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Abstract

Essays in the Economics of a Decarbonized Transportation Sector

by

Marshall Blundell

Doctor of Philosophy in Agricultural and Resource Economics

University of California, Berkeley

Professor James Sallee, Chair

The transportation sector is the largest contributor to anthropogenic U.S. greenhouse gas
(GHG) emissions. If the U.S. is to address climate change, a key mechanism will be through
a transition to a decarbonized transportation sector. Given environmental externalities, it is
clear that the private market will produce too little low-carbon transportation infrastructure.
Policy-makers are attempting to overcome this scale problem by encouraging the build out
of alternative transportation infrastructure. In this dissertation, I examine existing clean
infrastructure policies — the spatial efficiency of infrastructure installed to-date, their effect
on adoption of the new transportation mode, and their effect on other transportation modes.

In the first chapter of this dissertation, I study the location of electric vehicle charging
stations. Absent policy, it is well understood that EV charging network size may be inefficient
because of pollution and network externalities. This paper argues that there will also be
spatial inefficiencies in the location of electric vehicle fast charging stations. I empirically test
for the presence of a spatial inefficiency in the free market by comparing the location decisions
of a vertically integrated firm that sells vehicles and provides a charging network to those of a
non-vertically integrated charging network. I define a metric, enabled e-miles, that captures
whether a charging station mitigates consumers’ range anxiety. I then combine estimates
from a spatial demand model and a simulation of charging behavior to compare charging
demand and enabled e-miles at charging stations in California. I find strong evidence in
favor of a spatial inefficiency in the location decisions of non-vertically integrated charging
providers. These findings show that EV policy should not be location-neutral, but should
consider spatial inefficiencies as well as network size.

In the second chapter of this dissertation, I examine whether the availability of home- and
workplace-charging infrastructure for renters has a detectable effect on EV adoption. Poli-
cies supporting charging infrastructure in workplaces and multi-unit dwellings (MUDs) are
nascent. I aim to address two questions: (i) are such policies effective in increasing invest-
ment in charging stations, and (ii) whether they are effective in promoting EV adoption. I
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provide the first causal evidence on whether charging infrastructure represents a barrier to
adoption for MUD occupants. I find that the subsidies increased the number of charging
stations in a census block group (CBG) by .01. Against the sample average of 0.053, this
represents a 20% increase. I did not detect any effect of charging stations on EV adoption.

In the third chapter of this dissertation, I explore the installation of a bike sharing system in
New York City and its interaction with existing vehicle infrastructure. Bike sharing is one
form of shared mobility service. These increasingly ubiquitous services provide shared use of
a vehicle, bicycle, scooter, or other mode of transportation. They can simultaneously com-
plement and conflict with existing transportation infrastructure. New York City’s Citibike
is the largest bike-sharing system in the country and among its goals is the relief of traffic
congestion. I estimate the causal effect of Citibike on historical street speeds on Manhattan
avenues. I employ Google Maps data to chart the routes between Citibike docks. I match
these routes to rider counts and to novel data on traffic speeds at a 10-meter spatial resolu-
tion. This allows us to exploit variation in treatment intensity along and across avenues in
fine resolution. I control for bike lanes, and other changes in street conditions over time. I
find that the Citibike system decreased speeds on avenues in Manhattan. Overall, I estimate
that the system decreased speed by 2.3% on average. At the maximum observed system
utilization, travel time increased by 9.6%.

Together, these chapters employ travel data, spatial variation and tools, causal identification,
and a combination of data and economic reasoning to draw policy relevant insights about
how to decarbonize the transportation sector. A theme throughout is that the efficient
deployment of infrastructure supporting low carbon transportation should take into account
the location, scale, and utilization of existing infrastructure, be it the installed base of
charging stations, or alternative transportation options.
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Chapter 1

Spatial Inefficiencies in Electric
Vehicle Fast Charging

1.1 Introduction

The transportation sector is the largest contributor to anthropogenic U.S. greenhouse gas
(GHG) emissions. If the U.S. is to address climate change, a key mechanism will be through
electrification of the transportation sector. This is most likely to occur through the adoption
of electric vehicles (EVs). Adoption to date, however, has been slow: in 2018 EVs had a 2%
market share nationwide. Widely cited barriers to EV adoption include range anxiety, cost,
and the availability of public charging infrastructure.

In this paper, I define a metric, enabled e-miles, that captures whether a charging station
mitigates consumers’ range anxiety. I then combine estimates from a spatial discrete choice
demand model and a simulation of charging behavior to compare charging demand and
enabled e-miles at charging stations in California.

A particularly challenging question is how to efficiently subsidize public charging. Given
environmental externalities, it is clear that the private market will produce too little charging
so long as the EV market is inefficiently small. But the two-sided nature of charging–EV
adoption encourages charging build out, and vice versa–makes the optimal policy more com-
plicated (Rochet and Tirole, 2006; Springel, 2019). With these issues in mind, the existing
literature has considered how policy can improve on the private market allocations consider-
ing the scale of charging infrastructure. Less attention has been paid to whether the private
market will create spatial inefficiencies in where chargers are located. Following the logic of
Hotelling’s seminal paper on spatial inefficiency (Hotelling, 1929), business locations in space
can be inefficient due to business stealing effects and travel costs. In this setting, location
decisions can also be socially inefficient because the benefits of vehicle adoption spurred by
a charging station in a new location mostly accrue to competing charging networks. This
would not be the case were there a monopoly charging station network, and would also not
be the case for a charging network with a proprietary charging standard.
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To examine spatial inefficiencies in this setting, I study the location of charging stations
and ask if there is a role for policy. I empirically test for the presence of a spatial inefficiency
in the free market by comparing the location decisions of a vertically integrated firm that
sells vehicles and provides a charging network to those of non-vertically integrated charging
networks. The vertically integrated network has features in common with a social planner. In
particular, its proprietary charging standard means it should internalize any business steal-
ing effect. Furthermore, it will internalize the benefit that a more comprehensive charging
network has on vehicle adoption, and in turn, future charging station demand.

Range anxiety, which is a driver’s fear that a vehicle has insufficient battery capacity
to reach their intended destination, is related to the availability of public charging infras-
tructure. Public charging infrastructure is a remedy to range anxiety in that it allows more
destinations to be reached with a given state of battery charge. For each driver in a typical
year, there exists a set of trips that cannot be completed in an EV of a given battery capacity
given the existing charging network. If a charging station is located appropriately, it may
reduce the size of a driver’s set of unachievable trips. I define a charging station’s e-miles
enabled as the total mileage of the previously unachievable trips that are now possible as
a charging station location is added. E-miles enabled at potential charging station location
depends on the location of other charging stations in the network. In this setting, e-miles
enabled is a major component of consumer value from a charging station that is heteroge-
neous over space. Policy makers are attempting to foster electrification by encouraging the
build-out of a more comprehensive charging network, but many open questions remain about
the role of charging stations and the ideal design of policies to subsidize charging stations1.

My test comprises two questions: A. How does profit correlate with e-miles enabled at a
marginal charging station? B. Do we observe the vertically integrated network entering in
locations with higher e-miles enabled? The magnitude of the correlation between profit and
e-miles is of interest because if the correlation were strong, then firms ignoring e-miles would
nevertheless locate efficiently. Thus a necessary condition for spatial inefficiencies to occur is
that the correlation is weak. Furthermore, if locations with relatively high e-miles enabled are
relatively unprofitable we could expect fewer charging stations in those locations. Question
B examines a manufacturer, Tesla, that puts more weight on e-miles enabled from charging
station locations. This occurs by virtue of its vertical integration, manufacturing vehicles
as well as charging stations which it installs and manages. A finding that the vertically
integrated network enters locations with higher incremental e-miles would be evidence in
favor of a spatial inefficiency in free entry. In theory, how profits compare between a vertically
integrated and non-vertically integrated provider is unclear. In the absence of any business
stealing effects, we might expect revenues to be lower if incremental e-miles is imperfectly
correlated with revenue over space. However, business stealing among competing networks
should lead to excess entry and lower revenue for non-vertically integrated providers.

My paper addresses these questions in four sections. Section I discusses the data used

1www.whitehouse.gov/briefing-room/statements-releases/2021/12/13/fact-sheet-the-biden-harris-
electric-vehicle-charging-action-plan/

https://www.whitehouse.gov/briefing-room/statements-releases/2021/12/13/fact-sheet-the-biden-harris-electric-vehicle-charging-action-plan/
https://www.whitehouse.gov/briefing-room/statements-releases/2021/12/13/fact-sheet-the-biden-harris-electric-vehicle-charging-action-plan/
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for estimation, which includes a novel dataset of “check-ins” to charging stations. Section II
presents an innovative model of spatial demand that allows me to predict charging quantity
at a charging station at an arbitrary location, given an existing network. Section III presents
a simulation of charging behavior used to estimate additional e-miles enabled by a charging
station at a point in space, given an existing network of charging stations. Section IV
combines these methods to empirically test for the presence of spatial inefficiencies in the
fast charging market in California.

I estimate a model of spatial demand based on the existing network of charging stations
in California in 2019. For my application, the model must, for any set of charging station
locations, be able to predict demand for individuals’ charging over space. I construct a
measure of latent demand for refueling over space by using cell phone data to count annual
visitors to gas stations in California that are over 100 miles from home. The restriction to gas
station visits over 100 miles from home aims to model the behavior of EV drivers, the vast
majority of whom have access to home charging. I then use a discrete choice framework that
takes into account distance and charging station characteristics to map refueling demand
to charging station demand using data on visits to charging stations. I use this model to
run counterfactual scenarios to compare demand for a charging station network with and
without each charging station.

A fundamental feature of fast charging networks is that the e-miles enabled of a particular
location depends on the location of all other charging stations in the network. I estimate
the e-miles enabled of a marginal charging station using a simulation approach. I simulate
charging behavior using a large dataset of daily travel diaries, assuming the trips were taken
in a representative EV. Specifically, I construct a recursive EV route-planning function that
I apply to 114,455 trips from the 2017 National Household Transportation Survey California
Add-on. I use this function to estimate, for any set of charging stations, the e-miles enabled
by a marginal charging station in that set. With the simulation architecture in place, this
estimation is simply the weighted sum of miles traveled with a network including a charging
station, minus the weighted sum of miles traveled with a network excluding a charging
station. I then use existing estimates of the value of an electric vehicle’s range to value the
incremental e-miles enabled by a charging station.

I combine my estimates from my spatial demand model and charging simulation, to test
for the presence of a spatial inefficiency. I compare charging demand, and incremental e-
miles enabled for the marginal charging station in the 2019 network in California. I make
this comparison in a counterfactual scenario with equivalent EVs per charging station across
charging standards. I first show that, for a marginal charging station, demand is negatively
correlated with e-miles enabled over space. This suggests that locations with relatively high
consumer value are relatively unprofitable.

A station may be able to maintain higher profits with lower quantities if it can charge
higher prices, or lower costs. If so, then quantities are an incomplete measure of profitability.
While I do not observe prices and costs at all charging stations so cannot estimate profit
directly, the empirical evidence suggests that demand is the main driver of profit in this
setting. In particular, the majority of charging networks in this setting have a uniform price



CHAPTER 1. SPATIAL INEFFICIENCIES IN ELECTRIC VEHICLE FAST
CHARGING 4

across charging stations. Results from regressing price on demand and competition variables
show little correlation, which is consistent with networks not setting prices in a way to extract
rents at remote locations. Identifying the correct explanation for uniform pricing within a
network is beyond the scope of this paper. In an emerging market, a likely explanation is that
varying prices across charging stations would lead to negative reactions from consumers and
would in turn lower demand for that network’s charging stations. DellaVigna and Gentzkow,
2017 identified a similar mechanism as playing a role in uniform pricing at U.S. retail chains.

I then compare demand and e-miles enabled between vertically integrated and non-
vertically integrated charging providers. The average charging stations in the vertically
integrated Tesla network enables 700.6k total annual e-miles, whereas the average charging
stations at other networks enables 55.5k total annual e-miles. This result is consistent with
Tesla entering locations with a higher consumer value, and is strong evidence in favor of
a spatial inefficiency. Tesla’s primary concern in developing a charging network is to sell
vehicles. To that end, they face a stronger incentive to design a network which maximizes
consumer than charging networks that do not sell vehicles. Moreover, other charging net-
works that do not sell vehicles share a charging standard with competitors. Therefore they
only receive a fraction of the benefit of vehicle adoption spurred by their investment. I find
average annual demand at Tesla chargers is slightly lower than at chargers in other networks.
Lower demand per charger at Tesla chargers suggests that the effect of entering locations
with a high consumer value that tend to have lower demand outweighs the business stealing
effect that increases crowding and reduces demand at other networks. These findings suggest
that leaving location decisions to non-vertically integrated, charging station providers may
result in sub-optimal location choice. EV policy should not be location-neutral, but should
consider spatial inefficiencies as well as network size.

Under the bipartisan infrastructure law, states are eligible for $5 billion in funding for
charging stations under the National Electric Vehicle Infrastructure (NEVI) Formula Pro-
gram.2 To receive funding, eligible stations must be no more than 50 miles apart and
must be installed on interstates and major highways that are designated as Alternative Fuel
Corridors. A maximum distance between stations, and a requirement that stations are in-
stalled along high-demand corridors, shows that policy makers recognize the importance of
a comprehensive network of charging stations to vehicle adoption. However, without more
structured guidance on location, a roll-out could still be inefficient. In California’s plan3,
corridors are segmented and vendors submit proposals to install charging stations on seg-
ments. Segments with lower demand may be undersupplied with charging stations under
such a scheme. Nevertheless, the structure of the NEVI program and state plans shows that
location is a concern for policy makers. This work represents a formal justification for such
a location-based policy.

This paper makes three main contributions. The first is to a growing literature on

2www.fhwa.dot.gov/bipartisan-infrastructure-law/evs 5year nevi funding by state.cfm
3dot.ca.gov/-/media/dot-media/programs/sustainability/documents/nevi/2022-ca-nevi-deployment-plan-

a11y.pdf

https://www.fhwa.dot.gov/bipartisan-infrastructure-law/evs_5year_nevi_funding_by_state.cfm
https://dot.ca.gov/-/media/dot-media/programs/sustainability/documents/nevi/2022-ca-nevi-deployment-plan-a11y.pdf
https://dot.ca.gov/-/media/dot-media/programs/sustainability/documents/nevi/2022-ca-nevi-deployment-plan-a11y.pdf
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charging stations and the electric vehicle market. J. Li, 2019 and Springel, 2019 both model
electric vehicle purchases and charging station investment as a two-sided market. J. Li, 2019
examines the ambiguous impact of mandating compatibility standards on market outcomes
and welfare. J. Li, 2019 models charging station investment in markets and along city
corridors. Springel, 2019 investigates optimal subsidy structure and models charging station
entry in a market as a function of the installed base of EVs in that market. This work
contributes in several dimensions. First, I highlight the potential divergence in consumer
value and producer value of charging stations across space. Even under a flat subsidy set
optimally, entry across or within a market or city corridor may be socially inefficient. Next,
my work is the first to consider how incentives facing charging stations differ according to
whether they are owned and operated by a vehicle manufacturer. This can exacerbate spatial
inefficiencies because the surplus from vehicle purchases does not accrue to the charging
station entrant. Dorsey, Langer, and McRae, 2022 estimate an imperfect information discrete
choice model of drivers’ gas station refueling preferences. They find that investment in
charging speed lowers drivers’ refueling time more than investment in additional charging
stations. This paper is the first to estimate charging station demand using empirical data
from installed charging stations.

This work also contributes to a literature on the general phenomenon whereby profits
are poorly correlated with total surplus from a firm’s operations, and inefficient outcomes
result. This phenomenon was first investigated in the context of monopolistic competition
and optimal product variety (Dixit and Stiglitz, 1977; Koenker and Perry, 1981; Mankiw and
Whinston, 1986; Spence, 1976). My setting, in which companies choose to enter different
markets (location) with different profits, is similar to Borenstein, 1988. Borenstein, 1988
shows that the difference between private and social incentives in a competitive permit
allocation process can be large. S. Li, 2017 empirically quantifies the welfare consequences of
the two mechanisms for vehicle licenses in China, a context with large negative externalities.
The analysis shows that different allocation mechanisms lead to dramatic differences in
social welfare. This paper contributes by examining the correlation between profits and
total surplus in a two-sided markets context, where some firms are vertically integrated.

Finally, this work contributes to a literature examining ownership structure and prod-
uct differentiation. Existing studies have examined the effect of horizontal integration on
product variety. Berry and Waldfogel, 2001 study the effect of mergers on variety in ra-
dio broadcasting. They find that increased concentration from mergers increased program
variety relative to the number of stations in the market. Sweeting, 2010 also studies the
effect of mergers and business stealing in radio broadcasting. The authors find that when
firms buy competing stations, aggregate variety does not increase, and the gains in market
share come at the expense of other stations in the same format. Seim and Waldfogel, 2013
examine the entry decisions of Pennsylvania’s state liquor retailing monopoly, with an em-
phasis on location choice. The authors estimate a spatial model of demand for liquor and
compare market outcomes and locations under the status quo of a state monopoly to the
profit- and welfare-maximizing locations. My demand model is similar to that in Seim and
Waldfogel, 2013, but I relax the assumption that each consumer visits the nearest location.
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This study also contributes by examining the effect of vertical integration on spatial product
differentiation in a novel two-sided markets setting where a vertically integrated firm has
characteristics in common with a social planner.

1.2 Data

This study draws on three main data sources. For my charging simulation, I use the Califor-
nia Add-On for the 2017 National Household Transportation Survey (NHTS). My demand
model draws on “check-ins” to charging stations sources from a large online platform, and
travel demand data in the form of visits to gas stations in California. The travel demand
data includes counts of monthly visitors to gas stations in California, broken out by the
visitors’ home census block group (CBG).

Geocoded Trips Data

I use the California Add-On for the 2017 National Household Transportation Survey (NHTS).
These data comprise a detailed travel diary for a selected day of the year for 23,405 households
in California. The geocoded version that I employ includes the latitude and longitude of the
start and end points of each trip and includes whether the trip started or ended at home.

I restrict the sample to trips taken by vehicle (car, SUV, pickup, or van), where a member
of the respondent household was the driver, and to trips originating or ending in California.
I also remove 216 “loop” trips that have the same origin and destination location. This
leaves 114,455 trips taken by 20,868 households. I define a trip chain as all trips in a day
taken by a household’s vehicle. The data comprise 29,644 trip chains.

These data do not include detailed information on the route taken. I use a routing API,
HERE Matrix Routing API, to calculate detailed routes for each trip.4 The API computes
energy consumption of a typical electric vehicle on the route. The consumption model takes
into account elevation change, traffic speed, and other factors.5 I supply the departure time
of the trip and the routing model uses historical traffic information to estimate consumption.6

The charging station data I use only contains charging stations for the state of California,
so I truncate trips that span the boundary of the state.

Charging Stations Data

My charging stations data are drawn from a comprehensive dataset of locations of public EV
charging stations in California. The dataset includes “check-ins” by users, which I employ
as a proxy for demand. The data were obtained from a mobile application and website
that allows EV owners to locate charging stations. The data include charging stations for

4developer.here.com/documentation/matrix-routing-api/dev guide/index.html
5developer.here.com/documentation/routing-api/dev guide/topics/use-cases/ev-routing.html
6Heating and air conditioning use, which affects energy use, is not included in the model.

https://developer.here.com/documentation/matrix-routing-api/dev_guide/index.html
https://developer.here.com/documentation/routing-api/dev_guide/topics/use-cases/ev-routing.html
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each of the three fast charging standards: Supercharger, which is Tesla’s charging stations;
CHAdeMO, which is used by Nissan and the Kia Soul MK1; and CCS, which is used by all
other manufacturers.

I observe charging stations installed up to February 2020. For each charging station, I
observe the installation date, the network, the number of chargers of each standard, and the
total number of check-ins since installation. I also observe more detailed information on the
50 most recent check-ins, including username, date, and vehicle type. For some charging
stations, I interpolate total check-ins since the installation date to find the check-ins for my
study period, February 2019 to February 2020. This interpolation is necessary for charging
stations that were installed before February 2019 and that have all 50 of the most recent
check-ins occur after February 2019.

A potential source of bias in these data is that the platform is primarily used to find
charging stations and plan trips. That same function is provided by software in Tesla ve-
hicles, which route users to Superchargers when charging is necessary on a trip. While
some vehicles with the CCS and CHAdeMO standard include similar software, many do
not. This means Tesla users, and therefore check-ins to Superchargers are likely to be un-
derrepresented. To address this issue, I perform separate normalizations of check-ins to the
population of registered vehicles of each standard in the state of California in 2019. To do so,
I use detailed data on the 50 most recent check-ins to estimate the total number of vehicles
of each standard represented in the data. For users who report their vehicle type, I compute
check-ins per vehicle for vehicles of each standard. I then divide total annual check-ins of
each standard by the appropriate vehicles per check-in, to estimate number of vehicles of
each standard represented in the data. This method also accounts for a potential source of
bias in that some standards such as Tesla tend to have larger ranges and so check-in less
frequently. Finally, using statewide data on the number of registered EVs of each charging
standard, I normalize check-ins at charging stations of each standard according to the ratio
of population vehicles to vehicles represented among platform users.

In addition to a charging station’s location, and check-ins, I obtain its name, a description,
a description of the price for charging, and a categorical variable that encodes places of
interest, such as a school, or workplace, or apartment building, where the charging station
is located.

Travel Demand Data

I use a demand model that predicts charging demand from consumer travel demand over
space. To model latent travel demand over space, I first discretize consumer locations to the
level of a gas station location. I then construct an annual count of visitors to gas stations in
California that are over 100 miles from home using cell phone data from the data company
Safegraph. My data ranges from January 2019 to December 2019. The data records, for
every gas station, monthly counts of visitors from every CBG to yield a monthly panel at
the gas station, home CBG level. I restrict to home CBG-gas station combinations that are
over 100 miles apart in great-circle distance. To create a more representative sample, for
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each CBG, I create a weight equal to the population as measured in the ACS divided by
the number of devices in the Safegraph sample. Since the travel demand of EV owners, who
tend to be wealthy, might differ from that of non-EV owners, I weight visitors from each
CBG by the proportion of electric vehicles of a particular charging standard in each home
CBG. I apply this weight and aggregate to the gas-station level to yield total visits in 2019
that are over 100 miles from home.

Other

I use vehicle registrations data from the California DMV. The data provide counts of total
vehicle registrations by census block group (CBG), by year. Within a CBG-year, the data
are further broken out in a fuel-technology subcategory that includes battery electric vehicle
(BEV), fuel-cell electric vehicle (FCEV), internal combustion engine (ICE), and plug-in-
hybrid electric vehicle (PHEV). I use fuel-technology variable to categorize vehicles as EV
or non-EV.

I use county-level estimates of registered EVs by charging standard from California Air
Resources Board. Charging standards include CCS, CHAdeMO, and Tesla.

1.3 A Spatial Demand Model

For this application, a demand model must, for any set of charging station locations, be able
to predict charging demand from travel demand over space. I use a discrete choice framework
to model consumers’ decision to visit a charger and estimate its parameters based on the
existing network of charging stations in 2019.

I discretize consumer locations and model latent charging demand over space at the level
of a gas station location. I take the number of potential consumers at a location to be
observed visits to gas stations, considering only visits that are over 100 miles from home.
Since the travel demand of EV owners, who tend to be wealthy, might differ from that
of non-EV owners, I weight visitors from each CBG by the proportion of electric vehicles
of a particular charging standard in each home CBG. My demand function then relates
charging station demand, derived from the check-ins data, to the share of latent demand at
each charging station that is within 15 miles of a gas station. The share of latent demand
obtained by each charging station is a function of distance of a charging station from a
gas station, and other charging station characteristics such as the number of chargers at a
station.

Formally, let Csg be the set of charging stations of standard s such that gas station g is
within 15 miles of great-circle distance. By restricting the choice set at a gas station location
to charging stations within 15 miles I assume consumers would not travel more than 15 miles
out of the way to use a charging station. This means that travel demand at a gas station is
never allocated to a charger more than 15 miles away.
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Consumer i at gas station g’s conditional indirect utility from traveling to charging station
c of standard s to charge is

Vigcs = X ′
gcβx − βddgc + ϵigcs, (1.1)

where Xgc is a vector of charging station characteristics, and dgc is the great-circle distance
from charging station c to gas station g. I assume ϵigcs is distributed extreme value. I assume
charging stations only compete with charging stations of the same standard. This yields logit
purchase probabilities π for charger c of standard s at a gas station location g:

πgcs =
exp

(
X ′

gcsβx − βddgcs
)

1 +
∑

c∈Csg
exp

(
X ′

gcsβx − βddgcs
) . (1.2)

Aggregate demand for charging from gas station g, Q̂gcs, and at charging station c, Q̂c are
given by

Q̂gcs = πgcsMgs (1.3)

, and

Q̂cs =
∑
g∈Gcs

Q̂gcs

Mcs

Mcs = πcsMcs (1.4)

, where Mgs denotes the number of potential consumers at gas station location g with
standard s and Mcs =

∑
g∈Gcs

Mgs. Mgs is the number of consumers visiting gas station
g over 100 miles from home, weighted by the proportion of EV registrations in their home
CBGs of a particular standard.

Estimation

I estimate the demand model using maximum likelihood. Parameter estimates maximize
likelihood of observing check-ins to charger c, Qc, given data on characteristics and distance
from the charging station of the gas stations making up the charging station’s catchment
area. The log-likelihood function is given by

lnL = −
C∑
c=1

∑
s∈{Tesla,Combo}

(Qcs ln(πcs) + (Mcs −Qcs) ln(1− πcs)) , (1.5)

where Qcs is check-ins at a charging station of each standard, scaled up using the popu-
lation of registered vehicles of each standard, as discussed in the data section.

Model Estimates

I estimate the model using data at the charging station, gas station level for 2019. I restrict
the choice set for each gas station to charging stations that are within 15 miles, measured
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Figure 1.1: Schematic Presentation of Spatial Demand Model

Note: This figure shows how gas station demand is allocated to charging stations. Charging stations are
shown as orange circles and gas stations as violet squares. For simplicity, I omit the standard subscript
s. Both charging stations a and b are within 15 miles of gas station i and so are included in the choice
set for that gas station, but only the lower charging station b is within 15 miles of gas station j. Mg, the
number of potential consumers at each gas station, is allocated to charging stations using estimated choice
probabilities πgc to compute Q̂c, aggregate demand for charging at each charging station. In estimation,

aggregate demand for each charging station is used to compute charging station market shares πc = Q̂c

Mc
.

Market size for charging station c is Mc =
∑

g∈Gc
Mg where Mg is the number of consumers visiting gas

station g over 100 miles from home, and Gc is the set of gas stations within 15 miles of charging station c.

in great-circle distance. I include the great-circle distance between each gas station and
charging station in my model to capture the effect of distance on demand.7

Table 1.1 shows the coefficients from my estimated demand function. Column 1 reports

7It was cost prohibitive to include measure driving time or driving distance for each 702 x 10,359 gas
station, charging station combination, or even for just the 291,690 combinations in my analysis dataset that
are within 15 miles in great-circle distance.
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estimates including only distance as a variable. Column 2 includes controls for the number
of chargers of each standard at a charging station. Tesla charging stations, or Superchargers,
only ever include Tesla chargers, while other charging stations can include chargers for both
CCS and CHAdeMO standards. Column 3, my preferred specification, includes binary
variables encoding the network, for which the base category is unnetworked charging stations.
The coefficient on distance is then identified by within-network variation in distance and
demand.

The estimated coefficient on distance is stable across specifications. The average marginal
effect of a one mile increase in distance based on column (3) is -0.021.

Figure 1.2 shows the distributions of annual quantity per charger that I observe in the
data, alongside predictions from the demand model. To account for variation the in number
of chargers at charging stations, I display quantities per charger at each charging station,
weighted by the number of chargers at each station. Predictions from the model fit the
data closely. The average annual predicted quantity is 229.2 per charger, and the average
annual quantity in the data is 212.3. While I normalize quantities to match the number
of registered EVs of each charging standard, I cannot account for the fact that an average
user does “check-in” every time they charge. An implication of this is that annual charging
quantities that I observe are almost certainly lower than the true annual quantities.

1.4 A Simulation of Charging Behavior

A fundamental feature of fast charging networks is that the consumer value of a particular
location depends on the location of all other charging stations in the network. A simple
example is that the value of adding an additional charging station to a location depends on
whether the location is already occupied by an existing charging station. Another example
is an additional charging station in a remote location that is only valuable with sufficient
charging stations in less remote areas such that the remote location is reachable. This feature
presents multiple difficulties in conceiving of an experiment to estimate the value of charging
stations.

A simple experiment where California is divided in two and charging stations added to one
half would not yield causal estimates because vehicle purchasers state wide value the entire
charging network and so potential outcomes are affected by other units’ treatment. In an
ideal experiment, there would be multiple states of the world, where in each state a charging
station was randomly assigned to some point in space, with the existing network unchanged.
With data on vehicle demand, electric vehicle sales in different states of the world could be
compared to estimate the consumer value of charging stations over space, given the existing
network. The empirical intractability of this problem lends itself to simulation. I construct
a route-planning function that I apply to 114,455 trips from the 2017 NHTS California Add-
on. I use this function to estimate, for any set of charging stations, the incremental e-miles
enabled by a marginal charging station in that set. With the simulation architecture in
place, this estimation is simply the weighted sum of miles traveled with a network including
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Table 1.1: Demand Model Estimates

(1) (2) (3)

Distance (miles) −1.061∗∗∗ −1.112∗∗∗ −1.101∗∗∗

(0.234) (0.230) (0.233)

Tesla chargers 0.041∗∗ 0.001
(0.015) (0.022)

CHAdeMO chargers 0.003 0.020
(0.067) (0.043)

CCS chargers −0.020 0.026
(0.018) (0.020)

ChargePoint −0.103
(0.401)

Electrify America −0.500
(0.401)

EV Connect −0.144
(0.621)

EVgo −0.309
(0.376)

Greenlots −0.064
(0.502)

Supercharger 0.911
(0.567)

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001. Results based on 291,690 charging station-gas station level observa-
tions, for 702 charging stations. The dependent variable is annual check-ins at a charging station of each
standard, scaled up using the population of registered vehicles of each standard, as discussed in the data
section. Standard errors are block bootstrapped at the charging station level (250 replications). Omitted
category for network fixed effects is unnetworked charging stations.
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a charging station, minus the weighted sum of miles traveled with a network excluding a
charging station. I then use existing estimates of the value of an electric vehicle’s range to
value these miles.

A Recursive Charging Function

Many electric vehicles are equipped with software that helps a driver find charging stations
and plan when to charge to reach their destination. Otherwise, there exist apps, such as A
Better Route Planner, that provide the same service.8 I construct a charging route planner
that operates as a simplified version of such software.

The function operates on a trip chain, which is the set of trips that a household’s vehicle
makes in a day. I define a trip chain T ∈ T as the tuple T := (R,E, PD,H), where R is
a vector of routes in a day completed by a household’s vehicle, E is a vector of trip energy
consumption values in kWh, PD is the vector of destination parting durations, and H is a
binary vector encoding whether the destination is the household’s home. The function takes
into account battery parameters, which are a vector B := (Bmax, Bmin, Bs), where Bmax is
capacity in kWh, Bmin is the minimum battery state in kWh, and Bs is the state of charge
in kWh at the time of the function call. I set Bmax to 75 kWh in my main specification,
which is commensurate with the usable battery capacity of a long range Tesla Model 3 in
my study period.9 I set Bmin to be 10% of Bmax. All trip chains begin with a full charge i.e.
Bs = Bmax. The set of available charging stations C ∈ C is a set of points with longitude
and latitude. The output of the function is in M, the space of mileage (completed and
remaining) and minutes charging variables, where M := (Mc,Mr,minutes). Formally, the
function Charge : T × B × C ×M → M is recursively defined as follows,

Charge


T
B
C
M



=



(Mc +
∑

j miles(Rj), 0,minutes), if
∑

j Ej ≤ Bs −Bmin

Charge

 T−1

(Bmax, Bmin, Bs − E1)

(Mc +miles(R1),Mr −miles(R1),minutes)

 , if E1 ≤ Bs −Bmin

Charge

 T ′

(Bmax, Bmin, B
′
s)

(M ′
c,M

′
r,minutes′)

 , if fast charger available

(Mc,
∑

j miles(Rj),minutes), otherwise.

(1.6)

8www.abetterrouteplanner.com
9www.electrek.co/2017/08/08/tesla-model-3-battery-packs-50-kwh-75-kwh-elon-musk/

https://abetterrouteplanner.com/
https://electrek.co/2017/08/08/tesla-model-3-battery-packs-50-kwh-75-kwh-elon-musk/
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The first conditional statement considers whether the sum of consumption of all trips in
the chain is less than the battery state minus the minimum tolerance:

∑
j Ej ≤ Bs − Bmin.

In that case, the entire chain can be completed and the mileage is updated with the miles of
all trips in the chain (Mc +

∑
j miles(Rj)), miles remaining is set to 0, and minutes which

is minutes charged, is unchanged.
The second conditional statement considers whether the consumption in the first trip in

the chain is less than the battery state minus the minimum tolerance: E1 ≤ Bs − Bmin. In
that case the trip can be completed, and the trip is removed from the chain (T−1), the battery
state is updated to Bs −E1, and the miles completed and miles remaining are updated with
the trip’s mileage.

Finally, the third conditional statement examines whether a fast charging station is avail-
able. In each call to the function, the set of potential charging stations C is projected onto
the trip route R1, and those within a mile of a route are available to use. When multiple
charging stations are available along a route, the function selects the furthest such that bat-
tery state remains above the minimum upon arrival. When a charging station is used, the
route is split at that charging station and updated to T ′, the battery capacity is updated
to B′

s = .8Bmax. Electric vehicles have a “charging curve” which describes the relationship
between charging speed and battery capacity. Charging speeds slow considerably above 80%
capacity, so I model a user as only being willing to charge to 80%. Before being called again,
the function updates mileage to M ′

c by adding the distance of the route to the charger to
mileage covered so far, subtracts that distance from mileage remaining, and updates min-
utes charged. If a charging station is not available, the chain cannot be completed and the
function returns miles completed up to the current trip, the total miles remaining, and the
minutes charged.

The recursive charging algorithm is “greedy” in that it operates on each trip in the chain
without looking ahead to the next trip. This assumption is consistent with the behavior of
a myopic driver who does not know, or does not think about, their next trip.10 A simple
refinement for future work might allow a driver to estimate the state of charge they finish
the current trip with, and look ahead to the next trip to see if they can complete the trip,
and if not, charge at the last available charging station in the current trip. I allow a driver
to charge at home in a trip chain whenever the destination is their home, where I assume
there is a level 2 charging station that charges at 6.6 kW.

10An unrealistic result that can arise from the assumption that drivers are myopic is that adding a charging
station can actually reduce e-miles enabled in some trip chains. This occurs when, under the addition of a
charging station, a driver finishes a non-terminal trip in a chain with a lower state of battery than if the
charging station had not been added. This might occur, for example because the driver charges once in the
middle of the trip at the new charging station, rather than at existing charging stations at the beginning
and at the end of the trip. Finishing the non-terminal trip with a lower state of charge might make it harder
to complete the subsequent trip and therefore e-miles might be lowered for a trip chain.
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Estimating Incremental E-miles of Charging Stations

To estimate annual incremental e-miles for a set of charging stations C, I create subsets of C
corresponding to charging stations of each standard: {Cs : s ∈ Tesla, CHAdeMO,CCS}.
The subsets are overlapping, since many charging stations accommodate both CHAdeMO
and CCS standards. I compute e-miles for trip chain T j for charging station ci ∈ Cs, by
applying the Charge function with and without ci:

e−milesi

= 365
∑
s

∑
j

Charge


T j

B
Cs

M

− Charge


T j

B
Cs,−i

M


WjP (EV, S)j

= 365
∑
s

∑
j

(Ms,j −Ms,j,−i))WjP (EV, S)j

(1.7)

I compute the difference in miles completed of each trip chain with and without the
charging station, of a particular standard, Ms,j, and Ms,j,−i, and take the weighted sum over
all trip chains. Wj are the NHTS sample weights. P (EV, S) is the probability of an EV
of a particular standard being observed in the census block group (CBG) of that sample
household. I construct P (EV, S)j by merging the household’s CBG with the proportion of
passenger vehicles in a CBG in 2019 in CA that are EVs. I then multiply by the proportion
of registered EVs in each county in 2019 of each standard to yield the probability of an EV
of a particular standard in each CBG.

For a small number of trip chains, adding a charging station reduces e-miles traveled.
This result is an artifact of the “greedy” behavior of the Charge function. This occurs
in the function because adding a charging station results in a the driver charging further
along their route, meaning they can complete more trips in a chain, but the battery becomes
depleted on a trip without a charging station. If the charging station had not been added,
the battery would have been depleted on an earlier trip in the chain that had a charging
station available. To correct this, I restrict the trip chain-level difference in miles completed
under an additional charging station to be weakly positive.

Simulation Results

To evaluate my simulation methodology, I simulate charging behavior under the expansion
of the fast charging network from 2013 to 2020. I use a selection of vehicle range parameters
as an input to the simulation. For the charging network, I use the observed network installed
in February of each year. I weight the output using NHTS 2017 sample weights multiplied by
the 2019 proportion of vehicles of each standard at the CBG, which yields weighted average
across charging standards in 2019.
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Figure 1.3 presents simulation results showing the relationship between e-miles and an
EV’s range under the expansion of the fast charging network from 2013 to 2020. For a given
year’s charging network, as a vehicle’s range increases, average annual e-miles increases. In
2013, when the charging network is incipient, average annual e-miles are still over 10,000 for
all vehicle ranges. Because most trips occur close to home, and I assume individuals leave
home at the start of a trip chain with a full battery, the majority of annual mileage can
be completed with an EV with relatively low range. As one would expect, as the charging
network expands, for a given range, more e-miles can be completed. The year-on-year
increase in e-miles is larger for vehicles with a lower range. In 2019, the effect of range on
e-miles is fairly linear, whereas in earlier years the relationship is concave.

Figure 1.4 presents simulation results showing the relationship between annual minutes
spent fast charging and an EV’s range under the expansion of the fast charging network from
2013 to 2020. For a given year’s charging network, increases in range reduce the average
annual minutes spent fast charging. As the charging network expands, some trips that
were not possible under a small charging network become possible and are taken under an
expanded charging network. This effect increases average annual time spent charging as a
network expands. The year-on-year increase in minutes spent charging is larger for vehicles
with a lower range. The same long trip might be possible under an expanded network for
a vehicle of 175 mile range and 300 mile range, but the 175 mile range vehicle will have to
charge multiple times.

1.5 A Test for Spatial Inefficiencies

In this section I combine estimates from my choice model and my simulation in a simple
test for spatial inefficiencies in fast charging location decisions. I address two questions: A.
How does profit correlate with consumer value at marginal charging stations over space? B.
Do we observe the vertically integrated network entering in locations with higher consumer
value?

How does Profit Correlate with Consumer Value across Space?

Theory tells us that in general, profits do not capture net surplus. I use my simulation
methodology to estimate e-miles enabled, which is the ability of a charging station to alleviate
range anxiety by enabling trips at marginal charging stations. E-miles enabled is a major
component of consumer value that is heterogeneous over space in this setting. I use my
demand model to estimate the net change in a network’s demand when a charging station
location is added to a network, and I show that demand is the main driver of profit in this
setting. If the correlation between e-miles enabled and profit across space was strong, this
would be evidence against the possibility of spatial inefficiency. Unless business stealing
effects were large, we would expect networks to enter locations with high profitability, which
would also have high enabled e-miles. However, if the correlation was weak, we should expect
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spatial inefficiencies to be present, since entry to a marginal location that is profitable would
not necessarily mean that location had a high value of e-miles enabled.

A challenge in comparing charging stations across space is that different charging stan-
dards have a different installed base of electric vehicles. Table 1.2 shows counts of vehicles,
charging stations, and chargers by standard for 2019. Firstly, note that the number of regis-
tered Tesla vehicles is almost double the number of registered vehicles of the other standards
combined. Secondly, note that while Tesla has more chargers than other standards, Tesla
still has more vehicles per charger, at 83.52, than the other standards, which have 38.16
vehicles per charger, when combined. An implication of this disparity is that a comparison
of charging demand at Tesla chargers versus chargers of different standards, suffers from the
fact that there are many more registered Tesla EVs compared to EVs of other standards,
even when normalized on a per charger basis. All else equal, charging demand at Tesla
charging stations will by higher simply because the installed base of EVs is higher. Simi-
larly, weighting trip chain level output of my simulation by the installed base of vehicles of
each standard will lead to more annual e-miles enabled at Tesla charging stations simply due
to the number of registered Tesla EVs.

Table 1.2: Counts of Vehicles, Charging Stations, and Chargers by Standard for 2019

Standard Vehicles
Charging
stns. Chargers

Vehicles per
charging stn.

Vehicles
per charger

Tesla 168, 551 143 2, 018 1, 178.7 83.5
CCS 67, 449 512 1, 490 131.7 45.3

CHAdeMO 27, 298 557 993 49 27.5
CCS/CHAdeMO 94, 747 559 2, 483 169.5 38.2

Note: Vehicle counts were obtained from the California Department of Motor Vehicles (CBG-level counts)
and California Air Resources Board (county-level counts by standard). Counts of charging stations and
chargers were obtained from a mobile application and website that allows EV owners to locate charging
stations.

To compare charging quantity and e-miles enabled across space in a way that addresses
the different vehicles per charger of different charging standards, I increase the installed base
of registered EVs of CCS and CHAdeMO standards such that the vehicles per charger is
the same as Tesla. In my demand model, this results in a higher value of Mgs, the number
of potential consumers at gas station location g with standard s ∈ {CCS,CHAdeMO}. In
my simulation method, inflating the installed base of CCS and CHAdeMO EVs results in a
higher value of P (EV, S), the probability of an EV of a particular standard being observed
in a CBG of a household, which is the weight applied to results in equation (7). Appendix
A.1 presents results from an alternative normalization, which rolls the development of the
CCS and CHAdeMO networks back to 2015, while maintaining the 2019 Tesla network,
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so as to have an equivalent number of vehicles per charger. The results of the alternative
normalization are very similar to those I present here.

Figure 1.5 compares annual charging demand, and annual e-miles enabled for marginal
charging station locations in California. Each data point is a charging station location. The
size of each point represents the number of chargers at the charging station. In the top
left quadrant are locations with high demand and low e-miles enabled. The bottom right
quadrant shows locations with low demand and high e-miles enabled. There are no locations
with high values for both e-miles enabled and demand. The blue line is a linear fit showing
the negative relationship between e-miles enabled and demand across locations. Locations
with a high demand tend to be smaller in terms of chargers per location and locations with
high e-miles tend to be larger. Networks that put some weight on consumer value and
install in locations with a high value for e-miles enabled should also have a incentive to
reduce crowding at those locations by installing more chargers. Overall, negative correlation
between demand and e-miles enabled over space is evidence that spatial inefficiencies could
be present. If the top right quadrant of this graph were populated, and there existed locations
with both high annual e-miles enabled and high demand, there would be less reason to expect
locations with high consumer value to be absent from the market.

In figure 1.5 I compared annual charging demand with e-miles enabled, while I sought to
compare profitability. A station may be able to maintain higher profits with lower quantities
if it can charge higher prices, or lower costs. If so, then quantities are an incomplete measure
of profitability. While I do not observe prices and costs at all charging stations so cannot
estimate profit directly, the empirical evidence suggests that demand is the main driver
of profit in this setting. Table 1.3 summarizes charging station prices in $/kWh across
networks.11 EVgo, the largest charging network in terms of number of charging stations, has
four price zones in California: Bay Area, Los Angeles and Inland Empire, San Diego, and
greater California. Overall, prices are very similar with a standard deviation of just $0.02
across charging stations. The next two networks by size, Tesla’s Supercharger network, and
Electrify America, both have a uniform price statewide. In Appendix 2, I present results
from regression charging station price on demand and competition variables. There is little
correlation between price and measures of competition and demand, which suggests networks
are not setting prices in a way to extract rents at remote locations.

Do Vertically Integrated Networks Enter Locations with Higher
Consumer Value?

To answer question B, I examine a manufacturer, Tesla, that is vertically integrated. Tesla
manufactures and sells vehicles in addition to installing and managing a network of fast
charging stations with a proprietary standard that can only be used by Tesla vehicles. While

11In the price data that I observe, charging stations price per minute, per session, per kWh or a combina-
tion of the three. I convert per minute and per session prices to per kWh prices by assuming a user charges
25 kWh at a rate of 50 kW.
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Table 1.3: Prices ($/kWh) by Network

Network N Mean SD min max

EVgo 278 0.30 0.02 0.28 0.34
Supercharger 143 0.31 0 0.31 0.31

Electrify America 89 0.31 0 0.31 0.31
ChargePoint 68 0.28 0.12 0 0.50
Greenlots 31 0.25 0.19 0 0.60
None 19 0.30 0.26 0 0.59
Nissan 14 0 0 0 0

EV Connect 10 0.23 0.19 0 0.49
Other 4 0.22 0.22 0 0.49

Note: Data were obtained from a mobile application and website that allows EV owners to locate charging
stations. I convert per minute and per session prices to per kWh prices by assuming a user charges 25 kWh
at a rate of 50 kW.

an ideal test would compare charging station locations under free entry and a social planner,
my test is meaningful because Tesla shares features in common with a social planner. Firstly,
it should put some weight on e-miles enabled at charging locations, because consumer demand
for vehicles is a function of the quality of a charging network, and the e-miles enabled by
a charging network is a major component of consumer value at a charging station location.
Secondly, the proprietary standard means EVs from other manufacturers cannot use Tesla
charging stations, so Tesla does not steal business by locating near other charging stations.
Tesla can only steal business from its own charging stations, which is an effect that it should
internalize.12 A finding that the vertically integrated network enters locations with higher
incremental e-miles would therefore be evidence in favor of a spatial inefficiency in free entry.
In theory, how profits compare between a vertically integrated and non-vertically integrated
provider is unclear. In the absence of any business stealing effects, we might expect revenues
to be lower if incremental e-miles is imperfectly correlated with revenue over space. However,
business stealing among competing networks should lead to excess entry and lower demand
for non-vertically integrated providers.

Figure 1.6 compares distributions of annual e-miles enabled and annual charging demand
for Tesla and non-Tesla charging stations. The left panel presents the annual e-miles enabled
for Tesla and non-Tesla charging stations. Observations are weighted by the number of
chargers at a station. The average charging stations in the vertically integrated Tesla network
enables 700.6k total annual e-miles, whereas the average charging stations at other networks

12An adapter allowing Tesla model S and X drivers to use CHAdeMO charging stations has been available
since 2013 for $450. It became available to model 3 drivers in mid-2019. An adapter allowing Tesla vehicles
to use charging stations from the CCS standard became available in 2022. There is no adapter allowing
other drivers to use Tesla charging stations.
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enables 55.5k total annual e-miles. The difference in means is statistically significant at the
1% level. This result is consistent with Tesla entering locations with a higher consumer
value, and is strong evidence in favor of a spatial inefficiency in free market entry.

The right panel of figure 1.6 compares annual charging demand for Tesla and non-Tesla
charging stations. I find average annual demand at Tesla chargers is slightly lower than
at chargers in other networks. Lower demand per charger at Tesla chargers suggests that
the effect of entering locations with higher e-miles enabled that tend to have lower demand
outweighs the business stealing effect that increases crowding and reduces demand at other
networks. These findings suggest that leaving location decisions to the free market, comprised
mostly of non-vertically integrated charging station providers, may result in sub-optimal
location choice.

Figure 1.7 presents a map comparing e-miles enabled at 2019 charging station locations
for Tesla and non-Tesla charging stations. Charging stations in the top quartile of overall
e-miles enabled (weighted by chargers per station) are shown in teal, with bottom three
quartiles shown in orange. Overall, most of the charging stations are relatively close to the
San Francisco Bay Area and Greater Los Angeles. Tesla, shown in the left-hand panel, has
a larger share of stations in more rural areas than non-Tesla networks, whose stations are
densely clustered near metropolitan areas. Related, is that stations in the top quartile of
e-miles enabled tend to be in relatively rural areas, and therefore stations in the top quartile
of e-miles enabled make up a larger share of Tesla stations.

Figure 1.8 presents a map comparing demand at 2019 charging station locations for Tesla
and non-Tesla charging stations. Charging stations in the top quartile of overall demand
per charger enabled (weighted by chargers per station) are shown in teal, with bottom three
quartiles shown in orange. In contrast with 1.7, which showed e-miles enabled, stations
in the top quartile of demand tend to be close to metropolitan areas, rather than in more
rural areas. This holds true for both Tesla and non-Tesla stations. However, stations in
the top quartile of demand tend to belong to non-Tesla networks, shown in the map on the
right-hand panel.
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Figure 1.2: Distribution of Annual Charging Demand per Charger
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Note: This figure shows the distribution of annual charging demand per charger. Values are at the charging
station level (N = 702), weighted by the number of chargers at each station. Actual values that I observe in
the data are shown in teal, and predicted values from the demand model are shown in orange. The dashed
vertical lines show the mean, which is 212.3 for actual values, and 229.2 for predicted values.
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Figure 1.3: Average Annual E-miles Versus Range by Year
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Note: This figure shows simulated estimates of the relationship between average annual e-miles and an EV’s
range under the expansion of the fast charging network from 2013 to 2020. Average annual e-miles is total
household mileage of observed NHTS trips that are possible to complete in an electric vehicle using home
charging and fast charging stations, averaged over households in the 2017 NHTS sample.
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Figure 1.4: Average Annual Minutes of Fast Charging Versus Range by Year
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Note: This figure shows simulated estimates of the relationship between average annual minutes spent fast
charging and an EV’s range under the expansion of the fast charging network from 2013 to 2020. Average
annual minutes spent fast charging is defined as total household minutes spent fast charging to complete
observed trips, averaged over households in the NHTS 2017 sample.



CHAPTER 1. SPATIAL INEFFICIENCIES IN ELECTRIC VEHICLE FAST
CHARGING 24

Figure 1.5: Annual Charging Quantity Versus Annual E-miles Enabled at 2019 Charging
Stations
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Note: N = 702. This figure shows annual e-miles enabled and annual charging demand for marginal charging
station locations in California. Each data point is a charging station location. The size of each point
represents the number of chargers at the charging station.
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Figure 1.6: Distribution of Annual E-miles Enabled and Annual Charging Demand for Tesla
and Non-Tesla Charging Stations
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Note: This figure shows distributions of annual e-miles enabled and annual charging demand for Tesla and
non-Tesla chargers. Observations are at the charging station level, weighted by the number of chargers at
a station. The left panel presents the annual e-miles enabled, and the right panel presents annual charging
demand. The vertical dashed lines show average values for Tesla and non-Tesla chargers.
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Figure 1.7: E-miles Enabled at 2019 Charging Station Locations, by Network

Note: This figure shows the location of Tesla and non-Tesla charging stations in California, categorized by
whether they fall in the top quartile for estimated e-miles enabled. E-miles enabled is the estimated total
mileage of the previously unachievable trips that become possible as a charging station location is added to
a network.
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Figure 1.8: Demand at 2019 Charging Station Locations, by Network

Note: This figure shows the location of Tesla and non-Tesla charging stations in California, categorized by
whether they fall in the top quartile for charging station demand. Charging station demand is the net change
in a network’s demand when a new charging station is added to a network.
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Table 1.4: Price Regression Results

Dependent variable:

Dollars per kWh

(1) (2) (3) (4)

log(Annual charging Q) −0.005 −0.0003 −0.002 0.001
(0.003) (0.001) (0.003) (0.002)

Stations within 10 miles −0.001 −0.001 −0.001 −0.0004
(0.0004) (0.0004) (0.0004) (0.0003)

Intercept 0.326∗∗∗ 0.310∗∗∗

(0.012) (0.006)

Fixed effects? No No Network Network
Weights? No Chargers per station No Chargers per station
Observations 656 656 656 656
R2 0.029 0.022 0.309 0.292
Adjusted R2 0.026 0.019 0.295 0.278
Residual Std. Error 0.089 (df = 653) 0.147 (df = 653) 0.075 (df = 642) 0.126 (df = 642)

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001. The mean of the dependent variable is 0.291, unweighted, and 0.299, weighted. Each regression is
at the charging station level. Standard errors are clustered at the network level.
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1.6 Conclusion

Electrification of the transportation sector is necessary if the U.S. is to address climate
change. This is most likely to occur through the adoption of electric vehicles (EVs). Adoption
to date, however, has been slow. Widely cited barriers to EV adoption include range anxiety,
cost, and the availability of public charging infrastructure.

Range anxiety, which is a driver’s fear that a vehicle has insufficient battery capacity to
reach their intended destination, is related to the availability of public charging infrastruc-
ture. If a charging station is located appropriately, it may reduce the size of a driver’s set
of unachievable trips, and thereby alleviate range anxiety. Policy makers are attempting to
foster electrification by encouraging the build-out of a more comprehensive charging network,
but many open questions remain about the role of charging stations and the ideal design of
policies to subsidize charging stations.

In this paper I examine the location decisions of firms providing electric vehicle fast
charging stations. I empirically test for the presence of a spatial inefficiency in the location
decisions by comparing locations of vertically integrated firm that sells vehicles and provides
a charging network to those of a non-vertically integrated charging network. I define a metric
at the charging station station level, e-miles enabled, as the total mileage of the previously
unachievable trips that are now possible as a charging station location is added. E-miles
enabled at potential charging station location depends on the location of other charging
stations in the network. In this setting, e-miles enabled is a major component of consumer
value from a charging station that is heterogeneous over space. I combine estimates from a
spatial demand model and a simulation of charging behavior to compare charging demand
and enabled e-miles at charging stations in California. I find strong evidence in favor of a
spatial inefficiency in the location decisions of non-vertically integrated charging providers.
These findings suggest that leaving location decisions to non-vertically integrated, charging
station provider may result in sub-optimal location choice. EV policy should not be location-
neutral, but should consider spatial inefficiencies as well as network size. A location-based
subsidy that varies with a location’s e-miles enabled should be considered.
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Chapter 2

Subsidizing Electric Vehicle Charging
Stations for Renters

As discussed in the introduction to Chapter 1, the transportation sector is the largest con-
tributor to anthropogenic U.S. greenhouse gas (GHG) emissions. If the U.S. is to address
climate change, a key mechanism will be through electrification of the transportation sector.
This must occur primarily through the adoption of electric vehicles (EVs). Adoption to date
has been slow: In 2018 EVs had a market share of about 2% of nationwide sales. Widely
cited barriers to EV adoption include range anxiety, cost, and availability of public charging
infrastructure. The availability of home- and workplace-charging infrastructure for renters
has received little academic attention. According to the National Household Transportation
Survey, in 2017, 34% of vehicles in California, and 24% nationally, are owned by renters.
Davis, 2019 finds that homeowners are three times more likely than renters to own an EV,
even after controlling for income and other factors. Policies supporting charging infrastruc-
ture in workplaces and multi-unit dwellings (MUDs) are nascent. In this paper, I aim to
address two questions: (i) are such policies effective in increasing investment in charging
stations, and (ii) whether they are effective in promoting EV adoption. This work represents
the first causal evidence on whether charging infrastructure represents a barrier to adoption
for MUD occupants.

The problem of estimating the impact of charging infrastructure in MUDs and workplace
on EV adoption is well-suited to the use of two-sided market framework. In the two-sided
market framework introduced by Rochet and Tirole, 2006 and Armstrong, 2006, the benefits
for one group, EV owners, from joining a platform, depend on the size of the other group,
EV charging operators, that joins a platform. Given the variation I observe in the data,
I cannot implement such a two-sided market framework. I will report on instrumental
variables estimates of the effect of an additional MUD or workplace charging station on EV
registrations. The instrumental variable exploits spatial and temporal variation in subsidies
that reduce the cost of installing charging stations in MUDs and workplaces. Treatment
timing differs across the three largest investor-owned utilities (IOUs) in California, with
subsidized charging stations installed in Southern California Edison (SCE) and San Diego
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Gas & Electric (SDG&E) territories in 2017, and in Pacific Gas & Electric (PG&E) territory
in 2018, the final year of the sample. Areas of California served by other utilities did
not receive subsidies in my sample period. The first-stage estimates are identified using
variation in the number of charging stations in untreated vs treated CBGs within counties
that span IOU boundaries, as subsidies are introduced. Using vehicle registration counts
at the census block group-year level that I obtained from California Air Resources Board
(CARB), I estimate the effect of an additional MUD or workplace charging station on the
number of registered EVs.

As it stands, I do not detect a statistically significant effect of MUD or workplace charging
stations on EV registrations. My coefficient of interest is 0.379, indicating that an additional
MUD or workplace charging station in a census block group (CBG) yields a 38% increase in
registrations. However, the standard error is 1.131, so I cannot rule out extremely large or
even negative effects. This analysis would possibly be improved by the use of monthly data.
This would add precision, as well as allow more precise encoding of the month of year that
subsidies were introduced. Furthermore, my estimation sample spans 2015 through 2018,
and the subsidies were available from 2017 to 2019 and likely have a lagged effect. The
inclusion of additional years of data, not yet available at the time of writing, would allow
one to estimate the effect at the program’s full deployment.

While the primary goal of the study was to execute the two-stage design described above,
the first-stage results on take-up of subsidies for MUD and workplace charging stations
may itself be a finding of importance for the design of subsidies. I find that the subsidies
increased the number of charging stations in a census block group (CBG) by .01. Against the
sample average of 0.053, this represents a 20% increase. Transfers to inframarginal recipients
of subsidies are a problem in new technologies with externalities because they induce a
welfare loss (Boomhower and Davis, 2014). In this setting, as is often the case in energy-
related investments, there are multiple distortions. Charging stations offer external benefits
through both positive environmental externalities, network externalities, and landlord-tenant
problems may also mean investment falls below the socially optimal level. Furthermore,
Borenstein and Davis, 2016 showed that across a broad range of “clean energy” investment
tax credits, take-up was strongly correlated with income. The effect was most extreme for
electric vehicle tax credits whereby the top quintile claimed 90% of the credits.

In this setting policy makers appear to have attempted to overcome some of theses issues
by targeting subsidies to disadvantaged communities (DACs).1 The subsidy amount to loca-
tions in disadvantaged communities is twice that to locations elsewhere. PG&E’s program
has a target of 15% of subsidized ports in disadvantaged communities. Nevertheless, my first
stage results of the effect of charging subsidies on MUD and workplace charging stations are
monotonically increasing in income quartile. Alternative samples for disadvantaged and non-

1Disadvantaged communities (DACs) are census tracts in California identified by CalEPA as suffering
most from a combination of economic, health, and environmental burdens. The tracts are identified using an
analytic tool, CalEnviroScreen, which scores tracts based on pollution and economic factors. Tracts above
the 95th percentile are defined as DACs.
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disadvantaged communities show the effect is larger in the non-disadvantaged communities
that received the smaller subsidy amount.

This study is the first to yield any causal estimates of adding charging stations to MUDs
and workplaces on EV adoption. I will make a meaningful contribution to the nascent
literature examining network externalities and subsidy structure in the EV and charging
infrastructure markets. J. Li, 2019 studies compatibility and investment in the fast-charging
station industry. Corts, 2010 studies the effect of the installed base of flexible fuel vehicles
on the deployment of fueling stations. S. Li et al., 2017 model the development of the EV
sector in the US as a two-sided market (comprised of public charging infrastructure and
vehicles) with network externalities. Springel, 2019, models the EV sector in Norway as a
two-sided market with network externalities by using a BLP-type framework. My innovation
is to focus on a new barrier to adoption: home and workplace charging station availability
to renters. I will also exploit rich subsidy variation, and vehicle registration data at fine
geographic resolution in order to yield credible causal estimates.

This research also contributes to a literature studying environmental policy and the
market for automobiles and distributional considerations. Muehlegger and Rapson, 2018
exploit quasi-experimental variation in EV subsidies in California to study EV demand.
Allcott, C. Knittel, and Taubinsky, 2015; Borenstein and Davis, 2016 find that take-up
of subsidies for energy efficient products is strongly correlated with income. I contribute
by estimating heterogeneous effects by income, and as well as effects for disadvantaged
communities (DACs).

My work makes contribution to a literature on landlord-tenant problems related to energy
efficiency and environmentally friendly goods.2 Gerarden, Newell, and Stavins, 2015 examine
the energy efficiency gap and potential explanations found in previous literature, including
market failures, behavioral anomalies, and model and measurement errors. Davis, 2019 finds
that homeowners are three times more likely than renters to own an EV. Davis argues that
this is a version of the landlord-tenant problem.

2.1 Data

This study draws on two main data sources. The first is vehicle registrations collected
from the California Department of Motor Vehicles. These data were aggregated and made
available to researchers by the California Air Resources Board. The second is a comprehen-
sive dataset of locations of public and private EV charging stations in California. I used a
web-scraping program to obtain the data directly from PlugShare, a mobile application and
website that allows EV owners to locate charging stations.

2A landlord-tenant problem is a form of principal-agent problem whereby renters do not want to invest
in property they do not own, and landlords may not make the investments on renters’ behalf. It is unclear
whether this represents a market failure in the case of EV charging infrastructure.
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Vehicle Registrations Data

I use vehicle registrations data from the California DMV. The data provide counts of total
vehicle registrations by census block group (CBG), by year. Within a CBG-year, the data
are further broken out in a fuel-technology subcategory that includes battery electric vehicle
(BEV), fuel-cell electric vehicle (FCEV), internal combustion engine (ICE), and plug-in-
hybrid electric vehicle (PHEV). I use fuel-technology variable to categorize vehicles as EV
or non-EV. The data are also aggregated by the number of vehicles registered at the same
address, including categories for one, two, three and more than four vehicles. I use the
number of vehicles at the address to construct multiple-vehicle (more than 4 registered) and
non-multiple-vehicle counts of registrations. Multiple-vehicle addresses represent 25% of EV
registrations in the sample. Figure 2.1 shows percent of vehicles in a CBG registered at multi-
vehicle addresses. Most notable are the bright green CBGs around major airports, where
car rental companies are located. Because multi-vehicle addresses appear to be commercial
addresses, I exclude multi-vehicle registrations from the analysis.

Charging Stations Data

PlugShare is a mobile application and website that allows EV owners to locate charging
stations. Using a web-scraping program, I obtained a comprehensive dataset of locations of
public and private EV charging stations in California. A notable feature of the PlugShare
data is that they feature restricted station, which are not available to the general public, but
might be located at private workplaces, or apartment buildings. I use these data to construct
a variable encoding where MUD and workplace charging stations have been installed, which
is the dependent variable in my first-stage.

The vast majority of EV charging stations belong to networks, in which case the station
is connected to online management tools that facilitate pricing, and real-time availability
monitoring. My understanding from conversations with industry experts is that networks
add their locations to PlugShare as new stations are available. Non-networked stations must
be added by PlugShare users or the station’s owner. I construct a panel of charging station
locations using the date the charging station was first added to PlugShare. While it is
difficult to verify whether charging stations are added in a timely manner, many stations
appear to be added before they are open for use, and are listed as “coming soon.” This
suggests that networks and users make charging station locations available promptly, as new
locations are installed.3

In addition to a charging station’s location, I obtain its name, a description, and a cate-
gorical variable that encodes places of interest, such as a school, or workplace, or apartment
building, where the charging station is located. I use a combination of the above variables to

3If a charging station is removed during the sample period, it will not appear in my panel, since I can
only obtain data for currently installed charging stations. While it’s possible to remove charging stations,
the occurrences should be rare since charging stations have a high upfront fixed cost of installation and low
variable costs of operation.
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Figure 2.1: Percent of Vehicles Registered at Addresses with more than Four Vehicles, for
Bay Area Census Block Groups, 2018.
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Figure 2.2: Number of Charging Stations by Type for California, 2015–2018.

identify charging stations as workplace charging stations, MUD charging stations, or public
charging stations. Figure 2.2 shows the number of charging stations of each type for the
sample period from 2015 to 2018. There are about 4,000 public charging stations in 2018,
1,400 workplace charging stations, and about 250 MUD charging stations. While MUD
charging stations are few in number, the market has grown rapidly: there were just 105
MUD charging stations in 2015.
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2.2 Policy Background

PG&E, SCE and SDG&E are currently subsidizing investment in charging stations. They
will install infrastructure to support up to 12,500 charging stations with a total combined
budget of $197 million. The cost of a charging station installation is comprised of the
electric vehicle supply equipment (EVSE) as well as the cost of site infrastructure from the
distribution line to the parking space. The EVSE is the equipment from the wall-plug to the
car that controls charging. The infrastructure includes distribution infrastructure, panels,
conduit and wiring. The cost of EVSE is about $2,300 per port and comprises about 30%
of the total cost of installation for an average charging station, with the other 70% being
made up by infrastructure costs. The subsidy is for the full value of infrastructure, which
the IOU will own, plus 25 to 100% of the EVSE cost. The IOUs proposed these incentives
which were ultimately approved by the CPUC.4

While the primary objective is to increase adoption of EVs, regulators also aim to im-
prove air quality and economic conditions in disadvantaged communities (DACs). DACs are
census tracts in California identified by CalEPA as suffering most from a combination of
economic, health, and environmental burdens. The tracts are identified using an analytic
tool, CalEnviroScreen, which scores tracts based on pollution and economic factors. Tracts
above the 95th percentile are defined as DACs. The investment subsidies are higher for
workplaces and MUDs in DACs.

PG&E’s EV Charge Network program is an investment subsidy. Its goal is to incen-
tivize installation of EV charging stations at multi-unit dwellings and workplaces with more
than 10 parking spaces. The program includes targets under-served communities through
explicit targets of 15% of program charging stations deployed in Disadvantaged Communi-
ties (DACs), and 20% deployed in MUDs. The program was approved by the CPUC on
December 15, 2016, and officially launched in January, 2018. The program’s duration is 5
years and the budget is $130 million.

For all program participants, PG&E pays for infrastructure from the pole (distribution
line) to the parking space. The customer then pays for the charging station hardware that
is subsidized with a rebate. The amount of the subsidy varies according to whether the
customer is a MUD or workplace, and whether the customer is located in a DAC. Table 2.1
shows the amount of subsidy the customer receives for charging station hardware based on
their segment (MUD or workplace) and location (DAC or non-DAC). Additionally, certain
customers may opt to allow PG&E to own the hardware, or own the hardware themselves.
While the table shows subsidy amounts for PG&E, the subsidy amounts are very similar in
structure and amount at the other IOUs.

Customers that are MUDs, or workplaces in DACs may opt for the PG&E to own the
EVSE. (Workplaces outside of DACs are not eligible for this ownership option.) This lowers
the overall cost. Multi-unit dwellings in DACs pay no upfront EVSE costs, and multi-unit
dwellings outside of DACs pay only a participation payment of $1,150 per port. Workplaces

4docs.cpuc.ca.gov/PublishedDocs/Published/G000/M157/K835/157835660.PDF



CHAPTER 2. SUBSIDIZING ELECTRIC VEHICLE CHARGING STATIONS FOR
RENTERS 37

Figure 2.3: California Census Tracts by Disadvantaged Community (DAC) Status

Note: Figure shows California census tracts with disadvantaged community (DAC) status. DACs are census
tracts identified by CalEPA as suffering most from a combination of economic, health, and environmental
burdens. The tracts are identified using an analytic tool, CalEnviroScreen, which scores tracts based on
pollution and economic factors. Tracts above the 95th percentile are defined as DACs.
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Table 2.1: PG&E Charging Station Subsidy Amount by Segment and Location

Segment Location Rebate ($ per port)

Multi-unit dwelling
DAC 2,300
Non-DAC 1,150

Workplace
DAC 1,150
Non-DAC 575

in DACs also only pay a participation payment of $1,150 per port.
SCE’s Charge Ready is an investment subsidy for EVSE. Similar to PG&E’s program,

SCE installs and maintains the infrastructure from the distribution line to the parking spot
at no cost to the participant, and provides a subsidy for charging hardware purchased by
the participant. Non-residential customers are eligible. The budget is $22 million, and the
subsidy amount varies by whether the customer is in a DAC, a multi-unit dwelling, or other
eligible facility. The program launched in January 2017, and as of December 2018, 1,063
charging ports at 71 sites had been built.5

SDG&E’s Power Your Drive is also an investment subsidy for charging station installation
in MUDs and workplaces. The structure is similar to PG&E and SCE’s programs. The
program’s budget is $45 million and installation of charging stations started in June 2017.
Similar to the other programs, the generosity of the subsidy varies by whether the location
is in a DAC or not, as well as whether it is a MUD or workplace. Participation is free to
locations in DACs, and participants in other locations pay a one time payment equal to $630
per port for businesses and $235 per port for MUDs.

2.3 Empirical Strategy

First Stage

An ideal experiment would randomly assign CBGs in California to treatment and control
groups. The treatment group would receive charging station subsidies, and the control group
would not. Due to random assignment, treatment assignment is independent of potential
outcomes of treated and untreated units. Simply taking the difference between the aver-
age number of charging stations in the subsidized and unsubsidized groups would yield an
estimate of the average treatment effect of subsidies on the number of charging stations in
California CBGs. In the non-experimental setting that I analyze, treatment assignment is
not randomly assigned, but units select into treatment based on whether they are in an IOU.

My empirical strategy exploits the geographic and temporal variation in deployment of
charging station subsidies in a difference-in-differences design. Estimates are identified using
variation in the number of charging stations in unsubsidized versus subsidized CBGs within
counties that span IOU boundaries, as subsidies are introduced.

5www.sce.com/business/electric-cars/Charge-Ready

https://www.sce.com/business/electric-cars/Charge-Ready
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I estimate a panel data difference-in-differences specification with variation in treatment
timing:

Charging stns.bt = βDIDSubsidy treatmentbt + xbt + γb + δct + εbt (2.1)

where Charging stn.sbt is the number of charging stations in a CBG (b) at the end of calendar
year (t) from 2015 to 2018. Subsidy treatmentbt is a binary variable encoded as one after
2017 for SCE and SDG&E, and after 2018 for PG&E, and zero otherwise.6 xbt includes
controls for any factors that may affect the number of charging stations in a way that varies
over time and geography. I include fixed effects γb at the level of an CBG, which absorb
time-invariant features of an area, as well as yearly time effects δct at the county level, which
absorb the variation in number of charging stations over time that is common across CBGs
within a county. Relative to a specification with common time effects, which would require
that parallel trends hold between arbitrary CBGs in California, county-level time effects
relax this assumption, requiring that parallel trends hold between CBGs within a county.
However, the more palatable parallel trends assumption comes as the expense of external
validity. The difference-in-differences coefficient βDID is estimated from the difference within
each county between the number of charging stations in subsidized and unsubsidized CBGs,
pre- versus post-subsidy roll-out. The treatment effect is therefore estimated using variation
within counties that span IOU boundaries, rather than the entire IOU territory.

I identify the causal effect of subsidies on charging stations in equation 2.1 if the parallel
trends assumption holds across CBGs within a county – that is if the number of charging
stations in subsidized versus unsubsidized CBGs within counties that span IOU boundaries
is not trending apart for reasons other than the subsidies themselves. A potential threat to
identification would be local shocks to charging infrastructure correlated with subsidies. An
example is incentives that local governments provide to charging stations. These subsidies
would have to be administered the sub-county-level and be correlated with the introduction
of IOU subsidies in order to invalidate the identifying assumption of parallel trends.

EV Demand

I estimate the following equation:

arsinh(EVbt) = β1MUD/workplace charging stns.bt + xbt + γb + δct + εbt (2.2)

where arsinh(EVbt) is the inverse hyperbolic sine of the number of registered EVs at the
level of a CBG (b) and year(t) from 2015 to 2018. MUD/workplace charging stns.bt denotes
the total number of MUD and workplace charging stations in a CBG at the end of a calendar
year. The fixed effects are the same as in the first-stage specification above. I include fixed
effects γb at the level of an CBG, which absorb time-invariant features of an area, as well as
yearly time effects δct at the county level, which absorb the variation in number of EVs over

6I categorize a small number of census block groups that overlap utility boundaries as treated if they
overlap a boundary between treated and untreated IOU territories in a year. This is a conservative approach
as it will attenuate any estimates of a positive treatment effect.
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time that is common across CBGs within a county. xbt includes control variables such as
the number of public charging stations. The specification suffers from omitted variable bias
if, for example, EV incentives that vary within a county are also correlated with changes
in the number of MUD/workplace charging stations. I am collecting information on local
EV incentives that I plan to incorporate into the above equation. εbt represents unobserved
time-varying local shocks to EV demand. Demand shocks that result from a location-specific
model preference, such as a strong preference for Tesla model 3 in San Francisco, are absorbed
by fixed effects if the demand shock is county-specific.

The above specification still suffers from endogeneity due to simultaneity that arises
due to unobserved time-varying and CBG-specific demand shocks that affect the number of
charging stations through investment decisions. I hope to address this through the use of
IV. I document my instrumental variable and first-stage analysis above. A valid IV must
be correlated with the independent variable of interest, and uncorrelated with other factors
that affect EV demand. A potential concern is endogeneity arising if the IOU EV incentives
are a response to local unobserved demand shocks (S. Li et al., 2017). In this setting this
is a particular concern as the subsidy generosity was higher in disadvantaged communities,
possibly as a response negative demand shocks that affect both EVs. To overcome this, I
do not use subsidy generosity as a instrument, I use a binary variable for if a CBG was
subsidized or not. Furthermore, I also only use variation within counties that span IOU
boundaries. Demand shocks are more likely to be common across CBGs within counties
than they are across arbitrary CBGs in CA.

2.4 Results

In this section I first report results for the first-stage estimates of the effect of subsidies on
number of charging stations. Then, I report OLS and IV estimates for the effect of MUD
and workplace charging stations on EV registrations.

First Stage Results

Table 2.2 reports results for the effect of the subsidy on number of charging stations. The
dependent variable in all regressions is the number of charging stations of a particular type,
measured at the level of a census block group-year. Each column shows estimates for a
different categorization of charging station type (MUD and workplace, MUD, workplace,
public). The independent variable in all regressions is Subsidy treatment, and is the standard
independent variable in a difference-in-differences specification with variation in treatment
timing. Treatment timing differs across the three IOUs, with subsidized charging stations
installed in SCE and SDG&E territories in 2017, and in PG&E territory in 2018, the final
year of the sample.

The coefficient on Subsidy treatment in column 1 is statistically significant at the 1% level.
It represents the average causal effect of subsidies on the number of MUD and workplace
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charging stations in treated CBGs within counties that span IOU boundaries. I find that the
subsidies increased the number of charging stations in a CBG by .01. Against the sample
average of 0.053, this represents a 20% increase. Columns 2 and 3 decompose this effect
into the effect on MUD and workplace charging stations. In column 2, the effect on MUD
charging stations is not statistically significant at the 10% level, while the effect on workplace
charging stations is approximately equal to that in column 1. The effect of treatment on
MUD charging stations is imprecisely estimated, and we cannot rule out treatment effects
as large as 37.5% in 95% two-sided confidence interval. Column 4 examines the effect of
the subsides on public charging stations, which serves as a check on the exclusion restriction
in consideration of the treatment as an instrument for charging station deployment. The
coefficient on the treatment variable is not statistically significant at the 10% level.
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Table 2.2: First Stage Impact of Subsidy on Charging Stations: Comparison across Charging Station Type

Dependent variable:

N. MUD/workplace
charging stations

N. MUD
charging stations

N. workplace
charging stations

N. public
charging stations

(1) (2) (3) (4)

Subsidy treatment
(binary) 0.010∗∗∗ 0.001 0.009∗∗∗ −0.006

(0.003) (0.001) (0.002) (0.006)

CBG FE X X X X
County-year FE X X X X
Mean of dep.var 0.053 0.008 0.046 0.155
F-stat 12.1 0.22 14.3 1.12

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. N = 92,140. An observation is a block group-year combination. Standard errors clustered at the block
group level.
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Figure 2.4: Event Study Plot for Impact of Subsidy on Charging Stations

Note: Dependent variable is number of MUD and workplace charging stations. 95% point-wise confidence
intervals are for standard errors clustered at the CBG-level. The baseline period is one year before the
subsidies were introduced in each IOU, and program year is labeled relative to the first year of the subsidy
program, defined as 0.

In order to estimate a causal effect, I require identical trends in subsidized and unsub-
sidized CBGs within a county. Figure 2.4 shows estimates and 95% confidence intervals
from an event-study specification, which serves as a visual check on trends in pre-treatment
periods. The dependent variable is number of MUD and workplace charging stations. The
baseline period is normalized to one year before the subsidies were introduced in each IOU,
and program year is labeled relative to the first year of the subsidy program, defined as 0.
There are no pre-trends, as annual coefficients are roughly zero prior to implementation of
the subsidies. The effect of subsidies increases over time and is largest in the final period.

To further assess my claim of having estimated the causal effect of subsidies on charging
stations, I report estimates from alternative specifications in 2.3. Column 1 presents esti-
mates from a Poisson regression, rather than OLS, which is statistically significant at the 5%
level and represents a 14.3% increase in charging stations. Column 2 presents an estimate
with the number of total number of chargers across charging stations as dependent variable.7

The treatment effect of 0.071 represents a 26% increase. That this is larger than the 20% in-

7In this paper I refer to a plug on a charging station as a charger, though it is sometimes referred to as
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crease in our baseline specification is consistent with the policy, since only charging stations
with at least 10 connections were eligible for subsidies in many areas, which is higher than
the sample average number of connections per charging station of 4.42. Column 2 presents
estimates with common time effects, which, relative to the baseline specification with county-
year effects, allows variation between counties over time to estimate the treatment effect.
While this estimate remains significant at the 1% level, the assumption of identical trends is
less palatable than in our baseline specification. It’s plausible that trends in CBGs within a
county are more likely to be identical than in arbitrary California CBGs. Columns 3 and 4
employ alternative clustering schemes as a check on statistical inference.8 Column 3 presents
estimates with two-way clustered errors at the CBG-year level, and column 4 presents es-
timates with two-way clustered errors at the county-year level. Estimates of the treatment
effect remain significant at the 5% level in both cases.

a connection in the industry. Charging stations often have multiple chargers.
8Standard errors in my baseline model are clustered at the CBG-year level.
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Table 2.3: First Stage Impact of Subsidy on Charging Stations: Alternative Specifications

Poisson Chargers
Across-county

variation
Two-way

clustered errors
Coarser two-way
clustered errors

(1) (2) (3) (4) (5)

Subsidy treatment 0.134∗∗ 0.071∗∗∗ 0.005∗∗∗ 0.010∗∗ 0.010∗∗

(0.056) (0.024) (0.001) (0.002) (0.002)

CBG FE X X X X X
County-year FE X X X X
Year FE X
Mean of dep.var 0.272 0.053 0.053 0.053

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. N = 92,140. Unless otherwise stated, the dependent variable is number of MUD and workplace
charging stations. (Column 2 uses the total number of chargers across charging stations as the dependent variable.) An observation is a
block group-year combination. Unless otherwise stated, standard errors clustered at the block group level.
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Table 2.4 presents estimates broken out by alternative data samples. Columns 1 and 2
split the data into DAC and non-DAC census tracts. Recall that while our coefficient of
interest is on a binary variable indicating whether a CBG received any subsidies, charging
stations in DACs received a subsidy amount twice that of non-DAC charging stations. In
spite of this, the effect for DACs is an increase of 0.007 charging stations per CBG, while
the effect for non-DACs is 0.011 charging stations per CBG. The percentage effects are
similar, at 17% and 19% respectively. In spite of a larger subsidy amount, both the absolute,
and percentage effect of the subsidy on charging station investment is smaller in DACs.
Columns 4 through 6 split the sample according to income quartile. CBGs were assigned an
income quartile based on median household income from ACS 2014-2018 5-year estimates.
The estimates are monotonically increasing in income quartile. Estimates in columns 3 and
4, for the lowest two income quartiles are not statistically significant at the 5% level, but
represent effect sizes of 3% and 10% respectively. Columns 5 and 6, for the largest two
income quartiles, represent effect sizes of 25% and 22%, respectively. Overall, effect size
is more strongly correlated with income quartile than DAC-status. DAC-status is assigned
at the census tract level and is based on a CalEnviroScreen score that takes into account
20 health, environmental, and socioeconomic variables. It is therefore a holistic measure of
pollution-burden and pollution-vulnerability that is strongly but imperfectly correlated with
income: there are 800 of the 23,200 CBGs in California fall both in a DAC and also in the
top two income quartiles.



C
H
A
P
T
E
R

2.
S
U
B
S
ID

IZ
IN

G
E
L
E
C
T
R
IC

V
E
H
IC

L
E
C
H
A
R
G
IN

G
S
T
A
T
IO

N
S
F
O
R

R
E
N
T
E
R
S

47

Table 2.4: First Stage Impact of Subsidy on Charging Stations: Alternative Samples

DAC Non-DAC
1st Income
Quartile

2nd Income
Quartile

3rd Income
Quartile

4th Income
Quartile

(1) (2) (3) (4) (5) (6)

Subsidy treatment 0.007∗ 0.011∗∗∗ 0.001 0.004 0.013∗∗ 0.019∗∗

(0.004) (0.004) (0.003) (0.004) (0.006) (0.008)

CBG FE X X X X X X
County-year FE X X X X X X
Mean of dep.var 0.041 0.058 0.03 0.037 0.053 0.085
F-stat 3.31 9.22 0.12 0.79 5.21 6.53

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. N = 92,140. Dependent variable is number of MUD and workplace charging stations. An observation
is a block group-year combination. Standard errors clustered at the block group level.
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EV Demand

Table 2.5 reports results for the effect of an additional MUD or workplace charging station
on EV registrations. The dependent variable in all regressions is the inverse hyperbolic sine
of the number of registered EVs at the CBG-year level.

Columns 1 and 2 show OLS estimates that include separate independent variables for
MUD and workplace charging stations. These estimates are not causal, but serve as descrip-
tive evidence for how changes in MUD and workplace charging stations affect EV registra-
tions. Column 2 includes a control variable for the number of public charging stations. The
effect of workplace charging stations is not statistically significant. This is unsurprising –
most employees do not live in the same CBG as their workplace, so one would not expect to
observe an impact of variation in workplace charging stations in a CBG on EV adoption in
that same CBG. A more appropriate model would employ data on commuter flows to assign
a weight to new workplace charging stations in adjacent CBGs. With CBG-level commuter
flows, a workplace charging station in a CBG in downtown Berkeley, for example, would be
encoded as an increase the availability of workplace charging stations in all CBGs according
to the proportion of commuters to downtown Berkeley who reside in each CBG. I hope to
refine this model by obtaining CBG-level commuter flows. The effect of an additional MUD
charging station is statistically significant at the 5% level and corresponds to a 7% increase
in the number of EVs registered. The average number of EV registrations in a CBG in the
sample period is 5.5.

Column 3 includes OLS estimates for an independent variable for pooled count of MUD
and workplace charging stations. This is the appropriate independent variable to use with a
single instrument. Although MUD and workplace charging stations receive different subsidy
amounts, the timing is identical, as is the geographic availability of subsidies. The re-
sult is that separate MUD and workplace subsidy variables are too correlated to separately
identify the effects of MUD and workplace charging stations. The effect of an additional
MUD/workplace charging station in my OLS specification is statistically significant and cor-
responds to a 3% increase in EVs registered in a CBG. The IV estimates in columns 4 and
5 do not yield statistically significant results. The first-stage F-statistic for each is 12.1 and
18.7. A problem with my empirical strategy as it stands is that the first-stage variation is
in workplace charging stations rather than MUD charging stations. Recall from 2.2 that the
subsidies had a large statistically significant effect on workplace charging stations, but that
the effect on MUD charging stations was not statistically significant. Variation in workplace
charging stations is too crudely modeled in my second stage to have a detectable effect on
EV adoption. Even if workplace charging stations were randomly assigned to CBGs, one
would not expect to observe an effect on EV registrations in the same CBG as the workplace
charging station, because employees tend to commute from other CBGs where they reside.
Researchers who examine this question in the future could refine my model with commuter
flows data in order to leverage first-stage variation in workplace charging stations.
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Table 2.5: Instrumental Variables Results for Effect of Charging Stations on EV Registrations

OLS OLS OLS IV IV

(1) (2) (3) (4) (5)

N. workplace charging stns. 0.045∗∗∗ 0.023
(0.015) (0.016)

N. MUD charging stns. 0.099∗∗∗ 0.072∗∗

(0.035) (0.036)

N. MUD/workplace charging stns. 0.030∗∗ 0.379 0.337
(0.015) (1.131) (0.942)

N public charging stns. 0.032∗∗∗ 0.032∗∗∗ −0.067
(0.010) (0.010) (0.303)

CBG FE X X X X X
County-year FE X X X X X
First stage F-stat 12.1 18.7

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. N = 92,140. Dependent variable is inverse hyperbolic sine of EV
registrations. An observation is a block group-year combination. Standard errors clustered at the block
group level.

2.5 Conclusion

In this paper, I examine whether the availability of home- and workplace-charging infrastruc-
ture for renters has a detectable effect on EV adoption. I address two questions: (i) are such
policies that aim increase the availability of MUD and workplace charging stations effective
in increasing investment, and (ii) whether such policies are effective in promoting EV adop-
tion. I find that the subsidies increased the number of charging stations in a census block
group (CBG) by .01. Against the sample average of 0.053, this represents a 20% increase.
I do not detect any effect of charging stations on EV adoption. My coefficient of interest is
0.379, indicating that an additional MUD or workplace charging station in a census block
group (CBG) yields a 38% increase in registrations. However, the standard error is 1.131,
so I cannot rule out extremely large or even negative effects.

Future research that examines the subsidies I study in this paper would benefit from
the inclusion of additional years of data. My estimation sample spans 2015 through 2018,
and the subsidies were available from 2017 to 2019 and likely have a lagged effect. The
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inclusion of additional years of data, not yet available at the time of writing, would allow
one to estimate the effect at the program’s full deployment. The instrumental variables
estimates would benefit from more refined modeling of the second stage effect of workplace
charging stations on EV registrations. As it stands, the first-stage workplace effect is strong
and precisely estimated. However, the inclusion of a workplace charging station in a driver’s
home CBG would be unlikely lead that driver to purchase an electric vehicle, as most drivers
to not work in the CBG where they reside. The effect of workplace charging stations could
be better modeled through the use of commuter flows data at the sub-county level using cell
phone location data.
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Chapter 3

Bike Sharing and Traffic Congestion:
A Case Study of Citibike in New York
City

3.1 Introduction

In this paper, I estimate the causal effect of the Citibike bike-sharing system on historical
street-level traffic speeds in Manhattan. Bike sharing is an increasingly popular shared mo-
bility transportation service. These services provide shared use of a vehicle, bicycle, scooter,
or other mode of transportation. Shared mobility services can simultaneously complement
and conflict with existing transportation infrastructure. An important way in which these
services impact existing infrastructure is reallocation of finite road space to to shared vehi-
cles and their associated infrastructure. Services that provide bicycles and scooters are often
seen as purely complementary to existing transit systems. That view is at odds with the fact
that road space is finite and increasingly congested in many cities. Any additional demands
placed on roads should be carefully evaluated. In particular, do shared mobility services
impose external costs on users of existing transportation infrastructure through increased
congestion? The net effect of these services on road congestion will depend on whether the
congestion mitigating effect due to substitution away from other transit that uses roads (ve-
hicles) exceeds the congestion exacerbating effects of adding bicycles and their infrastructure
(docks/storage) to the roadway.

The major contribution of this paper is to provide an estimate of the effect of a bike-
sharing system on congestion in the entire area over which it was deployed, rather than in
the vicinity of particular docks. In addition, this is the first study chart the routes between
bike-sharing system docks using Google Maps bicycling directions. In doing so I obtain
estimates of treatment intensity at fine spatial resolution. Another contribution is that I
am the first to control for bike lanes, and other changes in street conditions over time, that
could be correlated with the introduction of bike-sharing, and which could confound other
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estimates. My main finding is that the Citibike system increased travel time on avenues in
Manhattan. These estimates comprise combined impact of various effects of the Citibike
system — Citibike users may substitute away from personal vehicles and taxis, but users
also impose external cost on drivers through increasing congestion on roads. My estimates
therefore represent a lower bound on the congestion externality imposed by Citibike.

My analysis uses novel data on traffic speeds at a 10-meter spatial resolution, which
I estimate from 1.2 billion publicly available records of historical taxi trips. I marry this
with detailed data on the Citibike system itself. I observe the locations of all docks, and
records of every ride, including the start and end dock, and start and end times. To address
where cyclists travel, I chart the routes between Citibike docks using Google Maps bicycling
directions. Additionally, I collect and analyze other sources of urban data — in particular, I
exploit data on bike lanes, and use 311 service requests related to road conditions to account
for other changes in street conditions over time.

My research design exploits the sudden and localized nature of Citibike deployment as
a natural experiment: Citibike launched on May 27th 2013, but only in lower Manhattan
and downtown Brooklyn. This enables a comparison of street speeds above and below 59th
Street, pre- and post-Citibike in a difference-in-differences specification. I find the average
causal effect of the Citibike system on travel time below 59th Street is an increase of 2.3%. In
a second model, I employ data on Citibike rides to measure temporal variation in treatment
intensity. This variation is driven by lower ridership as the program scaled up, as well as
seasonal effects — ridership is higher in summer and lower in the winter. From a panel data
difference-in-differences specification that incorporates treatment intensity at the monthly
level, I find that at the maximum system utilization of 987,169 monthly rides, I find travel
time increased by 3.9%.

My preferred model employs a treatment intensity measure that varies temporally, at the
month level, as well as spatially, at the street-level. Specifically, I divide streets into 10-meter
bins. Then bike rides that crossed a 10-meter bin were measured by first mapping routes
between Citibike stations using Google Maps cycling directions, then counting the rides on
routes that crossed that bin. This model captures significant heterogeneity in treatment
intensity both temporally as well as spatially. I find that at the maximum number of rides
traversing a bin 452,056, travel time increases by 9.6%. An equivalent interpretation is that
a 10% increase in utilization, of about 45,000 rides, increases travel time by 1%.

An important parameter of interest is how Citibike affected the speed of the average
trip in New York City. My main results demonstrate that Citibike has slowed down trips
made by car, taxi, bus. If Citibike users are substituting away from walking, then the
introduction of Citibike may have sped up the average trip made by New Yorkers, in spite
of the externality imposed on vehicular traffic. I perform a back-of-the-envelope calculation
to evaluate whether substitution patterns that would facilitate an increase in overall trip
speed are plausible. Under generous assumptions about substitution patterns (namely that
all Citibike users would have walked), observed changes in the share of trips made by bike
in Manhattan before and after Citibike are insufficient to have resulted in an increase in the
speed of the average trip.
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This study contributes to a literature examining bike-sharing systems and congestion.
The costs imposed by traffic congestion are large and numerous in variety (Anderson et al.,
2016; Barth and Boriboonsomsin, 2008; Currie and Walker, 2011; C. R. Knittel, Miller,
and Sanders, 2016). An explicit goal of many bike-sharing systems, including Citibike, is
to reduce congestion. Hamilton and Wichman, 2018 is the closest study to this one. The
authors study DC’s Capital Bikeshare. They match areas with docks to areas without docks
using pre-treatment data. They use a panel data difference-in-differences specification and
find that areas with bike-share stations (docks) experienced a reduction in congestion of
4%. Importantly, they also find that that neighboring areas experienced a larger increase in
congestion, which they attribute to spillovers from drivers avoiding areas with more cyclists.
I contribute by estimating the overall effect on congestion in the area in which Citibike was
deployed. Furthermore, I control for changes in road use over time, such as bike lanes. Wang
and Zhou, 2017 also study the effect of bike-sharing systems on congestion. They use city-
level data and a difference-in-differences design. They find insufficient evidence to conclude
that cities that introduced bike-sharing systems experienced a reduction in congestion as a
result. Overall, prior work has not found conclusive evidence of whether bike-sharing systems
increase or decrease congestion.

Another important literature to which I contribute is a more general literature on the
determinants of road congestion. In a seminal study, Duranton and Turner, 2011 investigate
the effect of lane kilometers of roads on vehicle-kilometers traveled in US cities. They find
that increased provision of roads and public transit is unlikely to relieve congestion. Couture,
Duranton, and Turner, 2018 also investigate the determinants of driving speed in large US
cities using a structural model of demand and supply for travel. They find that centralized
cities are slower, and that cities with ring roads are faster, and that a congestion tax of about
3.5 cents per kilometer yields welfare gains of about $30 billion per year. Other studies find
large effects of the provision of public transit on congestion and other outcomes using strikes
as a source of exogenous variation. (Anderson, 2014; Bauernschuster, Hener, and Rainer,
2017)

3.2 Background: Citibike Bike-Sharing System

The Citibike bike-sharing system makes bicycles available to the public at docks, which
release the bicycle upon payment or verification of a user’s subscription. Citibike’s history
began in September 2011 when the New York City Department of Transportation granted
New York City Bike Share, a privately held company, rights to operate city’s new bike-
sharing system. After a public input process, the system launched on May 27, 2013 in lower
Manhattan and downtown Brooklyn. Figure 3.1 shows weekly Citibike rides in Manhattan
from June 2013 to July 2015. There were about 75,000 rides in the first week of June. Two
months later, in early August, there were over 200,000 rides. Weekly ridership is highest in
the summer at over 200,000 rides, and is lowest in the winter at fewer than 50,000 rides.
In October 2014, Alta Bicycle Share took over ownership of New York City Bike Share and
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announced plans to expand Citibike. The system expanded in August 2015, introducing
new stations in upper Manhattan and Brooklyn. While some systems, such as DC’s Capital
Bikeshare, receive public funding, Citibike is privately funded.

Figure 3.1: Total Weekly Citibike Rides in Manhattan, June 2013 to July 2015

Note: Figure shows total weekly Citibike rides in Manhattan from June 2013 to July 2015. There were
about 75,000 rides in the first week of June. Two months later, in early August, there were over 200,000
rides. Weekly ridership is highest in the summer at over 200,000 rides, and is lowest in the winter at fewer
than 50,000 rides.

Users can subscribe to the service for a fee of $169 annually, or $14.95 per month. A
subscription service grants the user unlimited rides. Non-subscribers can pay $3 for a single
ride, purchase a day pass for unlimited rides in a 24 hour period, or a 3-day pass for unlimited
rides in a 72 hour period. The system is designed to facilitate short, one-way trips rather
than recreational trips. If subscribers keep a bicycle for more than 45 minutes at a time,
they are charged $2.50 per additional 15 minutes. Non-subscribers are limited to rides of 30
minutes, and charged $4 per additional 15 minutes.

Rides by annual subscribers account for 88.5% of of all rides. Furthermore, most rides
are made during rush hour, at times of peak congestion. Figure 3.2 shows the distribution
of time of day for rides in Manhattan during the sample period, June 2013 to August 2015.
The overall distribution, as well as those for subscribers and non-subscribers, are plotted
separately. Because most rides are made by subscribers, the overall distribution is similar
to that of subscribers. It is bi-modal, with most rides occurring around 9 AM and 6 PM.
For non-subscribers, most rides are during the afternoon. Figure 3.3 shows the distribution
of duration of rides in minutes in Manhattan during the sample period. The vast majority
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of rides are under 20 minutes, and almost all are under 45 minutes. This is what one would
expect given the surcharge for rides longer than 45 minutes.

Figure 3.2: Kernel Density Plot of Time of Day of Citibike Rides in Manhattan, June 2013
to July 2015

Table 3.1 shows the size of Citibike bike-sharing system compared to other bike-sharing
systems in the U.S.. Citibike usage is shown for 2014, which is the last complete calendar year
in the sample period. Usage for other systems is shown for 2018, the most recent complete
calendar year. While Citibike is about twice as large as the Chicago and Washington D.C.
systems by annual and monthly maximum rides. The number of monthly rides on the most
popular ride in New York City, 11,860, is only 34% higher than the number of monthly
rides on the most popular ride in Chicago, which indicates that bike-sharing penetration in
Chicago is comparable to that in New York City during the sample period.

3.3 Data

The primary data for this analysis comes from yellow taxi trip records collected by the
New York City Taxi and Limousine Commission (TLC). I also use bicycle trip records and
bicycle dock locations collected by Citibike, the bike-sharing system serving New York City
and Jersey City. Additional datasets employed include records of bike lane locations and
installation dates, as well as 311 service requests pertaining to road conditions.
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Figure 3.3: Kernel Density Plot of Duration of Citibike Rides in Manhattan, June 2013 to
July 2015

Note: Durations above 120 minutes were truncated. The median trip duration is 10.28, the mean trip
duration is 14.18.

Table 3.1: Bike Share Usage Statistics by City

City Year
Total

(annual rides)
Maximum

(monthly rides)
Most popular trip
(annual rides)

New York 2014 8, 081, 216 968, 842 11, 860
Chicago 2018 3, 603, 082 544, 703 8, 858

Washington, D.C. 2018 3, 542, 684 404, 761 6, 339
Boston 2018 1, 767, 806 242, 916 5, 561

Note: Table shows bike share usage for the four largest systems in the U.S.. Citibike usage is shown for
2014, which is the last complete calendar year in our sample period. Usage for other systems is shown for
2018, the most recent complete calendar year. The most popular trip is defined as the start and end dock
pair between which the most rides occurred in a year.

Citibike System Data

I downloaded administrative data on historical Citibike trips. I use these data to determine
areas of Manhattan that were treated, and measure treatment intensity. These data are
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publicly available from the Citibike website, and I draw upon records from June 2013 to
July 2015. The Citibike system launched on May 27, and I observe rides from June 1 2013
onward. July 2015 was the last month before its expansion in August 2015. The data
include all historical Citibike rides with fields capturing the start and end date/time of the
ride, the start and end docks, whether a rider was a subscriber or not, and the age and
gender of subscribing riders. I match these data with GPS coordinates of docks obtained
from Citibike’s API.

I exclude a small number of records for which the ride started or ended at a Citibike
depot, presumably occurring when a bicycle was serviced or delivered. I also limited to rides
that started and ended in Manhattan.

Google Maps Data

I exploit Google Maps Platform’s Directions API 1 to map cycling directions routes between
Citibike docks. In total, I map directions between 77,000 possible combinations of the
278 docks. When combined with the Citibike system data, this allows us to count the rides
traversing each road segment, assuming riders followed cycling directions from Google Maps.
The routing algorithm for Google Maps is not publicly available, but anecdotal evidence
suggests it gives preference to bicycling infrastructure, and is less sensitive to congestion
than driving directions. That the vast majority of Citibike trips are short, less than 20
minutes in duration, suggests riders take a direct route and supports this approach.

Taxi and Limousine Commission Trip Record Data

I use administrative data on yellow taxi trips collected by the New York City Taxi and
Limousine Commission. In total, these amount to 1.2 billion taxi trip records. I use these
data to construct street-level historical speed. The trip records data are publicly available,
and I draw upon records from January 2009 to July 2015. 2009 is the earliest date available:
GPS-enabled taxi meters were rolled out in 2009 under the “Taxicab Passenger Enhancement
Program.” The data include all historical yellow taxi trips with fields capturing pick-up and
drop-off dates/times, pick-up and drop-off GPS coordinates, trip distances, itemized fares,
rate types, payment types, and driver-reported passenger counts.

I exclude a small number of records for any of the following reasons: missing values
for any of pick-up and drop-off dates/times, pick-up and drop-off GPS coordinates, or trip
distances; negative or zero distance value; trip duration of fewer than 10 seconds; GPS
coordinates outside of New York City metropolitan area; average speed over 10% above
expressway speed limit (i.e. above 77 mph); and duration over two hours. I also remove
records for which the greatest circle distance is greater than ten times the recorded trip
distance, since this is only possible from some kind of error in the GPS or odometer. Finally
I remove trip records for which the greatest circle distance is 10 times less than recorded

1developers.google.com/maps/documentation/directions/start

https://developers.google.com/maps/documentation/directions/start
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trip distance, since these are either trips with circuitous routes or errors in GPS or odometer
readings.

Bike Infrastructure Data

I use data on locations and installation dates of bike lanes and routes throughout New York
City. The data are provided by the New York City Department of Transportation and made
publicly available through the NYC Open Data Portal.2 The dataset is at the level of a
stretch of infrastructure, and variables include, start and end coordinates, installation date,
and type of infrastructure. Possible infrastructure types are bike-friendly parking, curbside
bike lane, protected bike lanes, standard bike lanes, sharrows3, and signed bike routes. I
restrict to bike lanes and designate curbside and standard as unprotected bike lanes.

311 Service Requests

I use 311 service request data provided by the New York City Department of Information
Technology and Telecommunications and made publicly available through the NYC Open
Data Portal.4 311 is a non-emergency phone number that people can call to find information,
make complaints, or report problems like graffiti or poor street conditions. The data are at
the service request level and variables include complaint type, complaint descriptor, creation
date, and coordinates of location. I limit to the following types of complaints: blocked
driveway — no access, blocked driveway — partial access, street condition — blocked, con-
struction, street condition — cave-in, street condition — failed street repair, street condition
— pothole, street condition — rough, pitted or cracked roads. I aggregate complaints to the
10-meter bin, month level to provide a count of the number of complaints that occurred at
a 10-meter bin in a given month.

Estimation of Historical Street Speeds

To construct street-level historical speed data, I employ the method developed by Man-
grum and Molnar, 2019. They use three alternative methodologies to construct measures
of historical street speeds from historical records of taxi trips from the Taxi and Limousine
Commission. I employ their simplest and most preferred methodology. This averages the
rate of travel across all taxi trips for which one is confident that the taxi traversed a certain
interval over a certain time period.

I first subset to trips that were entirely contained within a rectangular strip running
along one of the north-to-south avenues of Manhattan. I use a rectangular strip to be able
to capture trips that started just off an avenue on a side-street, and to accomodate any error

2https://data.cityofnewyork.us/Transportation/Bicycle-Routes/7vsa-caz7
3A sharrow is a street marking placed in the travel lane to indicate where people should preferably cycle
4nycopendata.socrata.com/Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9 ;

data.cityofnewyork.us/Social-Services/311-Service-Requests-for-2009/3rfa-3xsf .

https://data.cityofnewyork.us/Transportation/Bicycle-Routes/7vsa-caz7
https://nycopendata.socrata.com/Social-Services/311-Service-Requests-from-2010-to-Present/erm2-nwe9
https://data.cityofnewyork.us/Social-Services/311-Service-Requests-for-2009/3rfa-3xsf
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in GPS coordinates of a trip originating on an avenue. I then subset to trips whose direction
of travel corresponds to the direction of travel for the avenue. Trips are classified by their
avenue, direction combination, since some avenues, like Park Avenue, are bi-directional. I
then calculate, for each trip, the ratio of travel time to the distance traveled, to obtain each
trip’s average seconds per meter. Each avenue is then subdivided into 10-meter bins, and
for each, average the travel time per meter of all taxis that traversed that bin.

Table 3.2 shows summary statistics for within-avenue taxi trips, for each avenue as well
as for all trips. The mean seconds per meter of all of all within-avenue taxi trips is 0.201,
corresponds to a speed of 11.13 miles per hour. I do not measure speeds for 6th and 7th
avenue since these stop at Central Park, which is also where the Citibike docks stop, and
they therefore do not provide useful variation in my analysis.

Table 3.2: Seconds-per-meter for within-avenue taxi trips, January 2009 to August 2015

Street N Mean Median Std Dev Min Max

1st Ave 10, 733, 906 0.180 0.142 0.355 0.029 342.998
2nd Ave 14, 715, 273 0.219 0.176 0.367 0.029 432.475
3rd Ave 15, 469, 388 0.211 0.167 0.319 0.029 279.618

Lexington Ave 6, 941, 103 0.258 0.207 0.471 0.029 406.378
Park Ave 5, 297, 332 0.250 0.209 0.359 0.029 275.889
Park Ave 4, 854, 437 0.290 0.242 0.412 0.029 298.259

Madison Ave 7, 354, 580 0.245 0.202 0.437 0.029 309.444
5th Ave 10, 806, 262 0.291 0.236 0.394 0.029 190.575
8th Ave 13, 636, 670 0.281 0.217 0.574 0.029 439.932
9th Ave 10, 820, 429 0.242 0.194 0.408 0.029 283.346
10th Ave 3, 706, 137 0.206 0.157 0.501 0.029 417.562

All 104, 335, 517 0.241 0.191 0.420 0.029 439.932

Notes : Measured variable is seconds per meter. The mean of all within-avenue taxi
trips, .201 seconds per meter, is the inverse of a speed of 11.13 miles per hour.

These data are subject to two potential types of bias that Mangrum and Molnar, 2019
identify: an aggregation bias, and a selection bias due to changes in trip selection over
space and time. I replicate their discuss of these here. Consider two 10-meter bins in
a relatively uncongested area in the north of the city, and assume traffic moves at the
same speed along both of the bins, in the southern direction. Suppose the northernmost of
these bins contains a hotel driveway, whereas its neighbor to the south does not. The bin
containing the hotel originates many long trips to the relatively congested downtown area,
whereas the neighboring bin originates short trips within a relatively uncongested interval.
In this example, the average taken over travel time of the trips crossing each bin will be
biased upwards as an estimator of the true marginal travel time of crossing each bin due to
congestion that affects taxis traveling downtown from the hotel (an aggregation bias). The
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bias will be larger for the bin containing the hotel since its average does not contain the
shorter, local trips originating in the southern neighbor (a selection bias). Aggregation bias
can vary with time as a bin may be located next to a nightclub, for example.

Mangrum and Molnar, 2019 develop alternative measures of travel time to address the
issues they identify. They find their results robust across methodologies, hence I also adopt
their simplest and most preferred method in this paper.

3.4 Empirical Strategy

My empirical strategy exploits the localized and sudden deployment of the Citibike system in
a difference-in-differences design. Citibike was deployed on May 27, 2013 in lower Manhattan.
While some docks were installed as early as April 2013, the system was not activated until
the end of May, at which point all bicycles were made available for use. The boundary of
the system was at 59th Street, above which there were no docks. The system expanded
above 59th Street in August 2015, so I restrict the estimation sample to end in July 2015.
Furthermore, I restrict the estimation sample to within 3 kilometers of 59th St. Estimates
of speed in bins outside of that range become uncertain due to fewer taxi trips.

I estimate the standard panel data difference-in-differences specification in this setting:

sabt = βDIDPostt · below 59thab + βxabt + γab + δat + εabt (3.1)

where sabt is the natural log of travel time in seconds per meter at the level of an avenue-
direction (a), 10-meter bin (b) and month(m) from January 2009 to July 2015. The preferred
metric for measuring speed over a roadway segment in transportation engineering is space-
mean speed. Space-mean speed is the harmonic mean of speeds. The outcome of interest is
measured in travel time, rather than speed, so that its arithmetic mean yields the reciprocal of
space-mean speed for a 10-meter bin. Positive estimates from these regressions can therefore
be interpreted as increases in travel time, or equivalently, decreases in speed. More details
are given in Appendix A. Postt is a binary variable encoded as one after June 2013, and
zero otherwise.5 xabt includes controls for complaints related to road conditions and other
factors that may affect travel time, locations of bike lanes and routes, and calendar month
dummies interacted with a below 59th Street indicator, to allow for different seasonal effects
above and below 59th Street. However, the above specification does not capture the initial
ramp-up in Citibike usage, or heterogeneity in usage across bins. I therefore estimate two
specifications which employ data on Citibike rides to measure treatment intensity.

The first such specification incorporates temporal variation in treatment intensity. This
variation is driven by lower ridership as the program ramped up, as well as seasonal effects —
ridership is higher in summer and lower in the winter. These effects are shown in figure 3.4.

5I categorize May 2013 as untreated, even though Citibike launched May 27. These 5 days in May are
a small enough fraction of the month, and initial ridership was sufficiently low, that this does not affect
results.
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Rides in June and July of 2013, soon after the system’s launch, are substantially lower than
in the same months in subsequent years. Furthermore, Citibike is used much less frequently
in winter. In equation 3.2, the binary treatment dummy is replaced with Monthly Intensityt,
which measures intensity at the monthly level. It is defined as the ratio of monthly total
rides (zero prior to June 2013) to maximum observed value of 987,169. The specification is
as follows:

sabt = βDIDMonthly Intensityt · below 59thab + βxabt + γab + δat + εabt (3.2)

In each of the above specifications, I employ the same fixed effects as Mangrum and Molnar,
2019. In particular, I include fixed effects γab at the level of an avenue-direction and 10-meter
bin, which absorb time-invariant features of the road, as well as monthly time effects δat at
the level of an avenue-direction, which absorb the variation in speed along each avenue over
time that is common across bins. The inclusion of monthly time effects that vary at the level
of an avenue-direction negates the need to include weather controls; since my panel is at the
monthly level, any weather variation that I might wish to control for at the monthly level
is absorbed. Furthermore, to the extent that I might be concerned about weather variation
across space in Manhattan, time effects at the level of an avenue-direction account for this to
the extent that the variation occurs across avenues. The difference-in-differences coefficient
βDID is estimated from the difference within each avenue-direction between travel time north
versus south of 59th Street as treatment intensity varies.

Figure 3.4: Total Monthly Citibike Rides in Manhattan, June 2013 to July 2015

My preferred specification is equation 3.3 below, which employs a treatment intensity
measure at the level of a month, avenue-direction and 10-meter bin, Bin-Month Intensityabt.
It is defined as the ratio of bike rides traversing a bin in a month to the maximum number
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of rides observed in any bin in the sample period. This measure captures significant hetero-
geneity in treatment intensity both temporally, as discussed above, as well as spatially. Bike
rides that crossed a bin were measured by first mapping routes between Citibike stations
using Google Maps cycling directions, then counting the rides on routes that crossed that
bin. Spatial variation in the number of rides is significant. Note that equation 3.3 no longer
includes below 59thab. Its inclusion would be redundant as the bin-month level intensity
measure is always zero above 59th Street as a result of assuming riders did not take bikes
above 59th Street. I discuss the plausibility of that assumption and the implications of its
violation below.

sabt = βDIDBin-Month Intensityabt + βxabt + γab + δt + εabt (3.3)

The specification in equation 3.3 features common time effects δt, which relative to the
above specifications, allows variation in travel time across avenues to identify the difference-
in-differences estimates. 6 This is a sensible modification, as it allows untreated bins south
of 59th Street to serve as “control” areas for treated bins south of 59th Street. This miti-
gates any potential concern about differential trends across north-south geography as density
varies. Figure 3.5 shows the identifying variation for this specification. It plots monthly rides
on road segments for June 2014, a year after the system launched. The most traversed seg-
ments are shown in black, with over 100,000 rides a month. Segments traversed less often are
shown in lighter shades of red. Citibike dock locations are shown as green circles. Observe
that Citibike docks stop at 59th street. 8th Avenue and West Side Highway are relatively
highly traversed, as are several cross-streets. There is significant variation in the frequency
of rides on different road segments. Many bins that fall south of 59th Street are traversed
very infrequently.

I identify the causal effect of Citibike on travel time in equations 3.1 and 3.2 if the parallel
trends assumption holds - that is if the natural logarithm of travel time in treated versus
untreated areas was not trending apart for reasons other than the Citibike system. I provide
visual evidence in support of this assumption in figure 3.6, which shows a monthly time
series of travel time in log average seconds per meter above versus below 59th Street, for the
sample period of January 2009 to July 2015. Each trend has been demeaned and adjusted
for seasonality to facilitate comparison. Observe that average travel time below 59th Street
and average travel time above 59th street move in unison and tend to be similar and do
not diverge in any systematic way prior to the treatment. For my preferred specification
in equation 3.3, with treatment intensity that varies across bins, I require parallel trends
across bins of different treatment intensity. This is difficult to assess visually, so I probe the
robustness of the assumption by including flexible linear trends in a specification check.

6Common time effects absorb any weather variation that is common across bins. One might be concerned
about weather shocks that are not common across bins. The available evidence suggests that weather patterns
are fairly constant across space in Manhattan. Research to document the urban heat island effect (Vant-Hull
et al., 2014) shows variation across Manhattan in temperature, but while these temperature differences are
of up to 2 degrees Fahrenheit, such differences are not large enough to plausibly affect Citibike ridership.
This is also true of variation in precipitation across space in Manhattan.
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Figure 3.5: Frequency of Citibike Rides on Road Segments in Manhattan, June 2014

Note: Green circles mark Citibike dock locations. Routes assume riders follow Google Maps cycling direc-
tions.

Figure 3.6 also shows the slowdown in travel time that has occurred in Manhattan. Start-
ing in 2013, travel time is slowing down both above and below 59th St. A potential concern
might be that a third factor, other than Citibike, and correlated with the introduction of
Citibike, is causing this slowdown. My experimental design ensures such a factor would not
bias the estimates as long as the slowdown is at a similar rate above and below 59th St.
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Figure 3.6: Monthly Time Series of Travel Time in Log Average Seconds per Meter Above
versus Below 59th Street, January 2009 to July 2015

Note: Figure shows monthly time series of natural logarithm of travel time in average seconds per meter for
the average bin below 59th Street and the average bin above 59th Street over time. The dotted grey line
marks June 2013 when Citibike was launched. Each trend has been demeaned and adjusted for seasonality
to facilitate comparison. The values shown are residuals from a regression of log average seconds per meter
on a constant, indicator for below 59th Street, and calendar month dummies interacted with below 59th
Street indicator.

Mangrum and Molnar, 2019 were the first to document the slowdown in Manhattan. They
find that the introduction of transportation network companies (TNCs) and their subsequent
growth accounts for 61.8% of the traffic slowdown in midtown Manhattan that occurs after
2013. I probe the robustness of my estimates to the introduction of TNCs below.

Other threats to identification of the causal effect of Citibike on travel time include
changes in road use that affect speeds differently in treated versus untreated areas. Each
baseline specification includes several control variables that account for such factors that I
am able observe. First, I construct a count measure of complaints related to road conditions
and other factors that may affect travel time using 311 service request data. I observe every
complaint made to the 311 hot-line for the sample period, including its date, the type of
complaint, and its location, where relevant. I aggregate the following types of complaint
at the level of a 10-meter bin, month: blocked driveway — no access, blocked driveway —
partial access, street condition — blocked, construction, street condition — cave-in, street
condition — failed street repair, street condition — pothole, street condition — rough, pitted
or cracked roads. I also use data on locations and installation dates of bike lanes and routes
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to construct control variables for protected and unprotected bike lanes at the level of a
bin, avenue-direction, and month. Additionally, I control for seasonal effects using calendar
month dummies interacted with a below 59th Street indicator, to allow for different seasonal
effects above and below 59th Street.

3.5 Results

Figures 3.7 and 3.8 show historical street speed for all avenues and 10-meter bins in the
estimation sample. For ease of interpretation, speed is presented in miles per hour, which
is the reciprocal of the dependent variable, travel time in seconds per meter, with converted
units. Each figure plots speed against distance above 59th Street, and plots the average
speed for the pre- and post-Citibike periods separately. On most avenues, speed increases in
the northern direction, as the city becomes less dense. Over time, speeds tend to decrease
both above and below 59th Street, but on many avenues the decrease is larger below 59th
Street, which is the variation that identifies the treatment effect.

Table 3.3 shows summary statistics for the estimation sample, which is for the period
from January 2009 to July 2015 and at the 10-meter bin, avenue-direction, month level. I
include all bins within 3 kilometers of 59th Street on 1st Avenue through 5th Avenue on
the East side of Manhattan and on 8th Avenue through 10th Avenue on the West side. I
measure travel time in average seconds per meter. The sample average is .21 seconds per
meter, which corresponds to a speed of 10.65 miles per hour. The monthly average number
of Citibike rides is about 200,000, and the standard deviation of 330,000 is large relative
to the mean. The bin-month Citi rides variable is right-skewed. The average number of
rides traversing a bin in a month is 1,526, and the standard deviation is 14,245, while the
maximum I observe is 452,065.

Main Results

Table 3.4 reports my main results. The dependent variable in all regressions is the natural log
of travel time, measured in avgerage seconds per meter. Positive estimates can be interpreted
as increases in travel time, or equivalently, decreases in speed. The columns show estimates
for three specifications with alternative independent variables of interest. In column 1, the
independent variable of interest is Citi x Post, and is the standard independent variable in a
difference-in-differences specification. In column 2 the independent variable Citi x Monthly
Intensity scales the dependent variable in column 1 by treatment intensity at the monthly
level, normalized by maximum monthly rides observed of just under a million. In column
3 the independent variable Citi x Bin-Month Intensity measures treatment intensity at the
10-meter bin, avenue-direction, month level. This variable measures the number of Citibike
rides crossing a bin in a particular direction, normalized by the maximum number of rides
crossing any bin that I observe in a the sample, 452,065. The specification in column 3
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Table 3.3: Regression Sample Summary Statistics

Statistic Mean St. Dev. Min Max

Seconds per meter 0.210 0.046 0.088 0.866
Monthly Citibike rides 206,733.400 329,626.600 0 987,169
Monthly intensity 0.209 0.334 0 1
Bin-month Citibike rides 1,526.092 14,245.580 0 452,065
Bin-month intensity 0.003 0.032 0 1
Protected bikelane 0.187 0.390 0 1
Unprotected bikelane 0.051 0.219 0 1
311 complaints 0.013 0.157 0 15

Notes: N = 510,732. Sample period is January 2009 through July 2015. Sample include all 10 meter bins
within 3 kilometers of 59th St on the following avenues: 1st Ave, 2nd Ave, 3rd Ave, Lexington Ave, Park
Ave, Madison Ave, 5th Ave, 8th Ave, 9th Ave, and 10th Ave. The sample average seconds per meter, .21,
is the reciprocal of a speed of 10.65 miles per hour.

employ common time effects, which relative to the estimates other columns, allows variation
in travel time across avenues to identify the difference-in-differences estimates.
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Figure 3.7: Historical Street-Level Traffic Speed on East Side Avenues, Pre- and Post-Citibike

Note: Space-mean speed in miles per hour on selected West Side avenues in 10-meter bins, pre- and post-
Citibike. The sample period is January 2009 through July 2015, and Citibike was introduced in June 2013.
The mean speed of all within-avenue taxi trips is 11.13 mph.
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Figure 3.8: Historical Street-Level Traffic Speed on West Side Avenues, Pre- and Post-
Citibike

Note: Space-mean speed in miles per hour on West Side avenues in estimation sample, measured in 10-
meter bins, pre- and post-Citibike. The sample period is January 2009 through July 2015, and Citibike
was introduced in June 2013. The mean speed of all within-avenue taxi trips is 11.13 mph. 10th Avenue
ends before 3000m North of 59th because it intersects with Broadway and to precisely estimate street mean
speeds only taxi trips staring or ending before the intersection were used in estimates.
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Table 3.4: Main Difference-in-Differences Results

Dependent variable: log avg. seconds per meter

Standard DID Monthly intensity Bin-month intensity

(1) (2) (3)

Citi x post 0.023∗∗∗

(0.004)

Citi x monthly intensity 0.039∗∗∗

(0.007)

Citi x bin-month intensity 0.096∗∗∗

(0.032)

Unprotected bikelane −0.024∗∗∗ −0.024∗∗∗ −0.070∗∗∗

(0.009) (0.009) (0.011)

Protected bikelane 0.006 0.005 −0.044∗∗∗

(0.004) (0.004) (0.006)

311 complaints 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗

(0.001) (0.001) (0.001)

Fixed effects? Avenue-bin x avenue-ym Avenue-bin x avenue-ym Avenue-bin x year-month
Calendar month controls? Y Y Y
Observations 510,732 510,732 510,732
R2 0.968 0.968 0.939

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Dependent variable is natural log of seconds per meter. Standard errors two-way clustered at the
avenue-bin and avenue-year-month level.
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In all specifications, the coefficient of interest is statistically significant at the 1% level
and positive, indicating an increase in travel time (or equivalently, a decrease in speed). The
coefficient on Citi x Post in column 1 represents the average causal effect of the Citibike
system on travel time below 59th Street. I find that the Citibike system increased travel
time by 2.3%. In column 2, the coefficient on Citi x Monthly Intensity is larger than the
coefficient of interest in column 1, indicating that the effect on speed is larger in months
when the Citibike system is more fully utilized. At the maximum system utilization of
987,169 monthly rides, I find travel time increased by 3.9%. In column 3, the coefficient on
Citi x Bin-Month Intensity indicates that at the maximum number of rides traversing a bin
452,056, travel time increases by 9.6%. An equivalent interpretation is that a 10% increase
in utilization, of about 45,000 rides, increases travel time by 1%. Unprotected bike lanes
are associated with a decrease in travel time. Protected bike lanes are associated with a
small, but statistically insignificant increase in travel time based on estimates from columns
2 and 3, but are associated with a decrease in travel time of about 4.4% in column 3. A 311
complaint related to road conditions is associated with an increase in travel time of 0.2%.

These results estimate the combined impact of various effects of the Citibike system.
The finding of an increase in travel time is consistent with congestion exacerbating effects
of the system outweighing any congestion mitigating effects. The only congestion mitigat-
ing effect of Citibike is substitution away from personal vehicles, taxis, and TNC services.
Hypothesized congestion exacerbating effects include substitution away from walking and
public transit (Campbell and Brakewood, 2017), the effect of removing parking spots for
bike docks, induced demand due to the availability of a new transit option, and any service
and maintenance activity of the Citibike system that occurs at the street level.

An important parameter of interest is how Citibike affected the speed of the average
trip in New York City. The results presented above demonstrate that Citibike has slowed
down trips made by car, taxi, TNC or bus. If Citibike users are substituting away from
walking, then the introduction of Citibike may have sped up the average trip made by New
Yorkers, in spite of the externality imposed on vehicular traffic. Table 3.5 shows the share of
the working population residing in Manhattan that commute by different modes of transit.
The estimates are derived from American Community Survey data, and are shown for 2012
and 2014, or pre- and post-Citibike. First note that a large share, about 50%, commute
by subway, and the next highest share, about 20%, commute on foot. In total, only 12.6%
of the Manhattan working population commute by taxi or other vehicle. This finding of
limited potential for substitution away from vehicular travel is consistent with my results
that Citibike increased congestion.

To estimate Citibike’s effect on speed of overall trips would require estimates of substi-
tution of Citibike riders from other modes of transit. I can however, perform a back-of-
the-envelope calculation to evaluate whether substitution patterns that would facilitate an
increase in overall trip speed are plausible. First I decompose the change in average trip
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Table 3.5: Manhattan Commuter Mode Shares for 2012, 2014

Year 2012 2014
Working population 832836 852406
Car, truck, or van 0.088 0.082

Bus 0.081 0.075
Streetcar 0.003 0.003
Subway 0.484 0.499
Rail 0.015 0.014
Ferry 0.001 0.001
Bike 0.011 0.015
Walk 0.213 0.207
Taxi 0.038 0.037

Work from home 0.067 0.067

Notes: Table shows working population and commuter shares by mode of transport for Manhattan for 2012
and 2014. Estimates are derived from American Community Survey 1-year estimates. 2012 is pre-Citibike
and 2014 is post-Citibike.

speed as follows:

Avg. speed1 − Avg. speed0

=
∑

m̸=bike

(Avg. speedm1 − Avg. speedbike1)∆sm +
∑
m

(∆Avg. speedmsm0) , (3.4)

where m denotes a mode of travel, t ∈ {0, 1} denotes pre- and post-Citibike, and smt denotes
the share of all trips made by a particular mode m at time t. Details of this decomposition
can be found in Appendix B. The second term on the right-hand side of the above expression
captures the externality imposed by Citibike on other modes of travel. I assume this is zero
for modes other than vehicular traffic. Using the estimated decrease in speed of 0.023 and
the average speed of taxis in the estimation sample of 10.619 miles per hour, the change in
speed of vehicular traffic is -0.244 miles per hour. Based on the estimates from commuters
in 2012, 20.7% of trips were made by bus, car, or taxi. The first term on the right-hand
side is the benefit from commuters who substitute into Citibike from faster trips, in terms of
speed. Since the largest difference in speed is between walking and cycling, I can calculate
the percentage point change in walking that would have to occur to offset the externality of
Citibike on vehicular traffic. The average Citibike speed in the sample is 8.3 miles per hour,
and the average walking speed in Manhattan is 3.4 miles per hour.7 For the externality to
be offset and for the speed to increase would require a 1.468 percentage point decrease in
the share of walking trips, entirely replaced by Citibike trips. I do not have estimates of the

7www.richardwiseman.com/quirkology/pace method.htm

http://www.richardwiseman.com/quirkology/pace_method.htm
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causal effect of Citibike, on substitution between modes of transit. However, in 2012, 1.1%
of trips were made by bike, and in 2014, after Citibike’s introduction, the share increased
to 1.5%. This is suggestive evidence that observed changes in bike trips were insufficient to
have resulted in an increase in the speed of the average trip. This is suggestive evidence that
the external cost of Citibike on vehicular traffic outweighs the private benefit of the system,
in terms of travel time.

Alternative Specifications and Robustness

Table 3.6 reports results from various alternative specifications and robustness checks of
my preferred specification, equation 3.3. First, column 1 shows the estimates in levels,
rather than logs. The estimate remains significant at the 1% level. The coefficient of 0.031
represents a percent increase in travel time of 14.7% when evaluated against the sample mean
of .21 seconds per meter, which is in line with my main result. Column 2 shows estimates
without covariates, to show their inclusion is not driving my main result. The estimate
is consistent with my main result. Column 3 provides a check on statistical inference by
two-way clustering at the avenue-direction, month of sample level. The estimate remains
significant at the 1% level. Finally, column 4 provides a check against differential linear
trends, for reasons other than the program’s impact, that may bias my results. I include a
linear trend interacted with avenue-direction and above/below 59th Street. The estimated
impact decreases by only 24% after the inclusion of these flexible linear trends. To check
that differential trends across north-south geography related to density or other factors are
not driving my results, column 5 shows estimates that only include bins below 59th Street.
The coefficient remains consistent with my main results.
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Table 3.6: Robustness and Specification Check Results

Avg. s/m Log avg. s/m Log avg. s/m Log avg. s/m Log avg. s/m Log avg. s/m

(Levels) (No controls)
(Large
clusters)

(Linear
trend) (Below)

(Linear,
Uber trend)

(1) (2) (3) (4) (5) (6)

Citi x bin-month intensity 0.031∗∗∗ 0.125∗∗∗ 0.096∗∗∗ 0.073∗∗ 0.086∗∗∗ 0.075∗∗

(0.009) (0.041) (0.033) (0.036) (0.033) (0.036)

Unprotected bikelane −0.016∗∗∗ −0.070∗∗∗ −0.020∗∗ −0.078∗∗∗ −0.027∗∗∗

(0.002) (0.009) (0.009) (0.012) (0.010)

Protected bikelane −0.012∗∗∗ −0.044∗∗ −0.027∗∗∗ −0.050∗∗∗ −0.024∗∗∗

(0.001) (0.021) (0.005) (0.006) (0.005)

311 complaints 0.001∗∗∗ 0.002∗ 0.002∗∗ 0.002∗∗ 0.002∗∗

(0.0002) (0.001) (0.001) (0.001) (0.001)

Avenue-bin x year-month FE? Y Y Y Y Y Y
Calendar month controls? Y N Y Y N Y
Observations 510,732 510,732 510,732 510,732 322,908 510,732
R2 0.918 0.933 0.939 0.943 0.943 0.945

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. The mean of avg. second per meter in the estimtion sample is .21. Standard errors two-way clustered
at the avenue-bin and avenue-year-month level, save for column 3, in which they are clustered at the avenue and year-month level. Column
4 interacts linear trends that we allow to vary above vs below 59th St on each avenue-direction. Column 5 only includes all 10 meter
bins below 59th St. Column 6 interacts both linear and aggregate Uber trends that we allow to vary above vs below 59th St on each
avenue-direction.
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Threats to identification of the causal effect of Citibike on travel time include changes in
road use that affect speeds differently in treated versus untreated areas. A major change in
road use that I have not yet addressed is the introduction of TNCs such as Uber. Uber would
bias my estimates to the extent that its impact is different across treated and untreated bins.
Uber launched in New York City as a black car service on May 4, 2011.8 To address this
concern I follow Mangrum and Molnar, 2019 and construct an “aggregate Uber trend” from
monthly Uber pickups in Manhattan. Figure 3.9 shows monthly Uber trips in Manhattan for
May 2011 onward. 9 I interact this trend at the level of an avenue-direction and above/below
59th Street. Column 6 of Figure 3.6 reports estimates of my preferred specification with the
joint inclusion of both the Uber trend and a linear trend. This tests the robustness of
estimates to the inclusion of a trend that is not only linear, but also allowed to accelerate
after May 2011 at a rate that is proportional to the growth of Uber. The estimate remains
statistically significant at the 5% level and is similar in magnitude to my baseline estimate.

Figure 3.9: Time Series of Monthly Uber Pickups in Manhattan

Note: Trip-level data for Uber is available for the second and third quarters of 2014, and for 2015 onward. I
extrapolate to the missing period in 2014, and to Uber’s launch in May 2011 using the average growth rate
of 9.09% over the period for which I have data.

One example of a potential source of bias in my estimates would be a violation of the
assumption that riders do not rent bicycles to ride above 59th Street, or put another way,
that the docks at 59th Street represent a boundary of the treated area. Adding cyclists

8https://www.nytimes.com/2011/05/04/technology/04ride.html
9Trip-level data for Uber is available for the second and third quarters of 2014, and for 2015 onward. I

extrapolate to the missing period in 2014, and to Uber’s launch in May 2011 using the average growth rate
of 9.09% over the period for which I have data.
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to the area north of 59th Street, the “control” area, would bias estimates downwards, as
street speeds would be lower in that area than in the true counterfactual. This phenomenon
does not threaten the detection of a positive affect, and only affects the magnitude of the
estimate. Even then, it is sufficiently rare as to not be a concern. Some users certainly use
the bicycles to go above 59th Street. In the estimation period, 69,135 rides originated from
a dock on the 59th Street boundary and returned to the same dock. This represents just
0.4% of all rides, and many of these “boundary rides” could have been taken south of 59th
Street, or north but remained within Central Park and not on avenues. Similarly, spatial
spillovers of congestion do not threaten the detection of a positive affect. Any slow down
below 59th Street that has a knock-on effect on northbound avenues will also make street
speeds lower in the area above 59th Street that serves as the “control” area. This would bias
my estimates downwards. Another potential concern is that Citibike riders do not follow
Google Maps bicycling directions. This might be because cyclists are unable to follow a
route on their phone when riding and likely deviate from these routes. First note that a
rider need not consistently look at their phone when riding. Users need only map the route
at the start of the ride, and because Manhattan streets form a grid, they need only memorize
a few simple directions. Recently, Google Maps has incorporated real time data that shows
if Citibike docks are open or closed, if the docks are accepting returns and/or offering rentals
(i.e. is the dock full or not).10 This suggests consumers have historically, and continue to use
Citibike and Google Maps in an interdependent fashion. Even if Citibike users deviate from
Google Maps directions, the effect would be similar to if riders went above 59th St. This
phenomenon would increase congestion in areas that have a lower or no intensity, “control”
areas, and thereby not threaten the detection of an effect, but merely its magnitude.

Another potential concern is endogeneity caused by simultaneity of my independent vari-
able of interest in specifications 3.2 and 3.3 with my outcome of interest, travel time. As
streets become more congested, more people who would have traveled by personal vehicle,
TNC, taxi, or bus, may choose to ride Citibike. More Citi Bike riders may exacerbate con-
gestion. This would bias my estimates upwards. While this is technically a valid concern,
for any plausible elasticity of Citibike ridership with respect to congestion, the small size of
the congestion effect I estimate means this source of bias would be extremely small.

3.6 Conclusion

This study estimates the effect of Citibike, New York City’s bike-sharing system, on conges-
tion along Manhattan avenues. I find that the Citibike system decreased speeds on avenues in
Manhattan. Overall, I estimate that the system decreased speed by 2.3%. At the maximum
number of rides traversing a 10-meter bin, 452,056, travel time increases by 9.6%. Under
generous assumptions about substitution patterns (namely that all Citibike users would have
walked), observed changes in the share of trips made by bike in Manhattan before and after

10www.forbes.com/sites/melissakravitz/2018/04/30/google-maps-is-making-citi-bikes-so-much-easier-to-
use-in-new-york-city

https://www.forbes.com/sites/melissakravitz/2018/04/30/google-maps-is-making-citi-bikes-so-much-easier-to-use-in-new-york-city
https://www.forbes.com/sites/melissakravitz/2018/04/30/google-maps-is-making-citi-bikes-so-much-easier-to-use-in-new-york-city
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Citibike are insufficient to have resulted in an increase in the speed of the average trip. This
is suggestive evidence that the external cost of Citibike on vehicular traffic outweighs the
private benefit of the system, in terms of travel time.

These estimates comprise the combined impact of various effects of the Citibike system.
The finding of an increase in travel time is consistent with congestion exacerbating effects
of the system outweighing any congestion mitigating effects. The only congestion mitigat-
ing effect of Citibike is substitution away from personal vehicles, taxis, and TNC services.
Congestion exacerbating effects include substitution away from walking and public transit,
the effect of removing parking spots for bike docks, induced demand due to the availability
of a new transit option, and any service and maintenance activity of the Citibike system
that occurs at the street level. I cannot disentangle each of these effects. These estimates
therefore represent a lower bound on the congestion externality imposed by Citibike.

While bike-sharing systems may offer other benefits (Woodcock et al., 2014; Xu, 2019),
this result suggests their potential to reduce congestion has been over-estimated, at least in
certain settings. This should give policy makers pause. In section 2, I compare Citibike to
other large bike-sharing systems in the United States. Citibike about twice as large in number
of annual rides, but that the number of monthly rides on the most popular ride in New York
City, 11,860, is only 34% higher than the number of monthly rides on the most popular ride
in Chicago. This indicates that bike-sharing penetration in Chicago is comparable to that
in New York City during the sample period. Bike-sharing systems are already widespread
in the US. Nevertheless, these results should inform the analysis of whether their further
expansion is welfare-improving, as well as the introduction of other shared mobility services
that may conflict with existing transportation infrastructure.
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Appendix A

Appendix for Chapter 1

A.1 Alternative Normalization

In this section I present results from an alternative normalization, which rolls the develop-
ment of the CCS and CHAdeMO networks back to 2015, while maintaining the 2019 Tesla
network, so as to have an equivalent number of vehicles per charger. The results of the
alternative normalization are very similar to those I present in my main results.
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Figure A.1: Annual Charging Quantity Versus Annual E-miles Enabled at 2019 Charging
Stations
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Note: N = 702. This figure shows annual e-miles enabled and annual charging demand for marginal charging
station locations in California. Each data point is a charging station location. The size of each point
represents the number of chargers at the charging station.
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Figure A.2: Distribution of Annual E-miles Enabled and Annual Charging Demand for Tesla
and Non-Tesla Charging Stations
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Note: This figure shows distributions of annual e-miles enabled and annual charging demand for Tesla and
non-Tesla chargers. Observations are at the charging station level, weighted by the number of chargers at
a station. The left panel presents the annual e-miles enabled, and the right panel presents annual charging
demand. The vertical dashed lines show average values for Tesla and non-Tesla chargers.
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Appendix B

Appendix for Chapter 3

B.1 Space-Mean Speed

The Federal Highway Administration defines space-mean speed as the average speed of vehi-
cles traveling a given segment of roadway during a specified period of time and is calculated
using the average travel time and length for the roadway segment. Equation B.1 shows the
formula for space-mean speed.

vs =
d∑
ti

n

, (B.1)

where d is the distance traveled, ti is the travel time of vehicle i and n is the number of
observations. For our data, we observe travel time and the length of the trip, so we convert
each taxi’s travel time to be average seconds per meter. This means d is one, and so 1/vs
yields average travel time, which is our dependent variable.
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B.2 Back-of-the-envelope decomposition of speed

change

Let m denote a mode of travel, let t ∈ {0, 1} denote pre- and post-Citibike, and let smt

denote the share of all trips made by a particular mode m at time t. We can then write

Avg. speed1 − Avg. speed0

=

∑
m Avg. speedm1tripsm1∑

m tripsm1

−
∑

m Avg. speedm0tripsm0∑
m tripsm0

=
∑
m

Avg. speedm1sm1 −
∑
m

Avg. speedm0sm0

=
∑
m

Avg. speedm1sm1 − Avg. speedm1sm0 +Avg. speedm1sm0 − Avg. speedm0sm0

=
∑
m

Avg. speedm1∆sm +∆Avg. speedmsm0

=
∑

m̸=bike

(Avg. speedm1∆sm) + Avg. speedbike1∆sbike +
∑
m

(∆Avg. speedmsm0)

=
∑

m̸=bike

(Avg. speedm1∆sm) + Avg. speedbike1

(
−
∑

m ̸=bike

∆sm

)
+
∑
m

(∆Avg. speedmsm0)

=
∑

m̸=bike

(Avg. speedm1 − Avg. speedbike1)∆sm +
∑
m

(∆Avg. speedmsm0) .

(B.2)
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