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Figure 1: Volume visualization of simulation of earthquake-induced ground motion with 11.5 millions hexahedral
elements. Left: time step 50 (actual time = 4 seconds). Right: time step 500 (actual time = 40 seconds).

Abstract

This paper presents a parallel adaptive rendering algo-
rithm and its performance for visualizing time-varying
unstructured volume data generated from large-scale
earthquake simulations. The objective is to visualize 3D
seismic wave propagation generated from a 0.5 Hz simu-
lation of the Northridge earthquake, which is the highest
resolution volume visualization of an earthquake simu-
lation performed to date. This scalable high-fidelity vi-
sualization solution we provide to the scientists allows
them to explore in the temporal, spatial, and visualiza-
tion domain of their data at high resolution. This new
high resolution explorability, likely not presently avail-
able to most computational science groups, will help
lead to many new insights. The performance study we
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have conducted on a massively parallel computer oper-
ated at the Pittsburgh Supercomputing Center helps di-
rect our design of a simulation-time visualization strat-
egy for the higher-resolution, 1Hz and 2 Hz, simula-
tions.

Keywords: earthquake modeling, high-performance
computing, massively parallel supercomputing, scien-
tific visualization, parallel rendering, time-varying data,
unstructured grids, volume rendering, wave propagation

1 Introduction

We present a new parallel rendering algorithm for the
visualization of time-varying unstructured volume data
generated from very large-scale earthquake simulations.
The algorithm is used to visualize 3D seismic wave
propagation generated from a 0.5 Hz simulation of the
Northridge earthquake, which is the highest resolution
volume visualization of an earthquake simulation per-
formed to date.

Reduction of the earthquake risk to the general pop-
ulation can be achieved through understanding gained
by computer modeling of earthquake-induced ground



motion in large heterogeneous basins and analysis of
structural performance resulting from the soil-structure
interaction. The simulation results can guide develop-
ment of more rational seismic provisions for building
codes, leading to safer, more efficient, and economi-
cal structures in earthquake-prone regions. However, a
complete quantitative understanding of strong ground
motion in large basins requires a simultaneous consid-
eration of 3D effects of earthquake source, propagation
path, and local site conditions. The large scale asso-
ciated with the modeling places enormous demands on
computational resources.

The Quake Project [21, 3] comprises a multidisci-
plinary team of researchers with the goal of develop-
ing the tools to model ground motion and structural
response in large heterogeneous basins, and apply these
tools to characterize the seismic response of large pop-
ulated basins such as Los Angeles. To model at the
needed scale and accuracy, the Quake group has cre-
ated some of the largest unstructured finite element sim-
ulations ever performed by utilizing massively parallel
supercomputers. Consequently, a serious challenge the
Project faces is in visualization of the output of these
very large, highly unstructured simulations. An im-
portant component of understanding earthquake wave
propagation is the ability to volume render the time his-
tory of displacement and velocity fields. However, inter-
active rendering of time-dependent unstructured hex-
ahedral datasets with 107 — 10® elements (anticipated
to grow to 10° over the next several years) is a ma-
jor challenge. Past visualizations were limited to down-
sized versions of the data on a regular grid. The de-
velopment of algorithms and software for parallel ren-
dering of unstructured hexahedral datasets that scale to
the very large grid sizes required will significantly assist
the Quake group’s ability to interpret and understand
earthquake simulations.

In this paper, we discuss plausible approaches to high-
resolution visualization of large-scale parallel earth-
quake simulations, describe a new parallel rendering al-
gorithm we have developed to enable interactive visual-
ization of time-varying unstructured data, and present
our test results from rendering an 11.5 million hexahe-
dral element simulation of the 1994 Northridge earth-
quake in the greater LA basin. Our present implemen-
tation takes about 2-10 seconds to directly render one
time step using up to 128 processors of a parallel super-
computer operated at the Pittsburgh Supercomputing
Center. If adaptive rendering is used, 3-4 times improve-
ment can be obtained while maintaining visually indis-
tinguishable results. With the test results obtained thus
far, we are able to identify places for further optimiza-
tion. Our goal is to achieve without employing adaptive
rendering minimally 4-5 frames per second for 512x512
pixels, and about 1 frame per second for 1024x1024

pixels when using 128 processors. Such an interactive,
high-resolution visualization capability, which was not
previously available to the Quake project team, will
greatly improve their understanding of the modeled phe-
nomena.

2 Earthquake Ground Motion Mod-
eling

Modeling and forecasting earthquake ground motion in
large basins is a highly challenging and complex task.
The complexity arises from several sources. First, mul-
tiple spatial scales characterize the basin response: the
shortest wavelengths are measured in tens of meters,
whereas the longest measure in kilometers, and basin
dimensions are on the order of tens of kilometers. Sec-
ond, temporal scales vary from the hundredths of a sec-
ond necessary to resolve the highest frequencies of the
earthquake source up to a couple of minutes of shak-
ing within the basin. Third, many basins have highly
irregular geometry. Fourth, the soils’ material proper-
ties are highly heterogeneous. Fifth, strong earthquakes
give rise to nonlinear material behavior. And sixth, ge-
ology and source parameters are only indirectly observ-
able, and thus introduce uncertainty into the modeling
process.

Simulating the earthquake response of a large basin is
accomplished by numerically solving the partial differ-
ential equations (PDEs) of elastic wave propagation [2].
An unstructured mesh finite element method is used for
spatial approximation, and an explicit central difference
scheme is used in time. The mesh size is tailored to the
local wavelength of propagating waves via an octree-
based mesh generator [24]. Even though using an un-
structured mesh may yield three orders of magnitude
fewer equations than with structured grids, a massively
parallel computer still must be employed to solve the
resulting dynamic equations.

The Quake group is currently running earthquake
simulations in the greater LA basin to 10 meters finest
resolution with 100 million unstructured hexahedral fi-
nite elements, which is a factor of 4000 smaller than a
regular grid would require. These include simulations
of the 1994 Northridge mainshock to 1 Hz resolution,
the highest resolution obtained to date. Despite the
large degree of irregularity of the meshes, their codes
are highly efficient: they regularly obtain close to 90%
parallel efficiency in scaling up from 1 to 2048 proces-
sors on the HP /Compaq AlphaServer-based parallel sys-
tem at the Pittsburgh Supercomputing Center. Node
performance is also excellent for an unstructured mesh
code, permitting sustained throughputs of nearly one
teraflop per second on 2048 processors. A typical simu-
lation requires 25,000 time steps to simulate 40 seconds



of ground shaking, and requires wall-clock time on the
order of several hours, depending on the material damp-
ing model used, size of the region considered, number of
processors (between 512 and 2048), and output statis-
tics required.

3 Visualization Challenges and So-
lutions

A typical dataset generated by the ground motion sim-
ulation may consist of thousands of time steps and the
spatial domain is composed of 10-100 million elements.
Each mesh node outputs six values, three displacement
components and three velocity components. The corre-
sponding visualization challenges include:

e Large data

e Time varying data

e Unstructured mesh

e Multiple variables

e Vector and displacement fields

The work reported in this paper addresses the first three
challenges. Visualizations of multivariate and multidi-
mensional data are left as future work.

3.1 Large data

Our approach to the large data problem is to distribute
both the data and visualization calculations to multi-
ple processors of a parallel computer. In this way, we
can not only visualize the dataset at its highest resolu-
tion but also achieve interactive rendering rates. The
parallel rendering algorithm used thus must be highly
efficient and scalable to a large number of processors
because of the size of the dataset. Ma and Crock-
ett [16] demonstrate a highly efficient, cell-projection
volume rendering algorithm using up to 512 T3E pro-
cessors for rendering 18 millions tetrahedral elements
from an aerodynamic flow simulation. They achieve
over 75% parallel efficiency by amortizing the commu-
nication cost as much as possible and using a fine-grain
image space load partitioning strategy. Parker et al. [20]
use ray tracing techniques to render images of isosur-
faces. Although ray tracing is a computationally ex-
pensive process, it is highly parallelizable and scalable
on shared-memory multiprocessor computers. By incor-
porating a set of optimization techniques and advanced
lighting, they demonstrate very interactive, high qual-
ity isosurface visualization of the Visible Woman dataset
using up to 124 nodes of an SGI Reality Monster with
80%-95% parallel efficiency. Wylie et al. [25] show how
to achieve scalable rendering of large isosurfaces (7-469

million triangles) and a rendering performance of 300
million triangles per second using a 64-node PC clus-
ter with a commodity graphics card on each node. The
two key optimizations they use are lowering the size of
the image data that must be transferred among nodes
by employing compression, and performing compositing
directly on compressed data. Bethel et al. [4] introduce
a very unique remote and distributed visualization ar-
chitecture as a promising solution to very large scale
data visualization.

3.2 Time-varying data

Visualizing time-varying data presents two challenges.
The first is the need to periodically transfer sequences
of time steps to the processors from disk through a data
server. The second is the need of an exploration mech-
anism accompanied by an appropriate user interface for
tracking and correct interpretation of the temporal as-
pects of the data. We have mainly looked into the I/O
issues and aim to hide the I/O cost to reduce interframe
delay. For interactive browsing in both the spatial and
temporal domains of the data, a minimum of 2-5 frames
per second is needed. McPherson and Maltrud [18] de-
velop a visualization system capable of delivering re-
altime viewing of large time-varying ocean flow data
by exploiting the high performance volume rendering of
texture mapping hardware of four InfiniteReality pipes
attached to an SGI Origin 2000 with enough memory to
hold thousands of time steps of the data. The ParVox
system [9] is designed to achieve interactive visualiza-
tion of time-varying volume data in a high-performance
computing environment. Highly interactive splatting-
based rendering is achieved by overlapping rendering
and compositing, and by using compression.

A survey of time-varying data visualization strategies
developed more recently is given in [13]. One very effec-
tive strategy is based on a hardware decoding technique
such that data stay compressed until reaching the video
memory for rendering [10]. Even though encoding meth-
ods can significantly reduce the data size, we cannot
afford the cost of encoding the raw data since our ul-
timate goal is to support simulation-time visualization.
In the absence of high-speed network and parallel 1/O
support, a particularly promising strategy for achieving
interactive visualization is to perform pipelined render-
ing. Ma and Camp [14] show that by properly grouping
processors according to the rendering loads, compress-
ing images before delivering, and completely overlap-
ping uploading each time step of the data, rendering,
and delivering the images, interframe delay can be kept
to a minimum. Garcia and Shen [6] develop a dynamic
load balancing strategy based on asynchronous commu-
nication for more efficiently rendering time-varying vol-
ume data on a PC cluster. Improved load balancing is
achieved by cleverly and dynamically distributing the



image compositing job.

3.3 Unstructured-grid data

To efficiently visualize unstructured data additional in-
formation about the structure of the mesh needs to be
computed and stored, which incur considerable memory
and computational overhead. For example, ray trac-
ing rendering needs explicit connectivity information for
each ray to march from one element to the next [11].
Ma and Crockett [15] present a parallel cell projection
rendering algorithm which requires no connectivity in-
formation. Since each tetrahedral element is rendered
completely independent of other elements, data distri-
bution can be done in a more flexible manner facilitat-
ing load balancing. A similar approach is also used for
the rendering of AMR data [12]. Chen, Fujishiro, and
Nakajima [5] present a hybrid parallel rendering algo-
rithm for large-scale unstructured data visualization on
SMP clusters such as the Hitachi SR8000. The three-
level hybrid parallelization employed consists of message
passing for inter-SMP node communication, loop direc-
tives by OpenMP for intra-SMP node parallelization,
and vectorization for each processor. A set of optimiza-
tion techniques are used to achieve maximum parallel
efficiency. In particular, due to their use of an SMP ma-
chine, dynamic load balancing can be done effectively.
However, their work does not address the problem of
rendering time-varying data.

3.4 \Visualization strategies for large-scale
earthquake simulations

In summary, the following common strategies have been
used to successfully achieve high performance rendering
of large time-varying unstructured datasets using par-
allel computers:

e interleaving load distribution to achieve better load
balancing;

e avoiding per-time-step preprocessing calculations
as much as possible;

e overlapping communication and computation to
hide data transfer overhead;

e buffering of intermediate results to amortize com-
munication overheads; and

e compressing data to lower communication cost.

We design our visualization solutions by closely follow-
ing these guidelines.

Our ultimate goal is to perform simulation-time visu-
alization allowing scientists to monitor the simulation,
make immediate decision on data archiving and visual-
ization production, and even steer the simulation. To

achieve such an ambitious goal, we start by first devel-
oping a highly efficient parallel visualization algorithm
that is capable of delivering interactive rendering of 10-
100 millions data elements, scalable to large MPP sys-
tems, and easily coupled with extended capabilities such
as vector field rendering. At this stage, batch mode ren-
dering is used to produce animations for the scientists
for playback. The subsequent task is to design appro-
priate user interface and interaction techniques for in-
teractive browsing in both the spatial and temporal do-
mains of the data. Scientists therefore can conduct in-
teractive data exploration on their desktop. Finally, the
parallel simulation and renderer will run simultaneously
on either the same machine or two different machines
connected with high-speed network interconnect such
as the Quadrics network which has a bandwidth over
300 megabytes per second, permitting remote interac-
tion with the simulation and visualization. Simulation
data and image data are stored on demand.

In this paper, we report the performance of our par-
allel renderer design on LeMieux, an HP/Compaq Al-
phaServer with 3,000 processors operated at the Pitts-
burgh Supercomputing System, and visualizations of
time-varying ground motion simulation data consisting
of 11.5 million hexahedral elements. The rest of the
paper describers the rendering algorithm, its perfor-
mance, and our simulation-time visualization strategy
for higher-resolution simulations.

4 The Parallel Rendering Algorithm

Our new parallel rendering algorithm performs a se-
quence of tasks as shown in Figure 2. Each simulation
run generates a set of data files. While the number of
files is the same as the number of processors (hundreds
to thousands) used to run the simulation, the number of
processors (tens to hundreds) used for visualization cal-
culations is selected based on the rendering performance
requirements. Since the mesh structure never changes
throughout the simulation, for each resolution level a
preprocessing step is done to generate a spatial (octree)
encoding of the raw data. When performing the render-
ing, the host loads the raw data from disk and uses this
octree to distribute block of hexahedral elements among
processors. Each block of elements is associated with a
subtree of the global octree. This subtree is delivered
to the assigned processor for the corresponding block of
data only once at the beginning since all time steps data
use the same subtree structure. This centralized data
distribution method is not ideal. Hardware parallel I/O
support using multiple file servers should be used for
both the postprocessing visualization and simulation-
time visualization.

After blocks of data are distributed and before render-
ing begins, each processor conducts a view-dependent
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Figure 2: The parallel rendering pipeline.

preprocessing step whose cost is very small and thus
negligible. Rendering can be broken into a ray-casting
block rendering step and an image compositing step
while data blocks for subsequent time steps are con-
tinuously transferred from disk to each processor in the
background. Overlapping data transport and rendering
helps lower interframe delay.

4.1 Adaptive rendering

Rendering cost can be cut significantly by moving up
the octree and rendering at coarser level blocks instead.
This is done for maintaining the needed interactivity for
exploring in the visualization parameter space and the
data space. A good approach is to render adaptively
by matching the data resolution to the image resolution
while taking into account the desired rendering rates.
For example, when rendering tens of millions elements
to a 512x512 pixels image, unless a close-up view is se-
lected, rendering at the highest resolution level would
not reveal more details. One of the calculations that
the view-dependent preprocessing step performs is to
choose the appropriate octree level. The saving from
such an adaptive approach can be tremendous and there
is virtually very little impact on the level of information
presented in the resulting images as shown in Figure 3.
Presently the appropriate level to use is computed based
on the image resolution, data resolution, and a user-
specified number that limits the number of elements al-
lowed to be projected into a pixel.

Figure 4: Left: Projection of the bounding boxes of
eight subvolumes. Right: The image space is parti-
tioned into areas according to the number of overlaps.
In addition to the background, there are areas with no
overlap (blue), one overlap (green), two overlaps (or-
ange), three overlaps (red), etc.

4.2 Parallel image compositing

The parallel rendering algorithm is sort-last which
thus requires a final compositing step involving inter-
processor communication. Several parallel image com-
positing algorithms are available [17, 8, 1] but their
efficiency is mostly limited to the use of specific net-
work topology or number of processors. We have de-
veloped an optimized version of the direct send com-
positing method, which offers maximum flexibility and
performance. The direct send method has each pro-
cessor send pixels directly to the processor responsible
for compositing them. This approach has been used
in [7, 19, 15] because it is easy to implement and does
not require a special network topology. With direct send
compositing, in the worst case there are n(n — 1) mes-
sages to be exchanged among n compositing nodes. For
low-bandwidth networks care should be taken to avoid
that many nodes try to send messages to the same node
at the same time.

Our new image compositing algorithm, which we call
SLIC [23], uses a minimal number of messages to com-
plete the parallel compositing task. The optimizations
are achieved by refining the direct send method based
on the following observation. After local rendering is
done by each processor, there are three types of pixels:
background pixels, pixels in the nonoverlapping areas,
and pixels in the overlapping areas. Background pix-
els can be ignored. Pixels in the nonoverlapping areas
can be delivered directly to the host or display device.
Only the pixels in the overlapping areas need to be sent
to the processors responsible for compositing the corre-
sponding areas. Figure 4 shows pixels classification as a
result of a particular projection. Once pixels are classi-
fied, an optimized compositing schedule for all proces-
sors and respective assignments can be computed. Note
that each processor is assigned within the image space



Figure 3: Left: high-resolution rendering (level 11). Right: Adaptive rendering (level 6). The image on the right
provides enough high level information about the data while it can be generated about 3 times faster than the high

resolution one.

it rendered into. With direct send or binary swap, a
processor could be assigned compositing regions that it
was not involved with in rendering, which results in ad-
ditional sends. Reducing the number of messages that
must be exchanged among processors should be bene-
ficial since it is generally true that communication is
more expensive than computation.

Whenever view is changed each processor computes
the compositing schedule independent of other proces-
sors. The schedule is determined based on the overlap-
ping relations between the projection of the local blocks
of volume and the projection of other blocks. Because a
rectangular-block data partitioning based on the octree
is used, each processor also knows the exact projection
of nonlocal blocks. Specifically, each node performs the
following steps:

1. projecting corner vertices of each block based on
the current view and constructing its convex hull,

2. traversing through the overlapped convex hulls in
scanline order to identify compositing tasks in
terms of spans, and

3. assigning each span to a node in an interleaving
fashion.

The convex hull defines the exact projected area of the
block in the image space. A scanline algorithm similar
to polygon scan-conversion is then used to process the
edges of the overlapped convex hulls. Note that each
node only needs to scan the projected bounding edges
of the local blocks. The projected bounding edges of
nonlocal blocks are used to determine the number of
overlaps.

The edges that each scanline intersects break the
scanline into multiple spans, which can be classified

into: background spans, no-overlap spans, one-overlap
spans, two-overlap spans, etc. Background spans are
never generated. No-overlap spans are sent directly to
the host processor. The rest of spans are either kept lo-
cally or delivered to other processors by following Step
3. In our current implementation, the processor assign-
ment is determined by ((z + y) xp)modn where x and y
are the coordinates of the starting position of the span,
p is a large prime number, and n is the total number
of compositing nodes used. This interleaving approach
gives us good compositing load balancing.

The scanline-based algorithm works because the
bounding edges break the scanlines in exactly the same
way across all processors. As a result, if two spans cre-
ated by different processors would overlap, they must
completely overlap; that is, the two spans have the same
starting and end screen positions. Because all blocks
are presorted in depth order, each span can be assigned
a compositing order, which simplifies the actual com-
positing calculations. Other information stored with
each span includes a sequence of RGBA values and the
starting and end screen coordinates of the span.

This preprocessing step to compute a compositing
schedule for each new view introduces very low over-
head, generally under 10 milliseconds [23]. With the
resulting schedule, the total amount of data that must
be sent over the entire network to accomplish the com-
positing task is minimized. According to our test re-
sults, SLIC outperforms previous algorithms, especially
when rendering high-resolution images, like 1024 x1024
pixels or larger. Since image compositing contributes
to the parallelization overheads, reducing its cost helps
improve parallel efficiency.



Figure 5: Selected frames from an animation of the ground motion simulation. At beginning, the seismic wave is
traveling towards the free surface. The top left image shows the motion once the seismic waves have hit that surface.
And subsequent images show the evolution of the seismic motion, primarily concentrated near the surface (surface
waves) until it eventually dies out.




5 Test Results

We have studied the performance of our rendering al-
gorithm using up to 128 processors of an HP/Compaq
AlphaServer which is an SMP massively parallel super-
computer. The performance study results provide the
Quake project team and PSC directions for configuring
hardware systems for the large-scale simulation-time vi-
sualization we intend to conduct next. Figure 5 displays
selected frames from an animation of a simulation of the
Northridge earthquake with 11.5 million elements. At
this resolution, scientists are able to observe fine scale
volumetric details that they have been unable to visu-
alize before.

We first present the performance of the renderer with-
out counting the cost of uploading the volume data.
This was done by rendering a selected time step to
512x512 pixels from 120 different view angles and com-
puting the average rendering time. Figure 6 shows plots
of the time each processor took to complete the render-
ing when using 8, 16, 32, and 64 processors. Overall,
each chart also displays how load distribution was done
for the number of processors used. As the charts re-
veal, our current implementation does not scale beyond
32 processors. Parallel efficiency drops under 60 percent
when 64 or more processors are used. This is mainly due
to the load distribution scheme used and the constant
compositing cost. Nevertheless, we are able to achieve
a rendering rate at two frames per second when using
64 processors.

According our test tests, the image compositing time
varies according to view and image resolution rather
than the number of processors used. For most of the
cases, the image compositing time is under 100 millisec-
onds. Figure 7 shows the compositing costs for 60 differ-
ent view points and eight different numbers of processors
used to render to 2048x2048 pixels.

Figure 8 shows how the rendering cost varies as view-
point changes. The difference can be quite dramatic.
Certain view points would make load balancing more
difficult, resulting in longer rendering time. Figure 9
shows the time for rendering to 1024 x1024 pixels, and
exhibit a similar performance trend.

Next we present the time for performing temporal an-
imation using nonlocal disk. That is, each time step of
volume data is subsequently transmitted from a non-
local disk to the parallel computer for rendering. Fig-
ure 10 shows the time for rendering a sequence of 500
time steps. The image resolution is 512x512 pixels. At
the beginning, the cost is much lower than later time
steps because a relatively small image area is drawn
as a result of the modeled earthquake phenomena. To
alleviate the data loading cost, 32 data servers were
used. Plus overlapping the data loading with the ren-
dering calculations as much as possible, we are able to
achieve satisfactory rendering rates, near one frame per
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Figure 10: Rendering time for temporal domain ani-
mation using a non-local disk. Multiple data servers
were used to alleviate the I/O bottleneck. Image size is
512x512 pixels.

second using 64 processors. Finally, Figure 11 shows
inter-frame delay. When rendering to 1024 x1024 pix-
els, using 64 processors it takes about 3-9 seconds to
complete each frame.

Because of the large dynamic range of the data, it
often becomes difficult to follow time-varying phenom-
ena. For example, in Figure 5, only early time steps
are displayed because after the 400th time step, direct
volume rendering reveals very little variation in the do-
main without modifying the opacity mapping used. Fig-
ure 12 displays the results of employing a new temporal
domain filtering method to enhance the wave propaga-
tion throughout the whole time period. Time steps be-
tween 50 and 600 are shown with an interval=50. The
enhancement is done locally by using values in either
previous or next time step, or both. As a result, both
large-scale and small-scale wave propagation are cap-
tured in the picture. The cost of this enhancement is
small and negligible. The user can turn the enhance-
ment on and off during interactive viewing to ensure a
correct interpretation of the data.

6 Conclusions

We have experimentally studied a new parallel render-
ing algorithm for the visualization of large-scale earth-
quake simulations. This parallel visualization solution
incorporates adaptive rendering, a new parallel image
compositing algorithm, and a data transferring scheme
to make possible efficient rendering of large-scale time-
varying data. Our performance study using up to 128
processors of LeMieux at the PSC shows promising re-
sults, and also reveals the interplay between data trans-
port strategy used and interframe delay.

Based on our test results, the two main subjects of



Figure 12: Selected frames from an animation of the earthquake simulation. Enhancement was used to bring out
the wave propagation at different scales. At beginning, the seismic wave is traveling toward the free surface. The
second row of images show the motion once the seismic waves have hit that surface. And subsequent images show
the evolution of the seismic motion, primarily concentrated near the surface (surface waves) until it eventually dies
out. Because of the enhancement, even at the later time steps, the images capture the remaining scattering of the
waves.
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Figure 11: Interframe delay which includes both I/0
and rendering cost for temporal domain animation using
a non-local disk. Multiple data servers were used to
alleviate the I/O bottleneck. Image size is 1024x1024
pixels.

study are load balancing and I/O. We plan to investi-
gate a fine grain load redistribution method and study
how to reduce its overhead as much as possible. We have
demonstrated that using multiple data servers helps al-
leviate, but not remove, the I/O bottleneck. The PSC
will configure a testbed for our project especially ad-
dressing the I/O problem, which will allow us to focus
our effort more on other aspects of the overall visualiza-
tion problem such as load balancing, image compositing,
user interfaces, and others. Presently the image com-
positing cost is about constant. We believe compression
can help lower communication cost to possibly make the
overall compositing scalable to large machine size. Our
preliminary test results show a 50% reduction in the
overall image compositing time with compression.

We have not exploited the SMP features of LeMieux,
which we believe could allow us to accelerate the ren-
dering calculations while reducing communication cost.
The result will be a more scalable renderer offering
higher frame rates.

Adaptive rendering will play a major role in our sub-
sequent work. As shown previously, the full rendering
and adaptive rendering can result in visually indistin-
guishable results but the saving in rendering cost can
be tremendous. Our study in this direction will focus
on how adaptive rendering can be done with minimal
user intervention and perception of level switching.

To perform simulation-time visualization, we antic-
ipate no change in the core rendering code. Rather,
a coordination between data streaming, rendering, im-
age delivery, and user feedback must be established. A
buffering mechanism is likely needed for the user to con-
duct spatial domain exploration of a selected time step,
which would defer the rendering of incoming time steps.

To complicate the problem further, it could be desirable
to create a single visualization by making use of multi-
ple variables and/or multiple time steps [22]. Other im-
portant problems which we cannot ignore include user
interface, extracting temporal features of the data, and
vector data visualization.

This paper contributes to the supercomputing com-
munity in the following two ways. First, we have demon-
strate visualization of large-scale time-varying unstruc-
tured volume data sets at near interactive rates. Ma
and Crockett show rendering of 18 million tetrahedral
elements while Chen, Fujishiro, and Nakajima of the
Japan’s Earth Simulator project perform rendering of
7.9 million mix-type elements, neither of which address
time-varying aspects of the visualization problem. Sec-
ond, the adaptive high-fidelity visualization solution we
provide to the scientists will allow them to explore in the
temporal, spatial, and visualization domain of their data
at high resolution. This new high resolution explorabil-
ity, likely not presently available to most computational
science groups, will help lead to many new insights. Fi-
nally, the new temporal enhancement technique we in-
troduce provides scientists an alternative way to under-
stand the time-varying phenomena they model.
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