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Abstract
Adaptive systems—such as a biological organism gaining survival advantage, an autonomous
robot executing a functional task, or a motor protein transporting intracellular nutrients—must
somehow embody relevant regularities and stochasticity in their environments to take full
advantage of thermodynamic resources. Analogously, but in a purely computational realm,
machine learning algorithms estimate models to capture predictable structure and identify
irrelevant noise in training data. This happens through optimization of performance metrics, such
as model likelihood. If such learning is physically implemented, is there a sense in which
computational models estimated through machine learning are physically preferred? We introduce
the thermodynamic principle that work production is the most relevant performance measure for
an adaptive physical agent and compare the results to the maximum-likelihood principle that
guides machine learning. Within the class of physical agents that most efficiently harvest energy
from their environment, we demonstrate that an efficient agent’s model explicitly determines its
architecture and how much useful work it harvests from the environment. We then show that
selecting the maximum-work agent for given environmental data corresponds to finding the
maximum-likelihood model. This establishes an equivalence between nonequilibrium
thermodynamics and dynamic learning. In this way, work maximization emerges as an organizing
principle that underlies learning in adaptive thermodynamic systems.

1. Introduction

What is the relationship, if any, between abiotic physical processes and intelligence? Addressed to either
living or artificial systems, this challenge has been taken up by scientists and philosophers repeatedly over
the last centuries, from the 19th century teleologists [1] and biological structuralists [2, 3] to cybernetics of
the mid-20th century [4, 5] and contemporary neuroscience-inspired debates of the emergence of artificial
intelligence in digital simulations [6]. The challenge remains vital today [7–10]. A key thread in this
colorful and turbulent history explores issues that lie decidedly at the crossroads of thermodynamics and
communication theory—of physics and engineering. In particular, what bridges the dynamics of the
physical world and its immutable laws and principles to the purposeful behavior of intelligent agents? The
following argues that an essential connector lies in a new thermodynamic principle: work maximization
drives learning.

Perhaps unintentionally, James Clerk Maxwell laid foundations for a physics of intelligence with what
Lord Kelvin (William Thomson) referred to as ‘intelligent demons’ [11]. Maxwell in his 1857 book Theory
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of Heat argued that a ‘very observant’ and ‘neat fingered being’ could subvert the second law of
thermodynamics [12]. In effect, his ‘finite being’ uses its intelligence (Maxwell’s word) to sort fast from slow
molecules, creating a temperature difference that drives a heat engine to do useful work. The demon
presented an apparent paradox because directly converting disorganized thermal energy to organized work
energy is forbidden by the second law. The cleverness in Maxwell’s paradox turned on equating the
thermodynamic behavior of mechanical systems with the intelligence in an agent that can accurately
measure and control its environment. This established an operational equivalence between energetic
thermodynamic processes, on the one hand, and intelligence, on the other.

We will explore the intelligence of physical processes, substantially updating the setting from the time of
Kelvin and Maxwell, by calling on a wealth of recent results on the nonequilibrium thermodynamics of
information [13, 14]. In this, we directly equate the operation of physical agents descended from Maxwell’s
demon with notions of intelligence found in modern machine learning. While learning is not necessarily
the only capability of a presumed intelligent being, it is certainly a most useful and interesting feature.

The root of many tasks in machine learning lies in discovering structure from data. The analogous
process of creating models of the world from incomplete information is essential to adaptive organisms,
too, as they must model their environment to categorize stimuli, predict threats, leverage opportunities, and
generally prosper in a complex world. Most prosaically, translating training data into a generative model
corresponds to density estimation [15–17], where the algorithm uses the data to construct a probability
distribution.

This type of model-building at first appears far afield from more familiar machine learning tasks such as
categorizing pet pictures into cats and dogs or generating a novel image of a giraffe from a photo
travelogue. Nonetheless, it encompasses them both [18]. Thus, by addressing thermodynamic roots of
model estimation, we seek a physical foundation for a wide breadth of machine learning.

In estimating a distribution, it is common to invoke the principle of maximum-likelihood to guide
intelligent learning. This is maximum likelihood estimation (MLE), whose central tenet is that, of the
possible models consistent with the training data, an algorithm should select that model with maximum
probability of having generated the data. Our exploration of the physics of learning asks whether a similar
thermodynamic principle guides physical systems as they adapt to their environments.

The modern understanding of Maxwell’s demon no longer entertains violating the second law of
thermodynamics [19]. In point of fact, the second law’s primacy has been repeatedly affirmed in modern
nonequilibrium theory and experiment. That said, what has emerged is that we now understand how
intelligent (demon-like) physical processes can harvest thermal energy as useful work. They do this by
exploiting an information reservoir [19–21]—a storehouse of information as randomness and correlation.
That reservoir is the demon’s informational environment, and the mechanism by which the demon
measures and controls its environment embodies the demon’s intelligence, according to modern physics.
We will show that this mechanism is directly linked to the demon’s model of its environment, which allows
us to formalize the connection to machine learning.

Machine learning estimates likelihoods of different models given the same data. Analogously, in the
physical setting of information thermodynamics, different demons harness different amounts of work using
the same information reservoir. Leveraging this commonality, section 2 introduces thermodynamic learning
as a physical process that infers optimal demons from environmental information. As shown in figure 1,
thermodynamic learning selects demons that produce maximum work, paralleling density estimation
through selection of models with maximum likelihood. Section 3 establishes background in MLE,
computational mechanics, and thermodynamic computing necessary to formalize the comparison of
maximum-work and maximum-likelihood learning. Our surprising result is that these two principles of
maximization are the same, when compared in a common setting. This adds credence to the longstanding
perspective that thermodynamics and statistical mechanics underlie many of the tools of machine learning
[17, 22–28].

Section 4 formally establishes that to construct an intelligent work-harvesting demon, a probabilistic
model of its environment is essential. That is, the demon’s Hamiltonian evolution is directly determined by
its environmental model. This comes as a result of discarding demons that are ineffective at harnessing
energy from any input, focusing only on a refined class of efficient demons that make the best use of the
given data. This leads to the central result, found in section 5, that the demon’s work production from
environmental ‘training data’ increases linearly with the log-likelihood of the demon’s model of its
environment. Thus, if the thermodynamic training process selects the maximum-work demon for given
data, it has also selected the maximum-likelihood model for that same data. Specifically, when harvesting
work from a time series, the maximum-work agent is an information ratchet [29, 30] that specifies the
transition and emission probabilities of a hidden Markov model (HMM).
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Figure 1. Thermodynamic learning generates the maximum-work producing agent: (Left) environment (green) behavior
becomes data (blue) for agents (red). (Middle) Candidate agents each have an internal model (inscribed stochastic
state-machine) that captures the environment’s randomness and regularity to store work energy (e.g., lift a mass against gravity)
or to borrow work energy (e.g., lower the mass). (Right) Thermodynamic learning searches the candidate population for the best
agent—that producing the maximum work.

Ultimately, our work demonstrates an equivalence between the conditions of maximum work and
maximum likelihood. In this way, thermodynamic learning is machine learning for thermodynamic
machines—it is a physical process that infers models in the same way a machine learning algorithm does.
Thus, work itself can be interpreted as a thermodynamic performance measure for learning. In this framing,
learning is physical, building on the long-lived narrative of the thermodynamics of organization, which we
recount in section 6. While it is natural to argue that learning confers benefits, our result establishes that the
benefit is fundamentally rooted in the physical link between energy and information dictated by the second
law of thermodynamics.

2. Framework

While demons continue to haunt discussions of physical intelligence, the notion of a physical process
trafficking in information and energy exchanges need not be limited to mysterious intelligent beings.
Most prosaically, we are concerned with any physical system that, while interacting with an environment,
simultaneously processes information at some energetic cost or benefit. Avoiding theological distractions,
we refer to these processes as thermodynamic agents. In truth, any physical system can be thought of as an
agent, but only a limited number of them are especially useful for or adept at commandeering information
to convert between various kinds of thermodynamic resources, such as between heat and work. Here, we
introduce a construction that shows how to find physical systems that are the most capable of processing
information to affect thermodynamic transformations.

Consider an environment that produces information in the form of a time series of physical values at
regular time intervals of length τ . We denote the particular state realized by the environment’s output at
time jτ by the symbol yj ∈ Yj. Just as the agent must be instantiated by a physical system, so too must the
environment and its outputs to the agent. Specifically, Yj represents the state space of the jth output, which
is a subsystem of the environment.

An agent has no access to the internals of its environment and so treats it as a black box. Thus, the agent
can only access and interact with the environment’s output system Yj over each time interval t ∈ (jτ ,
(j + 1)τ). In other words, the state yj realized by the environment’s output is also the agent’s input at time
jτ . For instance, the environment may produce realizations of a two level spin system Yj = {↑, ↓}, which the
agent is then tasked to manipulate through Hamiltonian control.

The aim, then, is to find an agent that produces as much work as possible using these black-box outputs.
To do so, the agent must come to know something about the black box’s structure. This is the principle of
requisite complexity [31]—thermodynamic advantage requires that the agent’s organization match that of
its environment. We implement this by introducing a method for thermodynamic learning as shown in
figure 1, that selects a specific agent from a collection of candidates.

3
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Peeking into the internal mechanism of the black box, we wait for a time Lτ , receiving the L symbols
y0:L = y0y1 . . . yL−1. This is the agent’s training data, which is copied as needed to allow a population of
candidate agents to interact with it. As each agent interacts with a copy, it produces an amount of work,
which it stores in the work reservoir for later use. In figure 1, the work reservoir is illustrated by a hanging
mass which raises when positive work is produced, storing more energy in gravitational potential energy,
and lowers when work production is negative, expending that same potential energy. However the work
energy is stored, after the agents harvest work from the training data, the agent that produced the most
work is selected.

Finding the maximum-work agent is ‘thermodynamic learning’ in the sense that it selects a device based on
measuring its thermodynamic performance—the amount of work the device extracts. Ultimately, the goal is
that the agent selected by thermodynamic learning continues to extract work as the environment produces
new symbols. However, we leave analyzing the long-term effectiveness of thermodynamic learning to the
future. Here, we concentrate on the condition of maximum-work itself, deriving and interpreting it.

Section 4 begins by describing the general class of physical agents that can harness work from symbol
sequence, known as information ratchets [29, 30]. While these agents are sufficiently general to implement
virtually any (Turing) computation, maximizing work production precludes a wide array of agents.
Section 4.2 then refines our consideration to agents that waste as little work as possible and, in so doing,
vastly narrow the search by thermodynamic learning. For this refined class of agents, we find that each
agent’s operation is exactly determined by its environment model. This leads to our final result, that the
agent’s work increases linearly with the model’s log-likelihood.

For clarity, note that thermodynamic learning differs from physical systems that, evolving in time,
dynamically adapt to their environment [26, 32, 33]. Work maximization as described here is
thermodynamic in its objective, while these previous approaches to learning are thermodynamic in their
mechanism.

That said, the perspectives are linked. In particular, it was suggested that physical systems spontaneously
decrease work absorbed from driving [32]. Note that work absorbed by the system is opposite the work
produced. And so, as they evolve over time, these physical systems appear to seek higher work production,
paralleling how thermodynamic learning selects for the highest work production. And, the synchronization
by which a physical system decreases work absorption is considered learning [32]. Reference [33] goes
further, comparing the effectiveness of physical evolution to maximum-likelihood estimation employing an
autoencoder. Notably, it reports that that form of machine learning performs markedly better than physical
evolution, for the particular system considered there. By contrast, we show that the advantage of machine
learning over thermodynamic learning does not hold in our framework. Simply speaking, they are
synonymous.

We compare thermodynamic learning to machine learning algorithms that use maximum-likelihood to
select models consistent with given data. As figure 1 indicates, each agent has an internal model of its
environment; a connection section 4.5 formalizes. Each agent’s work production is then evaluated for the
training data. Thus, arriving at a maximum-work agent also selects that agent’s internal model as a
description of the environment. Moreover and in contrast with reference [33], which compares
thermodynamic and machine learning methods numerically, the framework here leads to an analytic
derivation of the equivalence between thermodynamic learning and MLE.

3. Preliminaries

Directly comparing thermodynamic learning and density estimation requires explicitly demonstrating that
thermodynamically-embedded computing and machine learning share the framework just laid out. The
following introduces what we need for this: concepts from machine learning, computational mechanics,
and thermodynamic computing. (Readers preferring fuller detail should refer to appendix A.)

3.1. Maximum likelihood estimation
MLE determines, from training data, the parameters θ of a probability distribution. In the present setting,
θ parameterizes a family of probabilities Pr(Y0:∞ = y0:∞|Θ = θ) over sequences (or words) of any length.
Here, Y0:∞ = Y0Y1 . . . is the infinite-sequence random variable, composed of the random variables Yj that
each realize the environment’s output yj at time jτ , and Θ is the random variable for the model. In other
words, a given model θ predicts the probability of any sequence y0:L of any length L that one might see.

4
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Figure 2. ε-Machine generating the phase-uncertain period-2 process: with probability 0.5, an initial transition is made from the
start state s∗ to state A. From there, it emits the sequence 1010 . . .. However, with probability 0.5, the start state transitions to
state B and outputs the sequence 0101 . . ..

For convenience, we introduce random variables Yθ
j that define a model:

Pr(Yθ
0:∞) ≡ Pr(Y0:∞|Θ = θ).

With training data y0:L, the likelihood of model θ is given by the probability of the data given the model:

L(θ|y0:L) = Pr(Y0:L = y0:L|Θ = θ)

= Pr(Yθ
0:L = y0:L).

MLE seeks to optimize the likelihood L(θ|y0:L) [15, 17, 34]. However, the procedure that finds
maximum-likelihood estimates usually employs the log-likelihood instead:

�(θ|y0:L) = ln Pr(Yθ
0:L = y0:L), (1)

since it is maximized for the same models, but converges more effectively [35].

3.2. Computational mechanics
Given that our data is a time series of arbitrary length starting with y0, we must choose a model class whose
possible parameters Θ = {θ} specify a wide range of possible distributions Pr(Yθ

0:∞)—the semi-infinite
processes. ε-machines, a class of finite-state machines introduced to describe bi-infinite processes Pr(Yθ

−∞:∞),
provide a systematic means to do this [36]. As described in appendix A these finite-state machines comprise
just such a flexible class of representations; they can describe any semi-infinite process. This follows from
the fact that they are the minimal sufficient statistic for prediction explicitly constructed from the process.

A process’s ε-machine consists of a set of hidden states S, a set of output states Y , a start state s∗ ∈ S,
and conditional output-labeled transition matrix θ

(y)
s→s′ over the hidden states:

θ
(y)
s→s′ = Pr(Sθj+1 = s′, Yθ

j = y|Sθj = s).

θ
(y)
s→s′ specifies the probability of transitioning to hidden state s′ and emitting symbol y given that the

machine is in state s. In other words, the model is fully specified by the tuple:

θ = {S,Y , s∗, {θ(y)
s→s′}s,s′∈S ,y∈Y}.

As an example, figure 2 shows an ε-machine that generates a periodic process with initially uncertain phase.
ε-Machines are unifilar, meaning that the current causal state sj along with the next k symbols uniquely

determines the following causal state through the propagator function:

sj+k = ε(sj, yj:j+k).

This yields a simple expression for the probability of any word in terms of the model parameters:

Pr(Yθ
0:L = y0:L) =

L−1∏
j=0

θ
(yj)

ε(s∗ ,y0:j)→ε(s∗ ,y0:j+1).

In addition to being uniquely determined by the semi-infinite process, the ε-machine uniquely generates
that same process. This means that our model class Θ is equivalent to the class of possible distributions over
time series data. Moreover, knowledge of the causal state of an ε-machine at any time step j contains all
information about the future that could be predicted from the past. In this sense, the causal state is

5
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Figure 3. Thermodynamic computing: the system of interest Z ’s states store information, processing it as they evolve. The work
reservoir, represented as the suspended mass, supplies work energy W to drive the system-of-interest (SOI) Hamiltonian along a
deterministic trajectory HZ (t). Meanwhile, heat energy Q is exchanged with the thermal reservoir, driving the system toward
thermal equilibrium.

predictive of the process. These and other properties have motivated a long investigation of ε-machines, in
which the memory cost of storing the causal states is frequently used as a measure of process structure.
Appendix A gives an extended review.

3.3. Thermodynamic computing
Computation is physical—any computation takes place embedded in a physical system. Here, we refer to
the substrate of the physically-embedded computation as the system of interest (SOI). Its states, denoted
Z = {z}, are taken as the underlying physical system’s information bearing degrees of freedom [19]. The
SOI’s dynamic evolves the state distribution Pr(Zt = zt), where Zt is the random variable describing state at
time t. Computation over time interval t ∈ [τ , τ ′] specifies how the dynamic maps the SOI from the initial
time t = τ to the final time t = τ ′. It consists of two components:

(a) An initial distribution over states Pr(Zτ = zτ ) at time t = τ .

(b) Application of a Markov channel M, characterized by the conditional probability of transitioning to the
final state zτ ′ given the initial state zτ :

Mzτ→zτ ′ = Pr(Zτ ′ = zτ ′ |Zτ = zτ ).

Together, these specify the SOI’s computational elements. In this, zτ is the input to the physical
computation, zτ ′ is the output, and Mzτ→z′τ is the logical architecture.

Figure 3 illustrates a computation’s physical implementation. SOI Z is coupled to a work reservoir,
depicted as a mass hanging from a string, that controls the system’s Hamiltonian along a trajectory HZ(t)
over the computation interval t ∈ [τ , τ ′] [37]. This is the basic definition of a thermodynamic agent: an
evolving Hamiltonian driving a physical system to compute at the cost of work.

In a classical system, this control determines each state’s energy E(z, t). As a result of the control, changes
in energy due to changes in the Hamiltonian correspond to work exchanges between the SOI and work
reservoir. The system Z follows a state trajectory zτ :τ ′ over the time interval t ∈ [τ , τ ′], which we can write:

zτ :τ ′ = zτ zτ+dt . . . zτ ′−dtzτ ′ ,

where zt is the system state at time t. Here, we decomposed the trajectory into intervals of duration dt, taken
short enough to yield infinitesimal changes in state probabilities and the Hamiltonian. The resulting work
production for this trajectory is then the integrated change in energy due to the Hamiltonian’s time
dependence [37]:

W|zτ :τ ′
= −

∫ τ ′

τ

dt ∂tE(z, t)|z=zt
. (2)

This is the work energy that can be harvested in the ideal case: when the work reservoir has sufficiently
large inertia it drives the SOI deterministically.

Note that while the state trajectory zτ :τ ′ mirrors the time series notation used for the training data
y0:L = y0y1 . . . yL−1, they are different objects and should not be conflated. On the one hand, the training
data series y0:L is composed of realizations of L separate subsystems, each produced at different times jτ ,
j ∈ {0, 1, 2, . . . , L − 1}. yj is realized in the subsystem Yj, and so it can be manipulated completely
separately from any other element of y0:L lying outside of Yj. By contrast, zt depends dynamically on many
other elements in zτ :τ ′ , all of which lie in the same system, since the time series zτ :τ ′ represents state
evolution of the single system Z over time.

While the SOI exchanges work energy with the work reservoir, as figure 3 shows, it exchanges heat Q
with the thermal reservoir. Coupling to a heat reservoir adds stochasticity to the state trajectory zτ :τ ′ . Since
the SOI computes while coupled to a thermal reservoir at temperature T, Landauer’s principle [19] relates a

6
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Figure 4. Thermodynamic computing by an agent driven by an input sequence: information bearing degrees of freedom of SOI
Z in the jth interaction interval split into the direct product of agent states X and the jth input states Yj . Work W and heat Q are
defined in the same way as in figure 3, with the SOI’s Hamiltonian control HX×Yj (t) explicitly decoupled from the environment’s
remaining subsystems . . .Yj−2Yj−1Yj+1Yj+2 . . ., corresponding to future inputs Yj+1Yj+2 . . . and past outputs . . .Yj−2Yj−1.

computation’s logical processing to its energetics. In its contemporary form, it bounds the average work
production 〈W〉 by a term proportional to SOI’s entropy change. Taking the Shannon entropy
H[Zt] = −

∑
z Pr(Zt = z)ln Pr(Zt = z) in natural units, the second law of thermodynamics implies [14]:

〈W〉 � kBT (H[Zτ ′] − H[Zτ ]) .

Here, the average 〈W〉 is taken over all possible microscopic trajectories. And, the energy landscape is
assumed to be flat at the computation’s start and end, giving no energetic preference to a particular
informational state.

4. Agent energetics

We now construct the theoretical framework for how agents extract work from time-series data. This
involves breaking down the agent’s actions into manageable elementary components—where we
demonstrate their actions can be described as repeated application of a sequence of computations. We then
introduce tools to analyze work production within such general computations on finite data. We highlight
the importance of the agent’s model of the data in determining work production. This model-dependence
emerges by refining the class of agents to those that execute their computation most efficiently. The results
are finally combined, resulting in a closed-form expression for agent work production from time-series
data.

4.1. Agent architecture
Recall from section 2 that the basic framework describes a thermodynamic agent interacting with an
environment at regular time-intervals τ j in state yj. Each yj is drawn according to a random variable Yj,
such that the sequence Y0:∞ = Y0Y1 . . . is a semi-infinite stochastic process. The agent’s task is to interact
with this input string to generate useful work.

For example, consider an agent charged with extracting work from an alternating process—a sequence
emitted by a degenerate two-level system that alternates periodically between symbols 0 and 1. In isolation
each symbol looks random and has no free energy. Thus, an agent that interacts with each symbol the same
way gains no work. However, a memoryful agent can adaptively adjust its behavior, after reading the first
symbol, to exactly predict succeeding symbols and, therefore, extract meaningful work. This method of
harnessing temporal correlations is implemented by information ratchets [29, 30]. They combine physical
inputs with additional agent memory states that store the input’s temporal correlations.

As shown in figure 4, we describe an agent’s memory via an ancillary physical system X . The agent then
operates cyclically with duration τ , such that the jth cycle runs over the time-interval [jτ , (j + 1)τ). Each
cycle involves two phases:

(a) Interaction: agent memory X couples to and interacts with the jth input system Yj that contains the jth
input symbol yj. This phase has duration τ ′ < τ , meaning the jth interaction phase occurs over the
time-interval [jτ , jτ + τ ′). At the end, the agent decouples from the system Yj, passing its new state y′j
to the environment as output or exhaust.

(b) Rest: during time interval [jτ + τ ′, (j + 1)τ ), the agent’s memory X sits idle, waiting for the next input
Yj+1.

In this way, the agent transforms a series of inputs y0:L into a series of outputs y′0:L.

7
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Figure 5. Agent interacting with an environment via repeated symbol exchanges: (A) at time jτ agent memory Xj begins
interacting with input symbol Yj. Transitioning from (A) to (B), agent memory and interaction symbol jointly evolve according
to the Markov channel Mxy→x′y′ . This results in (B)—the updated states of agent memory Xj+1 and interaction symbol Y ′

j at time
jτ + τ ′. Transitioning from (B) to (C), the agent memory decouples from the interaction symbol, emitting its new state to the
environment. Then, transitioning from (C) to (D), the agent retains its memory state Xj+1 and the environment emits the next
interaction symbol Yj+1. Finally, transitioning from (D) to (A), the agent restarts the cycle by coupling to the next input symbol.

In each cycle, all nontrivial thermodynamics occur in the interaction phase, during which the SOI
consists of the joint agent-input system: i.e., Z = X ⊗ Yj, as shown in figure 4. While the other subsystems
. . .Yj−2Yj−1 and Yj+1Yj+2 . . . may be physically instantiated somewhere else in the environment, they do
not participate in the interaction, since they are energetically decoupled from the agent in this phase.
Paralleling the computation shown in figure 3, Hamiltonian control over the joint space HX×Yj (t) results in
a transformation of the agent’s SOI that also requires the exchange of work and heat.

This interaction phase updates SOI states according to a Markov transition matrix M shown in figure 5:

Mxy→x′y′ =Pr(Xj+1 =x′, Y ′
j = y′|Xj =x, Yj=y), (3)

where Xj and Xj+1 are the random variables for the states of the agent’s memory X before and after the jth
interaction interval, and Yj and Y ′

j are the random variables for the system Yj before and after the same
interaction interval, realizing the input and output, respectively.

As section 3.3 described, M is the logical architecture of the physical computation that transforms the
agent’s memory and input simultaneously. It is the central element in the agent’s procedure for
transforming inputs y0:L into associated outputs y′0:L. The key observation is that M captures all of the
agent’s internal logic. The logic does not change from cycle to cycle. However, the presence of persistent
internal memory between cycles implies that the agent’s behavior adapts to past inputs and outputs. This
motivates us to define M as the agent architecture since it determines how an agent stores information
temporally. As we will show, M is one of two essential elements in determining the work an agent produces
from a time series.

Note that prior related efforts to address agent energetics focused on ensemble-average work production
[29–31, 38–42]. In contrast, here we relate work production to MLE—which involves each agent being
given a specific data string y0:L for training. To address this shift in problem, the following determines the
work production for single-shot short-input strings.

8
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4.2. Energetics of computational maps
The agent architecture M specifies a physical computation as described in section 3.3 and therefore has a
minimum energy cost determined by Landauer’s bound. However, this is a bound on the average work
production, which depends explicitly on the distribution of inputs. We need to determine, instead, the work
produced from a single input yj. To find this we return to the general case of SOI Z undergoing a
thermodynamic computation M.

A physical operation takes the SOI from state zτ at time τ to state zτ ′ at time τ ′. This specifies a
computational map zτ → zτ ′ that ignores intermediate states in the SOI state trajectory, as all information
relevant to the computation’s logical operation lies in the input and output. Thus, our attention turns to the
question: what is the work production of a computational map zτ → zτ ′ performed by the computation M
at temperature T?

To answer this question we investigate the average work produced when conditioned on the initial and
final states of the map: 〈

W|zτ ,zτ ′

〉
=

∑
z′
τ :τ ′

W|z′
τ :τ ′

Pr(Zτ :τ ′ = z′τ :τ ′ |zτ , zτ ′). (4)

This depends sensitively on how the computation is implemented. However, there is an important subclass
of computations for which there is a precise relationship between energy harvested and underlying:
thermodynamically efficient computations.

Theorem 1. An efficient computation that maps between equal-energy memory states with an estimated model
θ of the SOI distribution produces work from the computational map zτ → zτ ′ :

〈
Wθ

|zτ ,zτ ′

〉
= kBT ln

Pr(Zθ
τ = zτ )

Pr(Zθ
τ ′ = zτ ′)

. (5)

Proof. See appendix B. �

This is the average energy harvested from a particular input–output pair. Wθ is used to denote that this
model θ was used to design the energy landscape. This work depends on the estimated distributions Pr(Zθ

t )
encoded in the evolving energy landscape E(z, t). However, it is independent of the actual distributions since
work production of a computational map is conditioned on the input zτ and output zτ ′ .

Without going into the details of the proof presented in appendix B, the role that the model plays in the
design of energetics E(z, t) is opaque, but it is integral in relating thermodynamic learning to machine
learning. To illustrate how this relationship emerges, consider a two-state SOI Z={↑, ↓}. We describe a
computation that harvests maximum energy from an initial distribution with 80% spin-up {Pr(Zθ

τ = ↑),
Pr(Zθ

τ = ↓)} = {0.8, .02} and maps it to a final distribution {Pr(Zθ
τ ′ = ↑), Pr(Zθ

τ ′ = ↓)} = {0.4, 0.6}.
According to Landauer’s bound [14], when starting and ending in a flat energy landscape the maximum

harvestable energy is the difference in Shannon entropies: 〈W〉max = kBT(H[Zθ
τ ′] − H[Zθ

τ ]). Achieving this
bound means that the computation is efficient, not wasting any thermodynamic resources.

One route to achieving Landauer’s bound is to execute a three step process, as shown in figure 6:

(a) Instantaneously quench the energy landscape from equal energies:

E(↑, τ) = E(↓, τ) = 0,

to equilibrium with the estimated input distribution, with:

{E(↑, τ+), E(↑, τ+)} = {−kBT ln 0.8,−kBT ln 0.2}.

(b) Quasistatically evolve the energy landscape from equilibrium with the initial distribution:

{E(↑, τ+), E(↑, τ+)} = {−kBT ln 0.8,−kBT ln 0.2},

to equilibrium with the final target distribution:

{E(↑, τ ′−), E(↑, τ ′−)} = {−kBT ln 0.4,−kBT ln 0.6}.

(c) Instantaneously quench the energy landscape back from equilibrium:

{E(↑, τ ′−), E(↑, τ ′−)} = {−kBT ln 0.4,−kBT ln 0.6},

9
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Figure 6. The two-level system Z = {↑, ↓} undergoes perfectly-efficient computation. The computation occurs over the time
interval t ∈ (τ , τ ′). At panel (A) t = τ and the system has a default flat energy landscape energy E(z, τ ) = 0 (energy levels
shown by black horizontal bars). However, it is out of equilibrium, since it is in the distribution Pr(Zθ

τ = {↑, ↓}) = {0.8, 0.2}
(probabilities represented by dark blue vertical bars). The first operation is a quench, which instantaneously sets the energies to
be in equilibrium with the initial distribution, as shown in panel (B). The associated energy change is work. Then, a quasistatic
operation slowly evolves the system in equilibrium, through panel (C), to the final desired distribution Pr(Zθ

τ ′ = {↑, ↓}) =
{0.4, 0.6}, shown in panel (D). This requires no work. The final operation is another quench, in which the energies are reset to
the default energy landscape E(z, τ ′) = 0, leaving the system as shown in panel (E). Again, the change in energy corresponds to
work invested through control. The total work production for a particular computational mapping zτ → zτ ′ is given by the work
from the initial quench Wθ

|zτ (τ ) plus the work from the final quench Wθ
|zτ ′

(τ ′).

to the original equal energy landscape:

E(↑, τ ′) = E(↓, τ ′) = 0.

In executing this cycle in the energy landscape, we have explicitly encoded the model θ and the
associated input distribution Zθ

τ and output distribution Zθ
τ ′ through the Hamiltonian control:

E(z, τ+) = −kBT ln Pr(Zθ
τ = z)

E(z, τ ′−) = −kBT ln Pr(Zθ
τ ′ = z).

The protocol shown in figure 6 allows us to calculate the work produced Wθ both on average and for
particular computational maps. Using the work definition in equation (2), computational-map work
production breaks into the three protocol substages:

(a) The initial quench contributes:

Wθ
|zτ (τ) = E(zτ , τ+) − E(zτ , τ)

= kBT ln Pr(Zθ
τ = zτ ).

(b) The quasistatic evolution contributes minus the change in equilibrium free energy, which is zero in this
case:

〈Wθ
Quasistatic〉 = 0.

(See appendix E for proof.)

(c) The initial quench contributes:

Wθ
|zτ ′

(τ ′) = E(zτ ′ , τ
′) − E(zτ ′ , τ

′−)

= −kBT ln Pr(Zθ
τ ′ = zτ ′).

10
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The work production definition dictates that instantaneous changes in energy levels come from work,
providing the contributions in steps (a) and (c). The net result for a computational map zτ → zτ ′ is the sum

of the three terms: Wθ
zτ (τ) + 〈Wθ

Quasistatic〉+ Wθ
|zτ ′

(τ ′) = kBT ln Pr(Zθ
τ=zτ )

Pr(Zθ
τ ′=zτ ′ )

. This exactly reproduces

equation (5) of theorem 1. The simple computational protocol shown here demonstrates how the model θ,
used to design an efficient computation, can determine energy production.

While we reproduced equation (5) for a particular one-bit computation, appendix E shows how to
construct any stochastic input–output map such that it achieves the maximum work predicted by
Landauer’s bound on average and by equation (5) for particular computational maps. Again, the strategy is
to implement a three step sequence: (1) initial quench, (2) slow quasistatic operations, and (3) final quench.
This provides an intuitive mechanistic basis for theorem 1 in addition to the explicit fluctuation theorem
proof provided in appendix B.

Thermodynamic learning concerns agents that maximize work production from their input data.
Maximum-work agents zero out the average entropy production 〈Σ〉 = −〈W〉 −ΔFneq so that the work
production of a computational map satisfies equation (5). As a result, we see that pursuing maximum work
production results in this strict relationship between the energy produced from a computational map and
the model θ.

From here on out, when we refer to efficient agents we refer to those that maximize work production
from the available change in nonequilibrium free energy. Equation (5) links an efficient agent’s
thermodynamic performance to model performance, which is an essential step in determining a model
through thermodynamic learning.

4.3. Thermally efficient agents
With the work production of a maximally-efficient computational map established, we are poised to
determine the work production for thermodynamically-efficient agents. Specifically, consider an agent
parameterized by its logical architecture M and model parameters θ. As described by the agent architecture
in section 4.1, the agent uses its memory Xj to map inputs Yj to outputs Y ′

j and to update its memory to
Xj+1. In stochastically mapping the SOI Z = X × Yj, the model parameter θ provides an estimate of the
distribution over the current initial state (Xθ

j , Yθ
j ) as well as the final state (Xθ

j+1, Y ′θ
j ). Assuming the agent’s

logical architecture M is executed optimally, direct application of equation (5) then says that the expected
work production of the computational map xjyj → xj+1y′j is:

〈
Wθ

j,xjyj→xj+1y′j

〉
≡ kBT ln

Pr(Xθ
j = xj, Yθ

j = yj)

Pr(Xθ
j+1 = xj+1, Y ′θ

j = y′j)
. (6)

In this, the estimated final distribution comes from the logical architecture updating the initial distribution:

Pr(Xθ
j+1 = x′, Y ′θ

j = y′) =
∑

x,y

Pr(Xθ
j = x, Yθ

j = y)Mxy→x′y′ .

Equation (6)’s expression for work establishes that all functional aspects (logical operation and
energetics) of an efficient agent are determined by two factors:

(a) The logical architecture M that specifies how the agent manipulates inputs and updates its own
memory.

(b) The estimated input distribution Pr(Xθ
j , Yθ

j ) for which the agents’ execution of M is optimized to
minimize dissipation.

Thus, we define a thermally-efficient agent by the ordered pair {M, Pr(Xθ
j , Yθ

j )}.
So defined, we can calculate the work produced when such agents act on a particular input sequence

y0:L.

Theorem 2. The average work produced by an efficient agent with logical architecture M and estimated input
distributions Pr(Xθ

j , Yθ
j ) when it transduces the input sequence y0:L is:

〈
Wθ

|y0:L

〉
= kBT

∑
x0:L+1,y′0:L

Pr(X0 = x0)
L−1∏
k=0

Mxk ,yk→xk+1,y′k
ln

L−1∏
j=0

Pr(Xθ
j = xj, Yθ

j = yj)

Pr(Xθ
j+1 = xj+1, Y ′θ

j = y′j)
. (7)

Proof. First consider the work production of a particular sequence of agent memory states x0:L+1 and
outputs y′0:L:

〈
Wθ

|y0:L ,y′0:L,x0:L+1

〉
=

L−1∑
j=0

〈Wθ
j,xjyj→xj+1y′j

〉 = kBT ln
L−1∏
j=0

Pr(Xθ
j =xj, Yθ

j =yj)

Pr(Xθ
j+1=xj+1, Y

′θ
j =y′j)

.

11
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Then, to obtain the average work produced from a particular input sequence y0:L, we must average over all
possible hidden-state sequences and x0:L+1 and output sequences y′0:L:〈

Wθ
|y0:L

〉
=

∑
x0:L+1,y′0:L

Pr(Y ′
0:L = y′0:L, X0:L+1 = x0:L+1|Y0:L = y0:L)

〈
Wθ

|y0:L ,y′0:L ,x0:L+1

〉
.

The probability of hidden states and outputs is determined from the agent’s logical architecture and input
sequence

Pr(Y ′
0:L = y′0:L, X0:L+1 = x0:L+1|Y0:L = y0:L) = Pr(X0 = x0)

L−1∏
k=0

Mxk ,yk→xk+1,y′k
,

yielding equation (7). �

On its own, equation (7)’s work production is a deeply interesting quantity. In point of fact, since our
agents are stochastic Turing machines [43], this is the work production for any general form of
computation that maps inputs to output distributions Pr(Y ′

0:L|Y0:L = y0:L) [44]. Thus, equation (7)
determines the possible work benefit for universal thermodynamic computing. Differing critically from prior
explorations of information ratchets [29, 30, 42, 45] that evaluate average energy production, this
expression is for a particular input sequence.

Given this general expression for work production, one might conclude that the next step for
thermodynamic learning is to search for the agent tuple {M, Pr(Xθ

j , Yθ
j )} that maximizes the work

production. However, this strategy comes with two issues. First, it requires a wider search than necessary.
Second, it does not draw a direct connection to the underlying model θ of the time series. Recall that we are
considering ε-machine models θ of the input sequence that give the probability estimate Pr(Yθ

0:L = y0:L) for
any L.

We address both of these issues by refining the search space to agents whose anticipated inputs
Pr(Xθ

j , Yθ
j ) are explicitly determined by their initial state distribution Pr(Xθ

0 ) and estimated input process

Pr(Yθ
0:∞):

Pr(Xθ
j = xj, Yθ

j = yj) =
∑

x0:j ,y0:j,y
′
0:j

Pr(Xθ
0 = x0) Pr(Yθ

0:j+1 = y0:j+1)
j−1∏
k=0

Mxk ,yk→xk+1,y′k
.

We use this estimate for the initial state in equation (7), since it is maximally efficient, dissipating as little as
possible if the agent architecture M receives the input distribution Pr(Yθ

0:∞). As a result of its efficiency, the
resulting computation performed by the agent produces the maximum possible work, given its logical
architecture. This simplifies our search for maximum-work agents by directly tying the estimated inputs to
the model θ. However, it still leaves one piece of the agent undefined: its logical architecture M. Fortunately,
as we discuss now, the thermodynamics of modularity further simplifies the search.

4.4. Thermodynamics of modularity
An agent transduces inputs to outputs through a series of modular operations. The Hamiltonian HX×Yj (t)
that governs the evolution of the jth operation is decoupled from the other elements of the time series
Y0 × Y1 . . .Yj−1 × Yj+1 × · · · . As a result of this modular computational architecture, the correlations lost
between the agent and the rest of the information reservoir are irreversibly dissipated, producing entropy.
This is an energetic cost associated directly with the agent’s logical architecture, known as the modularity
dissipation [45]. It sets a minimum for the work dissipated in a complex computation composed of many
elementary steps.

To continue our pursuit of maximum-work, we must design the agent’s logical architecture to minimize
dissipated work. Past analysis of agents that harness energy from a pattern Pr(Y0:∞) showed that the
modularity dissipation is only minimized when the agent’s states are predictive of the pattern [45]. This
means that to maximize work extracted, an agent’s state must contain all information about the past
relevant to the future Pr(Yj+1:L|Xj) = Pr(Yj+1:L|Y0:j). That is, for maximal work extraction agent states must
be sufficient statistics for predicting the future.

Moreover, the ε-machines introduced in section 3.2 are constructed with hidden states Sj that are a
minimal predictor of their output process. This is why they are referred to as causal states. And so, the
ε-machine is a minimal sufficient statistic for prediction. Transitions among causal states trigger outputs
according to:

θ
(y)
s→s′ = Pr(Yθ

j = y, Sθj+1 = s′|Sθj = s),
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which is the probability that an ε-machine in internal state s transitions to s′ and emits output y.
ε-Machines have the additional property that they are unifilar, meaning that the next causal state s′ is
uniquely determined by the current state s and output y via the propagator function s′ = ε(s, y).

In short, to produce maximum work agent memory must store at least the causal states of the
environment’s own ε-machine. Appendix F describes how the logical architecture of the maximum-work
minimum-memory agent is determined by its estimated ε-machine model θ of its inputs. The agent states
are chosen to be the same as the causal states X = S, and they update according to the propagator function
ε:

Mxy→x′y′ =
1

|Yj|
×

⎧⎨
⎩

δx′,ε(x,y), if
∑

x′
θ

(y)
x→x′ = 0,

δx′,x, otherwise.
. (8)

This guarantees that the agent’s internal states follow the causal states of its estimated input process
Pr(Yθ

0:∞). In turn, it prevents the agent from dissipating temporal correlations within that process.

4.5. Agent-model equivalence
In the pursuit of maximum work, we refined the structure of candidate agents considerably, limiting
consideration to those that minimize the modularity dissipation. As a result, they store the predictive states
of their estimated input and their logical architecture is explicitly determined by an ε-machine model.
Moreover, to be efficient, the candidate agent should begin in the ε-machine’s start state s∗ such that the
model θ uniquely determines the second piece of an efficient agent. This is the estimated initial distribution
over its memory state and input:

Pr(Yθ
j = yj, Xθ

j = sj) =
∑

y0:j ,s0:j ,sj+1

δs0,s∗

j∏
k=0

θ(yk)
sk→sk+1

. (9)

Conversely, maximum-work agents, characterized by their logical architecture and anticipated input
distributions {M, Pr(Xθ

j , Yθ
j )}, also specify the ε-machine’s model of their estimated distribution:

θ
(y)
s→s′ = Pr(Yθ

j = y|Sθj = s)δs′ ,ε(s,y)

= Pr(Yθ
j = y|Xθ

j = s)|Yj|Msy→s′y′ . (10)

Through the ε-machine, the agent also specifies its estimated input process. In this way, we arrive at a class
of agents that are uniquely determined by their environment model.

Figure 7 explicitly lays this out. It presents an agent that estimates a period-2 process with uncertain
phase, such that Pr(Yθ

0:∞ = 0101 . . .) = Pr(Yθ
0:∞ = 1010 . . .) = 0.5. The middle column shows the

ε-machine that is uniquely determined for that process, characterized by the model parameters θ(y)
s→s′ .

The right column shows the unique minimal agent that harnesses as much work as possible from that
process. All three, the estimated process, the estimated ε-machine model, and the minimum-memory
maximum-work agent are equivalent. By equivalent, we mean that each can be determined from another.
This holds true for any estimated input process Pr(Yθ

0:∞):

Theorem 3. The following are equivalent for an input process, up to relabeling of hidden/causal states:

(a) The distribution over inputs Pr(Yθ
0:L).

(b) The ε-machine model θ that predicts the process.

(c) The agent that harvests maximum work from the process {M, Pr(Xθ
j , Yθ

j )}.

Proof.

• (b) =⇒ (b): as stated in section 3.2

Pr(Yθ
0:L = y0:L) =

L−1∏
j=0

θ
(yj)

ε(s∗ ,y0:j)→ε(s∗ ,y0:j+1).

• (a) =⇒ (b): the ε-machine θ, which is unique up to causal state relabeling, can be determined from
applying a causal equivalence relation to Pr(Yθ

0:L) as described in appendix A.

• (c) =⇒ (b): equation (10) determines θ from {M, Pr(Xθ
j , Yθ

j )}.

• (b) =⇒ (c): equations (9) and (8) determine {M, Pr(Xθ
j , Yθ

j )} from θ.

�
Under the equivalence of model θ and agent operation, when we monitor the agent’s thermodynamic

performance through its work production, we also measure the predictive performance of its underlying
model.

13
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Figure 7. Equivalence of estimated input process Pr(Yθ
0:∞ = y0:∞), ε-machine θ, and the agent that efficiently harnesses the input

process asymptotically, using logical architecture Mxy→x′y′ = Pr(Xj+1 = x′ , Yj+1 = y′ |Xj = x, Yj = y) and estimated input
distribution Pr(Xθ

j = x, Yθ
j = y). Determining one determines the others.

This completes the thermodynamic learning framework laid out in figure 1. There, the model an agent
holds affects its interaction with the symbol sequence y0:L and, ultimately, its work production. And so,
from this point forward, when discussing an estimated process or an ε-machine that generates that guess,
we are also describing the unique thermodynamic agent designed to produce maximal work from the
estimated process. We can now turn to explore how such agents’ work production ties to their underlying
models. A direct comparison to MLE can now be drawn.

5. Work-likelihood correspondence for agent design

We are now ready to return to our core objective—exploring work production as a performance measure
for a model estimated from a time series y0:L. In comparison to the expression for general computing in
equation (7), using efficiently-designed predictive agents leads to a much simpler expression for work
production:

Theorem 4. The work produced by a maximum-work agent with estimated input process Pr(Yθ
0:∞) when it

receives the particular sequence y0:L is:〈
Wθ

|y0:L

〉
= kBT

(
ln Pr(Yθ

0:L = y0:L)+L ln |Y|
)
. (11)

Proof. See appendix G. �
The mechanism behind this vast simplification arises from unifilarity—a property of prediction

machines that guarantees a single state trajectory on x0:L for each input string y0:L.
This expression directly captures the relationship between work production and the agent’s underlying

model of the data. From it, we arrive at the central result of thermodynamic learning.

Theorem 5. Maximizing the work produced from the time series y0:L also maximizes the likelihood of the agent’s
model θ.

Proof. Pr(Yθ
0:L=y0:L) is simply the probability that the candidate model will output y0:L. Therefore, the

log-likelihood �(θ|y0:L) of MLE coincides with ln Pr(Yθ
0:L = y0:L), and we can express the work production of

an efficient agent: 〈
Wθ

|y0:L

〉
= kBT�(θ|y0:L) + kBTL ln |Y|. (12)

One concludes that work production is maximized precisely when the log-likelihood �(θ|y0:L) is
maximized. �

Thus, the criterion for creating a good model of an environment is the same as that for extracting maximal
work. An analogous result, linking maximum work to maximum likelihood, was recently found for a
many-particle Szilard engine [46].

This link is made concrete via the simple example presented in appendix H. It goes through an explicit
description of the Hamiltonian control required to implement a memoryless agent that harvests work from
a sequence of up spins ↑ and down spins ↓ that compose the time series y0:L. The agent’s internal
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memoryless model results in equation (12)’s work production. And, we find that the maximum-work
agent has learned about the input sequence. Specifically, the agent learns the frequency of spins ↑ and ↓,
confirming the basic principle of maximum-work thermodynamic learning. However, the learning
presented in appendix H precludes the possibility of learning temporal structure in the spin sequence, since
the agents and their internal models have no memory [31]. To learn about the temporal correlations within
the sequence, one must use agents with multiple memory states. We leave thermodynamic learning among
memoryful agents for later investigation. Stepping back, we see the relationship between machine learning
and information thermodynamics more clearly. In MLE we have:

(a) Data y0:L that provides a window into a black box.

(b) A model θ of the black box that determines an estimated distribution over the data Pr(Yθ
0:L).

(c) A performance measure for the model of the data, given by the log-likelihood
�(θ|y0:L) = ln Pr(Yθ

0:L = y0:L).

The parallel in thermodynamic learning is exact, with:

(a) Data y0:L physically stored in systems Y0 × Y1 × . . .YL−1 output from the black box.

(b) An agent {M, Pr(Xθ
j , Yθ

j )} that is entirely determined by the model θ.

(c) The agent’s thermodynamic performance, given by its work production
〈

Wθ
|y0:L

〉
, increases linearly

with the log-likelihood �(θ|y0:L).

In this way, we see that thermodynamic learning through work maximization is equivalent to MLE.
Intuitively, the natural world is replete with complex learning systems—an observation seemingly at

odds with thermodynamics and its second law which dictates that order inevitably decays into disorder.
However, our results are tantamount to a contravening physical principle that drives the emergence of order
through learning: work maximization. We showed, in point of fact, that work maximization and learning
are equivalent processes. At a larger remove, this hints of general physical principles of emergent
organization.

6. Searching for principles of organization

Introducing an equivalence of maximum work production and optimal learning comes at a late stage of a long
line of inquiry into what kinds of thermodynamic constraints and laws govern the emergence of
organization and, for that matter, biological life. So, let us historically place the seemingly-new principle.
In fact, it enters a crowded field.

Within statistical physics the paradigmatic principle of organization was found by Kirchhoff [47]: in
electrical networks current distributes itself so as to dissipate the least possible heat for the given applied
voltages. Generalizations, for equilibrium states, are then found in Gibbs’ variational principle for entropy
for heterogeneous equilibrium [48], Maxwell’s principles of minimum-heat [49, pp 407–408], and
Onsager’s minimizing the ‘rate of dissipation’ [50].

Close to equilibrium, Prigogine introduced minimum entropy production [51], identifying dissipative
structures whose maintenance requires energy [52]. However, far from equilibrium the guiding principles
can be quite the opposite. And so, the effort continues today, for example, with recent applications of
nonequilibrium thermodynamics to pattern formation in chemical reactions [53]. That said, statistical
physics misses at least two, related, but key components: dynamics of and information in thermal states.

Dynamical systems theory takes a decidedly mechanistic approach to the emergence of organization,
analyzing the geometric structures in a system’s state space that amplify fluctuations and eventually
attenuate them into macroscopic behaviors and patterns. This was eventually articulated by pattern
formation theory [54–56]. A canonical example is fluid turbulence [57]—a dynamical explanation for its
complex organizations occupied much of the 70s and 80s. Landau’s original theory of incommensurate
oscillations was superseded by the mathematical discovery in the 1950s of chaotic attractors [58, 59].
This approach, too, falls short of leading to a principle of emergent organization. Patterns emerge, but what
exactly are they and what complex behavior do they exhibit?

Answers to this challenge came from a decidedly different direction—Shannon’s theory of noisy
communication channels and his measures of information [60, 61], appropriately extended [62]. While
adding an important new perspective—that organized systems store and transmit information—this, also,
did not go far enough as it side-stepped the content and meaning of information [63]. In-roads to these
appeared in the theory of computation inaugurated by Turing [64]. The most direct and ambitious
approach to the role of information in organization, though, appeared in Wiener’s cybernetics [4, 65].
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While it eloquently laid out the goals to which principles should strive, it ultimately never harnessed the
mathematical foundations and calculational tools needed. Likely, the earliest overt connection between
statistical mechanics and information, though, appeared with Jaynes’ maximum entropy [66] and
minimum entropy production principles [67].

So, what is new today is the synthesis of statistical physics, dynamics, and information. This, finally,
allows one to answer the question, how do physical systems store and process information? The answer is
that they intrinsically compute [36]. With this, one can extract from behavior a system’s information
processing, even going so far as to discover the effective equations of motion [68–71]. One can now frame
questions about how a physical system reacts to, controls, and adapts to its environment.

All such systems, however, are embedded in the physical world and require resources to operate. More to
the point, what energetic resources underlie computation? Initiated by Brillouin [72] and Landauer and
Bennett [19, 73], today there is a nascent physics of information [14, 74]. Resource constraints on computing
by thermodynamic systems are now expressed in a suite of new principles.

For example, the thermodynamics of predicting complex patterns links formal notions of inference to
optimal energy manipulation [75]. Along this line of investigation, the principle of requisite complexity [31]
dictates that maximally-efficient interactions require an agent’s internal organization match the
environment’s organization. This stems from the thermodynamic resource costs that arise from the
modularity of an agent’s architecture [45]. Pushing the search for organization further, the preceding
established a principle for the thermodynamics of learning. And this, looking forward, gives a basis for a
thermodynamics of adaptive organization.

To fully appreciate organization in natural processes, though, one must also address dynamics of agent
populations, first on the time scale of agent life cycles and second on the scale of many generations. In fact,
tracking the complexity of individuals reveals that selection pressures spontaneously emerge in
purely-replicating populations [76] and replication itself necessarily dissipates energy [77].

As these pieces assembled, a picture has come into focus. Intelligent, adaptive systems learn to harness
resources from their environment, expending energy to live and reproduce. Taken altogether, the historical
perspective suggests we are moving close to realizing Wiener’s cybernetics [4].

7. Conclusion

We introduced thermodynamic machine learning—a physical process that trains intelligent agents by
maximizing work production from complex environmental stimuli supplied as time-series data. This
involved constructing a framework to describe thermodynamics of computation at the single-shot level,
enabling us to evaluate the work an agent can produce from individual data realizations. Key to the
framework is its generality—applicable to agents exhibiting arbitrary adaptive input–output behavior and
implemented within any physical substrate.

In the pursuit of maximum work, we refined this general class of agents to those that are best able to
harness work from temporally-correlated inputs. We found that the performance of such maximum-work
agents increases proportionally to the log-likelihood of the model they use for predicting their environment.
As a consequence, our results show that thermodynamic learning exactly mimics MLE in machine learning.
Thus, work is a thermodynamic performance measure for physically-embedded learning. This result further
solidifies the connections between agency, intelligence, and the thermodynamics of information—hinting
that energy harvesting and learning may be two sides of the same coin.

These connections suggest a number of exciting future directions. From the technological perspective,
they hint at a natural method for designing intelligent energy harvesters—establishing that our present
tools of machine learning can be directly mapped to automated design of efficient information ratchets and
pattern engines [31, 42, 78]. Meanwhile, recent results indicate that quantum systems can generate complex
adaptive behaviors using fewer resources than classical counterparts [79–81]. Does this suggest there are
new classes of quantum-enhanced energy harvesters and learners?

Ultimately, energy is an essential currency for life. This highlights the question, to what extent is work
optimization a natural tendency of driven physical systems? Indeed, recent results indicate complex
many-body systems can evolve to increase work production [32, 33], opening a fascinating possibility.
Could the equivalence between work production and learning then indicate that the Universe itself naturally
learns? The fact that complex intelligent life emerged from the lifeless soup of the Universe might be
considered a continuing miracle: a string of unfathomable statistical anomalies strung together over eons. It
would certainly be extraordinary if this evolution then has a physical basis—hidden laws of thermodynamic
organization that guide the Universe to create entities capable of extracting maximal work. Such a law has
yet to be revealed, but the equivalence we established between work maximization and learning extends the
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relevance of such thermodynamic predictions to intelligent learning systems. Technically, it gives a
foundation to embodied learning by including physical energetics in machine learning.
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Appendix A. Extended background

Developing the principle of maximum work production and calling out the physical benefits of an agent
modeling its environment drew heavily from the areas of computational mechanics, nonequilibrium
thermodynamics, and machine learning. Due to the variety of topics addressed, the following provides a
more detailed notational and conceptual summary. This should help the development to be more
self-contained, hopefully providing a common language across the areas and a foundation for further
exploration. While we make suggestive comparisons by viewing foundations of each area side-by-side, it
may be most appropriate for readers already familiar with them and concerned with novel results to skip,
using the review to clarify unfamiliar notation.

A.1. Machine learning and generative models
Thermodynamically, what is a good model of the data with which an agent interacts? Denote the data’s state
space as Z = {z}. If we have many copies of Z , all initially prepared in the same way, then as we observe
successive realizations�z = {z0, z1, . . . , zN} from an ensemble, the frequency of an observed state z
approaches the actual probability distribution Pr(Z = z), where Z is the random variable that realizes states
z ∈ Z . However, with only a finite number N of realizations, the best that can be done is to characterize the
environment with an estimated distribution Pr(Zθ = z). Estimating models that agree with finite data is the
domain of statistical inference and machine learning of generative models [15, 34, 82].

At first blush, estimating a probability distribution appears distinct from familiar machine learning
challenges, such as image classification and the inverse problem of artificially generating exemplar images
from given data. However, both classification and prediction can be achieved through a form of
unsupervised learning [18]. For instance, if the system is a joint variable over both the pixel images and the
corresponding label Z = pixels × {cat, dog}, then our estimated distribution Pr(Zθ = z) gives both a
means of choosing a label for an image Pr(labelθ = cat|pixelsθ = image) and a means of choosing an image
for a label Pr(pixelsθ = image|labelθ = cat).

A generative model is specified by a set of parameters θ from which the model produces the estimated
distribution Pr(Zθ = z) = Pr(Z = z|Θ = θ). The procedure of arriving at this estimated model is
parametric density estimation [15, 82]. However, we take the random variable Zθ for the estimated
distribution to denote the model for notational and conceptual convenience.
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The Shannon entropy [61]:

H[Z] ≡ −
∑

z

Pr(Z = z) ln Pr(Z = z)

measures uncertainty in nats, a ‘natural’ unit for thermodynamic entropies. The Shannon entropy easily
extends to joint probabilities and all information measures that come from their composition (conditional
and mutual informations). For instance, if the environment is composed of two correlated subcomponents
Z = X × Y , the probability and entropy are expressed:

Pr(Z = z) = Pr(X = x, Y = y)

= Pr(X = x) Pr(Y = Y) and

H[Z] = H[X, Y]

= H[X] + H[Y],

respectively.
While there are many other ways to create parametric models θ—from polynomial functions with a

small number of parameters to neural networks with thousands [15]—the goal is to match as well as
possible the estimated distribution Pr(Zθ) to the actual distribution Pr(Z).

One measure of success in this is the probability that the model generated the data—the likelihood.
The likelihood of the model θ given a data point z is the same as the likelihood of Zθ:

L(θ|z) = Pr(Z = z|Θ = θ)

= Pr(Zθ = z)

= L(Zθ|z).

Given a set�z = {z1, z2, . . . , zN} of training data and assuming independent samples, then the likelihood
of the model is the product:

L(Zθ|�z) =
N∏

i=1

L(Zθ|zi). (A1)

This is a commonly used performance measure in machine learning, where algorithms search for models
with maximum likelihood [15]. However, it is common to use the log-likelihood instead, which is
maximized for the same models:

�(θ|�z) = ln L(θ|�z)

=
N∑

i=1

ln Pr(Zθ = zi). (A2)

If the model Zθ were specified by a neural network, the log-likelihood could be determined through
stochastic gradient descent back-propagation [34, 83], for instance. The intention is that the procedure will
converge on a network model that produces the data with high probability.

A.2. Thermodynamics of information
Learning from data translates information in an environment into a useful model. What makes that model
useful? In a physical setting, recalling from Landauer that ‘information is physical’ [84], the usefulness one
can extract from thermodynamic processes is work. Figure 3 shows a basic implementation for physical
computation. Such an information-storing physical system Z = {z}, in contact with a thermal reservoir,
can execute useful computations by drawing energy from a work reservoir. Energy flowing from the system
Z into the thermal reservoir is positive heat Q. When energy flows from the system Z to the work reservoir,
it is positive work W production. Work production quantifies the amount of energy that is stored in the
work reservoir available for later use. And so, in this telling, it represents a natural and physically-motivated
measure of thermodynamic performance. In the framework for thermodynamic computation of figure 3,
work is extracted via controlling the system’s Hamiltonian.

Specifically, the system’s informational states are controlled via a time-dependent Hamiltonian—energy
E(z, t) of state z at time t. For state trajectory zτ :τ ′ = zτ zτ+dt . . . zτ ′−dtzτ ′ over time interval t ∈ [τ , τ ′], the
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resulting work extracted by Hamiltonian control is the temporally-integrated change in energy [37]:

W|zτ :τ ′
= −

∫ τ ′

τ

dt ∂tE(z, t)|z=zt
.

Heat Q|zτ :τ ′
= E(zτ , τ) − E(zτ ′ , τ ′) − W|zτ :τ ′

flows into the thermal reservoir, increasing its entropy:

ΔSreservoir
|zτ :τ ′

=
Q|zτ :τ ′

T
, (A3)

where the thermal reservoir is at temperature T. The second law of thermodynamics states that, on average,
any processing on the informational states can only yield nonnegative entropy production of the Universe
(reservoir and system Z):

〈Σ〉 = 〈ΔSreservoir〉+ 〈ΔSZ〉

� 0. (A4)

This constrains the energetic cost of computations performed within the system Z .
A computation over time interval t ∈ [τ , τ ′] has two components:

(a) An initial distribution over states Pr(Zτ = zτ ), where Zt is the random variable of system Z at time t.

(b) A Markov channel that transforms it, specified by the conditional probability of the final state zτ ′ given
the initial input zτ :

Mzτ→zτ ′ = Pr(Zτ ′ = zτ ′ |Zτ = zτ ).

This specifies, in turn, the final distribution Pr(Zτ ′ = zτ ′) that allows direct calculation of the
system-entropy change [85]:

ΔSZ|zτ :τ ′
= kB ln

Pr(Zτ = zτ )

Pr(Zτ ′ = zτ ′)
.

Adding this to the information reservoir’s entropy change yields the entropy production of the Universe.
This can also be expressed in terms of the work production:

Σ|zτ :τ ′
≡ ΔSreservoir

|zτ :τ ′
+ΔSZ|zτ :τ ′

=
−W|zτ :τ ′

+ φ(zτ , τ) − φ(zτ ′ , τ ′)

T
.

Here, φ(z, t) = E(z, t) + kBT ln Pr(Zt = z) is the pointwise nonequilibrium free energy, which becomes the
nonequilibrium free energy when averaged: 〈φ(z, t)〉Pr(Zt=z) = Fneq(t) [86].

Note that the entropy production is also proportional to the additional work that could have been
extracted if the computation was efficient. This is referred to as the dissipated work:

Wdiss
|zτ :zτ ′

= TΣ|zτ :zτ ′
. (A5)

Turning back to the second law of thermodynamics, we see that the average work extracted is bounded
by the change in nonequilibrium free energy:

〈W〉 � Fneq(τ ′) − Fneq(τ).

When the system starts and ends as an information reservoir, with equal energies for all states
E(z, τ ) = E(z′, τ ′) [37], this reduces to Landauer’s familiar principle for erasure [19]—work production
must not exceed the change in state uncertainty:

〈W〉 � kBT(H[Zτ ′] − H[Zτ ]),

where H[Zt] = −
∑

z∈Z Pr(Zt = z) ln Pr(Zt = z) is the Shannon entropy of the system at time t measured
in nats. This is the starting point for determining the work production that agents can extract from data.

A.3. Computational mechanics
When describing thermodynamics and machine learning, data was taken from the state space Z all at once.
However, what if we consider a state space composed of L identical components Z = YL that are received in
sequence. Our model of the time series y0:L of realizations is described by an estimated distribution
Pr(Yθ

0:L = y0:L). However, for L large enough, this object becomes impossible to store, due to the exponential
increase in the number of sequences. Fortunately, there are ways to generally characterize an arbitrarily long
time-series distribution using a finite model.
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A.3.1. Generative machines

A hidden Markov model (HMM) is described by a set of hidden states S, a set of output states Y , a
conditional output-labeled matrix that gives the transition probabilities between the states:

θ
(y)
s→s′ = Pr(Sθj+1 = s′, Yθ

j = y|Sθj = s)

for all j, and a start state s∗ ∈ S. (Generally, one also specifies an initial state distribution, with selecting a
start state being a special case.) We label the transition probabilities with the model parameter θ, since these
are the actual parameters that must be stored to generate probabilities of time series. For instance, figure 2
shows an HMM that generates a periodic process with uncertain phase. Edges between hidden states s and s′

are labeled y : θ(y)
s→s′ , where y is the output symbol and θ

(y)
s→s′ is the probability of emitting that symbol on that

transition.
If {θ(y)

s→s′ } is the model for the estimated input Pr(Yθ = y0:L), then the probability of any word is
calculated by taking the product of transition matrices and summing over internal states:

Pr(Yθ
0:L = y0:L) =

∑
s0:L+1

δs0,s∗

L−1∏
j=0

θ
(yj)
sj→sj+1 .

Beyond generating length-L symbol strings, these HMMs generate distributions over semi-infinite
strings Pr(Yθ

0:∞ = y0:∞). As such, they allow us to anticipate more than just the first L symbols from the

same source. Once we have a model θ = {(θ(y)
s→s′ , s, s′, y)}s,s′,y from our training data y0:L, we can calculate

probabilities of longer words Pr(Yθ
0:L′ = y′0:L′) and, thus, the probability of symbols following the training

data Pr(Yθ
L:L′ = y′L:L′ |Yθ

0:L = y0:L). Distributions over semi-infinite strings Pr(Yθ
0:∞ = y0:∞) are similar to

processes, which are distributions over bi-infinite strings Pr(Yθ
−∞:∞ = y−∞:∞). While not insisting on

stationarity, and so allowing for flexibility in using subwords of length L, we can mirror computational
mechanics’ construction of unifilar HMMs from time series, where the hidden states Sθj are minimal

sufficient statistics of the past Yθ
0:j about the future Yθ

j:∞ [87]. In other words, the hidden states are perfect
predictors.

Given a semi-infinite process Pr(Yθ
0:∞ = y0:∞), we construct a minimal predictor through a causal

equivalence relation y0:k ∼ y′0:j that says two histories y0:k and y′0:j are members of the same equivalence class
if and only if they have the same semi-infinite future distribution:

Pr(Yθ
j:∞ = y′′0:∞|Yθ

0:j = y′0:j) = Pr(Yθ
k:∞ = y′′0:∞|Yθ

0:k = y0:k).

An equivalence class of histories is a causal state. Causal states also induce a map ε(·) from histories y0:k to
states si:

si = {y′0:j|y0:k ∼ y′0:j}

≡ ε(y0:k).

This guarantees that a causal state is a sufficient statistic of the past about the future, such that we can track
it as a perfect predictor:

Pr(Yθ
k:∞|Yθ

0:k = y0:k) = Pr(Yθ
k:∞|Sθk = ε(y0:k)).

In fact, the causal states are minimal sufficient statistics. Constructing causal states reveals a number of
properties of stochastic processes and models. One of these is unifilarity, which means that if the current
causal state sk = ε(y0:k) is followed by any sequence yk:j, then the resulting causal state sk = ε(y0:k) is
uniquely determined. And, we can expand our use of the ε function to include updating a causal state:

sj = ε(sk, yk:j)

≡ {y′0:l|∃ y0:k � sk = ε(y0:k) and y′0:l ∼ y0:j}.

This is the set of histories y′0:l that predict the same future as a history y0:j which leads to causal state sk via
the initial sequence y0:k and then follows with the sequence yk:j.

Unifilarity is key to deducing several useful properties of the HMM θ
(y)
s→s′ , which we will refer to as a

nonstationary ε-machine. First, unifilarity implies that for any causal state s followed by a symbol y, there is
a unique next state s′ = ε(s, y), meaning that the symbol-labeled transition matrix can be written:

θ
(y)
s→s′ = θ

(y)
s→ε(s,y)δs′ ,ε(s,y).
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Figure 8. The delay channel ε-transducer: the last input symbol is stored in its memory (states). If the last symbol was 1, then
the corresponding transitions, labeled y′|1 : 1.0, update the hidden state to A. Then, all outputs from A are symbol 1. Similarly,
input 0 leads to state B, whose corresponding outputs are all 0. In this way, the delay channel outputs the previous input symbol.

Moreover, the ε-machine’s form is uniquely determined from the semi-infinite process:

θ
(y)
s→s′ = Pr(Yθ

j = y|Sθj = s)δs′ ,ε(s,y),

where the conditional probability is determined from the process:

Pr(Yθ
j = y|Sθj = ε(y0:i)) = Pr(Yθ

j = y|Yθ
0:j = y0:j).

Once constructed, the ε-machine allows us to reconstruct word probabilities via the simple product:

Pr(Yθ
0:L = y0:L) =

L−1∏
j=0

θ
(yj)

ε(s∗ ,y0:j)→ε(s∗ ,y0:j+1),

where y0:0 denotes the null word, taking a causal state to itself under the causal update ε(s, y0:0) = s.
Allowing for arbitrarily-many causal states, our class of models (nonstationary ε-machines) is so general

that it can represent any semi-infinite process and, thus, any distribution over sequences YL. One concludes
that computational mechanics provides an ideal class of generative models to fit to data y0:L. Bayesian
structural inference implements just this [88].

In these ways, computational mechanics already had solved (and several decades prior) the unsupervised
learning challenge recently posed by reference [89] to create an ‘AI physicist’: a machine that learns
regularities in time series to make predictions of the future from the past [90].

A.3.2. Input–output machines

This way one constructs a predictive HMM that generates a desired semi-infinite process Pr(Yθ
0:L = y0:L).

The generalization to ε-transducers allows for an input as well as an output process—a transformation
between processes [44]. The transducer at the ith time step is described by transitions among the hidden
states Xi → Xi+1, that are conditioned on the input Yi, emitting the output Y ′

i :

M(y′|y)
x→x′ = Pr(Y ′

i = y′, Xi+1 = x′|Yi = y, Xi = x).

ε-Transducer state-transition diagrams label the edges of transitions between hidden states y′|y : M(y′|y)
x→x′ . As

figure 8 shows this is to be read as the probability M(y′ |y)
x→x′ of output y′ and next hidden state x′ given input y

and current hidden state x.
These devices are memoryful channels, with their memory encoded in the hidden states Xi. They

implement a wide variety of functional operations. Figure 8 shows the delay channel. With sufficient
memory, though, an ε-transducer can implement a universal Turing machine [43]. Moreover, if the input
and output alphabets are the same, then they represent the form of a physical information ratchet, which
have energetic requirements that arise from the thermodynamics of their operation [29, 30]. Since these
physically-implementable information processors are so general in their ability to compute, they represent a
very broad class of physical agents. As such, we use the framework of information ratchets to explore the
functionality of agents that process information as a fuel.

Appendix B. Proof of computational trajectory work

To determine the work produced for a computational trajectory zτ → zτ ′ , we first prove a useful relation
between the entropy and work production for a particular state trajectory zτ :τ ′ . Specifically, let W|zτ :τ ′

and
Σ|zτ :τ ′

denote the work and total entropy production along this trajectory, respectively. Let E(zt, t) denote the
system energy when it is in state zt at time t. Now, consider the pointwise nonequilibrium free energy:

φ(zt , t) = E(zt , t) + kBT ln Pr(Zt = zt). (B1)
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More familiarly, note that its time-averaged quantity is the nonequilibrium free energy [86]:

Fneq = 〈φ(z, t)〉Pr(Zt=z).

We can then show that the entropy production Σ can be expressed:

Σ|zτ :τ ′
=

−W|zτ :τ ′
+ φ(zτ , τ) − φ(zτ ′ , τ ′)

T
. (B2)

This follows by noting that the total entropy produced from thermodynamic control is the sum of the
entropy change in the system [85]:

ΔSZ|zτ :τ ′
= kB ln

Pr(Zτ = zτ )

Pr(Zτ ′ = zτ ′)

and that of the thermal reservoir:

ΔSreservoir
|zτ :τ ′

=
Q|zτ :τ ′

T
.

Equation (B2) follows by summing up these contributions to the total entropy production
Σ = ΔSreservoir +ΔSZ and noting that the system of interest’s (SOI’s) change in energy obeys the first law
of thermodynamics ΔEZ = −W − Q.

Since only the SOI’s initial and final states matter to the logical operation of the computational map, we
take a statistical average of all trajectories beginning in zτ and ending in zτ ′ . This results in the work
production: 〈

W|zτ ,zτ ′

〉
=

∑
z′
τ :τ ′

W|z′
τ :τ ′

Pr(Zτ :τ ′ = z′τ :τ ′ |zτ , zτ ′), (B3)

for the computational map zτ → zτ ′ . This determines how much energy is stored in the work reservoir on
average when a computation results in this particular input–output pair.

Similarly, taking the same average of the entropy production shown in equation (B2), conditioned on
inputs and outputs, gives:

T
〈
Σ|zτ ,zτ ′

〉
= −〈W|zτ ,zτ ′

〉+ φ(zτ , τ) − φ(zτ ′ , τ
′),

= −〈W|zτ ,zτ ′
〉 −Δφ|zτ ,zτ ′

.

This suggestively relates computational-mapping work and the change in pointwise nonequilibrium free
energy φ(z, t).

This relation between work and free energy simplifies for thermodynamically-efficient computations.
In such scenarios, the average total entropy production over all trajectories vanishes. Appendix D shows
that zero average entropy production, combined with the Crooks fluctuation theorem [91, 92], implies that
entropy production along any individual trajectory zτ :τ ′ produces zero entropy: Σ|zτ :τ ′

= 0. This is expected
from linear response [93].

Thus, substituting zero entropy production into equation (B2), we arrive at our result: work production
for thermodynamically-efficient computations is the change in pointwise nonequilibrium free energy:

Weff
|zτ :τ ′

= −Δφ|zτ ,zτ ′
.

Substituting equation (B1) then gives:

Weff
|zτ :τ ′

= −ΔEZ + kBT ln
Pr(Zτ = zτ )

Pr(Zτ ′ = zτ ′)
,

where ΔEZ = E(zτ ′ , τ ′) − E(zτ , τ). This is what we would expect in quasistatic computations, where the
system energies E(z, t) are varied slowly enough that the system Z remains in equilibrium for the duration.
We should note, though, that it is possible to implement efficient computations rapidly and out of
equilibrium [94].

This also holds if we average over intermediate states of the SOI’s state trajectory, yielding the work
production of a computational map:

〈
Weff

|zτ ,zτ ′

〉
= −ΔEZ + kBT ln

Pr(Zτ = zτ )

Pr(Zτ ′ = zτ ′)
. (B4)
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The energy required to perform efficient computing is independent of intermediate properties. It depends
only on the probability and energy of initial and final states. This measures the energetic gains from a single
data realization as it transforms during a computation, as opposed to the ensemble average.

Appendix C. Energetics of estimates

SOI state probabilities feature centrally in the expression for nonequilibrium free energy and, thus, for the
work production of efficient agents. However, the actual input distribution Pr(Zτ ) may vary while the agent,
defined by its Hamiltonian HZ (t) over the computation interval, remains fixed. Moreover, since the work

production
〈

Weff
|zτ ,zτ ′

〉
of a computational map explicitly conditions on the initial and final SOI state, this

work cannot explicitly depend on the input distribution. At first blush, this is a contradiction: work that
simultaneously does and does not depend on the input distribution.

This is resolved once one recognizes the role that estimates play in thermodynamics. As indicated in
figure 1, we claim that an agent has an estimated model of its environment that it uses to predict the SOI.
This model is, in one form or another, encoded in the evolving Hamiltonian HZ (t) that determines both
the agent’s energetic interactions and its logical architecture. If an agent’s estimated model of SOI Z is
encoded as parameters θ, then the agent estimates that the SOI state z at time t has probability:

Pr(Zθ
t = zt) = Pr(Zt = zt |Θ = θ).

The physical relevance of the estimated distribution comes from insisting that the agent dissipates as little
work as possible from a SOI whose distribution matches its own estimate. In essence, the initial estimated
distribution Pr(Zθ

τ ) must be one of the distributions that minimizes the average entropy production [95]:

Pr(Zθ
τ ) ∈ arg min

Pr(Zτ )
〈Σ [Pr(Zτ )]〉.

Estimated probabilities Pr(Zθ
t ) at later times t > τ are determined by updating the initial estimate via the

stochastic dynamics that result from the Hamiltonian HZ (t) interacting with the thermal bath.
Thus, since an efficient agent produces zero entropy when the SOI follows the minimum dissipation

distribution Pr(Zθ
t ), the work it produces from a computational map is:

〈
Wθ

|zτ ,zτ ′

〉
= −ΔEZ + kBT ln

Pr(Zθ
τ = zτ )

Pr(Zθ
τ ′ = zτ ′)

. (C1)

In this, we replaced the superscript ‘eff’ with ‘θ’ to emphasize that the agent is designed to be
thermodynamically efficient for that particular estimated model. Specifying the estimated model is essential,
since misestimating the input distribution leads to dissipation and entropy production [95, 96]. Returning
to thermodynamic learning, this is how the model θ factors into the ratchet’s operation: estimated
distributions explicitly determine the work production of computational maps.

Appendix E gives a concrete quasistatic mechanism for implementing any computation M and achieving
the work given by equation (C1). This directly demonstrates how the model θ is built into the evolving
energy landscape HZ(t) that implements M. The model θ determines the initial and final change in state
energies: ΔE(z, τ) = −kB ln Pr(Zθ

τ = z) and ΔE(z, τ ′) = kB ln Pr(Zθ
τ ′ = z). This quasistatic protocol

operates and produces the same work for a particular input–output pair regardless of the actual input
distribution.

Since we focus on the energetic benefits derived from information itself rather than those from changing
energy levels, the example implementations we use also start and end with the same flat energy landscape.
Restricting to such information-driven agents, we consider cases where ΔEZ = 0, whereby:

〈
Wθ

|zτ ,zτ ′

〉
= kBT ln

Pr(Zθ
τ = zτ )

Pr(Zθ
τ ′ = zτ ′)

. (C2)

Appendix D. Proof of zero entropy production of trajectories

Perfectly-efficient agents dissipate zero work and generate zero entropy 〈Σ〉 = 0. The Crooks fluctuation
theorem and other detailed fluctuation theorems say that entropy production is proportional to the
log-ratio of probabilities [91, 92]:

Σ|zτ :τ ′
= kB ln

ρF(Σ|zτ :τ ′
)

ρR(−Σ|zτ :τ ′
)

,
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where ρF(Σ|zτ :τ ′ ) is the probability of the entropy production under the protocol that controls the ratchet
and ρR(−Σ|zτ :τ ′

) is the probability of minus that same entropy production if the control protocol is
reversed. Thus, the average entropy production is proportional to the relative entropy between these two
distributions [61]:

〈Σ〉 = kB

∑
zτ :τ ′

ρF(Σ|zτ :τ ′
) ln

ρF(Σ|zτ :τ ′
)

ρR(−Σ|zτ :τ ′
)

≡ kBDKL(ρF(Σ|zτ :τ ′
)‖ρR(−Σ|zτ :τ ′

)).

If the control is thermodynamically efficient, this relative entropy vanishes [97], implying the necessary and
sufficient condition that ρF(Σ) = ρR(−Σ). This then implies that all paths produce zero entropy:

Σ|zτ :τ ′
= 0.

Entropy fluctuations vanish as the entropy production goes to zero.

Appendix E. Thermodynamically efficient Markov channels

Given a physical system Z = {z}, a computation on its states is given by a Markov channel
Mz→z′ = Pr(Zτ ′ = z′|Zτ = z) and an input distribution Pr(Zτ = z). The following describes a quasistatic
thermodynamic control that implements this computation efficiently if the input distribution matches the
estimated distribution Pr(Zθ = z). This means that the work production is equal to the change in pointwise
nonequilibrium free energy:

〈
Wθ

|zτ ,z
τ ’

〉
= φ(zτ , τ) − φ(zτ ’ , τ ’) (E1)

= −ΔEZ + kBT ln
Pr(Zθ

τ = zτ )

Pr(Zθ
τ ’ = zτ ’ )

.

Note that, while Pr(Zθ
τ = z) is the input distribution for which the computation is efficient, it is possible

that other input distributions Pr(Zτ = z) yield zero entropy production as well. They are only required to
minimize DKL(Zτ‖Zθ

τ ) − DKL(Zτ ′‖Zθ
τ ′) = 0 [95].

The physical setting that we take for thermodynamic control is overdamped Brownian motion with a
controllable energy landscape. This is described by detailed-balanced rate equations. However, if our
physical state-space is limited to Z , then not all channels can be implemented with continuous-time rate
equations [94]. Fortunately, this can be circumvented by additional ancillary or hidden states [94, 98]. And
so, to implement any possible channel, we add an ancillary copy of our original system Z′, such that our
entire physical system is Ztotal = Z × Z′. However, since the ancillary copy starts and ends in the same
uniform uncorrelated distribution, it does not affect the energy and entropy calculations.

Prescriptions have been given that efficiently implement any computation, specified by a Markov
channel Mzτ→zτ ′ = Pr(Zτ ′ = zτ ′ |Zτ = zτ ), using quasistatic manipulation of the Z ’s energy levels and an
ancillary copy Z′ [42, 45]. However, these did not determine the work production for individual
computational maps zτ → z′τ during the computation interval (τ , τ ′).

The following implements an analogous form of quasistatic computation that allows us to easily
calculate the energy associated with implementing the computation Mzτ→zτ ′ , assuming the subsystem Z
started in zτ and ends in zτ ′ . Due to detailed balance, the rate equation dynamics over the computational
system and its ancillary copy Ztotal = Z × Z′ are partially specified by the energy E(z, z′, t) of system state z
and ancillary state z′ at time t. This also uniquely specifies the equilibrium distribution:

Pr(Zeq
t = z, Z′eq

t = z′) =
e−E(z,z′,t)/kBT∑
z,z′ e−E(z,z′,t)/kBT

.

The normalization constant
∑

z,z′ e−E(z,z′,t)/kBT is the partition function that determines the equilibrium free
energy:

Feq(t) = −kBT ln

⎛
⎝∑

z,z′
e−E(z,z′,t)/kBT

⎞
⎠ .
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The equilibrium free energy adds to the system energy. It is constant over the states:

E(z, z′, t) = Feq(t) − kBT ln Pr(Zeq
t = z, Z′eq

t = z′).

We leverage the relationship between energy and equilibrium probability to design a protocol that
achieves the work production given by equation (E2) for a Markov channel M. The estimated distribution
over the whole space assumes that the initial distribution of the ancillary variable is uncorrelated and
uniformly distributed:

Pr(Zθ
τ , Z′

τ ) =
Pr(Zθ

τ )

|Z| .

Assuming the default energy landscape is constant initially and finally—E(z, z′, τ) = E(z, z′, τ ′) = ξ—the
maximally efficient protocol over the interval [τ , τ ′] decomposes into five epochs, see figure 9:

(a) Quench: [τ , τ+],

(b) Quastatic transformation: (τ , τ 1],

(c) Swap: (τ 1, τ 2],

(d) Quasistatic transformation: (τ 2, τ
′
), and

(e) Reset: [τ ′−, τ ′].

For all protocol epochs, except for epoch 3 during which the two subsystems are swapped, Z is held
fixed while the ancillary system Z′ follows the local equilibrium distribution. Let us detail these in turn.

1. Quench: instantaneously quench the energy from E(z, z′, τ) = ξ to E(z, z′, τ+) = kBT
ln(|Z|/ Pr(Zτ = z)) over the infinitesimal time interval [τ , τ+] such that, if the distribution was as we
expect, it would be in equilibrium Pr(Zeq

τ , Z′eq
τ ) = Pr(Zθ

τ )/|Z|.
If the system started in zτ , then the associated work produced is opposite the energy change:〈

Wθ,1
|zτ ,zτ ′

〉
= E(zτ , z′, τ) − E(zτ , z′, τ+)

= ξ + kBT ln
Pr(Zθ

τ = zτ )

|Z| .

〈
Wθ,1

|zτ ,zτ ′

〉
denotes that the work is produced in epoch 1, conditioned on the estimated distributions Zθ

τ and

Zθ
τ ′ , and initial and final states zτ and zτ ′ . Note that we also condition on Zθ

τ ′ = zτ ′ , since work production
in this phase is unaffected by the computation’s end state.

2. Quasistatic transformation: quasistatically evolve the energy landscape over a third of total time
interval (τ , τ 1] such that the joint system remains in equilibrium and the ancillary system Z′ is determined
by the Markov channel M applied to the system Z :

Pr(Zτ1 = z, Z′
τ1
= z′) = Pr(Zτ = z)Mz→z′

E(z, z′, τ1) = −kBT ln Pr(Zθ
τ = z)Mz→z′.

Also, hold the energy barriers between states in Z high, preventing probability flow between states and
preserving the distribution Pr(Zt) = Pr(Zτ ) for all t ∈ (τ , τ 1].

Given that the system started in Zτ = zτ , the work production during this epoch corresponds to the
average change in energy: 〈

Wθ,2
|zτ ,zτ ′

〉

= −
∑
z,z′

∫ τ1

τ+
dt Pr(Z′

t = z′, Zt = z|Zτ = zτ )∂tE(z, z′, t).

As the system Z remains in zτ over the interval:

Pr(Z′
t = z′, Zt = z|Zτ = zτ ) = Pr(Z′

t = z′|Zt = z)δz,zτ

and the work production simplifies to:

〈
Wθ,2

|zτ ,zτ ′

〉
= −

∑
z′

∫ τ1

τ+
dt Pr(Z′

t = z′|Zt = zτ )∂tE(zτ , z′, t).
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Figure 9. Quasistatic agent implementing the Markov chain Mzτ→z′τ in the system Z over the time interval [τ , τ ′] using ancillary
copy Z′ in five steps: Epoch 1: energy landscape is instantaneously brought into equilibrium with the distribution over the joint
system. Epoch 2: probability flows in the ancillary system Z′ as the energy landscape quasistatically changes to make the
conditional probability distribution in Z′ reflect the Markov channel Pr(Z′

τ1
= z′ |Zτ1 = z) = Mz→z′ . Epoch 3: systems Z and Z′

are swapped. Epoch 4: ancillary system quasistatically reset to the uniform distribution. Epoch 5: energy landscape
instantaneously reset to uniform.

We can express the energy in terms of the estimated equilibrium probability distribution:

E(zτ , z′, t) = −kBT ln Pr(Z′
t = z′|Zt = zτ ) Pr(Zθ

t = zτ ).

And, since the distribution over the system Z is fixed during this interval:

Pr(Z′
t = z′|Zt = zτ ) Pr(Zθ

t = zτ ) = Pr(Z′
t = z′|Zt = zτ ) Pr(Zθ

τ = zτ ).

26



New J. Phys. 24 (2022) 083040 A B Boyd et al

Plugging these into the expression for the work production, we find that the evolution happens without
energy exchange:

〈
Wθ,2

|zτ ,zτ ′

〉
= −kBT

∫ τ1

τ+
dt
∑

z′
Pr(Z′

t = z′|Zt = zτ )∂t ln Pr(Z′
t = z′|Zt = zτ ) Pr(Zθ

τ = zτ )

= −kBT

∫ τ1

τ+
dt
∑

z′
Pr(Z′

t = z′|Zt = zτ )
Pr(Zθ

τ = zτ )∂t Pr(Z′
t = z′|Zt = zτ )

Pr(Z′
t = z′|Zt = zτ ) Pr(Zθ

τ = zτ )

= −kBT

∫ τ1

τ+
dt

∑
z′
∂t Pr(Z′

t = z′|Zt = zτ )

= −kBT

∫ τ1

τ+
dt ∂t

∑
z′

Pr(Z′
t = z′|Zt = zτ )

= −kBT

∫ τ1

τ+
dt ∂t1

= 0.

After this state, at time τ 1 the resulting joint distribution over the ancillary and primary system matches the
desired computation:

Pr(Zτ1 = z, Z′
τ1
= z′) = Pr(Zτ = z)Mz→z′ . (E2)

3. Swap: over time interval (τ 1, τ 2], efficiently swap the two systems Z ↔ Z′, such that
Pr(Zτ1 = z, Z′

τ1
= z′) = Pr(Zτ2 = z′, Z′

τ2
= z) and E(z, z′, τ 1) = E(z′, z, τ 2). This operation requires zero

work as well, as it is reversible, regardless of where the system starts or ends:

〈
Wθ,3

|zτ ,zτ ′

〉
= 0.

Such an efficient swap operation has been demonstrated in finite time [94]. The resulting joint distribution
over the ancillary and primary system matches a flip of the desired computation:

Pr(Zτ2 = z, Z′
τ2
= z′) = Pr(Zτ = z′)Mz′→z.

4. Quasistatically evolve: over time interval (τ 2, τ ′), quasistatically evolve the energy landscape from:

E(z, z′, τ2) = −kBT ln Pr(Zθ
τ = z′)Mz′→z

to

E(z, z′, τ ′−) = −kBT ln

∑
z′′ Pr(Zθ

τ = z′′)Mz′′→z

|Z|

= −kBT ln
Pr(Zθ

τ ′ = z)

|Z| .

We keep the primary system Z fixed as in epoch 2. And, as in epoch 2, there is zero work production:

〈
Wθ,4

|zτ ,zτ ′

〉
= 0.

The result is that the primary system is in the desired final distribution:

Pr(Zτ ′ = z) ≡
∑

z′
Pr(Zτ = z′)Mz′→z,

having undergone a mapping from its original state at time τ , while the ancillary system has returned to an
uncorrelated uniform distribution.
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5. Reset: finally, over time interval [τ ′−, τ ′] instantaneously change the energy to the default flat
landscape E(z, z′, τ ′) = ξ. Given that the system ends in state zτ ′ , the associated work production is:〈

Wθ,5
|zτ ,zτ ′

〉
= E(z′τ , z′, τ ′−) − E(z′τ , z′, τ ′)

= −ξ − kBT ln
Pr(Zθ

τ ′ = zτ ′)

|Z| .

The net work production given the initial state zτ and final state zτ ′ is then:

〈
Wθ

|zτ ,zτ ′

〉
=

5∑
i=1

〈
Wθ,i

|zτ ,zτ ′

〉

= kBT ln
Pr(Zθ

τ = zτ )

Pr(Zθ
τ ′ = zτ ′)

.

Thus, when we average over all possible inputs and outputs and the estimated an actual distributions are
the same Zθ

τ = Zτ , we see that this protocol achieves the thermodynamic Landauer’s bound:

〈
Wθ

〉
=
∑
zτ ,zτ ′

Pr(Zτ =zτ , Zτ ′ =zτ ′)
〈

Wθ
|zτ ,zτ ′

〉

= kBT ln 2(H[Zτ ′] − H[Zτ ]).

One concludes that this is a thermodynamically-efficient method for computing any Markov channel.

Appendix F. Designing agents

To design a predictive thermodynamic agent, its hidden states must match the states of the ε-machine at
every time step Xi = Sθi . To do this, the agent states and causal states occupy the same space X = S, and the
transitions within the agent M are directly drawn from causal equivalence relation:

Mxy→x′y′ =
1

|Y| ×

⎧⎨
⎩
δx′,ε(x,y) if

∑
x′

θ
(y)
x→x′ = 0,

δx′,x otherwise.

The factor 1/|Y| maximizes work production by mapping to uniform outputs.
The second term on the right is the probability of the next agent state given the current input and

current hidden state Pr(Xi+1 = x′|Yi = y, Xi = x). The top case δx′ ,ε(x,y) gives the probability that the next
causal state is Sθi+1 = x′ given that the current causal state is Sθi = x and output of the ε-machine is Yi = y.
This is contingent on the probability of seeing y given causal state x being nonzero. If it is, then the
transitions among the agent’s hidden states match the transitions of the ε-machine’s causal states.

In this way, if y0:L is a sequence that could be produced by the ε-machine, we have designed the agent to
stay synchronized to the causal state of the input Xi = Sθi , so that the ratchet is predictive of the process
Pr(Yθ

0:∞) and produces maximal work by fully randomizing the outputs:

Pr(Y ′
i = y′i|·) =

1

|Y| .

It can be the case that the ε-machine cannot produce y from the causal state x. This corresponds to a
disallowed transition of our model θ(y)

x→x′ = 0. In these cases, we arbitrarily choose the next state to be the
same δx,x′ . There are many possible choices, though—such as resetting to the start state s∗. However, it is
physically irrelevant, since these transitions correspond zero estimated probability and, thus, to infinite
work dissipation, drowning out all other details of the model. However, this particular choice for when y
cannot be generated from the causal state x preserves unifilarity and allows the agent to wait in its current
state until it receives an input that it can accept.

Modulo disallowed, infinitely-dissipative transitions, we now have a direct mapping between our
estimated input process Pr(Yθ

0:∞) and its ε-machine θ to the logical architecture M of a maximum
work-producing agent.

As yet, this does not fully specify agent behavior, since it leaves out the estimated input distribution
Pr(Yθ

i = y, Xθ
i = x). This distribution must match the actual distribution Pr(Yi = y, Xi = x) for the agent to

be locally efficient, not accounting for temporal correlations. Fortunately, since agent states are designed to
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match the ε-machine’s causal states, we know that the agent state distribution matches the causal-state
distribution and inputs:

Pr(Yθ
i = yi, Xθ

i = si) = Pr(Yθ
i = yi, Sθi = si),

if the ratchet is driven by the estimated input. The joint distribution over causal states and inputs is also
determined by the ε-machine, since the construction assumes starting in the state s0 = s∗. To start, note that
the joint probability trajectory distribution is given by:

Pr(Yθ
0:i+1 = y0:i+1, Sθ0:i+2 = s0:i+2)

= δs0,s∗

i∏
j=0

θ
(yj)
si→si+1 .

Summing over the variables besides Yθ
i and Sθi , we obtain an expression for the estimated agent distribution

in terms of just the ε-machine’s HMM:

Pr(Yθ
i = yi, Xθ

i = si) =
∑

y0:i,s0:i,si+1

δs0,s∗

i∏
j=0

θ
(yj)
sj→sj+1 .

Thus, an agent {M, Pr(Xθ
i , Yθ

i )} designed to be globally efficient for the estimated input process Pr(Yθ
0:L) can

be derived from the estimated input process through its ε-machine θ
(y)
s→s′ .

Appendix G. Work production of optimal transducers

The work production of an arbitrary transducer M driven by an input y0:L can be difficult to calculate, as
shown in equation (7). However, when the transducer is designed to harness an input process with
ε-machine T, such that:

Mxy→x′y′ =
1

|Y| ×

⎧⎨
⎩
δx′,ε(x,y) if

∑
x′

θ
(y)
x→x′ = 0,

δx′,x else,

the work production simplifies. To see this, we express equation (7) in terms of the estimated distribution
Pr(Yθ

0:L), ratchet M, and input y0:L, assuming that the word y0:L can be produced from every initial hidden
state with nonzero probability Pr(Yθ

0:L = y0:L|S0 = s0) Pr(X0 = s0) = 0, which guarantees that∑
xi+1

θ
(yi)
xi→xi+1 = 0. If this constraint is not satisfied, the agent will dissipate infinite work, as it implies

Pr(Xθ
i = xi, Yθ

i = xi) = 0 for some i. Thus, we use the expression Mxy→x′y′ = δx′,ε(x,y)/|Y| in the work
production:〈

Wθ
|y0:L

〉

= kBT
∑

x0:L+1,y′0:L

Pr(X0 = x0)
L−1∏
j=0

Mxj ,yj→xj+1 ,y′j
ln

L−1∏
i=0

Pr(Xθ
i = xi, Yθ

i = yi)

Pr(Xθ
i+1 = xi+1, Y ′θ

i = y′i)

= kBT
∑

x0:L+1,y′0:L

Pr(X0 = x0)
L−1∏
j=0

δxj+1,ε(xj ,yj)

|Y| ln
L−1∏
i=0

Pr(Xθ
i = xi, Yθ

i = yi)

Pr(Xθ
i+1 = xi+1)/|Y|

= kBT ln |Y|+ kBT
∑

x0:L+1

Pr(X0 = x0)
L−1∏
j=0

δxj+1,ε(xj ,yj)

(
ln

L−1∏
i=0

Pr(Yθ
i = yi|Xθ

i = xi) + ln
L−1∏
i=0

Pr(Xθ
i = xi)

Pr(Xθ
i+1 = xi+1)

)
.

Note that
∏L−1

j=0 δxj+1,ε(xj ,yj) vanishes unless each element of the hidden state trajectory xi corresponds to
the resulting state of the ε-machine when the initial state x0 is driven by the first i inputs y0:i, which is
ε(x0, y0:i). The fact that the agent is driven into a unique state is guaranteed by the ε-machine’s unifilarity.
Thus, we rewrite:

L−1∏
j=0

δxj+1,ε(xj ,yj) =

L∏
j=1

δxj,ε(x0,y0:j).
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This engenders a simplification of the work production:

〈
Wθ

|y0:L

〉
= kBT ln |Y|+ kBT

∑
x0:L+1

Pr(X0 = x0)
L∏

j=1

δxj ,ε(x0,y0:j) ln
L−1∏
i=0

Pr(Yθ
i = yi|Xθ

i = xi) Pr(Xθ
i = xi)

Pr(Xθ
i+1 = xi+1)

= kBT ln |Y|+ kBT
∑

x0

Pr(X0 = x0) ln
L−1∏
i=0

Pr(Yθ
i = yi|Xθ

i = ε(x0, y0:i))

+ kBT
∑

x0

Pr(X0 = x0) ln
Pr(Xθ

0 = x0)

Pr(Xθ
L = ε(x0, y0:L))

, (G1)

where y0:0 denotes the null input, which leaves the state fixed under the ε-map ε(x0, y0:0) = x0.
This brings us to an easily calculable work production, especially when the system is initialized in the

start state s∗. Recognizing that if we initiate the ε-machine in its start state s∗, such that Pr(X0 = x0) = δx0,s∗ ,
then X0 = S0 is predictive. By extension, every following agent state is predictive and equivalent to the
causal state Xi = Si yielding:

Pr(Yi = yi|Xi = ε(s∗, y0:i)) = Pr(Yi = yi|Si = ε(s∗, y0:i))

= Pr(Yi = yi|Y0:i = y0:i).

Thus, the work production simplifies a sum of terms that includes the log-likelihood of the finite input:〈
Wθ

|y0:L

〉

= kBT
∑

x0

δx0,s∗ ln
L−1∏
i=0

Pr(Yθ
i = yi|Yθ

0:i = y0:i) + kBTL ln |Y|+ kBT
∑

x0

δx0,x∗ ln
δx0,s∗

Pr(Xθ
L = ε(x0, y0:L))

= kBT
(
ln Pr(Yθ

0:L = y0:L) + L ln |Y|− ln Pr(Xθ
L = ε(s∗, y0:L))

)
.

The first log(·) in the last line is the log-likelihood of the model generating y0:L —a common
performance measure for machine learning algorithms. If an input has zero probability this leads to −∞
work production, and all other features are drowned out by the log-likelihood term. Thus, the additional
terms that come into play when the input probability vanishes become physically irrelevant: the agent is
characterized by the ε-machine. From a machine learning perspective, the model is also characterized by the
ε-machine θ

(y)
s→s′ for the process Pr(Yθ

0:∞). The additional term kBTL ln |Y| is the work production that
comes from exhausting fully randomized outputs and does not change depending on the underlying model.

The final term − kBT ln Pr(Xθ
L = ε(s∗, y0:L))

)
does directly depend on the model. Pr(Xθ

L = x) is the
distribution over agent states X at time Lτ if the agent is driven by the estimated input distribution Yθ

0:L.
This component of the work production is larger, on average, for agents with high state uncertainty, since
this leads, on-average, to smaller values of Pr(Xθ

L). This contribution to the work production comes from
the state space expanding from the start state s∗ to the larger (recurrent) subset of agent states, and so it
provides additional work. This indicates that we are neglecting the cost of resetting to the start state while
harnessing the energetic benefit of starting in it.

If the machine is designed to efficiently harness inputs again after it operates on one string, it must be
reset to the start state s∗. This can be implemented with an efficient channel that anticipates the input
distribution Pr(Xθ

L = x), outputs the distribution Pr(Xθ
L+1 = x) = δx,s∗ , and so costs:

Wθ,reset
|y0:L

= kBT ln Pr(Xθ
L = ε(s∗, y0:L)).

Thus, when we add the cost of resetting the agent to the start state at XL+1, the work production is
dominated by the log-likelihood:〈

Wθ
|y0:L

〉
= kBT(ln Pr(Yθ

0:L =y0:L)+L ln |Y|). (G2)

Appendix H. Training simple agents

We now outline a case study of thermodynamic learning that is experimentally implementable using a
controllable two-level system. We first introduce a straightforward method to implement the simplest
possible efficient agent. Second, we show that this physical process achieves the general
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Figure 10. Memoryless model of binary data consisting of a single state A and the probability of outputting a ↑ and a ↓, denoted
θ(↑)

A→A and θ(↓)
A→A , respectively.

maximum-likelihood result arrived at in the main development. Last, we find the agent selected by
thermodynamic learning along with its corresponding model. As expected, we find that this
maximum-work producing agent learns its environment’s predictive features.

H.1. Efficient computational trajectories
The simplest possible information ratchets have only a single internal state A and receive binary data yj

from a series of two-level systems Yj = {↑, ↓}. These agents’ internal models correspond to memoryless
ε-machines, as shown in figure 10. The model’s parameters are the probabilities of emitting ↑ and ↓,
denoted θ(↑)

A→A and θ(↓)
A→A, respectively.

Our first step is to design an efficient computation that maps an input distribution Pr(Zjτ ) to an output
distribution Pr(Zjτ+τ ′) over the jth interaction interval [jτ , jτ + τ ′]. The agent corresponds to the
Hamiltonian evolution HZ(t) = HX×Yj (t) over the joint space of the agent memory and jth input symbol.
The resulting energy landscape E(z, t) is entirely specified by the energy of the two input states E(A× ↑, t)
and E(A× ↓, t).

Appropriately designing this energy landscape allows us to implement the efficient computation. The
procedure for an efficient computation on two states is laid out in figure 6. It can be easily generalized to
include the single memory state A. The thermodynamic evolution there instantaneously quenches the
energy landscape into equilibrium with the estimated distribution at the beginning of the interaction
interval Pr(Zθ

jτ ), then quasistatically evolves the system in equilibrium to the estimated final distribution

Pr(Zθ
jτ+τ ′ ), and, finally, quenches back to the default energy landscape. The system undergoes a cycle,

starting and ending with the same flat energy landscape, such that ΔEZ = 0.
We control the transformation over time interval t ∈ (jτ , jτ + τ ′) such that the time scale of

equilibration in the SOI is much shorter than the interval length τ ′. This slow-moving quasistatic control
means that the states are in equilibrium with the energy landscape over the interval. In this case, the state
distribution becomes the Boltzmann distribution:

Pr(Zt = z) = e(FEQ(t)−E(z,t))/kBT .

To minimize dissipation for the estimated distribution, the state distribution must be the estimated
distribution Pr(Zt = z) = Pr(Zθ

t = z). And so, we set the two-level-system energies to be in equilibrium
with the estimates:

E(z, t) = −kBT ln Pr(Zθ
t = z).

The resulting process produces zero work:

Wquasistatic = −
∫ jτ+τ ′

z=jτ
dt
∑

z

Pr(Zθ
t = z)∂tE(z, t)

= 0

and maps Pr(Zθ
jτ ) to Pr(Zθ

jτ+τ ′) without dissipation.
With the quasistatic transformation producing zero work, the total work produced from the initial joint

state x × y is exactly opposite the change in energy during the initial quench:

E(x × y, jτ) − E(x × y, jτ+) = kBT ln Pr(Zθ
jτ = x × y)

minus the change in energy of the final joint state x′ × y′ during the final quench:

E(x′ × y′, jτ + τ ′−) − E(x′ × y′, jτ + τ ′) = −kBT ln Pr(Zθ
jτ+τ ′ = x′ × y′).
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The two-level system’s state is fixed during the instantaneous energy changes. Thus, if the joint state follows
the computational mapping x × y → x′ × y′ the work production is, as expected, directly connected to the
estimated distributions: 〈

W|x×y,x′×y′
〉
= kBT ln

Pr(Zθ
jτ = x × y)

Pr(Zθ
jτ+τ ′ = x′ × y′)

. (H1)

Recall from section 4.1 that the ratchet system variable Zθ
jτ = Xθ

j × Yθ
j splits into the random variable Xθ

j for

the jth agent memory state and the jth input Yθ
j . Similarly, Zθ

jτ+τ ′ = Xθ
j+1 × Y ′θ

j splits into the (j + 1)th

agent memory state Xθ
j+1 and jth output Y ′θ

j . This work production achieves the efficient limit for a model

θ
(〈

W|x×y,x′×y′
〉
=

〈
Wθ

|x×y,x′×y′

〉)
described in equation (5).

Appendix E generalized the thermodynamic operation above to any computation Mzτ→zτ ′ . While it
requires an ancillary copy of the system Z to execute the conditional dependencies in the computation, it is
conceptually identical in that it uses a sequence of quenching, evolving quasistatically, and then quenching
again. This appendix extends the strategies outlined in references [42, 45] to computational-mapping work
calculations.

H.2. Efficient information ratchets
With the method for efficiently mapping inputs to outputs in hand, we can design a series of such
computations to implement a simple information ratchet that produces work from a series y0:L. As
prescribed in equation (8) of section 5, to produce the most work from estimated model θ, the agent’s
logical architecture should randomly map every state to all others:

Mxy→x′y′ =
1

|Yj|

=
1

2
,

since there is only one causal state A. In conjunction with equation (10), we find that the estimated joint
distribution of the agent and interaction symbol at the start of the interaction is equivalent to the
parameters of the model:

Pr(Zθ
jτ = x × y) = Pr(Xθ

j = x, Yθ
j = y)

= Pr(Yθ
j = y|Xθ

j = A) Pr(Xθ
j = A)

= θ
(y)
A→A,

where we again used the fact that A is the only causal state. In turn, the estimated distribution after the
interaction is:

Pr(Zθ
jτ+τ ′ = x′ × y′) =

∑
xy

Pr(Xθ
j = x, Yθ

j = y)Mxy→x′y′

=
1

2
.

Thus, assuming the agent has model θ built-in, then equation (H1) determines that the work production
for mapping A × y to output A × y′ for a particular symbol y is:

〈
W|A×y,A×y′

〉
= kBT

(
ln 2 + ln θ

(y)
A→A

)
.

Since A is the only memory state and work does not depend on the output symbol y′, the average work
produced from an input y is: 〈

W|y〉 = 〈W|A×y,A×y′
〉
. (H2)

With the work production expressed for a single input yj, we can now consider how much work our
designed agent harvests from the training data y0:L. Summing the work production of each input yields
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a simple expression in terms of the model θ:

〈
W|y0:L

〉
=

L−1∑
j=0

〈
W|yj

〉

=

L−1∑
j=0

kBT
(

ln 2 + ln θ
(yj)
A→A

)

= kBT

⎛
⎝L ln 2 + ln

L−1∏
j=0

θ
(yj)
A→A

⎞
⎠ .

Due to the single causal state, the product within the logarithm simplifies to the probability of the word

given the model
∏L−1

j=0 θ
(yj)
A→A = Pr(Yθ

0:L = y0:L). So, the resulting work production depends on the familiar
log-likelihood:

〈W|y0:L〉 = kBT
(
L ln 2 + �(θ|y0:L)

)
= 〈Wθ

|y0:L
〉,

again, achieving efficient work production, as expected.

H.3. Maximizing work for memoryless models
Leveraging the explicit construction for efficient information ratchets, we can search for the agent that
maximizes work from the input string y0:L. To infer a model through work maximization, we label the
frequency of ↑ states in this sequence with f(↑) and the frequency of ↓ with f(↓). The corresponding
log-likelihood of the model is:

�(θ|y0:L) = ln
(
θ(↑)

A→A

)Lf (↑)(
θ(↓)

A→A

)Lf (↓)

= Lf (↑) ln
(
θ(↑)

A→A

)
+ Lf (↓) ln

(
θ(↓)

A→A

)
.

Thus, for the corresponding agent, the work production is:〈
Wθ

|y0:L

〉
= kBT�(θ|y0:L) + kBTL ln 2

= kBTL
(

ln 2+f (↑) ln θ(↑)
A→A+f (↓) ln θ(↓)

A→A

)
.

Selecting from all possible memoryless agents, the model parameters θ maximizing work production are
given by the frequency of symbols in the input: f (↑) = θ(↑)

A→A and f (↓) = θ(↓)
A→A. The resulting work

production is: 〈
Wθ

|y0:L

〉
= kBTL(ln 2 − H[f (↑)]),

where H[f(↑)] is the Shannon entropy of binary variable Y with Pr(Y =↑) = f(↑) measured in nats.
This simple example of learning statistical bias serves to explicitly lay out the stages of thermodynamic

machine learning. The class of models is too simple, though, to illustrate the full power of the new learning
method. That said, it does confirm that thermodynamic work maximization leads to useful models of data
in the simplest case. As one would expect, the simple agent found by thermodynamic machine learning
discovers the frequency of zeros in the input and, thus, it learns about its environment. The corresponding
work production is the same as energetic gain of randomizing L bits distributed according to the frequency
f(↑).

However, this neglects the substantial thermodynamic benefits possible with temporally-correlated
environments [38]. To illustrate how to extract this additional energy, a sequel designs and analyzes
memoryful agents.
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