finding that
quite often a pragmatic context in a reasoning problem
improves performance (Cheng & Holyoak, 1985).

We tested 28 individuals in each conditions, in a between-
subjects design. The experiment lasted for approximately 10
minutes.

Results

We were interested in identifying information-theoretic
parameters that would be predictive of participants’
classification results. The general hypothesis is that basic-
level categorization processes aim, to a certain extent, to
represent a domain with as little redundancy as possible.
Therefore, insofar that there is structure in a domain,
classification would aim to flesh out this structure as much
as possible, and, alternatively, how readily structure is
perceived in a domain should be a function of the degree to
which this domain can be compressed.

We first tested the hypothesis that some particular cluster
structure was preferred, against the null hypothesis that they
were all equally likely. We therefore calculated for each data
set the number of different solutions participants produced,
to derive an expected chance frequency for each solution
through the ratio (total number of solutions) / (number of
distinct solutions). Note that this is an extremely
conservative measure of chance frequencies as the number
of unique solutions produced was much less than the total
possible number of solutions.

A single sample chi-square test was then used to examine
the deviation of the frequency of any one given solution
from what would be expected by chance. In condition |
(simple instructions), in data sets 1, and 2 the partitions that
were significantly more frequent than chance were the best
compression ones (for the two data sets respectively: );2 (1)
= 28.3, 127.1; in all cases p<.001). In condition 2, that was
the case for data sets 1, 2, and 3 (all p-values less than .01).
There seemed to be no preference for any particular
classification for the fourth data set in both cases. The
frequencies with which the best compression solutions were
produced for each pattern is shown in Figure 6.
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Figure 6: Number of times the “best compression™ solution
was found in condition 1 (neutral instructions) and condition
2 (extensive instructions).

We then looked at the extent to which the total
compression possible with a data set was in any way
predictive of the difficulty involved in partitioning the data
set into different groups. We reasoned that data sets which
were associated with a high possible compression should be
easier to partition, which would lead to less between
participant variability. Figure 7 shows the number of
different solutions that were produced with frequencies
greater than one’ for the four data sets. in each condition.
With the simple instructions, for the first two data sets, only
three solutions were produced more often than once, while
with the other data sets, participants would be a lot less
likely to agree on the optimal way to partition the domains.
With the extensive instructions these results were replicated,
and also little variability was observed with the third data set
as well.

~
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Figure 7: Variability in participants’ solutions for the
conditions with neutral and extensive instructions.

? Looking simply at how many different solutions were
produced with each data set is not very useful, since there is
considerable noise; this is to be expected with small
samples considering the unconstrained nature of the task.
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Thus, both our main expectations were confirmed:
Participants classified the items in each of the data set in
way so that the best compression classifications were indeed
more likely to be produced. Also, the extent to which a
pattern could be compressed was a measure of how
“difficult” the classification problem was, since, in general,
there was more (between-subject) solution variability in the
cases of lower (possible) maximum compression.
Instructions also  helped  participants  “solve”  the
classification problem in data set 3, as is manifest both by a
decrease variability in unique solutions produced, and an
associated increase in the number of times the best
compression solution was identified. Even with the simple
instructions, however, in data set 3, participants’ responscs
reflect some selective bias to the best compression solution*,

Conclusions and future directions

We have presented a model of basic-level categorization
(Rosch and Mervis, 1975) based on the MDL principle.
Although we have not specified the algorithmic details in
this work (see Chater and Pothos, manuscript), the model
will partition a set of items in such a way so that the
(information-theoretic) description of the similarity structure
of these items will be maximally compressed.

The main predictions of our model were that people
classifying meaningless items would generally prefer the
“best compression” classifications and also that the
difficulty of a classification situation would depend on how
much compression is (theoretically) possible in each case.
These predictions were generally confirmed in two
experiments, where the variable manipulated was
thoroughness of instructions. In the case of extensive
instructions, performance was improved in one of the data
sets.

The major confounding of the present work is that the
representation of the items used was based on an
experimenter-defined description of the items. We argued
that with simple, meaningless stimuli this is not a problem;
nevertheless, there is always the possibility of different
individuals encoding the similarity structure in different
ways. Thus, in additional work we aim to directly apply our
framework on representations of the items derived directly
from confusability experiments (Shepard, 1987).

Another aim is to extent the present framework to describe
hierarchical category structures, where the constraints of low
level categories would be preserved if they offer an
information-theoretic advantage. This would have the
advantage of enabling us to describe human categorization

4 Rand similarities (Rand, 1971; Milligan & Cooper, 1986)
of all solutions produced, to the best compression solution
and the most popular solution, were compared and it was
found that a given solution was more likely to be more
similar to the best compression one than to the most popular
one.



more generally, without restricting ourselves to basic
categories only.
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