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Digital mammography and digital breast tomosynthesis 
(DBT) are cornerstones of breast imaging, especially 

for breast cancer screening. Randomized clinical trials, 
systematic reviews, and observational studies have dem-
onstrated that screening mammography reduces breast 
cancer–related mortality by 20%–50% (1–3). Based on 
this evidence, mammography has become widely imple-
mented for breast cancer screening (4). Although screen-
ing with mammography is proven beneficial, it does 
not detect all cancers. False-negative screening studies, 

in which cancers are diagnosed symptomatically or are 
detected by another modality between two screening 
rounds, represent 20%–33% of cancer cases (5,6), and 
lack of perception of an abnormality was reported as 
the most common cause of missed breast cancers (7). In  
addition, many well-trained dedicated radiologists are re-
quired to sustain the screening programs and qualified 
resources are limited, especially in the double-reading set-
tings that are common in many European countries (8,9). 
There is an inevitable need for assistance in screening 

Background:  There is considerable interest in the potential use of artificial intelligence (AI) systems in mammographic screening. 
However, it is essential to critically evaluate the performance of AI before it can become a modality used for independent  
mammographic interpretation.

Purpose:  To evaluate the reported standalone performances of AI for interpretation of digital mammography and digital breast  
tomosynthesis (DBT).

Materials and Methods:  A systematic search was conducted in PubMed, Google Scholar, Embase (Ovid), and Web of Science databases 
for studies published from January 2017 to June 2022. Sensitivity, specificity, and area under the receiver operating characteristic 
curve (AUC) values were reviewed. Study quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 and 
Comparative (QUADAS-2 and QUADAS-C, respectively). A random effects meta-analysis and meta-regression analysis were per-
formed for overall studies and for different study types (reader studies vs historic cohort studies) and imaging techniques (digital mam-
mography vs DBT).

Results:  In total, 16 studies that include 1 108 328 examinations in 497 091 women were analyzed (six reader studies, seven historic  
cohort studies on digital mammography, and four studies on DBT). Pooled AUCs were significantly higher for standalone AI than  
radiologists in the six reader studies on digital mammography (0.87 vs 0.81, P = .002), but not for historic cohort studies (0.89 vs 
0.96, P = .152). Four studies on DBT showed significantly higher AUCs in AI compared with radiologists (0.90 vs 0.79, P < .001). 
Higher sensitivity and lower specificity were seen for standalone AI compared with radiologists.

Conclusion:  Standalone AI for screening digital mammography performed as well as or better than radiologists. Compared with digital 
mammography, there is an insufficient number of studies to assess the performance of AI systems in the interpretation of DBT screening 
examinations.
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Materials and Methods
This systematic review and meta-analysis is reported according to 
the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses, or PRISMA, Diagnostic Test Accuracy guidance (25).

Literature Search
An online search in PubMed, Google Scholar (first 1000 hits), 
Embase (Ovid), and Web of Science for studies that were either 
in final publication or in the process of electronic publication 
from January 2017 to June 2022 was conducted using the fol-
lowing query: “artificial intelligence AND (mammography OR 
tomosynthesis OR DBT) AND detection.” This relatively short 
time span was chosen because the first studies evaluating deep 
learning–based AI for mammography were published in 2017. 
References of selected publications were analyzed for additional 
relevant papers.

Eligibility Criteria
Studies were eligible for inclusion if they reported standalone 
performance of an AI system applied to either digital mam-
mography or DBT to detect breast cancer and also reported in-
dependent reads by radiologists. All study designs were eligible.  
Exclusion criteria were as follows: studies using AI for triage 
only, studies only including specific populations or lesion types, 
studies only reporting a comparison of AI algorithms, and 
studies aimed at risk prediction rather than cancer detection.

All retrieved entries were evaluated based on the article title 
and abstract, first separately by two authors (J.H.Y., R.M.) and 
then in consensus. A third author (L.M.) acted as the arbitrator 
in case of disagreement.

Data Extraction
Appendix S1 contains a comprehensive list of items for data extrac-
tion. Data were extracted using a predefined data extraction sheath 
agreed upon by the authors before study selection. Items were 
grouped as follows: general study characteristics; characteristics of 
the screening program from which cases were obtained; selection 
of the study cohort; types of images included; reference standards; 
characteristics of screening radiologists; outcome measures such as 
the area under the receiver operating characteristic curve (AUC), 
sensitivity, and specificity of human reading; characteristics of the 
AI system used; and outcome measures of standalone AI. When 
possible, performance metrics of AI and radiologists that were not 
provided were calculated from the available study data.

The task of data extraction was divided among all authors. 
To facilitate extraction, authors were assigned their own papers 
whenever possible. After data extraction, authors were assigned 
a further set of papers to control the extracted data and, for 
these analyses, the controlling author was not an author of the 
paper. Disagreements and unclarity were resolved by consen-
sus. In case of persistent unclarity, one of three authors (J.H.Y., 
R.M.M., L.M.) served as arbitrator.

Assessment of Study Quality
Study quality was assessed using Quality Assessment of Diag-
nostic Accuracy Studies 2 (QUADAS-2) (26) and QUADAS 

interpretations to reduce interobserver variability, while also 
managing workforce limitations (10,11).

Advances in technology and computer programming en-
abling automated analysis of medical images may address these 
issues. Using computer-aided detection for mammographic 
interpretation, with promising results of increased cancer 
detection rates (12,13), gained attention in the early 1990s 
(12). However, this positive effect was not maintained after 
widespread clinical implementation in the United States (14), 
mostly due to poor specificity and an increase in false-positive 
interpretations (15). Further advances in technology have led 
to a new generation of artificial intelligence (AI) algorithms 
based on convolutional neural networks and deep learning, 
which easily surpass the classic feature-based approaches when 
applied to digital mammograms (16,17). In recent years, nu-
merous mammographic AI systems have been developed and 
validated and are currently commercially available (18–20). 
With ongoing advances in AI technology and the increasing 
need for workflow improvement in breast imaging, such AI 
systems are rapidly being implemented in the clinical setting. 
Early studies showed promising results in simulating poten-
tial roles of AI to support radiologists in practice (19,21–24). 
However, AI can only fulfill the goals of improving screening 
outcomes and/or workload reductions when the independent 
performance is sufficiently high. Therefore, before we can con-
sider the implementation of AI as a standalone modality for 
mammographic interpretation, the current systems must be 
critically evaluated.

Thus, a systematic review and meta-analysis evaluating the 
standalone performances of AI for interpretation of digital 
mammography and DBT was conducted, setting the stage for 
if—and if so, how—AI should be clinically implemented.

Abbreviations
AI = artificial intelligence, AUC = area under the receiver operating 
characteristic curve, CLAIM = Checklist for Artificial Intelligence for 
Medical Imaging, DBT = digital breast tomosynthesis, QUADAS-C 
= Quality Assessment of Diagnostic Accuracy Studies Comparative, 
QUADAS-2 = QUADAS 2, SE = standard error

Summary
Standalone artificial intelligence (AI) for screening digital mam-
mography performed as well as or better than individual breast 
radiologists or average reader outcomes; there was insufficient 
comparative evidence on AI for interpretation of digital breast 
tomosynthesis.

Key Results
■	 Pooled areas under the receiver operating characteristic curve 

(AUCs) were significantly higher for standalone artificial intelligence 
(AI) than radiologists in the six reader studies on digital mammog-
raphy (AUC difference, 0.05; 95% CI: 0.2, 0.8; P = .002), but not 
for historic cohort studies (AUC difference, 0.06; 95% CI: 0, 
0.14; P = .152).

■	 Four studies on digital breast tomosynthesis showed significantly 
higher AUCs in AI versus radiologists (AUC difference, 0.11; 95% 
CI: 0.06, 0.16; P < .001).

■	 Higher sensitivity and lower specificity were seen for standalone AI 
compared with radiologists, regardless of study type or modality.
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Comparative (QUADAS-C) (27) (Table S1). Signaling ques-
tions for QUADAS-2 and QUADAS-C were refined for AI 
studies. Specifically, as the current study aimed to determine 
whether standalone AI performance is as good as that of ra-
diologists, study characteristics in favor of AI were consid-
ered to be biased and those in favor of radiologists were not. 
Each paper was scored by one of four authors (J.H.Y., F.S., 
R.M.M., L.M.) and controlled by another one of those au-
thors. In cases of discordance, consensus results were used 
after discussion among the four authors.

For assessing reporting quality, completeness of the Check-
list for Artificial Intelligence for Medical Imaging (CLAIM) 
(28) was evaluated by the same authors who performed the 
data extraction for each study. Reported items were scored by 
the extractors and checked by the controllers, with discus-
sion in cases of discordance. Overall, reporting scores for the 
total 42 CLAIM items and eight key items were summed for 
each study. Underreported areas were flagged, analyzed, and 
documented.

Statistical Analysis
Data were analyzed by one of the authors (P.A.T.B.). A 2 × 2 
contingency tables were created by calculating true-positive, 
false-positive, true-negative, and false-negative findings from the 
reported data, sensitivity, and specificity provided in the studies.  
I2 was calculated to assess the heterogeneity among studies. Values 
greater than 50% were considered at risk for substantial variabil-
ity. Pooled estimates with 95% CIs for the performance metrics 
were calculated for both radiologists and AI using random-effects 
models. Forest plots were generated to display the performances 
of studies as a whole and according to study type subgroup. Sum-
mary receiver operating characteristic curves for performances of 
radiologists and AI were constructed using random effects mod-
els because bivariate modeling of joint sensitivity and specificity 
lead numerical overflow during calculation for the overall data 
set and certain subsets. Multivariable meta-regression analysis 
was performed by comparing the performance measures of sub-
group items according to the following features: study type (ie, 
reader studies, defined as studies in which radiologists interpreted 

Figure 1:  Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram shows study inclusion and exclusion. One 
of the 16 included studies had data for both interpretation of digital mammography in a historic cohort and interpretation of digital breast tomosynthesis 
(DBT). AI = artificial intelligence.
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mammograms for the study, and historic reads, defined as stud-
ies using retrospective interpretation [either single reader or con-
sensus] in clinical practice), definitions for negative examinations, 
commercially available versus in-house software, the role of the 
vendor in the study design, and the threshold used for interpreta-
tion in the study. Publication bias was assessed separately for ra-
diologists and AI by using the Deeks funnel plot asymmetry test.

Results

Study Selection and Risk of Bias
The PRISMA flow diagram for this meta-analysis is shown 
in Figure 1. Of 37 studies distributed among the authors for 
full-text review, nine were excluded after full-text analysis. 
In total, 28 studies were used for data extraction. During 

Table 1: Summary of Characteristics of the 16 Studies Using AI for Mammography

Study and  
Year

Study  
Type* Modality

Reference  
Standard

Population 
(% of  
Cancers)

No. of 
Readers

AI Algorithm 
(Version)

Vendor 
Involved 
in Study 
Design?

AI Threshold for 
Interpretation

Becker et al  
(33), 2017

R, reader DM Cancer: biopsy
Benign: negative  

>2 y FU

251 (7.2%) 3 No information No NS

Conant et al 
(34), 2019

R, reader DBT Cancer: biopsy
Benign: biopsy or  

negative >320 d FU

260 (25%) 24 PowerLook Tomo 
(2.0)

Yes NS

McKinney et al  
(22), 2020

R, historic DM Cancer: biopsy
Benign: negative  

>3 y FU

UK: 25 856 
(1.6%) 
U.S.: 3097 
(22.2%)

6 In-house algorithm Yes Set at threshold 
defined in 
study

Salim et al 
(10), 2020

R, historic DM Cancer: biopsy
Benign: negative  

>2 y FU

8805  
(8.39%)

2 Lunit INSIGHT for 
MMG (1.1.4.3); 
anonymous 
commercial (NR)

No Set at specificity 
of radiologist

Sasaki et al 
(35), 2020

R, reader DM Cancer: biopsy
Benign: biopsy or  

negative >1 y FU

310 (22%) 3† Transpara (1.3.0) No Set at threshold 
defined in 
study

Pinto et al 
(36), 2021

R, reader DBT Cancer: biopsy
Benign: biopsy or  

negative based on  
ground truth of  
previous trial

190 (38.9%) 14 Transpara (1.6.0) No Set at threshold 
defined in 
study

Shen et al 
(37), 2019

R, reader DM Cancer: biopsy
Benign: biopsy  

or negative at  
next screening

14 148 
(0.21%)

14 In-house algorithm; 
globally-aware 
multiple instance 
classifier (1)

No Set at sensitivity 
of radiologist

Dang et al 
(38), 2022

R, reader DM Cancer: biopsy
Benign: negative  

>2 y FU

314 (NR) 12 MammoScreen 
(1.2)

No NS

Kim et al 
(19), 2020

R, reader DM Cancer: biopsy
Benign: biopsy or  

negative >2 y FU

320 (50%) 14 Lunit INSIGHT 
MMG (NR)

Yes Vendor 
suggested

Larsen et al 
(39), 2022

R, historic DM Cancer: biopsy
Benign: NS

47 877  
(1.6%)

24 Transpara (1.7.0) No Set at threshold 
defined in 
study

Lauritzen et al 
(40), 2022

R, historic DM Cancer: biopsy
Benign: NS

114 421 
(0.7%)

7 Transpara  
(1.7.0)

No Set at threshold 
defined in 
study

Lee et al 
(41), 2022

R, reader DM Cancer: biopsy
Benign: negative  

>2 y FU

200 (50%) 10 Lunit INSIGHT for 
MMG (1.1.1.0)

Yes Vendor 
suggested

Leibig et al 
(42), 2022

R, historic DM Cancer: biopsy
Benign: biopsy or  

negative >2 y FU

External test 
set: 82 851 
(3.4%)

NS Vara (NR) Yes Set at specificity 
of radiologist

Table 1 (continues)
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data extraction and quality assessment, 12 additional studies 
were excluded due to incomplete data. In total, 16 studies 
comprising 1 108 328 examinations in 497 091 women were 
included in this review. Appendix S2 provides a list of the 
studies included for analysis, and Table 1 summarizes the 
characteristics of the studies; all used retrospective data sets. 
Of the 16 studies, nine (56.2%; six on digital mammography 
and three on DBT) were designed as reader studies, while 
the remaining seven (43.8%) used historic reads of screen-
ing digital mammography. One study (29) used the Córdoba 
Tomosynthesis Screening Trial, where data for digital mam-
mography, DBT, and standalone AI were extracted. Four 
(25%) of the 16 studies were on DBT, including three reader 
studies and one using historic reads (29). For the definition 
of negative examinations, eight (50%) of the 16 studies used 
a negative screening after greater than or equal to 2 years of 
follow-up, another five (31.2%) used a benign histopatho-
logic diagnosis and negative screening at the next screening, 
and three (18.8%) did not give a precise definition. Of the 16 
studies, 12 (75%) used commercially available AI algorithms 
and seven (43.8%) had vendors involved in the study design. 
Three (18.8%) of the 16 studies used predefined thresholds 
provided by the vendor, while five (31.3%) used different 
thresholds defined specifically for the study.

The QUADAS-2 and QUADAS-C assessment results are 
displayed in Figure 2. A high risk of bias was seen for patient 
selection; seven (43.8%) of the 16 studies with selected sam-
ples or cancer-enriched cohorts were assessed as having high 
bias. High concerns for applicability were seen for patient se-
lection (three of 16 studies, 18.8%) and the reference standard 
(three of 16 studies, 18.8%).

Reporting quality in the 16 articles using CLAIM ranged 
from 0 to 42 (Fig S1). The mean CLAIM score was 25.1 
(range, 14–39) for 42 items (Fig S1). Fifteen (35.7%) of the 
42 items were underreported. Three of the eight key items (de-
tailed description of models, details of training approach, and 
method of selecting the final model) were underreported, with 
proportions of reporting studies ranging 25%–31%.

Outcome Measures of Standalone AI and Radiologists
Significant heterogeneity was seen in sensitivity and specific-
ity for both radiologists (I2 = 95.15% and 99.97%, respec-
tively; all P < .001) and AI (I2 = 97.79% and 99.99%, respec-
tively; all P < .001) (Fig S2). The heterogeneity was lower in 
the reader studies than in the historic cohort studies. Pooled 
estimates for sensitivity were 73.6% (95% CI: 68.7, 78.0) for 
radiologists and 80.6% (95% CI: 74.3, 85.7) for AI, with a 
difference of 7% (standard error [SE], 3.8%; P = .031) (Table 
2). Pooled specificity was 89.6% (95% CI: 82.7, 93.9) and 
85.7% (95% CI: 74.1, 92.6) for radiologists and AI, respec-
tively. The difference in specificity (3.9%; SE, 5.5%) was not 
statistically significant (P = .221). Forest plots displaying 
the pooled estimates of sensitivity and specificity for human 
readers and AI for all 16 studies are shown in Figure S2. A 
minor publication bias was observed only for reporting of 
human reader results (P = .01, Fig S3), but not for AI (Fig 
S4). When analyzed according to study type (ie, reader study 
vs historic reads for digital mammography), the forest plots 
showed higher sensitivity and lower specificity for standalone 
AI compared with that of radiologists (Fig 3).

Within the six reader studies using digital mammography, 
pooled AUC estimates were 0.81 (SE, 0.014) for radiologists 

Study and  
Year

Study  
Type* Modality

Reference  
Standard

Population 
(% of  
Cancers)

No. of 
Readers

AI Algorithm 
(Version)

Vendor 
Involved 
in Study 
Design?

AI Threshold for 
Interpretation

Romero-
Martín et al 
(29), 2022

R, historic DM,  
DBT

Cancer: biopsy
Benign: no cancer  

diagnosis <12 mo,  
negative for 11–36  
mo FU

15 999  
(0.7%)

5 Transpara (1.7.0) No NS

Sharma et al 
(43), 2022

R, historic DM Cancer: biopsy
Benign: no proof of  

malignancy during  
<1035 d after  
negative screening

177 882 
(1%)

NS Mia (2.0.1) Yes Vendor 
suggested

Shoshan et al 
(44), 2022

R, reader DBT Cancer: biopsy
Benign: NS

4310  
(10.6%)

5 In-house algorithm; 
IBM-developed  
AI model (1)

Yes Set at maximum 
sensitivity of 
radiologist

Note.—AI = artificial intelligence, DBT = digital breast tomosynthesis, DM = digital mammography, FU = follow-up, NR = not reported, 
NS = not specified, R = retrospective, UK = United Kingdom.
* Reader studies are defined as studies in which radiologists interpreted mammograms for the study, and historic reads are defined as studies 
using retrospective interpretation in clinical practice.
† One radiologist, two technologists.

Table 1 (continued): Summary of Characteristics of the 16 Studies Using AI for Mammography
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Table 2: Pooled Estimates of Performance Measures for Radiologists and Standalone AI for All Included Studies and 
Study Type Subgroups

Variable

Sensitivity Specificity AUC*

Radiologists AI Radiologists AI Radiologists AI
All studies (n = 16) 73.6 (68.7, 78.0) 80.6 (74.3, 85.7) 89.6 (82.7, 93.9) 85.7 (74.1, 92.6) … …
  Reader studies (n = 6) 72.4 (64.1, 79.4) 80.8 (68.0, 89.3) 81.6 (75.7, 86.4) 76.9 (55.2, 90.0) 0.81 [0.014] 0.87 [0.010]
  Studies using historic  

  reads (n = 7)†
72.6 (63.7, 80.1) 75.8 (70.2, 80.6) 96.4 (94.9, 97.4) 95.6 (93.7, 96.9) 0.96 [0.022] 0.89 [0.037]

  Digital breast  
  tomosynthesis studies  
  (n = 4)†

77.9 (73.1, 82.0) 88.8 (80.2, 94.0) 81.6 (37.8, 97.0) 63.1 (22.1, 91.1) 0.79 [0.020] 0.90 [0.011]

Note.—Except where indicated, data are percentages, with 95% CIs in parentheses. Reader studies are defined as studies in which 
radiologists interpreted mammograms for the study, and historic reads are defined as studies using retrospective interpretation in clinical 
practice. AI = artificial intelligence, AUC = area under the receiver operating characteristic curve.
* Data in brackets are standard errors.
† One study included data for historic reads of digital mammography, digital breast tomosynthesis, and standalone AI that were individually 
extracted.

Figure 2:  Horizontal bar graphs show the assessment results for (A, B) risk of 
bias and (C, D) concerns for application in (E) Quality Assessment of Diagnostic  
Accuracy Studies 2 (QUADAS-2) and QUADAS Comparative (QUADAS-C) ac-
cording to the percentages of studies (n = 16) with low, unclear, and high levels of 
risk or applicability concerns.
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and 0.87 (SE, 0.010) for AI (Fig 4). In the seven studies using 
historic reads, pooled AUC estimates were 0.96 (SE, 0.022) for 
radiologists and 0.89 (SE, 0.037) for AI. In the four reader stud-
ies using DBT, these metrics were 0.79 (SE, 0.020) and 0.90 
(SE, 0.011) for radiologists and AI, respectively. Differences in 
pooled AUC estimates did not show statistical significance be-
tween radiologists and AI for historic reads (AUC difference, 
0.06; 95% CI: 0, 0.14; P = .152) but were significantly higher 
for AI in reader studies (AUC difference, 0.05; 95% CI: 0.2, 0.8; 
P = .002) and in DBT studies (AUC difference, 0.11; 95% CI: 
0.06, 0.16; P < .001).

Meta-regression analysis results investigating the effect 
of potential confounders on the performances of radiolo-
gists and standalone AI are summarized in Tables 3, S2, and 
S3. In brief, the study type (reader studies vs historic reads) 
had a significant effect on the diagnostic odds ratios of both 
human and AI reading results due to a highly significant 
effect on specificity (P ≤ .001 and P ≤ .002, respectively). 
Only minor and inconsistent differences in diagnostic per-
formance metrics were observed for the standard of refer-
ence for negative findings and whether the AI algorithm was 

commercially available. The threshold of the AI system had 
a significant but variable effect on diagnostic performance, 
depending on the type of threshold used (Table 3). Stud-
ies where the vendor was involved in study design showed 
a lower overall diagnostic performance of radiologists in 
terms of the diagnostic odds ratio and specificity, while only 
specificity was significantly affected by this covariate for AI 
(Tables 3, S2, S3).

Discussion
Our meta-analysis of studies on the standalone performances 
of artificial intelligence (AI) for interpretation of digital mam-
mography and digital breast tomosynthesis (DBT) shows that 
current algorithms perform on par with, if not better than, the 
average performance of breast radiologists. Pooled areas under 
the receiver operating characteristic curve (AUCs) for stand-
alone AI were statistically superior to those of radiologists in 
digital mammography reader studies (AUC difference, 0.05; 
95% CI: 0.2, 0.8; P = .002) and DBT studies (AUC difference, 
0.11; 95% CI: 0.06, 0.16; P < .001). In the seven studies us-
ing historic reads, the AUC difference between radiologists and 

Figure 3:  Forest plots show pooled estimates for the (A) six reader studies, (B) seven studies using historic reads, and (C) four digital breast tomosynthesis  
(DBT) studies. Reader studies are defined as studies in which radiologists interpreted mammograms for the study, and historic reads are defined as studies using retrospective 
interpretation in clinical practice. AI = artificial intelligence, FN = false negative, FP = false positive, TN = true negative, TP = true positive.
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standalone AI was 0.06 (95% CI: 0, 0.14; P = .152). Although 
the pooled AUC was significantly higher in AI for DBT stud-
ies, there were only four studies evaluating the performance 
of DBT, and CIs around the estimates are wide. More studies 
are needed to ascertain the performance of standalone AI for 
interpretation of DBT.

The combination of sensitivity (alternatively, cancer detec-
tion rate) and specificity (alternatively, recall rate) defines the 
operating point for any given reader—AI or radiologist. Radi-
ologists’ operating points in screening settings are usually driven 
by what is locally regarded as an acceptable recall rate. This may 
vary from 2% to 3% in northern Europe to up to 12% in the 
United States, corresponding to a specificity range of approxi-
mately 90%–98%. AI thresholds are set differently within the 
included studies; in general, thresholds are set at a higher sensi-
tivity than we would expect from human readers (81% vs 74%) 
and a somewhat lower specificity (86% vs 90%) (Table 2). Ac-
cording to the meta-regression analysis results, this seems to ex-
plain some of the observed variability between studies (Tables 3, 
S2, S3). Setting a threshold for AI is an important choice when 
implementing AI in practice, and the optimum may be differ-
ent for different use cases. For instance, an AI threshold at high 
sensitivity might be used when AI is used for triaging, when all 
recalls are still performed by humans, whereas a threshold for 
higher specificity may be essential when AI is used as an addi-
tional (or independent) reader.

Our meta-analysis included six reader studies on enriched 
populations. Reader studies have the advantage that readers can 
be asked to provide a level-of-suspicion score on a continuous 
scale, allowing for the construction of receiver operating char-
acteristic curves that can be directly compared with the AUC 
of AI systems. However, it is evident that the performance of 
radiologists in these studies does not truly represent real-world 
interpretation. Gur et al (30) showed that radiologists reading 
mammograms in a laboratory setting not only perform worse, 
but also demonstrate far more variability than in clinical prac-
tice, which is underlined by the observed lower specificity in the 
reader studies compared with the historical cohort studies in our 
meta-analysis. Still, although the AUC was lower (0.89 vs 0.96), 
standalone AI in historic cohort studies did not show significant 
differences to radiologists, indicating that current AI systems are 
on par with radiologists.

There are two prior systematic reviews on standalone AI per-
formances. Freeman et al (31) included 12 retrospective stud-
ies with 131 822 women screened. The authors found 94% (34 
of 36) of AI systems were less accurate than the original radi-
ologist, and all were less accurate than the original consensus 
of two radiologists. Somewhat different results were seen in the 
meta-analysis performed by Hickman et al (32). Among the five 
retrospective studies on breast cancer detection that included 
185 252 cases, standalone performances of machine learning sys-
tems (AUC, 0.89) exceeded human reader performances (AUC, 

Figure 4:  Summary receiver operating characteristic curves show performances of radiologists (top) and artificial intelligence (bottom) according to (A, B) reader stud-
ies, (C, D) historic reads, and (E, F) digital breast tomosynthesis (DBT) studies. Lines represent summary receiver operating characteristic curves and circles represent individual 
study results. Reader studies are defined as studies in which radiologists interpreted mammograms for the study, and historic reads are defined as studies using retrospective 
interpretation in clinical practice.
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0.85), which is in line with our results. Both previous studies 
concluded that rigorous and independent external prospective 
testing of AI systems is required to estimate the true effect in 
clinical practice.

Our study had several limitations. First, all included stud-
ies are noninterventional (ie, AI assessments did not affect the 
actual diagnostic workflow) and, therefore, it is unclear whether 
the assumed cancer detection would have led to actual cancer 
detection in clinical practice. Second, we did not have access to 
individual patient data from the included studies and, therefore, 
only the aggregated data were used for analysis. Third, we ana-
lyzed AI systems from multiple vendors and have reported out-
comes as an average of AI performance across vendors and not of 
a specific AI system per se. Lastly, whether different AI systems 
affect performances could not be evaluated in a meta-regression 
analysis with the available studies.

In conclusion, when used for interpretation of screening 
mammograms, standalone artificial intelligence (AI) for digital 
mammography performed as well as or better than individual 
breast radiologists or average reader outcomes. There is still an 
insufficient number of studies to assess the standalone perfor-
mance of AI systems for interpretation of digital breast tomosyn-
thesis. Future efforts should focus on different implementation 

strategies and continuous quality control to ensure that the ret-
rospective results lead to both improved cancer detection and 
optimization of screening programs in a prospective setting.
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Table 3: Meta-Regression Analysis Comparing the Diagnostic Odds Ratio for Radiologists and Standalone AI according to 
Subgroup Feature

Feature

Radiologists AI

β SE P Value β SE P Value
Study type
  Reader study … … … … … …
  Historic reads 0.81 (0.35, 1.28) 0.24 <.001 1.00 (0.37, 1.62) 0.32 .002
Definition for negative examinations
  Histopathologic finding or ≥2 years FU … … … … … …
  Histopathologic finding or ≥1 years FU −0.60 (−0.90, −0.31) 0.15 <.001 −0.41 (−1.12, 0.31) 0.37 .27
  ≥2 years FU −1.29 (−2.19, −0.37) 0.46 .01 −0.02 (−1.09, 1.06) 0.55 .98
  ≥1 year FU −0.38 (-0.95, 0.19) 0.29 .19 −0.78 (−1.08, −0.47) 0.16 <.001
  Not specified −2.56 (−3.49, 1.63) 0.474 <.001 −1.83 (−2.93, −0.73) 0.56 .001
AI algorithm
  Commercially available … … … … … …
  In-house software 0.77 (−0.38, 1.92) 0.59 .19 0.39 (−1.07, 1.85) 0.74 .60
  Not specified 1.58 (0.37, 2.80) 0.62 .01 0.17 (−1.10, 1.43) 0.64 .80
Role of vendor
  Involved in study design … … … … … …
  Not involved in study design 1.63 (0.75, 2.51) 0.45 <.001 0.96 (−0.09, 2.02) 0.54 .07
AI threshold
  Vendor suggested … … … … … …
  Set at specificity of radiologist −0.25 (−0.53, 0.04) 0.14 .09 −0.33 (−0.62, −0.03) 0.15 .03
  Set at maximum sensitivity of radiologist  

  (rule out)
−0.76 (−1.74, 0.21) 0.50 .13 −1.16 (−2.32, 0.01) 0.60 .05

  Defined for the study −1.19 (−1.51, −0.86) 0.17 <.001 −0.73 (−1.08, −0.37) 0.18 <.001
  Not specified −1.74 (−2.69, −0.78) 0.49 <.001 −0.25 (−1.39, 0.86) 0.58 .65

Note.—Data in parentheses are 95% CIs. Reader studies are defined as studies in which radiologists interpreted mammograms for the study, 
and historic reads are defined as studies using retrospective interpretation in clinical practice. P values correspond to comparison to the 
reference value and P < .05 is considered to indicate statistical significance. AI = artificial intelligence, FU = follow-up, SE = standard error.
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