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ABSTRACT OF THE DISSERTATION

Design Automation and Optimization for Memory-Bound Application Accelerators

by

Yuze Chi

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2021

Professor Jason Cong, Chair

As we witness the breakdown of Dennard scaling, we can no longer get faster computers by

shrinking transistors without increasing power density. Yet, the amount of data to be processed

has never stopped growing. The limited power budget builds a “power wall” between the ever-

increasing demand for computation and the available computer hardware, which forces computer

scientists to seek not only performant, but also power e�cient computation solutions, especially

in data centers. Moreover, the wide performance gap between the computation units and the

memory builds a “memory wall” and limits performance from another dimension.

In the past decade, �eld-programmable gate arrays (FPGAs) have been rapidly adopted in

data centers, thanks to their low power consumption and the reprogrammability that assemble

highly power-e�cient accelerators for memory-bound applications. Meanwhile, C-based high-

level synthesis (HLS) has been growing as the FPGA acceleration market grows, bringing “hard-

to-program” FPGA accelerators to a broader community in many application domains. However,

to create e�cient customized accelerators, FPGA-related expertise is still required for the domain

experts when they write HLS C. To make it worse, even for experienced FPGA programmers, C-

based HLS is often less productive compared with higher-level software languages, especially
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when an application cannot be easily programmed using the compiler directives designed for

data-parallel programs.

This dissertation aims to address these two issues for domain-speci�c customizable accelera-

tors for memory-bound applications with both regular and irregular memory access patterns. For

memory-bound applications with regular memory accesses, we select stencil application as a rep-

resentative for their complex data dependency that is challenging to optimize. We present SODA

(Stencil with Optimized Data�ow Architecture) as a domain-speci�c compiler framework for

FPGA accelerators. We show that by adopting theoretical analysis, model-driven design-space ex-

ploration, and domain-speci�c languages, programmers without FPGA expertise can build highly

e�cient stencil accelerators that outperform multi-thread CPUs by up to 3.3× with the memory

bandwidth utilization improved by 1.65× on average. For memory-bound applications with ir-

regular memory accesses, we select graph applications as a representative for their widespread

presentation in various application domains. We �rst present TAPA (TAsk-PArallel) as a lan-

guage extension to HLS, showing that convenient programming interfaces, universal software

simulation, and hierarchical code generation can greatly improve productivity for task-parallel

programs and reduce programmers’ burden. We then extend our e�ort to support dynamically

scheduled memory accesses to cover more applications and further improve productivity. Finally,

we show with two case studies from real-world graph applications, i.e., single-source shortest

path for neural image reconstruction and graph convolutional neural network for learning on

graph structure, that customizable accelerators can achieve up to 4.9× speedup over state-of-the-

art FPGA accelerators and 2.6× speedup over state-of-the-art multi-thread CPU implementation.
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CHAPTER 1

Introduction

The demand for computing power has been ever-increasing in the past few decades. Yet, the

technology scaling [58] that drives Moore’s Law has been slowing down signi�cantly, and the

“power wall” created by heat dissipation has been limiting the growth of parallel computing. An-

other signi�cant limiting factor is the “memory wall” [169], which is created by the slower scal-

ing of memory performance than that of processors. Communication among computation units

and the memory system becomes the performance bottleneck in many applications domains. As

such, domain-speci�c customization has been adopted in more and more areas, for its highly cus-

tomizable microarchitecture and the high power e�ciency and memory utilization brought by

the customization. Field-programmable gate arrays (FPGA) have been playing a key role in the

rapid adoption of customizable accelerators in data centers [34,88,145] for their reprogrammabil-

ity. In the meantime, FPGA accelerator development productivity has been greatly improved by

the latest advances and adoption of C-based high-level synthesis (HLS) [37, 41, 76, 77], bringing

“hard-to-program” FPGA accelerators to a broader community.

However, creating e�cient accelerators is still non-trivial for programmers. The current C-

based HLS relies highly on the programmer-inserted compiler directives (“pragmas”) to achieve

good quality of result (QoR). Learning to use these compiler directives requires background

knowledge of the underlying microarchitecture, which takes a long time for the experts in each

application domain. Worse still, even for experienced FPGA programmers, C-based HLS is often

less productive compared with higher-level software languages, especially for memory-bound

applications that require design-space exploration and optimizations beyond what compiler di-
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rectives have to o�er. In this dissertation, we focus on memory-intensive applications with both

regular and irregular memory accesses, and address the design automation and optimization chal-

lenges.

1.1 Applications with Regular Memory Accesses

Even for applications bounded by very regular memory accesses, creating e�cient accelerators

can still be challenging. Take stencil computation [50] as an example. Stencil computation is

often intuitively de�ned as the type of computation that uses a sliding window of the input array

to compute the output array. Such computation patterns are widely used in many areas, including

image processing [9, 15] and solving partial di�erential equations [179]. Listing 1.1 shows a 2-

dimensional 5-point stencil kernel, which can be used for blurring images or solving the Jacobi

equation numerically [179]. Figure 1.1 shows the corresponding memory access pattern.

1 void Jacobi(float input[N][M], float output[N][M]) {

2 for (int j = 1; j < N - 1; ++j)

3 for (int i = 1; i < M - 1; ++i)

4 output[j][i] = (input[j-1][i] + input[j][i-1] + input[j][i] + input[j][i+1] +

5 input[j+1][i]) * 0.2f;

6 }

Listing 1.1: A 2-dimensional 5-point Jacobi kernel.

Although memory accesses in a stencil kernel are very regular (Figure 1.1) and can be stat-

ically determined at compilation time, it is non-trivial to optimize for performance, due to the

high communication/computation ratio [122] and the memory system that cannot keep up with

the computation units. Moreover, a stencil computation kernel can be composed of several stages

or performed iteratively, which further complicates data dependency and makes communication

optimizations harder to achieve. Researchers have been optimizing stencil kernels in the follow-

ing three aspects:
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Figure 1.1: Memory access pattern of the stencil kernel in Listing 1.1. Circles represent input data

elements. Arrows represent the traversal order of the loop, which also indicates the movement

of the sliding window (stencil window). The solid circles are being accessed by the current loop

iteration, which composes the current stencil window. The shaded circles have been accessed by

a previous iteration, and will be accessed in a future iteration as well.

∙ Parallelization. Stencil computation has a large degree of inherent parallelism, including

both spatial parallelism, i.e., parallelism among spatial elements within a stage or iteration,

and temporal parallelism, i.e., parallelism among multiple temporal stages or iterations.

However, the complex dependencies among elements in di�erent stages make it hard to

fully utilize the available parallelism [7, 85, 105, 125, 179].

∙ Communication reuse. The sliding window pattern of stencil kernels makes it possible

to reuse data and reduce memory communication. On instruction-based processors (CPU,

GPU), this translates into improving locality [2, 179] and reducing inter-core communica-

tion [168]. On accelerators (FPGA, ASIC) where data paths can be fully customized, Cong

et al. [35, 36] present a microarchitecture that uses the least-possible bu�er size for each
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Figure 1.2: For iterative stencil kernels, redundant computation increases linearly as the number

of iteration increases because the border (halo) increases in each iteration.

processing element (PE), achieving full communication reuse but without considering par-

allelization.

∙ Computation reuse. For stencil kernels that are composed of multiple stages or itera-

tions, full communication reuse for the whole kernel is often impossible due to limited

computational resources. Fortunately, almost all such stencil kernels perform commuta-

tive and associative reduction operations, thus making it possible to reuse some computa-

tion [15, 43, 55, 62, 63, 106]. As a motivating example, for a 17×17 kernel used in calcium

image stabilization [15], the number of multiplication operations can be dramatically re-

duced from 197 to only 30, while yielding the same throughput. However, that design was

done with extensive manual optimization. Our goal is to automate such optimization pro-

cess.

Ideally, a domain-speci�c stencil compiler should be able to optimize all the three aspects col-
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Figure 1.3: In the 5-point Jacobi kernel shown in Listing 1.1 and Figure 1.1, inputs from two di�er-

ent loop iterations overlap with each other, and the overlap part performs the same computation

in the two di�erent iterations. This demonstrates a computation reuse opportunity.

laboratively. However, there are three major challenges that have not been addressed thoroughly

in state of the art for stencil kernels. The �rst challenge is that existing accelerator designs are

suboptimal when multiple PEs are used for a single stage. Existing stencil accelerators [166,183]

replicate the on-chip bu�ers along with the PEs to enable concurrent accesses. With a bu�er

size proportional to the number of PEs, both the maximum achievable number of processing el-

ements (PEs) and the maximum achievable input tile size are suboptimal. Suboptimal number

of PEs will under-utilize the computation resources and therefore results in suboptimal perfor-

mance. Suboptimal input size causes performance loss due to the fact that the borders (halos) of

stencil kernels need to be retransmitted. The latter problem is especially severe for 3D or even

higher dimensional kernels, since their halos take larger portion of the input size [183]. When

temporal parallelism (multiple iterations) are implemented at the same time, this becomes even

worse since the halo size increases linearly as the number of iteration increases [183]. This is

illustrated in Figure 1.2.

The second challenge is that computation reuse is not thoroughly explored. Most stencil

compilers [43, 55, 62, 63, 106] are designed for instruction-based processors and do not explore

the complete design space for computation reuse, due to the fact that parallelization and com-

munication reuse have more impact on performance and computation reuse is often just a by-

product [2, 179]. However, for accelerators, computation reuse can be fully decoupled from par-

allelization and communication reuse via data path customization. An ideal stencil compiler for
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1 void Module1Func(hls::stream<float>& input_q, hls::stream<float>& output_q) {

2 ap_uint<9> ptr_delay_512 = 0; // M = 512

3 ap_uint<1> ptr_delay_1 = 0;

4 ap_uint<9> ptr_delay_511 = 0;

5 float input_delayed_512_buf[512]; // Communication reuse buffer

6 float input_delayed_513_buf[1];

7 float rc_delayed_511_buf[511];

8 for (;;) { // Termination condition left out for brevity

9 #pragma HLS pipeline II = 1

10 #pragma HLS dependence inter true variable = input_delayed_512_buf distance = 512

11 #pragma HLS dependence inter true variable = input_delayed_513_buf distance = 1

12 #pragma HLS dependence inter true variable = rc_delayed_511_buf distance = 511

13 if (!input_q.empty()) { // Required for flushing the pipeline

14 const float input = input_q.read();

15 const float input_delayed_512 = input_delayed_512_buf[ptr_delay_512];

16 const float input_delayed_513 = input_delayed_513_buf[ptr_delay_1];

17 const float rc_delayed_511 = rc_delayed_511_buf[ptr_delay_511];

18 const float rc = input_delayed_513 + input; // Reused computation

19 output_q.write((rc_delayed_511 + rc + input_delayed_512) * 0.2f);

20 input_delayed_512_buf[ptr_delay_512] = input;

21 input_delayed_513_buf[ptr_delay_1] = input_delayed_512;

22 rc_delayed_511_buf[ptr_delay_511] = rc;

23 ptr_delay_512 < 511 ? (++ptr_delay_512) : (ptr_delay_512 = 0);

24 ptr_delay_1 < 0 ? (++ptr_delay_1) : (ptr_delay_1 = 0);

25 ptr_delay_511 < 30 ? (++ptr_delay_511) : (ptr_delay_511 = 0);

26 } // if not empty

27 } // for

28 } // Module1Func

Listing 1.2: Optimized HLS code for the kernel in Listing 1.1 with communication reuse and

computation reuse but without parallelization. Code that handles o�-chip memory accesses and

program termination is left out for brevity. With parallelization, the lines of code will increase

further.

accelerators should be capable of �nding the optimal computation reuse if possible. Moreover,

since no stencil compiler uses an accelerator-oriented model to evaluate the computation-storage

trade-o�, it is hard to guide the design-space pruning and �nd the best solution.
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The third challenge that has not been thoroughly addressed is the lack of complete automa-

tion and systematic design-space exploration. Due to the di�culty of programming FPGAs, vast

design space, and high time-consumption of logic synthesis, having a fully automated design

�ow and analytical model-based design-space exploration is crucial. Many existing works are ei-

ther manually designed or template-based, which lacks the �exibility of designing various stencil

kernels agilely [166, 183]. Moreover, the complexity of the source code can quickly grow in-

tractable. Listing 1.2 shows the computation part of optimized HLS code for the 6-line kernel

code in Listing 1.1, which is already 4.7× longer that the original kernel with parallelization and

o�-chip memory optimizations being omitted. Although domain-speci�c languages (DSL) have

been developed to facilitate stencil accelerator design on FPGAs [82, 144, 147], there still lacks

a systematic approach to model the resource and performance, explore the design space, and

optimize for performance.

1.2 Applications with Irregular Memory Accesses

For applications that are bounded by irregular memory accesses, e.g., graph applications, we no

longer have the luxury to analyze and schedule memory accesses statically at compile/synthesis

time. Instead, the design and optimization heavily relies on task-level parallelism, where compu-

tation units run di�erent programs on di�erent data. On instruction-based processors, such ap-

plications are often bottlenecked by the communication among the heterogeneous computation

units and the memory system. The memory system designed for general homogeneous workload

is usually poorly utilized for task-parallel programs. In contrast, customizable accelerators are

advantageous because programmers can customize the data paths and schedule many accesses

in parallel to improve memory utilization. However, even for algorithms as simple as Dijkstra’s

algorithm [61], the current HLS tools are greatly limited for task-parallel programs due to the

following reasons:

∙ Poor programmability. Due to the lack of convenient application programming inter-
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Figure 1.4: A task-parallel accelerator design for Dijkstra’s algorithm [61], which is challenging

to implement using Vitis HLS alone.

faces (API), programmers are often forced to write more code than they have to. For ex-

ample, in Figure 1.4, multi-stage switch networks are used to route data among di�erent

partitions. Such a network switch needs to read packets conditionally based on their con-

tent and the availability of output ports. Without an API to read packets without consuming

them (a.k.a., “peek”) from the ports, programmers have to manually and carefully create a

bu�er and maintain a small state machine to keep track of incoming packets. This not only

elongates the development cycle, but also makes the code error-prone.

∙ Restricted software simulation. As the key to fast correctness veri�cation, software

simulation is not always available to task-parallel programs. For example, Vitis HLS does

not support debugging the accelerator shown in Figure 1.4 via software simulation due to

the bidirectional communication between the vertex memory and the priority queue, while

Intel OpenCL does not support more than 256 concurrent kernels [90] in software simula-

tion. Lack of fast software simulation forces programmers to resort to RTL simulation for

correctness veri�cation, signi�cantly elongating the development cycle.

∙ Slow code generation. We found that current HLS compilers view task-parallel code as a

monolithic design and processes each instance of the same task as if they are di�erent. For

designs that instantiate the same task multiple times (e.g., in a systolic array or di�erent

partitions in each component shown in Figure 1.4), this leads to repetitive compilation on
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each task and unnecessarily slows down code generation. One may argue that program-

mers can manually synthesize tasks separately and instantiate them in RTL, but doing so

requires debugging RTL code, which is time-consuming and error-prone. We think such

processes should be automated by the compiler.

Limited productivity for task-parallel programs signi�cantly elongates the development cy-

cles and undermines the bene�ts brought by HLS. One may argue that programmers should al-

ways go for data-parallel implementations when designing FPGA accelerators using HLS, but

data-parallelism may be inherently limited, for example, in applications involving graphs. More-

over, researches show that even for data-parallel applications like neural networks [38, 163] and

stencil computation [19, 20], task-parallel implementations show better scalability and higher

frequency than their data-parallel counterparts due to the localized communication pattern [40].

In fact, at least 6 papers [53, 93, 118, 151, 157, 173] among the 28 research papers published in

the ACM FPGA 2020 conference use task-parallel implementation with HLS, and another 3 pa-

pers [12,140,175] use RTL implementation that would have required task-parallel implementation

if written in HLS.

1.3 Summary

In this dissertation, we aim to address the design automation and optimization challenges for

memory-bound applications with both regular and irregular access patterns. For applications

with regular memory access patterns, we use stencil applications as a case study. We show that

with theoretical analysis, model-driven exploration, and high-level domain-speci�c languages,

the complexity for scheduling memory accesses can be completely hidden by the compiler, and

domain exports can program e�cient stencil accelerators without having to know about the de-

sign and optimization techniques. For applications with irregular memory access patterns, we

�rst present a highly-productive HLS language extension named TAPA to enable agile develop-

ment for mapping such applications to accelerators. TAPA can support irregular applications
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Figure 1.5: Quadrants of memory-intensive applications [73, 101, 109, 119].

by reordering and scheduling memory accesses statically at compile-time. For applications with

less compile-time knowledge, we further extend TAPA to support dynamically scheduling mem-

ory requests. We use real-world graph applications to demonstrate the high productivity and

decent quality of result of TAPA. Figure 1.5 visualizes the three quadrants of memory-intensive

applications. For applications with regular memory accesses, the regular access pattern generally

enables compile-time scheduling. Therefore, we leave out the fourth quadrant for the scope of

this dissertation.

The remainder of the dissertation is organized as follows. Chapter 2 introduces the back-

ground of the high-level synthesis (HLS) technology, real-world applications motivating the two
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application domains, and the summary of related work. Chapter 3 analyzes the design and opti-

mizations for stencil applications from a theoretical point of view. Under the guidance of the the-

oretical analysis, Chapter 4 presents model-driven design-space exploration (DSE) for the stencil

applications. Chapter 5 raises the abstraction level and presents an end-to-end approach com-

piling stencil applications from a popular image-processing domain-speci�c language to e�cient

hardware accelerators. Chapter 6 presents an HLS language extension that signi�cantly improves

the productivity for task-parallel accelerator design. To cover more applications and further im-

prove productivity, Chapter 7 extends the e�ort to support dynamically scheduled memory ac-

cesses. Leveraging the tools presented in previous chapters, Chapter 8 presents two case studies

of task-parallel programs. Chapter 9 concludes the dissertation.
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CHAPTER 2

Background

This chapter presents background information and related work for this dissertation. We �rst

introduce the high-level synthesis (HLS) technology that signi�cantly boosts the productivity for

FPGA accelerator design in Section 2.1. Section 2.2 brie�y introduces the real-world memory-

bound application drivers, while Section 2.3 introduces two relevant domain-speci�c languages.

Section 2.4 summarizes the related work for this dissertation.

2.1 High-Level Synthesis

A �eld-programmable gate array (FPGA) is a piece of integrated circuit that contains repro-

grammable building blocks. Typically, such building blocks include lookup tables (LUT), �ip-�ops

(FF), digital signal processors (DSP), and block random access memories (BRAM). The function-

alities of each block, as well as their interconnect, are all reprogrammable, making it possible to

customize a single piece of circuit into accelerators that are tailored to di�erent applications. Such

hardware recon�guration capability gives full control over computation and data paths without

the overhead of general-purpose instructions, lowering the “power wall” and “memory wall” for

a broad class of application kernels.

A notable disadvantage of FPGA accelerators, i.e., the poor programmability, however, has

impeded their wide adoption for decades. The conventional programming abstraction of FPGA

devices is the register-transfer level (RTL) description, which not only requires programmers to

design and optimize the functionality of the program, but also forces programmers to manu-
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ally break and schedule the functionalities into several pipelines stages. In contrast, software

programmers only needed to specify the behavior of their programs with very few details of

hardware abstraction, making the development and iteration cycles of software programs signif-

icantly shorter than that of hardware accelerators. As such, FPGA researchers and vendors have

been adopting the high-level synthesis (HLS) technology [37] in the past decade, which relieves

programmers from having to manually plan and optimize the timing of their circuit design. A

typical HLS compilation �ow is shown in Figure 2.1. The HLS code is parsed and compiled by

the compiler �rst, which is then used for resource allocation, binding, and scheduling. RTL code

is generated as the output of HLS compilation. A report containing resource consumption and

performance estimation is usually generated together with the RTL code, providing guidelines

for quality of result (QoR) assessment and optimizations.

HLS	Code Compilation Binding

Scheduling

Allocation

Library

Generation RTL	Code

Figure 2.1: Typical HLS compilation �ow.

Compared with the traditional RTL paradigm (Figure 2.2a) where programmers often spend

tens of minutes just to verify the correctness of a code modi�cation, with HLS, programmers can

follow a rapid development cycle (Figure 2.2b). Programmers can write code in C and leverage

fast software simulation to verify the functional correctness. Such a correctness veri�cation cycle

can take as few as just 1 second, allowing functionalities to be iterated at a fast pace. Once the HLS

code is functionally correct, programmers can then generate RTL code, evaluate the quality of

result (QoR) based on the generated performance and resource reports, and modify the HLS code
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RTL code

Correctness verification
and QoR tuning

(via RTL simulation)
(~tens of minutes)

Hardware
bitstream

Logic synthesis and
implementation

(~hours)

On-board
execution

(a) FPGA accelerator development �ow without

HLS. Programmers often spend tens of minutes

after code modi�cation to evaluate the correct-

ness and quality of result.

High-level
synthesis

(~minutes)

HLS C++ code
(w/ pragmas)

QoR tuning
(based on HLS report) RTL code &

HLS report

Correctness verification
(via software simulation)

(~seconds)

Hardware
bitstream

Logic synthesis and
implementation

(~hours)

On-board
execution

(b) FPGA accelerator development �ow with

HLS. Programmers spend seconds after code

modi�cation to verify the correctness. Quality

of result can usually be obtained in less than 10

minutes from the HLS report.

Figure 2.2: FPGA accelerator development �ows with and without HLS.

accordingly. Such a QoR tuning cycle typically takes only a few minutes. Thanks to the advances

in HLS scheduling algorithms [16, 17, 41, 79, 86] and timing optimizations [14, 77, 96], HLS can

not only shorten the development cycle, but also generate programs that are often competitive

in cycle count [39], and more recently in clock frequency as well [77]. Moreover, FPGA vendors

provide host drivers and communication interfaces for kernels designed in HLS [90,171], further

reducing programmers’ burden to integrate and o�oad workload to FPGA accelerators.

2.2 Memory-Bound Applications

Due to the slower performance scaling of memory devices than that of computation units in

the past few decades, today the main memory is generally much slower than the CPU. Modern

CPU thus heavily relies on fast but tiny on-chip storage to keep its fast operating pace. With
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such a hierarchical memory system, many applications would run faster if the memory system

becomes faster. Such applications are called memory-bound applications. Low computational in-

tensity, which can be de�ned as the ratio between the number of basic computation operations

and the amount of data moved between fast and slow memory, makes applications memory-

bound, because the fast computation units have to frequently stop and wait for the slow memory

system. The large performance gap between the memory and the CPU makes many important

real-world applications memory-bound. This section brie�y introduces four memory-bound ap-

plication drivers that motivate our research. Section 2.2.1 and Section 2.2.2 introduce two stencil

applications whose memory accesses are regular, while Section 2.2.3 and Section 2.2.4 introduce

two graph applications whose memory accesses are irregular.

2.2.1 Digital Image Processing

Figure 2.3: The basic camera post-processing pipeline [146].

The advances of computer technology has made cameras and other visual sensors ubiquitous

in modern life: smartphones, tablets, and self-driving cars, to name a few. Lying in the core

of these is digital image processing, where the visual images are quantized and converted into

multidimensional arrays of digital signals (pixels) that are easy for computers to store and process.

As an example, raw data produced by an image sensor in a camera must be processed to produce

pictures that human-beings can view (Figure 2.3) [146]. Such a camera pipeline is composed of

4 stages: denoise, demosaic, color correct, and tone curve. Each of the stages either is point-wise,
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or considers its nearby neighbors. As a typical memory-bound application, the whole camera

pipeline has such a low communication/computation ratio that one has to compute the entire

pipeline in small tiles in order to improve memory locality on instruction-based processors, at the

cost of redundant computation in the overlapping tile boundaries. We shall show in Section 3.1

that this is not necessary on FPGA accelerators, where external memory accesses can be optimally

minimized without loss of scalability.

2.2.2 Numerical Analysis

→ → →

→→→

Figure 2.4: Illustration of the Heat equation [137].

As many mathematical problems do not have known closed-form solutions, mathematicians

often resort to numerical methods to solve such problems approximately. A common example is to

solve partial di�erential equations (PDE) using �nite element methods, where the numerical space

is partitioned into a multidimensional array of �nite elements, and the derivative at each point in

space is numerically calculated as a weighted sum of neighboring elements. The solution can then

be obtained by applying the derivatives iteratively until convergence, as illustrated in Figure 2.4.

The shape and weights of the neighbors are determined by the equations, while the size of arrays

and the number of neighbors are determined by the accuracy requirement. The communication-

computation trade-o� for instruction-based processors discussed in Section 2.2.1 is not only still

applicable, but even further complicated by the possible computation reuse opportunity [179].
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We shall show in Section 3.2 that, however, computation reuse can be solved independently and

near-optimally for FPGA accelerators.

2.2.3 Neural Image Reconstruction

(a) Raw 3D image of nerons. (b) Reconstructed and segmented neurons.

Figure 2.5: Neurons reconstructed and segmented from the raw 3D image [119].

The quest to learn and understand the biological functionality of animal brains has never

ended. Towards this goal, understanding the morphology of neurons is one of the most im-

portant tasks. Today, researchers can obtain 3-dimensional images from a brain using imaging

technologies, but reconstructing the morphology, e.g., recognizing and segmenting individual

neurons from a cluster of interweaving neurons, remains a not only challenging, but also time-

consuming task. State-of-the-art research [119] shows the great potential of a computational

approach based on Dijkstra’s shortest path algorithm, but due to the irregular and intensive mem-

ory access demand of graph algorithms, scaling the algorithm to large-scale high-precision neural

images remains a challenging task.
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2.2.4 Learning on Graph Structure

(a) Karate club network.

(b) Embeddings obtained from GCN.

Figure 2.6: Zachary’s karate club network [174] and its embeddings obtained from a 3-layer GCN

model [101].

Convolutional neural networks (CNN) have shown great success in many application do-

mains, including image and video recognition, image classi�cation [156], natural language pro-

cessing, etc., and many hardware accelerators emerged rapidly towards fast and energy-e�cient

training and inference of CNN. However, CNN only learns on regular and dense data structures,

yet information embedded in the relationship among objects is not well understood. More re-
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cently, the concept of convolutional neural networks was extended to graph data structures [101].

The unique computational challenge imposed by such workload is the combination of both ir-

regular, sparse graph operations and regular, dense matrix operations, which makes optimized

frameworks designed for only one of them insu�cient to adequately accelerate GCN workload.

2.3 Domain-Speci�c Languages

Domain-speci�c languages (DSL) are mini-languages that are created for speci�c application do-

mains. Since they are domain-speci�c, DSLs often have simpler syntax than general-purpose

languages with many convenient language constructs, and are thus much easier to learn and use.

In this section, we introduce two emerging DSLs that are involved in this dissertation.

2.3.1 Halide

Halide [146] is an open-source DSL for fast and portable computation on images and tensors. It is

designed to help programmers write high-performance image processing code easily on modern

machines. One of the biggest advantages of Halide is that it decouples the algorithm description of

the program from the scheduling — its execution strategy. When trying to optimize Halide code,

programmers can simply modify the code of the scheduling part without changing the algorithm

part to change how the program is executed. Listing 2.1 shows an example of Halide program,

where programmers can easily change the traversal order using reorder. For equivalent C or

C++ code, programmers have to change the whole loop of their code. Halide currently targets

CPU and GPU, which are both software platforms without hardware customization capability.

2.3.2 HeteroCL

HeteroCL [110] is a Python-based DSL for software-de�ned recon�gurable accelerators. Similar

to Halide, HeteroCL separates the algorithms and the schedules, as shown in Listing 2.2. One
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1 // Algorithm

2 Var x("x"), y("y");

3 Func B("B");

4 B(x, y) = (A(x, y) + A(x + 1, y) + A(x + 2, y)) / 3;

5
6 // Schedule

7 B.reorder(y, x);

Listing 2.1: A piece of Halide program.

major di�erence between HeteroCL and Halide is that HeteroCL supports a compilation �ow

targeting FPGA with multiple backends, including SODA [20], PolySA [38], and Merlin Com-

piler [33]. Therefore, the customized schedule can be migrated to the hardware design in sub-

sequent HLS/RTL code generated. HeteroCL categorizes the hardware customization into three

types: compute, data types, and memory architectures, which allows programmers to explore

performance/area/accuracy trade-o�s.

1 # Algorithm

2 A = heterocl.placeholder((height, weight), name='A')

3 B = heterocl.compute(A.shape,

4 lambda x, y: (A[x, y] + A[x + 1, y] + A[x + 2, y]) / 3,

5 name='B')

6
7 # Schedule

8 s = heterocl.create_schedule([A, B])

9 s.reorder(B.axis[1], B.axis[0])

Listing 2.2: A piece of HeteroCL program.

The heterogeneous backend supported by HeteroCL generates HLS code, which is then syn-

thesized to RTL code using vendor tools. These backends target di�erent types of programs and

achieves decent performance. SODA [20] targets stencil computation, which will be detailed in

Chapter 3 and Chapter 4. PolySA [38] targets systolic arrays, an architecture consisting of a
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group of identical processing elements (PE). This architecture is applicable to a wide range of ap-

plications, including convolution computation and matrix multiplication. Apart from the above,

Merlin Compiler [33] is a more general backend that can generate optimized HLS code for both

Intel and Xilinx platforms and greatly enhance the generality of HeteroCL.

2.4 Related Work

This section summarizes the related work for this dissertation. Section 2.4.1 discusses stencil ac-

celerators with communication-reuse microarchitecture templates, while Section 2.4.2 introduces

computation reuse techniques known for stencil computation. In the image processing domain

where stencil computation is used extensively, domain-speci�c languages are widely adopted and

are summarizes in Section 2.4.3. Section 2.4.4 summarizes state-of-the-art programming models,

interfaces, tools, and languages for task-parallel programs. Section 2.4.5 discusses the related

work for single-source shortest path.

2.4.1 Stencil Microarchitecture Templates

Non-uniform memory partitioning-based line bu�ers are widely used to enable communication

data reuse and reduce the external memory accesses for stencil computation. Cong et al. [36]

proved that it requires least bu�er size for a single PE. Wang and Liang [166] propose to adopt

the OpenCL model for iterative stencil algorithms. While the coarse-grained, tile-level paral-

lelism increases the on-chip bu�er usage and therefore limits the tile size, OpenCL pipes are used

in [166] to alleviate the performance degradation brought by overlapping tile borders. Natale et

al. [135] propose to implement multiple temporal iterations as multiple stages and connect them

to form a data�ow architecture. This approach scales well as the number of iterations increases,

but does not provide parallelism within a single iteration. Zohouri et al. [183] propose to use

multiple processing elements (PEs) for each iteration in addition to implementing multiple tem-

poral iterations as multiple stages. However, the reuse bu�ers are replicated along with the PEs
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in each stage to provide concurrent accesses in [183]. We shall show later on in Section 3.1.3 that

it is in fact suboptimal.

While the line bu�er-based approach is widely used, there are other approaches proposed by

researchers. Hegde and Kapre [83] present a soft vector processor for accelerating stencil kernels

for OpenCV on FPGAs. Escobedo and Lin [64] use a graph theory-based approach to achieve

minimum number of memory banks for a wide range of stencil kernels. However, this approach

does not generalize to all stencil kernels. Stitt et al. [159] present a scalable window generator

for high bandwidth FPGA systems, which can be used for stencil applications. However, imple-

menting kernels with di�erent window shapes is still non-trivial due to the manual RTL design

approach of [159].

2.4.2 Common Subexpression Elimination

Computation reuse is a well-known concept in compiler optimization, more commonly known

as common subexpression elimination (CSE). The classical CSE technique is based on expression

analysis of the program or value numbering. For example, to evaluate two expressions x=a·b+c

and y=a·b+d, a compiler is expected to �nd that the two expressions for x and y share the same

subexpression a·b, which can be evaluated only once by evaluating a new expression tmp=a·b

before x=tmp+c and y=tmp+d.

While the classical CSE is powerful and e�ective, we notice that it can only achieve spatial

computation reuse, i.e., common subexpressions exposed independently of the temporal loop

variables. For example, in Formula 2.1 (which corresponds to Listing 3.1 on page 41), there is

no common subexpressions in the classical sense, but there actually is computation that can be

reused across loop iterations, i.e., temporal reuse.

Y[j][i] = (X[j − 1][i] + X[j][i − 1] + X[j][i] + X[j][i + 1] + X[j + 1][i]) × 0.2 (2.1)

This is because when iterating over arrays, di�erent array references from di�erent loop it-

erations may be referring to the same data element of arrays. For example, in Formula 2.1,
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the same computation X[1][2]+X[2][1] is done twice, X[j][i + 1] + X[j + 1][i] for Y[1][1] and

X[j − 1][i] + X[j][j − 1] for Y[2][2]. Figure 2.7 visualizes the above reuse by showing the over-

Figure 2.7: Overlapping pattern in a 5-point Jacobi kernel.

lapping inputs used for producing Y[1][1] and Y[2][2]. With computation reuse, the new ker-

nel becomes a 2-stage kernel (Formula 2.2), which requires only 3 additions per output. As a

comparison, the original kernel (Formula 2.1) needs 4 additions per output.

T[j][i] = X[j − 1][i] + X[j][i − 1]

Y [j][i] = (T [j][i] + X[j][i] + T [j + 1][i + 1]) × 0.2

(2.2)

Note that there is an implication: when processing such computation reuse, the compiler

must recognize the reduction operation and select operands for reuse from a proper computation

order, e.g.

((X [j − 1][i] + X[j][i − 1]) + X[j][i]) + (X[j][i + 1] + [j + 1][i]) (2.3)

otherwise the binary + operator will not expose subexpressions like X[j][i + 1] + X[j + 1][i] due

to its default left-to-right associativity.

In summary, a compiler must perform both temporal exploration among di�erent loop itera-

tions and spatial exploration among reduction operands to �nd the best design point for compu-

tation reuse. However, previous work on computation reuse has limited temporal and/or spatial

exploration over the computation reuse design space.

On the temporal exploration side, Ernst [63] and Kronawitter et al. [106] �nd reuse among

iterations via loop unrolling plus spatial CSE, which is suboptimal, e.g., for Formula 2.1 it may
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only reuse 1 addition operation per 2 outputs, resulting in 3.5 additions per output, as opposed

to 3 achieved by Formula 2.2. Chen et al. [15], Koraei et al. [103], and Zhao et al. [179] only reuse

the pointwise scaling operations among iterations, resulting in redundant reduction operations.

On the spatial exploration side, Chen et al. [15], Hammes et al. [81], and Kronawitter et

al. [106] do not consider commutativity and associativity. Cooper et al. [43] and Hammes et

al. [81] only consider operands spanning in the horizontal direction (corresponding to the inner-

most loop variable). Deitz et al. [55] only considers operands spanning the horizontal or vertical

directions (corresponding to the loop variable of each level of the loop nest). Ding et al. [62]

additionally considers diagonal directions, i.e., all loop variables incrementing by the same value.

Yet, computation reuse could appear along any spatial direction of the stencil window, which is

likely missed by the prior work mentioned above (e.g., Figure 3.6 on page 53).

Besides, previous work on computation reuse heavily focuses on CPU and/or GPU [43,55,62,

63,106,179], where the trade-o� between computation and storage relies heavily on register pres-

sure [43] and/or cache [2,179] analysis, which is generally hard to characterize quantitatively due

to the close yet unmanaged interaction between the computation units and the memory system.

Ding et al. [62] �nd from experimental results that although computation reuse adds <1% space

overhead in most cases on CPU, it is also common to have 100% space overhead for other cases.

For accelerators, we shall show in Section 3.1 that parallelization and communication can be fully

decoupled and present a microarchitecture that requires the Pareto-optimal on-chip bu�er size

w.r.t. the degree of parallelism. However, it does not remove any redundant computation. We

shall show further in Section 3.2 that computation reuse can be applied independent of paral-

lelization and communication reuse, and how to obtain the Pareto-optimal on-chip bu�er size

with computation reuse being taken into consideration.

2.4.3 Image Processing Domain-Speci�c Languages

In the image processing domain, stencil kernels are ubiquitous. There are domain-speci�c com-

pilers that can generate e�cient FPGA accelerators from high-level image processing domain-
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speci�c languages (DSL). Hegarty et al. [82], Reiche et al. [147], and Chugh et al. [28] create

their own image DSLs and provide compilation �ow from the DSLs to hardware code, generating

e�cient FPGA and/or ASIC designs. While these DSLs signi�cantly reduce the burden of writ-

ing high-quality FPGA codes, analytical model-based e�cient design-space exploration (DSE)

and systematic performance optimization for stencil computations, especially for iterative sten-

cil computations, are not present. We shall show in Chapter 4 that such design-space exploration

can be very important to obtain good quality of result, and the SODA DSE framework [19, 20]

can automatically �nd the performance-optimized con�guration for a given stencil kernel under

the platform resource constraints.

Another limitation of the previous works is that the e�ort to rewrite existing programs in an-

other language is not negligible. Pu et al. [144] presents an alternative approach named Halide-

HLS, which is a compiler that takes as input an existing popular DSL, Halide [146], and pro-

vides an automatic pass to synthesize Halide programs to hardware accelerators. Di�erent from

other image DSLs, HeteroHalide leverages the existing Halide [146] infrastructure and keeps al-

gorithms decoupled from schedules, which greatly improves the portability and composability

of code. The moderate modi�cations on the scheduling part of existing Halide programs en-

ables fast adoption of FPGA accelerators for the vast number of Halide programs. However, the

Halide-HLS compiler is not designed in a composable and hierarchical way, i.e., its scheduling

primitives and the corresponding code generators are tightly and directly coupled with the under-

lying microarchitecture template. This makes it di�cult to leverage state-of-the-art accelerator

microarchitectures for the best performance and adapt to behavior changes in the vendor tools.

We shall show in Chapter 5 that by leveraging HeteroCL [110] as an intermediate representation,

our work, HeteroHalide [118] scales better due to its capability of taking advantage of the SODA

microarchitecture.
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2.4.4 Task-Level Parallelism

Task-level parallelism is a form of parallelization of computer programs across multiple proces-

sors. In contrast to data parallelism where the workload is partitioned on data and each pro-

cessor executes the same program (e.g., OpenMP [46]), di�erent processors in a task-parallel

program often behave di�erently, while data are passed between processors. Examples of task-

parallel programs include image processing pipelines [20, 144], graph processing [167, 181], and

network switching [140]. Software programs usually implement tasks as threads and/or processes

and rely on the operating system to schedule execution and handle communication. This often

leads to poor performance caused by ine�cient inter-task communication and frequent context

switch [4]. Hardware programs, on the other hand, can be much more e�cient due to the mas-

sive amount of inherently parallel logic units. Moreover, HLS-based FPGA accelerators written in

task-parallel form often outperform their data-parallel counterparts [20, 38] due to higher clock

frequency and better scalability as a result of local communication [40].

This section discusses background and related work of task-level parallelism and task-parallel

accelerators. The rest of this section is organized as follows. Section 2.4.4.1 brie�y discusses the

programming models for task-parallel programs, while Section 2.4.4.2 introduces two existing

programming interfaces. State-of-the-art HLS tools support task-parallel programs by allowing

the programmers to launch multiple tasks and stream data between them. We shall discuss them

and focus on the inter-task communication interface, task instantiation interface, system inte-

gration interface, and software simulation mechanism in Section 2.4.4.3. Besides the general HLS

tools, there are frameworks developed speci�cally for pure streaming applications, which are the

discussed in Section 2.4.4.4.

2.4.4.1 Programming Models

Task-parallel programs are often described as communicating sequential processes [84] or using

data�ow models [97,112,142]. Kahn process network (KPN) [97] is one of the most popular mod-
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els used. Under the KPN model, tasks are called processes. Processes communicate only through

unidirectional channels. Data exchanged between channels are called tokens. KPN requires that

¬ each process is deterministic, i.e., the same input sequence must produce the same output

sequence; ­ channels are unbound, read blocks if and only if the channel is empty, and write

always succeed immediately; ® a process cannot test an input channel for existence of tokens

without consuming them (i.e., peeking a channel). Consequently, KPN processes are not only

deterministic, but also monotonic with respect to the input sequences: the same input token se-

quences always produce the same output sequences regardless of the timing of their arrival, and

partial inputs always produce partial outputs. Synchronous data�ow (SDF) [112], as a special

case of KPN that produces/consumes �xed number of tokens per �ring, further allows such a

task-parallel program to be scheduled statically.

While existing task-parallel programming models have been successful in scheduling tasks

on parallel processors, we shall show in Section 6 that, when applied to model task-parallel HLS

programs, such models lack good programmability support: not allowing peeking restricts the

expressiveness of programs; not modeling the channel capacity leads to mismatching behavior

between the programs and their implementations. In this dissertation, we borrow the terms pro-

cess, channel, and token used in the KPN formulation, but are not limited to KPN or any data�ow

model. In fact, we shall describe our programming model as a hierarchical �nite state machine

in Section 6.2.2 to overcome expressiveness limitations of existing programming models.

2.4.4.2 Programming Interfaces

SystemC is a set of C++ classes and macros that provide detailed hardware modeling and event-

driven simulation. It supports both cycle-accurate and untimed simulation and many simulator

implementations are available [29,152]. Some HLS tools support a subset of untimed SystemC as

the input [171]. SystemC supports task-parallel programs natively via the sc_module constructs

and tlm_fifo interfaces. Listing 2.3 shows an example using the accelerator that will be discussed

in Section 6.1. Compared with other C-like HLS languages, SystemC can model more hardware
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details but is more verbose and less productive due to its special language constructs: for the

code snippets shown in Listing 6.4 and Listing 6.5, equivalent SystemC code is 37% longer, as

illustrated in Listing 2.3.

1 SC_MODULE(VertexHandler) {

2 sc_core::sc_port<tlm::tlm_fifo_gett_if<VertexReq>> vertex_req;

3 ...

4 SC_CTOR(VertexHandler) { SC_THREAD(thread); }

5 void thread() {

6 VertexReq req;

7 if (vertex_req.nb_put(req)) {

8 ...

9 }

10 }

11 };

12
13 SC_MODULE(Ctrl) {

14 sc_core::sc_port<tlm::tlm_fifo_put_if<VertexReq>> vertex_req;

15 // declare communication interface

16 ...

17 SC_CTOR(Ctrl) { SC_THREAD(thread); }

18 void thread() { ... } // task description

19 while (...) {

20 VertexReq req();

21 vertex_req.put(req);

22 ...

23 }

24 }

25 };

26
27 SC_MODULE(PageRank) {

28 tlm::tlm_fifo<VertexReq> vertex_req{/*depth=*/2}; // instantiate channels

29 ...

30 Ctrl ctrl; // instantiate tasks

31 VertexHandler vertex_handler;

32 ...

33 SC_CTOR(PageRank) {

34 ctrl.vertex_req(vertex_req); // bind channels to communication interfaces

35 vertex_handler.vertex_req(vertex_req);

36 ...

37 }

28



38 };

Listing 2.3: SystemC TLM API example.

Pthread API is a set of widely used standard APIs that can be used to implement task-parallel

programs using threads. Pthread requires programmers to explicitly create and join threads, and

arguments need to be manually packed and passed. Listing 2.4 shows an example using the

accelerator that will be discussed in Section 6.1. Compared with the tapa::invoke API used by

TAPA, our extension to HLS language that will be presented in Chapter 6, the pthread APIs require

more e�ort to program: for the code snippets shown in Listing 6.4 and Listing 6.5, equivalent

pthread-based code is 78% longer, as demonstrated in Listing 2.4.

1 struct Ctrl_Arg { // task communication interface

2 channel<VertexReq>* vertex_req;

3 ...

4 };

5
6 void Ctrl(void* arg) { // task description

7 Ctrl_Arg* ctrl_arg = (Ctrl_Arg*)arg; // unpack arguments

8 channel<VertexReq>* vertex_req = ctrl_arg->vertex_req;

9 ...

10 while (...) {

11 VertexReq req(...);

12 vertex_req->write(req);

13 ...

14 }

15 pthread_exit(NULL);

16 }

17
18 struct VertexReq_Arg {

19 channel<VertexReq>* vertex_req;

20 ...

21 };

22
23 void VertexReq(void* arg) {

24 VertexReq_Arg* vertex_req_arg = (VertexReq_Arg*)arg;

25 channel<VertexReq>* vertex_req = ctrl_arg->vertex_req;

26 VertexReq req;

27 if (vertex_req->nb_read(req)) {
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28 ...

29 }

30 pthread_exit(NULL);

31 }

32
33 void PageRank(...)

34 channel<VertexReq> vertex_req; // instantiate channels

35 ...

36 Ctrl_Arg Ctrl_arg;

37 Ctrl_arg.vertex_req = &vertex_req; // pack arguments

38 ...

39 VertexReq_Arg VertexReq_arg;

40 VertexReq_arg.vertex_req = &vertex_req;

41 ...

42 pthread_t Ctrl_pid, VertexReq_pid...;

43 pthread_create(&Ctrl_pid, NULL, Ctrl, (void*)&Ctrl_arg); // launch threads

44 pthread_create(&VertexReq_pid, NULL, VertexReq, (void*)&VertexReq_arg);
45 ...

46 pthread_join(&Ctrl_pid, NULL); // join threads

47 ...

48 }

Listing 2.4: Pthread API example.

In summary, while the existing API alternatives are widely used in some domains, we shall

show in Chapter 6 that they are more verbose and thus less productive compared with our work,

TAPA.

2.4.4.3 HLS Support for Task-Parallel Programs

Intel HLS compiler supports two di�erent inter-task communication interfaces, ihc::pipe and

ihc::stream. ihc::pipe implements a light-weight hardware FIFO with data, valid, and ready

signals, while ihc::stream implements an Avalon-ST interface that supports transactions. Tasks

are instantiated using ihc::launch and ihc::collect. Software simulation is done via launch-

ing multiple threads. Instances of the same task are synthesized separately.

Intel OpenCL compiler supports light-weight FIFO via two APIs, i.e., standard OpenCL pipe
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and Intel-speci�c channel. Tasks are instantiated by de�ning OpenCL __kernels, which forces

instances of the same task to be synthesized separately as di�erent OpenCL kernels. OpenCL

runtime handles the software simulation by launching multiple threads.

Vivado HLS provides two di�erent streaming interfaces: ap_fifo and axis. The ap_fifo in-

terface generates light-weight FIFO interface. Tasks are instantiated by invoking the correspond-

ing functions in a dataflow region, and instances of the same task are synthesized separately.

Software simulation is done by sequentially executing the tasks. The axis interface generates

AXI-Stream interface with transaction support. It requires the programmers to instantiate chan-

nels and tasks in a separate con�guration �le when running logic synthesis and implementation.

This allows di�erent instances of the same task to be synthesized only once, but takes longer

time to learn and implement compared with ap_fifo. OpenCL runtime handles the software

simulation for tasks instantiated with the axis interface by launching multiple threads.

Xilinx OpenCL compiler supports standard OpenCL pipe, which generates AXI-Stream inter-

faces similar to Vivado HLS axis, but pipe does not provide APIs to support transactions. Like

Vivado HLS axis, software simulation of pipe is handled by the OpenCL runtime by launching

multiple threads.

LegUp compiler provides legup::FIFO, which implements light-weight FIFOs. Tasks are in-

stantiated using pthread API (Section 2.4.4.2). Software simulation is accomplished by launching

multiple threads. Instances of the same task are synthesized separately.

Merlin compiler [33] allows programmers to call the FPGA kernel as a C/C++ function and

provides OpenMP-like simple pragmas with automated design-space exploration based on ma-

chine learning. To support task-parallel programs, Merlin leverages its backend vendor tools’

programming interfaces. Software simulation is done by sequentially executing the tasks.

In summary, as pointed out in Table 2.1, none of the state-of-the-art HLS tools provide peeking

support. Only Intel HLS ihc::stream and Vivado HLS axis support transactions. Only Merlin

allows the accelerator kernel to be called as if it is a C/C++ function. Vivado HLS and Merlin
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Table 2.1: Summary of related work of TAPA.

Related Work

Programmability Software

Simulation

RTL Code

Generation
Peeking Transaction Host Iface.

Fleet [161] No No N/A Sequential N/A

Intel HLS (ihc::pipe) No No N/A Multi-thread Monolithic

Intel HLS (ihc::stream) No Yes N/A Multi-thread Monolithic

Intel OpenCL No No OpenCL Multi-thread Monolithic

LegUp [11] No No N/A Multi-thread Monolithic

Merlin [33] No No C++ Sequential Monolithic

ST-Accel [150] No No VFS Sequential Hierarchical

Vivado HLS (ap_fifo) No No OpenCL Sequential Monolithic

Vivado HLS (axis) No Yes OpenCL Multi-thread Manual

Xilinx OpenCL No No OpenCL Multi-thread Monolithic

TAPA (Chapter 6) Yes Yes C++ Coroutine Hierarchical

execute tasks sequentially for simulation while others launch multiple threads. All HLS tools

treat a task-parallel program as a monolithic design and generate RTL code for each instance of

task separately, except that Vivado HLS axis allows programmers to manually instantiate tasks

using a con�guration �le when running logic synthesis and implementation.

2.4.4.4 Streaming Frameworks

Streaming applications are a special type of task-parallel applications that do not require complex

control over inter-task communication and often expose massive data parallelism in addition to

task parallelism. There are previous works that focus speci�cally on such applications.

ST-Accel [150] is a high-level programming platform for streaming applications that features
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highly e�cient host-kernel communication interface exposed as a virtual �le system (VFS). It

uses Vivado HLS as its backend for hardware generation and its software simulation is done by

sequential execution.

Fleet [161] is a massively parallel streaming framework for FPGAs that features highly ef-

�cient memory interfaces for massive instances of parallel processing elements. Programmers

write Fleet programs in a domain-speci�c RTL language based on Chisel [3]. The programs can

be simulated in Scala (in which Chisel is embedded).

In summary, while these frameworks are specialized for streaming patterns, neither of them

provide peeking and transaction interface in the kernel. Both run software simulation sequen-

tially, which does not have correctness problem for streaming applications but will be restrictive

for general task-parallel programs.

2.4.5 Single-Source Shortest Path

Given a directed graph
1
G = (V , E) where each edge ei,j ∈ E has a non-negative

2
weight wi,j ≥ 0,

a path P is a sequence of vertices P = (v1, v2, ⋯ , vn) ∈ V × V × ⋯ × V such that vi and vi+1 are

connected by an edge ei,i+1 ∈ E for 1 ≤ i < n. Such a path is called a path from u = v1 to v = vn. The

shortest path between u and v is the path that minimizes the distance from u to v, i.e., ∑
n−1

i=1
wi,i+1.

The single-source shortest path (SSSP) problem aims to �nd the shortest path from a given vertex

u (called the root) to all vertices in the graph. That is to say, for each vertex v ∈ V , we not only

need to �nd the shortest distance from u, but also the sequence of vertices that connects u to v.

This can be e�ectively represented by storing the parent (vi−1) of each vi in the output, allowing

us to reconstruct the shortest path tree from u.

1
An undirected graph is modeled as a directed graph with bidirectional edges.

2
Dijkstra’s algorithm and its variants, including SPLAG presented in this dissertation, cannot be used on negative-

weighted graphs. In practice, the edge weights represent distances, and are often non-negative by de�nition, e.g.,

network latency, strength of connection, etc.

33



2.4.5.1 Single-Source Shortest Path Algorithms

Dijkstra’s algorithm [61] keeps two sets of vertices, the visited set and the active set. Initially, the

visited set is empty, and the active set contains only the root vertex. All vertices are initialized

with a tentative distance of ∞, except that the root has distance 0. The algorithm iteratively

removes vertex u with the minimum distance from the active set, traverses the neighbors of u,

and moves u to the visited set. For each neighbor v of u, a new tentative distance can be generated

by adding the edge weight to the tentative distance of their parent vertex u. If this new tentative

distance is smaller than the previously known distance, v will get a new tentative distance. If v is

not in the active set nor the visited set, it will be moved to the active set. This compare-and-update

operation is called relaxation. The algorithm terminates when the active set is empty.

The original Dijkstra’s algorithm uses a list to store the active vertices, which necessitates

Θ(|V |) time to �nd the minimum-distance vertex. This can be improved by leveraging a pri-

ority queue to store the active vertices, which decreases the time complexity of this step to

Θ(log |V |) [69, 94]. If all weights are small integers bound by a constant C , using a bucket queue

can further decrease the time complexity toΘ(C) for �nding the minimum-distance vertex (Dial’s

algorithm [60]). Dijkstra’s algorithm and its priority queue–based variants guarantee each edge

is visited at most once, however, at the cost of being inherently sequential and hard to parallelize,

since edges from only one vertex can be relaxed at a time.

The Bellman-Ford algorithm [155] employs a di�erent and parallelizable approach to solve the

SSSP problem. Instead of selecting the edges from the minimum active vertex for relaxation, this

algorithm traverses and relaxes all edges iteratively. Allowing parallel relaxation on all vertices

enables massive parallelism, although doing so will relax each edge many times and thus is work-

ine�cient. Unlike Dijkstra’s algorithm and its variants, the Bellman-Ford algorithm can handle

negative weights and detect negative cycles. However, its worse-case time complexity ofΘ(|V ||E|)

makes it highly ine�cient when all the edge weights are non-negative, which is quite common

in real-world applications. We will show in Section 8.1.6.4 that even with pruning and early-
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termination, the Bellman-Ford algorithm is still not as e�cient as other SSSP algorithms.

The trade-o� between parallelism and work-e�ciency has motivated many researchers in

the past few decades. The eager version of Dijkstra’s algorithm [56] exposes more parallelism by

relaxing edges in parallel from more than one vertex with minimal distances. Crauser et al. [44]

further de�ne heuristics to decide edges from how many vertices should be relaxed in parallel.

∆-stepping [127] and its variants [51, 164] generalize Dial’s algorithm [60] by dividing the active

vertices into buckets based on their distances and only select active vertices from the �rst non-

empty bucket with the smallest distances.

2.4.5.2 Other Shortest Path Problems

The single-source shortest path problem is not the only possible type of shortest path problems.

In fact, we can de�ne four shortest path problems on a given graph G:

∙ The single-pair shortest path problem �nds the shortest path from a given source vertex u

to a given destination vertex v.

∙ The single-source shortest path problem �nds the shortest path from a given vertex u to all

vertices in the graph.

∙ The single-destination shortest path problem �nds the shortest path from all vertices to a

given vertex v in the graph.

∙ The all-pairs shortest path problem �nds the shortest path between all pairs of vertices.

The single-pair shortest path problem can be solved using Dijkstra’s algorithm with an early

termination condition. For multiple single-pair shortest path queries on the same graph, one can

solve them more e�ciently by pre-computing the SSSP of some selected landmarks [74]. The

single-destination shortest path problem can be reduced to SSSP by reverting the direction of

edges. The all-pairs shortest path problem utilizes a di�erent algorithm than SSSP [8]. However,

due to its Θ(|V |
3
) time complexity, a complete solution to the all-pairs shortest path problem is
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often computationally intractable for large-scale graphs, in which cases SSSP of selected/sampled

vertices can be used [10]. Altogether, solving the SSSP problem e�ciently can be helpful for all

four types of shortest path problems.

2.4.5.3 Dijkstra’s Algorithm Accelerators

Takei et al. [160] accelerates the original Dijkstra’s algorithm and parallelizes both relaxation

and the linear search for the minimum active vertex with a SIMD architecture. Lei et al. [114]

implements Dijkstra’s algorithm with an on-chip systolic priority queue [115]. Since the systolic

priority queue operates on every data element on each clock cycle, it cannot leverage dense on-

chip storage elements (e.g., BRAMs) and its capacity does not scale well. A two-level linear-search

structure is used when the number of active vertices grows beyond the capacity of the queue.

Chronos [1] exploits massive speculative parallelism and can implement the eager version of

Dijkstra’s algorithm e�ciently. Chronos uses an on-chip pipelined heap [5] to store the active

vertices, which scales better than the systolic priority queue but still is limited by the size of

on-chip storage. Only planar graphs are evaluated for the above accelerators.

2.4.5.4 Bellman-Ford Algorithm Accelerators

HitGraph [181] and its earlier version [180] implement an edge-centric graph accelerator. Lever-

aging the larger sequential bandwidth, HitGraph writes the intermediate relaxation results to

DRAM when generated and reads them back when needed. ThunderGP [13] is an HLS-based

graph processing template that implements highly-parallel graph accelerators under the vertex-

centric gather-apply-scatter model. Unlike HitGraph, ThunderGP updates on-chip vertices di-

rectly without generating o�-chip intermediate results. GraphLily [87] is an HLS-based graph

linear algebra overlay implemented on an FPGA equipped with high-bandwidth memory (HBM).

GraphLily can implement the Bellman-Ford algorithm along with other graph linear algebra algo-

rithms without reprogramming the FPGA. In summary, the Bellman-Ford algorithm accelerators
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are evaluated using large-scale power-law graphs, but their work-e�ciency is overlooked. Only

the raw edge traversal throughput is reported, which demonstrates the performance of the graph

processing system, but not the algorithm itself. Even worse, to reduce the bandwidth requirement,

none of the accelerators records the parent vertex together with the shortest distance. Without

the parent vertex as part of the output, we will not be able to construct the shortest path tree out

of the result, which reduces the usefulness of the result.

Table 2.2: Summary of related work for SSSP. MTEPS measures the algorithm throughput, which

is de�ned as the number of undirected edges in the connected component divided by the exe-

cution time. Since some systems did not report the execution time, an upper-bound estimation

(Section 8.1.6.4) is listed here.

System Lang. Work-e�.? Power-law? Priority queue? Vertex cache? MTEPS

Chronos [1] RTL Yes No P-heap [5] App.-agnostic 360

GraphLily [87] HLS No Yes No Scratchpad <232

HitGraph [181] RTL No Yes No Scratchpad 46.9

Lei et al. [114] RTL Yes No ExSAPQ [114] No 9.2

Takei et al. [160] RTL Yes No No On-chip only 0.4

ThunderGP [13] HLS No Yes No Scratchpad <122

SPLAG HLS Yes Yes CGPQ (Sec. 8.1.3) CVC (Sec. 8.1.4) 763

In this dissertation, we shall present our work named SPLAG in Section 8.1. SPLAG uses a

coarse-grained priority queue (CGPQ) to manage the active vertices in the SSSP problem. The

CGPQ organizes active vertices in chunks, stores them in the external memory, and orchestrates

the chunks with an on-chip priority queue. SPLAG also employs a customized vertex cache (CVC)

with application-speci�c push and pop operations, which reduces both on-chip and o�-chip mem-

ory tra�c. Table 2.2 compares our work with the related works for SSSP.
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CHAPTER 3

Theoretical Analysis of Stencil Applications

As a representative type of memory-bound application, stencil applications operate on regular

data arrays, which allows us to perform theoretical analysis at compilation/synthesis time to opti-

mize data paths and schedule memory accesses pertinently. In this chapter, we present the SODA

(Stencil with Optimized Data�ow Architecture) microarchitecture and analyze it from a theoret-

ical point of view. Section 3.1 presents the design objectives and the algorithm used to generate

the SODA microarchitecture, followed by a proof that it requires the least possible bu�er size

to achieve full communication reuse. Section 3.2 presents an optimal algorithm and a heuristic

algorithm that can �nd computation reuse in stencil kernels, further reducing memory tra�c

compelled by resource limitations.

3.1 Optimal Communication Reuse

3.1.1 De�nitions and Problem Formulation

Stencil kernel [36]: An n-point, m-dimensional stencil kernel A de�nes a spatial window

{a⃗
(s)
|s ∈ {0, 1, 2, … , n − 1}}

and a function which produces output at spatial coordinate y⃗ where

y⃗ = (y0, y1, y2, … , ym−1)

by consuming inputs at spatial coordinates

{x⃗
(s)
|s ∈ {0, 1, 2, … , n − 1}} = {y⃗ + a⃗

(s)
|s ∈ {0, 1, 2, … , n − 1}}
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a⃗
(s)

denotes the o�set between the s-th input and the output. For convenience’ sake, we use

the spatial coordinate to represent the data element at that position in this dissertation.

{a⃗
(s)
|s ∈ {0, 1, 2, … , n − 1}} is de�ned as the stencil window. The stencil window size in dimen-

sion d , Sd , is de�ned as

Sd = max
s

(
a
(s)

d )
− min

s
(
a
(s)

d )
+ 1

In our 5-point 2-dimensional example in Listing 3.1,

{a⃗
(s)
} = {(0, −1), (−1, 0), (0, 0), (1, 0), (0, 1)}, S0 = S1 = 3

Data linearization: Modern computer memory systems use a linear address space. An m-

dimensional data must be linearized before it is stored in a memory system. Without loss of

generality, a vector coordinate x⃗ can be linearized to be a scalar o�set x :

x = x0 + x1T0 + x2T0T1 + ⋯ + xm−1

m−2

∏

d=0

Td (3.1)

where T⃗ = (T0, T1, T2, … , Tm−1) is the m-dimensional size of the input data. Similarly, each coor-

dinate vector a⃗
(s)

of A can also be linearized as

a
(s)
= a

(s)

0
+ a

(s)

1
T0 + a

(s)

2
T0T1 + ⋯ + a

(s)

m−1

m−2

∏

d=0

Td

Under the above linearization convention, we shall use scalars x and a
(s)

instead of vectors x⃗

and a⃗
(s)

in the following parts of this dissertation. Reuse distance Dr can then be de�ned as

Dr = max
s

(a
(s)

) − min
s

(a
(s)

) + 1

which represents the linearized distance between the �rst and the last access of each input data

element. In our example, {a
(s)
} = {−M, −1, 0, 1, M}, Dr = 2M + 1.

Stencil computation: Given an n-point, m-dimensional stencil kernel A and input set {x},

�nd all outputs {y} by applyingA on all inputs {x}. Note that due to the border e�ect, the number

of valid output data elements in dimension d is always Sd − 1 smaller than the input, where Sd is

the stencil window size in dimension d . This disappeared region is often referred to as the halo.
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Complex stencil kernel: Two or more stencil kernels can be connected to compose a com-

plex stencil kernel, where the output of the former is used as the input of the latter. Each stencil

kernel component of the complex stencil kernel is de�ned as a stage of the whole kernel. Stages

are sometimes regarded as the temporal dimension, in analogy to the spatial dimensions of data

elements. In particular, stencil kernels can be computed repeatedly where the output of an itera-

tion is used as the input of the next iteration. Such kernels are de�ned as iterative. For the sake

of simplicity, the term stage is also used to refer to an iteration of an iterative stencil kernel in

this dissertation. Note that the halo size in each dimension is the sum of halo sizes among all the

stages in that dimension.

Problem formulation: Given a stencil computation task and the resource constraints on a

hardware platform, design an accelerator that achieves the maximum sustained throughput.

3.1.2 SODA Microarchitecture

At the microarchitecture level, we aim to optimize the memory resource consumption of one

stage as a building block, while allowing multiple stages or iterations to connect with each other

so that spatial parallelism can be exploited. The input size and throughput constraint is assumed

to be given. Choices of tile size and number of PEs will be discussed in Section 4.1.2. For the

proposed microarchitecture, we have four design objectives.

∙ Full pipelining. Pipelining can increase the throughput with very little resource overhead.

Every PE should be fully pipelined and able to consume the input data in one cycle and be

ready for the input for the next cycle.

∙ Scalable, �ne-grained parallelism. Compared with coarse-grained parallelism, �ne-

grained parallelism enables resource sharing and reusing, which make it more e�cient

and scalable.

∙ Minimum external memory access. Compared with on-chip memory, external memory

access usually has less bandwidth and longer latency. The proposed design fully reuses the
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input data so that every input data element only needs to be transferred once for a given

tile. The streamlined access also enables data�ow optimization between stages.

∙ Minimum reuse bu�er size. We can prove that the proposed microarchitecture achieves

the minimum reuse bu�er size with given input size and throughput requirement. Com-

pared with other suboptimal architectures, this enables SODA to use more resources to

achieve better performance under a given resource constraint.

1 void Jacobi(float input[N][M], float output[N][M]) {

2 for (int j = 1; j < N - 1; ++j)

3 for (int i = 1; i < M - 1; ++i)

4 output[j][i] = (input[j-1][i] + input[j][i-1] + input[j][i] + input[j][i+1] +

5 input[j+1][i]) * 0.2f;

6 }

Listing 3.1: A 5-point 2-dimensional Jacobi stencil kernel.

The reuse bu�er design plays a crucial role in achieving these objectives. Listing 3.1 shows

a 5-point, 2-dimensional Jacobi kernel on an M × N input as an example. In the SODA microar-

chitecture, there are k consecutive output elements generated in each clock cycle, where k is the

number of PEs. Suppose the k outputs are {y, y + 1, y + 2, ..., y + k − 1}. To compute the k outputs,

all the needed input data elements are

y+k−1

⋃

l=y

{

l + a
(s)
|s ∈ {0, 1, 2, … , n − 1}

}

Let gk be the number of input data elements needed when producing k outputs. All the needed

input data elements can then be represented as

{y + au,k |u ∈ 0, 1, 2, … , gk − 1}

where au,k denotes the o�set of the u-th input data element needed in each clock cycle when

producing k outputs.
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To generate e�cient line bu�ers, elements in {au,k} are divided into k sets according to their

remainder modulo k. Each set will be synthesized as a reuse chain. The reuse bu�er is the collec-

tion of all reuse chains. In each cycle, there will be k new inputs fed into the reuse bu�er, and

each reuse chain will take one input.

Elements in each remainder set cut each reuse chain into several integer intervals. Each inter-

val corresponds to an FF or a FIFO. Since numbers in each set have the same remainder modulo

k, the minimum interval length will be k. If the interval length is k, there will be no data ele-

ments in-between and the FIFO is actually a register. If the interval length is larger than k, there

will be bu�ered data in-between, and a FIFO is used. FFs/FIFOs in each set are then connected

sequentially to form a complete reuse chain.

The reuse bu�er size—i.e., the total number of data elements stored in the reuse bu�er—can

be calculated as

max
u

(au,k) − min
u

(au,k) + 1 =

max
s

(a
(s)
+ k − 1) − min

s

(a
(s)

) + 1 = Dr + k − 1

input[j-1][i]
input[j][i-1]

input[j][i]

Reuse Buffer

FIFO

input[j+1][i+2]

input[j+1][i+1]

input[j+1][i]
FF

FIFO

FIFO

FIFO

FIFO

FF FIFO

From Input Buffer

To PEs

input[j][i+3]

input[j][i+1]

input[j+1][i]

input[j+1][i+1]

input[j+1][i+2] input[j][i+2]

input[j-1][i+1]

input[j-1][i+2]

last input for (i,j)

Reuse distance:
    Dr = 2M+1
Unroll factor:
    k = 3
Reuse buffer size:
    Dr+k-1 = 2M+3 first input for (i,j)

Reuse Chain 2

Reuse Chain 1

Reuse Chain 0

Figure 3.1: SODA reuse bu�er microarchitecture.

Figure 3.1 shows the proposed microarchitecture with the example of 5-point 2-dimensional
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stencil in Listing 3.1. In our k = 3 example,

{au,3} = {−M, −1, 0, 1, M}

⋃{−M + 1, 0, 1, 2, M + 1}⋃{−M + 2, 1, 2, 3, M + 2}

= {−M, −M + 1, −M + 2, −1, 0, 1, 2, 3, M,M + 1,M + 2}

where g3 = 11. In the example of Listing 3.1 where M = 9, there will be k = 3 remainder sets /

reuse chains:

{−M, 0, 3,M}, {−M + 1, 1,M + 1}, {−M + 2, −1, 2,M + 2}

Chain 0 {−M, 0, 3,M} uses two FIFOs for [−M, 0] and [3,M] and an FF for [0, 3]. The length

of the two FIFOs are [0 − (−M)]/3 = M/3 and (M − 3)/3 = M/3 − 1, respectively.

Chain 1 {−M + 1, 1,M + 1} uses two FIFOs for [−M + 1, 1] and [1,M + 1]. The length of the

two FIFOs are [1 − (−M + 1)]/3 = (M + 1 − 1)/3 = M/3.

Chain 2 {−M + 2, −1, 2,M + 2} uses two FIFOs for [−M + 2, −1] and [2,M + 2] and an FF for

[−1, 2]. The length of the two FIFOs are [−1 − (−M + 2)]/3 = M/3 − 1 and (M + 2 − 2)/3 = M/3,

respectively.

The reuse bu�er size in this case is M + 2 − (−M) + 1 = 2M + 3.

3.1.3 Communication Reuse Optimality

The optimality of the proposed microarchitecture is proven based on the assumptions that the

stencil kernel itself, A, and the size of the input, T⃗ , are given. The input can be tiled, and the

design choice of tile size will be discussed in Section 4.1.2. In this section we shall discuss the

optimality within an input tile. For the proof of optimal reuse bu�er size, we further assume that

the number of PEs, k, is given.

Optimal memory utilization: The minimum requirement on input data is to feed all input

data elements at least once; our microarchitecture achieves this by storing the input data on-chip

until the last time it is accessed. Therefore, the proposed microarchitecture achieves the optimal
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memory utilization.

Optimal reuse bu�er size: Cong et al. [36] gives a mathematical proof under the polyhedral

model that when there is only one PE, the line bu�er design has the minimum reuse bu�er size

equal to the maximum reuse distance, Dr . Based on that, we have the following de�nition and

theorems:

De�nition 1 (Lexicographic Order [65]). The lexicographic order relation ≺ of twom-dimensional

coordinate vectors i⃗ and j⃗ is de�ned as

i⃗ ≺ j⃗ ⇔ (im−1 < jm−1) ∨ (im−1 = jm−1 ∧ im−2 < jm−2) ∨ (im−1 = jm−1 ∧ im−2 = jm−2 ∧ im−3 < jm−3) ∨ …

∨ (im−1 = jm−1 ∧ im−2 = jm−2 ∧ ⋯ ∧ i1 = j1 ∧ i0 < j0)

Let Ai represent an n-point stencil window accessing inputs on {i⃗ + a⃗
(0)
, i⃗ + a⃗

(1)
, i⃗ + a⃗

(2)
, … , i⃗ + a⃗

(n−1)
}

and producing output on i⃗. The lexicographic order relation ≺ of two stencil windows Ai and Aj is

de�ned as

Ai ≺ Aj ⇔ i⃗ ≺ j⃗

Under the linearization convention in Section 3.1.1, the lexicographic order of i⃗ and j⃗ is the

same as the scalar ascending order of linearized i and j. For convenience’ sake, Ai is also used to

denote the input elements of the stencil window Ai and the o�set vector i⃗ is also denoted as i in

the following parts.

Lemma 1. The minimum reuse bu�er size can only be achieved with PEs producing outputs in

consecutive lexicographic order, if the o�set vector i⃗ follows the lexicographic order.

Proof. Suppose an implementation achieving the minimum bu�er size is not implemented with

PEs producing outputs in consecutive lexicographic order, which means with the k PEs that pro-

duce output elements {i + p1, i + p2, ..., i + pk} and access input elements Ai+p1
≺ Ai+p2

≺ ⋯ ≺ Ai+pk

at o�set i, ∃ p
′
∉ {p1, p2, ..., pk} s.t. Ai+p1

≺ Ai+p2
≺ ⋯ ≺ Ai+p

′ ≺ ⋯ ≺ Ai+pk
. According to Property 1

in [36], data elements are accessed in lexicographic order as long as the o�set vector i follows the

lexicographic order. Therefore, if we allocate the k PEs for p1, p2,… , p
′
,… , pk−1, the bu�er size can
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be reduced by at least one since PE pk accesses at least one data element lexicographically greater

than any of the other PEs. Once PE pk is replaced by p
′
, the data element accessed only by pk can

be removed from the reuse bu�er, which is a contradiction to the assumption of the minimum

bu�er size for the given implementation. Therefore, we know that Lemma 1 is true.

Lemma 2. The minimum reuse bu�er size with k + 1 PEs is at least the minimum reuse bu�er size

with k PEs plus 1.

Proof. Given an optimal bu�er size design with k PEs, if another PE is to be added but no addi-

tional input data element is necessary, the additional PE must be lexicographically between the

existing PEs. According to Lemma 1, we know that the given design must not be an optimal

bu�er size design since its PE inputs are not in consecutive lexicographic order. Therefore, by

contradiction, there must be at least one additional data element added to the bu�er.

Based on Lemma 1, Lemma 2, and [36], we know by induction that

Theorem1. For a given stencil kernel that has reuse distanceDr and a given throughput lower bound

of producing k output elements at a time, the minimum possible bu�er size required to achieve full

data reuse is Dr + k − 1.

3.1.4 Data�ow Architecture

The SODA microarchitecture can be e�ciently implemented as data�ow modules. The data�ow

implementation enables high-frequency synthesis result and accurate resource modeling, due

to its localized communication [40] and modularized structure. It also enables the �exibility to

connect multiple stages together in a single accelerator. Figure 3.2 shows the data�ow modules

of 1 iteration of the Jacobi kernel shown in Listing 3.1.

As shown in Figure 3.2, the forwarding modules (FW) forward and distribute input data to

proper destination modules. Each forwarding module either directly forwards data from the

input, or implements a FIFO or FF as part of the reuse bu�er. Each FIFO or FF in Figure 3.1
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Figure 3.2: Data�ow modules in a SODA microarchitecture.

corresponds to a forwarding module shown in Figure 3.2. The structure of a forwarding module is

only determined by the data type, FIFO depth, and fan-out. On FPGAs, FIFOs can be implemented

with either shift register lookup tables (SRLs) or block RAMs (BRAMs). On our Xilinx platform,

we use hls::stream provided in Vivado HLS to implement FIFO. Large FIFO whose capacity

is larger than 1024 bits is implemented with BRAM and small FIFO is implemented with SRL.

The compute modules (PE) are the processing elements and implement the kernel function. Each

compute module contains 1 PE, which produces 1 output data element per cycle. For a given

stencil kernel, all compute modules in the same stage have the same structure. The data�ow

architecture enables the �exibility of cascading multiple stages together. The inputs and outputs

can be connected to DRAM or to another stage’s outputs or inputs. Figure 3.3 shows the overview

of an example of a complete SODA accelerator.

As a common type of external memory on FPGAs, DRAMs have a burst I/O mode which pro-

vides higher bandwidth [27], but it also puts some restrictions on the data. On our Xilinx platform,

burst-mode DRAM access is fully pipelined, and in each cycle Wb = 512 bits are read/written for

the maximum throughput. Therefore, 8-bit, 16-bit, or 32-bit input data must be coalesced be-

46



Reuse 
BuffersFIFO

Compute 
Units

PE PE PE

FIFO

DRAM

FIFO

FF

FIFO FF

FIFO
FIFO

Reuse 
BuffersFIFO

Compute 
Units

PE PE PE

FIFO

FIFO

FF

FIFO FF

FIFO
FIFO

S
t
a
ge
 
1

S
t
a
ge
 
2

Figure 3.3: Overview of a complete SODA accelerator.

fore sent/received to/from DRAM to achieve the maximum throughput. The SODA automation

framework automatically generates modules that handle the memory coalescing and the corre-

sponding host-side data layout manipulation code, which improves external memory throughput

without adding complexity to the programming model.

Also, although burst I/O are fully pipelined, the latency is quite long. Therefore, to hide this

latency, burst length—i.e., the number of data elements read/written in each DRAM access—has to

be large enough. Thanks to the data�ow implementation, the DRAM access can be automatically

performed in burst mode with su�ciently long burst length, without the need of coarse-grained

pipelining and double bu�ering as discussed in [27].
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3.2 Optimal and Heuristic Computation Reuse

3.2.1 De�nitions and Problem Formulation

Reduction operations are operations that are commutative and associative
1
. Given an n-point

stencil kernel with reduction operations

Y[y] = g(f0(X [y + a0]) ⊕ ... ⊕ fn−1(X [y + an−1]))

The reduction expression we are interested in is

f0[a0] ⊕ ... ⊕ fn−1[an−1] (3.2)

where fs[as] = fs(X [y+as]), meaning to apply a point-wise scaling function fs on the input element

in X with an o�set of as relative to the output element. We shall, e.g., use [−1][0] or X[−1][0] to

represent X[j − 1][i] when it is clear from the context.

Expressions and schedules: A reduction expression de�ned by Formula 3.2 in does not de-

�ne a speci�c computation order. This means the number of non-redundant operations required

to compute the expression may vary. To account for that, we de�ne the reduction schedule as a

speci�c computation order of an expression. A schedule has a well-de�ned computational cost

in terms of the number of reduction operations ⊕ and the number of scaling operations f , e.g., a

naïve left-to-right schedule would require (n − 1) ⊕ operations and n f operations. Although dif-

ferent schedules produce the same computational result mathematically, the computational cost

can be di�erent. Note that even if two schedules have the same computational cost, the storage

requirement on accelerators can still be di�erent.

Problem formulation: We aim to �nd a schedule of an expression with 1) the least possible

number of ⊕ reduction operations, and 2) the least possible number of f scaling operations. No-

tice that f operations can be reused optimally by creating an intermediate array for each scaled

1
⊕ is commutative i� a ⊕ b ≡ b ⊕ a. ⊕ is associative i� (a ⊕ b) ⊕ c ≡ a ⊕ (b ⊕ c). We treat �oating-point additions

as if they were associative.
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operand, we shall focus on the optimal reuse of ⊕ operations in the following part of this sec-

tion. Furthermore, if multiple schedules have the same number of operations, we aim to �nd the

schedule with the least storage requirement, which will be discussed in Section 4.2.

3.2.2 Optimal Reuse by Dynamic Programming (ORDP)

a b

+

a b
+

c

+

a c

+ b

+

cb

a +

+

Figure 3.4: Reduction trees of a + b + c augmented from a + b.

To discover the optimal reuse, we enumerate over all possible schedules of a reduction ex-

pression opd0 ⊕ opd1 ⊕ ... ⊕ opdn−1 and count the number of unique subexpressions as the number

of ⊕ operations. Notice that a schedule with n-operands corresponds to a binary reduction tree,

whose n leaf nodes correspond to the n operands and n − 1 non-leaf nodes correspond to the

n − 1 ⊕ operations, we can enumerate all schedules via dynamic programming. As an example,

let a + b + c be a 3-operand reduction expression. The schedules of a + b + c can be constructed

by adding the third operand c to the existing schedules of a + b, while a + b only has 1 trivial

schedule, which corresponds to the binary tree shown in the upper part of Figure 3.4. To obtain

schedules of a + b + c from a + b, we need to replace one node of a + b with a new node, whose

children are the original node and c. Since the reduction tree of a + b has 3 nodes, there are 3

replacement outcomes, too. The lower part of Figure 3.4 shows all the 3 reduction trees obtained

in this way. The 3 trees correspond to (a +c)+b, (a +b)+c, and a+(b +c), respectively. In general,

assume we have enumerated all schedules of the �rst k operands, k = 2, 3, ..., n − 1. To enumerate

all schedules of the �rst k + 1 operands, all we need to do is to replace one of the nodes in the
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k-operand reduction tree with a new node, whose children are the newly added operand and the

original node. By doing so for all 2k − 1 nodes of all k-operand reduction trees, we can obtain all

schedules of the �rst k +1 operands. By induction, we can enumerate all schedules of n operands.

Such enumeration achieves spatial exploration of computation reuse.

+
+
+

+

Figure 3.5: Reduction tree of Formula 2.3.

To count the number of operations required for a schedule, we need to count the number

of unique subexpressions. Since subexpressions can be relatively shifted, we align their access

o�sets (array references) for comparison. The aligned access o�sets are obtained by subtracting

the least-lexicographical-order [35] o�set from all access o�sets. As an example, for the schedule

given in Formula 2.3, there are 4 subexpressions (including the whole expression itself), each of

which corresponds to a non-leaf node shown in Figure 3.5. Among them, two subexpressions,

[−1][0] + [0][−1] and [0][1] + [1][0], align to the same [0][0] + [1][−1], which means they can be

reused. A hash table is used to count the number of unique subexpressions, where the hash table

is keyed by the aligned access o�sets and the scaling functions. Subexpressions with the same

key indicate reduction operation reuse opportunities. In the previous example, the number of

unique subexpressions is 3, which matches the analysis in Section 3.2.1. Access o�set alignment

achieves temporal exploration of computation reuse.

The number of all possible schedules of an (n + 1)-operand expression is (2n − 1)!! = 1 × 3 × 5 ×

⋯ × (2n − 1), which is (2n − 1)× that of an n-operand expression, as discussed in the dynamic pro-

gramming algorithm presented above. This is asymptotically O ((
2n−1

e )

n

). The optimal solution

works well when n is not large (n ≤ 10) but does not scale. Next, we shall present an e�cient
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heuristic-based solution.

3.2.3 Heuristic Search–Based Reuse (HSBR)

In this section, we present a heuristic search–based reuse (HSBR) discovery algorithm that can

help us �nd near-optimal solutions with polynomial time and space complexity. HSBR is a vari-

ant of beam search [2] and is composed of three steps, namely 1) reuse discovery, 2) candidate

generation, and 3) iterative invocation.

Reuse discovery enumerates all pairs of operands to �nd potential reuse. If an operand pair

appears more than once after alignment, it would be a reuse pattern that leads to computation

reuse. Note that although we only select pairs of operands, larger patterns are considered since

each operand itself can be a subexpression that is composed of multiple operands (e.g., Figure 3.6).

For the example of Formula 2.3, after enumerating all pairs of operands, we would �nd both

[−1][0] + [0][−1] and [0][1] + [1][0] align to [0][0] + [1][−1], indicating a reuse opportunity. If no

reuse is found in this step, the algorithm terminates.

Candidate generation creates candidate schedules by replacing reuse patterns with new, non-

leaf operands. Such non-leaf operands correspond to the intermediate arrays created for reuse,

e.g., T in Formula 2.2. Since there can be many di�erent combinations of reuse patterns, this step

may generate a large number of candidates. For example, for Formula 2.3, in addition to reusing

[−1][0] + [0][−1] for [0][1] + [1][0], we would also generate a candidate schedule that reuses

[−1][0] + [0][1] for [0][−1] + [1][0]. For each candidate, we evaluate how much computation is

reused by counting the number of unique subexpressions and how much storage is required as

will be discussed in Section 4.2. The best W candidates will be selected for the next step. The

constant W is the beam width in the beam search algorithm.

Iterative invocation enqueues each selected candidate for the next iteration of HSBR. New

reuse patterns are found for each candidate separately, but all next-generation candidates are

subject to the same constant bound of beam width W . Since the number of selected candidates
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in each iteration is O(W) and the number of iterations is O(n)where n is the number of operands

in the kernel, the total number of candidates generated and evaluated will be O(Wn). For each

candidate, the number of operation required isO(n
2
), because we enumerate all pairs of operands.

Overall, HSBR is O(Wn
3
), which guarantees scalability.

In the remaining part of this subsection, we discuss some optimizations that reduce explo-

ration time and improve quality of result.

3.2.3.1 Operand Selection

We maximize the number of reused operand pairs in each iteration so that the number of itera-

tions is reduced, resulting in faster completion of HSBR, especially for large stencil kernels. This

greedy optimization is applied in two places of the candidate generation step. First, for each reuse

pattern, we replace as many operand pairs as possible. For example, given X[0] + 2X[1] + X[2] +

2X[3]+X[4]+2X[5], the reuse discovery step would �nd that the reuse pattern T[0] = X[0]+2X[1]

can be reused for X[0] + 2X[1], X[2] + 2X[3], and X[4] + 2X[5]. In the candidate generation step,

we greedily replace all operand pairs for reuse (i.e., we replace the aforementioned operand pairs

with T[0], T [2], and T [4], respectively). Second, in addition to the operand pairs that reuse the

same reuse pattern, we also try to apply other reuse patterns if permissible. For example, given

X[0] + 2X[1] + X[2] + 2X[3] + 3X[4] + 4X[5] + 3X[6] + 4X[7], we reuse both T1[0] = X[0] + 2X[1]

and T2[0] = 3X[0] + 4X[1] and generate T1[0] + T1[2] + T2[4] + T2[6] directly in a single iteration.

3.2.3.2 Con�ict Resolution

When selecting operand pairs for reuse, sometimes not all valid pairs can be selected at the same

time. For example, given [0] + [1] + [2] + [3] + [4] + [5], we’ll �nd that [0] + [1] can be reused for 5

di�erent operations, i.e., [0] + [1], [1] + [2], [2] + [3], [3] + [4], and [4] + [5]. However, since these

operand pairs overlap, e.g., the �rst two share the same operand [1], we cannot possibly select

all of them for reuse. Although it seems that this problem can be formalized as a graph matching
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problem, where the nodes are the operands and the edges are the operand pairs, it cannot be

solved using the standard minimum matching because the weight (computational cost) of an edge

is not static and may vary in di�erent matchings due to the sharing nature of the computational

cost. HSBR resolves the con�icts as follows. Notice that we only consider pairs of operands, for

the same reuse pattern, each pair can con�ict with at most two other pairs, making the con�ict

graph bipartite, i.e., there are two con�ict-free subsets for each group of con�icting operands. In

the previous example, the two choices of con�ict-free subsets are {[0]+ [1], [2]+ [3], [4]+ [5]} and

{[1] + [2], [3] + [4]}. In the candidate generation step, we generate candidates from both choices.

To account for the con�icts between di�erent reuse patterns, we generate multiple candidates

prioritizing each reuse pattern while greedily selecting other non-con�icting reuse patterns.

3.2.3.3 Regularity Exaction

Reusing operands spanning multiple dimensions may break regularity and lead to sub-optimality.

Take a 4×3 uniform-weight kernel as an example (Figure 3.6a), where the output is the average of

the 12 inputs. The aforementioned greedy algorithm selects two reuse patterns (labeled ¬ and ­)

in the same iteration, which ends up with a total of 5 ⊕ operations, as shown in Figure 3.6b. Non-

leaf nodes that correspond to the same reuse pattern are labeled with the same number. However,

(a) A 4×3 stencil kernel.

①①

②

① ①

②

(b) A possible operand selection.

③

① ① ① ①

(c) A better operand selection.

Figure 3.6: Di�erent operand selections on a 4×3 uniform-weight stencil kernel.

if we manually look for reuse, it is not hard to �gure out a schedule with only 4 ⊕ operations

(Figure 3.6c), which could be generated if we only select patterns along the vertical dimension
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(¬) in the �rst iteration of the algorithm. To address this, when the number of reuse patterns

exceeds a threshold (e.g., number of operands), candidate generation becomes less greedy and

only selects reuse patterns along the same direction.

3.3 Summary

In this chapter, we discussed the three important optimizations for stencil applications: paral-

lelization, communication reuse, and computation reuse. We have demonstrated that, with our

novel SODA microarchitecture, communication reuse can be achieved optimally with any par-

allelization factor. Moreover, we show that computation reuse can be applied on top of paral-

lelization and communication reuse, using an optimal algorithm for small kernels with up to 10

operands, or a heuristic algorithm for large kernels with more than 10 operands. Given the theo-

retical analysis, we shall discuss the design-space exploration for stencil applications in the next

chapter.
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CHAPTER 4

Model-Driven DSE for Stencil Applications

For the regular memory accesses in stencil applications, with the theoretical analysis presented

in Chapter 3, we can achieve full communication reuse and computation reuse and minimize

memory tra�c to the lowest possible in theory. However, the remaining design space is still too

large to explore manually. In this chapter, we present model-driven design-space exploration

(DSE) for stencil applications to guide optimization. Section 4.1 and Section 4.2 discuss DSE

for communication reuse and computation reuse, respectively. Section 4.3 explores the trade-o�

between accelerator frequency and area imposed by di�erent implementation granularity of the

same microarchitecture.

4.1 Design-Space Exploration for Communication Reuse

In this section, the programming model for SODA and the corresponding automation framework

are discussed �rst in Section 4.1.1. Under the proposed programming model, the con�gurable

parameters are then discussed in Section 4.1.2. Since these parameters form a large design space

and synthesizing an FPGA accelerator is very time-consuming, a resource model and a perfor-

mance model are proposed in Section 4.1.3 and Section 4.1.4 to predict the post-synthesis resource

utilization and the on-board execution performance, respectively. With these models, the large

design space can be pruned e�ectively, which is discussed in Section 4.1.5.
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4.1.1 Programming Model

To simplify accelerator kernel design, SODA de�nes a domain-speci�c language (DSL) to specify

the design parameters as well as the stencil kernel in a concise and high-level way.

As shown in Listing 4.1, the kernel statement speci�es the name of the stencil kernel. The

input statement speci�es the name, type, and tile size of the input data. Note that the last di-

mension of tile size is * because it is not needed for data linearization and therefore is given at

runtime. The output statement speci�es the name and type of output data as well as the stencil

kernel expression to compute it.

1 kernel: jacobi2d

2 input float: in(3000, *) # specifies the tile size

3 output float: out(0, 0) = (

4 in(0, -1) + in(-1, 0) + in(0, 0) + in(1, 0) + in(0, 1)) * 0.2f

5 unroll factor: 3

6 iterate factor: 2

7 # SODA supports multiple stages:

8 # local float: tmp(0,0) = (

9 # in(0, -1) + in(-1, 0) + in(0, 0) + in(1, 0) + in(0, 1)) * 0.2f

10 # output float: out(0,0) = (

11 # tmp(0, -1) + tmp(-1, 0) + tmp(0, 0) + tmp(1, 0) + tmp(0, 1)) * 0.2f

12 # SODA supports multiple arrays as input:

13 # local float: t(0, 1) = in(0, 0) + tmp(0, 2)

Listing 4.1: 2-dimensional Jacobi kernel in SODA DSL.

If the kernel contains more than 1 stage, intermediate stages can be speci�ed with local state-

ments. The unroll factor statement speci�es the number of PEs in each stage. The iterate

factor statement automatically implements the speci�ed number of iterations, which simpli�es

the expression of iterative kernels. Note that the expressions are not restricted to have only 1 in-

put array; the SODA compiler (sodac) is capable of processing kernels taking multiple arrays as

inputs. To connect with user-de�ned code, the SODA automation framework provides a concise

C/C++ binding of the generated accelerator.
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To reduce the burden of programming FPGAs, we develop a fully automated framework to

generate e�cient hardware accelerators for stencil computations. Currently, the SODA automa-

tion framework interfaces with Xilinx SDAccel implementation �ow. The automation framework

takes a high-level DSL as user input, implements tiling automatically, uses the SODA microarchi-

tecture discussed in Section 3.1.2 as building blocks for implementing stages, automatically solves

the dependencies among the stages, and connects multiple stages or iterations with data�ow op-

timization.

The complete SODA automation framework is shown in Figure 4.1. The SODA compiler

(sodac) parses the SODA DSL, does a source-to-source transformation, and generates the HLS

C++ code as the kernel and the OpenCL API code for the host. Then gcc will be invoked to com-

pile and link the OpenCL API with user-de�ned application and xocc will be invoked to launch

the Xilinx SDAccel �ow to do HLS, logic synthesis, placement, and routing. Host program and

FPGA bitstream will be the eventual synthesis results, ready for execution on any compatible en-

vironment. In addition, there is a standalone design-space exploration (DSE) framework provided

by SODA, which is used to automatically tune the kernel con�guration parameters for optimal

performance.

4.1.2 Con�gurable Parameters

Tile sizes T0, T1, ..., Tm−2. To generate valid accelerators, the linearization convention has to be

determined before synthesis. Since size of all but the last dimension appear in Formula 3.1, the

size of the �rst m − 1 dimensions of the input must be determined before synthesis. However,

the exact input size may not be determined at the time of accelerator design. Moreover, the input

may be too large to �t the on-chip storage. Therefore, tiling is a reasonable design choice. Note

that our automation framework automatically does tiling with the size speci�ed in the DSL and

the user does not have to do tiling manually. In this dissertation, we argue that with the ever-

increasing resolution of sensors, the input is su�ciently large, and the tile size is only limited by

the on-chip storage size.
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Unroll factor k. To avoid the confusion with the total number of PEs in a complex kernel,

the term unroll factor is used to represent the number of PEs in each stage, in analogy to the

case where the number of PEs generated for an unrolled loop is determined by the unroll factor.

Since all building-block modules in our data�ow architecture can be fully pipelined (which is

optimal for throughput), we argue that it does not make sense to use di�erent unroll factors

among di�erent stages, which will cause throughput mismatch among stages and increase the

initiation interval (II) of the stage with higher unroll factor. The SODA automation framework

implements all stages with the same unroll factor.

User-Defined
SODA DSL Kernel

User-Defined
C++ Host Application 

FPGA
Bitstream

Host
Program

g++   (GCC) xocc   (SDAccel)

Dataflow 
HLS Kernel

sodac   (SODA)
User-Defined Input

Executable Results

Xilinx 
OpenCL API

Intermediate Code

Design-Space 
Exploration

(SODA)

Figure 4.1: SODA automation framework.

Iterate Factor q. For iterative stencil kernels, iterate factor is the number of iterations im-

plemented in the accelerator. In practice, the number of iterations required by the application

is often much greater than the number of iterations can be implemented in an accelerator. To

complete all required iterations, the execution kernel must be invoked multiple times. In this

dissertation, we assume that the number of such invocation is su�ciently large and all iterate

factors that can be implemented under the resource constraint are permissible.
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4.1.3 Resource Model

The SODA DSE framework models all four types of resources on FPGAs, i.e. LUT, FF, DSP, and

BRAM. To make the model more practical, we target post-synthesis resource utilization instead

of the HLS result. Since the HLS report contains modularized details and can be obtained within

minutes whereas it is hard to distinguish user-level modules from the post-synthesis report, and

it takes hours to obtain, as the �rst step we take the HLS report and model the HLS resource

utilization. As the second step, based on the HLS report and post-synthesis report, we then make

adjustments to the HLS model accordingly so that the �nal model can re�ect the post-synthesis

resource utilization. Thanks to the modularized data�ow implementation, the resource utilization

of a SODA accelerator can be accurately modeled at the data�ow module level. Those modules

can be divided into three categories.

Compute modules consume the majority of resources for computation. The SODA DSE frame-

work obtains the resource utilization of each compute model by running HLS. Since compute

modules in the same stage for all iterations have the same structure, they only need to go through

HLS once.

Forwarding modules consume the majority of the remaining resources for communication.

For a forwarding module with a �-bit wide data type, LUT and FF consumption grows linearly

with fanout �. For those who implement a FIFO of depth � > 0, there is a constant LUT and FF

overhead for the control logic of the FIFO, in addition to the SRL or BRAM used to implement the

FIFO. Since only small FIFOs are implemented as SRLs with LUTs, LUTs used for this purpose are

much less than those used to implement logics. Thus, the SRL contribution to the LUT utilization

is ignored in the model. The coe�cients in the model are kernel-independent and can be obtained

from a series of pre-executed HLS results. �, �, and � are determined for each module by sodac,

according to the tile size and unroll factor con�guration and the stencil kernel itself. Forwarding

modules do not use any DSP.

We observe that it is very hard to develop a closed-form analytical formula to predict the
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BRAM usage Θ(�, �) from data width � and depth �, due to the undocumented optimizations

performed by Xilinx tools. For example, we observe that a 16-bit × 8K FIFO is implemented

with 8 BRAMs whereas a 16-bit × 16K FIFO is implemented with only 15 BRAMs. To accurately

predict BRAM utilization, SODA invokes Xilinx Vivado to synthesize a single FIFO and obtains

its BRAM utilization from the synthesis report. Such a simple synthesis only takes 3 to 4 minutes

and SODA keeps the results in a database so that the result can be reused. Notice that Θ(�, �) is a

step function of � and does not depend on module fanout �, the database can be frequently reused

and rarely updated. Among all design-space exploration performed in the experiments done in

Section 4.1.6, only 115 entries are needed. Since these entries are shared for di�erent kernels and

can be generated in parallel, time spent on theΘ(�, �)model is negligible compared with the time

needed to synthesize a complete accelerator.

Auxiliary modules, including the interconnections with DRAM, control signals, and memory

coalescing modules, constitute the remainder of resource consumption. The I/O modules and

control modules are independent with the tile size and the iterate factor, whereas the unroll factor

has a very weak in�uence on memory coalescing modules, which is negligible in size compared

with the total resource utilization. Consequently, resource utilization of auxiliary modules is

considered as a constant and can be obtained from the pre-executed HLS results.

With a given kernel and con�guration, the number and parameter of all modules can be de-

termined analytically via the microarchitecture generation algorithm presented in Section 3.1.2.

The total resource consumption is the sum of resource consumption of each module. Note that

the BRAM and DSP models obtained above are already re�ecting the post-synthesis results. Ex-

perimental results in Section 4.1.6.2 show 1.84% and 0% average prediction errors for BRAM and

DSP, respectively. For the LUT and FF utilization, we observe that the post-synthesis utilization of

LUT and FF have a linear relationship with the utilization reported by HLS. Moreover, this linear

relationship does not depend on the application kernel or con�guration parameters. Therefore,

we adjust our model for LUT and FF with a linear adjustment function to get post-synthesis mod-

els. Experimental results in Section 4.1.6.2 show 6.23% and 7.58% average prediction errors for
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LUT and FF, respectively.

4.1.4 Performance Model

As established in Section 3.1.1, our optimization objective is the sustained throughput H , which

can be measured by the number of output data elements per unit time. For an accelerator running

at frequency f and having tile size T⃗ = (T0, T1, ..., Tm−1), unroll factor k, and iterate factor q, the

ideal throughput of the kernel is

Hideal(k, q, T⃗ ) = kqf

m−1

∏

d=0

Td − q ⋅ (Sd − 1)

Td

(4.1)

where m is the number of dimensions and Sd is the stencil window size in each iteration. For

non-iterative stencil kernels, q ≡ 1.

Hideal may not be achievable since the hardware put constraints on H in two aspects: 1. Ex-

ternal bandwidth limits the e�ective unroll factor 2. Available resource limits the achievable tile

size, unroll factor, and iterate factor. The constraints are modeled as

H ≤ Hideal(k, q, T⃗ ) (4.2)

kf W ⋅

H

Hideal(k, q, T⃗ )

≤ B
MAX

(4.3)

R
(AUX,� )

+ kqR
(CP,� )

+ q ⋅ R
(FW,� )

(k, T⃗ ) ≤ R
(MAX,� )

(4.4)

� ∈ {LUT, FF,DSP,BRAM} represents the type of resource. H is the achieved throughput. B
MAX

is the maximum available DRAM bandwidth. W is the total width of input and output data types.

R
(MAX,� )

is the maximum available � resource. R
(AUX,� )

is the resource consumption of auxiliary

modules. R
(CP,� )

is the resource consumption of compute modules of a single PE in a single itera-

tion. R
(FW,� )

(k, T⃗ ) is the resource consumption of forwarding modules in a single iteration, which

is a function of k and T⃗ . Note that as a result of the data�ow implementation, the frequency

of accelerators achieved is always within 10% of the target, according to our experimental re-

sults. Therefore, in the performance model we treat f as a constant. Experimental results in

Section 4.1.6.2 show 4.22% average prediction error for performance.
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4.1.5 Design-Space Pruning

As shown in Section 4.1.4, both the objective function and the constraints are non-linear. There-

fore, we do not seek closed-form solution. Instead, we prune the design space and use branch-

and-bound method to �nd the optimal con�guration.

The design space of unroll factor k is limited by the external interface. On our evaluation

platform, the input and output interface are both 512 bits wide. To avoid complex multiplexers,

k is restricted to powers of 2. With the minimum data type width being 8 bits, this e�ectively

reduces the design space of k to have at most 6 points. For iterative kernels, the iterate factor q

is a positive integer, but it is bounded by the constraint in Formula 4.4. That is, the total number

of PEs is bounded by the available resources. On our evaluation platform, for the simplest PEs,

kq ≤ 10
2
. For non-iterative kernels, q ≡ 1. The design space of tile sizes T0, T1, ..., Tm−2 is much

larger compared with k and q, especially for high-dimensional stencils. Nevertheless, notice that

the bound ofH is monotonically increasing with respect to Td in each dimension d for every given

k and q, T0, T1, ..., Tm−2 can be e�ciently searched via branch-and-bound. Note that Tm−1 is not

part of the design space because it is determined by the input and is a runtime parameter instead

of a design parameter. With the on-chip storage size being several megabytes, the total size of

design space can then be reduced to less than 10
6

and can be explored within a few minutes.

4.1.6 Experimental Evaluation

4.1.6.1 Experiment Setup

We evaluate SODA with a Xilinx Kintex UltraScale FPGA. The AlphaData ADM-PCIE-KU3 board

used in our experiments is equipped with XCKU060 FPGA and 2 × 8 GB 1600 MT/s DDR3 DRAMs.

High-level synthesis is performed by Xilinx Vivado HLS. Xilinx SDAccel 2017.2, the latest version

o�ering support for this platform, is used for system integration. The target clock frequency is

250 MHz. The CPU experiments are conducted on a server with two Intel Xeon E5-2620 v3 CPUs

and 4 × 16 GB 2133 MT/s DDR4 DRAMs.
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We use 3 non-iterative benchmarks and 4 iterative benchmarks to evaluate our SODA frame-

work. The benchmarks cover a wide range of application domains and have been used in previous

published works [35,135]. Among the 7 benchmarks, SOBEL 2D is used for edge detection in the

image processing domain. DENOISE 2D/3D are used in the medical imaging domain [35]. The

four iterative benchmarks, namely JACOBI 2D/3D, SEIDEL 2D, and HEAT 3D, are used in the

linear algebra domain [135].

Table 4.1: Benchmarks used for communication reuse.

Benchmark Iterative? Data Type

Optimal Con�guration

Tile Size Unroll Factor Iterate Factor

SOBEL 2D [35] No uint16_t 524302 32 —

DENOISE 2D [35] No float (2 in, 1 out) 21846 8 —

DENOISE 3D [35] No float (2 in, 1 out) 156×157 4 —

JACOBI 2D [135] Yes float 16392 8 10

JACOBI 3D [135] Yes float 181×182 8 6

SEIDEL 2D [135] Yes float 32768 8 9

HEAT 3D [135] Yes float 256×257 8 5

4.1.6.2 Model Validation

In Section 4.1.3 and Section 4.1.4 we proposed a resource model and a performance model. In

this section, we run two sets of experiments to validate our model. In the �rst set of experi-

ments, we �x the tile size and explore the unroll factor. For iterative benchmarks, we also explore

di�erent iterate factors. In the second set of experiments, we �x the unroll factor and explore

the tile size. In total, 75 di�erent con�gurations are synthesized. The average of the achieved

frequency is 245.66MHz with the lowest being 229.1MHz. To validate the resource model, we

compare the model prediction against the post-synthesis resource utilization. To validate the per-
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formance model, we run on-board experiments with 4 di�erent sizes of input and obtain sustained

throughput via linear regression of the execution time and the number of pixels processed. The

measurement errors of throughput are within 1% for all con�gurations. The average error rate

of the model prediction is listed in Table 4.2.

Table 4.2: Average error rate of model prediction.

Prediction Item BRAM DSP LUT FF Throughput

Average Error 1.84% 0% 6.23% 7.58% 4.22%

4.1.6.3 Performance Analysis

Table 4.3 compares the performance of the optimal con�gurations found by the SODA DSE frame-

work with four baselines. To make the CPU baseline realistic, all benchmarks are rewritten in

Halide [146] DSL and optimized via tiling, parallelization, and vectorization. The resulting CPU

code is able to utilize all 24 hyper-threads on our server. We implement the FPGA baselines using

the methodologies proposed in [35], [135], and [183]. Note that [135] and [183] do not target

non-iterative stencil algorithms and [35] does not target iterative stencil algorithms. The #Op

column shows the number of operations per iteration.

As shown in Table 4.3, the 24-thread CPU baseline outperforms SODA for non-iterative bench-

marks. This is because non-iterative benchmarks are bounded by communication. The CPU plat-

form has 4 DDR4 channels with 68.3 GB/s theoretical bandwidth in total whereas the FPGA plat-

form only has 2 DDR3 channels with 25.6 GB/s theoretical bandwidth. If they have the same ex-

ternal memory bandwidth, SODA can outperform CPU by 1.65x on average. For iterative bench-

marks, SODA (and other FPGA platforms) can compute multiple iterations without extra accesses

to the external memory whereas the CPU platform has to make a trade-o� between memory ac-

cess and redundant computation. Consequently, SODA outperforms the CPU baseline by 2.76x

on average.
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Table 4.3: Performance comparison of SODA and previous work.

Benchmark #Op Platform
Throughput Performance

(Norm. to 24t-CPU)pixel/ns Op/ns

SOBEL 2D 16

CPU 6.66 106.59 1

[35] 0.25 4.00 0.04

SODA 5.37 85.86 0.81

DENOISE 2D 45

CPU 1.86 83.55 1

[35] 0.25 11.07 0.13

SODA 1.05 47.07 0.56

DENOISE 3D 57

CPU 1.91 109.01 1

[35] 0.25 14.24 0.13

SODA 0.93 53.16 0.49

JACOBI 2D 5

CPU 5.49 27.44 1

[135] 16.67 83.34 3.04

[183] 17.20 86.01 3.13

SODA 18.01 90.04 3.28

JACOBI 3D 7

CPU 4.24 29.66 1

[135] 4.72 33.01 1.11

[183] 9.86 69.04 2.33

SODA 12.00 83.98 2.83

SEIDEL 2D 6

CPU 5.82 34.90 1

[135] 15.03 90.18 2.58

[183] 15.99 95.95 2.75

SODA 16.22 97.34 2.79

HEAT 3D 15

CPU 4.21 63.18 1

[135] 4.70 70.57 1.12

[183] 6.65 99.70 1.58

SODA 8.99 134.91 2.14

Thanks to scalable, �ne-grained parallelism provided by the SODA microarchitecture, SODA

shows 9.82x speed up on average compared with [35]. Compared with [135], SODA achieves 1.08x

average speedup on 2D benchmarks and 2.23x average speedup on 3D benchmarks. Compared
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with [183], SODA achieves 1.03x average speedup on 2D benchmarks and 1.28x average speedup

on 3D benchmarks. The speedup comes from three aspects: 1. SODA uses less resources for

communication and can therefore implement more PEs. 2. SODA can accommodate larger tile

sizes and is thus less sensitive to the halo size (which is proportional to the iterate factor). 3. SODA

provides scalable, �ne-grained spatial parallelism and can reduce the halo size caused by temporal

parallelism. The di�erence of the speedup on 2D and 3D benchmarks is due to (2), where 3D

benchmarks have much smaller tile sizes in a single dimension compared with 2D ones (as shown

in Table 4.1) and are thus more sensitive to large halo size. The optimal microarchitecture and

systematic DSE brought by SODA give more speedup for 3D benchmarks compared with [183].

In addition, the optimal con�guration for SODA can be obtained from fast and automated DSE,

which previous accelerator designs do not provide.

4.2 Design-Space Exploration for Computation Reuse

Given the number of parallel processing elements (i.e., the parallel factor), Section 4.1 discusses

Pareto-optimal communication reuse bu�ers and Section 3.1.3 proves that the minimum on-chip

storage required by a stencil kernel is determined by the sum of the reuse distance and the parallel

factor. Since the parallel factor is an additive term and can be chosen independently, the storage

requirement of a stencil kernel can be fully characterized by the reuse distance, independent of the

underlying hardware platform or microarchitecture. For a complex multi-stage kernel, which is

common after computation reuse is applied (e.g., Formula 2.2), the conclusion from Section 3.1.3

still holds, and the total storage requirement can be characterized by the total reuse distance
1
.

However, the total reuse distance is no longer a constant attribute of the kernel. We shall show

an example of such case, followed by an algorithm that minimizes it. The minimum total reuse

distance obtained will be used to characterize the storage requirement with computation reuse.

1
W.l.o.g. we assume all element sizes are the same for conciseness.
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4.2.1 Total Reuse Distance for a Complex Stencil Kernel

We start with the following example involving two input arrays X1, X2, an intermediate array T ,

and an output array Y :

T [2] = X1[0] + X1[1] + X2[0] + X2[1]

Y [0] = X1[3] + X2[3] + T [0] + T [2]

(4.5)

The reuse distances for X1, X2, and T are X1[0]⋯X1[3] = 3, X2[0]⋯X2[3] = 3, and T [0]⋯T[2] = 2,

respectively. The total reuse distance is 3 + 3 + 2 = 8. Notice that Formula 4.5 implies T [2] and

Y[0] are produced at the same time, we can shift the production of T and make T [4] be produced

at the same time as Y[0], i.e.

T[4] = X1[2] + X1[3] + X2[2] + X2[3]

Y [0] = X1[3] + X2[3] + T [0] + T [2]

(4.6)

The reuse distances become X1[2]⋯X1[3] = 1, X2[2]⋯X2[3] = 1, and T [0]⋯T[4] = 4, respec-

tively. The total reuse distance becomes 1 + 1 + 4 = 6 < 8. Obviously, the total reuse distance for

a complex stencil kernel may vary as the relative o�set between stages change. Section 4.2.2 will

discuss how to minimize it.

4.2.2 Minimizing Total Reuse Distance

Assume we implement our stencil accelerator with a synchronous clock. Given a stencil kernel

in which q arrays {Yt |t = 0, ..., q −1} are involved, let {Ys} be the children of Yt and Ys[0] consume

{Yt[au]} from Yt . For example, in Formula 4.5, X1, X2, T , Y are the arrays involved. T is a child

of both X1 and X2. T[0] consumes X1 and X2 at X1[−2], X1[−1] and X2[−2], X2[−1], respectively.

Let {Yt[pt]|t = 0, ..., p − 1} be produced at the same cycle. {pt} are the variables to be determined.

The reuse distance of each Yt is

Dt = pt − min
s,u

(ps + au |s ∈ children(t), u ∈ accesses(t → s))
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Our goal is to minimize the total reuse distance ∑
t
Dt . For Formula 4.5,

T [pT ] = X1[pT − 2] + X1[pT − 1] + X2[pT − 2] + X2[pT − 1]

Y [pY ] = X1[pY + 3] + X2[pY + 3] + T [pY ] + T [pY + 2]

DX1
= pX1

− min (pT − 2, pY + 3) DT = pT − pY

DX2
= pX2

− min (pT − 2, pY + 3)

The constraint is that an array cannot be consumed before produced:

pt ≥ ps + au, ∀t, s ∈ children(t), u ∈ accesses(t → s)

For Formula 4.5, the constraints are:

pX1
≥ pT − 2 pX1

≥ pT − 1 pX1
≥ pY + 3 pT ≥ pY

pX2
≥ pT − 2 pX2

≥ pT − 1 pX2
≥ pY + 3 pT ≥ pY + 2

Notice that each constraint is of the type xi − xj ≤ cij , this is a systems of di�erence constraints

(SDC) problem and can be solved optimally in polynomial time [41]. For Formula 4.5, the solution

is pX1 = pX2 = pY + 3, pT = pY + 4, which gives the minimum total reuse distance of 6 and matches

Formula 4.6.

4.2.3 Experimental Results

We extend the SODA compiler presented in Section 4.1 to implement the computation-reuse

algorithms. DSE is written in C++ and runs on a single thread of Intel Xeon E5-2699 v3 CPU.

Synthesis is performed by Vivado 2019.1, targeting the Alveo U250 board. The stencil kernels

used in the experiments include eight Laplacian kernels used in [20, 103, 135, 179], three image

stabilization kernels used in [15], a Gaussian smoother kernel used in pose detection [100], and

two biharmonic operator kernels used in [55,62]. Details about the kernels are listed in Table 4.4.

In addition to these real-world benchmarks, we also generate arti�cial 3×3 kernels to assess the

optimality gap between the heuristic algorithm and the optimal one.

2
Marked benchmarks use 8-bit integers; others use 32-bit float.
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Table 4.4: Stencil benchmarks used in the experiments.

Name Computation Size Name Computation Size

s2d5pt weighted sum of 5 3×3 s2d33pt weighted sum of 33 17×17

f2d9pt weighted sum 3×3 f2d81pt weighted sum 9×9

s3d7pt weighted sum of 7 3×3×3 s3d25pt weighted sum of 25 9×9×9

f3d27pt weighted sum 3×3×3 f3d125pt weighted sum 5×5×5

contrast
2

weighted sum of 197 17×17 erosion
2

minimum 19×19

xcorr
2

sum except center 19×19 smoother weighted sum 25×25

bigbiharm weighted sum of 25 7×7 lilbiharm weighted sum of 13 5×5

4.2.3.1 Number of Operation Reduction

Table 4.5 shows the number and type of operations required to produce each output element. The

performance of the kernels are �xed to produce 1 output element per clock cycle and all o�-chip

communication is fully reused. The baseline SODA [20] compiler implements the kernels without

computation reuse optimization. Note that SODA outperforms previous papers [35, 135, 183] by

up to 9.82× [20]. DCMI [103] is a recent work that synthesizes iterative stencil kernels to FPGAs.

DCMI removes redundant multiplication operations, but not the addition (reduction) operations.

HSBR shows the result of our heuristic algorithm. Note that for kernels that are small enough

(less than 10 points), we are able to verify that the heuristic algorithm actually produces the optimal

result. On average, our presented algorithm reduces the reduction operations by 58.2%
3
.

4.2.3.2 Impact of Design-Space Pruning Heuristics

Figure 4.2 shows the average operation reduction and the design-space exploration (DSE) time

with di�erent beam widths and heuristics used in HSBR. Time is normalized per benchmark

3
= 1 − GeoMean {target/baseline}
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Table 4.5: Operation reduction. Bold items are veri�ed to be optimal.

Kernel
Pointwise Operations Reduction Operations

SODA [20] DCMI [103]/HSBR SODA/DCMI HSBR

s2d5pt 5 1 (-80%) 4 3 (-25%)

s2d33pt 33 9 (-73%) 32 24 (-25%)

f2d9pt 9 3 (-67%) 8 6 (-25%)

f2d81pt 81 15 (-82%) 80 48 (-40%)

s3d7pt 7 1 (-86%) 6 5 (-17%)

s3d25pt 25 5 (-80%) 24 20 (-17%)

f3d27pt 27 4 (-85%) 26 14 (-46%)

f3d125pt 125 10 (-92%) 124 40 (-68%)

contrast 197 30 (-85%) 196 113 (-42%)

erosion 0 0 360 12 (-97%)

xcorr 0 0 359 13 (-96%)

smoother 625 91 (-85%) 624 336 (-46%)

bigbiharm 25 5 (-80%) 24 14 (-42%)

lilbiharm 9 3 (-67%) 12 9 (-25%)

average
3

— -81% — -58%

to obtain meaningful averages over di�erent benchmarks. In general, larger beam width yields

better results, but requires longer DSE time. Operation selection speeds up HSBR by reducing

the search depth. Con�ict resolution adds some over-pruned points back to the design space and

thus compensates some quality of result loss caused by operation selection. Regularity exaction

further improves the quality and the runtime by prioritizing regular patterns.
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Figure 4.2: Impact of heuristics in HSBR.

4.2.3.3 Performance Boost for Compute-Intensive Stencil

Stencil computation can be compute-intensive if it is iterative [20, 135, 166, 183], or has many

operations per output. For compute-intensive stencil kernels, computation reuse can save re-

sources (Section 4.2.3.4) and directly result in a performance boost. We compare the 8 iterative

kernels with CPU/GPU results from [179] in Figure 4.3. Note that [179] includes all three aspects

of stencil optimizations, i.e., parallelization, communication reuse, and computation reuse. All

FPGA implementations are scaled up to use the available DSPs and runs at 100 – 125 MHz
4
. On

average, DCMI [103] achieves 1.6× speedup over SODA [20], whereas our proposed HSBR al-

gorithm achieves 2.3×. Moreover, thanks to the highly customized datapaths and fully pipelined

microarchitecture, HSBR outperforms multicore Xeon Gold CPU by 10.9×, many-core Xeon Phi

processor by 3.17×, and P100 GPU by 1.53× on average, respectively.

4.2.3.4 Resource Consumption Reduction

Figure 4.4 compares the resource usage of the DCMI optimization and our proposed HSBR algo-

rithm with the baseline SODA implementation. Flip-�op (FF) usage is not reported in the �gure

because it is tightly coupled with look-up table (LUT) usage and is never used more than LUTs.

4
Designs are HLS-based prototypes and are not �ne-tuned for high-frequency [77]. Section 4.3 discusses our

e�ort to improve clock frequency.
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Figure 4.3: Performance of iterative kernels.

From the �gure, we can see that both optimizations can save computational resources like LUTs

and digital-signal processors (DSP) compared with the baseline implementation, possibly at the

cost of storage resources (e.g., block random-access memories, BRAMs). On average, DCMI uses

85.1% LUT and 62.6% DSP with 100.0% BRAM usage (compared with SODA baseline). The re-

duction on LUT and DSP is from the reuse of multiplication operations, and the BRAM usage

is the same as SODA since reusing multiplication can be done without additional storage. The

HSBR algorithm, on the other hand, only uses 41.0% LUT and 45.4% DSP with 123.7% BRAM usage

(compared with SODA baseline). For large kernels (e.g., contrast, erosion, and xcorr), the baseline

implementations generate very deep pipelines that lead to a high BRAM usage. With computa-

tion reuse, the kernels are decomposed into smaller ones with shallower pipelines, which can

signi�cantly reduce the BRAM usage. The geometric mean of BRAM usage is strongly biased

by those cases; after excluding them, the average BRAM usage is 231.9% for HSBR. Note that al-

though the storage (BRAM) usage with computation reuse applied can be as high as 7×, we argue

that one can scale up the performance at the cost of computational resources (LUTs and DSPs)

without signi�cant increase of storage resources, which makes it reasonable to trade-o� storage

for computation. Actually, when we scale up each benchmark, we �nd that BRAM usage never

bottlenecks the resource usage; the bottleneck is always DSP (for �oating-point numbers) or LUT

(for �xed-point numbers).
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Figure 4.4: Resource usage reduction. The normalization baseline is SODA [20]. BRAM* excludes

erosion and xcorr to avoid being biased. Truncated bars are marked with values.
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Figure 4.5: Polynomial scalability of HSBR. Di�erent points in the same shape correspond to

di�erent benchmarks.

4.2.3.5 Design-Space Exploration Cost

The optimal algorithm scales up to 10-point stencil kernels and runs in 10 minutes with 6 MiB

memory. Although the memory usage remains low, scaling to 11 points requires more than 2

hours on our test machine. Figure 4.5 shows the HSBR design-space exploration (DSE) time

with various beam widths. Note that since the DSE time is tightly coupled with the kernels,

the data points do not align well on a straight line. Since beam search has bounded memory

complexity, the memory consumption of HSBR is moderate (< 100 MiB). In general, the cost of

the DSE becomes low with the heuristic algorithm.
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4.2.3.6 Optimality Gap

Although it is impossible to assess the optimality gap for all kernels, we assess the gap between

the heuristic algorithm and the optimal algorithm for small kernels. In addition to the real-world

benchmarks, we randomly generate arti�cial 3×3 kernels to examine how well the heuristics per-

form. Out of the 11528 kernels we generated randomly, there are 5281 kernels with computation

reuse opportunity, and our heuristic algorithm can �nd all of them with the least number of re-

quired operations with a beam width of 3. Even with the storage overhead (total reuse distance)

taken into consideration, HSBR can yield the optimal reuse bu�er size with a beam width of 4.

This is shown in Figure 4.6.
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Figure 4.6: Optimality gap of HSBR on 5281 arti�cial 3×3 kernels.

4.3 Design-Space Exploration for Frequency/Area Trade-O�

Di�erent architectural implementations may lead to very di�erent quality of result for the same

theoretically optimal design. In particular, as presented in Section 3.1, SODA uses a �ne-grained

data�ow microarchitecture, which is composed of many small forwarding modules and compute

modules. Each module in SODA is purely functional, i.e., they do not have side e�ects nor main-

tain an internal state, which means that we can group small modules into larger ones without

changing the functionality of the whole kernel. Smaller modules restrict control signals to each

module locally and thus are good for high frequency [77]. Larger modules, on the other hand,

can better share and amortize hardware resources for loop control, reuse bu�er, etc., and are thus

more area-e�cient. In this section, we introduce 4 di�erent strategies to merge small modules
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and explore the frequency/area trade-o� for SODA.

4.3.1 No Module Merging
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Figure 4.7: A SODA kernel with 3 PEs per iteration and 2 iterations in total.

Figure 4.7 shows an iterative SODA kernel with 3 PEs per iterations and 2 iterations in total.

The red ellipses represent input or output modules. The green boxes represent forwarding mod-

ules. The blue boxes represent computation modules (processing elements). Without merging,

each box is scheduled statically and independently, with ready-valid handshake interfaces for the

streaming inputs and outputs (shown as solid arrows connecting the boxes in Figure 4.7). This

example is the basis of the examples illustrated in the 4 di�erent merging strategies.

4.3.2 Fine-Grained Module Merging
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Figure 4.8: Fine-grained module merging for the example in Figure 4.7.
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Since each reuse chain must be generated from either an input or a PE (Section 3.1.2), we can

always merge the reuse chain together, as shown in Figure 4.8. This is the �nest-grained merging

strategy based on logical hierarchy (the logical dependency and relationship among modules).

4.3.3 Coarse-Grained Module Merging
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Figure 4.9: Coarse-grained module merging for the example in Figure 4.7.

A coarser-grained merging strategy is to merge everything in each iteration/stage together.

This is the same as full-scale merging if there is only one iteration/stage. Figure 4.9 shows the

coarse-grained module merging strategy for the example in Figure 4.7.

4.3.4 Full-Scale Module Merging
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Figure 4.10: A SODA kernel with 3 PEs per iteration and 2 iterations in total.

The full-scale merging strategy aggressively merges all modules together into a single, gigan-
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tic module, which removes any inter-module communication channels and minimizes resource

utilization. This is the coarsest-grained merging strategy based on logical hierarchy. Figure 4.10

shows the full-scale module merging strategy for the example in Figure 4.7.

4.3.5 Module Merging Based on Physical Hierarchy

The three merging strategies introduced in the previous sections are all based on the logical hier-

archy of the design. They leverage the logical dependency and relationship of di�erent modules

and components in the design, e.g., a reuse chain is always produced by an input or a PE, and

all modules in the same iteration/stage collaboratively produce the same output array. Such log-

ical hierarchy may not map well to the two-dimensional layout of modern large FPGAs, since

it is usually conceived with little or no consideration of the hardware layout information [32].

An alternative is to merge modules based on physical hierarchy that is most suitable for being

embedded on a two-dimensional silicon surface [31], e.g., to merge modules so that each merged

module �ts a physical coarse-grained �oorplanning partition while minimizing the number of

wires connecting the modules.

To merge modules based on physical hierarchy, we leverage AutoBridge [76]. AutoBridge is

capable of coarse-grained �oorplanning at the HLS level for data�ow programs. It takes as input

a data�ow graph representation of an HLS program, takes into account the physical layout of the

underlying device, and tries to produce an optimal �oorplan that minimizes the total number of

wires between di�erent partitions (pblocks). While AutoBridge can be applied directly on SODA

programs without module merging, merging modules in each partition can further reduce slice

utilization and potentially improve routability. In case the kernel is small enough and AutoBridge

decides to put everything in a single partition, module merging based on physical hierarchy will

produce the same result as full-scale merging.
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Table 4.6: Comparison among di�erent module merging strategies. Bold items indicate the best

(lowest LUT usage or highest clock frequency) merging strategy of that benchmark.

Benchmark
LUT Usage/% Clock Frequency/MHz

None Fine Coarse Full Physical None Fine Coarse Full Physical

s2d5pt 58.1 50.9 48.8 Timeout 43.8 261 243 245 Timeout 299

s2d33pt 52.8 45.4 Failed Failed 37.8 276 273 Failed Failed 300

f2d9pt 52.5 48.7 46.4 Timeout 43.1 278 270 290 Timeout 300

f2d81pt 49.5 44.6 Failed Failed 39.9 248 260 Failed Failed 275

s3d7pt 47.2 40.0 37.9 Timeout 38.1 271 289 300 Timeout 264

s3d25pt 49.9 46.5 Failed 37.6 Failed 300 231 Failed 112 Failed

f3d27pt 52.9 46.6 45.8 Timeout 41.6 165 288 224 Timeout 282

f3d125pt 39.9 37.2 35.2 Failed 34.5 280 274 224 Failed 294

4.3.6 Experimental Results

Table 4.6 shows the post-implementation results comparing the �ve di�erent module merging

strategies using the iterative benchmarks in Table 4.4. The target FPGA device is Alveo U250,

which has 4 DDR channels. We set the timeout for each design to 72 hours. As demonstrated in

Table 4.6, merging smaller modules can clearly reduce resource utilization. The merging strategy

based on physical hierarchy proves to be the most resource-e�cient in all but one cases because its

merging granularity matches both the logical hierarchy of the benchmark kernel and the physical

hierarchy of the device. Merging everything into a single module failed to complete in 72 hours

for all benchmarks, with only one exception that was under-clocked at 112 MHz, which is the

lowest among all successful designs in Table 4.6. This is likely due to the high fan-out of the

control signals in the singleton module [77]. The clock frequency does not show a clear trend

as in the LUT usage because timing closure can be impacted by many factors. Nevertheless, the

merging strategy based on physical hierarchy is a good choice in most cases due to its awareness

of the physical hierarchy of the device.
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Figure 4.11: Performance of iterative kernels with frequency improved by applying module merg-

ing and coarse-grained �oorplanning (bold items in Table 4.6).

Figure 4.11 compares the performance of SODA with module merging and coarse-grained

�oorplanning applied on top of parallelization, communication reuse, and computation reuse.

The best merging strategy found in Table 4.6 is used. Although the merging strategy based on

physical hierarchy is the most likely strategy to produce the best result, it failed to route in one

of the benchmarks and did not achieve the highest frequency in two other cases. Note that al-

though the same benchmarks can run on an HBM-equipped FPGA, the DDR-based U250 FPGA

has more computational resources and thus can help to achieve higher performance for the iter-

ative benchmarks. Compared with a state-of-the-art software system [179] which also considers

parallelization, communication reuse, and computation reuse, the average speedups of SODA on

Alveo U250 over multicore Xeon Gold CPU, many-core Xeon Phi accelerator, and P100 GPU are

13.0×, 4.0×, and 1.9×, respectively.
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4.4 Summary

In this chapter, we have demonstrated model-driven design-space exploration for both communi-

cation reuse and computation reuse. Under the same model, we further explored di�erent imple-

mentation granularities by merging the �ne-grained modules into larger ones that leads to fewer

resource usage. With the latest-generation FPGA board, SODA can outperform multicore CPU,

many-core accelerator, and high-end GPU by 13.0×, 4.0×, and 1.9×, respectively. With extensive

design-space exploration, we shall raise the abstraction level and present an end-to-end compi-

lation �ow from a high-level domain-speci�c language to e�cient FPGA accelerators in the next

chapter.
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CHAPTER 5

Enabling High-Level DSLs for Stencil Applications

Image processing plays a signi�cant role in lots of applications today, including medical imag-

ing [75], autonomous driving [98], augmented reality [162], and computational photography [121].

Lying in the core of image processing pipelines are local sliding windows [9], i.e., stencil kernels.

However, due to large number of processing stages and the complex data dependency, image

processing pipelines are often memory-bound and implementing them e�ciently is not an easy

job. It is di�cult and time-consuming for a designer to write image processing algorithms while

parallelizing and optimizing for data locality and performance. Halide [146], a widely-used image

processing domain-speci�c language (DSL), partially solves this problem by decoupling the al-

gorithm and scheduling to allow programmers to search for optimized mappings of the resulting

pipelines to various parallel architectures and complex memory hierarchies.

The theoretical analysis presented in Chapter 3 and the model-driven DSE presented in Chap-

ter 4 have demonstrated the advantages of FPGA accelerators over CPU and GPU for stencil ker-

nels like image processing pipelines. However, while the Halide community has been growing

rapidly in recent years (received over 3,000 stars on GitHub [59]), there is no way to easily mi-

grate the vast number of Halide programs to FPGA accelerators. The direct and traditional way to

design FPGA accelerators is to rewrite programs to register-transfer level (RTL) code. This is very

time-consuming. Although C-based high-level synthesis (HLS) raises the design abstraction level

to untimed speci�cation by automated scheduling, pipelines, and resource sharing [37], it still re-

quires expertise on the microarchitecture to get e�cient designs that result in a high threshold

for software programmers. The complicated rules of using scheduling primitives for HLS bring
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programmers a greater workload as well.

Another approach is to rewrite Halide programs to hardware-oriented DSLs, such as Dark-

room [82], Hipacc [147], PolyMage [28], SODA [20], and HeteroCL [110]. But it still takes time

to learn these DSLs, not to mention other limitations that exist in these DSLs. For example,

Darkroom supports only 1 pixel/cycle pipelines, which may not be acceptable for many image

applications. HeteroCL is a promising heterogeneous programming language inspired by Halide,

but it takes time for Halide programmers to learn. Some conventions and behaviors of HeteroCL

and Halide are not the same. This may cause confusion to programmers who try to manually

migrate from Halide to HeteroCL.

The only prior work from Halide to FPGA is Halide-HLS [144]. Halide-HLS is a Halide-to-

FPGA compiler and allows programmers to design FPGA accelerators without many modi�ca-

tions. It provides a simple way for Halide programmers to implement their programs on a Xilinx

Zynq FPGA. However, due to the lack of active maintenance, the HLS code it generates is no

longer supported by the latest FPGA vendor tools, which means no one can actually make use of

it now. Even if someone is willing to make it up-to-date, a signi�cant amount of engineering ef-

fort would be required because their code generator and the generated architecture is tightly and

directly coupled with the backend HLS tool. Nevertheless, this work is an important motivating

factor of this study.

In this chapter, we present HeteroHalide, an end-to-end system for compiling Halide pro-

grams to FPGA accelerators, making use of both algorithm and scheduling information speci�ed

in a Halide program. HeteroHalide not only signi�cantly simpli�es the migration e�ort, but

also enables e�cient accelerator designs via its �exible backend choices. For stencil applications

which is common in image processing pipelines, in addition to parallelization, computation reuse,

and communication reuse that SODA can explore, HeteroHalide further enables algorithm-level

exploration. More concretely, our contributions are as follows:

∙ HeteroHalide provides an easy-to-use �ow from Halide to FPGA. It only requires moderate
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modi�cations for Halide programs on the scheduling part, instead of algorithm. Compared

to other existing approaches, including rewriting in HLS/RTL, this solution of migrating

Halide greatly reduces the migration e�ort.

∙ HeteroHalide generated accelerators outperform both CPU with 28 cores and the Halide-

HLS FPGA compiler. Accelerators generated by HeteroHalide achieve 4.15× speedup on

average over CPU, and has 2 ~ 4× peak performance as Halide-HLS, when tested on the

same Zynq-7020 board.

∙ We develop a Halide-to-HeteroCL code generator, which can automatically generate Het-

eroCL [110] code, with both algorithms and schedules. We choose HeteroCL as the inter-

mediate representation (IR) in HeteroHalide, because of its great hardware customization

capability, using the idea of separating algorithms and schedules. HeteroCL supports mul-

tiple heterogeneous backends (spatial architectures), including a stencil backend [20], a

systolic array backend [38], and the general Merlin compiler backend [33]. Therefore, it is

able to generate e�cient hardware code according to the type of the applications.

∙ When Halide is compiled, the scheduling is applied directly at IR level using immediate

transformation. We make extensions on Halide schedules, allowing some schedules to be

lowered with annotations, using lazy transformation. By adding this extension to Halide,

HeteroHalide can generate speci�c scheduling primitives at the HeteroCL backend level,

thus emitting more e�cient accelerators.

The remainder of this chapter is organized as follows. In Section 5.1, we brie�y introduce the

compilation �ow used by Halide. Section 5.2 describes our extensions to the Halide language,

which allows the scheduling primitives to be mapped to FPGA. Section 5.3 evaluates the produc-

tivity and quality of result.
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5.1 Halide Compilation Flow

As discussed in Section 2.3.1, Halide is a domain-speci�c language that separates schedule from

algorithm. Programmers can change the implementation (i.e., schedule) of the same algorithm

by changing the scheduling primitives, which include loop transformations like split, fuse,

reorder, tile, etc., and parallelization primitives like unroll, parallel, vectorize, etc. This

allows programmers to explore the design space and search for the optimal schedule for di�erent

target devices e�ciently.

When compiling Halide source code, the Halide compiler analyzes the syntax and semantics

of the algorithm part of Halide program and transforms them into an abstract syntax tree (AST).

Every node in the AST represents an operation to the variables, such as Add and Store. In the

process of analyzing syntax, an AST node may point to other nodes. For example, a For loop

node points to a Stmt node as its loop body and two Expr nodes that store the start and trip

count of the loop. Metadata about the loop, such as parallelization type, are also stored in the For

node. As such, Halide builds the connections between operations and variables by constructing

this AST. The AST is used as the IR in Halide. Once the Halide IR is lowered from source code,

the Halide compiler will then apply optimization passes according to the scheduling primitives,

adding, removing, or modifying IR nodes, and generate the �nal, optimized Halide IR. Finally, the

target’s code generator will emit code for the target architecture from the Halide IR.

5.2 HeteroHalide Compilation Flow

HeteroHalide provides an automated �ow from Halide to FPGA accelerators. It consists of a

Halide-to-HeteroCL code generator, HeteroCL, and multiple backends of HeteroCL. More specif-

ically, HeteroCL generates corresponding hardware domain-speci�c languages (DSL) to these

heterogeneous backends, and then those backends generate hardware code from their hardware

DSLs.
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Both Halide [146] and HeteroCL [110] separate algorithms and schedules in the code. How-

ever, there are still some semantic gaps between them in the scheduling part while the algorithm

part is basically consistent during code generation. When a Halide program is compiled, the

scheduling primitives are applied at the IR level and are hard to recover, but HeteroCL often

needs explicit scheduling information to generate e�cient accelerators. To tackle this challenge,

we propose two schedule lowering methods and extend Halide by changing the scheduling primi-

tives accordingly. The rest of this section introduces the process of code generation for algorithms

and schedules, with examples, and our extensions on schedule transformation.

5.2.1 Algorithm Transformation

This step is straightforward. We use the blur �lter as an example to show the compilation from

Halide algorithm code to HeteroCL algorithm code. The blur �lter consists of two stages. Each

stage is described by a Halide function and represents a 3×1 (or 1×3) �lter, as shown in Listing 5.1.

1 Func blur_x("blur_x");

2 blur_x(x, y) = (input(x, y) + input(x+1, y) + input(x+2, y))/3;

3 Func blur_y("blur_y");

4 blur_y(x, y) = (blur_x(x, y) + blur_x(x, y+1) + blur_x(x, y+2))/3;

Listing 5.1: Halide algorithm.

The corresponding HeteroCL algorithm code is shown in Listing 5.2. The generated HeteroCL

code uses a top function to describe the overall algorithm. The substage and the following for

loop correspond to each Func in Halide. Other than the syntax and convention di�erences, we

can see that Halide and HeteroCL share very similar code structures for the algorithms. This

makes the transformation relatively simple. We use HeteroCL’s imperative programming APIs

(heterocl.Stage, heterocl.for_) instead of the compute API (heterocl.compute). In this

way, we explicitly represent the computing for loop in the HeteroCL source code that is close

to both Halide IR and HeteroCL IR. This improves the scalability and stability of the Halide-to-
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1 def top(input_hcl):

2 with heterocl.Stage("blur_x"):

3 with heterocl.for_(y_min, y_max) as y:

4 with heterocl.for_(x_min, x_max) as x:

5 tensor_blur_x[x, y] = (input_hcl[x, y] + input_hcl[x + 1, y] +

6 input_hcl[x + 2, y]) / 3

7
8 with heterocl.Stage("blur_y"):

9 with heterocl.for_(y_min, y_max) as y:

10 with heterocl.for_(x_min, x_max) as x:

11 tensor_blur_y[x, y] = (tensor_blur_x[x, y] + tensor_blur_x[x, y + 1] +

12 tensor_blur_x[x, y + 2]) / 3

13
14 return tensor_blur_y

Listing 5.2: HeteroCL algorithm.

HeteroCL code generator.

5.2.2 Schedule Transformation

Unlike the algorithm part, e�ort is needed for code generation for the scheduling part. While

Halide implements the schedules directly at the IR level, HeteroCL needs explicit scheduling (cus-

tomization) information in order to generate e�cient FPGA accelerators. Therefore, we propose

two methods for schedule lowering: immediate transformation (Section 5.2.2.1), and lazy trans-

formation (Section 5.2.2.2). These two di�erent methods are further explained with examples as

follows.

5.2.2.1 Immediate Transformation

Halide schedules are directly implemented at the IR level. As an example, we apply the Halide

unroll schedule to the blur �lter shown in Listing 5.1 to demonstrate the process of immediate

transformation. Line 2 in Listing 5.1 represents a computation stage. Without any customized
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schedule, its default loop nest is shown in Listing 5.3.

1 for y [min=...; extent=...; stride=1]:

2 for x [min=...; extent=...; stride=1]:

3 blur_x(y, x) = ...

Listing 5.3: Halide IR of the �rst loop nest in the blur �lter without schedules.

We then apply the Halide schedule blur_x.unroll(x,4) to unroll the x loop with a factor

of 4. It is directly implemented into the Halide IR, and the loop nest is transformed to Listing 5.4.

1 for y [min=...; extent=...; stride=1]:

2 for x [min=...; extent=...; stride=4]:

3 blur_x(y, x) = ...

4 blur_x(y, x + 1) = ...

5 blur_x(y, x + 2) = ...

6 blur_x(y, x + 3) = ...

Listing 5.4: Halide IR of the �rst loop nest in the blur �lter with blur_x.unroll(x,4) applied

using immediate transformation.

Via immediate transformation, the schedule is directly implemented into the Halide IR, and

the explicit scheduling information is lost at the IR level in the process of lowering.

5.2.2.2 Lazy Transformation

With lazy transformation, Halide schedules are stored explicitly at the IR level as an annotation.

The scheduling annotation is further transferred to the subsequent steps of the �ow and imple-

mented by the backends. To have a clear comparison with immediate transformation, we apply

the same unrolling schedule to the blur �lter again, but this time we use lazy_unroll, which

is added as an extension to the existing Halide schedules. With blur_x.lazy_unroll(x,4) ap-

plied, the corresponding loop nest is shown in Listing 5.5.
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1 for y [min=...; extent=...; stride=1]:

2 for x [min=...; extent=...; stride=1; unrolled; factor=4]:

3 blur_x(y, x) = ...

Listing 5.5: Halide IR of the �rst loop nest in the blur �lter with blur_x.lazy_unroll(x,4)

applied using lazy transformation.

1 schedule = heterocl.create_schedule([input_hcl], top)

2 stage_blur_x = top.blur_x

3 schedule[stage_blur_x].unroll(stage_blur_x.axis[1], 4)

Listing 5.6: HeteroCL scheduling code of the �rst loop nest in the blur �lter with

blur_x.lazy_unroll(x, 4) applied.

In Line 2 of Listing 5.5, the unrolled annotation and the corresponding unroll factor are

stored in the For IR node corresponding to the x loop. Thus, explicit scheduling information

is maintained at the IR level and can be implemented in subsequent steps of the �ow. This is

necessary because the HeteroCL backends sometimes need to apply their unique primitives to

direct HLS schedules, using the information in the annotations.

These unique scheduling primitives for HeteroCL backends are essential for emitting e�cient

FPGA code. As HeteroCL supports all those backends, the best way to support the scheduling

transformation from Halide to heterogeneous hardware DSLs is to fully utilize HeteroCL and to

generate explicit scheduling code for HeteroCL. We keep using the lazy_unroll schedule as an

example and demonstrate the subsequent compilation �ow for this schedule.

Listing 5.6 shows the corresponding HeteroCL schedule. First, a HeteroCL API is called to

create a default schedule based on algorithm code of HeteroCL (Line 1). The function de�ning

the algorithm (top) and its input(s) ([input_hcl]) are passed to the heterocl.create_schedule

API. Then, in Line 2, our target stage is identi�ed with the algorithm top and the stage’s name.

Line 3 applies the unroll scheduling primitive to stage_blur_x. axis[1] corresponds to loop
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1 for (int y = ...; y < ...; y++)

2 #pragma ACCEL parallel factor = 4 flatten

3 for (int x = ...; x < ...; x++)

4 blur_x[y][x] = ...

Listing 5.7: Merlin C code generated from the HeteroCL code.

x, and the unroll factor is 4. The HeteroCL scheduling code in Listing 5.6 is then transformed to

di�erent backend scheduling codes using di�erent HeteroCL backend code generators.

Here, we show two HeteroCL backend schedules as examples. Listing 5.7 shows the loop nest

generated by the Merlin C backend and its scheduling primitives. Merlin C is an OpenMP-like

programming model used by the Merlin compiler [33] from Falcon Computing Solutions (now

acquired by Xilinx). Similar to the Halide IR loop nest with lazy transformation in Listing 5.5,

the explicit scheduling information is stored as an annotation (Line 2 in Listing 5.7 and Line 2

in Listing 5.5). Another example is the SODA DSL presented in Section 4.1.1, which can be syn-

thesized into e�cient accelerators with scalable parallelism, optimal communication reuse and

model-driven computation reuse. A SODA unrolling primitive looks like “unroll factor: 4”,

which directs the SODA compiler to unroll the inner loop of every stage with the same unroll

factor.

5.2.3 Extensions on Halide Schedules

In this section, we summarize our extensions on Halide schedules and the design methodology

of schedule transformation for di�erent Halide schedules.

To obtain e�cient FPGA accelerators, we need to generate scheduling primitives (e.g., Line 2

in Listing 5.7) in the process of compilation. As HeteroCL [110] is a heterogeneous program-

ming platform, maintaining schedule explicitly in the process of Halide-to-HeteroCL is essential.

Therefore, we change the lowering method for some Halide schedules (e.g., lazy_unroll intro-

duced in Section 5.2.2.2) as extensions. Similar schedule extensions are used for other backend
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Table 5.1: Schedule primitives and the corresponding transformation methods supported by

Halide vs HeteroHalide.

Primitive Description Halide HeteroHalide

reorder Switch the order of sub-loops in the same nested loop. Immediate Immediate

split Split a loop into a two-level nested loop given the ex-

tent of the inner loop.

Immediate Immediate

fuse Fuse a two-level nested loop into a single-level loop. Immediate Immediate

tile Split an iteration domain into smaller tiles and iterate

over each tile separately.

Immediate Immediate

unroll Unroll a loop with given factor. Immediate Lazy

parallel Schedule a loop in parallel. Immediate Lazy

targets as well (e.g., gpu_tile).

Table 5.1 lists the schedules supported by Halide and HeteroHalide, and the corresponding

schedule lowering methods. By default, Halide uses immediate transformation to implement the

schedule directly into the IR. Loop transformation schedule primitives, e.g., reorder, split, do

not have special semantics in HeteroCL, and, therefore, there is no need to create new schedul-

ing primitives for them. However, for the parallelization scheduling primitives, e.g., unroll,

parallel, the explicit scheduling information is required in HeteroCL to generate e�cient back-

end code. For example, if the unrolling schedule is applied immediately and the Halide IR is in

the form of Listing 5.4, HeteroCL will not be able to generate SODA DSL and leverage its highly-

e�cient spatial architecture. Therefore, we create lazily-applied Halide schedules lazy_unroll

and lazy_parallel to transfer scheduling information explicitly to generate e�cient FPGA ac-

celerators. Note that not all scheduling primitives are applicable to both Halide and HeteroHalide.

For example, vectorize is only applicable to Halide, whereas pipelining is implicitly inferred in
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HeteroHalide (and thus no explicit scheduling primitive is required nor provided).

5.3 Evaluation

We now present our experiments, followed by the evaluation on two parts: 1) programming e�-

ciency, where we show the simpli�ed migration e�ort from Halide to FPGA accelerators via the

lines of code (LoC) comparison, and 2) accelerator performance, comparing the throughput of the

FPGA code generated by HeteroHalide and the throughput of 28 CPU cores with several real-

world applications. This section also compares the peak performance between the accelerators

generated by HeteroHalide and those reported by Halide-HLS [144]. The applications we use in

the evaluation and the corresponding description are listed in Table 5.2.

Table 5.2: Applications used in the evaluation.

Application Description

Harris Harris corner detector.

Gaussian 3 × 3 Gaussian �lter.

Unsharp Unsharp masking �lter.

Blur Average over 3 × 3 window.

Linear Blur Blur with two linear transformations.

Stencil Chain 3 × 3 kernel chained 3 times.

Dilation Maximum over 3 × 3 window.

Erosion Minimum over 3 × 3 window.

Median Blur Median over 3 × 3 window.

Sobel Sobel edge detector.

GEMM General matrix multiplication.

K-Means K-means clustering.
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5.3.1 Programming E�ciency

In this section, we compare the lines of code (LoC) of the same program at di�erent levels in the

�ow to demonstrate the di�erent workload required when compiling Halide to FPGA accelerators.

Table 5.3: LoC at di�erent levels in the �ow. HeteroHalide and HeteroCL counts are algorithm +

schedule. Numbers in parentheses are ratios over HeteroHalide.

Application HeteroHalide HeteroCL Generated HLS Generated

Harris 26 + 14 72 + 22 (2.4×) 14224 (355.6×)

Gaussian 8 + 3 23 + 8 (2.8×) 17181 (1561.9×)

Unsharp 13 + 5 46 + 12 (3.2×) 21383 (1187.9×)

Blur 2 + 4 9 + 4 (2.2×) 1455 (242.5×)

Linear Blur 11 + 10 22 + 10 (1.5×) 1072 (51.0×)

Stencil Chain 15 + 10 14 + 8 (0.9×) 9061 (362.4×)

Geo. Mean — (2.0×) (378.6×)

The compilation �ow from HeteroHalide consists of the following steps: Halide to HeteroCL,

HeteroCL to HLS code, and �nally to an FPGA accelerator. It is possible to obtain the same FPGA

accelerator by manually writing the corresponding code at any level in the �ow, but the required

programming e�ort is signi�cantly di�erent. Table 5.3 shows the LoC comparison among the

code at di�erent levels. For most applications, Halide code is more compact than HeteroCL code.

Both of them are orders of magnitude more compact than our generated HLS code. The partial

reason of this signi�cant di�erence is HLS code generated by a compiler is redundant compared

to optimized HLS code.

Table 5.4 summarizes the LoC comparison between the Halide code and the Xilinx xfOpenCV

library [170]. The kernels in the xfOpenCV library are optimized for Xilinx FPGAs and SoCs,

based on the OpenCV computer vision library. Compared with the HLS code optimized by ex-

perts, Halide code is still more concise and compact. In summary, for both approaches without
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Table 5.4: LoC comparison between HeteroHalide and Xilinx xfOpenCV Library [170]. Hetero-

Halide counts are algorithm + schedule. xfOpenCV counts include only the core functions, not

the utility libraries. Numbers in parentheses are ratios over HeteroHalide.

Application HeteroHalide xfOpenCV

Harris 26 + 14 117 (2.9×)

Gaussian 8 + 3 104 (9.5×)

Dilation 2 + 1 80 (26.7×)

Erosion 2 + 1 79 (26.3×)

Median Blur 2 + 1 81 (27.0×)

Sobel 3 + 2 208 (41.6×)

Geo. Mean — (16.7×)

HeteroHalide, i.e., rewriting Halide in HeteroCL and HLS respectively, the workload for pro-

grammers increases, not to mention the additional knowledge required. HeteroHalide greatly

simpli�es the process of migrating Halide to FPGA accelerators.

5.3.2 Accelerator Performance

In this section, we �rst evaluate the accelerators generated by HeteroHalide. The experiments

for CPU are performed on an Ubuntu 16.04 server with two Intel Xeon 2680v4 CPU (28 cores

in total) and 64 GiB DDR4 memory. Our target FPGA is the state-of-the-art Xilinx VU9P FPGA,

whose default target frequency is 250 MHz.

Table 5.5 shows the applications and overall evaluation results of each application with cer-

tain data sizes and type, including the speedup over CPU, the energy e�ciency gain, the accel-

erator’s maximum throughput for stencil applications, and the resource utilization given by the

post-synthesis report. Since Halide originated as an image processing DSL and stencil kernels are

extensively used, we mainly focus on those in the experiments. To demonstrate the capability of
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Table 5.5: Accelerators generated by HeteroHalide compared with plain Halide on 28 CPU cores.

Benchmark Data Size & Type #LUT #FF #DSP #BRAM Throughput E�ciency Speedup Backend

Harris 2448 × 3264, UInt8 55198 64427 264 80 32 pixel/cycle 29.11 10.31 Stencil

Gaussian 2160 × 3840, UInt8 67298 41496 768 0 32 pixel/cycle 17.17 6.08 Stencil

Unsharp 2448 × 3264 × 3, UInt8 47683 33114 400 24 32 pixel/cycle 9.57 3.39 Stencil

Blur 648 × 482, UInt16 6821 8209 32 0 16 pixel/cycle 10.98 3.89 Stencil

Linear Blur 768 × 1280 × 3, Float32 31049 39369 536 16 8 pixel/cycle 12.65 4.48 Stencil

Stencil Chain 1536 × 2560, UInt16 61230 46174 48 192 16 pixel/cycle 4.29 1.52 Stencil

Dilation 6480 × 4820, UInt16 13046 12114 0 64 32 pixel/cycle 4.69 1.66 Stencil

Median Blur 6480 × 4820, UInt16 14388 10066 0 64 32 pixel/cycle 12.51 4.43 Stencil

GEMM 1024 × 1024 × 1024, Int16 454492 800283 2507 932 — 9.97 3.53 Systolic Array

K-Means 320×32, k=16, Int32 212708 235011 1536 32 — 29.00 10.27 General

Geo. Mean — — — — — — 11.71 4.15 —

using multiple backends via leveraging HeteroCL [110], two other applications that are not in the

image processing domain are included as well. The energy e�ciency gain is the accelerator-to-

CPU ratio and is calculated based on the thermal design power. The throughput of accelerators

is memory-bounded and is calculated based on the total bandwidth and the data type width of

the application. For the CPU execution of the Halide [146] programs, we use the same schedul-

ing strategies as the examples provided in the open-source Halide repository [59]. The speci�c

parameters such as the unroll factor and tiling size are manually �ne-tuned in our testing environ-

ment. We leverage the auto-scheduling feature of Halide [132] to compare our manual �ne-tuned

schedules with the optimal strategies generated by Halide auto-scheduler on CPU. The geometric

mean of CPU speed ratio between manual and auto scheduling tested on several benchmarks is

1.15, which shows that our manual optimizations are on par with the highly optimized schedules

after extensive design-space exploration.

Note that the CPU code generated by Halide is capable of utilizing all 28 cores available on the

server. The experimental results show that the accelerators generated by HeteroHalide achieves

4.15× average speedup and 11.71× energy e�ciency gain over CPU.

Table 5.6 lists the peak performance of the accelerators generated by HeteroHalide and Halide-
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Table 5.6: Performance comparison between HeteroHalide and Halide-HLS.

Benchmark Data Sizes & Type Halide-HLS HeteroHalide Speedup

Harris 640 × 640, UInt8 2 pixel/cycle 4 pixel/cycle 2

Gaussian 640 × 640, UInt8 2 pixel/cycle 8 pixel/cycle 4

Unsharp 640 × 640 × 3, UInt8 1 pixel/cycle 4 pixel/cycle 4

Geo. Mean — — — 3.175

HLS [144] for three applications. Since we were unable to reproduce the results using the current

synthesis tools, for Halide-HLS we use the reported numbers in their paper [144]. The throughput

of HeteroHalide is obtained using the same Zynq 7020 device as Halide-HLS. The results show

that for various applications, HeteroHalide achieves a 2~4× speedup over Halide-HLS. Clearly,

HeteroHalide is more e�cient to migrate Halide programs to FPGA accelerators. With Hetero-

Halide and its SODA backend (presented in Chapter 3 and Chapter 4), image processing experts

now have an end-to-end solution to create e�cient FPGA accelerators capable of communica-

tion reuse and computation reuse from a high-level DSL that they are familiar with, signi�cantly

improving productivity.
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CHAPTER 6

Extending High-Level Synthesis for Task-Parallel Programs

Using stencil applications as a representative example, Chapter 3, Chapter 4, and Chapter 5 has

demonstrated how theoretical analysis, model-driven exploration, and high-level languages can

bene�t accelerator design and optimization for memory-bound applications with regular memory

accesses. In this chapter, we will shift our focus to applications with irregular memory accesses.

Such applications often do not have a high-degree of data-parallelism, and are often implemented

as task-parallel programs. However, not all programs are created equal for HLS. Data-parallel pro-

grams can be easily programmed following the sequential C semantics with HLS-speci�c com-

piler directives (i.e., “pragma”). The HLS compiler can then leverage the directives to extract

the parallelism automatically via static dependency analysis. This enables such applications to

be quickly designed and iterated in the fast correctness veri�cation cycle and QoR tuning cycle

(Figure 2.2b). However, task-parallel programs are not supported by the native C semantics, and

the productivity provided by current HLS tools are greatly limited due to poor programmability,

restricted software simulation, and slow code generation. Limited productivity for task-parallel

programs signi�cantly elongates the development cycles and undermines the bene�ts brought

by HLS. One may argue that programmers should always go for data-parallel implementations

when designing FPGA accelerators using HLS, but data-parallelism may be inherently limited, for

example, in applications involving graphs. Moreover, researches show that even for data-parallel

applications like neural networks [38] and stencil computation [20], task-parallel implementa-

tions show better scalability and higher frequency than their data-parallel counterparts due to

the localized communication pattern [40].
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In this chapter, we extend the HLS C++ language and present our framework, TAPA (task-

parallel)
1
, as a solution to the limitations of HLS productivity. Our contributions include:

∙ Convenient programming interfaces: We show that, with peeking and transactions

added to the programming interfaces, TAPA can be used to program task-parallel kernels

with 22% reduction in lines of code (LoC) on average. By unifying the interface used for

the kernel and host, TAPA further reduces the LoC on the host side by 51% on average.

∙ Universal software simulation: We demonstrate that our proposed simulator can cor-

rectly simulate task-parallel programs that existing simulators fail to simulate. Moreover,

the correctness veri�cation cycle can be accelerated by a factor of 3.2× on average.

∙ Hierarchical code generation: We show that by modularizing a task-parallel program

and using a hierarchical approach, RTL code generation can be accelerated by a factor of

6.8× on our server with 32 hyper-threads.

The remainder of this section is organized as follows. A PageRank [139] accelerator motivates

our work in Section 6.1. Section 6.2 introduces the details of the TAPA framework. Section 6.3

presents the productivity evaluation.

6.1 Motivating Example

Graph is an important data structure that is critical in many data mining and machine-learning

algorithms [57, 101, 117, 126, 139]. While there are many existing FPGA accelerators designed for

graph algorithms [47, 48, 99, 138, 175, 177, 181], none of them are programmed in HLS. HLS’s lack

of good productivity for task-parallel programs is one of the reasons it is not adopted for graph

algorithms. In this section, we use a real-world design to illustrate the productivity issues for

implementing graph accelerators in HLS, which serve as a motivating example for our work.

1
While a prior work TAPAS [123] and our work TAPA share similarity in name, our work focuses on statically

mapping tasks to hardware, yet TAPAS specializes in dynamically scheduling tasks.
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Our example accelerator implements PageRank [139] on the Alveo U280 board and leverages

the high-bandwidth memories (HBM). The input graph is pre-processed and loaded into the HBM

on the FPGA. The accelerator adopts an edge-centric graph programming model [149] and de-

couples the computation into two phases, i.e., the scatter phase and the gather phase [21,181]. In

the scatter phase, edges are streamed from the HBM to the processing elements (PE) on FPGA.

For each edge, an update message is generated to propagate the weighted ranking of the source

vertex to the destination vertex. The updates are collected and stored o�-chip in the HBM. In

the gather phase, the updates are loaded from the HBM and the rankings are accumulated over

each vertex. Our PageRank accelerator instantiates multiple PEs. The PEs are connected to a

vertex handler and a control module. The control module coordinates accesses to the vertex at-

tributes and iterative execution between the two phases. Figure 6.1 shows the block diagram of

the example accelerator.
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Processing 
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Figure 6.1: Example PageRank accelerator design.
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We measured 4.4 GTEPS
2

on-board execution throughput using the accelerator with 19 HBM

channels in use. As a comparison, multi-thread CPU performance is around 0.7 GTEPS with

4 DDR4 memory channels [21]. Even if we assume a similar memory bandwidth as the FPGA

accelerator and project the CPU performance to 3.5 GTEPS, it would still be more than 20% slower,

due to the lack of �ne-grained control over communication. While developing this accelerator,

we found that the following are missing or hard-to-use in the HLS tools and signi�cantly impact

the productivity.

1) Peeking. Peeking is de�ned as reading a token from a channel without consuming it. As

mentioned in Section 2.4.4.1, KPN explicitly prohibits such behavior. Yet, such a pattern is com-

mon in many applications. For example, in the PageRank accelerator, the UpdateHandler module

needs to keep track of the number of updates destinated to each vertex partition. Due to the large

number of partitions, block RAMs (BRAM) are used for storing the update counts. However, in-

crementing a value in BRAM cannot be done in a single clock cycle on FPGAs due to the address-

ing latency, which prevents the loop from being fully pipelined. A workaround is to accumulate

the update count in a register for updates with the same partition ID (pid) and only write changes

to BRAM when the pid changes. This requires us to detect con�icts on the addresses and stop

reading the input channel when con�ict occurs, as shown in the green lines marked with “+” in

Listing 6.1. Without a peek API, one has to write it as the red lines marked with “-” in Listing 6.1

to manually maintain a bu�er for the incoming values. This not only increases the programming

burden, but also makes the design prone to errors in state transitions of the bu�er.

2) Transactions. A sequence of tokens may constitute a single logical communication trans-

action. Using the same PageRank accelerator example, in the gather phase when the updates are

read from HBM, the updates transmitted from UpdateHandler to ComputeUnit for each vertex

partition can be considered a single transaction. Since only UpdateHandler knows the number of

updates transmitted in each transaction, ComputeUnit needs to test for a special token to detect

the end of transaction (green lines marked with “+” in Listing 6.2). Without an eot API, one has

2
Giga traversed edges per second.
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Listing 6.1: Code snippets with (green lines marked with “+”) and without (red lines marked with

“-”) a peek API. Without the peek API, the code snippet is 33% longer and error-prone.
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Listing 6.2: Code snippets with (green lines marked with “+”) and without (red lines marked with

“-”) an end-of-transaction (eot) API. Without the eot API, the code snippet is 2× longer.

to manually add a special bit to the data structure representing the tokens (red lines marked with

“-” in Listing 6.2). Note that the Update struct is used elsewhere, and it is infeasible to add the eot

bit directly to the Update struct. An alternative solution, i.e., sending the length of transaction

to the token consumer beforehand, is not only more complicated, but also impractical in cases

where the tokens are generated dynamically and the length of transaction cannot be determined

beforehand.

3) System integration. To o�oad computation kernel from the host CPU to FPGA accelerators,

programmers need to write host-side code to interface the accelerator kernel with the host. FPGA

vendors adopt the OpenCL standard to provide such a functionality. While the standard OpenCL

host-kernel interface infrastructure relieves programmers from writing their own operating sys-

tem drivers and low-level libraries, it is still inconvenient and hard-to-use. Programmers often

have to write and debug tens of lines of code just to set up the host-kernel interface. Task-parallel

accelerators often make the situation worse because the parallel tasks are often described as dis-

tinct OpenCL kernels [90], which signi�cantly increases the programmers’ burden on managing

these kernels in the host-kernel interface. For our PageRank accelerator, more than 60 lines of

host code are created just for the host-kernel integration, which constitute more than 20 percent

of the whole source code. Yet, what we actually need is just a single function invocation of the

synthesized FPGA bitstream given proper arguments.
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Listing 6.3: Code snippets that instantiate tasks in Vivado HLS (red lines marked with “-”) and

TAPA (green lines marked with “+”). The instantiation interface in Vivado HLS is not verbose,

but software simulation does not work correctly.

4) Software simulation. C does not have explicit parallel semantics by itself. Vivado HLS uses

the data�ow model and allow programmers to instantiate tasks by invoking each of them sequen-

tially [171]. While this is very concise to write (red lines marked with “-” in Listing 6.3), it will

lead to incorrect simulation results. This is because the communication between ComputeUnit

and UpdateHandler are bidirectional, but a sequential simulator can only send tokens from

ComputeUnit to UpdateHandler because of their invocation order. This problem was also pointed

out in [18]. In order to run software simulation correctly, the programmer can change the source

code to run tasks in multiple threads for software simulation, but doing so requires the same piece

of task instantiation code to be written twice for synthesis and simulation, reducing productivity.

While other tools that run tasks in parallel threads do not have the same correctness problem,

we shall show in Section 6.3.4 that such simulators do not scale well when the number of tasks

increase.

5) RTL code generation. In our PageRank design, the same processing element is instantiated 8
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times. This makes the HLS compiler synthesize the same PE module 8 times, taking 7 minutes per

compilation. We can reduce the code generation time to less than 1 minute by manually synthe-

sizing each module separately and connecting the generated RTL code, but doing so forces us to

debug RTL code and spend tens of minutes to verify the correctness for each code modi�cation,

thus defeats the purpose for adopting HLS.

In this section, we present the TAPA framework that addresses these challenges by providing

convenient programming interfaces, universal software simulation, and hierarchical code gener-

ation.

6.2 TAPA Framework

TAPA is composed of several components. The programming model and interfaces used by TAPA

in introduced in Section 6.2.1, followed by the TAPA coroutine-based software simulator pre-

sented in Section 6.2.3. Section 6.2.4 discusses the modularized RTL code generator. Section 6.2.5

gives a holistic overview of the automated TAPA framework.

6.2.1 Programming Model and Interface

Di�erent from many HLS compilers that targets KPN, TAPA adopts a hierarchical �nite-state

machine model, which is detailed in Section 6.2.2. The inter-task communication interface, task

instantiation interface, and the system integration interface are presented in Section 6.2.2.1, Sec-

tion 6.2.2.2, and Section 6.2.2.3, respectively.

6.2.2 Hierarchical Finite-State Machine Model

Similar to KPN described in Section 2.4.4.1, tasks in TAPA communicate via channels. Unlike

KPN, tasks are modeled as hierarchical �nite-state machines (FSM). Each task is either a leaf that

does not instantiate any channels or tasks, or a collection of tasks and channels with which the
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tasks communicate. A task that instantiates a set of tasks and channels is called the parent task

for that set. Each channel must be connected to exactly two tasks that are instantiated in the

same parent task. One of the tasks must act as a producer and the other must act as a consumer.

The producer streams tokens to the consumer via the channel in the �rst-in-�rst-out (FIFO) order.

Each task is an FSM, where the tokens streamed to and from the task are inputs and outputs to

the FSM. In case of a parent task, the state of all instantiated channels and tasks constitute its

state. The producer of a channel can test the fullness of the channel and append tokens to the

channel (write) if the channel is not full. The consumer of a channel can test the emptiness of

the channel and remove tokens from the channel (read), or duplicate the head of token without

removing it (peek), if the channel is not empty. Read, peek, and write operations can be blocking

or non-blocking. A blocking operation on an input (output) channel keeps the task FSM in its

current state until the channel becomes non-empty (non-full). A non-blocking operation tries to

perform the operation and returns whether it is successful as one of the inputs to the task FSM.

Each task is implemented as a C++ function, which can communicate with each other via the

communication interface. A parent task instantiates channels and tasks using the instantiation

interface. One of the tasks is designated as the top-level task, which de�nes the communication

interfaces external to the FPGA accelerator. Table 6.1 summarizes TAPA’s hierarchical FSM model

and other task-parallel programming models.

Table 6.1: Task-parallel programming models.

Programming Model Peeking Channel Capacity

Communicating Sequential Processes [84] Allowed Not modeled

Kahn Process Network [97] Not allowed Not modeled

Synchronous Data Flow [112] Not allowed Can be derived

Hierarchical Finite State Machine (Section 6.2.2) Allowed Modeled
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6.2.2.1 Communication Interface

Tasks communicate with each other through the communication interface. TAPA provides sepa-

rated communication APIs for the producer side and the consumer side. The producer and con-

sumer tasks of a channel use ostream and istream as the interfaces, respectively. The interfaces

are templated and can be used for any copyable class. On the consumer side, istream provides

peek that allows the programmer to read a token without removing it from the channel, i.e., the

state of the channel is not changed. A special token denoting end-of-transaction (EoT) is available

to all channels. A producer process can “close” a channel by writing an EoT to it. The consumer

process of the same channel will then be able to detect that there is an EoT in this channel, and

know that this channel is in “closed” state. The consumer process can also consume the EoT token

from the channel, e�ectively reset the state of the channel from “closed” to “open”. An EoT token

does not contain any useful data. This is designed deliberately to make it possible to break from

a pipelined loop when an EoT is present (Listing 6.2). Table 6.2 summarizes the communication

interfaces provided by TAPA. Listing 6.4 shows an example of how the communication interfaces

are used in TAPA.

6.2.2.2 Instantiation Interface

A parent task instantiates channels and tasks using the instantiation interface. Channels are in-

stantiated using tapa::channel<type, capacity>. For example, tapa::channel<VertexReq,

2> instantiates a channel with capacity 2, meaning up to 2 tokens can be written to this channel

without reading them out or blocking the producer. Data tokens transmitted using this channel

have type VertexReq. Tasks are instantiated using tapa::task::invoke. By default, a parent

task does not �nish until all its children tasks �nish. A child task can optionally be invoked with

tapa::detach, meaning the child task is launched and detached immediately, and the parent

does not wait for it to �nish. The tapa::detach invocation type is particularly useful when a

task never terminates, e.g., VertexHandler with an in�nite loop (Listing 6.4). Listing 6.5 shows
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Table 6.2: TAPA communication interface.

tapa::ostream<T>& API Producer-side functionality

bool full(); fullness test

void write(T); blocking write a non-EoT token

bool try_write(T); non-blocking write a non-EoT token

void close(); blocking write an EoT token

bool try_close(); non-blocking write an EoT token

tapa::istream<T>& API Consumer-side functionality

bool empty(); emptiness test

T peek(); blocking peek a non-EoT token

bool try_peek(T&); non-blocking peek a non-EoT token

T read(); blocking read a non-EoT token

bool try_read(T&); non-blocking read a non-EoT token

bool eot(); return if next token is EoT

bool try_eot(bool&); return if next token exists and if it is EoT

void open(); blocking read an EoT token

bool try_open(); non-blocking read an EoT token

an example of how channels and tasks are instantiated in TAPA.

6.2.2.3 System Integration Interface

To o�oad a kernel to an FPGA accelerator, programmers will need to integrate the FPGA into

the host CPU system. Thanks to the vendor-provided system drivers and the standard OpenCL

accelerator APIs, most programmers only need to follow the OpenCL host-kernel communication

speci�cation and invoke proper APIs. However, those OpenCL APIs are still verbose and take a
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1 void VertexHandler(tapa::istream<VertexReq>& req_s, ...) {

2 for (;;) {

3 VertexReq req;

4 if (req_s.try_read(req)) {

5 ... // handle requests

6 }

7 }

8 }

9
10 void Ctrl(tapa::ostream<VertexReq>& vertex_req, ...) {

11 ... // initial setup

12 while (...) { // iterative execution

13 VertexReq req(...); // request vertices

14 vertex_req.write(req);

15 ... // finish scatter & do gather

16 }

17 }

Listing 6.4: TAPA communication interface example.

1 void PageRank(...) {

2 tapa::channel<VertexReq, 2> vertex_req;

3 ...

4 tapa::task()

5 .invoke<tapa::detach>(VertexHandler, vertex_req, ...)

6 .invoke(Ctrl, vertex_req, ...)

7 ...

8 ;

9 }

Listing 6.5: TAPA instantiation interface example.

long time to learn and develop. For example, programmers need to learn the concepts of “plat-

form”, “context”, “queue”, and “kernel” in OpenCL and manage them for each accelerator, yet the

only thing necessary is usually just �nd a proper FPGA accelerator or simulation environment
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and use it to run the program. This overhead for programmers is exacerbated by task-parallel

accelerators, where parallel tasks are often synthesized as concurrent OpenCL kernels that need

to be managed separately by the host.

TAPA uses a uni�ed system integration interface to further reduce programmers’ burden.

To o�oad a kernel to an FPGA accelerator, programmers only need to call the top-level task as a

C++ function in the host code. Since TAPA can extract metadata information, e.g., argument type,

from the kernel code, TAPA will automatically synthesize proper OpenCL host API calls and emit

an implementation of the top-level task C++ function that can set up the runtime environment

properly. As a user of TAPA, the programmer can use a single function invocation in the same

source code to run software simulation, hardware simulation, and on-board execution, with the

only di�erence of specifying proper bitstreams.

6.2.3 Software Simulation

State-of-the-Art Approach. There are mainly two state-of-the-art approaches that run fast

software simulation for task-parallel applications: the sequential approach and the multi-thread

approach. A sequential simulator invokes tasks sequentially in the invocation order [171]. Se-

quential simulators are fast, but cannot correctly simulate the capacity of channels and appli-

cations with tasks communicating bidirectionally, as discussed in Section 6.1. A multi-thread

simulator invokes tasks in parallel by launching a thread for each task. This enables the capacity

of channels and bidirectional communication to be simulated correctly. However, they may per-

form poorly due to the ine�ciency of inter-thread communication and context switch handled

by the operating system. The FLASH simulator [18, 25] proposed an alternative to the above,

which relies on the HLS scheduling information to mimic the RTL FSM. While this simulation

approach itself is faster than multi-thread simulators, generating simulation executable becomes

slower due to the need of the HLS scheduler output for cycle-accuracy, which is not needed for

correctness veri�cation.

In this section, we present an alternative approach to run software simulation on task-parallel
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applications. Given that the ine�ciency of multi-thread execution is mainly caused by the pre-

emptive nature of operating system threads and inspired by the widespread adoption of corou-

tines in modern software languages [54, 104], we propose an approach that uses collaborative

coroutines instead of preemptive threads. Note that fast and/or cycle-accurate debugging in gen-

eral [92] is out of the scope of this section; we focus on the correctness and scalability issues for

task-parallel programs.

Coroutine-BasedApproach. Routines in programming languages are the units of execution

contexts, e.g., functions in C [102]. Coroutines [42] are routines that execute collaboratively; more

speci�cally, coroutines can be explicitly suspended and resumed. Coroutines can even maintain

their own stacks. As a result, each coroutine can invoke subroutines themselves and suspend from

and resume to any subroutine [104]. Coroutines that have their own stacks are called stackful

coroutines. A context switch between coroutines takes only 26ns on modern CPUs [104]. As a

comparison, an operating system thread context switch takes 1.2 ~2.2µs [4], which is two orders

of magnitude slower.

TAPA leverages stackful coroutines to perform software simulation. When channels are in-

stantiated in the simulator, enough memory space is reserved to ensure the channel capacity can

be simulated correctly. When tasks are instantiated, a coroutine is launched but suspended imme-

diately for each task. Once all tasks are instantiated, the simulator starts to resume the suspended

coroutines. A resumed task will be suspended again if any input channel is accessed when empty

or any output channel is accessed when full, which means that no progress can be made from

this task. A di�erent task will then be selected and resumed by the simulator.

For example, in the task instantiation code shown in Listing 6.5, both VertexHandler and

Ctrl are launched as coroutines and suspended immediately by the invoke function calls. Once

all tasks are instantiated, the simulator starts to pick tasks for execution. Ctrl is picked �rst,

which will write vertex requests to vertex_req. Once vertex_req becomes full, the simula-

tor determines that no progress can be made from Ctrl, thus will suspend it and pick another

task for execution. VertexHandler is then resumed and tokens will be read from vertex_req.
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Once vertex_req becomes empty, the simulator determines that no progress can be made from

VertexHandler, thus will suspend it and pick the next task for execution.

To better utilize the available CPU cores, we use a thread pool to execute the coroutines. We

shall show in Section 6.3.4 that the coroutine-based simulator outperforms the existing simulators

by 3.2× on average (Section 6.3.4).

6.2.4 RTL Code Generation

State-of-the-art Approach. Current HLS tools treat the whole task-parallel program as a mono-

lithic design, treat channels as global variables, and compile di�erent instances of tasks as if they

are completely unrelated. While this enables instance-speci�c optimizations, e.g., di�erent con-

stant arguments can be propagated to di�erent instances, it can also lead to a signi�cant amount

of repeated work. For example, the data�ow architecture generated by the SODA compiler [19,20]

is highly modularized, and many modules are functionally identical. However, both the Vivado

HLS backend and Intel FPGA OpenCL backend of SODA generate RTL code for each SODA mod-

ule separately. When the design scales out to hundreds of modules, RTL code generation can

easily run for hours, taking even longer time than logic synthesis and implementation. While

we recognize that a programmer can manually generate RTL code for each task and glue them at

RTL level to speed up RTL code generation, doing so defeats the purpose of using HLS for high

productivity, because the glued RTL code can be error-prone yet cannot be veri�ed using fast

software simulation. We also recognize that fast RTL code generation in general is an interesting

problem, but we focus on the ine�ciency exacerbated by task-parallel programs in this paper.

Modularized Approach. Thanks to the hierarchical programming model, TAPA can keep

the program hierarchy, recognize di�erent instances of the same task, and compile each task

only once. As such, the total amount of time spent on RTL code generation is reduced. Moreover,

modularized compilation makes it possible to compile tasks in parallel, further reducing RTL

code generation time on multicore machines. TAPA implements this by doing a source-to-source

transformation to generate the vendor HLS code for each task and invoking the vendor tools in
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parallel for each task. On average, TAPA reduces HLS compilation time by 4.9× (Section 6.3.5).

6.2.5 TAPA Automation Overview

The TAPA automation �ow is shown in Figure 6.2. The TAPA C++ source code can be com-

piled directly for software simulation and correctness veri�cation. Starting from the same TAPA

C++ source code, TAPA extracts the HLS code for each task and the metadata information of the

whole design, including the communication topology among tasks, token types exchanged be-

tween tasks, and channels’ capacity. The vendor HLS tool is then leveraged to generate RTL code

and performance/resource report for each task. The extracted metadata is used to instantiate the

task instances and connect them together systematically, producing the overall HLS report and

kernel RTL code, which can be used for QoR tuning and logic synthesis and implementation, re-

spectively. The same metadata information is also used to create the host-kernel communication

interface, which can be used for on-board execution or optionally RTL simulation.

Handled automatically by TAPA

Extract
metadata
(TAPA)

TAPA C++
code

Kernel
RTL code &
HLS report

HLS code
(per task)

Task info
Chan. info

Source to source
transformation

(TAPA)

RTL code &
HLS report
(per task)

Task & Channel
Instantiation

(TAPA)

HLS
Compiler

Host-kernel
iface. code

TAPA

Figure 6.2: TAPA automation �ow overview.
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6.3 Evaluation

We prototype TAPA on Xilinx devices using Vivado HLS as the backend; support for Intel devices

will be added later. Clang compiler infrastructure is modi�ed to extract information about tasks

and perform source-to-source transformation to generate Vivado HLS kernel code and OpenCL

host code. GCC is used to compile the host executables and the software simulators. We compare

the productivity of TAPA with two vendor tools that provide end-to-end high-level programming

experience (including host-kernel communication): Xilinx Vitis/Vivado HLS 2019.2 suite and Intel

FPGA SDK for OpenCL Pro Edition 19.4. The experimental results are obtained on an Ubuntu

18.04 server with 2 Xeon Gold 6244 processors.

6.3.1 Benchmarks

We used the following benchmarks for comparison. All implementations (Vivado HLS, Intel

OpenCL, and TAPA) of each benchmark are written in such a way that tasks in each imple-

mentation have one-to-one correspondence, corresponding loops are scheduled with the same

initiation interval (II), and each task performs the same computation. This guarantees all tools

generate consistent quality of results. Note that we aim to compare the productivity of each of

the HLS tools, not the quality of result. In particular, we were unable to guarantee that the gen-

erated RTL codes have exactly the same behavior without having access to the HLS compiler’s

scheduling algorithm. For example, the network switch implemented in TAPA has a total latency

of 3 cycles while the Vivado HLS implementation has a total latency of 6. This is inevitable be-

cause, using Vivado HLS, one has to manually bu�er the incoming packets, forcing an additional

latency of 1 cycle at each network stage. Table 6.3 summarizes the number of tasks and channels

used in each benchmark.

Cannon’s algorithm [113] is a distributed algorithm for matrix multiplication that runs on 2D

mesh of processing elements (PE). This benchmark contains 8×8 PEs. Each PE is internally vec-

torized to perform 8 multiply-accumulate operations per cycle for two 128×128 matrices. Besides
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Table 6.3: Number of tasks and channels in each benchmark. Each task may be instantiated

multiple times, so the number of task instances is greater than the number of tasks.

Benchmark #Tasks #Task Instances #Channels

cannon 5 91 344

cnn 14 209 366

gaussian 15 564 1602

gcn 5 12 25

gemm 14 207 364

network 3 14 32

page_rank 4 18 89

the 64 PEs, the accelerator also contains 9 data distributor/collector for each matrix. The inputs

to the whole accelerator are 1024×1024×1024.

Convolutional neural networks are very popular for many machine learning applications, e.g.,

image classi�cation [156]. This benchmark implements the third layer of VGG [156]
3

based on

a systolic array implementation generated from AutoSA [163]. AutoSA is a polyhedral-based

systolic array auto-compilation framework that can generate optimal designs within one hour

with performance comparable to state-of-the-art manual designs.

Gaussian �lter is often employed for low-pass �ltering on input signals or images, or used

iteratively for solving linear system of equations. This benchmark is based on a data�ow mi-

croarchitecture generated from SODA [20]. SODA is a stencil compiler that can generate optimal

communication-reuse bu�ers with temporal and spatial parallelism. This benchmark performs

8 iterations of Gaussian �ltering, each of which is capable of processing 16 input elements in

parallel. The input size is 32768×32768.

Graph convolutional network [101] is an emerging type of neural network that processes sparse

3
Parameters {i, o, ℎ, w, p, q} = {512, 512, 56, 56, 3, 3}.
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and irregular data as opposed to dense and regular ones like images. This benchmark implements

a forward layer of GCN for the Cora dataset [153], which contains 2708 vertices and 10556 edges.

The input and output features have 1433 and 16 dimensions, respectively.

General matrix multiplication is based on a systolic array implementation generated from

AutoSA [163]. Compared with Cannon’s algorithm, AutoSA avoids feedback data paths in the

systolic array, and can support non-square matrices. The input matrices to the accelerator are

1040×1024 and 1024×1024.

Network switching implements an 8×8 Omega network switch [111] that can route packets

from any input port to any output port. The packets are 64-bit wide with the �rst 3 bits being the

header and are generated randomly with an even distribution among the 8 destination ports.

PageRank implements the PageRank [139] citation ranking algorithm for general large graphs

as described in Section 6.1. We use the Slashdot community graph [117] as the dataset for debug-

ging, which contains 77360 vertices and 905468 edges. The accelerator design itself can scale up

to 2
26

vertices and 2
28

edges.

6.3.2 Lines of Kernel Code

TAPA simpli�es the kernel code in two aspects. First, the TAPA communication interfaces sim-

plify the code with the built-in support for peeking and transactions. This not only simpli�es

the body of each task de�nition, but also removes the necessity for many struct de�nitions.

Second, the TAPA instantiation interfaces simplify the code by allowing tasks to be launched and

detached concisely. Without this functionality, each task in Vivado HLS must be carefully given a

termination condition, whereas Intel OpenCL requires verbose kernel instantiation attributes for

each instance of task. Figure 6.3 shows the lines of kernel code comparison of each benchmark.

On average, TAPA reduces the lines of kernel code by 22%. Note that only synthesizable kernel

code is counted; code added for multi-thread software simulation is not counted for Vivado HLS.
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Figure 6.3: LoC comparison for kernel code. Lower is better.
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late cannon and pagerank correctly. The Intel OpenCL multi-thread simulator cannot simulate

gaussian due to its large number of task instances.

6.3.3 Lines of Host Code

The host code used in the benchmarks contains a minimal testbench to verify the correctness of

the kernel code. TAPA system-integration API automatically interfaces with the OpenCL host

APIs and relieves the programmer from writing repetitive code just to connect the kernel to a

host program. Table 6.4 shows the lines of host code comparison. On average, the length of host

code is reduced by 51%.

6.3.4 Software Simulation Time

Figure 6.5 shows four simulators, that is, the sequential Vivado HLS simulator, the multi-thread

Vivado HLS simulator, the multi-thread Intel OpenCL simulator, and the coroutine-based TAPA

simulator. Among the three simulators, the sequential simulator fails to correctly simulate bench-

marks that require feedback data paths (cannon and page_rank). Due to the larger memory
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footprint required for storing the tokens transmitted between tasks and lack of parallelism, the

sequential simulator is outperformed by the coroutine-based simulator in all but one of the bench-

marks (network). The two multi-thread simulators correctly simulate all benchmarks, except that

Intel OpenCL cannot handle gaussian because its large number of task instances (564) exceeds

the maximum allowed (256) by the simulator. However, the multi-thread simulators perform

poorly on benchmarks that are communication-intensive (e.g., network) or have more tasks than

the number of available threads (e.g., gaussian). The coroutine-based TAPA simulator can cor-

rectly simulate all benchmarks without signi�cant performance loss for both communication-

intensive and computation-intensive tasks with 3.2× average speedup.

6.3.5 RTL Code Generation Time

Figure 6.6 shows the RTL code generation time comparison. Thanks to the hierarchical program-

ming model and modularized code generator, TAPA accelerates the HLS compilation time by 6.8×

on average. This is because ¬ TAPA runs HLS for each task only once even if it is instantiated

many times, while Vivado HLS and Intel OpenCL runs HLS for each task instance; ­ TAPA runs
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HLS in parallel on multicore machines.

6.4 Alternative Compilation Paths

We choose to use C++ as the base language of TAPA because C++ is one of the most commonly

used languages for both commercial and academic HLS compilers [11, 37, 91, 95]. Extending HLS

C++ makes it easier to migrate existing HLS programs to leverage TAPA. As a future work, we

hope to extend the frontend of TAPA to support more than just TAPA HLS C++. A possible ex-

tension is to make TAPA take standard Vitis HLS C++ as input. This will enable programmers to

bene�t from the uni�ed system integration interface and fast hierarchical code generation pro-

vided by the TAPA compiler without any change in the kernel code. Task-level parallelism can

be exposed using the standard HLS data�ow pragma and the existing source-to-source transfor-

mations in TAPA can be reused.

A more challenging possible extension is to support a di�erent task-parallel language/library,

which requires additional e�ort to properly handle the new language constructs. There are task-

parallel languages/libraries that support communication based on message passing, e.g., MPI [68]

and Go [128], which is consistent with the communication interfaces in TAPA. To support these

languages, we will need to insert a common intermediate representation (IR) layer between the

TAPA frontend and the HLS backend, and lower the new input language to this common IR.

Listing 6.6 shows a merge sort example written in Go that may be transformed into TAPA as

illustrated in Listing 6.7. Since the language constructs are similar, the major challenge would be

to compile and lower the languages properly.

It would be even more challenging to support task-parallel languages/libraries where tasks

communicate using shared memory instead of message passing, e.g., Cilk [6] and OpenMP [46].

On CPU or even HLS-based FPGA accelerators [123], one often relies on a fully-connected cache-

coherent shared memory system to enable such inter-task communication. While TAPA allows

multiple task instances to share the same memory space, currently it does not provide caching.
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1 func Sort(data_in []int, n int, i int, data_out chan<- int) {

2 // sort data_in and write to data_out...

3 close(data_out)

4 }

5 func Merge(data_in_0 <-chan int, data_in_1 <-chan int, data_out []int, n int) {

6 var data_0, data_1 int // data buffers

7 is_0_valid, is_1_valid := false, false // whether the buffer is valid

8 for i := 0; ; i++ {

9 // read data if the buffer is not valid and the channel is not closed

10 if !is_0_valid {

11 data_0, is_0_valid = <-data_in_0

12 }

13 if !is_1_valid {

14 data_1, is_1_valid = <-data_in_1

15 }

16 if is_0_valid && !(is_1_valid && data_1 < data_0) {

17 data_out[i] = data_0

18 is_0_valid = false

19 } else if is_1_valid {

20 data_out[i] = data_1

21 is_1_valid = false

22 } else {

23 break
24 }

25 }

26 }

27 func MergeSort(data []int, n int) {

28 sorted_0 := make(chan int, 2)

29 sorted_1 := make(chan int, 2)

30 var wg sync.WaitGroup

31 wg.Add(3)

32 go func() { Sort(data, n, 0, sorted_0); wg.Done() }()

33 go func() { Sort(data, n, 1, sorted_1); wg.Done() }()

34 go func() { Merge(sorted_0, sorted_1, data, n); wg.Done() }()

35 wg.Wait()

36 }

Listing 6.6: Merge sort written in Go.
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1 void Sort(tapa::mmap<int> data_in, int n, int i, tapa::ostream<int> &data_out) {

2 // sort data_in and write to data_out...

3 data_out.close();

4 }

5 void Merge(tapa::istream<int> &data_in_0, tapa::istream<int> &data_in_1,

6 tapa::mmap<int> data_out, int n) {

7 int data_0, data_1; // data buffers

8 bool is_0_valid = false, is_1_valid = false; // whether the buffer is valid

9 for (int i = 0;; ++i) {

10 // read data if the buffer is not valid and the channel is not closed

11 if (!is_0_valid && !data_in_0.eot(nullptr)) {

12 data_0 = data_in_0.read();

13 is_0_valid = true;

14 }

15 if (!is_1_valid && !data_in_1.eot(nullptr)) {

16 data_1 = data_in_1.read();

17 is_1_valid = true;

18 }

19 if (is_0_valid && !(is_1_valid && data_1 < data_0)) {

20 data_out[i] = data_0;

21 is_0_valid = false;

22 } else if (is_1_valid) {

23 data_out[i] = data_1;

24 is_1_valid = false;

25 } else {

26 break;
27 }

28 }

29 }

30 void MergeSort(tapa::mmap<int> data, int n) {

31 tapa::stream<int, 2> sorted_0, sorted_1;

32 tapa::task()

33 .invoke(Sort, data, n, 0, sorted_0)

34 .invoke(Sort, data, n, 1, sorted_1)

35 .invoke(Merge, sorted_0, sorted_1, data);

36 }

Listing 6.7: Merge sort written in TAPA.
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1 void Sort(int* data, int n, int i) {

2 // sort data...

3 }

4 void Merge(int* data, int n) {

5 int i_0 = 0, i_1 = 0, i = 0;

6 const int n_0 = n / 2, n_1 = n - n_0;

7 for (; i_0 < n_0 && i_1 < n_1; ++i) {

8 if (data[n + n_0 + i_1] < data[n + i_0]) {

9 data[i] = data[n + i_0]; // input data stored in [n, n+n_0)

10 ++i_0;

11 } else {

12 data[i] = data[n + n_0 + i_1]; // input data stored in [n+n_0, n*2)

13 ++i_1;

14 }

15 }

16 for (; i_0 < n_0; ++i_0, ++i) {

17 data[i] = data[n + i_0];

18 }

19 for (; i_1 < n_1; ++i_1, ++i) {

20 data[i] = data[n + n_0 + i_1];

21 }

22 }

23 void MergeSort(int* data, int n) {

24 cilk_spawn Sort(data, n, 0);

25 cilk_spawn Sort(data, n, 1);

26 cilk_sync;

27 Merge(data, n, 0);

28 }

Listing 6.8: Merge sort written in Cilk.

Since neither Cilk nor OpenMP supports explicit message passing between task instances, it is

challenging for the compiler to extract and optimize parallel communication patterns and create

�ne-grained message-passing interfaces as used in TAPA programs. With only shared memory

interfaces, the program may be suboptimal due to the under-optimized inter-task communication.

Listing 6.8 shows an example of such a challenging case of merge sort written in Cilk. Compared

with Listing 6.6 (written in Go) or Listing 6.7 (written in TAPA), Listing 6.8 requires addition
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external memory accesses to store the intermediate sorting results produced by the two Sort

tasks. Moreover, because of the additional memory accesses, Merge cannot run in parallel with

Sort.

6.5 Summary

In this chapter, we present TAPA as an HLS C++ language extension to enhance the programming

productivity of task-parallel programs on FPGAs. TAPA has multiple advantages over state-of-

the-art HLS tools: on average, ¬ its enhanced programming interface helps to reduce the lines of

kernel code by 22%, ­ its uni�ed system integration interface reduces the lines of host code by

51%, ® its coroutine-based software simulator shortens the correctness veri�cation development

cycle by 3.2×, ¯ its modularized code generation approach shortens the QoR tuning development

cycle by 6.8×. As a fully automated and open-source framework, TAPA aims to provide highly

productive development experience for mapping task-parallel programs to FPGA accelerators

using HLS. However, task-parallel accelerators with dynamically scheduled memory accesses are

still often under-optimized. In the next chapter, we shall extend TAPA with a set of high-level

libraries to help simplify design automation and optimization for such dynamically scheduled

programs.
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CHAPTER 7

Supporting Dynamically Scheduled Programs

Chapter 6 solves the problem to map memory-bound applications statically to hardware accel-

erators, but many applications require dynamic scheduling. For example, Dijkstra’s algorithm

for single-source shortest path visits vertices in a graph dynamically based on their tentative

distances. In such cases, HLS designs often under-utilize the hardware and produce undesired

quality of result. In this chapter, we start with two micro-benchmarks as motivating examples,

and then propose a set of high-level libraries to simplify design automation and optimization for

dynamically scheduled programs. These libraries are used to implement the applications pre-

sented in Chapter 8.

7.1 Motivating Examples

7.1.1 Dynamic O�-Chip Memory Accesses

Listing 7.1 shows a micro-benchmark that reads from the o�-chip memory with a runtime-

determined (dynamic) access pattern. This kind of workload is common, e.g., in a customized

cache (Section 8.1). While this micro-benchmark can be synthesized with an initiation interval

(II) of one and implemented at 300 MHz on an Alveo U280 board, the actual II (measured num-

ber of cycles on board over number of iterations) is much larger (11.95) when using addresses

generated from a 21-bit linear-feedback shift register (LFSR) pseudo-random number generator.

Even though the compiler can statically schedule the loop with II=1, when actually running on

board, the loop is stalled very frequently to wait for the dynamic memory requests. This is not
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1 void ReadFromOffChipMemory(tapa::istream<Addr>& addr_q,

2 tapa::ostream<Data>& data_q, tapa::mmap<Data> data) {

3 for (int i = 0; i < (1 << 20); ++i) {

4 if (!addr_q.empty()) {

5 data_q.write(data[addr_q.read()]);

6 }

7 }

8 }

Listing 7.1: A micro-benchmark that reads from the o�-chip memory data with a runtime-

determined access pattern.

only because o�-chip memory accesses have a long latency, but also because the kernel cannot

overlap memory accesses well. We shall show in Section 7.2 that this II can be greatly reduced

from 11.95 to 4.14, which makes the performance bound by the o�-chip memory system alone.

7.1.2 Dynamic On-Chip Memory Accesses

1 void AccumulateOverOnChipMemory(tapa::istream<Addr>& addr_q,

2 tapa::ostream<Data>& data_q) {

3 Data data[kOnChipDataSize];

4 for (int i = 0; i < (1 << 20); ++i) {

5 if (!addr_q.empty()) {

6 data_q.write(data[addr_q.read()] += 4.2f);

7 }

8 }

9 }

Listing 7.2: A micro-benchmark that accumulates values over the on-chip memory data with a

runtime-determined access pattern.

Listing 7.2 shows a micro-benchmark that accumulates values over the on-chip memory with

a dynamic access pattern. This type of workload is common, e.g., in graph applications (Sec-
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tion 8.2). Due to the potential read-after-write dependency on elements in array data, this micro-

benchmark can only be synthesized with an II of 11 on an Alveo U280 board running at 300 MHz.

Using addresses generated from a 21-bit LFSR, the II measured on board is 11.06, which is consis-

tent with the synthesis result. However, for such random addresses, read-after-write dependency

is almost never violated. We shall show in Section 7.3 that this II can be safely decreased from

11.06 to 1.03 by adopting a simple dynamic con�ict resolver with only 3.9% resource overhead.

7.2 Supporting Dynamic O�-Chip Memory Accesses

Time

Space

Read Latency
Kernel

External Memory

Read


Req. 0

Read


Data 0

Read


Req. 1

Read


Data 1

Processing

Figure 7.1: Synchronous o�-chip memory accesses without burst.

O�-chip memory accesses are more and more important today, due to the widening gap be-

tween the on-chip computation unit and the o�-chip external memory system. For a state-of-the-

art FPGA (e.g., Alveo U280), while the on-chip memory (e.g., URAM) can operate at a short clock

period (e.g., 3.3ns), the external memory latency is almost two orders of magnitude longer (e.g.,

182ns) [26]. Without any latency-hiding optimizations, o�-chip memory accesses can severely

limit the performance of an accelerator. This is especially true for high-level synthesis (HLS) de-

signs, where the sequential C/C++ semantics imply synchronous memory accesses, i.e., the next

memory operation cannot start until the current one �nishes. This is shown in Figure 7.1.

To help exploit the o�-chip memory system, Vitis HLS provides an optimization called “burst”
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Figure 7.2: Synchronous o�-chip memory accesses with burst.

mode accesses to hide the long memory latency. Memory accesses must be statically known and

continuous to enable burst mode. In burst mode, since the memory addresses are statically know,

the kernel can start many memory accesses using a single request without serializing each access.

This is demonstrated in Figure 7.2.
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Figure 7.3: Asynchronous o�-chip memory accesses.

Burst mode accesses enables full memory utilization, but only for statically know continuous

memory accesses. In many cases, it is not always possible to use such memory accesses. To give

programmers more choices for the o�-chip memory system, we extend the memory interfaces

in TAPA (Chapter 6) to support asynchronous memory accesses. As illustrated in Figure 7.3,

asynchronous memory accesses allows programmers to start the next memory access without
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waiting for the current memory access to �nish. As such, programmers are given the �exibility

to aggressively issue multiple outstanding memory requests.

Table 7.1: TAPA asynchronous memory-mapped interface.

tapa::async_mmap<T> Channel Functionality

tapa::ostream<uint64_t>& read_addr; Write an address to initiate a memory read request

tapa::istream<T>& read_data; Read data fetched from the address given by read_addr

tapa::ostream<uint64_t>& write_addr; Write an address to initiate a memory write request

tapa::ostream<T>& write_data; Write data to the address given by write_addr

tapa::istream<uint8_t>& write_resp; Read the number of completed write requests

TAPA supports the same synchronous memory interface as Vitis HLS via tapa::mmap, which

can be accessed via operator[] directly. To support asynchronous memory accesses, we ex-

tend tapa::mmap to tapa::async_mmap with 5 streaming channels: two for read addresses and

read data, three for write addresses, write data, and write acknowledgments. Each channel can

be accessed using tapa::istream and tapa::ostream as presented in Section 6.2.2.1. Table 7.1

summarizes the functionality of each channel in tapa::async_mmap.

Listing 7.3 illustrates the micro-benchmark shown in Listing 7.1 using TAPA’s asynchronous

memory-mapped interface. Measured on the same Alveo U280 board, the average II (number of

cycles on board over number of iterations) is reduced from 11.95 to 4.14 with 23% more LUTs but

96% less FFs and no BRAM.

TAPA’s asynchronous memory-mapped interface (tapa::async_mmap) is used to implement

the customized vertex cache (CVC) in Section 8.1.4. Without the asynchronous access support,

we will not be able to fully pipeline the CVC nor to create the shortest path accelerator (Sec-

tion 8.1). Section 8.1.6.2 evaluates the hit rate of the CVC. Besides, the random access bandwidth

benchmark in Section 8.2.1.4 also takes advantages of tapa::async_mmap.
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1 void ReadFromOffChipMemory(tapa::istream<Addr>& addr_q,

2 tapa::ostream<Data>& data_q,

3 tapa::async_mmap<Data> mem) {

4 for (int i = 0; i < (1 << 20); ++i) {

5 if (!addr_q.empty() && !mem.read_addr.full()) {

6 mem.read_addr.write(addr_q.read()); //

7 }

8
9 if (!mem.read_data.empty() && !data_q.full()) {

10 data_q.write(mem.read_data.read());

11 }

12 }

13 }

Listing 7.3: Optimized version of the micro-benchmark shown in Listing 7.1 using TAPA. The

runtime average II is reduced from 11.95 from 4.14 with 23% more LUT usage but 96% less FF

usage and no BRAM.

7.3 Supporting Dynamic On-Chip Memory Accesses

1 for (int i = 0; i < n; ++i) {

2 const auto edge = edges[i];

3 vertices[edge.dst].new_ranking += vertices[edge.src].old_ranking * ... ;

4 }

Listing 7.4: Dynamic on-chip memory accesses with a large initiation interval (II).

While on-chip memory accesses do not su�er from long latency (Section 7.2), supporting

dynamic accesses e�ciently is still challenging. A notable challenge is to handle read-modify-

write operation with dynamic random accesses, which is a common irregular access pattern in

graph applications. For example, the PageRank algorithm accumulates weighted rankings from

the neighbors. Using an edge-centric traversal model, this can be implemented using a simple
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loop shown in Listing 7.4, where the vertices array is accessed with a dynamic index. The

accumulation operation creates a read-after-write dependency, i.e., the next iteration must not

read from an array element until it has been written to the on-chip storage (e.g., URAM), which

can take several clock cycles if the accumulation operates on �oating point numbers. Although

the edges may be reordered arbitrarily, state-of-the-art commercial HLS tools pipeline such a loop

pessimistically to make sure it is always correct. This means even if consecutive loop iterations

do not really violate any dependency, the pipeline is still stalled for many cycles. Dynamatic [95],

an academic HLS tool, also noticed this problem, and proposed to dynamically schedule the whole

HLS program as a solution. However, doing so has demonstrated non-trivial resource overhead

due to extensive hand shaking and the lack of resource sharing [17].

1 constexpr int kDepDist = 5;

2 using AddrType = int;
3 constexpr AddrType kNullAddr = -1;

4 tapa::dependency_detector<AddrType, kDepDist - 1> detector(kNullAddr);

5 for (int i = 0; i < n;) {

6 #pragma HLS dependence true variable = vertices distance = kDepDist

7 const auto edge = edges[i];

8 AddrType addr = kNullAddr;

9 if (detector.is_conflict_free(edge.dst)) {

10 vertices[edge.dst].new_ranking += vertices[edge.src].old_ranking * ...;

11 addr = edge.dst;

12 ++i;

13 }

14 detector.record(addr);

15 }

Listing 7.5: Dynamic on-chip memory accesses with a dynamic dependency resolver.

In this dissertation, we solve the dynamic on-chip memory accesses using a di�erent ap-

proach. Noticed that HLS tools provide directives to partially disable static analysis and let the

programmers handle dependency (e.g., via #pragma HLS dependence in Vitis HLS and #pragma

ivdep in Intel OpenCL for FPGA), we propose to leverage such features and resolve dependency
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at runtime. Once such a pragma is applied, the loop shown in Listing 7.4 can be fully pipelined,

because the HLS compiler is instructed that each memory address will not appear until kDepDist

= 12 iterations later. Therefore, the compiler will think that there is no read-after-write depen-

dency. To make sure the same address actually will not appear until 12 iterations later, we add

a dependency resolver to record and detect con�icting addresses. The original loop body will be

replaced with a bubble if an address has appeared within the latest 12-1=11 iterations, making

sure of correctness. Listing 7.5 illustrates how the example in Listing 7.4 can be fully pipelined

with the help of a dynamic dependency resolver.

Table 7.2: Summary of the TAPA dependency detector API.

API tapa::dependency_detector<T, N>(T null_addr);

Functionality Constructs a dependency detector that can detect con�icts of addresses of type

T with the previous N addresses. After construction, the previous addresses are

initialized to null_addr.

API tapa::dependency_detector<T, N>::is_conflict_free(T addr);

Functionality Returns true if addr is con�ict free with the previous N addresses.

API tapa::dependency_detector<T, N>::record(T addr);

Functionality Records an accessed address addr.

Table 7.2 summarizes the TAPA dependency detector API. The dependency detector should

always be used with #pragma HLS dependence with properly determined dependency distance,

in order to resolve dependency correctly. Listing 7.6 illustrates how it can be used in the example

shown in Listing 7.2. The dynamic dependency detector can be implemented using shift regis-

ters. In each loop iteration, a new address is pushed to the shift registers and the oldest address

is discarded (Line 14 in Listing 7.5). To detect con�icts (Line 9 in Listing 7.5), the dependency

detector simply checks in parallel if the input address exists in any of the shift registers.

An obvious limitation of the dynamic dependency resolver is that it only inserts bubbles to
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1 void AccumulateOverOnChipMemory(tapa::istream<Addr>& addr_q,

2 tapa::ostream<Data>& data_q) {

3 Data data[kOnChipDataSize];

4 constexpr int kDepDist = 12;

5 const OnChipAddr kNullAddr = -1;

6 tapa::dependency_detector<OnChipAddr, kDepDist - 1> detector(kNullAddr);

7 for (int i = 0; i < (1 << 20);) {

8 #pragma HLS dependence true variable = data distance = kDepDist

9 OnChipAddr addr = kNullAddr;

10 if (addr_q.try_peek(addr) && detector.is_conflict_free(addr)) {

11 addr_q.read();

12 data_q.write(data[addr] += 4.2f);

13 ++i;

14 }

15 detector.record(addr);

16 }

17 }

Listing 7.6: Optimized version of the micro-benchmark shown in Listing 7.2 using TAPA.

stall the pipeline, and cannot reorder the loop iterations to further reduce stalling. While it is theo-

retically possible to do online reordering, such reordering requires much more complex hardware

than the simple dynamic dependency resolver and can easily become the frequency bottleneck

since the pipeline dependency resolver itself cannot be pipelined. In Section 8.2.2, we shall intro-

duce an o�ine method that reduces stalling by reordering the addresses and only insert bubbles

when necessary.

Listing 7.6 demonstrates the improved version of the micro-benchmark shown in Listing 7.2

using TAPA’s dynamic con�ict resolver. Measured on the same Alveo U280 board, the II is reduced

from 11.06 to 1.03 with only 3.9% more LUTs and FFs.
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Table 7.3: Comparison of naïve and optimized versions of the micro-benchmarks with dynamic

memory accesses.

Micro-Benchmark Clock/MHz II LUT FF BRAM URAM DSP

Naïve o�-chip accesses 300 11.95 1189 3740 15 0 0

Optimized o�-chip accesses 300 4.14 1466 162 0 0 0

Naïve on-chip accesses 300 11.06 3708 5094 0 32 32

Optimized on-chip accesses 300 1.03 3854 5297 0 32 32

7.4 Summary

In this chapter, we further extended TAPA presented in Chapter 6 to support dynamically sched-

ule o�-chip and on-chip memory accesses. For o�-chip memory accesses, we add an asyn-

chronous memory-mapped interface so that the long o�-chip memory latency can be hidden

very well. For on-chip memory accesses, we address the potential read-after-write dependency

caused by long computation latency compared with the short on-chip memory latency. Table 7.3

summarizes the results using two representative micro-benchmarks for each type of memory

accesses.

With the extensions introduced in this chapter, TAPA can now support task-parallel programs

with both statically and dynamically scheduled memory accesses. The task instantiation, how-

ever, is still static at the language level. One of the major challenges to support dynamic task

instantiation is to make sure the dynamically instantiated tasks can always communicate with

other tasks whenever necessary. TAPAS [123] partially addresses this problem by using a shared

memory system for inter-task communication, but it lacks the support for highly concurrent

inter-task communication via hardware channels. TAPA leaves the responsibility of dynamically

instantiating tasks to the programmer so that the compiler can leverage programmers’ knowl-

edge to optimize the inter-task communication channels. In the next chapter, we shall discuss
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two real-world graph applications as representatives for irregular memory-intensive applications,

and evaluate the e�ectiveness of the extended TAPA framework.
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CHAPTER 8

Tackling Irregular Access Pattern: Graph Applications

In Chapter 6, we have presented TAPA, a highly productive extension to HLS for task-parallel HLS

programs. Chapter 7 further extends TAPA to support dynamically scheduled memory accesses.

This enables us to use TAPA to implement memory-intensive applications with irregular memory

accesses. In this chapter, we will present two design & optimization case studies of such irregular

applications, using two graph analytics applications, i.e., single-source shortest path (SSSP) and

graph convolutional networks (GCN). For SSSP, the amount of edge traversal highly depends

on the priority scheduling of vertices, which can only be determined at run time. As such, in

Section 8.1, we take the opportunity to showcase our support for dynamically scheduled o�-

chip memory accesses. For GCN, memory accesses can be reordered without changing the total

amount of traversal. Therefore, in Section 8.2, we �rst discuss the best approach to schedule the

memory accesses, followed by the challenges imposed by irregular on-chip memory access.

8.1 Single-Source Shortest Path

The graph is a universal data structure that models relationships, connections, and structures.

The single-source shortest path (SSSP) problem, one of the most important and well-studied graph

problems, �nds its prevalent application in road navigation [74], telecom network routing [143],

neural image reconstruction [119], and social network analysis [10]. Although we have known

Dijkstra’s algorithm [61] and its priority queue–based variants [69,94] for several decades, these

algorithms are inherently sequential and are not easily parallelizable, because increasing paral-

lelism is often at the cost of increasing the total amount of work as well. As such, e�cient paral-
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Figure 8.1: Change of the number of active vertices as edges are traversed. The g500 graphs are

power-law graphs and the road graphs are planar graphs.

lelization of SSSP algorithms are still an active �eld of research today [51, 114, 127, 160, 164, 180].

Compared with CPUs and GPUs, FPGAs have the unique capability of customizing the con-

trol �ow and data paths, which has demonstrated tremendous potential in various application do-

mains, including stencil computations [19, 20, 52], neural networks [163, 178], and general graph

algorithms [13,87,165]. This makes the FPGA a naturally good candidate platform for SSSP accel-

eration, since the high-throughput on-chip priority queues [5, 115] enable e�ective control over

the trade-o� between parallelism and the amount of work [1, 114]. However, such on-chip pri-

ority queue–based approach has been applied only to uniform-degree planar graphs, yet many

real-world graphs have skewed degree distributions, which are often modeled using the power

law [30]. Compared with planar graphs, power-law graphs have a much larger frontier of active

vertices, which requires a priority queue with a much larger capacity. Even worse, such a ca-

pacity requirement increases rapidly as the size of graph grows, making it infeasible to keep the

priority queue on-chip. This is demonstrated in Figure 8.1.

Another challenge to implement priority queue–based SSSP algorithms e�ciently is that

priority-order graph traversal prohibits many reordering techniques used in many graph accel-

erators [13, 47–49, 87, 154, 181], which are vitally important to reducing external memory tra�c

and achieving high performance. As such, many graph accelerators [13, 87, 181] implement the
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Bellman-Ford algorithm [155] that does not require a priority queue at all. However, these ac-

celerators work best for algorithms whose amount of work is insensitive to the traversal order

(e.g., SpMV and PageRank). For SSSP, the total amount of traversed edges (i.e., amount of work)

can be very di�erent with di�erent traversal orders. We will show in Section 8.1.6.4 that, while

the Bellman-Ford algorithm is good for parallelization and raw traversal throughput, its highly

redundant edge traversal leads to a poorer overall performance for SSSP.

In this section, we present SPLAG, an SSSP accelerator for power-law graphs [22]. SPLAG

uses a coarse-grained priority queue (CGPQ) to manage the active vertices in the SSSP problem.

The CGPQ organizes active vertices in chunks, stores them in the external memory, and orches-

trates the chunks with an on-chip priority queue. SPLAG also employs a customized vertex cache

(CVC) with application-speci�c push and pop operations, which reduces both on-chip and o�-

chip memory tra�c. As a cache, the CVC leverages the asynchronous memory-mapped memory

interface (Section 7.2) extensively to hide the memory latency.

8.1.1 The SPLAG Accelerator

SPLAG aims to enable high-throughput and work-e�cient SSSP queries for large-scale power-

law graphs. This is achieved using the architecture shown in Figure 8.2. The whole SPLAG

accelerator is composed of three major components:

∙ The coarse-grained priority queue (CGPQ) implements a high-throughput bucket-based pri-

ority queue that is scalable to a large capacity by bu�ering active vertices on-chip and

storing excessive vertices in the o�-chip spill memory as �xed-size chunks. Section 8.1.3

will provide more details about the CGPQ.

∙ The customized vertex cache (CVC) provides high-throughput access to the vertex data,

which are initially stored in the o�-chip vertex memory. Unlike a standard cache with read

and write interfaces, the CVC provides application-speci�c interfaces for updating vertices

and �ltering redundant updates. Section 8.1.4 will review the internals of the CVC.

136



SPLAG (on-chip)  

CGPQ
vertex w/ new 
dist. < knownCVCEdge Fetcher

Edge Memory 
(off-chip)

Vertex Memory 
(off-chip)

Spill Memory 
(off-chip)

vertex w/ 
dist. ≤ known

vertex w/ 
min. dist.

vertex w/ 
new dist.

Bank 1

Bank 0

Bank 1

Bank 0

Partition 1

Partition 0

Figure 8.2: Architecture overview of the SPLAG accelerator.

∙ The edge fetcher (EF) traverses neighbors of an active vertex and calculates the new tentative

distance. The o�-chip edge memory stores the edge list in the compressed sparse row (CSR)

format. Section 8.1.5 will discuss the edge fetcher.

To enable concurrent processing, we partition all the three major components internally. We

use multi-stage switch networks [111] to improve the clock frequency without sacri�cing the

throughput [24] when all-to-all concurrent communication is required. Besides the three ma-

jor components, the SPLAG accelerator also contains a dispatcher responsible for injecting the

�rst active vertex, controlling program termination, and collecting statistics. The host program

initializes the vertex and edge memory.

8.1.2 The SPLAG Algorithm

The SPLAG architecture implements a variant of Dijkstra’s algorithm, shown in Algorithm 1. The

algorithm is designed to expose as much parallelism as possible while minimizing the amount

of work. This algorithm exploits two levels of parallelism by ¬ relaxing edges from multiple

active vertices at the same time (Line 4 in Algorithm 1), and ­ relaxing multiple edges of the

same active vertex at the same time (Line 7 in Algorithm 1). Moreover, SPLAG executes the

algorithm asynchronously, which means the next iteration of the outer loop (Line 4) can start

before the previous one �nishes, avoiding load balancing caused by skewed degree distribution.
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Algorithm 1 SPLAG’s variant of Dijkstra’s algorithm.

Require: A graph G = (V , E) and root ∈ V

Ensure: vertices represent the shortest-path tree from root

1: vertices = [{dist = ∞, parent = null }, ⋯]

2: vertices[root] = [{dist = 0, parent = root}]

3: queue = [{id = root, dist = 0, parent = root}]

4: while not queue.empty() in parallel do

5: u = queue.pop() ⊳ CGPQ

6: if u.dist ≤ vertices[u.id].dist then ⊳ CVC

7: for all e = u.id → vid ∈ E in parallel do ⊳ Edge Fetcher

8: if vid ≠ u.parent then ⊳ Edge Fetcher

9: d = u.dist + e.weigℎt ⊳ Edge Fetcher

10: if d < vertices[vid].dist then1
⊳ CVC

11: vertices[vid] = {dist = d, parent = u.id} ⊳ CVC

12: queue.push({id = vid, dist = d, parent = u.id}) ⊳ CGPQ

This, however, makes it possible to terminate the program prematurely because the queue may

be temporarily empty before active vertices are pushed to the queue in Line 12. To solve this

problem, we delay the program termination by a short, �xed amount of clock cycles to make sure

any in-progress operation has been completed. This delay period is chosen based on the latency

of memory accesses and depth of pipelines, and is long enough for any in-progress operation to

complete.

Highly parallel execution of Dijkstra’s algorithm may lead to highly redundant amount of

work. That is, the number of edge traversal may be greater than the number of edges in the con-

nected component. SPLAG reduces the amount of work using the conditional statement shown

in Line 6 of Algorithm 1. It can �lter out vertices that are updated many times. For example, for

1
Line 10 and Line 11 must be atomic. The CVC takes care of this in SPLAG.
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an SSSP query from root vertex A on the graph shown in Figure 8.3, vertex A generates a path to

D with a tentative distance of 8 and vertex B generates a path to D with a tentative distance of

3+2=5. Without Line 6 in Algorithm 1, neighbors of vertex D will be traversed twice because D

will be popped twice in Line 5 with two di�erent tentative distances. With Line 6 and the priority

queue, vertex D with the smaller tentative distance 5 will be popped �rst, and the second pop will

be �ltered out because a smaller distance is already known.

3

8

A

3

1C 5D

2

B

3

E

Figure 8.3: A graph with 5 vertices and 7 edges.

To further reduce redundant edge traversal, SPLAG applies another optimization named never-

look-back. Noticing that a vertex always has a smaller distance than its children in the SSSP tree,

SPLAG skips the parent of a vertex v when it traverses the neighbors of v. For example, for an

SSSP query from root vertex A in Figure 8.3, A generates a path to B with tentative distance 3

and parent A. When SPLAG traverses neighbors of B, it will skip A and only traverse C, D, and

E, since A is the parent of B, and we know A must already have a smaller distance than B.

8.1.3 The Coarse-Grained Priority Queue

A high-throughput and work-e�cient SSSP accelerator for power-law graphs requires high-

throughput priority-order graph traversal. Therefore, there are two design objectives for the

priority queue: ¬ the priority queue must have a large capacity and utilize o�-chip memory

e�ciently, and ­ the priority queue must support high throughput push and pop operations.

In this section, we present our solution named the coarse-grained priority queue (CGPQ). Notic-

ing that a strict priority queue exposes too little parallelism and is not necessary for correctness,

we take a coarse-grained bucket-based approach to achieve the two design objectives. Using a
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pre-selected ∆, we can divide the active vertices into many buckets based on the distance from

the root, and, e.g., store a vertex with tentative distance d in bucket [
d

Δ]
. Vertices in the same

bucket are considered to have the same priority and can be accessed in simple �rst-in-�rst-out

(FIFO) order.
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Figure 8.4: Sizes of 32 buckets as edges are traversed in the g500-15 dataset. Each line represents

a bucket.

While it seems trivial to implement such a simple bucket-based CGPQ, the dynamic nature

of the SSSP problem actually imposes signi�cant challenges: the maximum size of each bucket

is unknown before the program execution. While we can pessimistically reserve consecutive

memory space for each bucket, doing so will likely result in a signi�cant waste of memory since

the overall utilization of memory would be low, which limits the scalability in terms of capacity.

Figure 8.4 shows an example of how the sizes of 32 buckets change as edges are traversed. We can

see that di�erent buckets are utilized di�erently. If we reserve memory based on the maximum

size of all the buckets, 63% of the reserved memory will be unnecessary. In fact, we must reserve

even more because we must account for the worse case among all SSSP queries on all datasets. To

avoid such memory waste, one can employ a linked list to allocate memory space dynamically,

but such a data structure not only has the storage overhead for the node pointers, but also is slow

due to random accesses. A commonly used data structure that achieves a compromise between a

�xed-size array and a linked list is often called a double-ended queue (deque), which is a linked
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Figure 8.5: An example of the CGPQ orchestrating chunks of vertices. (a) Initially the CGPQ

contains one chunk of four vertices stored o�-chip and its reference stored on-chip. The on-chip

reference stores the bucket number and a pointer to the o�-chip memory position. (b) Another

chunk of four vertices is added. The new chunk belongs to Bucket 0 and thus has higher priority.

Therefore, it is stored on-chip at a position with a higher priority. The on-chip reference of the

old chunk is moved to a position with a lower priority. Meanwhile, the o�-chip memory only

needs to append the newly added vertices without moving existing ones. (c) Another chunk for

Bucket 5 is added. (d) There can be multiple chunks for the same bucket. (e) The chunk with the

highest priority is removed. The chunk reference is popped from the on-chip priority queue and

the pointer is used to read the vertices from the o�-chip memory. On-chip chunk references are

reorganized to maintain the priority queue structure while o�-chip data are not moved.

list of �xed-size arrays. The use of linked lists, however, are still ine�cient for implementation

on FPGA.

The CGPQ is inspired by the deque data structure. Similar to a deque, the CGPQ manages

o�-chip active vertices in a unit of �xed-size chunks. Unlike a deque, the CGPQ manages the po-

sition and priority of the chunks with an on-chip priority queue, instead of linked lists. Figure 8.5
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demonstrates how the on-chip chunk priority queue (CPQ) orchestrates the o�-chip memory ac-

cesses to enforce the priority ordering of vertices. While the example shows 4-vertex chunks, in

practice, the chunks are typically hundreds or thousands of vertices large to make sure the on-

chip priority queue does not over�ow. Therefore, the o�-chip memory is always accessed in large

chunk of vertices, which guarantees high memory bandwidth utilization. As such, the CGPQ can

scale to a large capacity without a signi�cant waste of the memory space or bandwidth.

   CGPQ 

 (on-chip)

Chunk

Buffer

Bucket Assigner

Bucket Assigner

Chunk Priority eue Spill Memory (off-chip)

Pop PortPush Port

Pop PortPush Port

Figure 8.6: A CGPQ with two push ports and two pop ports. The number of ports can be di�erent

for push and pop and is larger than two in the actual design (Table 8.3 on page 155).

Figure 8.6 shows the architectural overview of a CGPQ with two push ports and two pop ports,

which allows two vertices to be pushed and two vertices to be popped in parallel. Each input ver-

tex will be assigned a bucket by the bucket assigner using a pre-selected ∆. The CGPQ then bu�ers

on-chip at least one chunk of active vertices for each bucket, enabling high-throughput push and

pop operations. Section 8.1.3.1 discusses more details about the chunk bu�er and its two-level

partitioning mechanism, which further enables concurrent operations and makes it possible to

achieve our high-throughput design objective. When the bu�er is (almost) full, vertices will be

o�oaded to the o�-chip spill memory as a whole chunk. The chunk priority queue orchestrates

the chunks between the on-chip chunk bu�er and the o�-chip spill memory, as demonstrated in

Figure 8.5. Section 8.1.3.3 further discusses how we dynamically and collaboratively schedule the

o�-chip operations together with the on-chip push and pop operations. Such dynamic manage-

ment allows the memory space to be used in a compact way, making it possible to achieve our

large-capacity design objective.
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8.1.3.1 The Chunk Bu�er

The chunk bu�er is the key to achieving highly concurrent push and pop throughput while sup-

porting large queue capacity. As a priority queue, the two basic operations are push and pop. To

achieve the large-capacity design objective, the chunk bu�er must additionally support the spill

and re�ll operations to store excessive vertices in the o�-chip spill memory. The spill operation

moves a chunk of vertices from the on-chip chunk bu�er to the o�-chip spill memory. The re�ll

operation moves a chunk of vertices from the o�-chip spill memory back to re�ll the on-chip

chunk bu�er. To achieve the high-throughput design objective, all four operations must be able

to parallelize. This is done as follows using the terminologies summarized in Table 8.1.

Table 8.1: Terminologies used in the chunk bu�er.

Term Meaning

Chunk Bu�er The chunk bu�er is part of the CGPQ and bu�ers vertices on-chip.

Bucket Partition Vertices in the chunk bu�er can be divided into many bucket partitions ac-

cording to their bucket IDs modulo the bucket partition count. Di�erent

bucket partitions are implemented using separate hardware resources and

therefore can be accessed in parallel.

Bucket Bu�er Vertices in the chunk bu�er can be divided into many bucket bu�ers accord-

ing to their bucket ID. Di�erent bucket bu�ers belong to the same bucket

partitions if they have the same bucket ID modulo the bucket partition count.

URAM Bank Each bucket partition is implemented using several URAM banks. Bucket

bu�ers in the same bucket partition cannot be accessed in parallel because

they are stored in the same URAM banks (Figure 8.8).

To support concurrent push operations, the chunk bu�er is internally partitioned into many

bucket partitions so that di�erent buckets can be accessed in parallel. This is called inter-bucket

parallelism. Figure 8.7 shows the architecture of the chunk bu�er with two bucket partitions. In
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this example, vertices in Bucket 0, 2, 4, ... belongs to Bucket Partition 0, and vertices in Bucket

1, 3, 5, ... belongs to Bucket Partition 1. Since each vertex may belong to any bucket partition,

this requires an all-to-all communication pattern. After each incoming active vertex is assigned

a bucket and is sent to the chunk bu�er, it will �rst be routed through the switch network based

on its bucket partition ID.

Chunk Buffer (on-chip)

Bucket 

Partition 0

Bucket 

Partition 1
Refill Port 

Switch

Network

Push Port 

Push Port 

Spill Port

 

 

Splier
Pop Port

Pop Port

Figure 8.7: The chunk bu�er in Figure 8.6. Data paths in bold transfer multiple data elements in

lockstep.

Each bucket has its own on-chip storage in the chunk bu�er called the bucket bu�er (BB).

Each BB is accessed in FIFO order as a circular bu�er. The chunk bu�er maintains the write and

read pointers of each BB. Figure 8.8 shows the data layout of the chunk bu�er in Figure 8.7. The

numbers in brackets are the array indices of each vertex in each BB. For example, the �rst three

active vertices assigned to Bucket 0 will be written to memory positions [0], [1], and [2] in BB

0 (Figure 8.8) in three clock cycles, which can happen in parallel when Bucket 1 or Bucket 3 (but

not Bucket 2 due to bank con�ict with Bucket 0) is being written.

In Figure 8.7, only one vertex may be routed to each bucket partition. While each bucket

partition can in fact consume multiple vertices in each clock cycle, we do not exploit the par-

allelism to push vertices with each bucket partition. The rationale is as follows. On the one

hand, we observe that the incoming vertices are roughly evenly distributed among all buckets in

the beginning of execution where the push operations are the most intensive. Figure 8.4 shows

such an example: almost all bucket sizes increase rapidly before the bucket sizes hit ~500. The

switch network can further absorb temporary unbalances. Therefore, pushing only one vertex

to each bucket partition does not impose a signi�cant throughput decrease. On the other hand,
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Figure 8.8: Data layout of the chunk bu�er in Figure 8.7. Terminologies are summarized in Ta-

ble 8.1. Each push port requires a bucket partition and each pop port requires a URAM bank, so

there are two bucket partitions and each bucket partition has two banks. Each bucket bu�er (BB)

is used as a circular bu�er. The numbers in brackets are the array indices of the vertices in each

BB.

we observe that unlike pop operations (which we will discuss later), push operations cannot be

coalesced and aligned, since we can never know when/if the next vertex to the same bucket will

arrive. Therefore, each incoming vertex may fall in any bank in the bucket partition. Unlike the

routing problem among di�erent bucket partitions whose destination is determined solely by its

distance and thus can use a multi-stage switch network, the bank ID to which a vertex shall be

written is determined by the runtime conditions in the bu�er. Restricting the push rate to each

bucket partition not only reduces resource utilization, but also removes a potential critical path

in the whole accelerator. As such, we only exploit inter-bucket parallelism for push operations.

For pop operations, since we only pop from a single non-empty bucket with the smallest dis-

tance, the inter-bucket parallelism among di�erent bucket partitions cannot be exploited. There-

fore, we further divide each bucket partition cyclically into URAM banks so that multiple vertices

can be accessed at the same time. This is called the intra-bucket parallelism. With the intra-bucket

parallelism, we can then pop multiple vertices from the same bucket in a single clock cycle. These

vertices then go through coalesced data paths in lockstep and are eventually split into individual

data paths. In Figure 8.7 and Figure 8.8, since there are two pop ports, each bucket partition is

divided into two banks and the coalesced data paths are two-element-wide to match the data rate
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of pop operations.

Note that a bucket may have fewer valid vertices than the intra-bucket parallel factor. In such

cases, null vertices padding will be �lled in the coalesced data paths. The splitter in Figure 8.7

detects and removes the null vertices when sending the coalesced vertices into individual pop

ports. To simplify the logic to determine the validity of popped vertices, we require that the pop

operations are always aligned; null vertices will be written to the BB in case a pop operation

performs a partial read. For example, let there be three valid vertices in Bucket 0 in Figure 8.8

stored in [0], [1], and [2]. The �rst pop operation will read two vertices from [0] and [1]

respectively, which are aligned to the intra-bucket parallel factor 2. The second pop operation

will only read one valid vertex from [2]. This is not an aligned operation. If we allow such

unaligned operations and later a new vertex is written to [3] in Bucket 0, we will have to be

able to read one single valid vertex from [3] while marking vertices from other banks null. This

complicates the design. Instead, in case of unaligned operations, we will force alignment and

adjust the write pointer in addition to the read pointer to �ll in the unaligned locations. Using

the same example above, when the second pop operation reads the vertex from [2], it will move

both the read pointer and the write pointer to [4] so that the next incoming vertex will be stored

in [4] instead of [3]. Note that this alignment enforcement does not sacri�ce the maximum

capacity of each circular bu�er. As such, unaligned pop operations will only insert null vertices

in higher locations, which simpli�es the pop operation logic without a�ecting other operations.

Intra-bucket parallelism enables not only concurrent pop operations, but also faster spill/re�ll

operations by reading from/writing to all URAM banks in each bucket partition. Figure 8.7 shows

the data paths for the spill and re�ll operations. Section 8.1.3.3 will discuss how the four oper-

ations are scheduled. Note that we cannot guarantee each spill/re�ll operation is aligned. For

example, in Figure 8.8, the read pointer may point to position [1] when a spill operation is sched-

uled, which means the spill operation should read [1] and [2] in the �rst clock cycle. This is why

we have to partition each bucket partition into individual memory banks instead of reshaping the

data structure to use a single-bank memory with a wider width.
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8.1.3.2 The Chunk Priority Queue

The chunk bu�er is on-chip and limited in size. To accomplish the large capacity design objec-

tive, when a bucket bu�er (BB) is almost full, it will spill to the o�-chip memory. When spilling

happens, a chunk reference will be created with the o�-chip memory pointer and the bucket asso-

ciated with that chunk. This chunk reference will be pushed into an on-chip chunk priority queue

(CPQ) so that when the BB has enough space, the o�-chip chunks can be re�lled in priority order.

Figure 8.5 shows an example of spilling and re�lling. Since each chunk contains many vertices,

the capacity of the CPQ can be much smaller than the whole CGPQ, and the CPQ can be on-chip

only. Since the o�-chip access has a long latency (> 100 ns [26]), a regular binary heap su�ces

for the CPQ. Other on-chip priority queue data structures such as the systolic priority queue or

pipelined heap require more memory banks and are thus less e�cient, so we do not use those.

8.1.3.3 Scheduling the Operations

The potential bank con�icts and multi-cycle operation of spilling and re�lling bring challenges

to schedule the four operations correctly without deadlock. Moreover, the spill memory is shared

by all bucket partitions to maximize the utilization of the external memory. To avoid deadlock,

the general scheduling rules are:

1. always make sure multi-cycle operations, i.e., spilling and re�lling, can �nish without in-

de�nite stalling. This not only simpli�es the inter-operation dependency, but also helps

to improve o�-chip memory utilization since memory requests will not be stalled by the

chunk bu�er;

2. prioritize push operations over pop operations since pop operations may generate more

push operations;

3. each bucket partition only has one read port and one write port.

Details for scheduling each operation are as follows.
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The push operation is scheduled on a bucket partition when an incoming vertex is available

on the push port, unless:

1. The write port is occupied by an active re�ll operation.

2. There is insu�cient bu�er space for the target bucket. This includes the case when the BB

is full and the case when future re�ll operations exhaust the available space. For example,

let each chunk contain 4 vertices and the BB can hold up to 8 vertices. A re�ll operation

is scheduled when the BB only has 2 vertices. Push operations can be scheduled before

re�lling data are fetched from the o�-chip memory (which takes many clock cycles), until

there are 4 vertices in the BB. We will not schedule another push operation when the BB

contains 4 vertices since if we do, the re�ll operation would stall inde�nitely when no pop

operation is scheduled and the BB does not have su�cient space for the last vertex.

The pop operation is scheduled for the non-empty BB with the highest priority, unless:

1. The output pop port is full.

2. The read port is occupied by an active spill operation.

3. There are insu�cient vertices.

4. The pop operation is unaligned and the write port is used by a push or re�ll operation.

A BB is selected for spilling if its size exceeds a pre-de�ned threshold (e.g., 3/4 BB capacity)

and there is no spilling or re�lling already scheduled (which occupies the o�-chip memory). If

multiple BBs are almost full, we start spilling the one with the lowest priority. Once a BB is

scheduled for spilling, the whole chunk must be moved to the o�-chip memory, which takes

multiple clock cycles. That BB will continue the spilling operation in the following clock cycles

unless the memory channel is busy.

The top bucket in the CPQ is selected for re�lling if its size is below a pre-de�ned threshold

(e.g., 1/4 BB capacity), and there is no spilling already scheduled. Since there is a long latency
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between the o�-chip memory read request and the data response, we allow at most one re�lling

operation to be scheduled while another one is in process, which can help to hide this long latency.

Once scheduled, the re�lling operation will continue in the follow clock cycles unless the memory

channel is not ready with the appropriate data.

Given the above scheduling mechanism, we have the following theorem:

Theorem 2. The CGPQ operation scheduling is deadlock-free if the spill memory is su�ciently large

and deadlock-free.

Proof. Spilling and re�lling operations by-construction will not block inde�nitely as long as the

spill memory is deadlock-free. Moreover, given a �nite number of push operations and prop-

erly chosen thresholds, spilling and re�lling operations will be scheduled for �nite times, all of

which will eventually complete. Therefore, assuming the spill memory is su�ciently large, spill

operations will eventually unblock push operations blocked by insu�cient bu�er space, so push

operations will not block inde�nitely either. As a result, the rest of the accelerator is always

able to make progress, which will eventually unblock pop operations blocked by full output.

This means none of the four operations will block inde�nitely. By de�nition, the scheduling is

deadlock-free.

8.1.4 The Customized Vertex Cache

With a high-throughput and large-capacity CGPQ, we still need a carefully designed accelerator

that can keep up with the throughput. The priority-order graph traversal generates extensive

random memory accesses that are infeasible to reorder for better o�-chip bandwidth utilization,

making it even more challenging to create a fast SSSP accelerator. We could employ a classic

memory cache to mitigate the random accesses on the vertex data, but it would produce lower

quality of results due to its application-agnostic nature. Noticing that the tentative distance of

each vertex monotonically decreases, we can take advantage of this property and simplify the

accelerator design. In SPLAG, we create the customized vertex cache (CVC) to help
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1. reduce the o�-chip memory tra�c by caching vertex data on-chip, and

2. reduce on-chip memory requests by taking advantages of the fact that the tentative distance

of each vertex is monotonically decreasing.

The CVC provides two basic operations:

1. The updating operation consumes as input a vertex with a new distance and its correspond-

ing parent vertex ID. The CVC updates the tentative distance and the tentative parent of

a vertex if and only if the input distance is smaller than the existing value. If the update

happens, the updated vertex is pushed to the CGPQ.

2. The �ltering operation takes as input a vertex popped from the CGPQ. The CVC compares

the tentative distance of the input and the existing value and checks if the input is “stale”,

i.e., its tentative distance has been updated to a smaller value. Only if the input vertex is

not stale, will the CVC forward the input from the CGPQ to the edge fetcher to traverse its

neighbors.

                      Customized Vertex Cache (on-chip)  

Vertex

Memory

Bank 1

CVC Bank 0

Vertex

Memory

Bank 0

Switch
Network for

Updating Switch
Network for

Filtering
CVC Bank 1

from CGPQ 
Pop Ports 

to CGPQ 
Push Ports 

from Edge 
Fetcher

to Edge
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Vertex     
Memory   
(off-chip) 

Figure 8.9: A customized vertex cache with two banks. Both the on-chip and o�-chip memory are

partitioned into banks. Vertices are cyclically assigned to each bank. The two switch networks

route requests based on the bank ID.

Figure 8.9 shows the architecture of a CVC. For high-throughput memory accesses, the ver-

tices are cyclically partitioned into multiple banks. Each CVC bank has two pairs of ports, one
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pair for updating and another for �ltering. The updating ports are connected to the edge fetcher,

which is responsible for generating vertices with new tentative distances. Since each vertex may

have neighbors in any CVC bank, a switch network is used to route the updating inputs to the

correct bank. Similarly, the �ltering ports are connected to the CGPQ and a switch network is

used to route the �ltering inputs to the correct bank.

The CVC is fully pipelined. Each CVC bank can serve one request per cycle on hit. The

initiation interval for miss requests is two, because it takes one cycle to send and another cycle to

receive the o�-chip memory request. The memory requests are pipelined, and their long latency

can be hidden by overlapping them with each other. Each CVC bank implements a direct-mapped

write-back cache. We do not employ a set-associative cache since the hit rate improvement does

not make up the frequency degradation caused by its complexity. Each cache entry keeps a dirty

bit to indicate whether its content should be written back on cache miss or program termination.

Each entry also keeps a writing bit to indicate that its content is being written back, and another

dirty cache miss must stall until the write �nishes.

update

read data

miss (filter)

reading 

for

updating

hit

miss (update)

readyhit

read data

hit

reading 

for 

filtering

hit (filter req. dist. ≤ update req. dist.)

hit (update req. dist. < filter req. dist.)

Figure 8.10: The �nite-state machine for memory reads in the CVC.Hit means the requested cache

line has the same vertex ID as the requested vertex. Miss means the opposite of hit. The initial

invalid state can only transfer to reading for updating because each vertex cannot be �ltered

before being updated �rst. Dirty and writing states can be managed independent of the states for

reading and are not included in the �gure. Miss on reading will stall the request until the request

until the entry is no longer reading, so there is no state transition from reading states on miss.
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Coordinating memory reads from DRAM is more complicated than writes, because both up-

date requests and �lter requests can generate DRAM reads. On cache miss, we store the tentative

distance and parent in the incoming vertex as the tentatively known data, and do not generate

the output until the o�-chip data are available. The CVC treats o�-chip read caused by updat-

ing and �ltering di�erently when they arrive, therefore each cache entry in the CVC has two

di�erent reading states. Figure 8.10 shows the �nite-state machine of a CVC entry for memory

reads. When an o�-chip read for updating �nishes, the CVC compares the distances and gener-

ates an update if the incoming vertex has a smaller distance. If another updating request arrives

for the same vertex before the read data arrive, the cache entry is updated on-chip to keep only

the smallest tentative distance. This application-speci�c optimization reduces on-chip memory

tra�c while hiding o�-chip memory latency. When an o�-chip read for �ltering �nishes, the

CVC compares the distances and discards the request if the incoming vertex has a greater dis-

tance (which means the popped vertex is “stale”). If another �ltering request arrives for the same

vertex before the read data arrive, the cache entry is updated on-chip to keep only the smallest

tentative distance. If an updating request arrives when an entry is reading for a �ltering request,

the CVC compares the distances and marks the purpose of the reading updating if the updating

request has a smaller distance. This is because if the updating request has a smaller distance, the

�ltering request would become stale and should be discarded. Otherwise, the updating request is

not generating an update and the �ltering request should continue. Figure 8.15 on page 158 shows

the statistics of requests discarded by the CVC. Similarly, if a �ltering request arrives when an

entry is reading for an updating request, the CVC compares the distances and marks the purpose

of the reading �ltering if the �ltering request’s tentative distance is smaller than or equal to the

updating request.

8.1.5 The Edge Fetcher

The edge fetcher traverses neighbors of active vertices �ltered by the CVC and calculates the new

tentative distances of the neighbors. Figure 8.11 shows the architecture of the edge fetcher. The

152



     Edge 
   Fetcher 
 (on-chip)

     Edge     
  Memory   
 (off-chip) 

Edge 

Memory

Bank 1

Edge Reader #0

Edge 

Memory

Bank 0

Edge Reader #1
from Vertex

Cache

to Vertex

Cache

Distance PE #1

Distance PE #0

Figure 8.11: Edge fetcher with two banks. Each bank stores edges whose vertices in the corre-

sponding vertex partition. Bold lines are coalesced data paths that transfer multiple vertices in

lockstep.

edge fetcher exploits two levels of parallelism:

1. the edges are partitioned into multiple banks based on the source vertex ID so that neigh-

bors of di�erent vertices are traversed at the same time, and

2. the edges are coalesced into wide vectors so that multiple neighbors are traversed at the

same time.

The edge fetcher is fully pipelined without turnaround time for di�erent input vertices, meaning

if there are no bubbles in the input vertices, the edge fetcher will not insert any bubbles to the

output (unless the o�-chip memory does not keep up with the data rate).

8.1.6 Evaluation

We evaluate SPLAG with both synthetic and real-world graph datasets. Table 8.2 shows the

details of the datasets. All graphs are undirected. For each dataset, we sample 64 vertices that

are connected to at least one other vertex and report the harmonic mean since the metrics are

ratios. All experimental results are collected from on-board execution. Performance counters are

inserted to the accelerator to collect the relevant metrics.
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Table 8.2: Graph datasets evaluated on SPLAG.

Dataset |V | |E| Maximum degree Average degree Source

amzn 2.1M 5.8M 12k 2.7 Amazon product ratings [131]

dblp 540k 15M 3.3k 28 DBLP Paper Coauthors [71]

digg 872k 4.0M 31k 4.5 Users from digg.com [148]

�ickr 2.3M 33M 34k 14 Flicker users [129]

g500-N 2
N

2
N+4

2
0.6N+5

16 Graph 500 datasets [133]

hlwd-09 1.1M 58M 12k 50 Actor collaboration [148]

orkut 3.0M 106M 28k 36 Orkut social network [148]

rmat-21 2.1M 91M 214k 44 A Kronecker graph [116]

wiki 274k 2.9M 3.4k 11 Wiki article–word graph [148]

youtube 3.2M 12.2M 130k 3.8 YouTube users [130]

We implement SPLAG using TAPA [23] (Chapter 6 and Chapter 7), to leverage the convenient

peeking interfaces, decoupled DRAM request and response interfaces, simpli�ed host-kernel in-

terface, and AutoBridge [76,78] �oorplanning. Our implementation targets the Alveo U280 board

with 32 high-bandwidth memory (HBM) channels. Table 8.3 summarizes the design parameters.

We determine the design parameters as follows: to maximize the utilization of the switch net-

works, we only select powers of 2 for #bank and #HBM. We allocate as many #HBM as possible to

CVC for its intensive random accesses, and evenly distribute the rest between EF and CGPQ. For

CVC, capacity/bank maximizes the URAM utilization. For EF, coalescing factor matches #bank of

CVC and EF. For CGPQ, #port matches #bank of CVC. CPQ capacity and #bucket are maximized

without exceeding the timing critical path in CVC. Chunk size matches the capacity of HBM and

CPQ. BB capacity doubles the chunk size. Spill (re�ll) threshold is empirically chosen as ¾ (¼) of

BB capacity.

We use Vitis 2021.1 for hardware implementation. The post-implementation reports suggest
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that the whole accelerator, including the Vitis shell platform, utilizes 75% CLBs, 6.3% DSPs, 14%

BRAMs, and 83% URAMs with a 45W power budget (including the HBM). There are 162840 CLBs,

9024 DSPs, 2016 BRAMs, and 960 URAMs available in total. The accelerator is clocked at 130MHz

with critical paths caused by the extensive usage of URAMs in the CVC. The CPU baseline is a

multi-thread ∆-stepping implementation written in the latest Galois [107]. The server has two

Xeon Gold 6244 CPUs, which have 32 threads in total running at 4.4 GHz.

Table 8.3: Design parameters of the SPLAG accelerator.

Component Parameter Value Rationale

CVC

#HBM 16 Maximum power of 2 & < 32 HBMs in total

#Bank 16 Matches #HBM

Capacity/Bank 64k Maximizes the URAM utilization

EF

#HBM 8 = (32 - 16) / 2

#Bank 8 Matches #HBM

Coalescing Factor 2 Matches #bank of CVC / #bank of EF

CGPQ

#HBM 8 = (32 - 16) / 2

#Push Port 16 Matches #bank of CVC

#Pop Port 16 Matches #bank of CVC

CPQ Capacity 256k Maximized without exceeding critical path in CVC

#Bucket 128 Maximized without exceeding critical path in CVC

Chunk Size 1024 Matches the capacity of HBM and CPQ

BB Capacity 2048 Doubles the chunk size

Spill Threshold 1536 Empirically chose as ¾ of BB capacity

Re�ll Threshold 512 Empirically chose as ¼ of BB capacity
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Table 8.4: Post-implementation results of the SPLAG accelerator on U280.

LUT FF DSP BRAM URAM Power Clock

SPLAG 48% / 621k 25% / 660k 6.3% / 564 14% / 548 83% / 800 45 W 130 MHz

CGPQ 277k 222k 528 2 288 — —

CVC 121k 90k 0 0 512 — —

Edge Fetcher 15k 17k 32 0 0 — —

Dispatcher 5k 27k 0 2 0 — —

Vitis Shell Platform 203k 303k 4 546 0 — —

Total Available on U280 1303k 2607k 9024 4032 960 225 W 300 MHz

8.1.6.1 Evaluation of the CGPQ

Figure 8.12 shows the percentage of spilled vertices among all vertices pushed to the CGPQ.

We can see that for large datasets, almost all active vertices are spilled to the o�-chip memory.

Moreover, the scaling from g500-15 to g500-22 matches the trend of active vertices shown in

Figure 8.1 on page 135. This suggests that our CGPQ design has accomplished the large-capacity

design objective.

Figure 8.13 shows the percentage of idling cycles of the CVC. Note that CVC idling can be

caused by either empty CGPQ or insu�cient pop throughput; the performance counters cannot

tell the reason for idling. Moreover, the CVC never stalls because the CGPQ push port is full in

any of the evaluations. <8% CVC idling and 0% CVC stalling caused by the CGPQ suggest that

our CGPQ design has accomplished the high-throughput design objective.

8.1.6.2 Evaluation of the CVC

Figure 8.14 shows the CVC read and write hit rate. We found that the hit rate highly depends on

the number of vertices of the dataset: the g500-N series show a clear dropping trend when vertex

count increases, and larger datasets (e.g., amzn, �ickr, orkut, youtube) tend to have lower hit rate
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Figure 8.12: Percentage of spilled vertices among all vertices pushed to the CGPQ.
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Figure 8.13: Percentage of CVC idling. Low idling suggests that the CGPQ can pop vertices with

a high throughput.

in general. Nevertheless, even for the largest datasets, the read and write hit rate is still higher

than 80% and 50%, indicating e�ective caching.

Figure 8.15 shows the percentage of traversed edges that generated an active vertex with a
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Figure 8.14: Read and write hit rate of the CVC.

new distance. We can see that CVC �ltering is very e�ective in reducing redundant edge traversal.

am
zn

db
lp

di
gg

fli
ck

r
g5

00
-1

5
g5

00
-1

6
g5

00
-1

7
g5

00
-1

8
g5

00
-1

9
g5

00
-2

0
g5

00
-2

1
g5

00
-2

2
hl

w
d-

09
or

ku
t

rm
at

-2
1

w
ik

i
yo

ut
ub

e

Dataset

0

10

20

A
ct

iv
e 

Ve
rti

ce
s (

%) Processed by edge fetcher
Discarded by CVC filtering
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¬ discarded by CVC �ltering, or ­ processed by the edge fetcher. The rest of traversed edges did

not generate active vertices during CVC updating.
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8.1.6.3 Overall Evaluation of SPLAG

Figure 8.16 shows the throughput achieved by SPLAG. The traversal throughput is de�ned as the

number of traversed edges divided by the kernel execution time, which re�ects the processing

capability of the hardware but not the performance of the algorithm itself. The traversal through-

put counts directed edges because only one direction can be traversed at a time. The algorithm

throughput is de�ned as the number of undirected edges in the connected component of the root

vertex divided by the kernel execution time, which measures the overall performance of the SSSP

algorithm, including both the graph traversal throughput and the work e�ciency. The algorithm

throughput metric is used by the Graph 500 benchmark for data intensive applications [133].

We measured 504 MTEPS throughput under this metric using the g500-21 dataset, which could

be ranked at the 14th position of the Graph 500 June 2021 SSSP list [120]. To the best of our

knowledge, SPLAG is the �rst FPGA accelerator that can achieve such a ranking. The immediate

preceding system on that list (at the 13th position) used an 8-node/128-core cluster to achieve

656 MTEPS throughput, while SPLAG works on a single FPGA board with only 45 W power bud-

get. Beyond the Graph 500 datasets, the dblp dataset achieves the highest 763 MTEPS algorithm

throughput.

Figure 8.17 further shows the work e�ciency achieved by SPLAG. The work e�ciency met-

ric, amount of work, is normalized to the number of directed edges in the traversed connected

component. Therefore, Dijkstra’s algorithm generally achieves the amount of work of 1. Thanks

to the never-look-back optimization (Section 8.1.2), SPLAG can even achieve < 1 amount of work

for some datasets.

8.1.6.4 Comparison with Other SSSP Systems

Table 8.5 compares SPLAG against a multi-thread CPU baseline and three state-of-the-art graph

accelerators. The multi-thread CPU ∆-stepping [127] implementation achieves better work e�-

ciency than the Bellman-Ford accelerators, but is still less e�cient than SPLAG due to its application-
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Figure 8.16: Throughput achieved by SPLAG. “Traversal” throughput measures the number of

traversed edges over the kernel execution time. “Algorithm” throughput measures the number

of undirected edges in the connected component over the kernel execution time.

agnostic memory system. Note that previous Dijkstra’s algorithm accelerators were not evaluated

using power-law graphs. All three FPGA accelerators implement the Bellman-Ford algorithm,

which is work-ine�cient. We use the performance numbers reported in each paper. Consider-

ing the fact that the previous works do not record the parent vertex ID in the vertex data while

SPLAG does, we halve the traversal throughput of the previous works. While it is conceptually

trivial to additionally record parent ID, doing so has a signi�cant performance penalty, due to

the increased attribute size. For HitGraph, adding parent ID doubles the size of each update, and

thus halves the throughput of both the scatter phase and gather phase. For ThunderGP, doubling

the vertex attribute size (prop_t or read_size in Formula (1) and (2) in [13]) halves the number

of PEs, halving the throughput as well. For GraphLily, doubling the vertex attribute size halves

the pack size (Section IV-A-(1) in [87]), thus halving the throughput, too. Since ThunderGP [13]

and GraphLily [87] do not report the absolute execution time, we estimate the upper-bound of

their algorithm throughput based on a CPU implementation of the Bellman-Ford algorithm. The

CPU implementation applies push-based graph traversal and edges are traversed only if the ver-

160



am
zn

db
lp

di
gg

fli
ck

r
g5

00
-1

5
g5

00
-1

6
g5

00
-1

7
g5

00
-1

8
g5

00
-1

9
g5

00
-2

0
g5

00
-2

1
g5

00
-2

2
hl

w
d-

09
or

ku
t

rm
at

-2
1

w
ik

i
yo

ut
ub

e

Dataset

0.0

0.5

1.0

1.5
A

m
ou

nt
 o

f W
or

k

Figure 8.17: Normalized amount of work achieved by SPLAG. This is de�ned as the number of

traversed edges divided by the number of directed edges in the connected component. Lower is

better. Some benchmarks have < 1 amount of work because of the never-look-back optimization

(Section 8.1.2).

tex is updated in the previous iteration. Due to lower parallelism, push-based traversal usually is

only adopted when the graph traversal frontier is small [87], and pull-based traversal generates

more redundant traversal. Therefore, our estimation gives a lower-bound of the number of tra-

versed edges. For fair comparison with ThunderGP and HitGraph which use DDR-based FPGA,

we ported SPLAG to an Alveo U250 board with 4 DDR channels. Still, SPLAG is at least 2.3× faster.

The three FPGA baselines used for comparison are powerful general-purpose graph processing

systems. Many graph algorithms (e.g., PageRank) are very well-accelerated by these systems, yet

SPLAG is not capable of the same. However, while they can support some application-speci�c

optimizations like pruning and early-termination for SSSP, further customization by SPLAG (esp.

with e�cient support of order-sensitive edge traversal) leads to better performance at the expense

of some lose of generality.
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Table 8.5: SPLAG compared against other SSSP systems.

Dataset System

Throughput (MTEPS) SPLAG’s

SpeedupTraversal Algorithm

hlwd-09

Galois (∆-stepping on 32-t 4.4 GHz CPU) [107, 127] 1229 211 2.6×

GraphLily [87] (32 HBM) 4670 < 232 > 2.3×

SPLAG (32 HBM) 1744 543 1×

ThunderGP [13] (4 DDR) 2454 < 122 > 2.6×

SPLAG (4 DDR) 756 315 1×

rmat-21

Galois (∆-stepping on 32-t 4.4 GHz CPU) [107, 127] 930 254 1.9×

GraphLily [87] (32 HBM) 2823 < 195 > 2.5×

SPLAG (32 HBM) 1354 494 1×

HitGraph [181] (4 DDR) 2152 46.9 4.9×

SPLAG (4 DDR) 533 228 1×

8.1.7 Using SPLAG for Neural Image Reconstruction

As discussed in Section 2.2.3, one of our application drivers for SPLAG is neural image recon-

struction. In this section, we integrate SPLAG with Recut [124], a state-of-the-art concurrent

framework for sparse neural reconstruction.

Recut

SSSP


(on CPU)

VDB

Con-

version

Seg-

men-

tation

Signed

Distance

Field

Wave-

front

Prune

Graph

Cut

Raw

Image

Recon-

structed


Image

Ajust

Parent

Figure 8.18: A complete neural image reconstruction pipeline with Recut [124].

In neural reconstruction, the SSSP algorithm is used to di�erentiate and identify entangled
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Vertex identified by a sparse

3D coordinate, e.g., (2, 3, 3)

Voxel

(Vertex)

Figure 8.19: Sparse representation of a 3D neural image.

neurons from each other. The 3D neural image can be treated as a graph as follows: a voxel
2

that

represents part of a neuron is considered a valid vertex. Neighbor voxels are also neighbors in the

graph. The edge weight (distance) of an edge is determined by the average image intensity of the

two vertices (voxel) of the edge. The cell bodies (somas) of the neurons can be easily identi�ed,

which will be set as the root vertices in the SSSP problem. Figure 8.19 shows an example of a 3D

neural image, with �ve valid voxels (solid) and two invalid voxels (dotted). The center voxel has

four neighbors.

Edge Bank #1          Edge Bank #0          
DRAM


Width

DRAM Depth

27 .

6

v0

.

v1

.

v3v2

.

.

.

.

.

.

.

. .

. . ..

.. .

Vertex identified by 


a dense 1D index, e.g., 2

.

DRAM Depth

Figure 8.20: SPLAG edge data layout.

2
The word voxel is analogous to pixel, with vo representing volume (instead of picture) and el representing ele-

ment [67].

163



SPLAG

SSSP


(on FPGA)

Binary Edgelist

(dense)

Layout


Conversion

Recut

VDB
SSSP


(on CPU)

Input

Image

VDB

VDB

(sparse)

VDB

Conversion
Reconstructed


Image

Rest of Recut

Pipeline

VDB

(sparse)

Layout

Conversion

Shortest Path Tree

(dense)

Figure 8.21: Recut [124] pipeline with SPLAG integrated for the SSSP part.

Figure 8.18 shows the Recut [124] processing pipeline. Recut uses the VDB [134] format to

store the sparse structure e�ciently. It �rst converts the raw input images to the VDB format, and

then performs transformation passes, e.g., SSSP, on that sparse data structure. However, SPLAG

uses a dense representation of graphs, as illustrated in Figure 8.20 (also discussed in Section 8.1.5).

Therefore, we have to convert the data layout before sending the image from Recut and after

SPLAG has computed the shortest path tree. While this conversion takes time, the highly e�cient

edge traversal provided by SPLAG makes up the overhead. The overall work�ow for Recut with

SPLAG integration is demonstrated in Figure 8.21. On-board execution of a real-world neural

image demonstrates a total of 34.8s runtime. As a comparison, it takes 78.1s for the CPU-based

Recut for the same workload [124], which makes the end-to-end speedup 2.2×. This speedup

includes the “accelerator tax” we paid, not only for the host-device data transfer, but also the

layout transformation.

Figure 8.22 visualizes the breakdown of the end-to-end execution time of Recut with SPLAG

integration. This execution time can be divided into three components:

1. pre-processing layout conversion,

2. accelerator execution, and
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Memory Allocation0.6s

Edge Materialization

13.5sEdge Compaction
0.7s

Accelerator Execution 5.2s

Post-Processing Layout Conversion

14.8s

Figure 8.22: Execution time breakdown for Recut with SPLAG integration.

3. post-processing layout conversion.

Pre-processing layout conversion consists of three steps.

1. Memory allocation. This step allocates memory for the data structures on the host memory

for the layout conversion, including the dense binary edge list, a sparse array mapping

sparse 3D coordinates to dense 1D indices, and a dense array mapping dense 1D indices

back to sparse 3D coordinates. The sparse coord-to-index mapping leverages VDB [134] and

is initialized empty. The dense index-to-coord mapping uses std::vector and is initialized

with enough space for all voxels (we know the number of active voxels via VDB). Each voxel

can only have up to 6 neighbors, but we do not know the exact number of edges at this point.

Therefore, we reserve memory for 6 neighbors, and rely on a compaction step to release

unnecessary memory. This bookkeeping step takes very little time in pre-processing.

2. Edge materialization. This step traverses the sparse 3D image, assign indices to voxels if

none has been assigned, records the assigned indices in the two mappings, calculates the
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edge weights from the voxel intensity, and stores the edges in the pre-allocated memory

space. Due to the sparse data structures, edge materialization step contributes the most

time in pre-processing.

3. Edge compaction. After edge materialization, we will know exactly how many neighbors

each vertex has. In the edge compaction step, we remove the allocated but unused memory

space by overwriting them with edges for the next vertex. Since the accesses are dense and

sequential, this step takes much less time than edge materialization.

Accelerator execution includes the host-device data transfer time in addition to the FPGA ac-

celerator execution. Post-processing layout conversion traverses the shortest path tree stored in

form of the distances and parents of vertices and reconstructs the sparse VDB format, leveraging

the index-to-coord mapping obtained from pre-processing.
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Figure 8.23: Execution time breakdown with varying number of active voxels.

The neural images evaluated in this section are produced by a Dragon�y imaging system [89],

which images a full mouse striatum brain region at 0.2 µm × 0.2 µm × 1 µm resolution. Due to

constraints in this modality of imaging, the striatum is sliced into ~16 coronal physical sections.
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Each evaluated image is half of one section of the striatum, or 1/32 of a single animal striatum, at

full resolution without down-sampling. To evaluate the scalability of our integration approach,

we test 14 di�erent images with varying number of active voxels. Figure 8.23 illustrates that

the execution time scales linearly as the number of active voxels (i.e., the number of vertices)

increases. As demonstrated in Figure 8.22 and Figure 8.23, currently, pre-processing and post-

processing dominate the SSSP stage of the Recut pipeline. We hope to o�oad more stages in the

Recut pipeline to the FPGA in order to amortize the overhead for data layout transformation.

8.2 Graph Convolutional Network

Graph convolutional network (GCN) [101] is an emerging graph application. As a generalization

of neural networks, GCN has been widely used for learning properties from graph data structures

since it was �rst proposed in the 2010s. Unlike traditional neural networks that work on regular,

dense matrices of values, GCNs work on irregular, sparse graph data.

While there are many variants of the original GCN [101], most of the variants share similar

computational pattern. For these variants, the goal is to learn features on a graph G = (V , E),

which takes as input ¬ an input feature matrix Xin with |V | rows of fin features per row, and ­

a representation of the graph G, e.g., in form of an adjacency matrix A, and produces an output

feature matrix Xout with |V | rows of fout features per row [101]. Similar to deep convolutional

neural networks, GCNs are also layered. Each layer can be written as a non-linear function

H
(l+1)

= f (H
(l)
, A), where di�erent GCN models choose di�erent f (⋅, ⋅), and H

(l)
is the feature

matrix of layer l. The non-linear function proposed by Kipf and Welling [101] is

f (H
(l)
, A) = ReLU

(
D̂
−
1

2 ÂD̂
−
1

2 ⋅ H
(l)
⋅ W

(l)

)
(8.1)

with Â = A + I where I is the identify matrix and D̂ is the diagonal degree matrix of Â. W
(l)

is

the weight matrix of each layer, which is obtained from training and is usually dense. H
(l)

is the

feature matrix of each layer, which is usually dense unless, e.g., it is a one-hot encoded feature

matrix. Â is usually very sparse since it is an adjacency matrix for a graph.
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As shown in Formula 8.1, lying in the core of GCN is sparse matrix–dense matrix multiplica-

tion (SpMM), where the sparse matrix brings the challenges for memory-intensive applications.

In this section, we will present theoretical analysis and practical challenges for an SpMM ac-

celerator written in TAPA (Section 6) with optimizations discussed in Section 7.3, followed by

experimental evaluation on the SpMM computation kernel.

8.2.1 Theoretical Analysis

Consider C = A ×B where A is a sparse matrix and B, C are dense matrices. Let the sparse matrix

be n × n with m non-zero elements, and the dense matrices be n × F . For GCN, n would be the

number of vertices and m corresponds to the number of edges (including self-edges added by the

identify matrix in Formula 8.1). The total amount of computation for SpMM C = A × B is m × F

multiply-accumulate operations. The total amount of communication includes:

1. reading m numbers for the sparse matrix,

2. reading n × F numbers for the dense matrix, and

3. writing n × F numbers for the dense matrix.

Assuming the A matrix is so sparse that the whole multiplication is memory-bound and the on-

chip storage is not large enough to store all matrices, in this section, we evaluate three possible

SpMM update schemes and model the amount of o�-chip memory tra�c in order to compare the

three update schemes. The three schemes have been seen in various previous works for GCN

acceleration and traditional graph processing in the literature [13, 21, 47, 48, 72, 80, 108, 149, 172,

176, 181, 182].

8.2.1.1 Single Phase Update (SPU)

The single phase update (SPU) scheme assumes partitions of the input and output dense matrix

are both on-chip so that each partition is updated in a single phase without an intermediate step.
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This scheme is seen in [21, 47, 48, 72, 80, 172, 176, 182]. To this end, we have to divide the vertices

into partitions to �t partitions on-chip. Let the number of such partitions be p. We will load each

input partition p − 1 times, once per output partition, minus one for reusing the input partition

when the output partition is switched. Reusing the input partition can be achieved by alternating

the replacement direction of the input matrix, e.g., using snake-shaped replacement as illustrated

in Figure 8.24. The output partitions are stored only once. Moreover, we can partition the n × F

dense matrices B and C into k partitions, each of which has size n ×
F

k
. This allows us to decrease

p by processing the k partitions of B and C one-by-one, at the cost of reading the sparse matrix

A k times. If S is the on-chip storage size, p =
nF

kS
.

B0

B1

B2

B3

C0 C1 C2 C3

A0,0 A0,1 A0,2 A0,3

A1,0 A1,1 A1,2 A1,3

A2,0 A2,1 A2,2 A2,3

A3,0 A3,1 A3,2 A3,3

On-Chip

Off-Chip

Streamed

Figure 8.24: Example of single phase update. Both B and C are partitioned into p = 4 partitions,

and A is partitioned into p
2
= 16 partitions accordingly. Partitions of A are streamed from the

o�-chip memory while partitions of B and C are preloaded or pre-allocated on-chip. By switching

partitions of B �rst, each partition of C is written to the o�-chip memory only once.

Figure 8.24 illustrates an example of SPU. The total communication required by SPU include

¬ m×k for reading the sparse matrix, ­ n × F × (p − 1) for reading the input dense matrix, ® n × F

for writing the output dense matrix, or in total

mk + npF = mk +

(nF)
2

kS

(8.2)
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8.2.1.2 Dual-Phase Update (DPU)

The dual-phase update (DPU) scheme writes partial sums to the external memory and reads them

back to accumulate them. This scheme is seen in [21, 149, 181]. While the intermediate step

doubles the memory tra�c, we only need to read the input vertices once regardless of the on-

chip storage size.

C0 C1 C2 C3

A0,0 A0,1 A0,2 A0,3

A1,0 A1,1 A1,2 A1,3

A2,0 A2,1 A2,2 A2,3

A3,0 A3,1 A3,2 A3,3

B0

B2

B3

A0,0 A0,1 A0,2 A0,3

A1,0 A1,1 A1,2 A1,3

A2,0 A2,1 A2,2 A2,3

A3,0 A3,1 A3,2 A3,3

B1

(a) Scatter phase (b) Gather phase

On-Chip

Off-Chip

Streamed

Figure 8.25: Example of dual-phase update. Both B and C are partitioned into p = 4 partitions,

and A is partitioned into p
2
= 16 partitions accordingly. (a) In the scatter phase, partitions of A

are streamed from the o�-chip memory, partitions of B are preloaded on-chip, while the resulting

partial sums corresponding to the partition of A are streamed to the o�-chip memory. (b) In the

gather phase, partial sums corresponding to the partitions of A are streamed from the o�-chip

memory while partitions of C are pre-allocated on-chip. By storing the partial sums o�-chip,

each partition of B and C are only accessed once in the o�-chip memory.

Figure 8.25 shows an example of DPU. The total communication required by DPU include ¬

m for reading the sparse matrix A, ­ n × F for reading the input dense matrix B, ® m × F for

writing the intermediate results, ¯ m × F for reading the intermediate results back, and ° n × F

for writing the output dense matrix C , or in total

m + 2(m + n)F (8.3)
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8.2.1.3 Direct Update (DU)

Direct update scheme reads the input dense matrix from the external memory directly as it works

on the output matrix. This scheme is seen in [13, 108]. The n rows of the input matrix will be

loaded m times in total.

On-Chip

Off-Chip

Streamed

Random-

Accessed

A3A1 A2A0

C0 C1 C2 C3

B

Figure 8.26: Example of direct update. Matrix C is partitioned into p = 4 partitions, and matrix

A is partitioned accordingly. Matrix B is not partitioned and is read directly and randomly from

the o�-chip memory without using a scratchpad memory while A is streamed from the o�-chip

memory. Partitions of C are pre-allocated on-chip and are written to the o�-chip memory when

the corresponding partition of A is �nished. Each partition of A and C are only accessed once

in the o�-chip memory, but B is accessed m/n times on average at a reduced memory bandwidth

(because random access bandwidth is lower than sequential access bandwidth).

Figure 8.26 demonstrates an example of DU. The total communication required by DU include

¬ m for reading the sparse matrix A, ­ m × F for reading the input dense matrix B, ® n ×

F for writing the output dense matrix C . Note that unlike SPU and DPU where only the on-

chip memory is accessed randomly and the o�-chip memory is always accessed sequentially, DU

requires direct random accesses on the o�-chip memory for reading B, which is lower than the

sequential access bandwidth (details in Section 8.2.1.4). Therefore, we add a coe�cient � > 1 to

the amount of communication corresponding to the input matrix B. The total communication
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required by DU is then

m + (�m + n)F (8.4)

8.2.1.4 Random Access Ratio

The random access ratio � de�ned in Section 8.2.1.3 is a function of the granularity of each ac-

cess (F ). This function �(F ) depends on the properties of the external memory and needs to be

measured from experiments. Leveraging the asynchronous memory interface (Section 7.2), we

can measure the random access throughput by issuing as many outstanding requests as possible

until the address channel is blocked by the external memory. Table 8.6 summarizes the result.

Table 8.6: Random access bandwidth on the Alveo U280 FPGA.

Burst Size (Byte)
Bandwidth (GB/s) Sequential Bandwidth

Random Bandwidth
DDR HBM DDR HBM

64 3.9 3.3 4.2 4.0

128 6.1 6.6 2.7 2.0

256 7.6 10.7 2.1 1.2

512 10.6 12.6 1.5 1.0

1024 13.5 12.7 1.2 1.0

2048 15.2 12.8 1.1 1.0

4096 16.3 13.0 1.0 1.0

8.2.1.5 Comparison of the Three Update Schemes

We can compare Formula 8.2, Formula 8.3, and Formula 8.4 and �nd the best update scheme with

the least amount of memory tra�c. To enable comparison without the impact of absolute dataset

size, we divide each formula by nF to obtain the normalized amount of memory tra�c. Let d =
m

n

be the average degree of the graph corresponding to the sparse matrix. The normalized amount
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of memory tra�c for SPU is

nF

kS

+

kd

F

(8.5)

Since k is a design parameter of our choice, we shall choose k = F
√

n

Sd
to minimize Formula 8.5

to

2

√

m

S

(8.6)

The normalized amount of memory tra�c for DPU is

d

F

+ 2d + 2 (8.7)

The normalized amount of memory tra�c for DU is

d

F

+ �d + 1 (8.8)

As illustrated in Formula 8.6, Formula 8.7, Formula 8.8, and Table 8.6, the optimal choice

among the three schemes depends on both the hardware platform (S) and the input matrices (m,

d , and F ). We quantitatively examined 8 representative real-world GCN models used in [176]

and 4 synthetic datasets, and conservatively assume that half of URAMs on an Alveo U280 board

can be used for storing the output dense matrix (S = 3932160 32-bit �oating point numbers).

Table 8.7 summarizes the result. It shows that for all 8 representative GCN models, SPU is the

optimal choice under our analytical model. The reason is that modern FPGAs have very large

on-chip storage that reduces the number of required partitions for SPU, while the examined real-

world graph datasets are not sparse enough so that DVU or DU would be more e�cient. The

synthetic datasets demonstrate that if the datasets are two orders of magnitude larger in the

number of vertices, SPU will lose its optimality. In the remainder of this section, we will discuss

some practical challenges to implement the SPU scheme and how we address them using TAPA

(presented in Chapter 6 and Chapter 7).
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Table 8.7: Comparison of o�-chip memory accesses among SPU, DPU, and DU on 8 real-world

datasets used in [176] and 4 synthetic datasets. Bold items have the minimum memory accesses

on DDR-based systems and underlined items have the minimum memory accesses on HBM-based

systems.

Dataset n d F k SPU DPU DU (DDR) DU (HBM)

Cora 2.7k 3.8 16 1 0.2 9.8 17.1 16.4

Cora 2.7k 3.8 128 2 0.1 9.6 6.7 4.8

Citeseer 3.3k 2.6 16 1 0.2 7.4 12.3 11.7

Citeseer 3.3k 2.6 128 2 0.1 7.3 5.0 3.7

Pubmed 19k 4.4 16 1 0.4 11.0 19.6 18.8

Pubmed 19k 4.4 128 4 0.3 10.8 7.6 5.4

PPI 14k 29 128 1 0.7 61.0 45.3 30.6

PPI 14k 29 256 2 0.7 60.9 36.4 30.5

Flickr 89k 9.8 128 8 1.0 21.7 15.8 10.9

Flickr 89k 9.8 256 16 1.0 21.6 12.8 10.8

Reddit 0.23M 92 128 4 4.7 186.7 139.7 93.7

Reddit 0.23M 92 256 8 4.7 186.4 111.8 93.4

Yelp 0.72M 19 128 16 3.9 41.0 30.3 20.6

Yelp 0.72M 19 256 32 3.9 41.0 24.4 20.5

Amazon 1.6M 176 128 8 17.5 355.4 266.4 178.4

Amazon 1.6M 176 256 16 17.5 354.7 212.9 177.7

Synthetic 2
24

32 128 64 24.5 66.3 49.3 33.3

Synthetic 2
25

32 128 64 33.1 66.3 49.3 33.3

Synthetic 2
26

32 128 128 49.1 66.3 49.3 33.3

Synthetic 2
27

32 128 128 66.1 66.3 49.3 33.3
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8.2.2 Practical Challenges

Following the analysis in Section 8.2.1, we will store the dense matrix on-chip and load the sparse

matrix from o�-chip memory directly. While all o�-chip memory accesses are sequential, which

is good for bandwidth utilization, the intensive yet irregular on-chip memory accesses impose

two challenges. First, each BRAM or URAM bank only has up to 2 ports, and concurrent accesses

must be scattered among many banks to ensure full pipelining. However, the sparse matrix has

irregular structure that do not always allow such concurrent accesses. Second, �oating-point

accumulation takes multiple clock cycles on the FPGA, which creates true read-after-write de-

pendency for SpMM. Without special handling, the loop initiation interval can be severely bot-

tlenecked by the latency of the �oating-point accumulation.

8.2.2.1 Resolving Bank Con�icts

As discussed in Section 8.2.1, given the state-of-the-art FPGAs and the typical properties of sparse

matrices, the best scheme to perform SpMM is to partition the matrices so that each partition of

the dense matrix �t on-chip, and read the sparse matrix from the o�-chip memory directly. In

this section, we assume both B and C are stored on-chip. Consider the core operation of SpMM,

i.e., the multiply-accumulation operation (MAC): cij = aik ⋅bkj +cij , with aik from the sparse matrix

A, bkj from the input dense matrix B, and cij from the output dense matrix C . To read aik only

once with su�cient memory coalescing, we fully unroll the traversal of the j loop and partially

unroll the traversal of the i loop, too, to guarantee su�cient coalescing factor for A. Since A is

sparse, each aik needs to carry not only the 32-bit �oating point value but also the indices i and

k. Therefore, the coalescing factor for A is set to 8 for the optimal 512-bit coalesced access. We

partition C cyclically to expose su�cient parallelism and resolve bank con�icts for cij . Doing so

also requires reordering of aik so that the i indices of aik processed in each clock cycle falls in

di�erent banks. To resolve the bank con�icts on bkj , we duplicate B in addition to partitioning.

Duplication is necessary because while the j index is consecutive and can be cyclically assigned
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to each di�erent banks, di�erent i index can still result in random accesses on the k index of bkj .

8.2.2.2 Handling Read-after-Write Dependency

Section 7.3 has discussed the reason and a solution for the large initiation interval (II) caused

by �oating-point accumulations. Although we can employ exactly the same dynamic resolution

approach, for SpMM where the sparse matrix A is known o�ine, we can employ a less expensive

o�ine dependency resolution via scheduling aik out of order. This o�ine resolution step can be

performed while the sparse matrix is being partitioned, by reordering aik so that any consecutive

L elements do not access the same location in a bank. If we cannot �nd a suitable element, we

will add a bubble to the pipeline by inserting an invalid aik (marked using a special bit).
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Figure 8.27: Out-of-order scheduling to handle read-after-write dependency [158].
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Figure 8.27 demonstrates an example of the o�ine reordering of a 4×4 A matrix, assuming

the RAW dependency distance L is 4. For simplicity, we further assume the i loop is pipelined

without partial unrolling, and all rows of C (corresponding to rows of A) belong to the same

bank. Di�erent rows of A in Figure 8.27 corresponds to di�erent i index of aik and are marked

with di�erent colors, as demonstrated in Figure 8.27a. Since all rows of C belong to the same

bank, accesses to the same row must be separated by at least L = 4 cycles. Since aik and cij

accesses the same rows, aik from the same rows of A must be separated by at least L = 4 cycles.

Figure 8.27b–Figure 8.27d shows that the �rst 4 elements in A can be arranged without adding

bubbles. Figure 8.27e shows that a2,1 is delayed by 1 cycle due to dependency from a2,0. Figure 8.27f

shows that a0,2 �lls the bubble left by a2,1 in Figure 8.27e. Figure 8.27j shows the eventual ordering

ofAwith 10 elements in 11 loop iterations (with 1 bubble inserted). With the dependency pragma,

this loop can be pipelined correctly with an II of 1, and the 11 iterations can �nish in 11×1+4 = 15

cycles. As a comparison, without the o�ine reordering, the loop would be pipelined with an II

of 4, which will take 10 × 4 + 4 = 44 cycles.

8.2.3 Evaluation

In this section, we demonstrate the e�ectiveness of the optimization techniques presented in

Section 7.3 and Section 8.2.2 using Sextans [158]. Sextans is a streaming accelerator for general-

purpose SpMM written in TAPA with major contributions from our lab mate, Linghao Song. In

addition to the bank con�ict and o�ine dependency resolution optimizations discussed in Sec-

tion 8.2.2, Sextans also features multi-level memory optimizations with high-bandwidth memory

(HBM) for e�cient accessing and streaming, and hardware �exibility to support di�erent matri-

ces using the same hardware without recon�guration.
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Table 8.8: Hardware platforms used for SpMM evaluation.

System Hardware Tech. (nm) Freq. (MHz) Bw. (GB/s) TDP/W

CuSPARSE [136] Tesla K80 28 562 480 300

Sextans [158] Alveo U280 16 189 460 225

CuSPARSE [136] Tesla V100 12 1297 900 300

Sextans-P [158] Projection 16 350 900 300

8.2.3.1 Evaluation using SpMM Kernel

Sextans is a general-purpose SpMM accelerator. We shall evaluate Sextans using standalone

SpMM kernels in this section. Section 8.2.3.2 will discuss the end-to-end performance in a com-

plete GCN where SpMM is a computational kernel. As a general-purpose SpMM accelerator,

Sextans is evaluated using 200 di�erent sparse matrices, with the sizes varying from 5 to 5.1×10
5
.

The number of non-zeros in the sparse matrices varies from 10 to 3.7×10
7
, and the sparsity varies

from 5.97 × 10
−6

to 0.4. Each sparse matrix is evaluated using 7 di�erent dense matrices, whose

width are powers of 2 from 8 to 512. Table 8.8 summarizes the hardware platforms used for SpMM

evaluation.

Figure 8.28 demonstrates the evaluation results. The peak throughput of K80, Sextans, V100,

and Sextans-P are 128 GFLOP/s, 181 GFLOP/s, 688 GFLOP/s, and 344 GFLOP/s, respectively. The

geometric mean speedups of the four platforms normalized to K80 are 1.0×, 2.5×, 4.3×, and 4.9×,

respectively. The geometric mean speedup of Sextans-P to V100 is 1.1×.

8.2.3.2 Evaluation using Complete GCN

In this section, we interface the Sextans accelerator with PyTorch Geometric (PyG) [66] lever-

aging the convenient host-kernel interface API provided by TAPA (Section 6.2.2.3), and evaluate

the end-to-end speedup brought by Sextans using a complete GCN model [101]. PyG is a popular
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Figure 8.28: Throughput (a) and execution time (b) of SpMM on K80, Sextans, V100, and Sextans-

P, with varying problem sizes (number of �oating-point operations).

library built upon PyTorch [141] to easily write and train graph neural networks for a wide range

of applications related to structured data. The baseline implementation of the original GCN is

provided by PyG, and we modify its SpMM implementation to provide an option to o�oad the

computation to Sextans. PyG caches the preprocessing results for the input graph (i.e., the sparse

matrix A for Sextans). We take advantages of this feature to amortize the overhead brought by

the o�ine read-after-write dependency resolution (Section 8.2.2.2).

Table 8.9 summarizes the datasets and the performance comparison. For each benchmark, we

evaluate two representative settings of the hidden layer feature size as presented in [176]. We

can see that if we only compare the SpMM computational kernel (L1 Kernel and L2 Kernel in

Table 8.9), Sextans can always achieve a speedup for all datasets and all layers, and the speedup

is signi�cant (107.3× and 35.4× geometric mean for the �rst and second layer, respectively). How-
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Table 8.9: Speedup of Sextans [158] on a U280 FPGA over 32 CPU threads running at 4.4GHz.

The kernel speedup measures only the FPGA computation time. The end-to-end (E2E) speedup

considers the communication overhead imposed by the o�oaded computation kernel. The total

speedup measures the speedup of the whole GCN inference, including computation that is not

o�oaded to the FPGA, e.g., the nonlinear activation function (ReLU).

Dataset #Vertices
#Features FLOP Sextans Speedup

L1 L2 L1 L2 L1 Kernel L1 E2E L2 Kernel L2 E2E Total

Cora 2.7k 16 7 0.42M 0.19M 4.5× 0.1× 2.3× 0.3× 0.5×

Cora 2.7k 128 7 3.4M 0.19M 23.2× 1.0× 2.8× 0.3× 1.0×

Citeseer 3.3k 16 6 0.40M 0.15M 5.8× 0.1× 2.2× 0.3× 0.6×

Citeseer 3.3k 128 6 3.2M 0.15M 26.1× 0.5× 2.2× 0.3× 0.7×

Pubmed 19k 16 3 3.5M 0.65M 26.9× 1.0× 6.5× 0.7× 1.0×

Pubmed 19k 128 3 27.7M 0.65M 156.3× 2.4× 12.4× 0.4× 1.9×

PPI 14k 128 121 0.11G 0.10G 44.6× 3.5× 40.6× 4.9× 2.2×

PPI 14k 256 121 0.22G 0.10G 93.8× 7.2× 53.3× 5.6× 3.6×

Flickr 89k 128 7 0.25G 14M 264.2× 4.3× 59.4× 3.4× 3.7×

Flickr 89k 256 7 0.51G 14M 200.6× 2.6× 39.2× 1.9× 2.4×

Reddit 0.23M 128 41 6.0G 1.9G 1341.4× 40.8× 900.9× 47.7× 19.0×

Reddit 0.23M 256 41 12G 1.9G 1537.3× 37.3× 846.0× 43.3× 20.6×

Yelp 0.72M 128 100 3.6G 2.8G 816.3× 8.6× 736.8× 8.2× 7.0×

Yelp 0.72M 256 100 7.1G 2.8G 1091.0× 8.9× 687.4× 7.4× 7.4×

Geo. Mean — — — — — 107.3× 2.6× 35.4× 2.1× 2.6×

ever, if we measure the end-to-end performance (L1 E2E and L2 E2E in Table 8.9), Sextans can

only achieve speedup for large datasets with more than ~3.5M �oating-point operations, and the

geometric mean speedup is decreased to 2.6× and 2.1×, respectively. This speedup accounts for

the overhead brought by the additional function calls, data layout conversion, and host-device

communication required by the accelerator. If we consider the execution time of the whole GCN

inference kernel, the geometric mean speedup is 2.6×, further demonstrating e�ectiveness of our
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methods.

8.3 Summary

In this chapter, we demonstrated accelerator design and optimizations for two graph applica-

tions with irregular memory access patterns. Both accelerators leverage the TAPA framework

presented in Chapter 6 and the enhancements for dynamic memory accesses in Chapter 7. On

the latest HBM-equipped U280 FPGA, the SSSP accelerator bene�ts from the optimizations for dy-

namic o�-chip memory accesses and shows a 2.2× geometric mean speedup over 32 CPU threads

at 4.4 GHz. The GCN accelerator bene�ts from the optimizations for dynamic on-chip memory

accesses, and illustrates a 2.6× geometric mean speedup over the same CPU.

Although TAPA does not support dynamically instantiate tasks at the language level, the

two application case studies demonstrate that we can schedule tasks dynamically on top of the

statically instantiated hardware, with manually coordinated and optimized inter-task communi-

cation channels. More speci�cally, we use multi-stage networks in Section 8.1, while we use a

daisy chain in Section 8.2. Such complex inter-task communication patterns are also seen in many

other applications [24, 40, 163], and we think a hardened network-on-chip (NoC) would be ben-

e�cial for these applications [45]. Indeed, the next-generation Versal [70] FPGA manufactured

by Xilinx would be equipped with such a hardened NoC. We are actively working on an exten-

sion of TAPA to support such a new accelerator architecture. Meanwhile, we are also exploring

a communication-centric approach to implement FPGA accelerators, where the communication

network is planned before the rest of the accelerator [78]. This can enable e�cient support for

task-parallel overlay accelerators with hardened NoC, e.g., PolyGraph [45].
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CHAPTER 9

Conclusions

This dissertation discusses accelerator design automation and optimization techniques for vari-

ous memory-bound applications, including both regular and irregular access patterns. For regu-

lar memory accesses, we start from theoretical analysis to reduce memory tra�c and prove that

communication reuse can be optimally achieved with computation reuse, and propose the stencil

with optimized data�ow architecture (SODA). We then present model-driven design-space ex-

ploration to automatically �nd the best design parameters based on the theoretical analysis. To

further simplify accelerator design, we present an end-to-end compiler framework, HeteroHalide,

that compiles a high-level domain-speci�c language to e�cient accelerators. For irregular mem-

ory accesses, we �rst enhance the state-of-the-art high-level synthesis tools and present TAPA

to better support task-level programs, which are commonly used to implement applications with

irregular accesses. To handle applications with dynamically scheduled memory accesses, we ex-

tend TAPA to support dynamic accesses. Using the developed tools, we perform case studies on

two important real-world graph applications. For the single-source shortest path algorithm, ex-

perimental results on various synthetic and real-world graph datasets using an HBM-equipped

FPGA demonstrate up to 763 MTEPS overall throughput, a 4.9× speedup over state-of-the-art ac-

celerators, and 2.6× speedup over state-of-the-art multi-thread CPU implementation. For graph

convolutional networks, on-board execution illustrates a geometric mean speedup of 2.6× over a

widely-used multi-thread CPU implementation.
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