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ABSTRACT OF THE DISSERTATION

Algorithm Development for Sparse Signal Recovery and Performance Limits
Using Multiple-User Information Theory

by

Yuzhe Jin

Doctor of Philosophy in Electrical Engineering (Signal and Image Processing)

University of California, San Diego, 2011

Bhaskar D. Rao, Chair

The problem of sparse signal recovery can be formulated as a problem of finding

a sparse solution X ∈ Rm to an underdetermined system of equations

Y = AX+ Z

where A ∈ Rn×m, n < m, is the measurement matrix, Z ∈ Rn is the measurement

noise, and Y ∈ Rn is the noisy measurement. Let k be the number of nonzero entries in

xix



X. Then, X is sparse when k ≪ m.

First, we study the performance limits of support recovery, i.e., the recovery of

the locations of the nonzero entries of X. By connecting sparse signal recovery to com-

munication over a multiple access channel (MAC), we show that MAC capacity region

sheds light on the performance limits of support recovery. Sufficient and necessary con-

ditions are derived to reveal the role of the model parameters, such as the dimension of

the signal m, the number of measurements n, and especially the magnitudes of nonzero

entries of X, in ensuring asymptotically successful support recovery. By drawing an

analogy with the single-input multiple-output MAC, the information theoretic results

are extended to the multiple measurement vectors (MMV) problem to shed light on the

role of multiple measurements.

Next, we propose a multiple-pass algorithmic framework which exploits the va-

riety in the dynamic range of nonzero entries. Specifically, nonzero entries with similar

magnitudes are jointly detected as a group and different groups are detected sequentially.

The MultiPass Lasso algorithm and its variant are studied in detail, with experimental

results demonstrating the performance improvement over their one-pass counterparts,

respectively, in reconstruction accuracy and computational complexity.

We also examine two novel applications of sparse signal recovery. For robust

linear regression, we model the outliers in the observations, which occur infrequently,

as the nonzero entries of a sparse vector, and derive methods rooted in sparse signal re-

covery to tackle this problem. For adaptive filtering with sparse predictors, we employ a

general diversity measure for sparse signal recovery to develop a prototype least-mean-

xx



squares (LMS) type algorithm, in which the optimization is performed in the affine

scaling domain to expedite the convergence. Steady-state analysis is conducted to pro-

vide insight into the performance. As two instantiations, the pALMS and pANLMS

algorithms are studied in detail. Experimental results support the potentials of sparse

signal recovery techniques in both applications.
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Chapter 1

Introduction

The problem of sparse signal recovery can be formulated as a problem of finding

a sparse solution to an underdetermined systems of equations

Y = AX+ Z (1.1)

where X ∈ Rm is the signal of interest, A ∈ Rn×m is the measurement matrix with

n < m, and Z ∈ Rn is the measurement noise, and Y ∈ Rn is the noisy measurement.

Let k denote the number of nonzero entries of X, and X is said to be sparse when

k ≪ m. This problem with model (1.1) is usually referred to as sparse signal recovery

with single measurement vector (SMV).

When being considered in an application context, the rows or columns of A usu-

ally form a physically meaningful model, and the nonzero elements of X are usually of

interest and need to be identified. As one example, in the problem of the estimation of

1
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a wireless multipath channel [5, 29], each row of A represents a segment of the train-

ing sequence, and X represents the coefficients of the sparse multipath channel to be

estimated. As another example, in the applications of electroencephalography (EEG)

and magnetoencephalography (MEG) [59, 60], the columns of A can represent the in-

stantaneous impulse responses of the brain sources on the EEG or MEG sensors, and

identifying the nonzero entries in the vector X can be viewed as localizing the neu-

ronal activities for a given observation Y. Recently, the development of compressed

sensing [16, 39] provides the flexibility in designing the matrix A. In this case, each

row of A can be randomly generated according to certain probability distribution, and

hence Y contains n random projections of X onto the rows of A. The ability to re-

cover a sparse vector X from as few random projections as possible offers a universal

approach for signal acquisition and compression, which are independent of the domain

specific structures of the signals. Further, (1.1) also serves as the underlying mathe-

matical model for many other applications, such as image processing [71], [40], robust

face recognition [135], bandlimited extrapolation and spectral estimation [13], speech

processing [27], echo cancellation [41], [101], body area networks [53], and wireless

communication [62].

It is worthwhile to note the growing recognition of the importance of the area

of sparse signal recovery as evidenced by numerous special research journal issues,

conference workshops and sessions. One of the earliest full sessions, if not the first

session, on sparse signal recovery was organized by Yoram Bresler and Bhaskar Rao

at ICASSP, 1998. Since then, many conference sessions and journal issues have been
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dedicated to the issue of sparsity. Some recent notable examples of such include several

tutorial sessions at ITA Workshop, 2008; a panel session at ICASSP, 2008; a special

issue on IEEE Journal of Selected Topics in Signal Processing, 2010; and a special issue

IEEE Journal of Selected Topics in Signal Processing, 2011. Overall, sparse signal

recovery has become an important and promising area with both theoretic and practical

potentials.

1.1 Background

1.1.1 Sparse Signal Recovery with SMV

For the problem of sparse signal recovery with SMV, computationally efficient

algorithms have been proposed to find or approximate the sparse solution X ∈ Rm in

various settings. A partial list includes matching pursuit [82], orthogonal matching pur-

suit (OMP) [94], Lasso [113], basis pursuit [24], FOCUSS [60], iteratively reweighted ℓ1

minimization [20], iteratively reweighted ℓ2 minimization [21], sparse Bayesian learn-

ing (SBL) [114, 130], finite rate of innovation [120], CoSaMP [88], and subspace pur-

suit [34]. Analysis has been developed to shed light on the performances of these practi-

cal algorithms. For example, Donoho [39], Donoho, Elad, and Temlyakov [36], Candès

and Tao [19], and Candès, Romberg, and Tao [18] presented sufficient conditions for

ℓ1-norm minimization algorithms, including basis pursuit and its variant in the noisy

setting, to successfully recover the sparse signals with respect to different performance

metrics. Wainwright [123] and Zhao and Yu [140] provided sufficient and necessary
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conditions for Lasso to recover the support of the sparse signal, i.e., the set of indices of

the nonzero entries. Tropp [115], Tropp and Gilbert [116], and Donoho, Tsaig, Drori,

and Starck [37] studied the performances of greedy sequential selection methods such

as matching pursuit and its variants. On the other hand, from an information theoretic

perspective, a series of papers, for instance, Wainwright [122], Fletcher, Rangan, and

Goyal [51], Wang, Wainwright, and Ramchandran [124], and Akçakaya and Tarokh [2],

provided sufficient and necessary conditions to indicate the performance limits of opti-

mal algorithms for support recovery, regardless of computational complexity.

In addition to the batch estimation techniques, which are based on blocks of mea-

surements, the development of adaptive algorithms with sparsity concerns has recently

become an area of growing interest. The advantages of adaptive algorithms include

their relatively lower computational complexity and their ability to track the system

dynamics. As a notable example, the proportionate NLMS (PNLMS) algorithm was de-

veloped by Duttweiler [41] to deal with the sparse channel estimation that arises in echo

cancellers. Although this algorithm was not formally derived by minimizing an under-

lying objective function, it was well motivated with theoretical analysis and simulations

to support its effectiveness in adaptively estimating the sparse predictor. Other recent

adaptive filtering algorithms with sparsity concerns include PNLMS++ [54], improved

PNLMS (IPNLMS) [7], improved IPNLMS (IIPNLMS) [33], zero attracting LMS (ZA-

LMS) and the reweighted zero attracting LMS (RZA-LMS) [25, 26], and ℓ0-LMS and

ℓ0-NLMS [61]. Performance analysis are derived for the algorithms above to support

their usage in practical applications.
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1.1.2 Sparse Signal Recovery with MMV

An emerging trend in the area of sparse signal recovery is the capability of col-

lecting multiple measurement vectors in an increasing number of applications, such as

EEG and MEG [128,136], blind source separation [28], source localization [80], multi-

variate regression [89], and direction of arrival estimation [111]. This gives rise to the

problem of sparse signal recovery with multiple measurement vectors (MMV) [30], for

which the model is given by

Y = AX + Z (1.2)

where X ∈ Rm×l is the (matrix) signal of interest, A ∈ Rn×m is again the measurement

matrix, Z ∈ Rn×l is the measurement noise, and Y ∈ Rn×l is the noisy measurement,

for l > 1. Let k be the number of nonzero rows in X , and X is sparse when k ≪ m.

Practical algorithms have been developed to address the new challenges in this

scenario. One class of algorithms for solving the MMV problem can be viewed as

straightforward extensions based on their counterparts for the SMV problem. To sample

a few, M-OMP [29, 117], M-FOCUSS [29], ℓ1/ℓ2 minimization method1 [46], multi-

variate group Lasso [89], and M-SBL [134] can be all viewed as examples of this kind.

Another class of algorithms additionally make explicit effort to exploit the structure

underlying the sparse signal X , such as the temporal correlation or the autoregressive

1This method is sometimes referred to as ℓ2/ℓ1 minimization, due to the naming convention in
a specific paper. In this thesis, we use ℓ1/ℓp to indicate a cost of a matrix B which is define as∑

i |(
∑

j |bi,j |p)1/p|.
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nature across the columns of X which would be otherwise unavailable when l = 1, to

aim for better performance of sparse signal recovery. For instance, the improved M-

FOCUSS algorithms [136], auto-regressive sparse Bayesian learning (AR-SBL) [138],

and T-SBL [139] all have the capability of explicitly taking advantage of the structural

properties of X to improve the recovery performance. Alone side the algorithmic ad-

vancement, a series of work have been focusing on the theoretical analysis to support

the effectiveness of existing algorithms for the MMV problem. We briefly divide these

results into two categories. The first category of theoretic analysis aims at practical

algorithms for sparse signal recovery with MMV. For example, Chen and Huo [23] dis-

covered the sufficient conditions for ℓ1/ℓp norm minimization method and orthogonal

matching pursuit to exactly recover every sparse signal within certain sparsity level in

the noiseless setting. Eldar and Rauhut [47] also analyzed the performance of sparse

signal recovery using the ℓ1/ℓ2 norm minimization method in the noiseless setting, but

the sparse signal was assumed to be randomly distributed according to certain probabil-

ity distribution and the performance was averaged over all possible realizations of the

sparse signal. Obozinski, Wainwright, and Jordan [89] provided sufficient and necessary

conditions for multivariate group Lasso to successfully recover the support of the sparse

signal2 in the presence of measurement noise. The second category of theoretic analysis

are of an information theoretic nature, and explore the performance limits that any al-

gorithm, regardless of computational complexity, could possibly achieve. In this regard,

Tang and Nehorai [111] employed a hypothesis testing framework with the likelihood

2We refer to the support of a matrix X as the set of indices corresponding to the nonzero rows of X .
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ratio test as the optimal decision rule to study how fast the error probability decays. Suf-

ficient and necessary conditions are further identified in order to guarantee successful

support recovery in the asymptotic sense.

1.2 Main Contributions of the Thesis

The main contributions of the thesis focus on the theory, algorithms, and appli-

cations of sparse signal recovery. We briefly preview these aspects in this section.

1.2.1 Performance Limits of Support Recovery

The problem of support recovery of sparse signals concerns the identification of

the locations of the nonzero entries of X in the SMV problem (or the nonzero rows of

X in the MMV problem). This problem arises in applications where the locations of the

nonzero entries capture important information about the underlying signal activity. As

an example, in medical imaging applications such as MEG and EEG, it is desirable to

localize active neuronal activities which corresponds to the detection of the locations of

the nonzero entries of X.

To address this problem, we proposed a connection between the problems of

sparse signal recovery and multiuser communication. Let us consider the SMV problem

for the discussion to follow. Based on this connection, the columns of the measurement

matrix A form a common codebook for all senders. Codewords from the senders are

individually multiplied by unknown channel gains, which correspond to nonzero entries
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of X. Then, the noise-corrupted linear combination of these codewords is observed.

Thus, support recovery can be interpreted as decoding messages from multiple senders.

Using the techniques rooted in multiuser communication but suitably modified for the

support recovery problem, we develop sharp necessary and sufficient conditions for sup-

port recovery of sparse signals to be asymptotically successful. For example, when k is

fixed, we show that n = (logm)/c(X) is sufficient and necessary. We give a complete

characterization of c(X) that depends on the values of all nonzero entries of X. This

result provides a clear insight into the role of nonzero entries in support recovery, which

improves upon many existing results where only the minimum nonzero magnitude en-

tered the performance tradeoffs. We also provide performance limits for the scenarios

with increasing k, random nonzero activities, and MMV, respectively. Especially, the

performance limit regarding the MMV model, which is enabled by a connection to the

single-input multiple-output (SIMO) MAC communication problem, suggests the po-

tential performance improvement enabled by having multiple measurement vectors.

1.2.2 Algorithm Design and Analysis Using Multiuser Information

Theoretic Techniques

One can broadly classify the existing algorithms for sparse signal recovery into

two categories: sequential selection methods, such as matching pursuit and orthogo-

nal matching pursuit, and joint recovery methods, such as basis pursuit and Lasso. It

has been observed that sequential selection methods can deal well with sparse signals
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whose nonzero entries have very different magnitudes, but perform poorly for sparse sig-

nal with similar magnitudes. In contrast, joint recovery methods can handle well sparse

signals with similar magnitudes, but they may not exploit the disparity in nonzero mag-

nitudes. In practice, the nonzero entries of a sparse signal can be modelled as clusters

with each cluster comprising of a group of nonzero entries with comparable magnitudes.

The variation in the dynamic range of the signals poses a new challenge for algorithmic

development.

Motivated by the group detector for multiuser detection, we explore the oppor-

tunity of merging the different algorithmic design principles together to develop novel

algorithms suitable for practical signals. We propose the MultiPass algorithmic frame-

work, which sequentially detects different groups of nonzero entries. This is achieved

by applying a joint recovery method with the goal of identifying a subset of the sup-

port, on which the nonzero entries have comparable magnitudes, with high probability

at each iteration. The MultiPass Lasso (MPL) algorithm is developed as an instantiation

under this algorithmic framework. Meanwhile, we propose the Reweighted MultiPass

Lasso algorithm which utilizes MPL as an component. Experiment study shows that the

proposed algorithms yield improved estimation accuracy and computational efficiency.

Theoretical analysis is also provided to support the performance improvement of the

MultiPass Lasso algorithm.

Then, we focus on the performance limit of orthogonal matching pursuit (OMP)

using the connection between OMP and the successive interference cancellation (SIC)

scheme for multiuser detection. Inspired by the decoding criterion for SIC, we pro-
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pose an intuitive necessary condition for OMP to successfully recover the support of

the sparse signal. Experiments and discussions are provided to shed light on the perfor-

mance limit of OMP.

1.2.3 Robust Linear Regression

The problem of robust linear regression focuses on learning a linear model based

on the data in presence of outliers, which are observations that “deviate so much from

other observations as to arouse suspicion that they were generated by a different mecha-

nism” [67]. Note that it is important to recognize the impact of outliers for modeling and

analysis. Since some methods such as the least-squares (LS) estimation are very sensi-

tive to outliers, the need of robust methods for regression analysis becomes evident.

We leverage the techniques for sparse signal recovery to design novel algorithms

for robust regression. The key aspect in our approach is the employment of a two-

component model for measurement noise, where one component accounts for the regu-

lar Gaussian noise and the other component captures the outliers in the data. Since the

outliers occurs infrequently, the component vector representing outliers can be therefore

viewed as a sparse vector. We propose a maximum-a-posteriori (MAP) based method

and a sparse Bayesian learning (SBL) based method to jointly estimate the regression

coefficients as well as the outlier component. Experimental results on simulated and

real data sets support the effectiveness of the proposed algorithms.
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1.2.4 Adaptive Filtering Algorithms with Sparsity Concerns

In the problem of adaptive filtering, the goal is to develop online learning al-

gorithms that can adaptively estimate the underlying system coefficients based on the

previous state and the current input of the system. We focus on the design of adaptive

algorithms for the scenario where the system coefficients are sparse.

To tackle this problem, we utilize a general diversity measures, whose mini-

mization leads to sparse vectors, in the cost function for deriving a prototype least-

mean-squares (LMS) type algorithm and a normalized LMS (NLMS) type algorithm.

Specifically, motivated by the ideas behind the interior point method in convex and non-

linear optimization, we perform the steepest descent method in the affine scaling domain

with the goal of expediting the speed of convergence of the algorithm. Then, we study

in detail the pALMS and pANLMS algorithms, which instantiate the prototype algo-

rithms with the ℓp norm diversity measure. Steady-state analysis are provided to shed

light on their performances. Experiments are performed to support the effectiveness of

the proposed algorithms.

1.3 Thesis Outline

The remainder of the thesis is organized as follows.

In Chapter 2, we study the performance limits of support recovery of sparse sig-

nals. Utilizing the connection between the sparse signal recovery problem and multiple-

user communication, we explore the sufficient and necessary conditions for support
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recovery to be asymptotically successful in SMV and MMV cases, respectively. We

further provide an intuitive analysis for the performance limits of matching pursuit al-

gorithms.

Chapter 3 focuses on how to apply multiuser information theoretic techniques to

facilitate the design and the analysis of practical algorithms for sparse signal recovery.

First, we propose the MultiPass algorithmic framework that takes advantage of both se-

quential recovery methods and joint recovery methods for performance improvement.

The MultiPass Lasso algorithm and the Reweighted MultiPass Lasso algorithm are pro-

posed, and their performances are studied in detail. Then, we discuss the performance

limit of OMP using its connection to the successive interference cancellation scheme for

multiuser detection.

Starting from Chapter 4, we turn our attention to applications. In this chapter,

we employ a two-component model for measurement noise in the problem of robust

regression. Consequently, a sparse component corresponding to the outliers is naturally

isolated. We show how to transform the techniques of sparse signal recovery to achieve

robust regression.

In Chapter 5, we focus on the problem of adaptive filtering. Employing the

diversity measures from sparse signal recovery, we derive a prototype adaptive filters

using a steepest descent approach in the affine scaling domain, with the goal of expedite

the convergence of the algorithm. The choice of using the ℓp norm as the diversity

measure is studied in detail.

Chapter 6 concludes the thesis with discussion on future research directions.



Chapter 2

Performance Limits of Support

Recovery Using Multiuser Information

Theory

2.1 Introduction

The problem of support recovery of sparse signals focuses on the recovery of the

set of (row) indices corresponding to the nonzero entries. In many applications, find-

ing the exact support of the signal is important even in the noisy setting. For example,

in applications of medical imaging, magnetoencephalography (MEG) and electroen-

cephalography (EEG) are common approaches for collecting noninvasive measurements

of external electromagnetic signals [4]. A relatively fine spatial resolution is required to

localize the neural electrical activities from a huge number of potential locations [128].

13
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In the domain of cognitive radio, spectrum sensing plays an important role in identifying

available spectrum for communication, where estimating the number of active subbands

and their locations becomes a nontrivial task [112]. In multiple-user communication sys-

tems such as a code-division multiple access (CDMA) system, the problem of neighbor

discovery requires identification of active nodes from all potential nodes in a network

based on a linear superposition of the signature waveforms of the active nodes [62].

In all these problems, finding the support of the sparse signal is more important than

approximating the signal vector in the Euclidean distance. Hence, it is important to un-

derstand performance issues in the exact support recovery of sparse signals with noisy

measurements.

Information theoretic tools have proven successful in this direction. In the sin-

gle measurement vector case, Wainwright [121], [122] considered the problem of ex-

act support recovery using the optimal maximum likelihood decoder. Necessary and

sufficient conditions are established for different scalings between the sparsity level

and signal dimension. Using the same decoder, Rad [98] derived sharp upper bounds

on the error probability of exact support recovery. Meanwhile, Fletcher, Rangan, and

Goyal [50], [51] improved the necessary condition with the same decoder. Wang, Wain-

wright, and Ramchandran [124], [125] also presented a set of necessary conditions for

exact support recovery. Akçakaya and Tarokh [2] analyzed the performance of a joint

typicality decoder and applied it to find a set of necessary and sufficient conditions under

different performance metrics including the one for exact support recovery. In the mul-

tiple measurement vector case, Tang and Nehorai [111] employed a hypothesis testing
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framework with the likelihood ratio test as the optimal decision rule to study how fast

the error probability decays. Sufficient and necessary conditions are further identified in

order to guarantee successful support recovery in the asymptotic sense.

In addition, a series of papers have leveraged different information theoretic

tools, including rate-distortion theory [105], [49], expander graphs [70], belief propaga-

tion and list decoding [96], and low-density parity-check codes [137], to design novel

algorithms for sparse signal recovery and to analyze their performances.

In this chapter, a set is a collection of unique objects. Let Rm denote the m-

dimensional real Euclidean space. Let N = {1, 2, 3, ...} denote the set of natural num-

bers. Let [k] denote the set {1, 2, ..., k}. The notation |S| denotes the cardinality of set

S, ∥x∥p denotes the ℓp norm of a vector x, and ∥A∥F denotes the Frobenius norm of

a matrix A. Let AS denote the submatrix formed by the columns of A indexed by the

elements in set S , and let AS denote the submatrix formed by the rows of A indexed

by the elements in set S. The expression f(x) = o(g(x)) denotes limx→∞
f(x)
g(x)

= 0,

f(x) = O(g(x)) denotes |f(x)| ≤ α|g(x)| as x → ∞ for some constant α > 0,

f(x) = Θ(g(x)) denotes f(x) = O(g(x)) and g(x) = O(f(x)), f(x) = Ω(g(x))

denotes g(x) = O(f(x)), and f(x) = ω(g(x)) denotes g(x) = o(f(x)).

2.2 Formal Definition of the Problem

Let W ∈ Rk×l, where wi,j ̸= 0 for i ∈ [k], j ∈ [l]. Let S = [S1, ..., Sk]
ᵀ ∈ Nk

be such that S1, ..., Sk are chosen uniformly at random from [m] without replacement.
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Then, the signal of interest X = X(W,S) is generated as

Xs,i =


wj,i if s = Sj,

0 if s /∈ {S1, ..., Sk}.
(2.1)

The support of X , denoted by supp(X), is the set of indices corresponding to the

nonzero rows of X , i.e., supp(X) = {S1, ..., Sk}. According to the signal model (2.1),

|supp(X)| = k. We assume k is known.

We measure X through the linear operation

Y = AX + Z (2.2)

where A ∈ Rn×m is the measurement matrix, Z ∈ Rn×l is the measurement noise, and

Y ∈ Rn×l is the noisy measurement. We assume that the elements of A are generated

independently and identically distributed (i.i.d.) according to the Gaussian distribution

N (0, σ2
a), and the noise Zi,j are i.i.d. according to N (0, σ2

z). We assume σ2
a and σ2

z are

known.

Upon observing the noisy measurement Y , the goal is to recover the indices of

the nonzero rows of X . A support recovery map is defined as

d : Rn×l 7−→ 2[m]. (2.3)

Given the signal model (2.1), the measurement model (2.2), and the support
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recovery map (2.3), we define the average probability of error as

P{d(Y ) ̸= supp(X(W,S))}

for each (unknown) signal value matrixW ∈ Rk×l. Note that the probability is averaged

over the randomness of locations of the nonzero rows S, the measurement matrixA, and

the measurement noise Z.

2.3 A Multiuser Information Theoretic Perspective on

Sparse Signal Recovery

In this section, we introduce an important interpretation of the problem of sparse

signal recovery by relating it to a single-input multiple-output multiple access chan-

nel communication problem. This relationship motivates the intuition behind our main

results and facilitates the development of the proof techniques.

2.3.1 Brief Review on the Single-Input Multiple-Output MAC

Consider the following wireless communication scenario. Suppose k senders

wish to transmit information to a set of l common receivers. Each sender i has access to

a codebook C (i) = {c(i)1 , c
(i)
2 , ..., c

(i)

m(i)}, where c
(i)
j ∈ Rn is a codeword and m(i) is the

number of codewords in the codebook. The rate for the ith sender isR(i) = (logm(i))/n.

To transmit information, each sender chooses a codeword from its codebook, and all
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senders transmit their codewords simultaneously to l receivers leading to the single-

input multiple-output (SIMO) multiple access channel (MAC) communication problem:

Yj,i = hj,1X1,i + hj,2X2,i + · · ·+ hj,kXk,i + Zj,i, i ∈ [n], j ∈ [l] (2.4)

where Xq,i denotes the input symbol from sender q to the channel at time i, hj,q de-

notes the channel gain between sender q and receiver j, Zj,i is the channel noise i.i.d.

according to N (0, σ2
z), and Yj,i is the channel output at receiver j at time i.

After receiving Yj,1,, ..., Yj,n at each receiver j ∈ [l], the receivers work jointly

to determine the codewords transmitted by each sender. Since the senders interfere

with each other, there is an inherent tradeoff among their operating rates. The notion

of capacity region is introduced to capture this tradeoff by characterizing all possible

rate tuples (R(1), R(2), ..., R(k)) at which reliable communication can be achieved with

diminishing error probability of decoding. By assuming each sender obeys the power

constraint ∥c(i)j ∥22/n ≤ σ2
c for all j ∈ [m(i)] and all i ∈ [k], the capacity region of a

SIMO MAC with known channel gains [57] is

{
(R(1), ..., R(k)) :

∑
i∈T

R(i) ≤ 1

2
log det

(
I +

σ2
c

σ2
z

∑
i∈T

hih
ᵀ
i

)
,∀ T ⊆ [k]

}
(2.5)

where hj , [h1,j, ..., hl,j]
ᵀ for j ∈ [k].
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2.3.2 Similarities to the Problem of Support Recovery

Based on the measurement model (2.2), we can remove the columns in A which

correspond to the zero rows of X , and obtain the following effective form of the mea-

surement procedure

Yj = XS1,jAS1 + · · ·+XSk,jASk
+ Zj (2.6)

for j ∈ [l]. By contrasting (2.6) to the SIMO MAC (2.4), we can draw the following key

connections that relate the two problems.

i) A nonzero row as a sender: We can view the existence of a nonzero row index

Si as sender i that accesses the SIMO MAC.

ii) A measurement vector as a receiver: We can view the existence of a measure-

ment vector Yj as a measurement at receiver j. The multiple receivers lead to the

multiple output (MO) part of the analogy.

iii) XSi,j as the channel gain: The nonzero entry XSi,j , i.e., wi,j , plays the role of the

channel gain hj,i between sender i and receiver j.

iv) Ai as the codeword: We treat the measurement matrix A as a codebook with

each column Ai, i ∈ [m], as a codeword. Each element of ASi
is fed one by one

through the channel as input symbols from sender i to the l receivers, resulting

in n uses of the channel. Since a user transmits a single stream, this leads to the

single input (SI) part of the analogy.
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v) Similarity of objectives: In the problem of sparse signal recovery, we focus on

finding the support {S1, ..., Sk} of the signal. In the problem of MAC communi-

cation, the receiver needs to determine the indices of codewords, i.e., S1, ..., Sk,

that are transmitted by senders.

Based on the abovementioned aspects, the two problems share significant sim-

ilarities which enable the potential of leveraging multiuser information theoretic ap-

proaches for performance analysis of support recovery of sparse signals. However, as

we shall see next, there are domain specific differences between the support recovery

problem and the channel coding problem that should be addressed accordingly to rigor-

ously apply the information theoretic approaches.

2.3.3 Key Differences

1. Common codebook: In MAC communication, each sender uses its own code-

book. However, in sparse signal recovery, the “codebook” A is shared by all

“senders.” All senders choose their codewords from the same codebook and hence

operate at the same rate. Different senders will not choose the same codeword, or

they will collapse into one sender.

2. Unknown channel gains: In MAC communication, the capacity region (2.5) is

valid assuming that the receivers know the channel gain hj, j ∈ [k] [118]. In

contrast, for sparse signal recovery, XSi
is actually unknown and needs to be esti-

mated. Although coding techniques and capacity results are available for commu-
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nication with channel uncertainty, a closer examination indicates that those results

are not directly applicable to our problem. For instance, channel training with pi-

lot symbols is a common practice to combat channel uncertainty [66]. However,

it is not obvious how to incorporate the training procedure into the measurement

model (2.2), and hence the related results are not directly applicable.

Once these differences are properly accounted for, the connection between the

problems of sparse signal recovery and multiuser communication makes available a va-

riety of information theoretic tools for handling performance issues pertaining to the

problem of support recovery. Based on techniques that are rooted in channel coding,

but suitably modified to deal with the differences, we will present the our results in the

sections to follow.

2.4 Support Recovery with SMV: Main Results and Im-

plications

In this section, we discuss the performance limits of support recovery with single

measurement vector (SMV), i.e., l = 1. Specifically, we use X to denoteX , Y to denote

Y , Z to denote Z, and w to denoteW , for the reason that all these variables are columns

vectors.
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2.4.1 Fixed Number of Nonzero Entries

To discover the precise impact of the values of the nonzero entries on support

recovery, we consider the support recovery of a sequence of sparse signals generated

with the same signal value vector w. In particular, we assume that k is fixed. Define the

auxiliary quantity

c(w) , min
T ⊆[k]

[
1

2|T |
log

(
1 +

σ2
a

σ2
z

∑
j∈T

w2
j

)]
. (2.7)

For example, when k = 2,

c(w1, w2) = min

[
1

2
log

(
1 +

σ2
aw

2
1

σ2
z

)
,
1

2
log

(
1 +

σ2
aw

2
2

σ2
z

)
,

1

4
log

(
1 +

σ2
a(w

2
1 + w2

2)

σ2
z

)]
.

We can see from Section 2.3 that this quantity is closely related to the 2-sender multiple

access channel capacity with equal-rate constraint.

The following two theorems summarize our main results under this setup. The

subscript in nm denotes possible dependence between n and m. The proof of the theo-

rems are presented in Sections 2.8.1 and 2.8.2, respectively.

Theorem 1. If

lim sup
m→∞

logm

nm

< c(w) (2.8)



23

then there exists a sequence of support recovery maps {d(m)}∞m=k, d(m) : Rnm 7→ 2[m],

such that

lim
m→∞

P{d(m)(Y) ̸= supp(X(w,S))} = 0. (2.9)

Theorem 2. If

lim sup
m→∞

logm

nm

> c(w) (2.10)

then for any sequence of support recovery maps {d(m)}∞m=k, d(m) : Rnm 7→ 2[m], we

have

lim inf
m→∞

P{d(m)(Y) ̸= supp(X(w,S))} > 0. (2.11)

We provide the following observations. First, Theorems 1 and 2 together indi-

cate that n = (logm)/(c(w)± ϵ) is sufficient and necessary for exact support recovery.

The constant c(w) is explicitly characterized, capturing the role of all nonzero entries

of a sparse signal in support recovery. Second, the proof of Theorem 2 for the neces-

sary condition employs the assumption that the values of the nonzero entries are known.

Immediately, it follows that even if the values of the nonzero entries are known, the

sufficient condition for successfully recovering the support is still given by (2.8). This

observation indicates that the unknown channel gain problem indeed does not pose a

serious obstacle in support recovery for the case of fixed k. Further, the benefit of
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exploiting the connection between sparse signal recovery and multiple access commu-

nication is also supported by the theorems. Resorting to channel capacity results enables

us to explicitly extract the constant c(w) and obtain the tight sufficient and necessary

conditions.

2.4.2 Growing Number of Nonzero Entries

Next, we consider the support recovery for the case where the number of nonzero

entries k grows with the dimension of the signal m. We assume that the magnitude of a

nonzero entry is bounded from both below and above.

First, we present a sufficient condition for exact support recovery. The proof can

be found in Section 2.8.3.

Theorem 3. Let {w(m)}∞m=1 be a sequence of vectors satisfying w(m) ∈ Rkm and 0 <

wmin ≤ |w(m)
j | ≤ wmax <∞ for all j ∈ [km],m ≥ 1. If

lim sup
m→∞

1

nm

max
j∈[km]

6km log km + 2j log me
j

log
(

jw2
minσ

2
a

σ2
z

+ 1
)

 < 1 (2.12)

then there exists a sequence of support recovery maps {d(m)}∞m=1, d(m) : Rnm 7→ 2[m],

such that

lim
m→∞

P{d(m)(AX(w(m),S) + Z) ̸= supp(X(w(m),S))} = 0.

Note that, according to our proof technique, the upper bound wmax is not needed
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for performing support recovery, and it does not appear in the sufficient condition above.

In the proof, however, we use the assumption that the nonzero signal values are uni-

formly bounded from above to show that the probability of error tends to zero as m →

∞. To better understand Theorem 3, we present the following implication of (2.12) that

shows the tradeoffs between the order of n versus m and k.

Corollary 1. Under the assumption of Theorem 3,

lim
m→∞

P{d(m)(AX(w(m),S) + Z) ̸= supp(X(w(m),S))} = 0

provided that

n = max

{
Ω(k log k),Ω

(
k

log k
log

m

k

)}
.

In particular, we have the following:

1. When k = O(e
√
logm), the sufficient number of measurements is n = Ω( k

log k
log m

k
).

2. When ω(e
√
logm) ≤ k ≤ Θ(m), the sufficient number of measurements is n =

Ω(k logm).

Table 2.1 summarizes the sufficient conditions on n paired with different rela-

tions between k and m in Corollary 1.

In the existing literature, Wainwright [122], Akçakaya and Tarokh [2], and Rad

[98] derived sufficient conditions for exact support recovery. Under the same assump-

tion of Theorem 3, the sufficient conditions presented in these papers, respectively, are

summarized in Table 2.2:
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Table 2.1: Sufficient Conditions for Support Recovery in Different Sparsity Regions

Relation between m and k Sufficient n

k = o(m)
k = O(e

√
logm) n = Ω( k

log k
log m

k
)

ω(e
√
logm) ≤ k ≤ o(m) n = Ω(k logm)

k = Θ(m) n = Ω(k logm)

Table 2.2: Sufficient Conditions for Support Recovery in Existing Literature

k = o(m) k = Θ(m)

Wainwright [122] n = Ω(k log m
k
) n = Ω(m)

Akçakaya et al. [2] n = Ω(k log(m− k)) n = Ω(m)

Rad [98]1 n = max{Ω( k
log k

log m
k
),Ω(k)} n = Ω(m)

To compare the results, we first examine the case of k = o(m) (i.e., sublinear

sparsity). Note that in the regime where k = O(e
√
logm), our sufficient condition on n

is among the best existing results. In the remaining sublinear regime and in the linear

regime, i.e., ω(e
√
logm) ≤ k ≤ Θ(m), our results are not as tight as the best existing

results. More discussions will be provided in Section 2.4.3.

Next, we present a necessary condition, the proof of which can be found in

Section 2.8.4.

Theorem 4. Let {w(m)}∞m=1 be a sequence of vectors satisfying w(m) ∈ Rkm and 0 <

wmin ≤ |w(m)
j | ≤ wmax <∞ for all j ∈ [km],m ≥ 1. If

lim sup
m→∞

2km log(m/km)

nm log
(

2kmw2
maxσ

2
a

σ2
z

+ 1
) > 1 (2.13)

then for any sequence of support recovery maps {d(m)}∞m=1, d(m) : Rnm 7→ 2[m], we

1The original result in Corollary 6-6) of [98] may suffer from a typo since it gave two conditions on
n. We use Theorem 5 therein to figure out the actual sufficient condition.
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have

lim inf
m→∞

P{d(m)(AX(w(m),S) + Z) ̸= supp(X(w(m),S))} > 0.

To compare with existing results under the same assumption2 of Theorem 4, we

first note that when k = Θ(m) (linear sparsity), Theorem 4 indicates n = Ω( k
log k

log m
k
)

as the necessary condition. Compared to the best known sufficient condition n = Ω(m)

(see Table 2.2), there is a nontrivial gap. When k = o(m) (sublinear sparsity), we

summarize the necessary conditions developed in previous papers in Table 2.3:

Table 2.3: Necessary Conditions for Support Recovery

k = o(m)

Wainwright [122] n = Ω(logm)

Wang et al. [125] n = Ω( k
log k

log m
k
)

Akçakaya et al. [2] 3 n = Ω( k
log k

log m
k
)

Theorem 4 n = Ω( k
log k

log m
k
)

In this case, n = Ω( k
log k

log m
k
) is the best known necessary condition.4

2.4.3 Further Discussions

We offer more insights into the analytical framework and proof techniques.

2The necessary conditions derived in [122], [125], and [2] were originally derived under slightly dif-
ferent assumptions. Here we adapted them to compare the asymptotic orders of n.

3This result is implied in [2], by identifying C ′
4 in Thm. 1.6 therein, and clarifying the order of n.

The proof of Thm. 1.6 states that (below its (25)) asymptotically reliable support recovery is not possible
if n < [log(1 + ∥w(m)∥22/σ2

z)]
−1mH(k/m) − log(m + 1). Note that mH(k/m) = Θ(k log(m/k)).

Hence, we consider n = Ω(k log(m/k)
log k ) an appropriate necessary condition resulting from the proof in [2].

4Note that when wmax = ∞, we can show that n ≥ k is necessary for both linear and sublinear
sparsity [125]. Hence, when wmax = ∞, n = max

{
Ω( k

log k log m
k ),Ω(k)

}
is the best known necessary

condition.
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The sufficient conditions in this paper are derived based on the distance decoding

technique which was used in channel decoding problem [76]. In order to perform the

distance decoding, the channel gains need to be known or can be estimated. This is in

contrary to the fact that the nonzero entries of a sparse signal are unknown, and therefore

raises the unknown channel gain problem in Section 2.3.3. To tackle this problem, we

employ the following procedure in the proofs for sufficient conditions.

1. Find an estimate of ∥w∥2, and denote it by ρ̂.

2. Find a set Q of points which can be viewed as ϵ-covering of the k-dimensional

hypersphere of radius ρ̂. By construction of Q, there exists a Ŵ ∈ Q such that

∥Ŵ −w∥2 ≤ ϵ with high probability.

3. Find {ŝ1, ŝ2, ..., ŝk} ⊆ [m] such that

1

n

∥∥∥∥∥Y −
k∑

j=1

ŴjAŝj

∥∥∥∥∥
2

2

≤ σ2
z + ϵ2σ2

a (2.14)

for some Ŵ ∈ Q. We declare {ŝ1, ŝ2, ..., ŝk} as the estimated support of the

sparse signal. As a byproduct, the elements of the corresponding Ŵ can be

viewed as estimates of the values of the nonzero entries.

The success of this support recovery procedure is closely related to the estima-

tion quality of ∥w∥2 and the cardinality of the set Q. Accordingly, our methodology

shows different strength in different regions of sparsity levels. First, in the case for fixed

number of nonzero entries, consistent estimation of ∥w∥2 can be obtained, and the car-
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dinality of Q can be bounded from above. This provides the opportunity to discover

the exact sufficient and necessary conditions for successful support recovery. Next, in

the case with growing number of nonzero entries, the estimation quality of ∥w∥2 and

the cardinality of Q must be carefully controlled. To this end, the constraint k = o(n),

which is implied by Theorem 3, is needed for the estimation of ∥w∥2 to be consistent,

and wmax as the upper bound for the nonzero magnitudes is needed for controlling the

cardinality of Q. Note that for the sublinear sparsity with k = O(e
√
logm), our sufficient

and necessary conditions both indicate n = Ω( k
log k

log m
k
), and hence are tight in terms

of order. As k increases with m at a faster rate, our sufficient and necessary conditions

have gaps, which is a consequence of the difficulty in consistently estimating ∥w∥2 and

handling the large size of Q.

Another interesting region which has been extensively discussed in previous

work is the case where wmin = O(1/
√
k) [51, 122, 124]. Although Theorem 4 can

be extended to provide a necessary condition for this case, it does not offer improve-

ment upon existing results. Theorem 3 may not be extended to this scenario, which

indicates that our analytical technique for proving sufficient conditions is not suited for

this scaling.



30

2.5 Support Recovery with MMV: Main Results and Im-

plications

In this section, we focus on the performance limits of support recovery of sparse

signals with MMV. We use the general notation as defined in Section 2.2.

2.5.1 Main Results

Similarly to the case with SMV, we consider the recovery of the nonzero rows

of a sequence of sparse signals generated with the same signal value matrix W . In

particular, we assume that k and l are fixed. Define the auxiliary quantity

c(W ) , min
T ⊆[k]

[
1

2|T |
log det

(
I +

σ2
a

σ2
z

W ᵀ
TW T

)]
. (2.15)

The following theorems provide the performance limit of support recovery for the MMV

problem. The proofs are presented in Sections 2.8.5 and 2.8.6, respectively.

Theorem 5. If

lim sup
m→∞

logm

nm

< c(W ) (2.16)

then there exists a sequence of support recovery maps {d(m)}∞m=k, d
(m) : Rnm×l 7→ 2[m],
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such that

lim
m→∞

P{d(Y ) ̸= supp(X(W,S))} = 0. (2.17)

Theorem 6. If

lim sup
m→∞

logm

nm

> c(W ) (2.18)

then for any sequence of support recovery maps {d(m)}∞m=k, d
(m) : Rnm×l 7→ 2[m],

lim inf
m→∞

P{d(Y ) ̸= supp(X(W,S))} > 0. (2.19)

Theorems 5 and 6 together indicate that n = 1
c(W )±ϵ

logm is the sufficient and

necessary number of measurements per measurement vector to ensure asymptotically

successful support recovery. The constant c(W ) explicitly captures the role of the

nonzero entries in the performance limit.

Next, we explore the implications of having multiple measurement vectors. Due

to the complicated expression of c(W ), we will employ different approximations to

make the interpretations more accessible without loss of sufficient insight.
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2.5.2 The Low-Noise-Level Scenario

We consider the case where σ2
z is sufficiently small. Let λT ,i, T ⊆ [k], denote

the ith largest eigenvalue of W ᵀ
TW T . For a SIMO MAC problem, the sum capacity

grows as min(k, l) leading to significant gains in the task of support recovery. This is

captured in the following corollary.

Corollary 2. For a given W , suppose rank(W ᵀ
TW T ) = min(|T |, l) for all T ⊆ [k].

For sufficiently small σ2
z > 0, there exists a constant α ∈ (0, 1) such that if

lim
m→∞

logm

nm

< α · min(k, l)

2k
· log σ

2
a

σ2
z

(2.20)

then there exists a sequence of support recovery maps {d(m)}∞m=k, d
(m) : Rnm×l 7→ 2[m],

such that

lim
m→∞

P{d(Y ) ̸= supp(X(W,S))} = 0.
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Proof. Note that for T ⊆ [k] with |T | ≤ l, λT ,i > 0 for i = 1, 2, ..., |T |. Thus

1

2|T |
log det

(
I +

σ2
a

σ2
z

W ᵀ
TW T

)
=

1

2|T |
log

|T |∏
i=1

(
1 +

σ2
a

σ2
z

λT ,i

)

=
1

2|T |
log

|T |∏
i=1

(
σ2
a

σ2
z

(
σ2
z

σ2
a

+ λT ,i

))

=
1

2|T |

|T | · log σ
2
a

σ2
z

+

|T |∑
i=1

log

(
σ2
z

σ2
a

+ λT ,i

)
=

1

2
log

σ2
a

σ2
z

·

1 +
1

|T |

|T |∑
i=1

log
(

σ2
z

σ2
a
+ λT ,i

)
log σ2

a

σ2
z


=

1

2
log

σ2
a

σ2
z

·
(
1 +O

(
1

− log σ2
z

))
≥ 1

2
log

σ2
a

σ2
z

· αT

for some αT ∈ (0, 1). For any possible T ⊆ [k] with |T | > l, λT ,i > 0 for i = 1, 2, ..., l.

Then, we have similarly

1

2|T |
log det

(
I +

σ2
a

σ2
z

W ᵀ
TW T

)
=

l

2|T |
log

σ2
a

σ2
z

·
(
1 +O

(
1

− log σ2
z

))
.

≥ l

2|T |
log

σ2
a

σ2
z

· αT

Thus, if k ≤ l

min
T ⊆[k]

[
1

2|T |
log det

(
I +

σ2
a

σ2
z

W ᵀ
TW T

)]
≥ 1

2
log

σ2
a

σ2
z

· min
T ⊆[k]

αT (2.21)
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and if k > l

min
T ⊆[k]

[
1

2|T |
log det

(
I +

σ2
a

σ2
z

W ᵀ
TW T

)]
≥ l

2k
log

σ2
a

σ2
z

· min
T ⊆[k]

αT . (2.22)

Combining (2.21) and (2.22) and applying Theorem 5 conclude the proof.

Corollary 2 indicates the following observations. First, as the measurement noise

level σ2
z approaches zero, the term min(k,l)

2k
log σ2

a

σ2
z

exerts a major influence on the suffi-

cient condition (2.20). The nonzero signal matrix W plays its role mainly through the

ranks of its row-wise submatrices, which are ensured to be full rank according to the

technical assumption that rank(W ᵀ
TW T ) = min(|T |, l) for any T ⊆ [k].

Second, by rearranging the terms in (2.20), we obtain

m =

(
σ2
a

σ2
z

)α·min(k,l)· n
2k

which corresponds to the maximum number of columns of A that still yields a dimin-

ishing error probability in support recovery. Specifically, the term min(k, l) reveals the

following insight. In the scenario with sufficiently small σ2
z , for the challenging problem

where the number of measurement vectors is less than the number of nonzero rows, i.e.,

l < k, adding one more measurement vector can lead to a much larger upper bound on

the manageable number of columns of A. On the other hand, when k ≤ l, the problem

is much simpler and adding more measurement vectors may not significantly increase

the manageable size of A. From an algorithmic point of view, subspace based methods
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can be used to recover the support.

2.5.3 The Role of the Nonzero Signal Matrix

Next, we take a closer examination on the role of the nonzero signal matrix

W in support recovery with MMV. We consider two different cases. In the first case,

W consists of l identical columns. The following corollary states the corresponding

sufficient condition for support recovery.

Corollary 3. Suppose W ∈ Rk×l has identical columns, i.e., W = [w, ...,w], for some

w ∈ Rk with all entries being nonzero. If

lim
m→∞

logm

nm

< min
T ⊆[k]

1

2|T |
log

(
1 + l · σ

2
a

σ2
z

∥wT ∥22
)

(2.23)

then there exists a sequence of support recovery maps {d(m)}∞m=k, d
(m) : Rnm×l 7→ 2[m],

such that

lim
m→∞

P{d(Y ) ̸= supp(X(W,S))} = 0.
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Proof. Note that, for any T ⊆ [k],

log det

(
I +

σ2
a

σ2
z

W ᵀ
TW T

)
= log det

(
I +

σ2
a

σ2
z

[wT , ...,wT ]
ᵀ[wT , ...,wT ]

)
= log det

(
I +

σ2
a

σ2
z

∥wT ∥221 · 1ᵀ
)

= log

(
1 + l · σ

2
a

σ2
z

∥wT ∥22
)

where 1 ∈ Rl is a vector of all ones. Applying Theorem 5 completes the proof.

Based on (2.23), the effect of having l identical nonzero signal vectors is equiv-

alent to decreasing the noise level by a factor of l, compared to the problem with SMV.

This is in accordance with the intuition that when the underlying signals remain the

same, taking more measurement vectors provides an opportunity to average down the

measurement noise level. We hasten to add that identical columns are unlikely in prac-

tice. Even small changes in the coefficients can lead to a full rank matrix, leading to

significant benefits in the high signal-to-noise ratio (SNR) case.

In the second case, we consider a more optimistic situation, which is summarized

in the following corollary.

Corollary 4. Suppose W = [w1,w2] ∈ Rk×2, where k is even, w1 = 1 ∈ Rk, and w2

is defined as

wi,2 =


1 if 1 < i ≤ k

2
,

−1 if k
2
< i ≤ k.

(2.24)
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If

lim
m→∞

logm

n
<

1

k
log

(
1 + k · σ

2
a

σ2
z

)
(2.25)

then there exists a sequence of support recovery maps {d(m)}∞m=k, d
(m) : Rnm×l 7→ 2[m],

such that

lim
m→∞

P{d(Y ) ̸= supp(X(W,S))} = 0.

Proof. Please see Section 2.8.7.

For the ease of illustration, we compare the performances among the problems

with (i) SMV where W = 1 ∈ Rk×1, (ii) MMV where W = [1,1] ∈ Rk×2, and (iii)

MMV where W is defined in Corollary 4, for an even k.5 Table 2.4 summarizes the

results.

Table 2.4: Bounds under different scenarios.

lower bound on n upper bound on m

(i) SMV (W = 1) n > logm

1
2k

log

(
1+

kσ2
a

σ2
z

) m <
(
1 + kσ2

a

σ2
z

) n
2k

(ii) MMV (W = [1,1]) n > logm

1
2k

log

(
1+2· kσ

2
a

σ2
z

) m <
(
1 + 2 · kσ2

a

σ2
z

) n
2k

(iii) MMV (W as defined in Cor. 4) n > logm

1
k
log

(
1+

kσ2
a

σ2
z

) m <
(
1 + kσ2

a

σ2
z

)n
k

Based on this table, we have the following observations for this specific setup.

5Note that ∥w1∥2 = ∥w2∥2, which can be viewed as a way of normalization to make comparison
meaningful.
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First, compared with the SMV problem, having MMV can improve the performance of

support recovery by enabling a relaxed condition on the number of measurements n.

Equivalently, for the same number of measurements per measurement vector, the MMV

setup permits a measurement matrix A with more columns. Second, the performance

improved by having MMV is closely related to c(W ), and it can be quite different for

different nonzero signal value matrices. In case (ii), we achieve a moderate performance

gain which is equivalent to reducing the noise level by half. On the contrary, in exam-

ple (iii), a larger performance gain can be achieved due to the structure of the nonzero

signal value matrix. In summary, these examples are specially constructed as repre-

sentative cases to illustrate the effect of the nonzero signal value matrix W in support

recovery. Generally, the difficulty of a support recovery problem is inherently deter-

mined by the model parameters, especially the nonzero value matrix W , and Theorems

5 and 6 together characterize their exact roles.

2.5.4 A Generalization of W

Thus far, we have assumed wi,j ̸= 0 for all i ∈ [k], j ∈ [l] in the discussion

above. Now, we wish to generalize W in the following manner: for each i ∈ [k], there

exist a j ∈ [l] such that wi,j ̸= 0; meanwhile, for each j ∈ [l], there exist a i ∈ [k]

such that wi,j ̸= 0. This relaxed assumption indicates that neither a zero row nor a zero

column exists but zero elements are allowed inW , as opposed to the original assumption
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that all elements of W are nonzeros. Accordingly,

supp(X) =
l∪

j=1

supp(Xj)

which means the support of X is equal to the union of the supports of all columns of

X . This general scenario is also considered in [47] and [89]. Following the proofs for

Theorems 5 and 6, one can readily see that the two theorems still hold in this case.

It is worthwhile to note that having more measurement vectors does not nec-

essarily result in performance improvement. To illustrate this point, we construct a

simple example. Let W (1) = [0.1, 5]ᵀ, W (2) =

[ 0.1 0

5 6

]
, and σ2

a

σ2
z
= 10. As a result,

c(W (1)) = c(W (2)) = 1
2
log 1.1. This means that the performance limits for these two

setups are the same. Intuitively, by inspecting the definition of c(W ), it can be seen

that if a submatrix composed of certain rows of W is ill-conditioned, the minimization

inside c(W ) may likely be determined by that submatrix. Hence, for an extra measure-

ment vector to benefit support recovery, this measurement vector should correspond to a

column ofW whose presence improves the small eigenvalues of the previous worst-case

submatrix that causes the performance bottleneck. The observations are reminiscent of

some of the intuition developed in space time wireless communication systems [95].

The l receivers can be viewed an a l antenna receiver and it is known that the rank of the

channel matrix plays an important role in the high SNR case. The correlation between

the channel gains is not as harmful in this context. The gains of having multiple receive
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antennas is lower at low SNR.

2.5.5 Relation to Performance Limit of Multivariate Group Lasso

We compare our performance limits to the performance limits of the multivariate

group Lasso algorithm [89]. Our goal is to understand the potential gap between the

performance of a practical algorithm and the fundamental performance limit, and to

suggest improvement in algorithm design.

We note that the model employed in [89] is similar to the model assumptions un-

derlying the measurement model (2.2). Sufficient and necessary conditions are derived

therein for multivariate group Lasso to successfully recover the support of the signal

in the presence of noise, as m, n, and k grow to infinity in certain manner.6 This is

different from our assumption that k is fixed. Although a direct comparison seems diffi-

cult, we provide the following intuitive discussion. Note that Example 1 in [89, Section

2.3] considered the case for identical regression, which means the nonzero signal ma-

trix W has identical columns. The conclusion therein is that multivariate group Lasso

offered no performance improvement under the MMV formulation compared with us-

ing ordinary Lasso on an alternative SMV formulation with each measurement vector.

However, our Corollary 3 indicates that the effect of having l identical columns in W

is equivalent to lowering the noise level by a factor of l.7 The different performances

6Note that in the preprint version [89], it is stated, at the end of its Section 3.3, that the requirement
on k growing to infinity can be removed. The remark therein provided an alternative probability upper
bound for the intermediate term T1 such that this bound can drop to zero even for a fixed k. However,
it seems that the other intermediate term T2 still relies on a probability upper bound that involves a term
scaling as exp(−k

2 ), which requires an increasing k to drive it to zero.
7Note that this noise scaling behavior can be achieved by practical algorithms. As a simple example,
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indicated by multivariate group Lasso and the information theoretic analysis lead to the

following observation. In general, if the sparse signal possesses strong structural prop-

erty, an algorithm needs to take advantage of this characteristic to achieve performance

improvement. As an example, AR-SBL [138] is developed based on the assumption that

the columns of W are drawn from an auto-regressive process, and it explicitly attempts

to learn this correlation structure. Based on the experimental study presented in [138],

notable performance improvement in support recovery was observed when such corre-

lation is present at different degrees, including the case where the columns of W were

almost identical.

2.6 Random Nonzero Entries

We have discussed the performance limits of support recovery of sparse signals

in the scenario where the signal value matrix W is fixed. In this section, we extend our

discussion to the case where W is randomly generated according to certain probability

distribution. For simplicity, we consider the SMV case, i.e., l = 1. The notation follows

Section 2.4, except W is used to denote the random column vector of nonzero signal

values.

Interestingly, the model (2.2) (for l = 1) with this new assumption can now be

one can average over all measurements to obtain Yavg = 1
l

∑l
i=1 Yi. We solve a SMV problem based

on A and Yavg. Then, we treat the support of the solution as the set of indices of the nonzero rows for the
signal matrix in the original MMV problem. This algorithm will outperform the multivariate group lasso
in the case for identical regression, but not necessarily in other cases.
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contrasted to a MAC with random channel gains

Yi = H1X1,i +H2X2,i + · · ·+HkXk,i + Zi, i ∈ [n]. (2.26)

The difference between (2.26) and (2.4) with l = 1 is that the channel gains Hi are

random variables in this case. Specifically, in order to contrast the problem of support

recovery of sparse signals, Hi should be considered as being realized once and then

kept fixed during the entire channel use. This channel model is usually termed as a slow

fading channel [118].

The following theorem states the performance limit of support recovery of sparse

signals with random signal activities.

Theorem 7. Suppose W has bounded support, and lim supm→∞
logm
nm

= r. Then, there

exists a sequence of support recovery maps {d(m)}∞m=k, d(m) : Rnm 7→ 2[m], such that

lim sup
m→∞

P{d(m)(A(m)X(W,S) + Z) ̸= supp(X)} ≤ P{c(W) ≤ r}

where c(W) is defined as in (2.7).
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Proof. Note that

lim sup
m→∞

P{d(m)(A(m)X(W,S) + Z) ̸= supp(X)}

= lim sup
m→∞

∫
w

P{d(m)(A(m)X(w,S) + Z) ̸= supp(X)} · dF (w)

= lim sup
m→∞

∫
w:c(w)>r

P{d(m)(A(m)X+ Z) ̸= supp(X)} · dF (w)

+ lim sup
m→∞

∫
w:c(w)≤r

P{d(m)(A(m)X+ Z) ̸= supp(X)} · dF (w)

≤
∫
w:c(w)>r

lim sup
m→∞

P{d(m)(A(m)X+ Z) ̸= supp(X)} · dF (w) +

∫
w:c(w)≤r

dF (w)

(2.27)

≤ P{c(W) ≤ r} (2.28)

where (2.27) follows from Fatou’s lemma [102] and (2.28) follows by applying the proof

of Theorem 1 to the integrand.

Theorem 7 implies that generally, rather than having a diminishing error proba-

bility, we have to tolerate certain error probability which is upper-bounded by P(c(W) ≤

r), when the nonzero values are randomly generated. Conversely, in order to design

a system with probability of success at least (1 − p), one can find r that satisfies

P(c(W) ≤ r) ≤ p. Note that P{c(W) ≤ r} can be viewed as the outage probability of

a slow fading MAC given the target rate r of each sender [118]. Thus, P{c(W) ≤ r}

represents the probability that the channel gains are realized too poorly to support the

target rate.
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Note that similar results can also be derived for the MMV case. We would not

pursue this direction in detail here.
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2.8 Appendices

2.8.1 Proof of Theorem 1

The proof of Theorem 1 employs the distance decoding technique [76]. Let A(m)
j

denote the jth column of A(m).

For simplicity of exposition, we describe the support recovery procedure for two

distinct cases on the number of nonzero entries.

Case 1: k = 1. In this case, the signal of interest is X = X(w1, S1). Consider

the following support recovery procedures. Fix ϵ > 0. First form an estimate ρ̂ of |w1|

as

ρ̂ ,

√√√√∣∣∣ 1
nm

∥Y∥22 − σ2
z

∣∣∣
σ2
a

. (2.29)

Declare that ŝ1 ∈ [m] is the estimated location for the nonzero entry, i.e., d(m)(Y) =

{ŝ1}, if it is the unique index such that

1

nm

∥Y − (−1)qρ̂A
(m)
ŝ1

∥22 ≤ σ2
z + ϵ2σ2

a (2.30)

for either q = 1 or q = 2. If there is none or more than one, pick an arbitrary index.

We now analyze the average probability of error

P(E) = P{d(m)(Y) ̸= {S1}}
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where the expectation is taken with respect to the random measurement matrix A(m).

Due to the symmetry in the problem and the measurement matrix generation, we assume

without loss of generality S1 = 1, that is,

Y = w1A
(m)
1 + Z

for some w1. In the following analysis, we drop superscripts and subscripts on m for

notational simplicity when no ambiguity arises. Define the events for s ∈ [m]

Es ,
{
∃q ∈ {1, 2} such that

1

n
∥Y − (−1)qρ̂As∥22 ≤ σ2

z + ϵ2σ2
a

}
.

Then

P(E) ≤ P (Ec
1 ∪ (∪m

s=2Es)) . (2.31)

Let

Eaux , {ρ̂− |w1| ∈ (−ϵ, ϵ)} ∩
{
1

n
∥Y∥22 − [w2

1σ
2
a + σ2

z ] ∈ (−ϵ, ϵ)
}
.

Then, by the union of events bound and the fact that Ac ∪ B = Ac ∪ (B ∩ A),

P(E) ≤ P(Ec
aux) + P(Ec

1) +
m∑
s=2

P(Es ∩ Eaux). (2.32)
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We bound each term in (2.32). First, by the weak law of large numbers (LLN),

limm→∞ P(Ec
aux) = 0. Next, we consider P(Ec

1). If w1 > 0,

1

n
∥Y − ρ̂A1∥22 =

1

n
∥w1A1 + Z− ρ̂A1∥22

= (w1 − Ŵ )2
∥A1∥22
n

+ 2(w1 − Ŵ )
Aᵀ

1Z

n
+

∥Z∥22
n

. (2.33)

For any ϵ1 > 0, as m→ ∞, by the LLN,

P

(
{w1 − ρ̂ ∈ (−ϵ1, ϵ1)} ∩

{
∥A1∥22
n

− σ2
a ∈ (−ϵ1, ϵ1)

})
→ 1.

Hence, we have for the first term in (2.33)

P

(
(w1 − ρ̂)2

∥A1∥22
n

∈ [0, ϵ21σ
2
a + ϵ31)

)
→ 1.

Following a similar reasoning using LLN, for the second term in (2.33),

P

(
(w1 − ρ̂)

Aᵀ
1Z

n
∈ (−ϵ21, ϵ21)

)
→ 1

and for the third term,

P

(
∥Z∥22
n

∈ (σ2
z − ϵ1, σ

2
z + ϵ1)

)
→ 1.
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Therefore, for any ϵ1 > 0,

lim
m→∞

P

(
1

n
∥Y − ρ̂A1∥22 ∈ (σ2

z − ϵ1, σ
2
z + ϵ1)

)
= 1

which implies that

lim
m→∞

P

(
1

n
∥Y − ρ̂A1∥22 ≤ σ2

z + ϵ2σ2
a

)
= 1.

Similarly, if w1 < 0,

lim
m→∞

P

(
1

n
∥Y + ρ̂A1∥22 ≤ σ2

z + ϵ2σ2
a

)
= 1.

Hence, limm→∞ P(Ec
1) = 0.

For the third term in (2.32), we need the following lemma, whose proof is pre-

sented at the end of this appendix:

Lemma 1. Let 0 < β < α. Let {ui}ni=1 be a real sequence satisfying

1

n

n∑
i=1

u2i ∈ (α− β, α + β).

Let {Vi}ni=1 be an i.i.d. random sequence where Vi ∼ N (0, σ2
v). Then, for any γ ∈

(0, α− β),

P

(
1

n

n∑
i=1

(ui − Vi)
2 ≤ γ

)
≤ 2−

n
2
log(α−β

γ ).
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Continuing the proof of Theorem 1, we consider P(Es ∩ Eaux) for s ̸= 1. Then

P(Es ∩ Eaux) ≤ P(Es|Eaux) =

∫
y∈Eaux

P(Es|{Y = y} ∩ Eaux)f(y|Eaux)dy.

Since As is independent of Y and ρ̂, it follows from the definition of Eaux and Lemma 1

(with α = w2
1σ

2
a + σ2

z and γ = σ2
z + ϵ2σ2

a) that

P

(
1

n
∥Y − (−1)qρ̂As∥22 ≤ σ2

z + ϵ2σ2
a

∣∣∣ {Y = y} ∩ Eaux

)
≤ 2

−n
2
log

(
w2
1σ

2
a+σ2

z−ϵ

σ2
z+ϵ2σ2

a

)

for q = 1, 2, if ϵ is sufficiently small. Thus,

P(Es|{Y = y} ∩ Eaux) ≤ 2 · 2
−n

2
log

(
w2
1σ

2
a+σ2

z−ϵ

σ2
z+ϵ2σ2

a

)

and therefore
m∑
s=2

P(Es ∩ Eaux) ≤ 2m · 2
−n

2
log

(
w2
1σ

2
a+σ2

z−ϵ

σ2
z+ϵ2σ2

a

)

which tends to zero as m→ ∞, if

lim sup
m→∞

logm

nm

<
1

2
log

(
w2

1σ
2
a + σ2

z − ϵ

σ2
z + ϵ2σ2

a

)
. (2.34)

Therefore, by (2.32), the probability of error P(E) tends to zero as m → ∞, if (2.34)

is satisfied. Finally, since ϵ > 0 is chosen arbitrarily, we have the desired proof of

Theorem 1.
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Case 2: k ≥ 2. In this case, the signal of interest is X = X(w,S), where w =

[w1, ..., wk]
ᵀ and S = [S1, ..., Sk]

ᵀ. Consider the following support recovery procedures.

Fix ϵ > 0. First, form an estimate ρ̂ of ∥w∥ as

ρ̂ ,

√∣∣ 1
n
∥Y∥22 − σ2

z

∣∣
σ2
a

. (2.35)

For r, ζ > 0, let Q = Q(r, ζ) be a minimal set of points in Rk satisfying the

following properties:

i) Q ⊆ Bk(r), where Bk(r) is the k-dimensional hypersphere of radius r, i.e.,

Bk(r) , {b : b ∈ Rk, ∥b∥2 = r},

ii) For any b ∈ Bk(r), there exists ŵ ∈ Q such that ∥ŵ − b∥2 ≤ ζ
2
.

The following properties are useful:

Lemma 2. 1)

lim
m→∞

P
(
∃Ŵ ∈ Q(ρ̂, ζ) such that ∥Ŵ −w∥2 < ζ

)
= 1.

2) q(r, ζ) , |Q(r, ζ)| is monotonically non-decreasing in r for fixed ζ .

Lemma 2-1) will be proved at the end of this appendix, whereas Lemma 2-2) is

obvious.

Given ρ̂ and ϵ, fix Q = Q(ρ̂, ϵ). Declare d(Y) = {ŝ1, ŝ2, ..., ŝk} ⊆ [m] is the
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recovered support of the signal, if it is the unique set of indices such that

1

n

∥∥∥∥∥Y −
k∑

j=1

ŴjAŝj

∥∥∥∥∥
2

2

≤ σ2
z + ϵ2σ2

a (2.36)

for some Ŵ ∈ Q. If there is none or more than one such set, pick an arbitrary set of k

indices.

Next, we analyze the average probability of error

P(E) = P{d(m)(Y) ̸= {S1, ..., Sk}}

where the expectation is taken with respect to A. As before, we assume without loss of

generality that Sj = j for j = 1, 2, ..., k, which gives

Y =
k∑

j=1

wjAj + Z

for some w. Define the event

Es1,s2,...,sk ,
{
∃Ŵ ∈ Q and {s′1, s′2, ..., s′k} = {s1, s2, ..., sk}

such that
1

n

∥∥∥∥∥Y −
k∑

j=1

ŴjAs′j

∥∥∥∥∥
2

2

≤ σ2
z + ϵ2σ2

a

}
.
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Then

P(E) = P

Ec
1,2,...,k ∪

 ∪
s1<···<sk:{s1,...,sk}≠[k]

Es1,s2,...,sk


≤ P

(
Ec

aux ∪ Ec
1,2,...,k ∪

( ∪
s1<···<sk:{s1,...,sk}̸=[k]

(Es1,s2,...,sk ∩ Eaux)

))

≤ P(Ec
aux) + P(Ec

1,2,...,k) +
∑

s1<···<sk:{s1,...,sk}̸=[k]

P(Es1,s2,...,sk ∩ Eaux) (2.37)

where in this case

Eaux , {ρ̂− ∥w∥2 ∈ (−ϵ, ϵ)}

∩

(
k∩

j=1

{
1

n
∥Aj∥22 − σ2

a ∈ (−ϵ, ϵ)
})

∩

(
k∩

j=1

k∩
l=j+1

{
1

n
Aᵀ

jAl ∈ (−ϵ, ϵ)
})

∩

(
k∩

j=1

{
1

n
Aᵀ

jZ ∈ (−ϵ, ϵ)
})

∩
{
1

n
∥Z∥22 − σ2

z ∈ (−ϵ, ϵ)
}
.

We now bound the terms in (2.37). First, by the LLN, limm→∞ P(Ec
aux) = 0.
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Next, we consider P(Ec
1,2,...,k). Note that, for any Ŵ ∈ Q,

1

n

∥∥∥∥∥Y −
k∑

j=1

ŴjAj

∥∥∥∥∥
2

2

=
1

n

∥∥∥∥∥
k∑

j=1

wjAj + Z−
k∑

j=1

ŴjAj

∥∥∥∥∥
2

2

=
1

n

k∑
j=1

k∑
l=1

(wj − Ŵj)(wl − Ŵl)A
ᵀ
jAl

+
2

n

k∑
j=1

(wj − Ŵj)A
ᵀ
jZ+

1

n
∥Z∥22. (2.38)

By applying the LLN to each term in (2.38), as similarly done in case 1, and using

Lemma 2-1), we have

lim
m→∞

P

∃Ŵ ∈ Q s.t.
1

n

∥∥∥∥∥Y −
k∑

j=1

ŴjAj

∥∥∥∥∥
2

2

≤ σ2
z + ϵ2σ2

a

 = 1

which implies that limm→∞ P(Ec
1,2,...,k) = 0.

Next, we consider P(Es1,s2,...,sk ∩ Eaux) for {s1, s2, ..., sk} ≠ [k]. Note that

P(Es1,s2,...,sk ∩ Eaux)

≤ P(Es1,s2,...,sk |Eaux)

=

∫
· · ·
∫
{a1,...,ak,z}∈Eaux

P(Es1,s2,...,sk |{A1 = a1}∩

· · · ∩ {Ak = ak} ∩ {Z = z} ∩ Eaux)× f(a1, ..., ak, z|Eaux)da1 · · · dakdz. (2.39)

For notational simplicity, define ξ , σ2
z + ϵ2σ2

a, T , {s1, s2, ..., sk} ∩ [k], T c ,

{s1, s2, ..., sk}\T , and Econd , {A1 = a1} ∩ · · · ∩ {Ak = ak} ∩ {Z = z} ∩ Eaux.
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For any permutation (s′1, s
′
2, ..., s

′
k) of {s1, s2, ..., sk} and any Ŵ ∈ Q,

P

(
1

n

∥∥∥∥∥Y −
k∑

j=1

ŴjAs′j

∥∥∥∥∥
2

2

≤ ξ

∣∣∣∣Econd

)

= P

(
1

n

∥∥∥∥∥
k∑

j=1

wjAj + Z−
k∑

j=1

ŴjAs′j

∥∥∥∥∥
2

2

≤ ξ

∣∣∣∣Econd

)

= P

(
1

n

∥∥∥∥∥
[

k∑
j=1

wjAj −
∑
s′j∈T

ŴjAs′j
+ Z

]
−
∑
s′j∈T c

ŴjAs′j

∥∥∥∥∥
2

2

≤ ξ

∣∣∣∣Econd

)
. (2.40)

Conditioned on Econd and the chosen Q, 1
n

∥∥∑k
j=1wjAj−

∑
s′j∈T

ŴjAs′j
+Z
∥∥2
2

is a fixed

quantity satisfying

1

n

∥∥∥∥∥
k∑

j=1

wjAj −
∑
s′j∈T

ŴjAs′j
+ Z

∥∥∥∥∥
2

2

∈

([ ∑
j∈[k]\T

w2
j +

∑
s′j∈T

(ws′j
− Ŵj)

2

]
σ2
a + σ2

z − δ1ϵ,

[ ∑
j∈[k]\T

w2
j +

∑
s′j∈T

(ws′j
− Ŵj)

2

]
σ2
a + σ2

z + δ1ϵ

)

for some positive δ1 that depends on w and ϵ only, and is non-decreasing in ϵ. Mean-

while, As′j
is independent of A1, ...,Ak, and Z for s′j ∈ T c. Hence, by Lemma 1

(with α =
(∑

j∈[k]\T w
2
j +

∑
s′j∈T

(ws′j
− Ŵj)

2
)
σ2
a + σ2

z and γ = σ2
z + ϵ2σ2

a), (2.40) is

upper-bounded by

2
−n

2
log

 ∑
j∈[k]\T

w2
j+

∑
s′
j
∈T

(
w
s′
j
−Ŵj

)2σ2
a+σ2

z−δ1ϵ

σ2
z+ϵ2σ2

a ≤ 2
−n

2
log

 ∑
j∈[k]\T

w2
j

σ2
a+σ2

z−δ1ϵ

σ2
z+ϵ2σ2

a .
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Hence, by the union of events bound,

P(Es1,s2,...,sk |Econd)

≤
∑

{s′1,...,s′k}={s1,...,sk}

P

(
∃Ŵ ∈ Q s.t.

1

n

∥∥∥∥∥Y −
k∑

j=1

ŴjAs′j

∥∥∥∥∥
2

2

≤ ξ

∣∣∣∣Econd

)

≤
∑

{s′1,...,s′k}={s1,...,sk}

∑
Ŵ∈Q

P

(
1

n

∥∥∥∥∥Y −
k∑

j=1

ŴjAs′j

∥∥∥∥∥
2

2

≤ ξ

∣∣∣∣Econd

)

≤ k! · |Q| · 2−
n
2
log

 ∑
j∈[k]\T

w2
j

σ2
a+σ2

z−δ1ϵ

σ2
z+ϵ2σ2

a .

Furthermore, conditioned on Eaux, ρ̂ < ∥w∥2 + ϵ and hence |Q| ≤ q(∥w∥2 + ϵ, ϵ) by

Lemma 2-2). Thus,

P(Es1,s2,...,sk ∩ Eaux) ≤ k! · q(∥w∥2 + ϵ, ϵ) · 2−
n
2
log

 ∑
j∈[k]\T

w2
j

σ2
a+σ2

z−δ1ϵ

σ2
z+ϵ2σ2

a . (2.41)

Note that the probability upper-bound (2.41) depends on s1, ..., sk only through T .
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Grouping the
(
m−k
k−|T |

)
events {Es1,s2,...,sk ∩ Eaux} with the same T ,

P(E) ≤ P(Ec
aux) + P(Ec

1,2,...,k) +
∑
T ⊂[k]

(
m− k

k − |T |

)

· k! · q(∥w∥2 + ϵ, ϵ) · 2−
n
2
log

 ∑
j∈[k]\T

w2
j

σ2
a+σ2

z−δ1ϵ

σ2
z+ϵ2σ2

a

≤ P(Ec
aux) + P(Ec

1,2,...,k) + k! · q(∥w∥2 + ϵ, ϵ)

·
∑
T ⊂[k]

2(k−|T |) logm · 2−
n
2
log

 ∑
j∈[k]\T

w2
j

σ2
a+σ2

z−δ1ϵ

σ2
z+ϵ2σ2

a

= P(Ec
aux) + P(Ec

1,2,...,k) + k! · q(∥w∥2 + ϵ, ϵ)

·
∑
T ⊆[k]

2|T | logm · 2−
n
2
log

 ∑
j∈T

w2
j

σ2
a+σ2

z−δ1ϵ

σ2
z+ϵ2σ2

a

which tends to zero as m→ ∞, if

lim sup
m→∞

logm

nm

<
1

2|T |
log

(∑
j∈T

w2
j

)
σ2
a + σ2

z − δ1ϵ

σ2
z + ϵ2σ2

a

(2.42)

for all T ⊆ [k]. Since ϵ > 0 is arbitrarily chosen, the proof of Theorem 1 is complete.

Now, it only remains to prove Lemma 1. For simplicity, let θ ≡ σ2
v . Denote

Sn = 1
n

∑n
i=1(ui − Vi)

2. The moment generating function of Sn is

E[etSn ] = E[e
t
n

∑n
i=1(ui−Vi)

2

] =
n∏

i=1

E[e
t
n
(ui−Vi)

2

]. (2.43)

Note that (ui − Vi)
2/θ is a noncentral χ2 random variable. Its moment generating func-
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tion is given by [74] as E[et(ui−Vi)
2/θ] = exp(

tu2
i /θ

1−2t
)/(1−2t)

1
2 , for t ≤ 1/2. By changing

variable θt/n→ t, we have

E[et(ui−Vi)
2/n] =

e
t
nu2i

1−2θt/n

(1− 2θt/n)
1
2

.

Back to (2.43), we obtain

E[etSn ] =
n∏

i=1

E[e
t
n
(ui−Vi)

2

]

=
n∏

i=1

e
t
nu2i

1−2θt/n

(1− 2θt/n)
1
2

=
e

t
n
∑n

i=1 u2i
1−2θt/n

(1− 2θt/n)
n
2

.

The Chernoff bound implies

P(Sn ≤ γ) ≤ min
s>0

esγ E[e−sSn ]

= min
s>0

esγ
e

− s
n
∑n

i=1 u2i
1+2θs/n

(1 + 2θs/n)
n
2

= min
p<0

e−pγ e
p
n
∑n

i=1 u2i
1−2θp/n

(1− 2θp/n)
n
2

= exp

min
p<0

log e−pγ e
p
n
∑n

i=1 u2i
1−2θp/n

(1− 2θp/n)
n
2




= exp

{
min
p<0

{
−pγ +

p
n

∑n
i=1 u

2
i

1− 2θp/n
− n

2
log (1− 2θp/n)

}}
.



58

Define

f(p) , −pγ +
p
n

∑n
i=1 u

2
i

1− 2θp/n
− n

2
log (1− 2θp/n)

g(λ) , f(nλ) = −nλγ +
λ
∑n

i=1 u
2
i

1− 2θλ
− n

2
log (1− 2θλ).

Clearly, minp<0 f(p) = minλ<0 g(λ). Denote

αs ,
1

n

n∑
i=1

u2i .

Then, let us focus on the minimization problem

min
λ<0

g(λ) = min
λ<0

{
−nλγ +

nλαs

1− 2θλ
− n

2
log (1− 2θλ)

}
= n ·min

λ<0

{
−λγ +

λαs

1− 2θλ
− 1

2
log (1− 2θλ)

}
= −n ·max

λ<0

{
λγ − λαs

1− 2θλ
+

1

2
log (1− 2θλ)

}
︸ ︷︷ ︸

, Λ(αs,θ,γ)

.

It can be shown that the minimizing λ is

λ∗ =
2γ − θ −

√
θ2 + 4αsγ

4θγ
< 0
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and hence

Λ(αs, θ, γ) = λ∗γ − λ∗αs

1− 2λ∗θ
+

1

2
log(1− 2λ∗θ)

=
αs + γ

2θ
− 1

2
− 2αsγ

θ(θ +
√
θ2 + 4αsγ)

+
1

2
log

θ +
√
θ2 + 4αsγ

2γ
.

Next, for fixed αs and γ,

∂Λ(αs, θ, γ)

∂θ
= −αs + γ

2θ2

+

2αsγ

[
θ +

√
θ2 + 4αsγ + θ

(
1 + 2θ

2
√

θ2+4αsγ

)]
θ2(θ +

√
θ2 + 4αsγ)2

+
1

2(θ +
√
θ2 + 4αsγ)

(
1 +

2θ

2
√
θ2 + 4αsγ

)

= −αs + γ

2θ2
+

√
4αsγ + θ2

2θ2
.

For θ > 0, there is only one stationary point θ′ = αs − γ, which is a solution to

∂Λ(αs,θ,γ)
∂θ

= 0. Check the second derivative,

∂2Λ(αs, θ, γ)

∂θ2

∣∣∣∣∣
θ=αs−γ

=
1

2(αs + γ)(αs − γ)
> 0.

This confirms that θ′ = αs − γ is the minimum point of Λ(αs, θ, γ), for θ > 0. Hence,

for fixed αs and γ with γ < αs,

Λ(αs, θ, γ) ≥ Λ(αs, θ
′, γ) =

1

2
log

αs

γ
.



60

As a result,

P(Sn ≤ γ) ≤ exp

{
min
p<0

{
−pγ +

p
n

∑n
i=1 u

2
i

1− 2θp/n
− n

2
(1− 2θp/n)

}}
= exp

{
min
λ<0

g(λ)

}
= exp {−nΛ(αs, θ, γ)}

≤ exp {−nΛ(αs, θ
′, γ)}

= exp

{
−n
2
log

(
αs

γ

)}
≤ exp

{
−n
2
log

(
α− β

γ

)}
.

Hence, by changing the base of logarithm,

P

(
1

n

n∑
i=1

(ui − Vi)
2 ≤ γ

)
≤ 2−

n
2
log(α−β

γ ).

Finally, we verify Lemma 2-1). For any ζ1 > 0, according to LLN,

lim
m→∞

P(|ρ̂− ∥w∥2| ≤ ζ1) = 1.

Note that W0 , ρ̂
∥w∥2w ∈ Bk(Ŵ ). According to the definition of Q(ρ̂, ζ), there
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must exist Ŵ ∈ Q(ρ̂, ζ) such that ∥Ŵ −W0∥2 ≤ ζ
2
. Fundamental geometry implies

∥Ŵ −w∥2 ≤ ∥Ŵ −W0∥2 + ∥W0 −w∥2

≤ ζ

2
+
∣∣ρ̂− ∥w∥2

∣∣.
Hence,

lim
m→∞

P

(
∥Ŵ −w∥2 ≤

ζ

2
+ ζ1

)
= 1.

Choosing ζ1 ∈ (0, ζ/2) completes the proof.

2.8.2 Proof of Theorem 2

The main techniques for the proof of Theorem 2 include Fano’s inequality and

the properties of entropy. It mimics the proof of the converse for the channel coding the-

orem [32] with proper modification. To establish this theorem, we prove the following

equivalent statement:

If there exists a sequence of matrices {A(m)}∞m=k, A(m) ∈ Rnm×m, and a se-

quence of support recovery maps {d(m)}∞m=k, d(m) : Rnm 7→ 2{1,2,...,m}, such that

1

nmm
∥A(m)∥2F ≤ σ2

a (2.44)

and

lim
m→∞

P{d(A(m)X+ Z) ̸= supp(X(w,S))} = 0
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then

lim sup
m→∞

logm

nm

≤ c(w). (2.45)

In the next, we justify this alternative claim. For any T ⊆ [k], denote the tuple

of random variables (Sl : l ∈ T ) by S(T ). From Fano’s inequality [32], we have

H(S(T )|Y) ≤ H(S1, ..., Sk|Y)

≤ log k! +H({S1, ..., Sk}|Y)

≤ log k! + P e(w, A
(m)) log

(
m

k

)
+ 1. (2.46)

For notation simplicity, let P
(m)

e , P{d(A(m)X + Z) ̸= supp(X(w,S)). On the other

hand, by a basic permutation argument,

H(S(T )|S(T c)) = log

|T |−1∏
q=0

(m− (k − |T |)− q)


= |T | logm− nϵ1,n (2.47)

where T c , [k]\T and

ϵ1,n , 1

n
log

m|T |/

|T |−1∏
q=0

(m− (k − |T |)− q)
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which tends to zero as n→ ∞. Hence, combining (2.46) and (2.47), we have

|T | logm = H(S(T )|S(T c)) + nϵ1,n

= I(S(T );Y|S(T c)) +H(S(T )|Y, S(T c)) + nϵ1,n

≤ I(S(T );Y|S(T c)) +H(S(T )|Y) + nϵ1,n (2.48)

≤ I(S(T );Y|S(T c)) + log k! + P
(m)

e log

(
m

k

)
+ 1 + nϵ1,n

=
n∑

i=1

I(Yi;S(T )|Y i−1
1 , S(T c)) + log k! + P

(m)

e log

(
m

k

)

+ 1 + nϵ1,n (2.49)

≤
n∑

i=1

(h(Yi|S(T c))− h(Yi|S1, ..., Sk)) + log k!

+ P
(m)

e log

(
m

k

)
+ 1 + nϵ1,n

=
n∑

i=1

(h(Yi|S(T c))− h(Zi)) + log k! + P
(m)

e log

(
m

k

)

+ 1 + nϵ1,n (2.50)

where (2.48) follows the fact that conditioning reduces entropy, (2.49) follows the chain

rule of mutual information [32], and (2.50) follows since the measurement matrix is

fixed and Zi is independent of (S1, . . . , Sk).
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Consider

h(Yi|S(T c)) = h

(
k∑

j=1

wjai,Sj
+ Zi

∣∣∣S(T c)

)

= h

(∑
j∈T

wjai,Sj
+ Zi

∣∣∣S(T c)

)

≤ h

(∑
j∈T

wjai,Sj
+ Zi

)

≤ 1

2
log

(
2πe · Var

(∑
j∈T

wjai,Sj
+ Zi

))
(2.51)

where the last inequality follows since the Gaussian random variable maximizes the

differential entropy given a variance constraint. To further upper-bound (2.51), note that

Var

(∑
j∈T

wjai,Sj
+ Zi

)
= E

(∑
j∈T

wjai,Sj

)2
− E

[∑
j∈T

wjai,Sj

]2
+ σ2

z .

Now

E

[∑
j∈T

wjai,Sj

]
=
∑
j∈T

wj E[ai,Sj
] =

∑
j∈T

wj ·
1

m

m∑
p=1

ai,p
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and

E

(∑
j∈T

wjai,Sj

)2
 =

∑
j∈T

∑
l∈T

wjwl E[ai,Sj
ai,Sl

]

=
∑
j∈T

∑
l∈T ,l ̸=j

wjwl E[ai,Sj
ai,Sl

] +
∑
j∈T

w2
j E[a

2
i,Sj

]

=
∑
j∈T

∑
l∈T ,l ̸=j

wjwl

m(m− 1)

m∑
p=1

m∑
q=1
q ̸=p

ai,pai,q

+
∑
j∈T

w2
j ·

1

m

m∑
p=1

a2i,p

=
∑
j∈T

∑
l∈T ,l ̸=j

wjwl

m(m− 1)

(
m∑
p=1

ai,p

)2

+
1

m

(∑
j∈T

w2
j − τ(m)

)
m∑
p=1

a2i,p

where τ(m) ,
∑

j∈T
∑

l∈T ,l ̸=j
wjwl

(m−1)
→ 0 as m → ∞. It can be also easily checked

that ∑
j∈T

∑
l∈T ,l ̸=j

wjwl

m(m− 1)
≤

(∑
j∈T

wj

m

)2

and thus

Var

(∑
j∈T

wjai,Sj
+ Zi

)
≤

(∑
j∈T

w2
j − τ(m)

)
1

m

m∑
p=1

a2i,p + σ2
z .
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Returning to (2.102), we have

|T | logm ≤
n∑

i=1

1

2
log

[
2πe

((∑
j∈T

w2
j − τ(m)

)
1

m

m∑
p=1

a2i,p + σ2
z

)]

− n

2
log(2πeσ2

z) + log k! + P
(m)

e log

(
m

k

)
+ 1 + nϵ1,n

≤ n

2
log

[
2πe

((∑
j∈T

w2
j − τ(m)

)
1

nm

n∑
i=1

m∑
p=1

a2i,p + σ2
z

)]

− n

2
log(2πeσ2

z) + log k! + P
(m)

e log

(
m

k

)
+ 1 + nϵ1,n (2.52)

=
n

2
log

((∑
j∈T

w2
j − τ(m)

)
σ2
a

σ2
z

+ 1

)
+ log k!

+ P
(m)

e log

(
m

k

)
+ 1 + nϵ1,n (2.53)

where (2.52) is due to Jensen’s inequality and (2.53) follows from (2.44). Therefore,

lim sup
m→∞

logm

nm

−
log k! + P

(m)

e log
(
m
k

)
+ 1 + nmϵ1,nm

|T |nm

≤ 1

2|T |
log

(
1 +

σ2
a

σ2
z

∑
j∈T

w2
j

)
(2.54)

for all T ⊆ [k]. Due to the fact that log
(
m
k

)
≤ k logm, we have

lim sup
m→∞

(1− kP
(m)

e /|T |) logm
nm

− log k! + nmϵ1,nm + 1

|T |nm

≤ 1

2|T |
log

(
1 +

σ2
a

σ2
z

∑
j∈T

w2
j

)
(2.55)
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for all T ⊆ [k]. Since limm→∞ P
(m)

e = 0, we reach the conclusion

lim sup
m→∞

logm

nm

≤ 1

2|T |
log

(
1 +

σ2
a

σ2
z

∑
j∈T

w2
j

)

for all T ⊆ [k], which completes the proof of Theorem 2.

2.8.3 Proof of Theorem 3

We show that

lim
m→∞

P{d(m)(AX(w(m),S) + Z) ̸= supp(X(w(m),S))} = 0

provided that the condition

lim sup
m→∞

1

nm

max
j∈[km]

6km log km + 2j log me
j

log
(

jw2
minσ

2
a

σ2
z

+ 1
)

 < 1 (2.56)

is satisfied. Note that (2.56) implies that n = max[Ω(k log k),Ω( k
log k

log m
k
)], which in

turn implies that k = o(n).

We follow the proof of Theorem 1 in Appendix 2.8.1. Recall that in case 2 of

the proof of Theorem 1, we first proposed the support recovery rule (2.36). Then, we

formed estimates of the nonzero values, and used them to test all possible sets of k

indices. The key step was to analyze two types of errors. On the one hand, the true

support should satisfy the reconstruction rule (2.36) with high probability. On the other
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hand, the probability that at least one incorrect support possibility satisfies this rule was

controlled to diminish as the problem size increases.

By mainly replicating the steps in Appendix 2.8.1 with necessary accommoda-

tions to the new setting with growing number of nonzero entries, we present the proof

of Theorem 3 as follows.

1. We first modify the support recovery rule by replacing (2.36) with

1

n

∥∥∥∥∥Y −
k∑

j=1

ŴjAŝj

∥∥∥∥∥
2

2

≤ (1 + ϵ)σ2
z + 2ϵ2σ2

a. (2.57)

2. The cardinality q(r, ζ) of a minimal Q(r, ζ) can be upper-bounded by

q(r, ζ) ≤
(
η1kr

ζ

)k

for some η1 > 0. This can be easily shown by first partitioning the k-dimensional

hypercube of side 2r into identical elementary hypercubes with side not exceed-

ing ζ
4k

and then, for each elementary hypercube that intersects the hypersphere,

picking an arbitrary point on the hypersphere within that elementary hypercube.

The resulting set of points provides the upper bound above for q(r, ζ).

3. Define σ2
max and σ2

min to be the largest and smallest eigenvalues of the matrix

1

nσ2
a

[A1, ...,Ak,
σa
σz

Z]ᵀ[A1, ...,Ak,
σa
σz

Z]
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respectively. We replace the definition of Eaux by

Eaux , {ρ̂− ∥w∥2 ∈ (−ϵ, ϵ)}

∩
{
σ2

max ∈ (1− ϵ, 1 + ϵ)
}

∩
{
σ2

min ∈ (1− ϵ, 1 + ϵ)
}
.

Consider the asymptotic behaviors of the events. First, note that

√
1

nσ2
a

∥Y∥22 =

√
∥w∥22σ2

a + σ2
z

nσ2
a

√√√√∥∥∥∥∥ Y√
∥w∥22σ2

a + σ2
z

∥∥∥∥∥
2

2

(2.58)

where

√∥∥∥∥ Y√
∥w∥22σ2

a+σ2
z

∥∥∥∥2
2

is χ-distributed with mean
√
2 Γ((n+1)/2)

Γ(n/2)
and variance(

n− 2Γ2((n+1)/2)
Γ2(n/2)

)
. Then,

√
1

nσ2
a
∥Y∥22 has mean

√
∥w∥22σ2

a+σ2
z

nσ2
a

√
2 Γ((n+1)/2)

Γ(n/2)
and

variance ∥w∥22σ2
a+σ2

z

nσ2
a

(
n− 2Γ2((n+1)/2)

Γ2(n/2)

)
.

It has been shown [22] that

lim
x→∞

xΓ(x)√
x+ 1/4Γ(x+ 1/2)

= 1.

Then, as n → ∞,
√

1
nσ2

a
∥Y∥22 has asymptotic mean

√
∥w∥22σ2

a+σ2
z

σ2
a

and variance

∥w∥22σ2
a+σ2

z

2nσ2
a

. Since k = o(n), we have ∥w∥22σ2
a+σ2

z

2nσ2
a

→ 0. Hence, limm→∞ P{ρ̂ −

∥w∥2 ∈ (−ϵ, ϵ)} = 1.

Second, σ2
max and σ2

min are shown [108] to almost surely converge to (1 + q)2 and

(1−q)2, respectively, where q , limm→∞
√
(k + 1)/n = 0. Thus, limm→∞ P(Ec

aux) =
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0.

4. Next, we analyze the probability that the true support satisfies the recovery rule.

Note that

1

n

∥∥∥∥∥Y −
k∑

j=1

ŴjAj

∥∥∥∥∥
2

2

=
1

n

∥∥∥∥∥
k∑

j=1

wjAj + Z−
k∑

j=1

ŴjAj

∥∥∥∥∥
2

2

=
1

n

∥∥∥∥∥∥∥∥
[
A1, ...,Ak,

σa
σz

Z

] w − Ŵ

σz

σa


∥∥∥∥∥∥∥∥
2

2

≤ σ2
maxσ

2
a

∥∥∥∥∥∥∥∥
 w − Ŵ

σz

σa


∥∥∥∥∥∥∥∥
2

2

= σ2
maxσ

2
a∥w − Ŵ∥22 + σ2

maxσ
2
z . (2.59)

By using the fact that σ2
max → 1 almost surely as n → ∞ and Lemma 2-1), we

have limm→∞ P(Ec
1,2,...,k) = 0.

5. Now, suppose we have proceeded to a step similar to (2.40) (that is, to be exact,

equipped with the modified rule (2.57) and a proper Econd). Define the auxiliary

vector w′ ∈ Rk+1 as

w′
j =


wj if j ∈ [k]\T ,

wj − Ŵi if j = s′i ∈ T ,

σz

σa
if j = k + 1.

(2.60)
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Then,

1

n

∥∥∥∥∥∥
k∑

j=1

wjAj −
∑
s′j∈T

ŴjAs′j
+ Z

∥∥∥∥∥∥
2

2

=
1

n

∥∥∥∥[A1, ...,Ak,
σa
σz

Z

]
w′
∥∥∥∥2
2

≥ (1− ϵ) ∥w′∥22σ2
a

≥ (1− ϵ)

 ∑
j∈[k]\T

w2
j

 σ2
a + σ2

z

 .

From Lemma 1, it follows that (for sufficiently small ϵ)

P

 1

n

∥∥∥∥∥Y −
k∑

j=1

ŴjAs′j

∥∥∥∥∥
2

2

≤ (1 + ϵ)σ2
z + 2ϵ2σ2

a

∣∣∣∣Econd



≤ 2
−n

2
log

(1−ϵ)

 ∑
j∈[k]\T

w2
j

σ2
a+σ2

z


(1+ϵ)σ2

z+2ϵ2σ2
a .

6. Note that, from [121], (
m

k

)
≤
(me
k

)k
.

Together with the modifications above, we follow the proof steps of Theorem 1 to
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reach

P(E) ≤ P(Ec
aux) + P(Ec

1,2,...,k) + k! · q(∥w∥2 + ϵ, ϵ)

·
∑
T ⊆[k]

(
me

|T |

)|T |

· 2−
n
2
log

(1−ϵ)

 ∑
j∈T

w2
j

σ2
a+σ2

z


(1+ϵ)σ2

z+2ϵ2σ2
a

≤ P(Ec
aux) + P(Ec

1,2,...,k) + k! · q(∥w∥2 + ϵ, ϵ)

·
∑
T ⊆[k]

(
me

|T |

)|T |

· 2−
n
2
log

(1−ϵ)(|T |w2
minσ

2
a+σ2

z)
(1+ϵ)σ2

z+2ϵ2σ2
a

≤ P(Ec
aux) + P(Ec

1,2,...,k) + k! · q(∥w∥2 + ϵ, ϵ)

· 2k ·max
j∈[k]

[(
me

j

)j

· 2−
n
2
log

(1−ϵ)(jw2
minσ

2
a+σ2

z)
(1+ϵ)σ2

z+2ϵ2σ2
a

]
. (2.61)

Note that

log

(
k! · q(∥w∥2 + ϵ, ϵ) · 2k ·max

j∈[k]

[(
me

j

)j

· 2−
n
2
log

(1−ϵ)(jw2
minσ

2
a+σ2

z)
(1+ϵ)σ2

z+2ϵ2σ2
a

])

≤ k log k + k log(η1k
2wmax/ϵ) + k

+max
j∈[k]

[
j log

me

j
− n

2
log

(1− ϵ) (jw2
minσ

2
a + σ2

z)

(1 + ϵ)σ2
z + 2ϵ2σ2

a

]
. (2.62)

It can be readily seen that from the condition (2.56), the upper bound in (2.62)

becomes negative and thus P(E) → 0 as m→ ∞.

2.8.4 Proof of Theorem 4

To establish this theorem, we prove the following equivalent statement:
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If there exists a sequence of matrices {A(m)}∞m=k, A(m) ∈ Rnm×m, and a se-

quence of support recovery maps {d(m)}∞m=k, d(m) : Rnm 7→ 2{1,2,...,m}, such that

1

nmm
∥A(m)∥2F ≤ σ2

a

and

lim
m→∞

P{d(m)(A(m)X(w(m),S) + Z) ̸= supp(X(w(m),S))} = 0

then

lim sup
m→∞

2km log(m/km)

nm log
(

2kmw2
maxσ

2
a

σ2
z

+ 1
) ≤ 1.

To justify this alternative claim, we follow the steps for the proof of Theorem 2

in Appendix 2.8.2. Necessary modifications and clarifications are presented as follows.

1. Note that

ϵ1,n =
1

n
log

m|T |/

|T |−1∏
q=0

(m− (k − |T |)− q)

 ≤ |T |
n

log
m

m− k + 1
. (2.63)

2. For any T ⊆ [k], we follow (2.53) in Appendix 2.8.2 to reach

|T | logm− log k!− P
(m)

e log

(
m

k

)
− 1− nϵ1,n

≤ n

2
log

((∑
j∈T

w2
j − τ(m)

)
σ2
a

σ2
z

+ 1

)
. (2.64)
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Note that

∑
j∈T

w2
j − τ(m) ≤

∣∣∣∣∣∑
j∈T

w2
j

∣∣∣∣∣+
∣∣∣∣∣∑
j∈T

∑
l∈T ,l ̸=j

wjwl

(m− 1)

∣∣∣∣∣
≤ |T |w2

max +
|T |(|T | − 1)w2

max

(m− 1)

≤ 2|T |w2
max. (2.65)

Then, it follows from (2.63), (2.64), and (2.65) that the inequality

|T | logm− k log k − P
(m)

e k logm− 1− n · |T |
n

log
m

m− k + 1

≤ n

2
log

(
2|T |w2

max
σ2
a

σ2
z

+ 1

)

must hold for any T ⊆ [k]. By choosing T = [k], we have

lim sup
m→∞

2km

(
log(m− km + 1)− log km − 1

km

)
nm log

(
2kmw2

maxσ
2
a

σ2
z

+ 1
) ≤ 1

which equivalently gives

lim sup
m→∞

2km (logm− log km)

nm log
(

2kmw2
maxσ

2
a

σ2
z

+ 1
) ≤ 1.
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2.8.5 Proof of Theorem 5

For the ease of exposition, we consider two distinct cases on the number of

nonzero rows.

Case 1: k = 1. In this case, the signal of interest is X = X(W,S1), where

W = [w1,1, ..., w1,l]. Fix ϵ > 0. We first form an estimate ρ̂i of |w1,i| for i ∈ [l] as

ρ̂i ,

√
| 1
nm

∥Yi∥22 − σ2
z |

σ2
a

. (2.66)

Declare that ŝ1 ∈ [m] is the estimated index of the nonzero row, i.e., d(m)(Y ) =

{ŝ1}, if it is the unique index such that

1

nl
∥Y −Aŝ1 [(−1)q1 ρ̂1, ..., (−1)ql ρ̂l]∥2F ≤ σ2

z + ϵ2σ2
a (2.67)

for qi = 1 or qi = 2, i ∈ [l]. If there is none or more than one such index, pick an

arbitrary index.

We analyze the average probability of error

P(E) = P{d(m)(Y ) ̸= supp(X(W,S1))}. (2.68)

Due to the symmetry in the problem and the measurement matrix generation, we assume
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without loss of generality S1 = 1, that is,

Y = A
(m)
1 W + Z (2.69)

for some W = [w1,1, ..., w1,l] ∈ R1×l. In the following analysis, we drop superscripts

and subscripts on m for notational simplicity when no ambiguity arises. Define the

events

Es ,
{
∀i ∈ [l],∃qi ∈ {1, 2},

such that
1

nl
∥Y −As[(−1)qi ρ̂1, ..., (−1)ql ρ̂l]∥2F ≤ σ2

z + ϵ2σ2
a

}
, s ∈ [m].

Then,

P(E) ≤ P (Ec
1 ∪ (∪m

s=2Es)) . (2.70)

Let

Eaux ,
{

det
(
1

n
(A1W + Z)ᵀ (A1W + Z)

)
− det

(
σ2
aW

ᵀW + σ2
zI
)
∈ (−ϵ, ϵ)

}
∩

(
l∩

i=1

{ρ̂i − |w1,i| ∈ (−ϵ, ϵ)}

)
.
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Then, by the union of events bound and the fact that Ac ∪ B = Ac ∪ (B ∩ A),

P(E) ≤ P(Ec
aux) + P(Ec

1) +
m∑
s=2

P(Es ∩ Eaux). (2.71)

We bound each term in (2.71). First, by the weak law of large numbers (LLN),

limm→∞ P(Ec
aux) = 0. Next, we consider P(Ec

1). It can be readily seen that, with qi =

(3 + sign(w1,i))/2,

lim
m→∞

P

(
1

nl
∥Y −A1[(−1)q1 ρ̂1, ..., (−1)ql ρ̂l]∥2F ≤ σ2

z + ϵ2σ2
a

)
= 1. (2.72)

Hence, limm→∞ P(Ec
1) = 0.

Next, we consider the third term in (2.71). We need the following lemma, whose

proof is presented at the end of this appendix.

Lemma 3. Let B ∈ Rn×l be a fixed matrix satisfying (
∏l

i=1[
1
n
BᵀB]i,i)

1
l ≡ α > 0. Let

S ⊆ [l] be a fixed set. Let D ∈ Rn×l be a matrix such that, for j ∈ S , Dj ∼ N (0, θjI)

with some θj > 0; for j ∈ [l]\S , Dj ≡ 0. All columns of D are independent. Then, for

any γ ∈ (0, α),

P

(
1

nl
∥B −D∥2F ≤ γ

)
≤ 2

−n
2
log αl

γl . (2.73)
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We continue the proof of Theorem 5. Consider P(Es ∩ Eaux) for s ̸= 1. Note that

P(Es ∩ Eaux) ≤ P(Es|Eaux) =

∫
Y1∈Eaux

P(Es|{Y = Y1} ∩ Eaux)f(Y1|Eaux)dY1.

Let [(−1)q1 ρ̂1, ..., (−1)ql ρ̂l] = UΘV ᵀ denote the singular value decomposition. Since

As is independent of Y and ρ̂i for s ̸= 1, it follows from Lemma 3 that (by treating

B = Y V and D = AsUΘ), for qi = {1, 2}, i ∈ [l] and sufficiently small ϵ,

P

(
1

nl
∥Y −As[(−1)q1 ρ̂1, ..., (−1)ql ρ̂l]∥2F ≤ σ2

z + ϵ2σ2
a

∣∣∣{Y = Y1} ∩ Eaux

)
= P

(
1

nl
∥Y V −AsUΘ∥2F ≤ σ2

z + ϵ2σ2
a

∣∣∣{Y = Y1} ∩ Eaux

)
≤ 2

−n
2
log

∏l
i=1[

1
nV ᵀY ᵀY V ]i,i

(σ2
z+ϵ2σ2

a)l

≤ 2
−n

2
log

det( 1
nV ᵀY ᵀY V )

(σ2
z+ϵ2σ2

a)l (2.74)

≤ 2
−n

2
log

det( 1
nY ᵀY )

(σ2
z+ϵ2σ2

a)l

≤ 2
−n

2
log

(
det(σ2

aWᵀW+σ2
zI)−ϵ

(σ2
z+ϵ2σ2

a)l

)

where (2.74) follows from the Hadamard’s inequality [32]. Thus,

P(Es|{Y = Y1} ∩ Eaux) ≤ 2l · 2
−n

2
log

(
det(σ2

aWᵀW+σ2
zI)−ϵ

(σ2
z+ϵ2σ2

a)l

)

and hence
m∑
s=2

P(Es ∩ Eaux) ≤ 2l ·m · 2
−n

2
log

(
det(σ2

aWᵀW+σ2
zI)−ϵ

(σ2
z+ϵ2σ2

a)l

)
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which tends to zero as m→ ∞, if

lim sup
m→∞

logm

nm

<
1

2
log

(
det (σ2

aW
ᵀW + σ2

zI)− ϵ

(σ2
z + ϵ2σ2

a)
l

)
. (2.75)

Since ϵ > 0 is chosen arbitrarily, we have the desired proof of Theorem 5.

Case 2: k ≥ 2. In this case, the signal of interest is X = X(W,S). Fix ϵ > 0.

First, for i ∈ [l], we form an estimate of ∥wi∥2 as

ρ̂i ,

√
| 1
n
∥Yi∥22 − σ2

z |
σ2
a

. (2.76)

For i ∈ [l], given ρ̂i and ϵ, fix Qi = Qi(ρ̂i, ϵ). Declare d(Y ) = {ŝ1, ..., ŝk} ⊆ [m]

is the recovered set of indices of nonzero rows of W , if it is the unique set of indices

such that

1

nl

∥∥∥Y − [Aŝ1 , ...,Aŝk ]
[
Ŵ1, ...,Ŵl

]∥∥∥2
F
≤ σ2

z + ϵ2σ2
a (2.77)

for some Ŵi ∈ Qi, i ∈ [l]. If there is none or more than one such set, pick an arbitrary

set of k indices.

Next, we analyze the average probability of error

P(E) = P{d(Y ) ̸= X(W,S)}. (2.78)
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Without loss of generality, we assume that Sj = j for j = 1, 2, ..., k, which gives

Y = [A1, ...,Ak]W + Z (2.79)

for some W . Define the event

Es1,s2,...,sk ,
{
∃Ŵi ∈ Qi and {s′1, s′2, ..., s′k} = {s1, s2, ..., sk}

such that
1

nl

∥∥∥Y − [As′1
, ...,As′k

]
[
Ŵ1, ...,Ŵl

]∥∥∥2
F
≤ σ2

z + ϵ2σ2
a

}
.

Define σ2
max and σ2

min to be the largest and smallest eigenvalues of the matrix

1

nσ2
a

[A1, ...,Ak,
σa
σz
Z]ᵀ[A1, ...,Ak,

σa
σz
Z]

respectively. Then

P(E) = P

Ec
1,2,...,k ∪

 ∪
s1<···<sk:{s1,...,sk}≠[k]

Es1,s2,...,sk


≤ P

Ec
aux ∪ Ec

1,2,...,k ∪

 ∪
s1<···<sk:{s1,...,sk}̸=[k]

(Es1,s2,...,sk ∩ Eaux)


≤ P(Ec

aux) + P(Ec
1,2,...,k) +

∑
s1<···<sk:{s1,...,sk}̸=[k]

P(Es1,s2,...,sk ∩ Eaux) (2.80)
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where

Eaux ,

{
σ2

max ∈ (1− ϵ, 1 + ϵ)
}
∩
{
σ2

min ∈ (1− ϵ, 1 + ϵ)
}
∩

(
l∩

i=1

{ρ̂i − ∥wi∥2 ∈ (−ϵ, ϵ)}

)
.

We analyze each term in (2.80). First, note that limm→∞ P(Eaux) = 1 due to LLN

and the properties of the extreme eigenvalues of random matrices [108]. Next, consider

1

nl

∥∥∥Y − [A1, ...,Ak]
[
Ŵ1, ...,Ŵl

]∥∥∥2
F

=
1

nl

∥∥∥[A1, ...,Ak]W + Z − [A1, ...,Ak]
[
Ŵ1, ...,Ŵl

]∥∥∥2
F

=
1

nl

∥∥∥∥∥∥∥∥[A1, ...,Ak,
σa
σz
Z]

 W −
[
Ŵ1, ...,Ŵl

]
σz

σa
Il×l


∥∥∥∥∥∥∥∥
2

F

≤ 1

l
σ2

maxσ
2
a

∥∥∥∥∥∥∥∥
 W −

[
Ŵ1, ...,Ŵl

]
σz

σa
Il×l


∥∥∥∥∥∥∥∥
2

F

= σ2
max

(
σ2
a

l

∥∥∥W −
[
Ŵ1, ...,Ŵl

]∥∥∥2
F
+ σ2

z

)
(2.81)

By using the fact that σ2
max → 1 almost surely as n → ∞ [108] and Lemma 2-1), we

have limm→∞ P(Ec
1,2,...,k) = 0.
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Next, we consider P(Es1,s2,...,sk ∩ Eaux) for {s1, s2, ..., sk} ≠ [k]. Note that

P(Es1,s2,...,sk ∩ Eaux)

≤ P(Es1,s2,...,sk |Eaux)

=

∫
· · ·
∫
{a1,...,ak,Z0}∈Eaux

P(Es1,s2,...,sk |{A1 = a1} ∩ · · · ∩ {Ak = ak} ∩ {Z = Z0}

∩ Eaux)× f(a1, ..., ak, Z0|Eaux)da1 · · · dakdZ0. (2.82)

For notational simplicity, define ξ , σ2
z + ϵ2σ2

a, T , {s1, s2, ..., sk} ∩ [k], T c ,

{s1, s2, ..., sk}\T , and Econd , {A1 = a1} ∩ · · · ∩ {Ak = ak} ∩ {Z = Z0} ∩ Eaux.

For any permutation (s′1, s
′
2, ..., s

′
k) of {s1, s2, ..., sk} and any Ŵi ∈ Qi, i ∈ [l],

P

(
1

nl

∥∥∥Y − [As′1
, ...,As′k

]
[
Ŵ1, ...,Ŵl

]∥∥∥2
F
≤ ξ
∣∣∣Econd

)
= P

(
1

nl

∥∥∥[A1, ...,Ak]W + Z − [As′1
, ...,As′k

]
[
Ŵ1, ...,Ŵl

]∥∥∥2
F
≤ ξ
∣∣∣Econd

)
(2.83)

Define the matrix W ′ ∈ Rk×l as

W ′
j =


W j if j ∈ [k]\T

W j − Ŵi if j = s′i ∈ T
(2.84)



83

where Ŵi denotes the ith row of the matrix
[
Ŵ1, ...,Ŵl

]
. Define W̃ ′ ∈ Rk×l as

W̃
′
j =


Ŵj if s′j /∈ T

0 if s′j ∈ T
(2.85)

where 0 is a zero row vector of a proper size. Then, continue from (2.83), we have

P

(
1

nl

∥∥∥Y − [As′1
, ...,As′k

]
[
Ŵ1, ...,Ŵl

]∥∥∥2
F
≤ ξ
∣∣∣Econd

)

= P

 1

nl

∥∥∥∥∥∥∥∥[A1, ...,Ak,
σa
σz
Z]

 W ′

σz

σa
I

− [As′1
, ...,As′k

]W̃ ′

∥∥∥∥∥∥∥∥
2

F

≤ ξ
∣∣∣Econd



≡ P

 1

nl

∥∥∥∥∥∥∥∥[A1, ...,Ak,
σa
σz
Z]

 W ′

σz

σa
I

− ÃW̃ ′
1

∥∥∥∥∥∥∥∥
2

F

≤ ξ
∣∣∣Econd

 (2.86)

= P

 1

nl

∥∥∥∥∥∥∥∥[A1, ...,Ak,
σa
σz
Z]

 W ′

σz

σa
I

V − ÃUΘ

∥∥∥∥∥∥∥∥
2

F

≤ ξ
∣∣∣Econd

 (2.87)

where in (2.86) W̃ ′
1 denotes matrix formed by removing the zero rows in W̃ ′, and Ã

denotes the matrix by removing columns of [As′1
, ...,As′k

] indexed by the indices of the

zero rows of W̃ ′. By construction, Ã is independent of A1, ...,Ak. To reach (2.87), let

W̃ ′
1 = UΘV ᵀ denote the singular value decomposition. The follow lemma, the proof of

which is presented at the end of this section, is useful.

Lemma 4. Let B ∈ Rp×q, D ∈ Rq×r. Let σ2
b denote the smallest eigenvalue of BᵀB.
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Then

det((BD)ᵀBD) ≥ (σ2
b )

r det(DᵀD).

Let M , [A1, ...,Ak,
σa

σz
Z]

 W ′

σz

σa
I

V . Conditioned on Econd and the chosen Qi

for i ∈ [l], M is fixed. According to Lemma 4,

det

(
1

n
MᵀM

)
≥ ((1− ϵ)σ2

a)
l det


 W ′

σz

σa
I


ᵀ  W ′

σz

σa
I


 . (2.88)

Continue with (2.87). Using Lemma 3 (treating B =M and D = ÃUΘ), we have

P

(
1

nl

∥∥∥Y − [As′1
, ...,As′k

]
[
Ŵ1, ...,Ŵl

]∥∥∥2
F
≤ ξ
∣∣∣Econd

)
≤ 2

−n
2
log

∏l
i=1[

1
nMᵀM ]i,i

(σ2
z+ϵ2σ2

a)l

≤ 2
−n

2
log

det( 1
nMᵀM)

(σ2
z+ϵ2σ2

a)l

≤ 2
−n

2
log

((1−ϵ)σ2
a)

l
det




W ′

σz

σa
I



ᵀ
W ′

σz

σa
I




(σ2

z+ϵ2σ2
a)l

≤ 2
−n

2
log

((1−ϵ)σ2
a)

l
det




W [k]\T

σz

σa
I



ᵀ
W [k]\T

σz

σa
I




(σ2

z+ϵ2σ2
a)l (2.89)

= 2
−n

2
log

((1−ϵ)σ2
a)

l
det

(
W

ᵀ
[k]\T W [k]\T +

σ2
z

σ2
a
I

)
(σ2

z+ϵ2σ2
a)l (2.90)
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where (2.89) uses the fact that

 W ′

σz

σa
I


ᵀ  W ′

σz

σa
I

 =

 W [k]\T

σz

σa
I


ᵀ  W [k]\T

σz

σa
I

+

 W ′
T

O


ᵀ  W ′

T

O


where O denotes the matrix with elements all being zeros, and the fact that [8, Corollary

8.4.15], for positive semidefinite B,D ∈ Rl×l, det(B +D) ≥ det(B). By the union of

events bound,

P(Es1,s2,...,sk |Econd)

≤
∑

{s′1,...,s′k}={s1,...,sk}

P

(
∀i, ∃Ŵi ∈ Qi

such that
1

nl

∥∥∥Y − [As′1
, ...,As′k

]
[
Ŵ1, ...,Ŵl

]∥∥∥2
F
≤ ξ

∣∣∣∣Econd

)

≤
∑

{s′1,...,s′k}={s1,...,sk}

∑
Ŵ1∈Q1

· · ·
∑

Ŵl∈Ql

P

(
1

nl

∥∥∥Y − [As′1
, ...,As′k

]
[
Ŵ1, ...,Ŵl

]∥∥∥2
F
≤ ξ

∣∣∣∣Econd

)

≤ k! ·

(
l∏

i=1

|Qi|

)
· 2−

n
2
log

((1−ϵ)σ2
a)

l
det

(
W

ᵀ
[k]\T W [k]\T +

σ2
z

σ2
a
I

)
(σ2

z+ϵ2σ2
a)l .

Furthermore, conditioned on Eaux, ρ̂i < ∥wi∥2 + ϵ for i ∈ [l] and hence |Qi| ≤
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qi(∥wi∥2 + ϵ, ϵ) by Lemma 2-2). Thus,

P(Es1,s2,...,sk ∩ Eaux) ≤ k! ·

(
l∏

i=1

qi(∥wi∥2 + ϵ, ϵ)

)
· 2−

n
2
log

((1−ϵ)σ2
a)

l
det

(
W

ᵀ
[k]\T W [k]\T +

σ2
z

σ2
a
I

)
(σ2

z+ϵ2σ2
a)l .

(2.91)

Note that the probability upper-bound (2.91) depends on s1, ..., sk only through T .

Grouping the
(
m−k
k−|T |

)
events {Es1,s2,...,sk ∩ Eaux} with the same T ,

P(E) ≤ P(Ec
aux) + P(Ec

1,2,...,k) +
∑
T ⊂[k]

(
m− k

k − |T |

)
· k! ·

(
l∏

i=1

qi(∥wi∥2 + ϵ, ϵ)

)

· 2−
n
2
log

((1−ϵ)σ2
a)

l
det

(
W

ᵀ
[k]\T W [k]\T +

σ2
z

σ2
a
I

)
(σ2

z+ϵ2σ2
a)l

≤ P(Ec
aux) + P(Ec

1,2,...,k) + k! ·

(
l∏

i=1

qi(∥wi∥2 + ϵ, ϵ)

)

·
∑
T ⊂[k]

2(k−|T |) logm · 2−
n
2
log

((1−ϵ)σ2
a)

l
det

(
W

ᵀ
[k]\T W [k]\T +

σ2
z

σ2
a
I

)
(σ2

z+ϵ2σ2
a)l

= P(Ec
aux) + P(Ec

1,2,...,k) + k! ·

(
l∏

i=1

qi(∥wi∥2 + ϵ, ϵ)

)

·
∑
T ⊆[k]

2|T | logm · 2−
n
2
log

((1−ϵ)σ2
a)

l
det

(
W

ᵀ
T WT +

σ2
z

σ2
a
I

)
(σ2

z+ϵ2σ2
a)l

which tends to zero as m→ ∞, if

lim sup
m→∞

logm

nm

<
1

2|T |
log

((1− ϵ)σ2
a)

l
det
(
W ᵀ

TW T + σ2
z

σ2
a
I
)

(σ2
z + ϵ2σ2

a)
l

(2.92)

for all T ⊆ [k]. Since ϵ > 0 is arbitrarily chosen, the proof of Theorem 5 is complete.
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Next, we prove Lemma 3. For j ∈ S , (bi,j −Di,j)
2/θj is a noncentral χ2 random

variable. Its moment generating function is [74] (for t < 1/2)

E[et(bi,j−Di,j)
2/θj ] =

e
tb2i,j/θj

1−2t

(1− 2t)
1
2

.

By changing variable θjt

nl
→ t, we have

E[e
t(bi,j−Di,j)

2

nl ] =
e

t
nl

b2i,j

1−
2θjt

nl

(1− 2θjt

nl
)
1
2

.

For j ∈ [l]\S with Dj ≡ 0, we additionally define θj = 0. In this case,

E[e
t(bi,j−Di,j)

2

nl ] = E[e
tb2i,j
nl ] = e

t
nl

b2i,j =
e

t
nl

b2i,j

1−
2θjt

nl

(1− 2θjt

nl
)
1
2

.

Define

Sn , 1

nl
∥B −D∥2F =

1

l

l∑
j=1

1

n
∥bj −Dj∥22.
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Then, we have

E[etSn ] = E[e
t
nl

∥B−D∥2F ]

= E[e
t
l

∑l
j=1

1
n
∥bj−Dj∥22 ]

=
l∏

j=1

E[e
t
nl

∥bj−Dj∥22 ]

=
l∏

j=1

e

t
nl

∥bj∥
2
2

1−
2θjt

nl

(1− 2θjt

nl
)
n
2

The Chernoff bound indicates that
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P(Sn ≤ γ)

≤ min
s>0

esγ E[e−sSn ]

= min
s>0

esγ
l∏

j=1

e

− s
nl

∥bj∥
2
2

1+
2θjs

nl

(1 +
2θjs

nl
)
n
2

= min
p<0

e−pγ

l∏
j=1

e

p
nl

∥bj∥
2
2

1−
2θjp

nl

(1− 2θjp

nl
)
n
2

= exp

{
min
p<0

{
−pγ +

l∑
j=1

[
p
nl
∥bj∥22

1− 2θjp

nl

− n

2
log

(
1− 2θjp

nl

)]}}

= exp

{
min
p<0

{
−lpγ +

l∑
j=1

[
p
n
∥bj∥22

1− 2θjp

n

− n

2
log

(
1− 2θjp

n

)]}}

= exp

min
p<0

−lpγ −
l∑

j=1

−p
n
∥bj∥22

1− 2θjp

n︸ ︷︷ ︸
>0

−n
2
log

l∏
j=1

(
1− 2θjp

n

)


≤ exp

min
p<0

−lpγ − l

(
l∏

j=1

−p
n
∥bj∥22

1− 2θjp

n

) 1
l

− n

2
log

l∏
j=1

(
1− 2θjp

n

)
 (2.93)

= exp

min
p<0

−lpγ − l

(∏l
j=1

−p
n
∥bj∥22

) 1
l

(∏l
j=1(1−

2θjp

n
)
) 1

l

− nl

2
log

( l∏
j=1

(
1− 2θjp

n

)) 1
l





= exp


min
p<0


−lpγ + lp

(∏l
j=1

1
n
∥bj∥22

) 1
l

(∏l
j=1(1−

2θjp

n
)
) 1

l

− nl

2
log

( l∏
j=1

(
1− 2θjp

n

)) 1
l


︸ ︷︷ ︸

,f(p)




= exp

{
min
p<0

f(p)

}
. (2.94)
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where (2.93) follows from the fact that the arithmetic mean is no smaller than the geo-

metric mean. On the other hand, define the function

g(p, θ) = −lpγ + lp

(∏l
j=1

1
n
∥bj∥22

) 1
l

1− 2θp
n

− nl

2
log

(
1− 2θp

n

)
. (2.95)

Recall that
(∏l

j=1
1
n
∥bj∥22

) 1
l
= α. It can be readily seen that, for a fixed p < 0,

f(p) ≤ max
θ≥0

g(p, θ) (2.96)

which is because there exists θ ≥ 0 such that 1− 2θp
n

=
(∏l

j=1

(
1− 2θjp

n

)) 1
l
. Thus,

min
p<0

f(p) ≤ min
p<0

(
max
θ≥0

g(p, θ)

)
.

Our goal is to show

min
p<0

(
max
θ≥0

g(p, θ)

)
= −nl

2
log

α

γ

which will lead to P(Sn ≤ γ) ≤ exp(−nl
2
log α

γ
) as desired. To this end, we first

consider, for a fixed p,

∂g(p, θ)

∂θ
=
pl(2pα

n
− 2pθ

n
+ 1)

(1− 2θp
n
)2

.

By setting ∂g(p,θ)
∂θ

= 0, we have the only stationary point θ∗ = α + n
2p

. Examine the
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second derivative

∂2g(p, θ)

∂θ2

∣∣∣∣∣
θ=θ∗

=
(1− 2θp

n
)(−2p2l

n
)(2pθ

n
− 4pα

n
− 1)

(1− 2θp
n
)4

∣∣∣∣∣
θ=θ∗

=
(−2p2l

n
)

(2αp
n
)2

< 0.

Due to the constraint θ ≥ 0, we have

max
θ≥0

g(p, θ) =


−plγ − nl

2
− nl

2
log(−2pα

n
) if p ≤ − n

2α
;

pl(α− γ) if − n
2α

≤ p < 0.

Next, we calculate minp<0 (maxθ≥0 g(p, θ)). First,

min
− n

2α
≤p<0

(
max
θ≥0

g(p, θ)

)
= min

− n
2α

≤p<0
pl(α− γ) = −nl

2

(
1− γ

α

)
.

Then, to figure out minp≤− n
2α

(maxθ≥0 g(p, θ)), we compute

∂maxθ>0 g(p, θ)

∂p
=
∂
(
−plγ − nl

2
− nl

2
log(−2pα

n
)
)

∂p
= −lγ − nl

2p
=set 0

which gives the stationary point p∗ = − n
2γ

. Check for the second derivative,

∂2 maxθ≥0 g(p, θ)

∂p2

∣∣∣∣∣
p=p∗

=
nl

2(p∗)2
> 0.
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Therefore, p∗ = − n
2γ
(≤ − n

2α
) is the minimizer. As a result,

min
p≤− n

2α

(
max
θ≥0

g(p, θ)

)
= −plγ − nl

2
− nl

2
log(−2pα

n
)

∣∣∣∣∣
p=p∗

= −nl
2
log

α

γ
.

Overall,

min
p<0

(
max
θ≥0

g(p, θ)

)
= min

(
−nl

2

(
1− γ

α

)
,−nl

2
log

α

γ

)
.

Using the fact that 0 ≤ 1− 1
x
≤ log x for x > 1, we finally have

min
p<0

(
max
θ≥0

g(p, θ)

)
= −nl

2
log

α

γ
.

Therefore,

P(Sn ≤ γ) ≤ exp

{
min
p<0

f(p)

}
≤ min

p<0

(
max
θ≥0

g(p, θ)

)
= 2

−n
2
log

∏l
j=1

1
n ∥bj∥

2
2

γl

= 2
−n

2
log

∏l
j=1 [ 1nBᵀB]j,j

γl .

The remaining task is to prove Lemma 4. Let σ2
b,1 ≥ · · · ≥ σ2

b,q be the q eigenval-

ues of BᵀB, where σ2
b,q = σ2

b . The eigen-decomposition states that there exists a unitary

matrix J ∈ Rq×q, such that BᵀB = JGGJᵀ, where G ∈ Rq×q is a diagonal matrix with
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the ith diagonal element being σb,i. Thus, DᵀBᵀBD = DᵀJGGJᵀD = FT , where

F = DᵀJG and T = F ᵀ. Note that

det((BD)ᵀBD)

= det(FT )

=
∑

1≤j1<···<jr≤q

det


f1,j1 · · · f1,jr

...
...

fr,j1 · · · fr,jr

 det


tj1,1 · · · tj1,r

...
...

tkr,1 · · · tjr,r

 (2.97)

=
∑

1≤j1<···<jr≤q

det


f1,j1 · · · f1,jr

...
...

fr,j1 · · · fr,jr





2

=
∑

1≤j1<···<jr≤q

det




[DᵀJ ]1,j1 · · · [DᵀJ ]1,jr

...
...

[DᵀJ ]r,j1 · · · [DᵀJ ]r,jr

 diag(σb,j1 , ..., σb,jr)





2

≥ (σ2
b )

r
∑

1≤j1<···<jr≤q

det


[DᵀJ ]1,j1 · · · [DᵀJ ]1,jr

...
...

[DᵀJ ]r,j1 · · · [DᵀJ ]r,jr





2

= (σ2
b )

r det(DᵀJᵀJD)

= (σ2
b )

r det(DᵀD)

where (2.97) is due to the Binet-Cauchy formula [42].
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2.8.6 Proof of Theorem 6

To establish this theorem, we prove the following equivalent statement:

If there exist a sequence of matrices {A(m)}∞m=k,A(m) ∈ Rnm×m, and a sequence

of support recovery maps {d(m)}∞m=k, d(m) : Rnm 7→ 2{1,2,...,m}, such that

1

nmm
∥A(m)∥2F ≤ σ2

a

and

lim
m→∞

P{d(m)(A(m)X + Z) ̸= supp(X(W,S))} = 0

then

lim sup
m→∞

logm

nm

≤ c(W ).

For any T ⊆ [k], denote the tuple of random variables (Sl : l ∈ T ) by S(T ). For

notation simplicity, let P
(m)

e , P{d(m)(A(m)X + Z) ̸= supp(X(W,S))}. From Fano’s

inequality [32], we have

H(S(T )|Y ) ≤ H(S1, ..., Sk|Y )

≤ log k! +H({S1, ..., Sk}|Y )

≤ log k! + P e log

(
m

k

)
+ 1. (2.98)
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On the other hand,

H(S(T )|S(T c)) = log

|T |−1∏
q=0

(m− (k − |T |)− q)


= |T | logm− nϵ1,n (2.99)

where T c , [k]\T and

ϵ1,n , 1

n
log

m|T |/

|T |−1∏
q=0

(m− (k − |T |)− q)
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which tends to zero as n→ ∞. Hence, combining (2.98) and (2.99), we have

|T | logm

= H(S(T )|S(T c)) + nϵ1,n

= I(S(T );Y |S(T c)) +H(S(T )|Y, S(T c)) + nϵ1,n

≤ I(S(T );Y |S(T c)) +H(S(T )|Y ) + nϵ1,n (2.100)

≤ I(S(T );Y |S(T c)) + log k! + P
(m)

e log

(
m

k

)
+ 1 + nϵ1,n

=
n∑

i=1

I(Yi;S(T )|Y [i−1], S(T c)) + log k! + P
(m)

e log

(
m

k

)
+ 1 + nϵ1,n

=
n∑

i=1

(
h(Yi|Y [i−1], S(T c))− h(Yi|Y [i−1], S([k]))

)
+ log k! + P

(m)

e log

(
m

k

)

+ 1 + nϵ1,n

≤
n∑

i=1

(h(Yi|S(T c))− h(Yi|S1, ..., Sk)) + log k! + P
(m)

e log

(
m

k

)
+ 1 + nϵ1,n

(2.101)

=
n∑

i=1

(h(Yi|S(T c))− h(Zi)) + log k! + P
(m)

e log

(
m

k

)
+ 1 + nϵ1,n (2.102)

where Y [i−1] denotes the set {Y1, ...,Yi−1}. To explain some intermediate steps, (2.100)

follows from the fact that conditioning reduces entropy, (2.101) holds because Yi is

independent of Y [i−1] when conditioned on S([k]), and (2.102) follows since the mea-

surement matrix is fixed and Zi is independent of (S1, . . . , Sk).
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Consider

h(Yi|S(T c))

= h
(
Ai,S([k])W + Zi

∣∣∣S(T c)
)

= h
(
Ai,S(T )W T + Zi

∣∣∣S(T c)
)

≤ h
(
Ai,S(T )W T + Zi

)
≤ 1

2
log
(
(2πe)l · det

(
E[(Ai,S(T )W T + Zi)

ᵀ(Ai,S(T )W T + Zi)]

−E[Ai,S(T )W T + Zi]
ᵀ E[Ai,S(T )W T + Zi]

))
(2.103)

≤ 1

2
log
(
(2πe)l · det

(
W ᵀ

T

(
E[Aᵀ

i,S(T )Ai,S(T )]− E[Ai,S(T )]
ᵀ E[Ai,S(T )]

)
W T + σ2

zI
))

(2.104)

where (2.103) follows from the fact that with the same covariance the Gaussian ran-

dom vector maximizes the entropy [32], and the randomness in Ai,S(T ) is due to the

randomness of the index set S(T ). Note that

E[Ai,S(T )] =
1

m

m∑
p=1

ai,p1
ᵀ. (2.105)

Meanwhile

E[Aᵀ
i,S(T )Ai,S(T )] =

1

m

m∑
p=1

a2i,pI +
1

m(m− 1)

m∑
p=1

m∑
q=1
q ̸=p

ai,pai,q(1 · 1ᵀ − I). (2.106)



98

Thus

E[Aᵀ
i,S(T )Ai,S(T )]− E[Ai,S(T )]

ᵀ E[Ai,S(T )]

=
1

m

m∑
p=1

a2i,pI +
1

m(m− 1)

m∑
p=1

m∑
q=1
q ̸=p

ai,pai,q(1 · 1ᵀ − I)− 1

m2

(
m∑
p=1

ai,p

)2

1 · 1ᵀ

=
1

m

m∑
p=1

a2i,pI +
1

m(m− 1)

( m∑
p=1

ai,p

)2

−
m∑
p=1

a2i,p

 (1 · 1ᵀ − I)

− 1

m2

(
m∑
p=1

ai,p

)2

1 · 1ᵀ

=
1

m

m∑
p=1

a2i,p

(
I − 1

m− 1
(1 · 1ᵀ − I)

)

+

(
m∑
p=1

ai,p

)2(
1

m(m− 1)
(1 · 1ᵀ − I)− 1

m2
1 · 1ᵀ

)
. (2.107)

Note that 1
m(m−1)

(1·1ᵀ−I)− 1
m21·1ᵀ = 1

m2(m−1)
1·1ᵀ− 1

m(m−1)
I is negative semidefinite

for sufficiently large m, and so is W ᵀ
T

(
1

m2(m−1)
1 · 1ᵀ − 1

m(m−1)
I
)
W T . Hence

det
(
W ᵀ

T

(
E[Aᵀ

i,S(T )Ai,S(T )]− E[Ai,S(T )]
ᵀ E[Ai,S(T )]

)
W T + σ2

zI
)

≤ det

(
1

m

m∑
p=1

a2i,pW
ᵀ
T

(
I − 1

m− 1
(1 · 1ᵀ − I)

)
W T + σ2

zI

)
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as a result of [8, Corollary 8.4.15]. Therefore

|T | logm

≤
n∑

i=1

[
1

2
log

(
(2πe)l · det

(
1

m

m∑
p=1

a2i,pW
ᵀ
T

(
I − 1

m− 1
(1 · 1ᵀ − I)

)
W T + σ2

zI

))

− 1

2
log
(
(2πeσ2

z)
l
) ]

+ log k! + P
(m)

e log

(
m

k

)
+ 1 + nϵ1,n

=
n∑

i=1

1

2
log det

(
1

mσ2
z

m∑
p=1

a2i,pW
ᵀ
T

(
I − 1

m− 1
(1 · 1ᵀ − I)

)
W T + I

)

+ log k! + P
(m)

e log

(
m

k

)
+ 1 + nϵ1,n

≤ n

2
log det

(
1

nmσ2
z

n∑
i=1

m∑
p=1

a2i,pW
ᵀ
T

(
I − 1

m− 1
(1 · 1ᵀ − I)

)
W T + I

)

+ log k! + P
(m)

e log

(
m

k

)
+ 1 + nϵ1,n

≤ n

2
log det

(
σ2
a

σ2
z

W ᵀ
T

(
I − 1

m− 1
(1 · 1ᵀ − I)

)
W T + I

)
+ log k! + P

(m)

e log

(
m

k

)
+ 1 + nϵ1,n

≤ n

2
log det

(
σ2
a

σ2
z

W ᵀ
T

(
I − 1

m− 1
(1 · 1ᵀ − I)

)
W T + I

)
+ log k! + P

(m)

e k logm

+ 1 + nϵ1,n. (2.108)
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Then, we have

lim sup
m→∞

(1− kP
(m)

e /|T |) logm
nm

− log k! + nmϵ1,n + 1

|T |nm

≤ lim sup
m→∞

1

2|T |
log det

(
σ2
a

σ2
z

W ᵀ
T

(
I − 1

m− 1
(1 · 1ᵀ − I)

)
W T + I

)
=

1

2|T |
log det

(
σ2
a

σ2
z

W ᵀ
TW T + I

)
(2.109)

for all T ⊆ [k]. Since limm→∞ P
(m)

e = 0, we reach the conclusion

lim sup
m→∞

logm

nm

≤ 1

2|T |
log det

(
σ2
a

σ2
z

W ᵀ
TW T + I

)
(2.110)

for all T ⊆ [k]. This completes the proof of Theorem 6.

2.8.7 Proof of Corollary 4

To justify this corollary, we need to show

min
T ⊆[k]

[
1

2|T |
log det

(
I +

σ2
a

σ2
z

W T
ᵀW T

)]
= 2 · 1

2k
log

(
1 + k · σ

2
a

σ2
z

)
.

To begin with, recall that k is even, and w2 is defined in (2.24). For a given

T ⊆ [k], let T1 = T ∩ [k
2
], T2 = T \T1, t = |T |, t1 = |T1|, and t2 = |T2|. One can obtain

W T
ᵀW T =

 t t1 − t2

t1 − t2 t

 .
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Let α , σ2
a

σ2
z

for notational simplicity. Thus

1

2|T |
log det (I + αW T

ᵀW T ) =
1

2t
log det

 1 + αt α(t1 − t2)

α(t1 − t2) 1 + αt


=

1

2t
log
(
1 + 2αt+ 4α2t1t2

)
(2.111)

where we use the fact that t = t1 + t2. Note that, for a given t ∈ [k],

min
T :T ⊆[k],|T |=t≤ k

2

1

2t
log
(
1 + 2αt+ 4α2t1t2

)
=

1

2t
log(1 + 2αt) (2.112)

and

min
T :T ⊆[k],|T |=t> k

2

1

2t
log
(
1 + 2αt+ 4α2t1t2

)
=

1

2t
log

(
1 + 2αt+ 4α2k

2

(
t− k

2

))
(2.113)

where we use the implicit constraints t1, t2 ≤ k
2
. Then, the problem becomes evaluating

min
t:t∈[k]

f(t), where f(t) =


1
2t
log(1 + 2αt) if 0 < t ≤ k

2
,

1
2t
log
(
1 + 2αt+ 4α2 k

2

(
t− k

2

))
if k

2
+ 1 ≤ t ≤ k.

(2.114)

First, it can be readily seen that mint:t∈[ k
2
] f(t) =

1
k
log(1 + αk). Next, we consider the
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function

g(t) , log(β1 + β2t)

2t

where β1 , 1− α2k2 and β2 , 2α(1 + αk) for t ∈ [k
2
, k]. Note that8

∂g(t)

∂t
=

1− β1

β1+β2t
− log(β1 + β2t)

t2
. (2.115)

To obtain stationary points, we solve

1− β1
β1 + β2t

+ log
1

β1 + β2t
= 0, t ̸= 0 (2.116)

which is equivalent to

1 + v(t) = β1e
v(t), t ̸= 0 (2.117)

where v(t) , log 1
β1+β2t

. Note that β1 < 1. We will consider three different cases. The

first case is 0 < β1 < 1. By comparing the curves of 1 + v and β1ev as functions of v,

we see that there are two solutions with opposite signs, namely v1 < 0 and v2 > 0, to

(2.117). Note that

g

(
k

2

)
= g(k) =

1

k
log(1 + αk).

8For the purpose of analysis, the base of logarithm is not important, as long as all of them are consis-
tent. Here, we choose natural logarithm to simplify the calculation.
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Meanwhile, v(t) is monotonically decreasing on [k
2
, k], and

v(k) = log
1

(1 + αk)2
< v

(
k

2

)
= log

1

1 + αk
< 0.

Therefore, it is evident that v(k) < v1 < v
(
k
2

)
< v2. Further, it can be readily seen that

∂g(t)

∂t

∣∣∣∣∣
t= k

2

=
1 + v(t)− β1e

v(t)

t2

∣∣∣∣∣
t= k

2

> 0

∂g(t)

∂t

∣∣∣∣∣
t=k

=
1 + v(t)− β1e

v(t)

t2

∣∣∣∣∣
t=k

< 0.

In summary, g(t) is increasing at t = k
2

and decreasing at t = k, it takes the same

value at these two points, and there exists only one stationary point in between. These

observations lead to the conclusion that mint:t∈[k]\[ k
2
] f(t) = f(k) = 1

k
log(1 + αk).

To analyze the cases for β1 = 0 and β1 < 0, we only need to note that there is

only one solution v1 to (2.117). Thus, similar argument applies to these two cases.



Chapter 3

Algorithm Design and Analysis Using

Multiuser Information Theoretic

Perspectives

The previous chapter discussed the usage of multiuser information theory in de-

riving the performance limits of an optimal approach for support recovery of sparse

signals. The results therein indicate the best possible performance that any algorithm

can achieve. In this chapter, we turn our attention to practical algorithms. We demon-

strate that multiuser information theoretic tools can be also applied to motivate and an-

alyze practical algorithms for sparse signal recovery. To this end, we first introduce the

MultiPass algorithmic framework which is inspired by the group detector in multiuser

detection. Under this framework, the MultiPass Lasso and Reweighted MultiPass Lasso

algorithms are studied in detail. Next, we establish a connection between orthogonal

104
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matching pursuit (OMP) and successive interference cancellation. An intuitive crite-

rion for the success of OMP is discussed, and experiments are performed to support the

utility of the analysis.

3.1 Introduction

Here we again consider the estimation of a sparse signal through its linear mea-

surements in the presence of measurement noise, namely based on the model

Y = Ax+N

where x ∈ Rm is the signal of interest, A ∈ Rn×m is the measurement matrix, N ∈ Rn

is the measurement noise, and Y ∈ Rn is the noisy measurement. We assume N ∼

N (0, σ2I). Denote by k the number of nonzero entries in x, i.e., k = |supp(x)|, where

supp(x) denotes the support of x. Then, x is said to be sparse when k ≪ m. Given

the measurement Y and the measurement matrix A, the goal is to reconstruct the sparse

signal x.

Among existing algorithms for reconstructing sparse solutions, one can broadly

classify them into two categories according to their underlying principles. The first class

of algorithms employ a greedy search approach and the locations of the nonzero entries

in x are sequentially determined via a number of iterations. At each iteration, the algo-

rithm finds the columns of A that best correlate with the current residual signal and then
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removes their contributions from the current residual signal to form the new residual

signal for the next iteration. The algorithm terminates employing a stopping criterion

such as the number of iterations or the strength of the residual signal, among others.

Algorithms related to this principle include matching pursuit [82], orthogonal match-

ing pursuit [94], stagewise orthogonal matching pursuit [37], and subspace pursuit [34].

The second class of algorithms involve solving an optimization problem with a carefully

chosen cost function to which the minimizers are considered reasonable estimates of the

sparse signals of interest. As opposed to the class of sequential selection algorithms

above, an algorithm of the second class jointly estimates all the nonzero entries. Ba-

sis pursuit (BP) [24], FOCUSS [60], Lasso [113], and reweighted ℓ1 minimization [20]

are examples of this latter type of joint recovery algorithms. Especially, with important

relevance to our work, the Lasso algorithm solves for

XLasso = arg min
x̃∈Rm

1

2n
∥Y − Ax̃∥22 + λ∥x̃∥1 (3.1)

where λ ≥ 0 is the regularization parameter. Note that (3.1) is convex in nature and can

be solved by many existing convex optimization routines [48, 63, 73].
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3.2 The MultiPass Algorithmic Framework and the Mul-

tiPass Lasso Algorithms

3.2.1 Motivation of the MultiPass Algorithmic Framework

According to the theoretical analysis for basis pursuit and Lasso [14, 81], they

are capable of dealing well with signals with similar nonzero magnitudes but they do

not exploit the variation in the dynamic range of the nonzero magnitudes. Sequential

selection methods perform notably better when such variation in nonzero entries exists,

especially when the nonzero magnitudes form an exponentially decaying profile [52],

but they perform poorly when the magnitudes are similar. Note that practical signals

usually exhibit neither an ideal flat profile nor an ideal exponentially decaying profile.

Instead, we model the nonzero entries as clusters, where each cluster comprises of a

group of nonzero entries with comparable magnitudes, and magnitudes across different

clusters are disparate. This character of practical signals poses a new challenge to the

algorithm design for sparse signal recovery.

According to the information theoretic perspective introduced in Section 2.3, a

nonzero entry can be viewed as a sender and the measurement matrix as the codebook.

A sequential selection method for sparse signal recovery can be viewed as a succes-

sive interference cancellation scheme for multiple user detection, and methods such as

Lasso as joint detection schemes [118]. Inspired by the group detectors [65, 77, 119] in

multiuser communication, we suggest that different clusters be identified in a sequential
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manner whereas the nonzero entries within a cluster be detected jointly. This gives rise

to the MultiPass algorithmic framework, which tries to make the best of both sequential

selection methods and joint recovery methods. Under this framework, a joint recovery

method is applied sequentially over multiple iterations (i.e., passes), and at each iteration

this joint recovery method aims to detect a subset of the support on which the nonzero

entries have similar magnitudes.

To derive a concrete algorithm under the MultiPass algorithmic framework, one

needs to choose a proper joint recovery method for the iterations. Next, let us study a

specific instantiation of this algorithmic framework in detail.

3.2.2 The MultiPass Lasso Algorithm (MPL)

We propose the MultiPass Lasso algorithm, which employs the Lasso algorithm

for each iteration. The reason for this choice is that we are inspired by recent theoretical

analysis of Lasso unveiled in [44, 123]. On one hand, with a larger regularization pa-

rameter λ, in general the solution vector XLasso tends to be sparser. Meanwhile, a larger

λ increases the probability of the support of the reconstructed signal being a subset of

the true support. Based on these facts, the MultiPass Lasso algorithm suitably reflects

the design idea that at each iteration a partial support can be correctly recovered with

high probability so that the union of these sequentially recovered partial supports has a

good chance of being the true support.

The MultiPass Lasso algorithm is described as follows.
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Step 1: Let Y(0) = Y, S(0) = ∅, A(0) = A, and l = 1.

Step 2: At the lth iteration. Choose a regularization parameter λ(l) within the range

[0, 1
n
∥A(l−1)ᵀY(l−1)∥∞). Solve for

X(l) = argmin
x̃

1

2n
∥Y(l−1) − A(l−1)x̃∥22 + λ(l)∥x̃∥1.

Let

S(l) = S(l−1) ∪ supp(X(l)), Y(l) = P⊥
S(l)Y

(l−1), A(l) = P⊥
S(l)A

(l−1)

where P⊥
S , I − AS(A

ᵀ
SAS)

−1Aᵀ
S .

Step 3: If the predefined termination condition is satisfied, output the final estimate of

the sparse signal as XMPL = A†
S(l)Y. Otherwise, set l → l + 1 and go to Step 2.

3.2.3 Observations on MPL

Selection of Regularization Parameter λ(l)

At the lth iteration, MPL solves for a Lasso solution based on the current residual

signal Y(l−1) and the current measurement matrixA(l−1). According to the discussion in

[90], generally, X(l) ̸= 0 if and only if λ(l) ∈ [0, 1
n
∥A(l−1)ᵀY(l−1)∥∞). Meanwhile, based

on the analysis in [44], as λ(l) → 0+, in general more nonzero entries will be included

in X(l). One feasible way in implementation is to use the form λ(l) = γ
n
∥A(l)ᵀY(l)∥∞

with some fixed γ ∈ (0, 1) for all iterations. Our experiences indicate that γ ∈ (0.4, 0.9)

typically gives good results. With larger γ, the solution in each iteration tends to be
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sparser, and generally more iterations will be carried out.

Termination Condition

We propose two possible criteria for algorithm termination, which are inspired

by matching pursuit algorithms [31,82,94]. In the first criterion, we choose some δ > 0

such that the algorithm stops if 1
n
∥Y(l)∥22 ≤ δ. When the measurement noise is absent,

i.e., N = 0, δ can be chosen as a small positive quantity related to machine precision.

When the measurement is noisy, δ should be chosen based on the noise variance σ2.

As the second termination criterion, a threshold smax ∈ N is set, and the algorithm

terminates if |S(l)| ≥ smax.

Update of Measurement Matrix A(l)

The update for A(l) in Step 2 is also employed in Order Recursive Matching

Pursuit [31] for removing the contribution from previously selected columns. Note that

the columns of A(l) indexed by S(l) are actually zero vectors due to the orthogonal

projection P⊥
S(l) . For purpose of implementation, one can use the submatrix of A(l) by

removing all the zero columns and properly re-indexing the remaining columns.

3.2.4 Preliminary Analysis of MPL

Recent theoretical work on Lasso [123] characterizes the probability lower bound

for the event that the support of the recovered signal being a subset of the true support

of the sparse signal. We can leverage the analytical techniques therein with necessary
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modifications to accommodate the dependencies among iterations to demonstrate the

performance improvement enabled by MPL.

For ease of exposition, let us consider a simple but representative scenario, where

the nonzero entries of a sparse signal can only take one of two possible values. Formally,

let Sh,Sl ⊂ [m] satisfying Sh ∩ Sl = ∅, |Sh| = kh, |Sl| = kl. For 0 < xlow ≤ xhigh, the

signal x is given as xi = xhigh if i ∈ Sh; xi = xlow if i ∈ Sl; and xi = 0 otherwise. Sup-

pose the elements of the measurement matrix A is independently generated according

to N (0, 1). Let

λ1 ,
xhigh

8
√

k
n
+
√

128k log(m−k)
n

+
√
18 + 1

λ2 ,
xlow

n
n−k

(
8
(

kl
n−kh

)1/4
+
√
128 + 1

)
+
√
18

.

Fix some δ > σ2. Let ρ > 0 be an arbitrarily small constant. For tractable analysis, we

only employ the first termination criterion discussed above.

For the first iteration of MPL, we choose the regularization parameter as λ(1) =

min(λ1,
1
n
∥AᵀY∥∞) − ρ. If the algorithm proceeds to the second iteration, we choose

λ(2) = min(λ2,
1
n
∥A(1)ᵀY(1)∥∞) − ρ. For any possible further iteration l, we pick an

arbitrary λ(l) ∈ (0, 1
n
∥A(l−1)ᵀY(l−1)∥∞). Then, we can actually compute a lower bound

for P(supp(XMPL) = supp(x)), the derivation of which is presented in Section 3.6.2.

Due to the complex nature of this lower bound, we visualize it as well as the probability

lower bound for support recovery by Lasso [123] in different ways in Figure 3.1 to
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compare the performance guarantees offered by different algorithms.

(a) (b)

Figure 3.1: Comparisons of performance lower bounds for Lasso and MPL. Parameters:
(a) n = 800, σ2 = 1, δ = 3, xhigh = 20, kh = 10, xlow = 10, kl = 5.
(b) n = 800,m = 105, xhigh = αxlow, σ

2 = 1, δ = 3, kh = 10, kl = 5.

First, we examine the impact of m by the simulation in Figure 3.1(a). Note that,

for large m (i.e., more possible locations to monitor), MPL provides better performance

guarantee than Lasso while holding other parameters fixed. Next, we study the impact

of the dynamic range of nonzero magnitudes on the reconstruction performance in Fig-

ure 3.1(b). Note that each point (xlow, α) corresponds to the nonzero signal value pair

(xlow, xhigh) where xhigh = αxlow. The color of a point indicates the difference between

the probability lower bound for MPL and that of Lasso. As we can see, for a given the

noise level, when xlow is relatively small, a nontrivial distance between xhigh and xlow

(i.e., a large dynamic range) enables MPL to enjoy better performance guarantee.

3.2.5 The Reweighted MultiPass Lasso Algorithm (RMPL)

The MPL algorithm enables the opportunity of substituting the Lasso routine in

existing algorithms for obtaining their alternative MPL versions. Inspired by reweighted

ℓ1 minimization [20], we develop the reweighted MultiPass Lasso algorithm as follows.
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Step 1: Set q = 1, w(1)
i = 1 for i ∈ [m]. Choose ϵ > 0, qmax ∈ N.

Step 2: At the qth iteration. Run MultiPass Lasso based on the modified measurement

matrix A · diag((w(q)
i )−1) and the measurement Y, and obtain the output as Z(q). For

i ∈ [m], compute

x
(q)
i = (w

(q)
i )−1z

(q)
i , w

(q+1)
i = (|x(q)i |+ ϵ)−1.

Step 3: If X(q) = X(q−1) or q = qmax, the algorithm terminates. Otherwise, set q → q+1

and go to Step 2.

3.3 Experimental Study

We perform experiments to empirically study the performance of the proposed

MultiPass Lasso algorithms. The common experimental setup is as follows. We set

n = 100 and m = 256. The measurement matrix A has elements i.i.d. according to

N (0, 1). The number of nonzero entries k increases from 9 to 57 with a step size 6,

and the nonzero entries are independently drawn from N (0, 1). Note that the Gaussian

distribution for the nonzero entries is commonly employed in the literature and it leads

to variety in magnitude. Both termination criteria in Section 3.2.3 are employed. We

claim a success in sparse signal recovery if ∥X̂− x∥2/∥x∥2 ≤ τ , where X̂ denotes

the estimated sparse signal by some algorithm, and τ is a pre-defined constant. Each



114

performance curve in this section is averaged over 200 random trials.

3.3.1 MPL: Selection of Regularization Parameter λ(l)

First, we study the selection of the regularization parameter λ(l) in each internal

iteration of MPL. As earlier mentioned, the form λ(l) = γ
n
∥A(l)ᵀY(l)∥∞ with a fixed

γ ∈ (0, 1) for all iterations is employed. We set σ = 0, δ = 10−14, smax = 0.7n,

τ = 10−3, and a zero entry is determined using the threshold 10−7. The MPL algorithm

is implemented using FPC [63]. Figure 3.2 illustrates the behavior of MPL with different

choices of γ.
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Figure 3.2: The role of γ in λ(l) for MPL.

Note that as γ increases, λ(l) increases, and a partial support of the sparse signal

can be detected with higher probability [123]. In Figure 3.2(a), for the cases with more

nonzero entries, i.e., larger k, using larger λ gives slight performance improvement.

Meanwhile, as λ(l) increases, in general fewer nonzero entries appear in the solution

vector X(l) [44]. Hence, the average number of iterations needed for each experiment

increases, leading to higher computational cost. Figure 3.2(b), (c) agree with this anal-

ysis.
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3.3.2 RMPL: Selection of ϵ and qmax

We explore the selection of parameters for RMPL. First, we set qmax = 4, and

focus on the effect of ϵ. For the component MPL, we choose γ = 0.45, smax = 0.95n.

Other parameters are the same as in Section 3.3.1. Figure 3.3(a) shows the result.
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Figure 3.3: Parameter selection for RMPL.

From Figure 3.3(a), we see that RMPL with ϵ = 1 achieves the best performance.

Next, let us fix ϵ = 1, and study the impact of qmax on the performance of the algorithm.

This is illustrated in Figure 3.3(b). Clearly, allowing more reweighted iterations helps

improve the performance at the expense of computational cost.

3.3.3 MPL and RMPL: Selection of smax

Next, we study the role of the parameter smax for MPL and RMPL. We choose

smax = 0.6n, 0.7n, 0.8n, 0.95n, respectively. The experiment setup is the same as in

Sections 3.3.1 and 3.3.2, except we fix γ = 0.6 for MPL, and ϵ = 1 and qmax = 4

for RMPL. The performance metrics are the success rate and the support recovery rate

(using 10−7 to determine zero entry for all final solutions). Figure 3.4 summarizes the
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results.

(a) MPL (b) RMPL

Figure 3.4: The role of smax for MPL and RMPL. In each case, the upper plot shows
support recovery rate, whereas the lower plot shows success rate.

From Figure 3.4(a), we see that the increase of smax can slightly improve the

performance of MPL for the cases with more nonzero entries. This is reasonable in the

following sense. A large smax may allow more indices to be selected, and it is more likely

that supp(x) ⊆ S(l) (assuming l iterations in total). Then, in the noiseless setting, the

final least squares estimation in Step 3 of MPL may set the coefficients very close to zero

on the indices outside the true support. These indices, though selected in S(l), will be

judged as corresponding to zero entries via thresholding. Next, based on Figure 3.4(b),

we can see that the performance of RMPL with different smax are very similar, leading

to the observation that the multiple runs of MPL in RMPL has made the selection of

smax less important. In summary, this set of experiments indicates that the performances

of MPL and RMPL, in terms of support recovery and estimation accuracy, are relatively

insensitive to the selection of smax.
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3.3.4 Comparison with BP, Lasso, and Reweighted ℓ1 Minimization

First, we consider the noiseless scenario, i.e., σ = 0. We compare the per-

formance between BP and MPL, and between reweighted ℓ1 minimization (RL1) and

RMPL. In this case, BP and RL1 are implemented via ℓ1-MAGIC [17]. For MPL,

γ = 0.6. For both RL1 and RMPL, ϵ = 1 and qmax = 10. Other parameters are chosen

the same way as in Sections 3.3.1 and 3.3.2. Figure 3.5(a) summarizes the results. It

can be seen that MPL and RMPL outperform BP and RL1, respectively, in terms of both

rate of success and rate of support recovery (using 10−5 to determine zero entry for all

final solutions).
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Figure 3.5: Sparse signal recovery in different settings. In each case, the upper plot
shows support recovery rate, whereas the lower plot shows success rate.

Next, we consider the noisy setting with σ = 0.01. We compare among Lasso,

RL1, MPL, and RMPL. All algorithms are implemented using the same Lasso routine

[63]. For Lasso, we choose λ = σ
√
(2 logm)/n as suggested in [24, 123]. This choice

of λ is also employed by RL1. For MPL and RMPL, δ = 2.25σ2, and we use 10−4 as the
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threshold for determining zero entries. Meanwhile, τ = 10−2. Other parameters remain

the same as in the noiseless case above. Figure 3.5(b) shows the result. We can see that

MPL outperforms Lasso, and RMPL gives better performance than RL1 in both criteria

(using 10−3 for determining zero entry in all final solutions). This set of experiments

supports the design goal of MPL from which better support recovery is expected. The

effectiveness of the proposed MPL and RMPL in various settings are also illustrated.

3.3.5 Computational Efficiency of MPL and RMPL

We examine the computational efficiency of MPL and RMPL with comparison

to Lasso and RL1, respectively, in the noisy setting. The parameters are chosen the same

as in the noisy case in Section 3.3.4, except that for RL1 and RMPL, we set qmax = 4.

Three different Lasso solvers are employed, namely the Fixed-Point Continu-

ation method (FPC) [63], the Truncated Newton Interior-Point method with Precon-

ditioned Conjugate Gradients (L1LS) [73], and the Basic Gradient Projection method

(GPSR) [48]. With each of the three Lasso solvers, we implement Lasso, RL1, MPL,

and RMPL with the same initialization, termination condition, and precision control to

ensure fair comparison. The computer in use runs MATLAB R2010a in Windows XP

environment. Figure 3.6 summarizes the results.

According to Figure 3.6, the empirical probabilities of success for each algo-

rithm using different Lasso solvers are almost identical. Most implementations of MPL

perform faster than Lasso for a large range of k. Especially, MPL with GPSR imple-

mentation is faster than Lasso for the whole range of k tested here, and it is faster than
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Figure 3.6: Comparison of algorithm efficiency. Each column presents the performance
and the corresponding run time of algorithms implemented via the same Lasso solver
specified in the title. The upper row indicates the empirical probability of success, and
the lower row illustrates the average time consumed per experiment.

other implementations of Lasso as well. Meanwhile, with each optimization solver,

RMPL achieves better performance and lower computational cost than RL1 built upon

the same solver. The GPSR version of RMPL achieves the lowest computational cost

among the tested cases. Overall, MPL and RMPL achieve both better performance and

lower computational cost than their Lasso counterparts, respectively, suggesting their

potential as effective and efficient algorithmic choices for sparse signal recovery.

3.4 Performance Limit of Orthogonal Matching Pursuit

In this section, we demonstrate that the connection between sparse signal recov-

ery and multiuser communication can be also applied to shed light on the performance
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of practical algorithms. Specifically, we discuss the performance limits of the orthogo-

nal matching pursuit algorithm. The analysis in this section is intuitive in nature, which

means that the statements will not be justified by rigorous proof. Experiments will be

presented as evidence to support the utility of the analysis. To begin with, we briefly

review the orthogonal matching pursuit algorithm.

3.4.1 Orthogonal Matching Pursuit (OMP)

Orthogonal matching pursuit [94] is a greedy algorithm that utilizes sequential

forward selection to determine the support of the sparse signal as follows.

Step 1: Let r0 = Y, S0 = ∅, and i = 1.

Step 2: At iteration i, compute

pi = argmax
j∈[m]

∣∣Aᵀ
jri−1

∣∣ .
Let Si = Si−1 ∪ {pi}, and

ri = P⊥
Si
ri−1

where PSi
denotes the orthogonal projection to the subspace spanned by the columns

of A indexed by Si, and P⊥
Si

denotes the orthogonal complement projection of PSi
, i.e.,

P⊥
Si

= I − PSi
.

Step 3: Check if a predefined termination condition is satisfied. If so, output Si

as the estimated support, and X̂OMP = (Aᵀ
Si
ASi

)−1Aᵀ
Si
Y as the values on the support Si.
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Otherwise, let i→ i+ 1, and go to Step 2.

3.4.2 Connection to Successive Interference Cancellation

Successive interference cancellation (SIC) is an effective approach for decoding

in multiuser communication [118]. The basic characters of an SIC scheme are summa-

rized as follows.

1. Decode one sender by treating all other undecoded senders as interferences.

2. Remove the contribution of the previously decoded senders from the received

signal.

3. Iterate over the two steps above until certain stopping criterion is satisfied.

Based on the connection between sparse signal recovery and multiuser commu-

nication discussed in Section 2.3, we realize that OMP can be viewed as an SIC de-

coding scheme. It first chooses a sender whose codeword has the maximum correlation

with the residual signal, and then removes its contribution by projecting the residual

signal onto the orthogonal complement of the space spanned by previously decoded

codewords. This connection provides us with the opportunity to obtain insights into the

performance limit of OMP.

3.4.3 Intuitive Necessary Condition for OMP to Succeed

To shed light on the performance limit of OMP, we employ the criterion for an

SIC scheme to successfully decode all senders. For ease of exposition, we first discuss
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a simple case where only two senders access a MAC, i.e., k = 2, whose capacity region

is depicted in Figure 3.7 (assuming that each sender obeys the power constraint σ2
a and

the Gaussian channel noise has variance σ2
z ).

Figure 3.7: Capacity region of a 2-sender Gaussian MAC.

The capacity region is given by the pentagon OQ2Q3Q4Q5. Note that in rectan-

gular region OQ2Q3Q6, where

R1 ≤
1

2
log

(
1 +

h21σ
2
a

σ2
z + h22σ

2
a

)
(3.2)

R2 ≤
1

2
log

(
1 +

h22σ
2
a

σ2
z

)
(3.3)

sender 1 can be decoded first by treating sender 2 as interference, which in effect leads to

a raised noise level according to (3.2). After removing the decoded sender 1’s informa-

tion from the received signal, (3.3) indicates that sender 2 can be successfully decoded

as if it is the only sender accessing a Gaussian channel. Rate pairs in rectangular region
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OQ1Q4Q5 can be decoded similarly but in the reverse order. The intersectionOQ1Q7Q6

can be decoded in an arbitrary order. However, no successive interference cancellation

scheme can successfully decode both senders when the channel operates in triangular

region Q7Q3Q4, which instead should be decoded by joint decoding methods.

In this example, an ideal SIC scheme should be able to successfully decode both

senders if and only if there exists a sequence {i(1), i(2)}, i(1), i(2) ∈ {1, 2}, such that

Ri(j) ≤
1

2
log

1 +
h2i(j)σ

2
a

2∑
u=j+1

h2i(u)σ
2
a + σ2

z

 , j ∈ {1, 2}. (3.4)

To generalize (3.4) for a k-sender MAC, it can be shown that [118] an ideal

SIC scheme can successfully decode k senders if and only if there exists a sequence

{i(1), i(2), ..., i(k)} such that

Ri(j) ≤
1

2
log

1 +
h2i(j)σ

2
a

σ2
z +

k∑
u=j+1

h2i(u)σ
2
a

 , j ∈ [k]. (3.5)

Consequently, the connection between multiuser communication and sparse sig-

nal recovery discussed in Section 2.3 indicates the following intuitive necessary condi-

tion for OMP. Note that we consider a sequence of support recovery problems where the

sparse signals are generated according to the same nonzero signal vector w.

Let the elements of A be i.i.d. N ∼ (0, σ2
a). If OMP can recover the support

of the sparse signals with probability converging to one as m → ∞, then there exists a
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sequence {w′
(1), · · · , w′

(k)}, where {w′
(1), · · · , w′

(k)} = {w1, ..., wk}, satisfying

logm

n
≤ 1

2
log

1 +
w′

(i)
2

SNR−1 +
k∑

u=i+1

w′
(u)

2

 , i ∈ [k] (3.6)

where SNR , σ2
a/σ

2 for notation simplicity.

Remark. This condition can be conjectured as necessary for support recovery

via OMP due to the facts that (i) OMP may not be an ideal SIC method, and (ii) the

unknown channel gain problem discussed in Section 2.3.3 may exert a negative impact

on the achievable performance.

3.4.4 Observations on the Performance Limit of OMP

Role of the Distribution of Nonzero Magnitudes

Based on (3.6), we realize that the magnitude distribution of nonzero entries may

play an important role in support recovery via OMP. The following two propositions,

which extend the discussion in [131] to the noisy setting, offer some insights.

Proposition 1: If all nonzero entries have equal magnitude, i.e., |wi| = c, i ∈ [k],

for some c > 0, then the ability of OMP to recover the indices of all nonzero entries is

comparable to recovering any one of them at the first iteration.

Proposition 2: If the magnitudes of the nonzero entries form an exponentially

decaying profile, i.e., |wi| = αi−1 with some constant 0 < α < 1, then for any j ∈ [k −

1], there exists α′ such that when α < α′, OMP cannot recover the indices corresponding
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to the j smallest nonzero entries in magnitude.

Large Measurement Matrix

We note that (3.6) can also shed light on the size of the measurement matrix

A that OMP can work with. Especially, asymptotically successful support recovery

is still possible even if m grows at an exponential order of n, i.e., m = Θ(βnR) for

some R > 0, assuming all logarithms are base-β. This phenomenon echoes with the

discoveries obtained via other analysis technique in [116], which stated the possibility

of signal reconstruction using measurement matrices with similar dimensions.

Suboptimality of OMP

The common codebook problem discussed in Section 2.3.3 requires all senders

to work at equal rate. For the case k = 2, this corresponds to OB in Figure 3.7. Because

of its successive nature, OMP may at best work within OA (thick) only. In contrast,

joint recovery methods can, in theory, at best work within OB. This observation echoes

the discussions in [18, 38], which observed that joint recovery methods (specifically, ℓ1

norm minimization) outperformed OMP in challenging settings.

3.4.5 Experiments

We present experiments to offer insights into the performance of OMP. All mea-

surement matrices have elements independently generated according to the same Gaus-

sian distribution, and then every column is normalized to have unit norm. The results
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are averaged over a certain number of random independent trials.

We should point out that, from an information theoretic viewpoint, the analysis

above actually focuses on the limit case where the problem size grows to infinity, i.e.,

m → ∞. In contrary, computer simulations can only deal with problems up to certain

size. Hence, using a simulation study to echo the theoretical analysis seems inadequate.

However, as we shall see, when the problem size is relatively large, the trend of the

performance of OMP, observed over a finite range of problem size, does not contradict

the theoretic analysis.

Relation between SIC Criterion and Performance of OMP

We examine whether the criterion (3.6) exhibits practical guidance on the sup-

port recovery using OMP. Define the events

E = {There exists a sequence of {w′
(1), · · · , w′

(k)} such that (3.6) is satisfied.}

C = {OMP correctly recovers the support of the sparse signal.}

S = {The indices, ordered according to the recovery stages of OMP, form a

sequence satisfying (3.6).}

Figure 3.8(a)-(c) are produced under the setup thatm = 104, k = 7, and n varies

from 40 to 100. Figure 3.8(a) shows the empirical P(C|E). Note that, in this case, the

sparse signals are generated such that (3.6) can be satisfied. The curves indicates that as

n increases, the empirical probability of successful support recovery increases. Figure

3.8(b) shows the empirical P(C|Ec). In this case, the sparse signals are generated such

that (3.6) cannot be satisfied. We note that for the range of n considered in this experi-
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Figure 3.8: Performance of OMP in different scenarios. In (a) (b) (c): m = 104, k = 7.
In (d): n = 100,m = 1000, k = 7, wi = 0.4, i ∈ [k].

ment, the success rate of support recovery are at very low level for all choices of SNR.

Next, Figure 3.8(c) illustrates the empirical P(S|E , C). As we can see from the result,

if OMP correctly recovers the support, it most likely proceeds according to a sequence

satisfying (3.6) when such a sequence exists. Finally, Figure 3.8(d) simulates a smooth

transition from a problem setup for which (3.6) cannot be satisfied to a problem setup

for which (3.6) can be satisfied, which is implemented by increasing SNR while keep-

ing other parameters fixed. The goal is to study the performance evolution of OMP as

condition improves. The vertical dashed line shows the boundary (SNR = 9.2dB) be-

tween the two types of problem setups. As we can see, at low SNR, OMP is very likely

to fail. At high SNR, OMP succeeds in support recovery with very high probability.

Before crossing the boundary, OMP starts to be able to recover the support with in-
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creasing probability. The actual crossing occurs at a problem setup with overwhelming

probability of success.

Support Recovery with Large Measurement Matrices

To echo the discussion in Section 3.4.4 on the size of measurement matrix A

that OMP can work with, we perform the following experiment. By keeping the ratio

(logm)/n fixed while increasing m and n, we examine the empirical P(C|E). Figure

3.9 summarizes the result.
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Figure 3.9: The performance of support recovery of OMP with large measurement
matrices. (m = ⌊20.2n⌋, k = 7)

Note that, in this case, all sparse signals meet (3.6). From Figure 3.9, OMP

seems capable of correctly recovering the support asm and n increase while maintaining

the exponential relationship. Smaller error probability is obtained for larger m and n,

which implies that OMP can yield performance improvement as the problem size grows
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while an exponential relationship between m and n is maintained.

In summary, the intuitive analysis on the performance limit of OMP is supported

by the experiments. It is also worthwhile to realize that similar analysis can also be

applied to the matching pursuit algorithm and its other variants.
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3.6 Appendices

3.6.1 Probability Lower Bound for Lasso

This section presents the probability lower bound for Lasso on support recovery,

which is employed to produce the figures in Section 3.2.4. This lower bound for Lasso is

based on Theorem 3 in [123], with slight modification to accommodate flexible settings,

to offer a probabilistic characterization of the support recovery performance. Define the
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auxiliary function for notation simplicity, for η ∈ (0, 1
2
), λ > 0,

g(η, λ) ,
(
1 + max(η, 8

√
k/n)

) (
k/n+ σ2(n− k)/λ2n2

)
.

Theorem 8 (Modified based on Theorem 3 of [123]). Suppose the elements of the mea-

surement matrix A is independently generated according to N (0, 1). Choose λ > 0.

Let

E1 , {supp(XLasso) ⊆ supp(x)}

E2 , {∥XLasso − x∥∞ ≤ λ(8
√
k/n+

√
128k log(m− k)/n+

√
18 + 1)}.

Then, for η ∈ (0, 1
2
),

P(E1 ∩ E2) ≥ 1− 2(m− k) exp

(
− 1

2g(η, λ)

)
− 2 exp

(
−3(n− k)η2

16

)
− 4 exp

(
−k
2

)
− 2k exp (− log(m− k))− 2k exp

(
−nλ

2

σ2

)
− 2 exp

(
−n
2

)
. (3.7)

Proof Sketch. The proof follows Section V of [123] with mainly the following modifi-

cation. We choose t =
√
18λ (as opposed to t = 20

√
σ2 log k/n in the reference) to

reach a bound similar to (42) of [123]. Thus, (3.7) can be reached via straightforward

derivation parallel to [123] with minor clarifications on some terms.
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Remark 1. This theorem provides a lower bound, for a given choice of λ, on

the probability that the reconstructed support being contained in the true support and

the elementwise maximum distance of the reconstructed signal to the true signal being

upper bounded. For the scenario defined in Section 3.2.4, successful support recovery

is implied by E1 ∩ E2 if we require

λ(8
√
k/n+

√
128k log(m− k)/n+

√
18 + 1) < xlow.

This relation naturally gives the selection of λ for Lasso to maximize this prob-

ability lower bound for support recovery.

Remark 2. Note that Theorem 3 in [123] mainly focuses on the relations among

model parameters for successful signal reconstruction in the asymptotic sense. It states

that P(E1∩E2) ≥ 1−c1 exp(−c2 min(k, log(m−k))) for some constants c1, c2 > 0 with

certain family of λ and implicitly under the scaling n = Ω(k log(m−k)). In contrast, our

modification (3.7) emphasizes the roles of n,m, k in finite settings. Meanwhile, it can

afford a more flexible upper bound for ∥XLasso − x∥∞, in contrast to the original bound

(33) of [123] which may not be smaller than 20
√
σ2 log k/n. Further, we explicitly

work out all the constants to facilitate further comparisons.

The internal free parameter is chosen as η = 0.49 for plotting the figures in

Section 3.2.4.
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3.6.2 Derivation of Probability Lower Bound for MPL

In this section, we derive the probability lower bound for successful support

recovery using MultiPass Lasso in the scenario defined in Section 3.2.4. This lower

bound is then employed to produce the figures in that section.

Define S , supp(x) = Sh ∪ Sl, and the events

G ,
{

supp(X(1)) ⊆ S
}
∩
{
Sh ⊆ supp(X(1))

}
∩
{
λ1 <

1

n
∥AᵀY∥∞

}
∩
{
1

n
∥N∥22 ≤ δ

}
T ,

{
supp(X(2)) ⊆ (S\supp(X(1)))

}
∩
{
(Sl\supp(X(1))) ⊆ supp(X(2))

}
∩
{
λ2 <

1

n
∥A(1)ᵀY(1)∥∞

}
∩
{
1

n
∥Y(1)∥22 > δ

}
.
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According to the total probability rule,

P(supp(XMPL) = S)

≥ P
(
supp(XMPL) = S

∣∣G)P (G)

≥
(
P(supp(XMPL) = S, supp(X(1)) ⊂ S|G)

+P(supp(XMPL) = S, supp(X(1)) = S|G)
)
P(G)

=
(
P(supp(XMPL) = S, supp(X(1)) ⊂ S|G)

+P(supp(X(1)) = S|G)
)
P(G) (3.8)

≥
(
P(supp(XMPL) = S, supp(X(1)) ⊂ S, T |G)

+P(supp(X(1)) = S|G)
)
P(G)

≥
(
P
(
supp(XMPL) = S|T , supp(X(1)) ⊂ S,G

)
·P(T , supp(X(1)) ⊂ S

∣∣G) + P(supp(X(1)) = S|G)
)
P(G)

=
(
P(T , supp(X(1)) ⊂ S

∣∣G) + P(supp(X(1)) = S|G)
)
P(G) (3.9)

where (3.8) follows from

P(supp(XMPL) = S|supp(X(1)) = S,G) = 1

and (3.9) follows from

P(supp(XMPL) = S|T , supp(X(1)) ⊂ S,G) = 1.
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Let 1 denote a vector of all ones with a proper length. Define the following auxiliary

random variable and events, for any fixed set V ⊂ S satisfying Sh ⊆ V ,

QV , P⊥
V (xlowAS\V1+N)

FV ,
{
λ2 <

1

n
∥(P⊥

V A)
ᵀ
QV∥∞

}
HV ,

{
1

n
∥QV∥22 > δ

}
JV ,

{
supp(X(1)) = V

}
.

Thus, using the fact that P(A ∩ B) ≥ P(A)− P(Bc), one can have

P(T , supp(X(1)) ⊂ S
∣∣G)

= P(T , supp(X(1)) ⊂ S,G)/P(G)

=
∑

V:V⊂S,Sh⊆V

P(T ,JV ,G)
P(G)

=
∑

V:V⊂S,Sh⊆V

P(supp(X(2)(QV)) ⊆ S\V ,Sl\V ⊆ supp(X(2)(QV)),FV ,HV ,JV ,G)
P(G)

≥
∑

V:V⊂S,Sh⊆V

P(JV ,G))− P((supp(X(2)(QV)) ⊆ S\V ,Sl\V ⊆ supp(X(2)(QV)),FV ,HV)
c)

P(G)

=
∑

V:V⊂S,Sh⊆V

P(JV |G)−
P((supp(X(2)(QV)) ⊆ S\V ,Sl\V ⊆ supp(X(2)(QV)),FV ,HV)

c)

P(G)

(3.10)
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where supp(X(2)(QV)) indicates that the reconstruction is based on QV , which is a

possible form of Y(1). Due to the facts that
∑

V:V⊂S,Sh⊆V P(JV |G) + P(supp(X(1)) =

S|G) = 1, and that P((A ∩ B)c) ≤ P(Ac) + P(Bc), we have

P(supp(XMPL) = S)

≥[
1−

∑
V:V⊂S,Sh⊆V

P
(
(supp(X(2)(QV)) ⊆ S\V ,Sl\V ⊆ supp(X(2)(QV)),FV ,HV)

c
)

P(G)

]

· P(G)

≥ P(G)−
∑

V:V⊂S,Sh⊆V

[
P
(
(supp(X(2)(QV)) ⊆ S\V ,Sl\V ⊆ supp(X(2)(QV)))

c
)

+P(F c
V) + P(Hc

V)] (3.11)

It remains to work out proper bounds for the terms in (3.11), respectively. First,

we consider P(G), which concerns the behavior in the first iteration of the MultiPass

Lasso algorithm. Note that

P(G) ≥ 1− P
(
∥N∥22/n > δ

)
− P (λ1 ≥ ∥AᵀY∥∞/n)

− P((supp(X(1)) ⊆ S,Sh ⊆ supp(X(1)))c). (3.12)

First, using the Chernoff bound for χ2 random variables as in Lemma 1, we have, for
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δ > σ2,

P
(
∥N∥22/n > δ

)
≤ exp

(
−n · h(σ2, δ)

)
. (3.13)

where h(α, β) , β
2α

− 1
2
+ 1

2
log α

β
.

Next, we choose an arbitrary i ∈ Sh. Then, for any η1, η2 such that (1 +

√
18)−1 < η1 < 1, η2 > 1,

P (λ1 ≥ ∥AᵀY∥∞/n) ≤ P
(
λ1 ≥ ∥AᵀY∥∞/n

∣∣η1 < ∥Ai∥22/n < η2
)

+ P
(
∥Ai∥22/n ≤ η1

)
+ P

(
∥Ai∥22/n ≥ η2

)
.

where Ai denotes the ith column of A. It can be readily seen that

P(∥Ai∥22/n ≤ η1) ≤ exp (−n · h(1, η1))

P(∥Ai∥22/n ≥ η2) ≤ exp (−n · h(1, η2)) .

Due to the fact that

1

n
∥AᵀY∥∞ ≥

∣∣∣∣xhigh

n
∥Ai∥22 +

1

n
Aᵀ

i (xhighASh\{i}1+ xlowASl
1+N)

∣∣∣∣
and the independence among Ai, AS\{i} and N, we employ the tail bound [123, Ap-
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pendix A] to obtain

P

(
λ1 ≥

1

n
∥AᵀY∥∞

∣∣∣Ai, η1 < ∥Ai∥22/n < η2

)
≤ exp

(
−

n(λ1 − xhighη1)
2

2(x2high(kh − 1) + x2lowkl + σ2)η2

)
.

Putting pieces together, one can have

P

(
λ1 ≥

1

n
∥AᵀY∥∞

)
≤ exp

(
−

n(λ1 − xhighη1)
2

2(x2high(kh − 1) + x2lowkl + σ2)η2

)

+ exp (−n · h(1, η1)) + exp (−n · h(1, η2)) . (3.14)

Next, note that, for any µ satisfying 0 < µ < xhigh, the event {supp(X(1)) ⊆ S} ∩

{∥X(1) − x∥∞ ≤ µ} implies the event {supp(X(1)) ⊆ S} ∩ {Sh ⊆ supp(X(1))}. This

observation leads to

P((supp(X(1)) ⊆ S,Sh ⊆ supp(X(1)))c)

≤ P((supp(X(1)) ⊆ S, ∥X(1) − x∥∞ < xhigh)
c)

≤ P((supp(X(1)) * S) + P(∥X(1) − x∥∞ ≥ xhigh). (3.15)

We recognize that the probability bound above belongs to the scenario considered in

Theorem 1 with the choice λ = λ1−ρ. Therefore, P(supp(X(1)) ⊆ S,Sh ⊆ supp(X(1)))

can be lower bounded by the right hand side of (3.7) with the choice λ = λ1 − ρ. Thus

far, we obtained a lower bound for P(G).
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Next, we consider the remaining terms in the brackets of (3.11). From an an-

alytical perspective, these terms seem similar to the terms in (3.12), except that now

the effect of the orthogonal projection P⊥
V after the first iteration must be considered

accordingly. Here, we demonstrate a useful technique to address this issue by working

out one remaining term in (3.11) as an example. Let us focus on P(Hc
V). Let |V| = v.

First, we condition the analysis on AV , which implies the conditioning on P⊥
V . It is easy

to verify that P⊥
V P

⊥
V = P⊥

V and P⊥ᵀ
V = P⊥

V . One can decompose P⊥
V = UᵀU where

U ∈ R(n−v)×n and UUᵀ = I . With these at hand,

1

n
∥QV∥22 =

1

n
∥P⊥

V (xlowAS\V1+N)∥22 =
1

n
∥U(xlowAS\V1+N)∥22 (3.16)

where U(xlowAS\V1+N) ∈ Rn−v and U(xlowAS\V1+N) ∼ N (0, ((k−v)x2low+σ
2)I).

Hence,

P(Hc
V |AV) = P

(
1

n
∥QV∥22 ≤ δ

∣∣∣AV

)
= P

(
1

n− v
∥U(xlowAS\V1+N)∥22 ≤

n

n− v
δ
∣∣∣AV

)
≤ exp

(
− (n− v) · h((k − v)x2low + σ2, nδ/(n− v))

)
. (3.17)

Note that (3.17) is independent of AV (or, P⊥
V ). Therefore, P(Hc

V) can be also upper

bounded by (3.17).

Incorporating the techniques above for dealing with P⊥
V into similar steps we

performed for lower bounding P(G), one should be able to work out the following results
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via straightforward derivations,

P(F c
V) ≤ exp

(
− n(λ2 − xlowη1)

2

2(x2low(k − v − 1) + σ2)η2

)
+ exp

(
− (n− v) · h

(
1, nη1/(n− v)

))
+ exp

(
− (n− v) · h(1, nη2/(n− v))

)
. (3.18)

Next, slightly different approach should be taken to analyze P((supp(X(2)(QV)) ⊆

S\V ,Sl\V ⊆ supp(X(2)(QV)))
c). The reason is that the number of remaining nonzero

entries to recover ranges from 1 to kl, whereas the probability lower bound (3.7) scales

as 1−exp(−min(k, log(m−k))). We need to modify the derivation in order to provide

meaningful results for the worst case v = k − 1 in the summation in (3.11). Therefore,

we choose t = (k/n)1/4 when applying Lemma 9 of [123] (as opposed to t =
√
k/n).

Further, in Appendix G of [123], we instead work with the probability P(9D92 ≥

8(k/n)1/4) ≤ 2 exp(−
√
nk/2), later condition on {9D92 < 8(k/n)1/4}, and continue

the proof therein with the choice t =
√
128 to reach a bound similar to the last inequality

of that section. It can be verified that (λ2−ρ)( n
n−v

(8( k−v
n−v

)1/4+
√
128+1)+

√
18) < xlow

for kh ≤ v < k. With these modifications, one should be able to obtain that, for
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η ∈ (0, 1
2
),

P
(
(supp(X(2)(QV)) ⊆ S\V ,Sl\V ⊆ supp(X(2)(QV)))

c
)

≤ 2(m− k) exp
(
− 1

2g1(v, η, λ2 − ρ)

)
+ 2 exp

(
− 3(n− k)η2

16

)
+ 4 exp

(
−
√

(n− v)(k − v)

2

)
+ 2(k − v) exp

(
−
√
n− v

k − v

)
+ 2(k − v) exp

(
− (n− v)(λ2 − ρ)2

σ2

)
+ 2 exp

(
− n− v

2

)
(3.19)

where g1(v, η, λ) , (1 + max(η, 8( k−v
n−v

)1/4))( k−v
n−v

+ σ2(n−k)
λ2n2 ).

Finally, P(supp(XMPL) = S) can be lower bounded by substituting (3.12) [with

(3.13), (3.14), and (3.15) by replacing λ = λ1 − ρ in (3.7)], (3.17), (3.18), (3.19) into

(3.11). For figures shown in Section 3.2.4, we choose the internal free parameters as

η1 = 0.8, η2 = 1.7, η = 0.49.



Chapter 4

Robust Linear Regression by

Exploiting the Connection to Sparse

Signal Recovery

Starting in this chapter, we focus on novel applications of sparse signal recovery.

The key approach is to identify a sparse component and then reformulate the problem

in such a way that the usefulness of the techniques for sparse signal recovery become

evident. Specifically, this chapter addresses the problem of robust regression. As we

shall see, the outliers in the observations can be viewed as the sparse component, leading

to the opportunity of using Bayesian techniques for sparse signal recovery to design

novel algorithms for robust regression.

141
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4.1 Introduction

Consider the problem of linear regression with the model

yi = aᵀxi + ei, i ∈ [M ] (4.1)

where xi ∈ RL is usually termed as the explanatory variable, yi is the response variable,

a ∈ RL is the regression coefficients, L is the model order, and ei is the measurement

noise in the ith response. Note that model (4.1) can be compactly represented by

y = Xa+ e (4.2)

where X = [x1,x2, ...,xM ]ᵀ, e = [e1, e2, ..., eM ]ᵀ ∈ RM , and y = [y1, y2, ..., yM ]ᵀ ∈

RM . We assume X has full column rank. The goal is to determine the regression co-

efficients a and this is often achieved by using a suitable optimization criterion. This

problem has many applications in science and engineering. An important factor that

makes this problem interesting and challenging is that the response variable y may usu-

ally contain outliers. The popular ordinary Least Squares (LS) is sensitive to outliers

and hence robust regression methods are of interest. Numerous approaches for robust

regression have been developed [64,67,69] with the goal of extracting the model param-

eters reliably in the presence of outliers.
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4.1.1 Background

As a popular technique, ordinary LS estimation determines the model parameters

a by minimizing
∑M

i=1 ẽ
2
i , where ẽi = yi − aᵀxi is the fitting error. This criterion is

sensitive to outliers and hence not robust. Many existing methods for robust regression

follow the idea that one should de-emphasize the impact of data with large deviation in

order to obtain robustness. For example, the method of least absolute value (LAV) [43]

is a well-known representative of this kind. This method minimizes
∑M

i=1 |ẽi|, which can

be equivalently viewed as imposing a Laplacian distribution on the measurement noise

ei. Alternatively, the family ofM -estimates [69] consider flexible weighting schemes on

the fitting error ẽi. The weighting functions used in M -estimates aim to de-emphasize

samples with large deviation, and they can also be related to certain probability densities

imposed on the measurement noise. By assuming the measurement noise ei is drawn

from the Student’s t-distribution [75], the impact of extreme errors is also effectively

downscaled. Further, the model of Gaussian mixtures also has been employed in robust

regression wherein samples of the measurement noise ei are assumed to be i.i.d. and

drawn from a mixture of two Gaussians with one accounting for regular noise and the

other for outliers [56].

In addition, robust procedures that aim to explicitly remove the impact of ex-

treme errors have also been developed. For instance, the method of Least Trimmed

Squares (LTS) [103] employs the optimization criterion that minimizes only a portion

of the squared fitting errors with smallest magnitudes. The essence of this method can
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be viewed as roughly detecting outliers and removing their impact at the data fitting

stage. This idea can be generalized to various outlier diagnosis techniques [103]. For an

extensive survey of previous work on robust regression and outlier detection, interested

readers are referred to [67, 69, 103] and the references therein.

It is interesting to note that the probability distribution underlying various robust

regression methods indeed have counterparts in the context of the sparse signal recov-

ery. The heavy-tailed outlier-tolerating priors imposed on the measurement noise cor-

respond to the sparsity-inducing distributions in sparse signal recovery. The Laplacian

distribution in the LAV method and its use in the corresponding ℓ1-norm minimization

based sparse signal recovery algorithms serves as an excellent example of this kind. As

another example, the LTS method exhibits very similar ingredient to the thresholding

method that is used for finding sparse solutions. Our work examines this connection

more deeply. Intuitively, this connection is made possible by the fact that outliers are

events that occur infrequently, and thus sparse. Next, we start by proposing a two-

component model for the additive noise and reformulate the regression problem such

that the usefulness of sparse recovery methods is evident.

4.2 The Two-Component Model of Measurement Noise

We leverage the fact that outliers occur infrequently and hence are sparse. Un-

fortunately, the linear model (4.1) leaves us little opportunity to take advantage of this

observation, since a single measurement noise term ei deals with both the impact of
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outlier and regular noise. To explicitly make use of the sparsity of outliers, we suggest

an alternative model by splitting ei into two independent additive components, namely

wi and ϵi, as follows,

yi = aᵀxi + wi + ϵi, i ∈ [M ]. (4.3)

The interpretations of xi, yi and a are carried over from (4.1). If a response yi is not

an outlier, then the corresponding wi is assumed to be zero. If yi is an outlier, then wi

can be viewed as the anomalous error in yi such that (yi − wi) appears to be a response

contaminated only by regular noise. The term ϵi, on the other hand, contains the regular

measurement noise in response yi, and it is modeled as i.i.d. zero mean Gaussian noise,

i.e., ϵi ∼ N (0, σ2). Compactly, model (4.3) can be represented by

y = Xa+w + ϵ = [X, I]

 a

w

+ ϵ, (4.4)

where, in addition to (4.2), w = [w1, w2, ..., wM ]ᵀ, and ϵ = [ϵ1, ϵ2, ..., ϵM ]ᵀ. By defini-

tion, w is a sparse vector, which means the number of nonzero entries of w is (much)

smaller than the length of w. As we shall see, this model (4.4) enables the opportunity

to adapt sparse signal recovery methods to robust regression.
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4.3 Sparse Signal Recovery Algorithms for Robust Lin-

ear Regression

Since w is a sparse vector, one can utilize ideas from sparse signal recovery to

develop robust linear regression methods. In this work, we consider Bayesian methods:

MAP techniques and empirical Bayesian methods. For MAP methods, we assume a

super-Gaussian prior for w to encourage sparsity and are discussed next.

4.3.1 Maximum a Posteriori (MAP) Based Robust Regression

To simultaneously estimate the regression coefficients a and the outliers w, we

propose to solve the following optimization problem,

â, ŵ = argmin
a,w

∥y −Xa−w∥22 + λ∥w∥pp, (4.5)

where ∥w∥p =
(∑M

i=1 |wi|p
) 1

p
, 0 < p ≤ 1, and λ is a regularization parameter. This

approach can be viewed as an MAP estimation with a super-Gaussian prior distribution

P (wi) ∝ exp{−λ|wi|p}. It encourages sparse w to be recovered. Another closely

related algorithm could be immediately obtained as follows,

â, ŵ = argmin
a,w

∥w∥p, s.t. ∥y − Xa−w∥2 ≤ ζ, (4.6)

where ζ is a regularization parameter.
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Note that for p = 1 these two algorithms are variants of the sparse signal recov-

ery methods, namely Lasso [113] (or basis pursuit denoising [24]) and ℓ1-regularization

problem [18]. By estimating w, these algorithms determine how each observation is

contaminated. In contrast, the LAV method, which can be obtained by letting ζ → 0 in

(4.6), assumes a Laplacian prior on the total noise and minimizes the sum of ℓ1-norm of

the fitting errors. As a result, it is not able to clarify the underlying mechanism of noise

contamination.

To solve the above optimization problems, (4.5) and (4.6) will become convex

optimization problems when p = 1 and (4.5) will be considered in the simulation study.

Motivated by the analysis in [24, Section 5.2] and our experience, we choose the regu-

larization parameter λ = σ̃
√
2 logM
3

, where σ̃ is a proper estimation of scale.1 Procedures

can be developed for other choices of p [60].

4.3.2 Empirical Bayesian Inference Based Robust Regression

This method adopts the empirical Bayesian approach for robust regression. In

particular, we utilize the sparse Bayesian learning methodology developed in [114,133].

To this end, it is assumed that wi is a random variable with prior distribution wi ∼

N (0, γi), where γi is the hyperparameter that controls the variance of each wi and has

to be learnt. If γi = 0, it means the corresponding wi will be zero, resulting in no

anomalous error being added into observation yi. If γi > 0, an anomalous noise whose

1In the experiments presented in Section 4.4, LAV is employed to obtain σ̃. Other robust techniques
for scale estimation could also be used.
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magnitude depends on γi will contaminate yi, and it results in an outlier in the measure-

ment.

To estimate the regression coefficients, we jointly find

â, γ̂, σ̂2 = arg max
a,γ,σ2

P(y|X, a,γ, σ2), (4.7)

where γ , {γ1, γ2, ..., γM}. Then w can be estimated by the posterior mean, i.e.

ŵ = E[w|X,y, â, γ̂, σ̂2]. (4.8)

Note that the essence of this method is that the robust regression problem is cast

into the framework of sparse Bayesian learning (SBL) with appropriate modifications,

and this is made possible by our proposed two-component noise modeling technique.

The algorithm development, analysis and experimental study of the original SBL for

sparse signal recovery have been extensively discussed in [114, 132, 133]. Interested

readers are referred to these references for more detail. We summarize the extended

SBL based robust regression algorithm, which can be derived using the expectation-

maximization (EM) approach, as follows.2

Step 1: Initialize a(0), σ2
(0) and γi(0) for i = 1, 2, ...,M . Let

Γ(k) , diag(γ1(k) , ..., γM(k)
).

2Inspired by the SBL implementations by authors of [114, 133], we suggest that the hyperparameters
γi(k)

that are smaller than a predefined threshold be pruned from future iterations.



149

Step 2: At iteration k, compute

ŵ(k) = (I + σ2
(k−1)Γ

−1
(k−1))

−1(y −Xa(k−1)) (4.9)

Ŵ(k) = ŵ(k)ŵ
ᵀ
(k) + (σ−2

(k−1)I + Γ−1
(k−1))

−1 (4.10)

γi(k) = [Ŵ(k)]i,i (4.11)

σ2
(k) =

1

M
∥y −Xa(k−1)∥22 +

1

M
tr(Ŵ(k))−

2

M
(y −Xa(k−1))

ᵀŵ(k) (4.12)

a(k) = (XᵀX)−1Xᵀ(y − ŵ(k)). (4.13)

Step 3: Check for convergence. If convergence criterion is not satisfied, go to

Step 2. If it has converged, output a(k) as the regression coefficients.

To provide an interpretation of this algorithm, at each iteration it first estimates

the posterior mean ŵ(k) obtaining the current estimate of the outlier components. Then,

it performs an ordinary LS estimation on the corrected data, i.e. (y − ŵ(k)). It is also

worthwhile to note that this algorithm can be generalized to general robust regression

problems, where the model will be y = f(X, a) +w + ϵ and f is a general functional

relationship assumed on the data. One can similarly derive the updating rule for a(k) as

Find a(k) s.t.
(
y − f(X, a)− ŵ(k)

)ᵀ ∂f(X, a)
∂a

= 0 (4.14)

and use the general function f(X, a) in the algorithm as needed.
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4.4 Experiments

4.4.1 Simulated Data Sets

To study the statistical behavior of the proposed algorithms, we consider the

multiple linear regression problem as follows,

yi =
5∑

k=1

akxk,i + ei, i ∈ [M ] (4.15)

where a = [1, 2,−1.5,−3, 2.5]ᵀ and M = 100. The explanatory variables are in-

dependently generated according to x1,i ∼ U(1, 31), x2,i ∼ U(−200,−150), x3,i ∼

Laplacian(1, 10), x4,i ∼ N (10, 52), x5,i ∼ Poisson(10).

Consider the following two cases. (i) Symmetric outlier distribution. Let us

assume ei ∼ (1 − δ)N (0, 0.12) + δξ, where ξ ∼ N (b, η2), b takes value equally likely

on {−20, 20}, η ∼ U(0, 10), and δ controls the percentage of outlier contamination.

(ii) Asymmetric outlier distribution. We assume ei ∼ (1 − δ)N (0, 0.12) + δξ, where

ξ ∼ N (−20, η2), and η ∼ U(0, 10). For each case, two different levels of outlier

contamination will be considered, namely δ = 5% and δ = 30%.

The MAP based robust regression algorithm (4.5) in Section 4.3.1 (denoted by

Alg1) and the empirical Bayesian inference based algorithm in Section 4.3.2 (denoted

by Alg2) are used to compute the regression coefficients. Additionally, the follow-

ing algorithms will also be employed to compute the regression coefficients: (i) Least

Absolute Value (LAV); (ii) Least Trimmed Squares (LTS), where 75% of the squared
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errors are kept; (iii) M -estimate (M), where Huber’s function is employed; (iv) Gaus-

sian Mixture model for noise (GM), (v) Student’s t-distribution for noise (Stu-t), i.e.

P (ei|ν, θ) ∝ [1 + θe2i /ν]
−(ν+1)/2 with ν is fixed to be 3.

For each algorithm 5000 random data sets are processed. The performances are

compared in terms of the empirical bias and the empirical variance of the estimate of

each regression coefficient. The results are shown in Figures 4.1 and 4.2. The subplot

(a) and (b) in each figure correspond to the empirical bias and the empirical variance,

respectively, for 5% outlier contamination. Subplot (c) and (d) are for 30% outlier con-

tamination.
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Figure 4.1: Empirical bias and variance (Symmetric outlier case).

To analyze the results, first, our proposed algorithms, especially Alg2, show

consistent performance with lower bias and lower variance in most cases. Second, our

methods tend to serve as feasible algorithmic choices for a large range of percentage

of outlier contamination, as it works well with small (5%) and large (30%) portions

of outliers. Third, the empirical Bayesian algorithm (Alg2) actually outperforms the

MAP type algorithm (4.5) (Alg1) in most cases. This observation echoes the fact that
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Figure 4.2: Empirical bias and variance (Asymmetric outlier case. Legends are the
same with Figure 4.1.)

empirical Bayesian inference could perform better since the posterior mean of the hy-

perparameter is more representative for the posterior probability mass [78].

4.4.2 Brownlee’s Stackloss Data Set

This data set, which has been extensively studied in statistical literature (cf. [103,

pp.76]), contains 21 four-dimensional observations regarding the operation of a plant

for the oxidation of ammonia to nitric acid. We select several algorithms for linear

regression. Following the methodology in [103, Chapter 3], the index plots associated

with different algorithms are shown in Figure 4.3.

As in Figure 4.3, our algorithms exhibit very similar results to the LAV method

for this data set. Observations 1, 3, 4, and 21 can be identified as outliers, which is con-

sistent with existing analyses on this data set [75,103]. Specifically, for each explanatory

variable (e.v.), the estimated coefficient (âi), its standard error (std) and t-value (t-v) are

tabulated for LS and Alg1 in Table 4.1.
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Figure 4.3: Index plots for different regression algorithms. The interval [−2.5, 2.5] is
marked by red lines for inspecting outliers.

Table 4.1: Regression results for LS and Alg1.
LS Alg1

e.v. âi std t-v âi std t-v
rate 0.716 0.135 5.307 0.834 0.073 11.46

temp. 1.295 0.368 3.520 0.596 0.180 3.330
acid. -0.152 0.156 -0.973 -0.071 0.067 -1.062
const. -39.92 11.90 -3.356 -39.47 5.105 -7.732

The LS estimation identifies that regression coefficient for acid concentration

(acid.) is not significantly different from zero at 5% level. This is confirmed by Alg1

(and also by LAV and Alg2).3 By proper treatment of outliers, the significance of the

rate and the constant term (const.) are enhanced by Alg1 (also LAV and Alg2), and

narrower confidence intervals can be constructed. Combining the analysis based on the

index plots and the test statistics, we can conclude that the robust regression methods

could be more trustworthy in revealing the underlying pattern in the data set.

3For LS, use t17,0.05 = 2.11. For LAV, Alg1/2, use t13,0.05 = 2.16.
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4.4.3 Bupa Liver Data Set

This data set [12] mainly contains blood test results regarding liver function for

345 patients. We focus on the task of using the AST and γGT levels to linearly predict

the ALT level. The data is processed by log-transformation [11]. Results are shown in

the Table 4.2.

Table 4.2: Regression results for Bupa liver data set.
LS LTS

e.v. âi std t-v âi std t-v
AST 0.693 0.066 10.57 0.788 0.061 12.87
γGT 0.204 0.030 6.871 0.207 0.026 7.794
const. 0.425 0.176 2.408 0.145 0.166 0.870

Alg1 Alg2
e.v. âi std t-v âi std t-v

AST 0.736 0.062 11.92 0.756 0.062 12.24
γGT 0.202 0.027 7.557 0.208 0.027 7.796
const. 0.306 0.168 1.821 0.220 0.168 1.308

The LS estimation indicates that all variables and the constant term (intercept)

are significant at 5% level. However, the robust methods we tested here inform us that

the constant term is actually not significant.4 Having this observation, we re-perform

the linear regression without constant term. To examine the difference, we perform the

F -test with null hypothesis H0 : the constant term is equal to zero. The results are

summarized in the Table 4.3.

Table 4.3: F -values of different algorithms.
LS LTS Alg1 Alg2

F -value 5.801 1.995 2.708 1.959

We can see that except LS, the F -values for all the robust regression methods
4Specifically, dfLTS = 331, dfAlg1 = dfAlg2 = 332. Hence, t∞,0.05 = 1.96, F1,∞,0.05 = 3.84 are used.
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indicate that the constant term is not significant at 5% level, which confirms our earlier

observation. To be complete, the simpler linear models learned by different algorithms

are given in Table 4.4.

Table 4.4: Final regression results.
LTS Alg1 Alg2

e.v. âi t-v âi t-v âi t-v
AST 0.835 29.28 0.830 28.85 0.834 28.98
γGT 0.205 7.752 0.204 7.630 0.202 7.555

Based on experiments on these real data sets, we conclude that the proposed

algorithms exhibit consistent results compared to existing robust regression algorithms

and demonstrate their usefulness for robust regression.
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Chapter 5

LMS Type Adaptive Filtering

Algorithms that Incorporate Sparsity

Thus far, the algorithms we considered are based on the batch estimation tech-

niques, which are performed on blocks of measurements. There is a need for simpler,

online learning algorithms that can deal with non-stationary environment. This gives rise

to the motivation of adaptive algorithms. In this chapter, we consider the development

of adaptive algorithms that can exploit the sparsity structure of the system. We show

how to systematically transform the techniques for sparse signal recovery to facilitate

adaptive filtering applications.

156
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5.1 Introduction

Adaptive filters have many potential applications and have been a topic of much

study and interest [68, 83, 106]. We develop and study adaptive filtering algorithms

that attempt to impose and take advantage of the sparsity structure in the filter coef-

ficients. At the center of the problem is the estimation of the underlying sparse pre-

dictor. This problem arises in a wide spectrum of applications such as echo cancel-

lation [41, 85], channel equalization [97], noise cancellation [127], wireless commu-

nication [29], speech processing [27, 104], radar signal processing [109], and image

processing [45, 58].

The recent progress in the area of sparse signal recovery makes available a

plethora of approaches for potentially tackling the problem of adaptive filters that pro-

mote sparsity. The problem of sparse signal recovery aims at recovering a sparse signal

based on only a small number of linear measurements. Computationally efficient algo-

rithms have been proposed to find or approximate the sparse solution in various settings,

which are introduced in Section 1.1.1. To leverage these techniques for sparse predictor

estimation, for example, Cotter and Rao [29] employed the matching pursuit algorithm

to estimate the sparse impulse response in the scenario of wireless communication. Ba-

jwa, Haupt, Raz, and Nowak [5] proposed to use the Dantzig selector [15] to estimate a

sparse communication channel.

The development of adaptive algorithms that exploit sparsity is a natural com-

plement to the above mentioned batch estimation techniques. Adaptive filters provide
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the opportunity of adaptively adjusting the predictor coefficients based on the current

input signal and the previous predictor states [106]. Compared to filters with fixed co-

efficients, adaptive filters have the ability to learn the signal statistics and to keep track

of potential variations. In contrast to batch processing methods where space is needed

to store enough amount of samples and processing power is demanded for expensive

operations such as matrix inversion, adaptive filters implement less expensive recur-

sive updates that drastically reduce the storage and computation burdens. As examples,

the least-mean-squares (LMS) algorithm [126] and the normalized LMS (NLMS) algo-

rithm [86] are well known adaptive filters employed in many practical applications.

Designing adaptive filters that can exploit the sparsity structure in the under-

lying predictor to achieve better performance has been an area of recent interest [3,

7, 10, 25, 33, 35, 41, 54, 61, 84, 101]. Of particular interest is the proportionate NLMS

(PNLMS) algorithm introduced by Duttweiler [41] to deal with the sparse channel esti-

mation that arises in echo cancellers. Although this algorithm was not formally derived

by minimizing an underlying objective function, it was well motivated with theoretic

analysis and simulations to support its effectiveness. To address the issue of slow con-

vergence of PNLMS at the late stages of adaptation, various methods were suggested

for improvement, such as PNLMS++ [54], improved PNLMS (IPNLMS) [7], and im-

proved IPNLMS (IIPNLMS) [33]. Experimental results showed that certain drawback

of PNLMS can be alleviated via these variants of PNLMS. Motivated by the techniques

in sparse signal recovery, Chen, Gu, and Hero derived the zero attracting LMS (ZA-

LMS) and the reweighted zero attracting LMS (RZA-LMS) [25, 26], of which the opti-
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mization criteria are motivated by some popular diversity measures that are minimized

by the batch algorithms to find sparse solutions. Using the approximations of ℓ0 norm

as a diversity measure, Gu, Jin, and Mei proposed the ℓ0-LMS and ℓ0-NLMS algorithms

that are capable of estimating sparse predictors [61].

The goal of this work is to further develop the field of adaptive filtering algo-

rithms that incorporate sparsity considerations by developing alternate LMS type adap-

tive filtering algorithms that can benefit from the sparsity structure underlying the pre-

dictor. Motivated by the techniques for sparse signal recovery, we develop a general

mathematical framework for deriving a class of adaptive algorithms that are suitable

for sparse predictors. This framework can potentially benefit from many existing tech-

niques for sparse signal recovery by systematically transforming them to develop the

corresponding adaptive algorithms for sparse predictors. The key characteristic of this

framework is that the optimization procedure employs the affine scaling method, and the

algorithms perform the optimization in the affine scaling domain. This is different from

the derivations of many existing adaptive algorithms in which the optimization is carried

out in the original coefficient domain. The affine scaling method belongs to the family

of interior-point methods which have gained considerable popularity for solving convex

and nonlinear optimization problems. It involves a centering operation which has the

advantage of transforming the original optimization problem into an equivalent one in

which the current point is favorably positioned for a constrained form of the steepest-

descent method [87]. Therefore, the proposed framework leads to algorithms that can

support larger learning steps along the search direction, and the overall adaptation can
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be sped up. To demonstrate the potential of this algorithmic framework, we study in

detail the pALMS and the pANLMS adaptive filters, which are instantiations of this

framework and closely related to FOCUSS [60] in sparse signal recovery. The goal of

this work is very similar to that in [84] wherein also a general class of sparsity promot-

ing adaptive filter algorithms are developed. The approach employed there is based on

the natural gradient and quite different from the interior-point method motivation and

approach in this work. More discussion on [84] will be presented in later sections.

To avoid confusion, it is worth noting that the affine scaling method employed in

our approach fundamentally differs from the methods of affine combination of multiple

adaptive filters [9] and the affine projection algorithms (APA) [55,91]. In our approach,

the usage of affine projection originates from an optimization viewpoint, since we wish

to take advantage of the centering operation in interior-point methods to achieve faster

convergence. In contrast, the affine combination of multiple adaptive filters suggests

affine combination of the outputs of differently parameterized filters to obtain perfor-

mance better than each individual filter. APA can be viewed as a multi-dimensional

extension of NLMS. It is set to match a vector of desired signals in order to obtain

faster convergence. The involvement of affine projection in this approach is a necessary

consequence of the multi-dimensional model, rather than an optimization alternative.
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5.2 Problem Formulation and Background

5.2.1 Problem Formulation

Let us assume that x[i] ∈ RM is a wide sense stationary vector random process

with R , E[x[i]x[i]ᵀ]. In the case of a time series problem x[i] is formed using samples

from a window of observations. Let y[i] ∈ R be the desired signal and it is assumed to

be jointly wide sense stationary with x[i]. The cross-correlation is denoted by d, and is

given by d , E[x[i]y[i]]. The goal of adaptive filtering is to learn the optimal predictor

coefficient vector and to obtain a linear estimate of the desired signal y[i], which is given

by

ŷ[i] = c[i]ᵀx[i] (5.1)

where c[i] is the estimate of the true predictor coefficient vector c0 at the ith iteration.

We are interested in the scenario where the predictor coefficient vector c0 is sparse,

i.e., there are many zero coefficients in c0 and most of the energy is concentrated on

only a few taps. In this work, we assume all variables are real for simplicity and the

development can be readily extended to complex domain.
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5.2.2 Background on Adaptive Filters Exploiting Sparsity

We focus on the LMS type filters. Usually, the starting point for the derivation

of an ordinary LMS filter is to consider the following linear prediction problem [83]

min
c
J(c), where J(c) = E |y[i]− cᵀx[i]|2 (5.2)

which minimizes the mean squared error in predicting the desired signal. Note that

(5.2) does not incorporate any information about the sparsity structure of the predictor.

To impose the explicit objective of enforcing sparsity on the solution vector, one may

wish to minimize the modified cost function

J(c) = E |y[i]− cᵀx[i]|2 + β · g(c) (5.3)

where β ≥ 0 is a regularization parameter. This cost function consists of two terms. The

first term in (5.3), as before, measures the quality of prediction. The second term g(c)

can be chosen as a proper diversity measure whose minimization leads to a sparse c. A

popular diversity measure for sparse signal recovery is the ℓ1 norm of c, i.e., ∥c∥1. The

regularization parameter β balances these two objectives in the cost function in order to

obtain reasonable results.

To proceed, we expand J(c) and obtain the gradient as

∇cJ(c) = −2d+ 2Rc+ β · ∇cg(c).
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This gives us the following steepest descent algorithm for minimizing (5.3)

c(j+1) = c(j) − µ∇cJ(c) = c(j) − µ(−2d+ 2Rc(j) + β · ∇cg(c
(j))).

where µ > 0 is the step size parameter. In practice, an LMS type algorithm replaces the

statistical quantities d and R by their instantaneous estimates, i.e., x[i]y[i] and x[i]x[i]ᵀ,

respectively. The resulting adaptive filtering algorithm is given by

c[i+ 1] = c[i] + 2µx[i]e[i] + µβ · ∇cg(c[i])) (5.4)

e[i] = y[i]− c[i]ᵀx[i]. (5.5)

To instantiate the algorithm, one should choose an appropriate diversity measure g(c)

and obtain the corresponding adaptive filter.

As an example, let us choose g(c) = ∥c∥1, the popular ℓ1 norm diversity measure

[24]. Note that ∇ckg(c) = sign(ck). Thus, according to the procedure above, we obtain

the following adaptive algorithm

c[i+ 1] = c[i] + 2µx[i]e[i] + µβ · sign(c)

where sign(c) is understood elementwise, and e[i] is calculated from (5.5). This al-

gorithm is indeed the zero attracting LMS (ZA-LMS) derived by Chen, Gu, and Hero

[25, 26]. Motivated by the iteratively reweighted ℓ1 minimization [20], the reweighted

zero attracting LMS (RZA-LMS) [25, 26] was derived by letting g(c) =
∑M

k=1 log(1 +
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|ck|/ϵ). With the selection g(c) =
∑M

k=1(1− exp(−η|ck|)), which can be viewed an ap-

proximation of the ℓ0 norm, the resultant adaptive filter can be recognized as the ℓ0-LMS

proposed by Gu, Jin, and Mei [61].

A class of LMS variants, proposed by Martin, Sethares, Williamson, and John-

son [84], uses a natural gradient framework to deduce adaptive filters that can exploit

the sparsity structure. Of practical interest is the approximate natural gradient (ANG)

algorithm, which is characterized by a cost function H(c), a reparameterization func-

tion ck = F (zk), and a prior distribution of the unknown parameters ϕk(zk). Note that

the prior distribution reflects the prior knowledge of zk, and it can be improper, i.e., the

integral over the entire domain is not required to be one. Then, the update equation in

the z domain is [79, 84]

zk[i+ 1] = zk[i]− µ
∂H(c[i])

∂zk

1

ϕ2
k(zk[i])

. (5.6)

For example, by letting F (zk) = zk and ϕk(zk) = 1 for k ∈ [M ], (5.6) recovers the LMS

algorithm. Proper choices of H(c), F (zk), and ϕk(zk) can lead to adaptive algorithms

that exploit the sparsity structure in the prediction coefficients.

Besides the LMS type adaptive algorithms, normalized LMS (NLMS) type algo-

rithms are also developed for exploiting the sparse nature of the predictor. The propor-

tionate NLMS (PNLMS) algorithm proposed by Duttweiler [41] employs the following
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update equations

c[i+ 1] = c[i] + µ
W 2(c[i])

1
M

∑M
k=1[W

2(c[i])]k,k

1

∥x[i]∥22
x[i]e[i] (5.7)

W 2(c[i]) = diag(wk) (5.8)

wk = max(ρPNLMSdk, |ck[i]|) (5.9)

dk = max(δPNLMS, |c1[i]|, ..., |cM [i]|) (5.10)

where ρPNLMS, δPNLMS > 0 are regularization parameters. Different from NLMS, PNLMS

introduces a weighting factor of roughly M |ck[i]|∑M
k=1 |ck[i]|

to differently scale the update for

different taps. The intuition behind this modification is that when ck[i] has large mag-

nitude, it is likely that ck[i + 1] could also be large. Thus, such a weighting scheme

rewards large taps with more adaptation energy and drives them to convergence faster

than the taps with smaller magnitudes. Although this algorithm was not derived formally

by minimizing an underlying objective function, it is well motivated and analysis were

provided to support its effectiveness. Experiments are shown to demonstrate that the

PNLMS algorithm does exploit the sparsity structure. It converges faster than NLMS at

early stages, but it may converge slower than NLMS at the later stages of the adapta-

tion [54], due to the observation that taps with small magnitudes typically receive less

adaptation energy than their NLMS counterparts. To take advantages of both NLMS and

PNLMS at different stages, a series of work have proposed various methods to combine

these two filters for better performance. For example, PNLMS++ [54] suggested using
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NLMS update and PNLMS update alternatively for different sample periods. Improved

PNLMS (IPNLMS) [7] proposed a weighted combination of NLNS and PNLMS up-

dates via the following update

c[i+ 1] = c[i] + µ
W 2(c[i])

x[i]ᵀW 2(c[i])x[i] + δIPNLMS
x[i]e[i] (5.11)

W 2(c[i]) = diag(wk) (5.12)

wk =
1− αIPNLMS

2M
+ (1 + αIPNLMS)

|ck[i]|
2∥c[i]∥1 + ϵIPNLMS

(5.13)

where αIPNLMS ∈ [−1, 1) controls the weights between NLMS and PNLMS, and δIPNLMS,

ϵIPNLMS > 0 are regularization parameters. The improved IPNLMS (IIPNLMS) [33]

proposed more complex weighting scheme between NLMS and PNLMS which weighs

active and inactive taps differently. Although these algorithms are heuristically moti-

vated, simulations show that they exhibit faster convergence than NLMS when applied

to sparse predictor estimation.

5.3 An Algorithmic Framework for Adaptive Filtering

with Sparsity Concerns

5.3.1 Prototype LMS Adaptive Filtering Algorithm

We derive a general LMS type adaptive algorithm that has the capability to ex-

ploit the sparsity structure underlying the prediction problem. We start with the cost
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function (5.3). Assume ∇cg(c) can be written as

∇cg(c) = α(c) · Π(c) · c (5.14)

where α(c) ∈ R+, and Π(c) ∈ RM×M is a diagonal matrix with positive diagonal

elements. This can be shown to hold for a wide variety of diversity measures used for

sparse signal recovery [93]. Thus

∇cJ(c) = −2d+ 2Rc+ βα(c)Π(c)c.

By setting ∇cJ(c) = 0, the optimal solution c∗ should satisfy

c∗ =

(
R +

1

2
βα(c∗)Π(c∗)

)−1

d

= W (c∗)

(
W (c∗)RW (c∗) +

1

2
βα(c∗)I

)−1

W (c∗)d (5.15)

where Π(c) ≡ W−2(c). Note that (5.15) suggests the following iterative procedure for

computing c∗

c(j+1) =W (c(j))

(
W (c(j))RW (c(j)) +

1

2
βα(c(j))I

)−1

W (c(j))d (5.16)

with some reasonable initialization c(0).

Next, at the jth iteration, for c ∈ RM , we define the corresponding affinely
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scaled variable

q(c) , W (c(j))−1c (5.17)

and the auxiliary variables R(j) , W (c(j))RW (c(j)) and d(j) , W (c(j))d. Such trans-

formations were first used in the work of Karmarkar in the development of algorithms

for solving linear programming problems [72]. It was viewed as a mechanism to trans-

form the problem into variables where the current estimate of the transformed variable

was at the center of the feasible region. With the transformation into the affine scaling

domain, the update (5.16) can be rewritten as

q(j+1) , q(c(j+1)) =

(
R(j) +

1

2
βα(c(j))I

)−1

d(j). (5.18)

One can observe that (5.18) is actually the minimizer of the following quadratic cost

function

J(q) = E
∣∣y[i]− qᵀW (c(j))x[i]

∣∣2 + 1

2
βα(c(j))∥q∥22. (5.19)

We can also view the approach as belonging to the class of iteratively reweighted least

squares approaches. Note that

∇qJ(q) = −2d(j) + 2R(j)q+ βα(c(j))q.
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Then, we can obtain a steepest descent algorithm (SDA) which replaces (5.18),

q(j+1) = q(j) − µ

2
∇qJ(q

(j)) (5.20)

=

(
1− 1

2
µβα(c(j))

)
q(j) + µd(j) − µR(j)q(j) (5.21)

where µ > 0 is the step size parameter. According to (5.17), we can transform (5.21)

back to the original coefficient domain as follows

c(j+1) =

(
1− 1

2
µβα(c(j))

)
c(j) + µW 2(c(j))d− µW 2(c(j))Rc(j). (5.22)

The following theorem sheds light on the convergence of the algorithm (5.22)

and its relationship to the cost function (5.3). The proof is presented in Section 5.7.1.

Theorem 9. Let g(c) be a diversity measure with the following properties:

1. g : RM → R is separable, i.e., g(c) =
∑M

k=1 gk(ck);

2. gk(c) = gk(−c);

3. gk(c) is increasing with |c|;

4. gk(c) is concave in c2.

Then, there exists a sequence of {µ(k)}∞k=1 such that the algorithm (5.22), using µ(k) at

the kth iteration, converges to a local minimum of (5.3).

To derive the adaptive algorithm, we follow the usual steps of replacing R and

d by their instantaneous estimates, i.e., x[i]x[i]ᵀ and x[i]y[i], respectively. Set j = i in
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(5.22). We obtain the update equation

c[i+ 1] =

(
1− 1

2
µβα(c[i])

)
c[i] + µW 2(c[i])x[i]y[i]− µW 2(c[i])x[i]x[i]ᵀc[i].

(5.23)

Therefore, by absorbing the factor 1
2

into β, the resulting prototype LMS algorithm is

c[i+ 1] = (1− µβα(c[i]))c[i] + µW 2(c[i])x[i]e[i] (5.24)

W 2(c[i]) = Π(c[i])−1 (5.25)

and e[i] is computed according to (5.5).

5.3.2 Relation to ANG Algorithms

As introduced in Section 5.2.2, a class of approximate natural gradient (ANG)

algorithms for adaptive filtering has been developed using a natural gradient framework

[84]. We discuss the relation between the ANG algorithms and the prototype LMS

algorithm in Section 5.3.1.

Equipped with the costH(c) = (y[i]− ŷ[i])2, the ANG algorithm can be actually

cast into the affine scaling framework. To see this, let us assume the ANG algorithm

adopts some reparametrization function ck = F (zk), which is assumed to be invertible

and differentiable except possibly at a finite number of points, and some prior ϕk(zk).

First, according to Proposition IV.1 in [84], if there exist some other reparametrization
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function ck = F1(zk) and prior ψk(zk) such that

(
∂F (zk)

∂zk

)2

·
(

1

ϕk(zk)

)2 ∣∣∣∣
zk=F−1(ck)

=

(
∂F1(zk)

∂zk

)2

·
(

1

ψk(zk)

)2 ∣∣∣∣
zk=F−1

1 (ck)

for k ∈ [M ], then {F, ϕk} and {F1, ψk} yield the same ANG algorithm in the c domain,

provided that the step size parameter µ is sufficiently small. Hence, we can choose

ck = F1(zk) , zk, and ψk(zk) such that

ψ2
k(zk) =

[(
∂F (zk)

∂zk

)2

·
(

1

ϕk(zk)

)2 ∣∣∣∣
zk=F−1(ck)

]−1
∣∣∣∣∣∣
ck=F1(zk)

to obtain the same adaptive algorithm. We use {F1, ψk} in the discussion to follow.

Based on (33) of [84] and the discussion preceding it, we have the update equation in

the coefficient domain

c[i+ 1] = c[i]− µD[i]x[i]
∂(y[i]− ŷ[i])2

∂ŷ[i]

∣∣∣∣
ŷ[i]=c[i]ᵀx[i]

where1

D[i] , diag

((
∂F1(zk)

∂zk

)2

·
(

1

ψk(zk)

)2 ∣∣∣∣
zk=F−1

1 (ck[i])

)

= diag
(
ψ−2
k (zk)

∣∣
zk=F−1

1 (ck[i])

)
. (5.26)

1Note that in [84] D[i] is defined as an ordinary matrix. However, the c domain update only uses its
diagonal elements, as indicated by the equation preceding (33) therein.
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This equation above naturally suggests the diagonal weighting matrix W 2(c[i]) ≡ D[i].

Then, the corresponding choice for Π(c) can be found as

Π(c) = W−2(c) = diag

[(∂F (zk)
∂zk

)2

·
(

1

ϕk(zk)

)2 ∣∣∣∣
zk=F−1(ck)

]−1
 .

Thus, we can construct a corresponding diversity measure g(c) ,
∑M

k=1 gk(ck) where

gk(ck) ,
∫
ck ·

[(
∂F (zk)

∂zk

)2

·
(

1

ϕk(zk)

)2 ∣∣∣∣
zk=F−1(ck)

]−1

dck (5.27)

is an indefinite integral.

As a result, an ANG based adaptive filtering algorithm can be recognized as an

affine scaling algorithm developed using the diversity measure g(c) defined in (5.27)

under the limiting case β = 0. Further, the interpretation of the ANG based algorithms

through the affine scaling perspective indicates that [W 2(c)]k,k is not a function of cj for

j ̸= k. Consequently, g(c) exhibits a separable form indicating that it can be written

as the sum of the costs on individual variables. In contrast, the affine scaling frame-

work proposed in this paper indeed permits the potential of employing more general

g(c) which cannot be written in a separate manner. This is important because there are

sparse recovery methods such as the sparse Bayesian learning that employ nonsepara-

ble diversity measures [114, 129, 130, 133]. A broader class of adaptive filters could be

derived using the affine scaling methodology.
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5.3.3 Prototype NLMS Adaptive Filtering Algorithm

We can develop a general NLMS type algorithm using the affine scaling trans-

form. The derivation is similar to that of the NLMS, and is presented in Section 5.7.2.

We directly state the proposed NLMS type adaptive algorithm as follows

c[i+ 1] = c[i] +
µ

x[i]ᵀW 2(c[i])x[i]
W 2(c[i])x[i]e[i] (5.28)

W 2(c[i]) = Π(c[i])−1 (5.29)

where µ > 0 is the step size parameter.

5.3.4 Steady-State Performance Analysis of Prototype Algorithms

The analysis of adaptive filters is quite complicated because of the nonlinear na-

ture of the update equations and the long-term dependence on the data. In spite of this

difficulty, simple and intuitive analysis methods have been quite useful in understanding

the behavior of adaptive algorithms. For the purpose of performance analysis, we in-

troduce several useful assumptions. Although these assumptions may seem restrictive,

they make meaningful analysis possible without significant loss of insight and are also

commonly adopted in performance analysis of adaptive filters. The following signal

model is employed for performance analysis:

y[i] = cᵀ0x[i] + e0[i]. (5.30)
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In addition to the assumptions in Section 5.2.1, we further assume e0[i] ∈ R to be the

noise, which is i.i.d. according to N (0, σ2
e).

Assumption 1: The input data vector x[i] is independent of x[j] for i ̸= j.

Further, x[i] is independent of e0[j] for all i, j.

Remark. Note that in the scenario of where the input signal is a time series,

an input data vector is actually a specific section of this time series. In this case, As-

sumption 1 will not hold for x[i] and x[i − k] for k ∈ [M − 1], since they share an

overlap of (M − k) elements. However, in the applications related to spatial filtering

where the input data vector represents the readings collected by an array of sensors,

this assumption may become more meaningful. Nevertheless, in practice and from past

experience in adaptive filters, this assumption simplifies the analysis and does lead to

useful insights [83, 106].

Assumption 2: The input data obeys x[i] ∼ N (0, R) for all i.

Remark. This technical assumption facilitates the analysis by taking advantage

of the useful results on Gaussian random variables [83].

Assumption 3: At steady state, the diagonal matrix W (c[i]) in the update equa-

tions can be viewed as a fixed matrix.

Remark. As suggested in [41, 84], after the system enters its steady state and

when µ is sufficiently small, the coefficients converge in both mean and mean-squared

sense. Thus, the replacement of W (c[i]) by a fixed matrix becomes reasonable and con-

venient. We shall see that these assumptions lead to theoretical results that are supported
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by experiments.

Assumption 4: At steady state, for a fixed diagonal matrix G ∈ RM×M , let

x[i]ᵀGx[i] be independent of (c0 − c[i])ᵀx[i].

Remark. This is actually an extension of the Separation Principle, for which

G = I , introduced by Sayed [106].

For the purpose of steady-state analysis, we first consider the performance of an

adaptive filtering algorithm of the general form

c[i+ 1] = (I − µβ) c[i] + µGx[i]e[i] (5.31)

e[i] = y[i]− c[i]ᵀx[i] (5.32)

whereG is a fixed diagonal matrix with positive diagonal entries. Define the steady-state

excess mean squared error (EMSE) as [83]

Pex ≡ Pex[∞] , lim
i→∞

E
[
|(c0 − c[i])ᵀx[i]|2

]
. (5.33)

It can be shown that [83] the steady-state mean squared error (MSE) under Assumptions

1 is given by

P , lim
i→∞

E
[
e2[i]

]
= σ2

e + Pex. (5.34)

We have the following theorem that characterizes the steady-state EMSE of the adaptive
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filtering algorithm (5.31) and (5.32). The proof is presented in Section 5.7.3, which

follows the discussion in [41, 83, 84].

Theorem 10. Under Assumptions 1 and 2, for an adaptive algorithm of the form of

(5.31) and (5.32) with a sufficiently small µ:

i) if R = I , the steady-state EMSE is

Pex =
µ
∑M

k=1
Bk

Ck

1− µ
∑M

k=1
Ak

Ck

(5.35)

where Ak , G2
k,k, Bk , G2

k,kσ
2
e +

2
µβ+µGk,k

β2c20,k − β2c20,k, Ck , 2β − µβ2 +

2(1− µβ)Gk,k − 2µG2
k,k.

ii) [84, Theorem III.1] if β = 0, the steady-state EMSE is

Pex = µ · tr(RG(2I − µRG)−1) · σ2
e . (5.36)

Remark: For the case where R = I and β = 0, note that part i) of Theorem 10

does not exactly agree with part ii) , due to additional simplifications in deriving part ii)

for a general R [84]. We suggest using part i) in this case, although the difference could

be negligible for sufficiently small µ. Consequently, the formula of the steady-state

EMSE in this case is given by

Pex =
µ
∑M

k=1
Gk,k

2−2µGk,k

1− µ
∑M

k=1
Gk,k

2−2µGk,k

· σ2
e , for R = 1, β = 0. (5.37)
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Meanwhile, the following theorem presents stability results for the prototype

algorithm, whose proof is also provided in Section 5.7.3. Let λmax(A) denote the largest

eigenvalue of the matrix A in magnitude.

Theorem 11. i) (Convergence of Mean) Under Assumptions 1 and 2, the adaptive

filtering algorithm of the form of (5.31) and (5.32) converges in the mean sense if

|λmax((1− µβ)I − µGR)| < 1.

ii) (Convergence of MSE) Under Assumptions 1 and 2, for the adaptive filtering al-

gorithm of the form of (5.31) and (5.32):

ii-a) When R = I , the steady-state MSE converges if

0 < µ <

(
M∑
k=1

Ak

Ck

)−1

. (5.38)

ii-b) When β = 0, and in addition under Assumption 4, the steady-state MSE

converges if

0 < µ <
2

R1,1 ·
∑M

k=1Gk,k

. (5.39)

Remark: Similarly, for the case β = 0 and R = I , we suggest using part ii-a) of

Theorem 11 as the condition for convergence in MSE. Thus, in this case the algorithm
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converges if

µ
M∑
k=1

Gk,k

2− 2µGk,k

< 1 (5.40)

which recovers the results in [41].

To utilized these theorems for the steady-state analysis for the prototype LMS al-

gorithm proposed in Section 5.3.1, we can replace W 2(c[i]) by a fixed matrix according

to Assumption 3. It naturally suggests setting

G = W 2(c0)

in Theorems 10 and 11 to obtain the corresponding versions for the prototype LMS

algorithm.

For the prototype NLMS algorithm, the recognition of a proper G becomes dif-

ficult. One possible approximation would be

G =
W 2(c0)

E [x[i]ᵀW 2(c0)x[i]]
.
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5.4 The pALMS and pANLMS Algorithms

5.4.1 Derivation and Discussion of pALMS

We choose the ℓp norm as the diversity measure, i.e.,

g(c) =
M∑
k=1

|ck|p (5.41)

where p ∈ (0, 2] is a constant.2 It is worth noting that the ℓp norm is a very popular diver-

sity measure in the literature of sparse signal recovery. Many existing algorithms utilize

it in their formulations. For example, basis pursuit [19, 24] and Lasso [113] employ the

ℓ1 norm, which essentially leads to solving certain convex optimization problems. In

contrast, FOCUSS [60] works with ℓp with p ≤ 1, which in general results in a non-

convex optimization problem which can be effectively solved by iteratively reweighted

procedures [21, 100]. Meanwhile, the ℓp norm satisfies the conditions in Theorem 9.

To continue, we note that

∇cg(c) = α(c) · Π(c) · c

where α(c) ≡ p and Π(c) = diag(|ck|p−2). Accordingly, based on the derivation for the

prototype LMS algorithm, we recognize

W (c) = Π− 1
2 (c) = diag(|ck|

2−p
2 ).

2Strictly speaking, for p < 1, it is not a norm.
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Using these specifications, we reach the following LMS type adaptive algorithm

c[i+ 1] = (1− µβp)c[i] + µW 2(c[i])x[i]e[i] (5.42)

W 2(c[i]) = diag(|ck[i]|2−p). (5.43)

We term this algorithm as the pALMS algorithm, where “p” indicates the relationship to

ℓp norm, and “A” indicates the algorithm is derived using the Affine scaling transform.

A closer inspection actually reveals a practical issue with this algorithm. To see

this, let us suppose that at the ith iteration there exists some coefficient ck[i] = 0. As

an example, this may occur at the first iteration if all the coefficients are initialized with

zeros. According to (5.42) and (5.43), it can be readily seen that ck[j] ≡ 0 for all j ≥ i,

which means that the coefficient gets stuck at zero for all subsequent updates. This is

an undesirable effect, especially for the adaptation of a time-varying system, and it is

caused by the fact that [W 2(c)]k,k = 0 for ck = 0. To address this issue, we suggest an

effective remedy by replacing [W 2(c)]k,k with [W 2(c)]k,k + ϵk, where ϵk > 0, k ∈ [M ],

is chosen to be some small constant. In practice, a simpler approach would be letting

ϵ1 = ... = ϵM = ϵ > 0. This is equivalent to the alternative update equation

W 2(c[i]) = diag(|ck[i]|2−p + ϵ). (5.44)

We adopt this modified update to replace (5.43) for pALMS. Note that the pALMS
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update with β = 0 can be written as

c[i+ 1] = c[i] + µ(W 2(c[i]) + ϵI)x[i]e[i]. (5.45)

Another supporting argument for the modification can be obtained by rewriting (5.45)

as

c[i+ 1] =
1

1 + ϵ

(
c[i] + µ(1 + ϵ)W 2(c[i])x[i]e[i]

)
+

ϵ

1 + ϵ
(c[i] + µ((1 + ϵ))x[i]e[i]) .

The above equation suggests that the resulting filter can be viewed as a convex com-

bination of an (unmodified) pALMS filter and an ordinary LMS filter. Although the

LMS filter has small weight in determining the update direction, it effectively helps the

combined filter to escape from some local optima. Note that similar practices of im-

posing small perturbations to the diagonal entries of a weighting matrix are also carried

out in existing adaptive filtering algorithms. As an example, steps (5.9) and (5.10) in

PNLMS serve to lift up the small magnitudes in the coefficient vector before forming

the diagonal weighting matrix.

Further, an important nature regarding the proposed algorithmic framework can

be illustrated by using pALMS as an example. Consider the limiting case where β →

0+. In this scenario, the cost function (5.3) exerts diminishing impact on enforcing

sparse solution, which means eventually no sparse solution is favored over other possible

solutions. However, the pALMS with β = 0 still bears the nature of a proportionate
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type algorithm, which weighs the update of each tap by some factor determined via its

previous value. Hence, when the underlying predictor is sparse, pALMS with β = 0 is

capable of exploiting this sparsity structure by weighing the updates proportionately, and

hence it expedites the adaptation procedure. This property essentially separates affine

scaling algorithms from their counterparts developed in the original coefficient domain

(e.g., pALMS versus ZA-LMS). Usually, coefficient-domain algorithms work with β >

0 to enforce sparse solutions, at the expense of biased estimation of the coefficients [25].

Otherwise, these algorithms may reduce to the ordinary LMS without possible benefit

for sparse predictor estimation.

5.4.2 Steady-State Performance Analysis of pALMS

We mainly consider the case for β = 0 under Assumptions 1-4. By letting

G = diag(|c0,k|2−p + ϵ), Theorems 10 and 11 can be applied to obtain guidance on the

steady-state EMSE and the convergence conditions. Since the diagonal matrix W (c[i])

is time-varying, one should choose µ in a more conservative manner than the upper

limits predicted in Theorem 10 to ensure convergence in practice.

Generally, when β > 0, it becomes difficult to obtain a useful estimate of G

which can be explicitly evaluated, mainly due to the fact that nonzero β introduces bias

in the adaptation of the predictor coefficients (see, e.g., [25]).
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5.4.3 Derivation and Discussion of pANLMS

Based on the prototype NLMS algorithm as well as the discussion above, we can

obtain an NLMS type algorithm as follows

c[i+ 1] = c[i] +
µ

x[i]ᵀW 2(c[i])x[i]
W 2(c[i])x[i]e[i] (5.46)

W 2(c[i]) = diag(|ck[i]|2−p + ϵ). (5.47)

We refer to this algorithm as pANLMS, which can be viewed as an improved version of

the pNLMS algorithm proposed in [101].

It is worthwhile to note that pANLMS, PNLMS, and IPNLMS share similar

features. Let us first discuss the connection between pANLMS and PNLMS. For the

purpose of analysis, we consider the case where ρPNLMS, δPNLMS → 0+ for PNLMS, and

p = 1, ϵ→ 0+ for pANLMS. Thus, the PNLMS updating rule for W (c[i]) becomes

W (c[i]) = diag(|ck[i]|
1
2 )

which coincides with that of pANLMS. The only difference between pANLMS and

PNLMS lies in the denominators of (5.46) and (5.7): pANLMS uses

x[i]ᵀW 2(c[i])x[i] ≡
M∑
k=1

w2
kx

2
k
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whereas PNLMS employs

1

M

M∑
k=1

[W 2(c[i])]k,k · ∥x[i]∥22 ≡
1

M

M∑
k=1

w2
k

M∑
k=1

x2k

wherewk denotes the kth diagonal element ofW (c[i]), and xk represents the kth element

of x[i]. Let w2
<k> denote the ordered sequence with w2

<1> ≥ w2
<2> ≥ · · · ≥ w2

<M>.

Then, standard results on inequalities involving real sequences [8] gives

M∑
k=1

w2
<k>x

2
<M−k+1> ≤

M∑
k=1

w2
kx

2
k ≤

M∑
k=1

w2
<k>x

2
<k> (5.48)

and

M∑
k=1

w2
<k>x

2
<M−k+1> ≤ 1

M

M∑
k=1

w2
k

M∑
k=1

x2k ≤
M∑
k=1

w2
<k>x

2
<k>. (5.49)

Note that, according to (5.48) and (5.49), the denominators of PNLMS and pANLMS

fall into the same interval. The bounds could be tighter for sparse predictors since most

of the diagonal elements of W (c[i]) may be very close to zero as the filters enters their

steady states. Therefore, we can intuitively interpret PNLMS as a variation of pANLMS

with p = 1, and thus establish its connection to sparse signal recovery techniques.

Next, we compare pANLMS with p = 1 and IPNLMS. To see the connection, we

let δIPNLMS, ϵIPNLMS → 0+. Note that, for IPNLMS, when ∥c[i]∥1 ̸= 0 and αIPNLMS ̸= −1,

W 2(c[i])

x[i]ᵀW 2(c[i])x[i]
=

W 2
1 (c[i])

x[i]ᵀW 2
1 (c[i])x[i]
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where W 2
1 (c[i]) is a diagonal matrix with

[W 2
1 (c[i])]k,k = |ck[i]|+

(1− αIPNLMS)∥c[i]∥1
(1 + αIPNLMS)M

. (5.50)

Note that (5.50) is very similar to the pANLMS update (5.47) with p = 1 by recognizing

the term (1−αIPNLMS)∥c[i]∥1
(1+αIPNLMS)M

as ϵ in pANLMS. This is especially the case when the algorithm

enters its steady state and ∥c[i]∥1 does not fluctuate much. This observation establishes

the connection between pANLMS with p = 1 and IPNLMS.

5.4.4 Steady-State Performance Analysis of pANLMS

Let us suppose that Assumptions 1-4 are in position. We need to find a fixedG to

approximate the term W 2(c[i])
x[i]ᵀW 2(c[i])x[i]

, for which an exact characterization seems difficult,

if at all possible, to obtain. Note that, for a fixed W , E[x[i]ᵀW 2x[i]] = R1,1tr(W 2).

Hence, we replace x[i]ᵀW 2x[i] by R1,1tr(W 2) and reach the approximation that G →

1
R1,1tr(W 2(c0))

W 2(c0), where c[i] is substituted with the true coefficient vector c0. A

useful fact from this approximation is that tr(G) = R−1
1,1. As a result, when R = I and µ

is small, Theorem 10 and 11 imply that

Pex =
µ

2− µ
σ2
e (5.51)

and 0 < µ < 2
3

is needed to ensure convergence in MSE.
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5.5 Experiments

We perform experiments to demonstrate the performance of the pALMS and

pANLMS algorithms. The application scenario for the experiments is illustrated in Fig-

ure 5.1(a). The sparse channel c0 has 256 taps with 24 nonzero taps, which is shown

in Figure 5.1(b). The goal is to estimate the underlying sparse channel and match the

desired signal y[i].

Channel

0
c + +

Predictor

[ ]c i

-

+x[i]

e0[i]

y[i] e[i]

[ ]y i

Adaptive

algorithm

+

+

(a) The application scenario.
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lu
e

(b) The sparse channel.

Figure 5.1: The application scenario for experimental study.

In our experiments, the predictor coefficients are initialized with all zeros. For

each set of experiments, the adaptation is initially turned off for a short period and then

simultaneously turned on for the convenience of comparison. Each performance curve

is obtained by averaging over 20000 random trials.



187

5.5.1 Experimental Justification of Theorem 10 for pALMS

We justify the effectiveness of Theorem 10 on estimating the excess MSE of

pALMS. In this set of experiments, the input signal x[i] is a Gaussian white noise se-

quence where each element is independently drawn from N (0, 1). The noise e0[i] is

i.i.d. according to N (0, 0.001). We consider pALMS with β = 0, p = 0.8, 1, 1.2,

respectively. For each choice of p, we test different choices of µ, and compare the em-

pirical MSE with the estimated values (using (5.34)) by Theorem 10. The results are

presented in Figure 5.2.

From Figure 5.2, we can see that the prediction of MSE made by Theorem 10

agrees well with the steady-state MSE of the pALMS in most cases, especially when the

step size parameter µ is relatively small.

5.5.2 The Effect of Parameters

We start with the study of the roles of parameters of pALMS, which gives us

guidance for further experimentation. The experiment setup is the same as in Section

5.5.1.

First, we study the effect of p in pALMS. For comparison, we run the LMS

algorithm with µLMS = 0.001. For pALMS, we set β = 0, ϵ = 0.001. We study the cases

for p = 0.5, 0.8, 1, 1.2. Using Theorem 10, we obtain µpALMS = 0.513, 0.334, 0.226,

0.141, respectively, to yield matched steady-state MSE to that of the LMS algorithm.

Figure 5.3 summarizes the results.
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Figure 5.2: Experimental justification of the theoretic estimation of MSE for pALMS.
In each plot, the horizontal lines indicates MSE predicted by the theorems. For each
choice of µ, the color of the predicted MSE matches the color of the empirical learning
curve of pALMS.
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Figure 5.3: The effect of p in pALMS.

From Figure 5.3, we note that the steady-state MSE of this set of algorithms

agree well, which justifies the validity of Theorem 10 in this case. At the very ini-

tial stage of adaptation, the pALMS algorithms seem to adapt slowly, due to the fact

that the coefficients are initialized with all zeros, thereby it is the ϵ term in (5.44) that

helps pALMS to break out of the all-zero state. Once the coefficients have reasonable

magnitudes, the adaptation becomes very fast. Overall, the set of pALMS algorithms

outperform LMS, indicating their usefulness in sparse channel estimation. Further, it

can be seen that as p increases from 0.5 to 1.2, the performance of pALMS improves

since the convergence becomes faster. Note that, as p → 2, the behavior of the pALMS

algorithm will theoretically converge to an ordinary LMS algorithm.

Next, we examine the effect of β in pALMS. Specifically, pALMS with p =

1, ϵ = 0.001, and µpALMS = 0.226 is performed with different choices of β. We focus

on the steady-state MSE and the bias in the estimated channel coefficients. Note that

the bias is computed as ∥c[∞] − c0∥2, where c[∞] is calculated as the average of 500
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Figure 5.4: The effect of β in pALMS.

iterations after the algorithm enters its steady state. Figure 5.4 summarizes the results.

According to Figure 5.4(a), we note that as β increases, the steady-state MSE

increases. This is reasonable because of the tradeoff between the prediction quality and

the sparsity of the predictor as indicated in (5.3). As we enforce more sparsity in the

predictor by increasing β, the bias in the estimated channel coefficients increases. This

is further illustrated in Figure 5.4(b). We can see that when β = 0, the mean of the

predictor agrees well with the true channel coefficients. In contrast, when β = 0.1, most

predictor coefficients are enforced to be very close to zero, resulting in more sparsity
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with large bias in channel estimation.

Now, let us focus on the effect of p in pANLMS. For the purpose of comparison,

we also run NLMS algorithm with µNLMS = 0.2. The results with different choices of p

are shown in Figure 5.5.
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Figure 5.5: The effect of p in pANLMS.

From Figure 5.5, we can draw conclusions for pANLMS which are very similar

to the discussions we had for pALMS.

5.5.3 Comparisons to Existing LMS Type Algorithms

We investigate the performance of the pALMS algorithm, and compare pALMS

with LMS, L0-LMS, ZA-LMS, and RZA-LMS. The sparse channel in Figure 5.1(b) is

employed. Two types of input signals are considered as follows.

White Input Signal

We consider the case where x[i] is obtain from a white time series, which is the

same with that used in Section 5.5.1. The parameter selection is based on the following



192

procedure.

1. We pick µL0-LMS = 0.0015 for L0-LMS. We choose QL0-LMS = 4 and αL0-LMS = 5

as suggested in [61].3 Using (24) of [110], we compute the optimal κ = 2.03 ×

10−7 that gives the lowest steady-state MSE. This steady-state MSE can be com-

puted using (11) of [110], and we have MSEL0-LMS = 1.1157× 10−3. In the next,

we will choose the parameters of other algorithms to match this steady-state MSE.

2. We determine the parameters for ZA-LMS and RZA-LMS. For a given µ, the

selection of ρ in each iteration is determined using (11) of [26]. Note that there is

no formula available for steady-state MSE of ZA-LMS and RZA-LMS.4 We found

the following parameters give roughly the same steady-state MSE as L0-LMS and

fastest convergence. For ZA-LMS, we choose µZA-LMS = 0.0015, ηZA-LMS =

0.93445. Note that according to [26], ZA-LMS is sensitive to the selection of

ηZA-LMS. We actually experiment with different values and found that this current

selection, given by ηZA-LMS = 1.1∥c0∥1, gives the best result. For RZA-LMS,

µRZA-LMS = 0.0049, δRZA-LMS = 10−4, ηRZA-LMS = 26. According to [26], RZA-

LMS is less sensitive to the selection of ηRZA-LMS, and our current selection reflects

ηRZA-LMS = 13
12
∥c0∥0.

3. We determine the parameters for pALMS. We choose β = 0, ϵ = 0.001, and

3We follow the notations in [110], where the parameter α is equivalent to β in [61].
4Note that here we adopt the ZA-LMS and RZA-LMS presented in [26], where the adaptation can be

on or off depending on the instantaneous parameters. This is different from the earlier versions of ZA-
LMS and RZA-LMS presented in [25], for which the parameter selections were difficult to determine.
Hence, the steady-state analysis in [107], where the earlier version of ZA-LMS was analyzed, is not
employed in this experiment.
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p = 1, 1.4, respectively. The step size µpALMS is chosen according to Theorem

10-i), which gives µpALMS = 0.1849, 0.0656, respectively, for corresponding p

values.

4. We determine the parameter for LMS using Theorem 10-i). The step size is given

by µLMS = 8.1× 10−4.

The learning curves of different algorithms are illustrated in Figure 5.6.
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Figure 5.6: Performance comparison of LMS type algorithms. (white input)

50 100 150 200 250
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

tap index

v
a

lu
e

p=1

 

 
mean of predictor

true predictor c0

Figure 5.7: pALMS: Mean of predictor (p = 1). (white input)
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Figure 5.8: pALMS: Mean of predictor (p = 1.4). (white input)

From Figure 5.6, the steady-state MSE for the algorithms agree well. All adap-

tive algorithms with sparsity concerns outperform LMS. In this setup, ZA-LMS per-

forms similarly to L0-LMS, and L0-LMS converges slightly faster than ZA-LMS in

later stages. RZA-LMS has much fast convergence than ZA-LMS and L0-LMS. Note

that pALMS with p = 1 outperforms ZA-LMS and L0-LMS, and pALMS with p = 1.4

outperforms RZA-LMS. Meanwhile, the mean of the predictor for pALMS in steady-

state is shown in Figures 5.7 and 5.8 for pALMS with p = 1 and p = 1.4, respectively,

using the same approach as in producing Figure 5.4(b). Comparing with the true pre-

dictor c0, we can see that the means of the predictor in both cases are very close to the

true predictor.

Correlated Input Signal

In this case, the input signal is an AR(1) process generated by first filtering

a white Gaussian noise through a system with the transfer function 1
1−0.8z−1 and the
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sequence is then normalized to have unit variance. First, we consider the LMS type

algorithms. The parameter selection is based on the following procedure.

1. For LMS, we choose µLMS = 0.00126.

2. For L0-LMS, there is less guideline for choosing parameters in the case for cor-

related input signal. We choose the parameters such that it yields similar steady-

state MSE to that of LMS. According our experiments and the parameter selection

in the case for white input, we found thatQL0-LMS = 4 and αL0-LMS = 5, κ = 10−7,

µL0-LMS = 0.0015 gives the reasonably good result under this setup.

3. For parameters with ZA-LMS and RZA-LMS, we employ (29) of [26] for choos-

ing ρ. We choose the parameters to have the matching steady-state MSE to that

of LMS. As a result, we choose µZA-LMS = 0.0015, ηZA-LMS = 0.9345, µRZA-LMS =

0.0018, ηRZA-LMS = 26, δRZA-LMS = 10−4.

4. For pALMS, we choose β = 0, ϵ = 0.001, and p = 1, 1.2, respectively. Using

Theorem 10, we choose µpALMS = 0.205, 0.127, respectively, such that these two

pALMS algorithm configurations yield the same steady-state MSE.

The learning curves of different algorithms are illustrated in Figure 5.9.

From Figure 5.9, we can see that LMS, L0-LMS, ZA-LMS, and RZA-LMS have

mathced steady-state MSE. L0-LMS and ZA-LMS have very similar performance, and

they outperform LMS with faster convergence. RZA-LMS outperforms L0-LMS and

ZA-LMS with faster convergence. In contrast, the pALMS algorithms achieve both
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Figure 5.9: Performance comparison of LMS type algorithms. (correlated input)
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Figure 5.10: pALMS: Mean of predictor (p = 1). (correlated input)

faster convergence and lower steady-state MSE. In detail, the mean of the predictor for

pALMS in steady-state is shown in Figures 5.10 and 5.11 for pALMS with p = 1 and

p = 1.2, respectively, using the same approach as in producing Figure 5.4(b). Again,

comparing with the true predictor c0, we can see that the means of the predictor in both

cases are very close to the true predictor. Overall, the experimental results support the

advantage of the affine scaling method for deriving adaptive algorithms that incorporate

sparsity.
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Figure 5.11: pALMS: Mean of predictor (p = 1.2). (correlated input)

5.5.4 Comparisons to Existing NLMS Type Algorithms

We investigate the performance of the pANLMS algorithm by comparing it with

NLMS, PNLMS, IPNLMS, and IIPNLMS. Again, we employ the cases of white input

and correlated input with the same experimental setups as in Section 5.5.3.

White Input Signal

For all algorithm, we choose µ = 0.2 in expectation of the same steady-state

MSE. For PNLMS, ρPNLMS = δPNLMS = 0.001. For IPNLMS, αIPNLMS = 0, ϵIPNLMS =

0.001, δIPNLMS = 0.001. For IIPNLMS, α1,IIPNLMS = −0.5, α2,IIPNLMS = 0.5, ϵIIPNLMS =

0.001, δIIPNLMS = 0.001, ρIIPNLMS = 0.01, γIIPNLMS = 0.1. Figure 5.12 summarizes the

results.

To interpret the results in Figure 5.12, we first note that the IIPNLMS and

IPNLMS have slower initial convergence than PNLMS, but they outperform PNLMS

with faster convergence at later stages, which is consistent with existing observations
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Figure 5.12: Performance comparison of NLMS type algorithms. (white input)

on these algorithms. Note that in this particular experimental setup, the pANLMS with

p = 0.8 and PNLMS have similar behavior, whereas pANLMS with p = 1 and IPNLMS

have comparable performance. These observations partly echoes the analysis in Section

5.4.3. The pANLMS algorithm with p = 1.2 performs better than other choices of p. It

also has slightly faster convergence at the early stage than that of the IIPNLMS. At the

late stage, their curves almost coincide.

Correlated Input Signal

For NLMS, we choose µNLMS = 0.2. For PNLMS, IPNLMS, and IIPNLMS,

we choose µPNLMS = µIPNLMS = µIIPNLMS = 0.2 to expect the same stead-state MSE,

and other parameters are chosen in the same manner as in the case of white input. For

pANLMS, we choose p = 1, 1.2 with µpANLMS = 0.197 in both cases to obtain the

same steady-state MSE, which is predicted by Theorem 10-ii). Figure 5.13 illustrates

the results.

Note that based on Figure 5.13 the NLMS has not converged yet, whereas other
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Figure 5.13: Performance comparison of NLMS type algorithms. (correlated input)

algorithms converge and have agreed steady-state MSE. The IIPNLMS and IPNLMS

converge slower than PNLMS at the beginning, but they outperform PNLMS at later

stages. The pANLMS with p = 1.2 converges faster than IIPNLMS almost throughout

the adaptation, and it has the best performance in this set of algorithms. This experiment

supports the usefulness of pANLMS for dealing with correlated time series.
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5.7 Appendices

5.7.1 Proof of Theorem 9

The proof follows the idea in [99, Theorem 2]. We wish to show that the cost

function (5.3) is decreased at each iteration. Note that (5.3) can be expanded as

J(c) = E |y[i]− cᵀx[i]|2 + β · g(c) = c0Rc0 + σ2
e − 2dᵀc+ cᵀRc+ β · g(c).

Meanwhile, with the assumptions on g(c), according to [92] (absorbing α(c(j)) into

Π(c(j)))

g(c(j+1))− g(c(j)) ≤ 1

2

(
(c(j+1))ᵀΠ(c(j))c(j+1) − (c(j))ᵀΠ(c(j))c(j)

)
. (5.52)

Thus

J(c(j+1))− J(c(j))

=
(
c0Rc0 + σ2

e − 2dᵀc(j+1) + (c(j+1))ᵀRc(j+1) + β · g(c(j+1))
)

−
(
c0Rc0 + σ2

e − 2dᵀc(j) + (c(j))ᵀRc(j) + β · g(c(j))
)

≤
(
c0Rc0 + σ2

e − 2dᵀc(j+1) + (c(j+1))ᵀRc(j+1) +
β

2
· (c(j+1))ᵀΠ(c(j))c(j+1)

)
−
(
c0Rc0 + σ2

e − 2dᵀc(j) + (c(j))ᵀRc(j) +
β

2
· (c(j))ᵀΠ(c(j))c(j)

)
= J(q(j+1))− J(q(j)) (5.53)
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where J(q) is defined in (5.19) at the jth iteration. From (5.19), J(q) is quadratic for

all j and there exists a sequence of {µ(j)}∞j=1, such that J(q) is guaranteed to decrease

at every iteration, i.e. J(q(j+1)) − J(q(j)) < 0. This choice of {µ(j)}∞j=1 ensures the

decrease in J(c) from (5.53), and the algorithm (5.22) converges to a local minimum of

(5.3).

5.7.2 Derivation of a General NLMS Type Algorithm Using Affine

Scaling Transform

With the affinely scaled variable (5.17), an NLMS type algorithm can be derived

by solving following optimization problem

min
c[i+1]

∥q[i+ 1]− q[i]∥22 subject to c[i+ 1]ᵀx[i] = y[i]. (5.54)

The Lagrangian is given by

L = ∥q[i+ 1]− q[i]∥22 + λ(c[i+ 1]ᵀx[i]− y[i])

= ∥W−1(c[i])c[i+ 1]−W−1(c[i])c[i]∥22 + λ(c[i+ 1]ᵀx[i]− y[i])

where λ ∈ R is the Lagrange multiplier. Thus

∇c[i+1]L = 2W−2(c[i])(c[i+ 1]− c[i]) + λx[i]
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and by letting ∇c[i+1]L = 0 we obtain

c[i+ 1] = c[i]− 1

2
λW 2(c[i])x[i]. (5.55)

Multiply both sides by x[i]ᵀ from the left and using the constraint in (5.54), we have

x[i]ᵀc[i+ 1] = x[i]ᵀc[i]− 1

2
λx[i]ᵀW 2(c[i])x[i] = y[i]

which leads to

λ = − y[i]− x[i]ᵀc[i]
1
2
x[i]ᵀW 2(c[i])x[i]

= − 2e[i]

x[i]ᵀW 2(c[i])x[i]
. (5.56)

Substituting (5.56) into (5.55), we have

c[i+ 1] = c[i] +
e[i]

x[i]ᵀW 2(c[i])x[i]
W 2(c[i])x[i].

In practice, we have the prototype NLMS filter as given in (5.28) and (5.29).

5.7.3 Proofs of Theorems 10 and 11

We consider the following model

c[i+ 1] = (1− µ1)c[i] + µ2Gx[i]e[i] (5.57)

e[i] = y[i]− c[i]ᵀx[i] (5.58)
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where µ1, µ2 > 0 and G ∈ RM×M is a fixed diagonal matrix. Note that by letting

µ1 = µ2β, this model agrees with (5.31) and (5.32). Substituting (5.58) into (5.57) and

using (5.30) gives

c[i+ 1] = (1− µ1) c[i]− µ2Gx[i]x[i]
ᵀc[i] + µ2Gx[i]x[i]

ᵀc0 + µ2Gx[i]e0[i]. (5.59)

Define the misalignment vector as c̃[i] , c0 − c[i]. Then, from (5.59), we have

c̃[i+ 1] = ((1− µ1)I − µ2Gx[i]x[i]
ᵀ) c̃[i] + µ1c0 − µ2Gx[i]e0[i]. (5.60)

Based on (5.60), we apply different approaches to prove different parts of the theorems.

Proofs of Theorem 10-i), Theorem 11-i) and Theorem 11-ii-a)

Assumption 1 ensures that x[i], c[i], and e0[i] are mutually independent. Thus,

taking expectation of both sides of (5.60) gives

E c̃[i+ 1] = ((1− µ1)I − µ2GR)E c̃[i] + µ1c0. (5.61)

Hence, the following condition is sufficient for convergence in mean sense [83]

|λmax((1− µ1)I − µ2GR)| < 1. (5.62)

This justifies Theorem 3-i).
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Next, based on (5.60), we have

c̃[i+ 1]c̃[i+ 1]ᵀ

= ((1− µ1)I − µ2Gx[i]x[i]
ᵀ) c̃[i]c̃[i]ᵀ ((1− µ1)I − µ2x[i]x[i]

ᵀG)

+ µ2
1c0c

ᵀ
0 + µ2

2e
2
0[i]Gx[i]x[i]

ᵀG+ µ1 ((1− µ1)I − µ2Gx[i]x[i]
ᵀ) c̃[i]cᵀ0

+ µ1c0c̃[i]
ᵀ ((1− µ1)I − µ2x[i]x[i]

ᵀG) +Q (5.63)

where Q represents the remaining cross terms whose expectations are zeros. Taking

expectation of both sides, and employing the notation Φ[i] = E c̃[i]c̃[i]ᵀ, we have

Φ[i+ 1] = E[((1− µ1)I − µ2Gx[i]x[i]
ᵀ) c̃[i]c̃[i]ᵀ ((1− µ1)I − µ2x[i]x[i]

ᵀG)]︸ ︷︷ ︸
,T1

+ µ2
1c0c

ᵀ
0 + µ2

2σ
2
eGRG+ µ1 ((1− µ1)I − µ2GR)E c̃[i]cᵀ0

+ µ1c0 E c̃[i]
ᵀ ((1− µ1)I − µ2RG) . (5.64)

Let us inspect T1. Note that

T1 = (1− µ1)
2Φ[i]− µ2GRΦ[i](1− µ1)− µ2(1− µ1)Φ[i]RG

+ µ2
2GE[x[i]x[i]ᵀc̃[i]c̃[i]ᵀx[i]x[i]ᵀ]G.

With Assumptions 1 and 2, it can be shown that [83], E[x[i]x[i]ᵀc̃[i]c̃[i]ᵀx[i]x[i]ᵀ] =
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2RΦ[i]R +Rtr(RΦ[i]). Thus,

T1 = (1− µ1)
2Φ[i]− µ2GRΦ[i](1− µ1)− µ2(1− µ1)Φ[i]RG+ µ2

2G(2RΦ[i]R

+Rtr(RΦ[i]))G.

Meanwhile, when µ1, µ2 satisfy (5.62), according to (5.61), we have

E c̃[∞] = µ1 (µ1I + µ2GR)
−1 c0 (5.65)

where the notation E c̃[∞] denotes the mean value in steady state. Then, in steady state,

i.e., i→ ∞,

Φ[∞] = (1− µ1)
2Φ[∞]− µ2GRΦ[i](1− µ1)− µ2(1− µ1)Φ[∞]RG

+ 2µ2
2GRΦ[∞]RG+ µ2

2GRGtr(RΦ[∞]) + µ2
1c0c

ᵀ
0 + µ2

2σ
2
eGRG

+ µ2
1 ((1− µ1)I − µ2GR) (µ1I + µ2GR)

−1 c0c
ᵀ
0

+ µ2
1c0c

ᵀ
0 (µ1I + µ2GR)

−1 ((1− µ1)I − µ2RG) .

We only consider the case where R = I . Thus

ϕ[∞] = (1− µ1)
2ϕ[∞]− 2µ2(1− µ1)Gϕ[∞] + 2µ2

2G
2ϕ[∞] + µ2

2g
2 · 1ᵀϕ[∞]

+ µ2
1c

2
0 + µ2

2σ
2
eg

2 + 2µ2
1 ((1− µ1)I − µ2G) (µ1I + µ2G)

−1 c20 (5.66)
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where ϕ[∞] is the vector of the diagonal elements of Φ[∞], g is the vector of the diag-

onal elements of G, c20 and g2 denote the element-wise squares, and 1 denotes a vector

of all 1’s with a proper size. The steady-state EMSE is

Pex[∞] = lim
i→∞

E[(c̃[i]ᵀx[i])2] = lim
i→∞

tr(Φ[i]E[x[i]x[i]ᵀ]) = tr(Φ[∞]) = 1ᵀϕ[∞].

Hence, according to (5.66),

ϕk[∞]

=
µ2
2G

2
k,kPex[∞] + µ2

1c
2
0,k + µ2

2σ
2
eG

2
k,k + 2µ2

1 (1− µ1 − µ2Gk,k) (µ1 + µ2Gk,k)
−1 c20,k

1− (1− µ1)2 + 2µ2(1− µ1)Gk,k − 2µ2
2G

2
k,k

, AkPex +Bk

Ck

whereAk, Bk, Ck are defined in Theorem 10-i) with proper recognition of µ1, µ2. There-

fore

Pex[∞] =
M∑
k=1

ϕk[∞] =
M∑
k=1

AkPex +Bk

Ck

which gives

Pex[∞] =

∑M
k=1

Bk

Ck

1−
∑M

k=1
Ak

Ck

.

This justifies Theorem 10-i). By requiring 1−
∑M

k=1
Ak

Ck
> 0, we justify Theorem 11-ii-

a).
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Proof of Theorem 11-ii-b)

To handle the case of R, we apply the approach introduced by Sayed [106].

Assume µ1 = 0. Using the result from part (b) of Problem 9.18 in [106], by choosing

Σ = G−1, we have

c̃[i+ 1]ᵀG−1c̃[i+ 1] +
(c̃[i]ᵀx[i])2

x[i]ᵀGx[i]
= c̃[i]ᵀG−1c̃[i] +

(c̃[i+ 1]ᵀx[i])2

x[i]ᵀGx[i]
. (5.67)

By using the following approximation in the steady state

E[c̃[i+ 1]ᵀG−1c̃[i+ 1]] = E[c̃[i]ᵀG−1c̃[i]] (5.68)

we obtain

E

[
(c̃[i]ᵀx[i])2

x[i]ᵀGx[i]

]
= E

[
(c̃[i+ 1]ᵀx[i])2

x[i]ᵀGx[i]

]
(5.69)

Note that, according to (5.60) with µ1 = 0,

c̃[i+ 1]ᵀx[i] = c̃[i]ᵀx[i](1− µx[i]ᵀGx[i])− µx[i]ᵀGx[i]e0[i]. (5.70)

Substitute (5.70) into (5.69) and rearranging terms, we have

Pex =
µ

2
E
[
x[i]ᵀGx[i]((c̃[i]ᵀx[i])2 + e0[i]

2)
]

(5.71)
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Invoking Assumption 4, we have

Pex =
µ

2
E [x[i]ᵀGx[i]] (Pex + σ2

e) =
µ

2
tr(GR)(Pex + σ2

e). (5.72)

Solving (5.72) for Pex leads to Theorem 11-ii-b). Note that this also leads to an expres-

sion for Pex. We suggest using Theorem 10-ii) for Pex, which is derived by [84].



Chapter 6

Concluding Remarks

The past several decades have witnessed a fast growth in the area of sparse signal

recovery. Many applications have been shown to have intimate relations to sparse sig-

nal recovery, promoting the explosive development for practical algorithms. Especially,

recently theoretical advancements regarding the performance issues in sparse signal re-

covery have enhanced the confidence of many practitioners from different science and

engineering disciplines to apply the sparsity recovery techniques to applications of their

interests.

6.1 Summary of Contributions

With the privilege of having access to a plethora of previous developments in

this area, we wish to advance our understandings on the theory, algorithm, and appli-

cations for sparse signal recovery. In this thesis, first, we established the connection

209
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between multiple access communication and sparse signal recovery, and leveraged the

techniques for the former problem to unveil performance limits of the latter. Sharp suffi-

cient and necessary conditions were derived for guaranteeing successful support recov-

ery of sparse signals in the asymptotical sense. We also demonstrated that this method-

ology is flexible and can incorporate with different signal and measurement models for

sparse signal recovery.

Next, we extended the techniques for sparse signal recovery to meet new chal-

lenges in practical applications. To this end, we observed the strengths and weaknesses

of sequential selection methods and joint recovery methods, respectively, and proposed

the MultiPass algorithmic framework that aimed to make the best of both worlds. The

MultiPass Lasso algorithm and the Reweighted MultiPass Lasso algorithm were de-

rived. Experimental results demonstrated their performance improvement in terms of

estimation accuracy and computational complexity.

Then, we applied our experiences in sparse signal recovery to two practical ap-

plications, i.e., robust regression and adaptive filtering. For robust regression, the key

was properly recognizing a sparse component, which represents the outliers in the ob-

servations. For adaptive filtering, the contribution was transforming batch estimation

algorithms, such as FOCUSS, into corresponding online versions which can facilitate

the learning of dynamic systems. Experimental study showed that the proposed algo-

rithms displayed attractive performance improvements.

To conclude, let us briefly discuss several potential research directions enabled

by the theoretical and algorithmic developments presented in this thesis.
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6.2 Suggestions for Future Research

First, we focus on the information theoretic perspective for performance analy-

sis. Note that we established a useful connection between sparse signal recovery and

multiuser communication, and leveraged the information theoretic techniques to tackle

the performance issues in sparse signal recovery. Based on the vast knowledge base and

many ongoing developments in multiuser communication, new opportunities are opened

for exploration.

As one example, the design of channel codes and the development of decoding

methods have been extensively studied in the contexts of information theory and wire-

less communication. Some of these ideas have been transformed into design principles

for sparse signal recovery [1, 6, 70, 96, 137]. Thus far, however, the efforts in utilizing

the codebook designs and decoding methods are mainly focused on the point-to-point

channel model, which implies that the recovery methods iterate between first recovering

one nonzero entry or a group of nonzero entries by treating the rest of them as noise and

then removing the recovered nonzero entries from the residual signal. It motivates us to

envision opportunities beyond a point-to-point channel model. As one important ques-

tion, for example, can we develop practical codes for joint decoding and reconstruction

techniques to simultaneously recover all the nonzero entries?

Another direction of interest is motivated by the role of W , i.e., the nonzero

value matrix, in support recovery. On one hand, we demonstrated that a W with orthog-

onal columns could lead to performance improvement compared to a W with highly
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correlated columns. By improvement, we mean the fewer measurements are needed

given other parameters fixed. On the other hand, the AR-SBL algorithm [138] models

the temporal (row-wise) correlation of W by a first order AR model, and it explicitly

learns the coefficient for this AR model among other parameters. By learning the struc-

ture of the underlying sparse signal, performance improvement can be attained. Here,

by improvement, we mean the performance of support recovery in terms of success rate.

These observations from theoretical analysis and algorithmic development pose an in-

teresting question: Is correlation in the nonzero entries a blessing of a curse for sparse

signal recovery?

We think that the estimation quality of the nonzero entries plays a linking role

between theory and practice. In our analytical framework, we considered asymptotical

scenarios, in which the estimation quality does not play a negative role since it can be

made arbitrarily accurate as the problem size grows to infinity. However, the estima-

tion quality becomes a cause for performance degradation for any finite-size problem.

According to estimation theory, as the dependency among columns increases, the es-

timation quality improves. Although a W with more correlated columns will hurt the

performance in the limiting case, it does make the estimation problem easier in a finite

setting. Therefore, it is conceivable that there exists a performance tradeoff, regarding

the structure of W , between the asymptotic performance limit and the performance that

can be achieved in a finite setting. It will be interesting to characterize the impact of

estimation quality on the performance in finite settings, which is not only of theoretical

importance but also enlightening for the design of practical algorithms.
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Next, the MultiPass algorithmic framework leaves us with several interesting re-

search potentials. First, as observed in the experiments, the MultiPass Lasso exhibits

higher computational efficiency and better estimation accuracy than Lasso. Our theo-

retical analysis addresses the performance improvement in terms of support recovery.

However, it is still unclear why the computational complexity of MPL is lower than

Lasso. It will be helpful to fully understand the theoretical justification behind this ob-

servation. Second, MultiPass algorithmic framework is general, and it can also work

with other joint recovery methods. An interesting possibility would be sparse Bayesian

learning (SBL). Note that in SBL there also exists certain parameter that, in effect, con-

trols the sparsity of the resultant vector. It is generally observed that SBL exerts better

performance than Lasso while having higher computational complexity. Can we derive

a MultiPass version of SBL, which may enhance its estimation accuracy and, in the

meantime, reduce its computational cost?

Further, we note that the proposed framework for deriving adaptive filtering al-

gorithms is general. We studied in detail the adaptive filters using the ℓp norm diversity

measure. It is worth noting that the ℓp norm diversity measure belongs to the family of

separable diversity measures, which can be written as

g(c) =
M∑
k=1

g1(ck)

for some function g1 : R 7→ R. This means that g(c) is a sum of the costs on individual

elements of c. In contrast, there also exist nonseparable diversity measures which cannot



214

be expressed as above. As an example, the sparse Bayesian learning algorithm for sparse

signal recovery employs [129]

g(c) = min
γk≥0,k∈[M ]

cᵀ diag(γ−1
k )c+ log det(αI + A diag(γk)A

ᵀ)

where for some α > 0, and A ∈ RM×M is the measurement matrix. It has been pointed

out that [129] working with nonseparable diversity measures can lead to performance

improvement in sparse signal recovery than using separable diversity measures. It would

be interesting to study such an adaptive version based on the SBL diversity measure and

explore its potential benefit for adaptive filtering applications.
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