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X-ray-induced acoustic computed tomography (XACT) is a hybrid imaging modality for detect-
ing X-ray absorption distribution via ultrasound emission. It facilitates imaging from a single
projection X-ray illumination, thus reducing the radiation exposure and improving imaging
speed. Non-uniform detector response caused by the interference between multichannel data
acquisition (DAQ) for ring-array transducers and amplifier systems yields ring artifacts in the
reconstructed XACT images, which compromises the image quality. We propose model-based
(MB) algorithms for ring artifacts corrected XACT imaging and demonstrate their efficacy on
numerical and experimental measurements. The corrected reconstructions indicate significantly
reduced ring artifacts as compared to their conventional counterparts.

Keywords: X-ray induced acoustic computed tomography (XACT); ring artifacts; artifacts cor-
rection.
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1. Introduction

X-rays have been vital for biomedical research by facilitating imaging through computerzied tomography
(CT) scans as well as treating tumors through radiation therapy. The carcinogenic property of X-rays moti-
vates the need for imaging modalities which requires low radiation dose. X-ray induced acoustic tomography
(XACT) is one such imaging technique based on X-ray excitation and ultrasonic detection. Medical ultra-
sound images are known to have a good spatial resolution but inherently carry features of poor contrast.
XACT combines high X-ray imaging contrast with high ultrasonic spatial resolution. When absorbed,
temporally short X-ray pulses generate ultrasound (US), which can be sensed via ultrasonic transducers.1

Acoustic detection enables XACT to achieve three-dimensional imaging from a single X-ray projection, thus
reducing the radiation exposure and the experimental complexity associated with rotating X-ray source(s)
and detectors as needed by CT.2.

Since its first demonstration 1, XACT has found applications in tomographic imaging 3–10 as well as
radiation dosimetry.11–17

The aim of XACT reconstruction is to obtain the map of the initial pressure source (which is propor-
tional to X-ray energy deposition (XED)) from the pressure signals acquired at multiple spatial locations of
the detector grid. Traditionally, this is achieved using the back-projection (BP) 1 and time-reversal (TR) 18

algorithms. Time reversal algorithm is numerically implemented by simulating time-reversed propagation
of the acoustic waves, which is slow and computationally demanding. Therefore, although not as accurate
as TR, BP is the commonly used reconstruction algorithm. An efficient, GPU accelerated backprojec-
tion based XACT reconstruction was recently reported by Lee et al.. 6 Model-based algorithms (model
backprojection (MBP) and matrix free least squares minimization (MF-LSQR) algorithms)9 have also
been proposed to solve the XACT reconstruction problem. Such schemes can efficiently incorporate finite
detector aperture and acoustic inhomogeneities as well as regularization priors to ameliorate the noisy
and limited-view artifacts.9 The contribution of the present work is developing a weighted MF-LSQR algo-
rithm that inhibits the ring artifacts in the XACT reconstruction which are caused due to the multichannel
interference of the detection system.

In 2013, first report of XACT’s capability for imaging was presented by Xiang et al..1 They irradiated
a chicken breast tissue (with lead targets concealed in it) with pulsed X-rays emitted from a medical linear
accelerator and collected XA signals by scanning a single transducer element around a circle. Backprojected
reconstructions revealed the positions and sizes of the concealed targets. Since then, several studies have
been performed to study the feasibility of XACT based biomedical imaging such as imaging microcalcifi-
cations in human breast to diagnose breast cancer 5, high resolution imaging of tumor 3 tagged with gold
fiducial marker 19, and 3D bone imaging.8 XACT imaging was demonstrated using synchrotron as the
X-ray source (pulse-width of 30 ps with 2 ns repetition period) by Choi et al. which manages to overcome
the shortcomings of the commonly used XACT sources: the medical linear accelerators (LINACs) and
portable X-ray tubes.20

Other than the tomographic imaging, another potential application of XACT is radiation dosimetry
which is motivated by the proportionality of the XA signal strength with X-ray radiation dose.1 This makes
XACT desirable for monitoring and planning radiotherapy. Several numerical studies have demonstrated
the feasibility of XACT assisted radiation dosimetry 11,18,21–25. The first XA signal due to absorption of
a single X-ray pulse from a Linac in water was demonstrated 12 and the XED in water was reconstructed
using BP. Systematic characterization of such a setup for in vivo radiation dosimetry was performed by
Hickling at al..13 Application of XACT for imaging (relative) radiation dose map in a biological tissue was
first realized by Lei et al..15. In 2017, an XACT dosimeter was developed by Kim et al.14 which employed
a clinical Linac as the excitation source and a spherically focused transducer was scanned to collect the
XA signals; such a device was later patented by the group.16 These results indicate the immense potential
of XACT for in vivo dosimetry. Moreover, the clinical Linacs have been shown to generate strong XA
signals and hence the clinical radiotherapy set-ups only need to integrate the coupling medium and a
transducer-array (detection grid) for clinical translation of XACT.

A majority of XACT setups employ mechanical scanning of a single transducer to obtain pressure
measurements at various spatial locations.1,14,16 This, however is tedious and time consuming. To obtain
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faster imaging speed, it is imperative to obtain the pressure measurements at multiple locations of the
detector grid simultaneously. It can be achieved using multichannel data acquisition systems (DAQs).
However, the non-uniform response due to the interference between electronics associated with multichannel
DAQ and amplifier systems may cause all sensor elements to have a simultaneous instantaneous gain in
the acquired signal. This results in vertical lines (stripe pattern) in the sinogram and artifacts in the
reconstructed image. Particularly, in circular detection geometry, this causes ring artifacts in the images.
Ring array of transducers allows 360◦ capturing of the acoustic waves originating from the same plane as
the ring, thus facilitating 2D reconstruction of the pressure source map in this plane. Such a geometry is
commonly used for small animal imaging 26,27 as well as for imaging human finger. 28,29 Ring artifacts have
also been reported in microwave-induced thermoacoustic tomography (TAT). 30 In another sister imaging
modality photoacoustic tomography (PAT), which shares similar physics as XACT and TAT, ring artifacts
have been reported.31,32 However, as compared to XACT, the ring artifacts in PAT images are less likely
because of relatively better SNRs in the acoustic signals due to shorter excitation pulsewidths, better
contrast agents (intrinsic and extrinsic), higher excitation pulse energy. The multichannel interference of
the detection electronics can be suppressed using better shielded cables, proper cable routing, and proper
grounding of the sensors. However, even with improved hardware, the ring artifacts may affect the image
quality of low contrast targets and hence, an algorithm that corrects these artifacts in the XACT images
is desirable.

Since CT algorithm shares generic similarity with XACT (and TAT), non-uniformity in CT measure-
ments also produce ring artifacts in the images. Non-uniformity in CT is caused due to crosstalk and
reverberation effects 33 or manufacturing issues such as faulty or miscalibrated detector elements.34 There
have been many reports on ring artifact correction methods in CT imaging, some of them can be extended
to the ring array-based-XACT imaging. Ring artifact correction can be implemented either on the sino-
gram domain 34–37 or on the reconstructed image domain.38–40 Interestingly, such studies in the context of
XACT are rather limited. A sinogram-based-algorithm that requires additional signal processing was pro-
posed by Eldib et al..41. Additional signal processing as well intermediate reconstructions associated with
this algorithm results into increased computation time. Moreover, this scheme was found to be inefficient
for the testcases mimicking strong electromagnetic interference and hence severe ring artifacts. In PAT,
Tzoumas et al. demonstrated an algorithm that implements a three-stage correction of the PA signals for
denoising which reduces the ring artifacts in the reconstructions.31 Another deep learning based algorithm
was proposed by Dehner et al. for ring artifacts correction in PAT.32 However, both these algorithms are
increase the image reconstruction time and the deep learning algorithm in particular, needs a large amount
of experimental training datasets which is computationally expensive.

Therefore, aiming for fast and efficient XACT imaging, a correction method combined in the recon-
struction algorithm itself is more desirable. The contribution of this work is the development of model-based
weighted least squares (LS) minimization approach to produce ring artifacts corrected reconstructions from
corrupt, noisy XA measurements. The efficacy of the proposed algorithm is demonstrated on numerical as
well as experimental XA datasets.

The rest of this paper is structured as follows. Section 2 deals with the problem formulation and
derivation of the ring artifacts corrected reconstruction algorithm. The numerical and phantom XACT
experimental studies are discussed in sections 3 and 4 respectively. Concluding remarks are offered in
section 5.

2. Mathematical formulation

2.1. Forward problem

Assuming instantaneous heating, the time domain acoustic equation is written as:42

∂2p(~r, t)

∂t2
− c2∇2p(~r, t) = ΓH(~r)

∂δ(t)

∂t
, (1)

where Γ(= v2β/Cp) is the Gruneisen parameter, v is the sound speed, β is the volumetric expansion
coefficient, Cp is the specific heat at constant pressure and H is the X-ray energy deposition (XED). The
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solution to Eq. (1) is given by: 43

p(~r, t) =
Γ

4πc

∂

∂t

( 1

vt

∫
S(~r,t)

H(~r′)dS′(t)
)

; |~r − ~r′| = vt. (2)

where S′(t) denotes a time-dependent spherical surface centered at a detector (located at ~r) such that
|~r − ~r′| = vt. If the pressure source lies in a plane, Eq. (2) reduces to its 2D analog where the integral in
Eq. (2) represents the integration of the pressure distribution in the domain of interest on a circular arc of
radius vt. Setting Γ

4πv as unity, and further solving Eq. (2) can be written as

p(~r, t) =
∂

∂t

(∫
S(~r,t)

H(~r′)dθ
)

; |~r − ~r′| = vt. (3)

Eq. (3) can be simplified in the discrete domain 9 to obtain the acoustic measurements p(q) (size:

Nd× 1; Nd being the number of detectors) at qth time-step (t(q) = q∆t, ∆t being the sampling period) due
to the discrete XED map h (size: N × 1; N being the number of nodes) as:

p(q) =M(q)h (4)

where M(q) is the measurement operator (size: Nd ×N) relating the pressure signal at all the detectors.

2.2. Origin of Ring Artifacts

In XACT, the measurements have a systematic error in the form of a offset due to the time-varying response
of detectors. This offset appears as vertical lines in a sinogram; see Fig. 1(c) and it leads to ring artifacts
in the reconstruction for the circular geometry of detectors (Fig. 1(e-g)).

We assume that each detector has the same time-varying detector response which introduces an offset
z(q) ∈ R at all detectors. With this assumption, we say that the measurements p(q) holds

p(q) =M(q)h+ z(q)
1 + e (5)

We assume that the measurements are corrupted by additive and Gaussian distributed noise vector e ∼
N (0, σ2I) and z(q) is a zero-mean Gaussian distributed random variable; z(q) ∼ N (0, β2). Each measurement
conditioned on the same random variable z(q), hence we have z(q)

1 ∼ N (0, β2
11
>). 1 denotes a Nd-

dimensional vector of ones and I ∈ RNd×Nd an identity matrix where Nd is the number of detectors.
Assuming the offset and measurement noise are independent random variables, p(q) is also a Gaussian

random variable with

p(q) ∼ N (M(q)h,Σ(q)); Σ(q) = β2
11
> + σ2I. (6)

Further assuming that the measurements at every time instants are independent, the joint distribution
of p is also normally distributed with mean Mh and a block-diagonal covariance matrix

Σ = blkdiag(Σ(q=1), . . . ,Σ(q=Nt)). (7)

with Nt being the total number of time samples in the measured signals.

2.3. Reconstruction algorithm

Given the joint distribution of p given h, the maximum likelihood estimate of h is given by

ĥ = arg min
h

‖Σ−1(Mh− p)‖22. (8)

We use the iterative solver LSQR to minimize (8) by solving the linear system

WMh = Wp (9)
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Algorithm 1 Model-based (MF-LSQR) ring artifacts corrected reconstruction from corrupted measure-
ment data p

1: procedure Computing ĥ; given the boundary XA data p

2: S← I− 1
Nd
1 1

T (Preparing the weight matrix using Eq. 11)

3: P← reshape(p,Nd, Nt)
4: B← SP
5: Solve: ĥ = arg minh ||B− S reshape(Mh,Nd, Nt)||22 using matrix-free LSQR minimization.9

6: return ĥ
7: end procedure

Algorithm 2 Model-backprojection (MBP) based ring artifacts corrected reconstruction from corrupted
measurement data p

1: procedure Computing ĥ; given the boundary XA data p

2: S← I− 1
Nd
1 1

T (Preparing the weight matrix using Eq. 11)

3: P← reshape(p,Nd, Nt)
4: B← SP
5: ĥ←MTB(:).

6: return ĥ
7: end procedure

where the weight matrix W = Σ−1 = blkdiag(S(1), . . . , S(Nt)) follows from the Sherman Morrison
formula 44 that yields

S(q) = σ−2

(
I− 1

σ2/β2 +Nd
11
>
)
. (10)

β → 0 indicates minimal offset resulting S(q) → I; the effect of offset is completely neglected in the joint
distribution of p. The stripe pattern in the sinogram, which is the indicator of the offsets, is prominent
only if σ ≤ β, i.e., the offsets are dominant over to the noise in the measurements. In this case, and given
the number of detectors Nd >> 1, the weight matrix reduces to:

S := S(q) = σ−2

(
I− 1

Nd
11
>
)
∀ q ∈ [1, Nt]. (11)

In an ideal case, if the residual has only offset, i.e.,M(q)h−p(q) = c1 where c ∈ R, the minimizing function

Eq. (8) results to S(q)(M(q)h − p(q)) = 0 for each qth time steps. Hence, with weight matrix Eq.(11),
the minimizing function Eq. (8) filters out offsets in the residual and in results reduces the ring artifacts
in the estimate h. A similar algorithm has been used for ring artifacts correction in X-ray CT imaging.45

Eq. (9) is solved using matrix-free LSQR approach described by Pandey et al. 9 and corresponding steps are
provided in Algorithm 2. Matrix-free LSQR minimization employs on-the-fly computation of the matrix-
vector products of the type Mu and MT v. In order to ameliorate the noisy artifacts in the images,
Laplacian regularizer was employed while evaluating MF-LSQR reconstructions.. The algorithms for these
computations have been thoroughly discussed in our recent publication.9

3. Numerical studies

3.1. Ring artifacts correction

Numerical studies were performed to validate the proposed correction algorithms. Simulations were carried
out on MATLAB R2020a software. The codes were custom written to perform all the numerical studies
as well for carrying out the reconstructions from the experimental measurements. We consider a square
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of side length 2 cm as the region of interest (ROI). A circle of radius 5 cm, concentric with the ROI is
considered as the detection array with 128 detection-points uniformly distributed on its circumference.
The initial pressure source chosen for this study is shown in Fig. 1(a). To simulate the acoustic signals
(mimicking experimental measurements), the ROI was discretized at h = 30 µm mesh resolution and each
arc of integration was divided into Nq ≈ 1000 quadrature elements. For model-based reconstructions, grid
resolution was chosen to be h = 60 µm with Nq ≈ 600 quadrature points for computing the arc integrals.
The numerical acoustic signal at each detector was recorded at Fs = 20 MHz sampling frequency, and white
Gaussian noise (background) was added to obtain signals with 5 dB SNR (using the MATLAB function:
‘awgn’ - additive white Gaussian noise); corresponding sinogram is shown in Fig. 1(b). The multichannel
interference is modeled as z(q) (in Eq. (5)) which is a zero-mean Gaussian distributed random variable.
This random variable is added to the XA signal corresponding to each of the transducers which results in
as vertical lines in the sinogram (Fig. 1(c)). The noisy and corrupted signals from a particular channel are
plotted in Fig. 1(d). The corrupted signal though looks like a more noisy version of the noisy signal, the
non-uniform response affects all the detectors equally at all the time instances thus yielding vertical lines
in the sinogram. The conventional BP reconstructions corresponding to full and partial view geometries
(Fig. 1(e)) are demonstrated in Fig. 1(f-h). In the testcase demonstrated here, the non-uniformity response
from the detectors is responsible for the artifacts. So, while more detectors mean better view and hence
better reconstruction of the structures in the region of interest (ROI), it also means more artifacts in the
ROI. From a closer visual inspection of the reconstructed images, one can ascertain that the structures
in the ‘UCI’ symbol are indeed better reconstructed in the full view image (Fig. 1(f)) while limited view
artifacts are visible in Fig. 1(g) and (h). However, the strong ring artifacts from the full view geometry
eclipse the reconstructed structures- especially the lower contrast target ‘U’.

Huang et al. stated that second order Butterworth (BW) filtering of XA signals can reduce the ring
artifacts in the reconstructions.30 This idea comes from the fact that the non-uniform response in the
DAQ due to electromagnetic interference is typically included in the high frequency components of the XA
signals. Therefore, BW filter based smoothing of the XA signals will reduce the non-uniform response from
the XA signals leading to reduced ring artifacts in the reconstructed images. Fig. 2 shows the reconstructed
cross-sections obtained from the XA data filtered using BW filter centered at 1 MHz frequency. As compared
to the BP reconstruction from the raw, corrupted data, the BW filtered data yields reduced ring artifacts
and better visibility of the structures in the reconstructions. However, the reconstructed images computed
using the BP as well as the conventional model-based schemes, still carry significant ring artifacts which is
undesirable. Moreover, the filtering also attenuates the frequency components of the XA signals originating
from the true heat source well. This leads to the loss of quantitative information of the cross-sections.

The reconstructions obtained from the conventional and the proposed model-based algorithms (MBP
and MF-LSQR algorithms) for full- and partial-view, raw (without BW filtering) XA measurements are
demonstrated in Fig. 3. The conventional model-based reconstructions (Fig. 3(a,b,e,f,i,j)) display ring arti-
facts. However, as compared to the conventional BP reconstructions the smoothing effect of regularization
suppresses the ring artifacts up to a certain extent.9 The efficacy of the proposed ring artifacts corrected
model-based algorithms is evident in the MBP (Fig. 3(c,g,k)) and LSQR reconstructions (Fig. 3(d,h,l))
which display negligible ring artifacts. As discussed by Pandey et al.9, the non-iterative MBP reveals the
structures in the ROI reasonably well, superior quantitative accuracy is achieved in the iterative LSQR
reconstructions. It needs to be noted that the reconstructions obtained from the 120◦ view measurements
display missing structures which are aligned normal to the detection grid. The cause of such artifacts is
not the non-uniform detector response but the missing acoustic measurements.9,46,47 The correlation coef-
ficients (ρ) 9 of the uncorrected and corrected model-based reconstructions along with the model-based
reconstructions obtained from the BW filtered data are tabulated in Table 1. Across all the test cases, the
MF-LSQR being a quantitative reconstruction algorithm, yields higher ρ values as compared to the MBP
counterparts. The BW filtering of XA signals attenuates the frequency components, thus leading to loss
of quantitative information of the phantoms. This yields lower ρ values for BW filtered MF-LSQR recon-
structions as compared to the uncorrected MF-LSQR ones. The corrected MF-LSQR reconstructions carry
minimal ring artifacts and accurate quantitative information, thus yielding higher ρ values as compared to
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Fig. 1. (a) True pressure source, sinograms of the (b) noisy and (c) corrupted XA measurement data (SNR = 5 dB), (d) noisy
and corrupted XA signals from a detector, (e) full and partial view geometries and BP reconstructions from (f) 360◦, (g) 180◦,
and (h) 120◦ view measurements

Table 1. Correlation coefficients for the corrected and uncorrected model-based reconstructions

View Algo MB corrected BW corrected No corrected
MF-LSQR 0.95 0.79 0.90

360◦
MBP 0.44 0.45 0.21

MF-LSQR 0.9 0.65 0.81
180◦

MBP 0.34 0.31 0.17
MF-LSQR 0.78 0.52 0.69

120◦
MBP 0.29 0.25 0.12

the BW filtered and uncorrected counterparts. For MBP algorithm,the BW filtered reconstructions show
higher and comparable ρ values than their uncorrected and corrected counterparts. This can be attributed
to the reduced noise in the XA measurements due to filtering. The ρ values across all the testcases decrease
with the decreasing view due to the limited view artifacts in the reconstructed images. The LSQR recon-
structions in this work were performed with Laplacian regularization, which favors smooth reconstructions
and suppresses the noisy and streak artifacts. On the other hand, model backprojection (MBP) reconstruc-
tion is a highly Tikhonov regularized solution. Unlike, Laplacian regularization, Tikhonov regularization
simply seeks a low norm solution instead of a smoother solution. This is why as compared to the LSQR
reconstructions, the MBP reconstructions have relatively more refined edges, but they also carry the streak
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Fig. 2. Numerical results from BW filtered measurements: Conventional (a,d,g) BP and (b,e,h) MBP and (c,f,i) MF-
LSQR reconstructions for 360◦, 180◦, and 120◦ view XA measurements.

and noisy artifacts.

3.2. Contrast and resolution of LSQR based XACT reconstructions

We performed additional numerical studies to evaluate the contrast and resolution capabilities of the XACT.
Four thin (100µm) lines with contrast between 1.2 - 1.9 with respect to the background as shown in Fig. 4(a).
The forward measurements were computed at 1/64 mm resolution using about 10000 quadrature points at
20MHz sampling frequency. The resolution and quadrature points were chosen to be 1/32 mm and 5000
respectively, for reconstructions .The detection geometry was kept the same as the studies in section 3.1.
White Gaussian noise was then added to the XACT measurements to get data with 5dB SNR. Model-based
LSQR reconstruction was first performed using the data assuming full frequency bandwidth detection and
depicted in Fig. 4(b). The corresponding profile plot is shown in Fig. 5(a) which compares reasonably
well with the true phantom profile. Typically, the detection systems are bandlimited and the transducer’s
detection bandwidth is the main factor that characterizes the resolution of an imaging system. To study
the resolution capability of XACT, the measurements were filtered with a Gaussian filter which mimics the
frequency response of the detection system that is characterized by a central frequency (Fc) and detection
bandwidth. In this study, we used Fc = 1, 2, 3 and 4MHz with 100% bandwidth and corresponding LSQR
reconstructions are demonstrated in Fig. 4(c-f) respectively. To evaluate the resolution of these images,
corresponding profiles are plotted in Fig. 5(b-e) and the FWHM has been measured and tabulated in Tab. 2
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Fig. 3. Numerical results: Conventional (a,e,i) MBP and (b,f,j) MF-LSQR reconstructions and ring-artifacts corrected
(c,g,k) MBP and (d,h,l) MF-LSQR reconstructions for 360◦, 180◦, and 120◦ view XA measurements.

along with the theoretical spatial resolution which for an acoustic detection system is given by d = λmax/2,
with λmax being the wavelength corresponding to the highest frequency in the detection bandwidth4.
The relatively poor spatial resolutions (w.r.t. the theoretical resolution) for the reconstructions can be
attributed to the smoothening effect of the regularization that is used to reduce the noisy artifacts in
the reconstructions. For the testcases considered here, we see that the target with contrast (w.r.t. the
background) as low as 1.2 was reasonably reconstructed. The contrast in XACT imaging comes from the
difference in the X-ray absorption characteristics which in turn is associated with the densities of the
materials. Moreover, signal SNR also plays a role in deciding the contrast reconstruction capability of the
imaging system. For low SNR data, the noisy artifacts in the reconstructions can overshadow the structures
with low contrast.

4. Ring artifacts correction for experimental XACT data

The efficacy of the proposed model-based ring artifacts corrected reconstruction algorithms is further
studied on experimental XACT data. The schematic of the XACT experimental setup along with the
photograph of the phantom and the XA sinogram carrying stripe pattern caused by the non-uniform
detector response are displayed in Fig. 6.
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Fig. 4. Numerical results: (a) True phantom, full-view LSQR reconstructions with numerical XACT data with (b) full
frequency bandwidth, (c) Fc = 1MHz and 100% bandwidth, (d) Fc = 2MHz and 100% bandwidth, (e) Fc = 3MHz and
100% bandwidth, and (f) Fc = 4MHz and 100% bandwidth

Table 2. Theoretical and evaluated resolutions for MF-LSQR reconstructions

Fc
(MHz)

Theoretical resolution
(µm)

Evaluated resolution
(µm)

1 500 650
2 250 312
3 167 204
4 125 170

Table 3. Contrast to noise ratios (CNRs) for the corrected and uncorrected model-based reconstructions

View Algo MB corrected No corrected
MF-LSQR 0.31 0.26

360◦
MBP 0.0028 0.0029

MF-LSQR 0.28 0.22
180◦

MBP 0.0023 0.0022
MF-LSQR 0.27 0.21

120◦
MBP 0.0014 0.0010

A target (thin slice) in ‘C’ shape, made of lead was fixed at the center of a gelatin phantom. The
phantom and the ring shaped ultrasound detection array were placed in the water tank. Short X-ray pulses
(pulse repetition rate of 10 Hz, and pulse width of 50 ns) were incident on the phantom. The XA waves
caused by the thermoelastic expansion of the phantom were detected by each transducer element of the
ring array and sent to the 3-stage amplification and data acquisition system. The generated XA waves were
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Fig. 5. Numerical results: Profile plots of the true phantom and the full-view MF-LSQR reconstructions from numerical
XACT data. Profile of (a) the true phantom and reconstructions with full frequency bandwidth, (b) Fc = 1MHz and 100%
bandwidth, (c) Fc = 2MHz and 100% bandwidth, (d) Fc = 3MHz and 100% bandwidth, and (e) Fc = 4MHz and 100%
bandwidth data
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Fig. 6. (a) Schematic of the XACT experimental setup, (b) image of the gelatin based phantom with C- shaped lead target,
and (c) the sinogram of the XA measurements

sensed by a 128-element ultrasound ring-array (radius: 5 cm, PA probe, Doppler Co. Limited, Guangzhou,
China) with 5 MHz central frequency and ≥ 60% bandwidth. To improve the SNR, the XA signals were
averaged over 1500 pulses. Before performing reconstructions, the sinogram has been padded with zeros
to account for the electromagnetic delay and the headwave.4 Conventional as well as the ring artifacts
corrected model-based (MF-LSQR and MBP) XACT reconstructions were evaluated and displayed in
Fig. 7. Corresponding contrast-to-noise ratios (CNRs) are provided in Table 3. The non-uniform detector
response causes strong ring artifacts in the conventional model-based reconstructions Fig. 7(a,b,e,f,i,j).
As expected, the proposed model-based algorithms are able to ameliorate the ring artifacts without any
apparent loss in the contrast of the target Fig. 7(c,d,g,h,k,l). The profile plots for the uncorrected and
corrected MF-LSQR reconstructions for the full and partial view measurements are provided in Fig. 8. The
peaks in the profiles of the uncorrected reconstruction correspond to the ring artifacts in the images. This
is also reflected in the CNR table (Tab. 3), where the ring artifacts corrected algorithm yields relatively
better CNRs than its conventional counterparts. The proposed algorithm is equally effective in the full as
well as limited view detection settings.

The non-uniform response of the multichannel DAQ yields vertical lines in the sinogram (Fig. 1(c)),
which further produces ring artifacts in the XACT reconstructions. However, unlike the simulation (Fig.
1(c)), vertical lines in the sinogram obtained from the XACT experiment are not uniformly straight. From
a closer observation, one can notice that these lines are made of piecewise uniform line segments (now
shown in Fig. 4(c)). This is associated with the bundling of the cables from the transducers to the DAQ.
Each set of cables bundled together will have a distinct non-uniform response thus resulting in distinct
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Fig. 7. XACT experimental results: Conventional (a,e,i) MBP and (b,f,j) MF-LSQR reconstructions and ring-artifacts
corrected (c,g,k) MBP and (d,h,l) MF-LSQR reconstructions for 360◦, 180◦, and 120◦ view XA measurements .

piecewise line segments in the sinogram. The reduced quality of the artifact-suppression for experimental
XACT as compared to the simulations can indeed be attributed to this. Moreover, the attenuation and
distortion of XA waves due to the finite-shaped lead target are also responsible for the noisy artifacts in the
experimental XACT images. Other possible sources of error include the acoustic reflections due to acoustic
mismatch between the target and the background, out-of-plane contribution to the XA signal, as well as
inaccuracy in the radius and shape of the ring-array. Studies to correct for these issues are ongoing.

5. Conclusion

In multichannel XA detection systems, non-uniform detector response is a problem that originates due to
the interference between DAQ electronics and amplifier systems. This causes all sensor elements to have
a simultaneous instantaneous gain in the acquired XA signal resulting in vertical lines (stripe pattern) in
the XA sinogram and artifacts in the reconstructed images; ring artifacts in circular detection geometry.
XACT systems yield low SNRs due to weak contrast, longer pulsewidths and lower pulse energy. Because
of this, the ring artifacts in XACT are much stronger than other sister modalities such as PAT and
TAT. However, this causes ring artifacts to appear more severe in XACT reconstruction, which is why
removal of the artifacts in XACT is crucial for its clinical translation as a tool for tomographic imaging
as well as radiation dosimetry We proposed a correction method integrated into the model-based least
squares (LS) minimization approach to produce ring artifacts corrected reconstructions from corrupt,
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Fig. 8. Profiles (along the central vertical line) of the MF-LSQR reconstructions from experimental XACT data with (a) 360◦,
180◦, and 120◦ view measurements. Arrows indicate the effect of the ring artifacts on the profile.

noisy XA measurements. Since the correction technique is fused with the model-based reconstruction
algorithms, there are no additional computational costs associated. The proposed algorithm was tested on
the numerical as well as experimental XACT datasets and produced desired results in the full as well as
limited view detection geometries. Although the presented model-based correction algorithm does remove
the ring artifacts while preserving the structures of the targets, the contrast among the reconstructed
targets has some inaccuracy. Further studies will be performed to rectify this and the limited-view problem
to improve XACT and aiding to its clinical translation.
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