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A Framework for Fast Evaluation of Fourier Series 

Ping Tak Peter Tang * 
National Energy Research Scientific Computing 

Computing Science Directorate 
Lawrence Berkeley National Laboratory 

Berkeley, CA 94 720 
ptptang@nersc.gov 

June 5, 1998 

Abstract 

This paper is about rapid evaluation of sums of the form Lt ate-L211"lu at ar­
bitrary u. This include Fourier series as a special case, for example, of the form 
~ a• e-L27r{iul +mu2 +nus). This paper presents a framework with detailed analy-L-d,m,n -t-,m,n 

sis from which a variety of rapid evaluation methods can be obtained that offer tradeoffs 
between accuracy, speed, and memory requirements. Such options will be valuable not 
only to different applications where accuracy requirements may vary; but also to one 
single applications where accuracy requirement may vary in the application's different 
parts or stages. Numerical experiments are performed to illustrate the framework's key 
ideas and capabilities. 

Keywords: Fourier series, fast interpolation, convolution. 

1 Introduction 

The main problem this paper addresses is the rapid evaluation of the sum in the form 

F(u) = L a.ee-L2Trl·u 

leindex 

for an arbitrary number of points u E 1?}. Here, Index is a finite subset of Nk, N = 
{0, ±1, ±2, ... }; a.e E C are given constants; and .e · u is the usual inner product. Clearly, 
this include as a special case Fourier series of, for example, the form 

Since Fourier series is crucial in many scientific computing, rapid evaluation methods 
will be highly useful. Although the FFT algorithm is often used for similar problems, it 

*This work was supported by the the Director, Office of Energy Research, Office of Computational 
and Technology Research, Division of Mathematical, Information, and Computational Sciences of the U.S. 
Department of Energy under contract number DE-AC03-76SF00098. 
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is not capable of delivering results at arbitrary u. In applications such as quantum Monte 
Carlo simulations where wave functions are represented as products of finite Fourier series 
in three space, large number of evaluations are needed at arbitrary locations. 

One way of tackling the main problem is through a system of recurrence which can 
be solved, for example, by special linear system [10]. The cost is however O(N2 M) for 
evaluating a 1-D N-term Fourier series at M points. 

Fast algorithms now exist that evaluate a 1-D N-term Fourier series at M places at a 
cost of 0 ( N log N + M). The order N log N work is an initialization cost that has to be paid 
once and for all. After that, each Fourier series evaluation costs 0(1), that is, a constant 
independent of N. More precisely, Fast Multipole Method (FMM) based methods such as 
the one based on a series expansion of the function f(z) = lj(z- Zj) [1, 2] or that based 
on Chebyshev polynomial expansion of the function f(x) = ljx [6, 7] solve the problem at 
hand (in the one dimensional case) at a cost of the form 

where € is the desired accuracy. 
Another method [5] based on approximation of function of the form etcx, c, x real, by 

functions of the form I: Pketkx can solve the problem in 

It is reported in [5] that this method is superior to [6] for the problem of Fourier series 
evaluation. 

In this paper, we propose a framework that can produce a large number of interpolation 
schemes, each of which can evaluate aN-term Fourier series at M different points at a cost 
of 

0 ( N log N + M log(~)) . 
The framework is based on convolution and the interplay between continuous and discrete 
Fourier transforms. Though it looks quite different from the methods discussed previously, 
it truns out that the method in [5] can be considered a special case of this framework. Our 
framework offers a large choice of methods with different characteristics such as accuracy 
capabilities and memory requirements. It admits a natural error analysis that also offer 
additional insight on the method in [5]. 

The rest of the paper is organized as follows. Section 2 introduces the framework and 
its analysis in the one dimensional case. Section 3 discusses in more detail an especially 
useful case of the framework. Section 4 discusses the extension of the framework to higher 
dimensions. Section 5 compares our framework with the method in [5]. Section 6 presents 
some numerical and timing results. Finally, Section 7 gives some concluding remarks and 
possible future work. 
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2 Framework 

A finite Fourier series 

F(u) = L A.eeL2n£-u 
iEindex 

llndexl < oo 

can be thought of as the inverse Fourier transform of a sequence of delta functions placed 
on a regular grid. Precisely, 

F(u) = J ( L A.e8(x- .e)) e£27ru·xdx. 
iEindex 

Our framework tries to recognize Fourier and inverse Fourier transform of such delta 
functions as infinite sums that converges rapidly. We first define the basic components for 
this framework. We then show how we represent (or approximate) the sequence of delta 
functions as an infinite, but periodic, sequence of delta functions modulated by a window 
function. The Fourier and inverse Fourier transforms of the latter can then be recognized as 
convolutions, which give the infinite sum representations. By chosing suitable modulating 
window functions, the infinite sums can have reasonably fast convergence. 

For the sake of simplicity, we focus on one-dimensional forward Fourier transform, that 
is, sums of the form 

F(u) = L Aee-L2nlu 
lElndex 

IIndexl < oo. 

Generalization to higher dimension and to inverse Fourier transforms are straightforward 
and will be discussed towards the end of the paper. 

2.1 Basic Ingredients 

There are three basic ingredients of the framework: finite impulse train (fit), periodic 
impulse train (pit), and window function (win). . 

A finite impulse train is a finite sequence of delta functions placed on a regular grid. 
Formally: 

Definition 1 A finite impulse train, fit, is a generalized function of the form 

N-1 

f(x) = L ae8(x- (xo + e~X)) 
£=0 

where x E 'R. is the independent variable, and ae E C, xo, tiX E 'R. are given constants. 

A periodic impulse train is an infinite sequence of delta functions placed on a regular 
grid and whose magnitudes form a periodic sequence. We further require that the grid 
contains the origin so that Fourier transform of periodic impulse trains are periodic impulse 
trains. Formally, 
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Definition 2 A periodic impulse train, pit, is a generalized function of the form 

00 

g(x) = L ag8(x- fLlX) 
f.=-oo 

where there is an integer N such that 

a£ = af.+N for all £. 

Finally, we denote any nonnegative real-valued function, win(x), a window function as 
long as its Fourier transform 

exists in the classical sense. 
The main subject of this paper is to use these ingredients to devise fast algorithms to 

evaluate the Fourier transform of a fit at arbitrary location, that is, calculate 

[

N-1 l 
F(u) = j ~ at.8(x- (xo + fLlX)) e-£27rxudx 

at arbitrary u. This clearly includes the case of evaluating a finite Fourier series. 

2.2 Discrete and Continuous Fourier Transform 

Many scientific computation that requires Fourier transform are performed by the FFT 
algorithm which computes the discrete Fourier transform. We review several relationships 
between continuous and discrete Fourier transform that are crucial to us. 

Let 
N-1 

f(x) = L at8(x- f/N), 
f.=O 

be a finite impulse train, fit, and 

00 

g(x) = L at.8(x- f/N), af.+N =a£ 
f.=-oo 

be a periodic impulse train with f as one period. Finally, let the sequence 

be the result of applying the discrete Fourier transform to the sequence {ao, a 1, ... , aN-I}, 
that is, 

N-1 

Ak = L at.e-£27rf.k/N, k = 0, 1, ... , N- 1. 
f.=O 

Then we have the following well-known relationships. 
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Relationship 1: 

F(u) = /_: f(x)e-L27rxudx = F(f)(u) 

· is a periodic function of period N, F ( u) = F ( u + N) and that 

F(m) =Am for m = 0, 1, ... , N - 1. 

In otherwords, DFT{ ad gives the exact value of the continuous Fourier transform off at 
the N locations u = 0, 1, ... , N - 1. 

Relationship 2: 

G(u) = /_: g(x)e-L2Trxudx = F(g)(u) 

is a periodic impulse train 

00 

G(u) = L Am<>"(u- m), Am =Am+N· 
-oo 

Thus DFT{ ad can be viewed as obtaining 1 period of g's continuous Fourier transform [3]. 

2.3 Sine Interpolation Reviewed 

Consider a fit of length N on the grid 0, 1/N, ... , N- 1/N. Since DFT{ ao, a 1 , ... , aN-d 
gives {Ao, A1, ... , AN-1} where 

F(f)(kN + m) =Am, m = 0, 1, ... , N- 1; k = 0, ±1, ±2, ... , 

it is natural to use interpolation based on {Ao, A 1, ... ,AN-1 } to obtain F(f)(u) at arbitrary 
u. One such kind of interpolation is well-known and we can derive this scheme using our 
basic ingredients. 

Consider the "square window" function 

{ 

1, if lxl < 1/2; 
</>o(x) = 1/2, if lxl = 1/2; 

0, otherwise. 

It can be easily show that [3] 

(
-- sin~u1ru) ) . F(</>o)(u) = sinc(u) " 

Consider also the pit obtained by replicating f: 
00 

g(x) = L at<>"(x- f/N), at+N =a£. 
£=-oo 
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Hence 

f(x) = g(x) · ¢o(x- r), 

- g(x) · win(x) 

1 1 
r=(---) 

2 N 

Consequently, the Fourier transform off is given by the convolution of the Fourier transform 
of g and win: 

F(u) = G(u) * WIN(u) 

= (m~oo Amb"(u- m)) * ( e-t27rrusinc(u)), 

where Am+N =Am, and thus are known. Working out the convolution gives 

00 

F(u) = L Ame-t27rr(u-m)sinc(u- m). 
m=-oo 

In particular, for any fixed u0, let mo be an integer closest to uo, that is uo = mo + {o, 
l{ol $ 1/2. 

00 

F(uo) L Amo+ke-t21r(~o-k)sinc({o- k), 
k=-oo 

K 

::::::; e-t27r~o L Amo+ket21rksinc({o- k). 
k=-K 

The last formula is an interpolation method using "sine" weighted average of F values 
close to uo. Convergence to F(uo) is ensured if limit is taken with respect to K, that is, 
symmetrically ([9],Appendix I). Figure 1 illustrates this derivation. 

To get an idea of the effectiveness of this scheme, we perform the following experiment. 
We generated 100 random values for { a£}89 and 1000 random values 

We define a fit, 

thus 

{u ·}woo 
J 1 ' 

99 

Uj E (0, 5]. 

f(x) = L aeb"(x- £/100), 
£=0 

99 
F(u) = F(f)(u) = L aee-t21rlu/100. 

£=0 

For each Uj, we computed F(uj) exactly (up to rounding error due to finite precision 
arithmetic) by the formula above and also by the sine interpolation scheme 

K 

Fapp(uj) = L Amo+msinc((uj- mo)- m) 
m=-K 
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Figure 1: Derivation of Sine Interpolation 

Interpolation Error IJFapp- FII/IJFII 
Sine Interpolation Scheme 

K=8 K=l2 K=l6 K=20 
1.14e- 01 4.97e- 02 4.05e- 02 3.95e- 02 3.75e- 02 

Table 1: Illustration of Ineffective Sine Interpolation 
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where mo is an integer closest to Uj· For a fixed value of K, we calculated the error 
IIFapp- FII/IIFII where Fapp and Fare vectors of length 1000. Table 1 tabulates the result. 

Note that increasing K only increases the accuracy of the scheme slowly. The accuracy 
is clearly inadequate for many scientific applications at a reasonable number of terms K. 

2.4 A Framework for Faster Interpolation 

Two observations can be made from the previous section. First, the previous interpolation 
formula is obtained from the representation 

fit = pit · win. 

From this representation, we have 

F(fit) = F(pit) * F(win), 

- PIT* WIN, 

= infinite sum, 

:::::: interpolation formula. 

Second, the obvious cause for the lack of accuracy in the previous interpolation scheme 
is the slow decaying nature of the sine function. Since the window function in the time 
domain, win, was discontinuous, its Fourier transform, WIN, must decay slowly ([8]). 

Combining the two observations, we see immediately that it is desirable to have a 
representation 

fit = pit · win 

when win is smooth so that WIN decays rapidly. Clearly, whatever win is used, we must 
define pit so that the equality is preserved and that WIN = F(win) is known explicitly so 
that the interpolation formula is in closed form. 

Going further, it is in p~inciple unnecessary to have strict equality between fit and 
pit · win as long as the difference between the two is tolerably small. Suppose a particular 
pit · win introduces other values on top of the fit: 

then 

pit· win= fit+ ghost, 

F(fit) - PIT* WIN- F(ghost), 

= infinite sum- F(ghost), 

:::::: interpolation formula- F(ghost), 

:::::: interpolation formula. 

In general, a ghost error must be present when the window function, win, does not have 
finite support. 

In summary, we would be approximating by truncation - interpolation formula instead 
of infinite sum, the Fourier transform of a slightly wrong function - fit + ghost instead of 
fit. With this framework, we can propose at least three different classes of interpolation 
methods. 
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1. Cosine window: 

wm 
ghost 

= cosd(1rx) · <Po(x), d = 0, 1, 2, ... ; 
= 0; 

WIN (!(o(x + 1/2) + 8(x -1/2))) * d * sinc(x). 

2. Spline window: 

win 
ghost 
WIN 

(<Po(x)) * d 

3. Gaussian window: 

win = /*e->..x
2 

ghost = nonzero 
WIN - e-1r2x2f>... 

d= 1,2, ... ; 

Obviously the window function <Po(x) is a special case for both the cosine and the spline 
window. 

2.5 Numerical Considerations 

A simple application of the cosine window to 

N-1 

f(x) = L o:e8(x- fjN) 
i=O 

would be as follows. Define 

win(x) = cosd(1r(x- r))</>o(x- r) . 1 1 wherer= 2 -N. 

Note that win(x) > 0 on (- 2}v, 1- 2}v ). Define 

go(x) = f(x)jwin(x) forxE(- 2}v,1- 2}v), 
N-1 

= L f3e8(x- f/N), 
i=O 

and consider a pit, g, by replication of go(x): 

00 

g(x) = L go(x + £), 
i=-oo 

00 

= 'E f3e8(x- f/N), f3NH = f3e. 
i=-oo 
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Interpolation Error IIFapp- FII/IIFII 
Traditional Cosine Window 

w(x) = cosd(1rx), d = 0, 1, ... , 5 
K d=O d=1 d=2 d=3 d=4 d=5 
2 1.88e- 01 1.42e- 01 5.76e- 01 1.33e + 01 3.73e+02 3.48e + 04 
4 1.14e- 01 5.49e- 02 1.81e- 01 1.80e + 00 1.19e + 01 3.71e + 02 
6 7.03e- 02 3.61e- 02 8.95e- 02 5.15e- 01 2.75e+ 00 4.64e + 01 
8 4.97e- 02 2.79e- 02 5.29e- 02 1.96e- 01 1.07e + 00 1.03e + 01 
10 4.39e- 02 2.14e- 02 3.54e- 02 8.54e- 02 5.20e- 01 3.03e +00 
12 4.05e- 02 1.59e- 02 2.59e- 02 3.91e- 02 2.84e- 01 1.03e + 00 
14 4.00e- 02 1.10e- 02 1.99e- 02 1.73e- 02 1.67e- 01 3.76e- 01 
16 3.95e- 02 7.05e- 03 1.56e- 02 6.58e- 03 1.03e- 01 1.35e- 01 
18 3.93e- 02 4.40e- 03 1.23e- 02 1.66e- 03 6.64e- 02 4.15e- 02 
20 3.75e- 02 4.02e- 03 9.51e- 03 2.50e- 03 4.35e- 02 7.08e- 03 

Table 2: Illustration of Cosine Window and Numerical Problem 

Finally, compute {Eo, E1. ... , EN-I} = DFT{,Bo, ,Lh, ... , .BN-I} (via FFT). And we have 

F(u) = J f(x)e-£27rxudx, 

= :F (g(x) · win(x)), 
00 

= L Em WIN(u- m), 
m=-oo 

where 

{ (
1 1 1 1 ) * d } WIN(u) = e-£27rru 2o(u + 2) + 2o(u- 2) * sinc(u) . 

For d = 2, for example, we have 

WIN ( u) = e -£27rru sin 7rU 1 . 
1r 2u(1- u2 ) 

Let us repeat the experiment in the previous section, using exactly the same set of 
randomly generated data. Since WIN(u) decays faster than sinc(u) we would expect the 
numbers of terms needed to achieve a comparable accuracy be fewer as d increases. We 
tabulate the accuracy achieved for various K and degree din Table 2. Note that the column 
for d = 0 corresponds to the straightforward sine interpolation. 

The results seem to be inconsistent with the expectation. One observes that for a fixed 
K, accuracy actually decreases with increasing d. In the rest of Section 2, we discuss the 
stability and accuracy issues related to the proposed framework. The result is a correct 
application of the framework that yields fast and accurate interpolation schemes. 

2.6 Stability Analysis 

An obvious culprit for the bad results obtained in Table 2 is the division: 

go(x) = f(x)fwin(x) for x E (- 2}v,1- 2}y), 
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Figure 2: Curbbing Magnification by Zero Padding 

N-1 
= :L f3to(x- i/N). 

i=O 

Clearly, since win(x) is smooth and vanishes outside ( - 2}y, 1- 2}v ), it must be small near 
0 and (N- 1)/N- the end points of f. Consequently, the norm of 9o(x) is much bigger 
than that of f. This means that 

Since F(x) is subsequently evaluated by an interpolation formula using {Bo, B1, ... , BN-d, 
large cancellation has to occur. In fact, it is easy to see that 

li{fJo, fJ1, · · · , fJN-1} ll2 
max --+ oo 

{ao,al,···,aN-d ll{ao,a1, · · · ,aN-1}112 
as N--+ oo. 

Once the problem is identified, a solution is straightforward. Define the fundamental 
period 9o of 9 so that its nonzero are kept away from the extreme ends of the window 
function win. This means that we have to lengthen the length of f from N to N + P. 
Figure 2.6 illustrates the idea. 

Algebraically, we define 

N+P-1 

fpa.d(x) = L af.o(x- f/(N + P)) 
i=O 

such that af. = 0 for i = N, N + 1, ... , N + P - 1 and 

f(x) =!pad (N: px). 

Note that because o(crx) = fu-ro(x), 

I N 
ai = N +Pap_ for i = 0, 1, ... , N - 1. 
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Now, 

:F(f)(u) = N; p :F(fpad) ( N; p u) 

and thus it suffices to consider calculating :F(fpad)(u) at arbitrary u. We can apply the 
framework by positioning and scaling the window function to have a center and support 
that correspond to f pad: 

where 

. . (X- T) Wlnscale = Win -a-

N-1 
T = --.,...--..,.. 

2(N +P)' 
N+2P 

and a= N +P, 

and win is simply the cosine window defined previously. We define 

and 

The magnification 

is controlled. Finally 

as before. 

9o(x) = !pad (x)/winscale(x) 
N+P-1 

= L (3£8(x- fj(N + P)), 
£=0 

00 

g(x) = L go(x + £), 
f.=-oo 

00 

= L (3£8(x- fj(N + P)). 
£=-oo 

li{f3b, f3L 0 0 0 'f3!v-l}lb < 0 -1 ( N- 1 ) 
ll{ao,aJ., ... ,a'N-1}112- wmscale 2(N+P) 

00 

:F(fpad)(u) = L s:n WIN(u- m)" 
m=-oo 

The addition cost of padding P zeros involve (1) extra storage requirement of N + P 
instead of N elements for {Eo, B 1, ... , BN+P-I} and (2) the cost in computing it, that is, 
(N + P) log(N + P) as opposed to N log N, assuming the FFT algorithm is used. 

We repeat the same experiment with the cosine window, always padding an amount of 
zeros so that the worst case magnification is bounded by 10: 

II all 
mgx llf311 ::; 10" 

Table 3 summarizes the result in terms of accuracy achieved as well as the amount of 
zeropadding (N + P)/N needed for various degree d. 

Although we use the cosine window as an example, the discussion is clearly applicable to 
all other window functions that fit the framework. Magnification factors can be calculated 
rather easily and an amount of zero padding (as a function of the original length) can be 
determined beforehand. 
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Interpolation Error IIFapp - FII/IIFII 
Cosine Window - Stable Version K = 10 

w(x) = cosd(1rx), d = 0, 1, ... , 5 
K d=O d=1 d=2 d=3 d=4 d=5 
2 1.88e- 01 4.34e -02 1.90e- 02 1.57e- 02 2.48e- 02 6.14e- 02 
4 1.14e- 01 2.99e- 02 5.44e- 03 1.66e- 03 6.87e- 04 2.63e- 04 
6 7.03e- 02 1.35e- 02 1.35e- 03 3.00e- 04 8.87e- 05 2.56e- 05 
8 4.97e- 02 6.17e-03 7.25e- 04 1.05e- 04 2.09e- 05 5.31e- 06 
10 4.39e- 02 5.39e- 03 3.68e- 04 5.72e- 05 7.47e- 06 1.76e- 06 
12 4.05e- 02 4.55e- 03 2.15e- 04 2.50e- 05 3.69e- 06 6.42e- 07 
14 4.00e- 02 3.02e- 03 1.51e- 04 1.18e- 05 1.93e- 06 2.55e- 07 
16 3.95e- 02 1.89e- 03 1.05e- 04 8.93e- 06 9.99e- 07 1.24e- 07 
18 3.93e- 02 1.84e- 03 7.55e- 05 5.39e- 06 5.35e- 07 6.19e- 08 
20 3.75e- 02 1.96e- 03 5.66e- 05 3.31e- 06 2.92e- 07 3.47e- 08 
(N+P)/N 1.0 1.1 1.2 1.3 1.5 1.5 

Table 3: Illustration of Numerically Stable Cosine Window 

2. 7 Error Analysis 

Recall that our framework is 
fit = pit · win - ghost, 

or 
ffit(x) = 9pit(x) · win(x)- ghost(x). 

The interpolation formula is an approximation of 

F(gpit(x) · win(x)) = PIT* WIN, 
mo+K 

::::::; L Bm WIN ( u - m) + truncation error, 
m=mo-K 

K 

::::::; L Bmo+m WIN(u- (mo + m)) +truncation error. 
m=-K 

In other words, we compute with some truncation error the Fourier transform of a possibly 
slightly different function, f +ghost, thus further incurring a backward error. 

2.7.1 Truncation Error· 

The truncation error can be estimated rather easily if we have an asymptotic rate of decay 
for WIN: 

WIN(u) = O(r(u)) as lui --+ oo. 

L Bmo+m WIN(u- (mo + m)) 
lmi>K 

< MIIBIIoo L r(m) 
lmi>K 

13 



where K is the magnification 
II Bib 

K, = IIAII2. 
The factor IIBIIoo/IIBib is hard to avoid when using an interpolation formula obtained from 
truncation of an infinite seris. In the extreme case, there can be one coefficient Bi that 
contains most of the weight of one period {Eo, B1, ... , BN+P-1}· 

2.7.2 Backward Error 

Backward error occurs whenever the window function win does not have compact support 
in the domain space off. The only window we propose that is of this type is the Gaussian 
window: 

win(x) = f'§e->.x2
• 

Since win does not have a finite support contained in an interval, we cannot achieve the 
representation 

!fit = 9pit · win 

as the periodic impulse train 9pit has infinite support. Hence we must have 

9pit · win = !fit + ghost, 

where 
ghost= -gpit · winln' 

with 
n ={xI 9pit. win(x) f; 0 and X rt. domain of f.} 

This is illustrated by Figure 3. 
The norm II ghost II can be estimated beforehand in terms of f, win, and amount of zero 

padding. (See the next section for more details.) We first present in Table 4 the result on 
the same set of data. 

For a fixed ghost error level, accuracy improves as K increases until the limit of ghost 
error is reached, thus giving the "triangular" nature of the table. Compared with Table 3, 
for example, a Gaussian window with K = 6 yields an accuracy comparable to that of a 
degree 4 cosine window using K = 10. It is quite clear that for high accuracy, Gaussian 
window is an excellent choice. 

3 Framework with Gaussian Window 

Because of the smoothness of the Gaussian function, it should be an excellent choice if high 
accuracy is desired. We discuss in this section the choice of). (with respect to zero padding 
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1.5 

g(x) · win>.(x) = 

0.5 "GHOSTS" introuducec:i "GHOSTS" introuduced 

••• ••• 
0 ~-~3~----~2~--~--,~~~0~~~,~--~2~----3~-

Figure 3: Exaggerated Ghost Error as an Illustration 

Interpolation Error IIFapp- FII/IIFII 
Gaussian Window - Stable Version "' = 10 

K j=4 
3 3.83e- 03 
4 1.21e- 04 
5 2.45e- 05 
6 2.52e- 05 
7 
8 
9 
10 
11 
12 
13 
14 

€ghost = 10-i, j = 4,6, ... , 12 
j=6 

1.38e- 02 
7.82e- 04 
2.79e- 05 
3.93e- 07 
2.52e- 07 
2.51e- 07 

j=8 
2.59e- 02 
2.49e- 03 
1.45e- 04 
4.44e- 06 
9.86e- 08 
2.45e- 09 
1.96e- 09 
1.95e- 09 

j = 10 
3.86e- 02 
5.57e- 03 
4.62e- 04 
2.72e- 05 
8.60e- 07 
2.18e- 08 
2.78e -10 
1.89e -11 
1.81e -11 
1.81e -11 

j = 12 
5.2991e- 02 
1.1460e- 02 
1.0903e- 03 
9.3324e- 05 
4.8672e- 06 
1.6581e- 07 
3.7745e- 09 
6.1975e- 11 
7.0032e -13 
1.5873e- 13 
1.6004e- 13 
1.6005e- 13 

Table 4: Illustration of Numerically Stable Gaussian Window 
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needed and the ghost error) and the actual computation of the interpolation formula. In 
this section, we will use the notation 

3.1 Determination of A 

Since interpolation given by truncation of the infinite sum is of the form 

00 

F(u) = L AkWIN_x(u- k), 
k=-oo 

where WIN_x(u) = e-1r
2

u
2
/-X, we would like to have>.> 0 to be as small as possible so that 

the decay ofWIN_x(u) is rapid. Picking a small>., however, would render the decay ofwin.x 
(in the physical/time domain) too slow so that the ghost introduced would be large, which 
in turn limits the ultimate accuracy of how well the infinite sum approximate the Fourier 
series in question. This dilemma is a manifestation of the uncertainty principle. Finally, 
there is a third consideration, namely, magnification and the zero padding which curbs it. 
We now discuss these relationships. 

Up to a scaling, we can assume without loss of generality that the data of !fit lives on 
[-1,1], 'Y < 1/2; and that 

ffit(x) = 9pit(x) · win_x(x) 

where 9pit(x) has period 1, that is, one period lives on [-1/2, 1/2) and 

ffit(x) = 9pit(x) · win_x(x), for x E [-1/2, 1/2), 

indicating that 9pit = 0 on [-1/2, -'Y) and ('Y, 1/2), and the amount of zero padding is 
1-=r21 N. The magnification for this amount of zero padding is 

"'= win.x(O) = e.x"Y2. 
win.x('Y) 

Thus, if "'desired denotes a desired bound on magnification, we have the first constraint. 

I Constraint 1: 

A"Y2 
e ::; K.desired · 

In this setting, 
!fit= 9pit(x) · win.x(x)- ghost(x), 

where, for lxl ::; 1/2 and k = ±1, ±2, ... , 

ghost(k + x) = 9pit(k + x) · win_x(k + x) - ffit(k + x), 

= ffit(x) . ( ) 
. ( ) Wlll_x k + X • Wln_x X 
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Because of the exponential decay, the ghost function is dominated by 

ffit(x) . ( ) 
. ( )Will). 1 +X 

Will). X 
ixl:::::; 1/2. 

The highest value is bounded by 

Thus, if we let Eultimate denote the smallest error ever achievable in the presence of this 
ghost error function, we have the next constraint. 

I Constraint 2: 

Finally, there is an extra constraint on Eultimate· Clearly, the ultimate accuracy cannot 
exceed than the underlying arithmetic accuracy of the computer. Moreover, since a magni­
fication of 10k means that in general there can be k digits of cancellation in the summation 
process, we arrive at the third constraint. 

Constraint 3: 

ll:desiredEmachine :::::; Eu!timate· 

In short, actual uses of a Gaussian window require a choice of). as well as 1, ll:desired, 
and Eultimate that are consistent. We find the following two procedures workable in practice. 
vspace0.1in Procedure 1: When the choice of 1 is flexible. 

1. Start from a parameter Eultimate > Emachine and decide on a moderate ll:desired satisfying 

ll:desired :::::; Eultimate/Emachine· 

For example, 
ll:desired = min(103

, €ultimate/ €machine)· 

2. Pick 1 that satisfies Constraints 1 and 2: 

and 
->.(1- )2 >.-y2 EuJtimate 2: e 'Y e =>). 2: llog(Eultimate)l/(1 - 21)· 

It is easy to see that a unique >.0 E (0, 1/2) exists such that 

log ll:desired I log Eultimate I = -=--=--==:.:..:..:. 16 1- 2/o 
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Moreover, for all 0 < 'Y ~ 'Yo, 

log Kdesired > I log Euitimate I . 
"{2 - 1- 2"{ 

Note that the zero padding amount, expressed as a factor of the original data length, 
is (1/2"!) - 1. In general, increasing zero padding increases convergence rate, albeit 
at the expense of increase storage and a slightly higher initialization rate. Hence we 
can pick 'Y to be, for example, 

'Y = min(1/(2 x 1.1),"fo) 

to ensure a zero padding of at least 10%. 

3. Finally, pick A to be the smallest possible choice: 

A= llogEuitimatel/(1- 2"{). 

Procedure 2: When 'Y is prescribed. 
This is the case when an amount of zero padding is prescribed, usually due to memory 

constraints. 

1. Pick Euitimate to suit the application and define Ko by 

logKo 

--:r = 
I log Euitimate I 

1- 2"{ 

If Ko ~ EuJtimate/Emachine, then we can pick any Kdesired in the range (Ko, Euitimate/Emachine)· 
From Kdesired, we can define A by 

A = log Kdesired 
2 ' 'Y 

and this ends the procedure. 

2. Otherwise, if Ko > Euitimate/ Emachine, the original choice of Euitimate is unachievable for 
the prescribed 'Y. We must redefine a less stringent EuJtimate by 

I log EuJtimatel log EuJtimate- log Emachine = ~~~--~~~~~~ 
1- 2"{ 'Y2 

From EuJtimate' define Kdesired and A by 

Kdesired €ultimate/ Emachine, 

A = log Kdesired / 'Y2
. 
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3.2 Computing the interpolation 

The form of interpolation is 

mo+K 
Fapp(u) = L AkWIN>.(u- k), 

k=mo-K 
K 

= L Amo+kWIN>.(u- (mo + k)), 

where u = ko + ~' 1~1:::; 1/2. Thus, 

k=-K 
K 

L Amo+kWIN>.(~- k), 
k=-K 

-1 K 
Fapp(u) = L Amo+k WIN>.(~- k) + Am0 WIN>.(~)+ L Amo+k WIN>.(~- k), 

~-K ~1 

K K 
= L Amo-k WIN>.(~+ k) + Am0 WIN>.(~)+ L Amo+k WIN>.(~- k), 

k=1 k=1 
K K 

- L Amo-ke-~-te ( e-2~-t~) k e-~-tkz + Amoe-~-'e + L Amo+ke-~-te ( e2~-'~) k e-~-tkz' 
k=1 k=1 

where J.L = 1r2 / >. is independent of~· Once >. is determined, e-~-'k2 can be computed once 
fork= 1, 2, ... , K, independent of u (and~). Then, Fapp is in the form 

where x = e-2~ andy= 1/x: Hence Fapp(u) can be evaluated by 2 exponential evaluations 
and the cost of two simple length K polynomial evaluation by, say, Horner's recurrence. 

4 Higher Dimension and Inverse Transforms 

The previous framework is easily generalizable to higher dimension. Typically, we will use 
separable window functions, say, 

win(x, y, z) = win1(x)win2(y)win3(y). 

Then, the framework becomes 

ffit(x,y,z) = 9pit(x,y,z) · win(x,y,z)- ghost(x,y,z); 

:F(ffit)(u, v, w) = :F(gpit ·win)- :F(ghost), 

~ Gpit(u,v,w) * WIN(u,v,w), 

~ Gpit(u, v, w) * (WIN1 (u)WIN2(v)WIN3(w)), 

~ interpolation formula. 
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Hence, 

F(u,v,w) ~ L A£,j,kWIN(u- £)WIN(v- j)WIN(w- k). 
/l(i,j,k )-( io ,jo,ko )II S.K 

Applying the framework to series of the form 

F(u) = L A.eet21l-£.u 
leindex 

!Index!< oo 

is straightforward. One possibility is to note that F(u) = H(u) where 

H(u) = L A.ee-t21l"l·x 
iEindex 

!Index! < oo. 

Another possibility is to use the framework for inverse Fourier transform 

F(u) = j ( L A.e8(x- .e)) et21l"u·xdx, 
iEindex 

and 
!fit = 9pit · win - ghost 

implies 
F-1 Ufit) = F-1(9pit) * :F-1(win)- F-1 (ghost), 

and :F-1 (gpit) * :F-1 (win) immediately yields an interpolation formula through truncation. 

5 Comparison with Dutt /Rokhlin 

As alluded to in the introduction, the method by Dutt and Rokhlin (5] can be derived from 
our framework as a specific instance. In this section, we work out just enough details to 
illustrate this point. · 

The key lemma in (5] from which the main theorem and all algorithms are derived is 
the approximation of the form 

etcx- ebx2 L Pketkx < bound(b, m), 
integer k near c 

where m ~ 2 is an integer, cis any real number, x can be anywhere in [-rr/m,rr/m], and 

P 
= _l_e-(c-k)2 /4b. 

k 2v'1rb 

We show that this is exactly a case of computing the 1-term Fourier series etcx (for a fixed 
value x) at arbitrary c using our framework with a gaussian window. The scalings employed 
in (5] are more naturally linked to the following definition of Fourier transforms: 
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Forward: G ( w) = F(g)(w) = J g(u)e-wwdu, 
Inverse: g(u) = .r-1 (G)(u) = 2~ f G(w)etwudw. 

For any x E (-1r jm, 1r /m], consider the finite impulse train 

F(w) = 2m5(w- x). 

Thus .r-1(F)(u) = ewx. Next, consider the window function 

WINb(w) = e-bw
2

• 

and the periodic impulse train defined by repricating 

1 
WINb(x)F(w) 

to be 21r periodic, thus 

We clearly have the approximation 

F(w):::::: G(w) · WINb(w). 

Hence 

Now, 

and 

Hence, we have the approximation 

F(u) :::::: 

21 



The correspondence is clear. The Gaussian functions [5] that show up as ebx
2 

and Pk 

are the window function in the time and frequency domains. Hence we have a framework 
to generate approximations of the form 

1 
etcx ::::::: L Pketkx 

WINb(x) 

where Pk = .r-1(WIN)(c- k). The parameter m in [5] corresponds to zeropadding since 
the finite impulse train lives on [-1r-jm, 1r jm] and the periodic impulse train has period 21r. 
In principle, m needs not be an integer; although the description in [5] seems to require 
that, it can be easily seen that the algorithms in [5] can work as long as mN is an integer. 

We like to emphasize the important relationships of the numerical stability, zeropadding, 
and ultimate accuracy. The work in [5] suggested a particular choice for b and zeropadding 
(m = 2 corresponds to zeropadding to double the data length) and the number of terms 
used. The magnification effect (for example in Step 1 of Algorithm 2) however, is not 
discussed. 

We have been focusing on the problem of evaluating Fourier series. Nevertheless, our 
framework is applicable to all the problems that [5] addresses in exactly the same way as 
shown in [5]. 

6 Numerical and Timing Experiments 

This section illustrates the correctness and complexity of the algorithm by a number of 
examples based on randomly generated Fourier series (that is the coefficients) evaluated 
at randomly generated points in the Fourier series domain. All results here are based 
on the Gaussian window as we consider this tool to be a most powerful one for general 
purposes where an accuracy comparable to the machine precision is sought. All evaluation 
are compared with direct evaluation and their difference in numerical values are around 
10-13 . We therefore only tab~late the timing results below. All experiments are carried out 
on a single node (DEC Alpha EV5) of the Cray T3E-900 platform of the National Energy 
Research Scientific Computing Center. 

Figure 4 shows that time required to evaluating a 1-D length N Fourier series at M 
points. The value of N varies from 26 to 212 and the value of M varies from 1000 to 5000. 
The constant spacing that confirms the O(M) part of the complexity. The growth of time 
with N also follows a typical trend for growth of time required for FFT, which is usually 
not a simple N log(N). The reason is that as soon as the length of the data no longer fit in 
cache, memory access time becomes dominant, breaking the N log(N) trend. 

To get an idea of how well this method works, we compare the time required for a direct 
evaluation and express the comparison by the base-2 logarithm of the ratio TdirectfTrast· 
Figure 5 shows the result based on the same set of random test problems used in Figure 4. 
Observe that for each N, the ratio of the times tends to a constant as M grows. This 
confirms our understanding that the dominant cost in both methods are O(M) as M be­
comes large. The almost equal spacing in the log2 scale is a reflection that the cost of direct 
evaluation is O(NM). Moreover, if that cost is roughly O(K1NM), the the graph suggests 
that the cost of our fast method is O(N log N) + 0(16K1M). 
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Time Required for 1-D Fourier Series Evaluation 
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Figure 5: Comparison with Direct Evaluation 
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Initialization vs. Evaluation Cost: Length N 1-D Fourier Series at N Points 
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Figure 6: Initialization Cost vs. Evaluation Cost 

Next, we would like to get an idea of the cost of irregularity. We compare the initializa­
tion time, which is an FFT of roughly double the length N, to the time for the evaluation 
at N random points in the domain. Figure 6 shows that this ratio is moderate and suggests 
that it does not grow with N. 

Finally, we present a 2-D .example. Here a randomly generated N-by-N Fourier series 
is evaluated at M randomly generated points (xj, Yj), j = 1, 2, ... , M. Note that these 
points are totally irregular, as opposed to points of the form (xi,Yj); i = 1,2, ... ,Mx, and 
j = 1, 2, ... , Ny. Figure 7 is in the same spirit as Figure 4 and Figure 8 is in the same 
spirit as Figure 5. Note in particular that Figure 8 does show the trend of the cost of direct 
evaluation to be O(N2 ) more expensive than our fast algorithm. For larger N, however, M 
probably had to be increased to be comparable to N 2 for that trend to be obvious. 

7 Conclusion 

We have presented a framework which leads to a number of fast methods for evaluation of 
Fourier series at arbitrary places. These methods offer tradeoffs between accuracy, speed, 
and memory requirements and are thus useful in accommodating different kinds of applica­
tions. 

We see that there are at least two routes of future work that are worth pursuing. First, 
this algorithm is shown to be a generalization of the method proposed in [5]. Because 
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Time Required for 2-D, N-by-N Fourier Series Evaluation 
4.5r-------.-------.-------~------.-------.-------~------,-------, 

4 

3.5 

··--·------·---·-·---:: 
-··-·---·--·------·-·---;:;12 

~ 1.5 

F l_ __________________________________ ~N~-::25~6~----------------------------J 

L_ ____________________ ~============~N===12=8==============================4 0.5[ 

N 64 
oL-----~~----~------~------~------~------~------L-----~ 1000 1500 2000 2500 3000 3500 4000 4500 5000 

M is the number of points evaluated 

Figure 7: Complexity of Algorithm 

2-D N-by-N Fourier Series, Ratio of Direct vs. Fast Evaluation 
Br-------r------.-------,------~------~-------r-------r------~ 

7 ---------·-----N=256 ---------....-----
jj 6 __ ,......,~_,. 

~ ______ ................ -~128 
-g 5 v------ .. 
i:5 
Cl) 

E 
F 

"' E4L----

3 

N =64 

N=32 

1~Loo-------15~o-o------2~o~o-o ______ 2_so~o------3ooo~------3-5~o-o ______ 4_o~oo-------45~oo-------5__Jooo 
Number of Points, M, Evaluated 
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of the framework nature of our method, a software package that allows the user to chose 
from a number of windowing functions based on the need for accuracy and the constraints 
on memory usage would be a good tool. Moreover, because of the availability of different 
window functions, some with lower accuracy but faster computation, the inverse problems 
considered in [5) and shown to be better solved by multipole methods may get the benefit 
of preconditioners produced by lower accuracy windows. 

Second, it is well-known that performing Discrete Fourier Transform for a general length 
N is still somewhat unsettled. In particular, when N is a large prime value, there are really 
only two practical choices for a O(NlogN) algorithm. The Rader factorization and the 
chirp-z transform. The former seems to be difficult to implement for general N [4]. The 
latter, while general, requires the cost of three FFT's of length at least double the original 
length [11]. Consequently, the method here provides a viable alternative. Given a length 
N, we can represent N as a sum of smaller arbitrary lengths, each of which is "friendly" 
to traditional FFT algorithms. Thus N = L:j=1 Nj. We then use our method to compute 
the each of the k Fourier series at the N points corresponding to the original Discrete 
Fourier Transform. The total cost is O(kN) + L:j=1 Nj log(Nj)· Clearly, we can make this 
comparable to N log(N), by for example, picking N1 to be the largest power of 2 that is 
smaller than N; N2 to be the largest power of 2 smaller than N- N1, etc. The key to 
success lies in how efficiently we can implement the interpolation scheme. 

References 

[1] John P. Boyd, A Fast Algorithm for Chebyshev, Fourier, and Sine Interpolation onto 
an Irregular Grid, Journal of Computational Physics, v103, pp. 243-257, 1992. 

[2) John P. Boyd, Multipole Expansions and Pseudospectral Cardinal Functions: A New 
Generalization of the Fast Fourier Transform, Journal of Computational Physics, v103, 
pp. 184-186, 1992. 

[3] E. Oran Brigham, The Fast Fourier Transform and Its Applications, Prentice Hall, 
New Jersey, 1988. 

[4) C. Sidney Burrus and Ivan W. Selesnick, Automatic Generation of Prime Length FFT 
Programs, IEEE Transactions on Signal Processing, v 44, no.1, January 1996, pp. 
14-24. 

[5) A. Dutt and V. Rokhlin, Fast Fourier Transforms for Nonequispaced Data, SIAM 
Journal on Scientific Computing, v 14, no.6, November 1993, pp. 1368-1393. 

[6) A. Dutt and V. Rokhlin, Fast Fourier Transforms for Nonequispaced Data, II, Applied 
and Computational Harmonic Analysis, v 2, no.1, January 1995, pp. 85-100. 

[7) A. Dutt and M. Gu and V. Rokhlin, Fast Algorithms for Polynomial Interpolation, 
Integration, and Differentiation, SIAM Journal on Numerical Analysis, v33, no.5, Oc­
tober 1996, pp. 1689-1711. 

[8) Itzhak Katznelson, An Introduction to Harmonic Analysis, 2nd edition, Dover, New 
York, 1976. 

26 



[9] Athanasios Papoulis, The Fourier Integral and its Applications, 2nd edition, McGraw­
Hill, New York, 1984. 

[10] P. Stpiczynski and M. Paprzycki, Parallel Algorithms for Finding Trigonometric Sums, 
Proceedings of the Seventh SIAM Conference on Parallel Processing for Scientific Com­
puting, SIAM, Philadelphia, pp. 291-292, 1995. 

[11] Charles Van Loan, Computational Frameworks for the Fast Fourier Transform, SIAM, 
Philadelphia, 1992. 

27 



@Ji::J;'!I"''stiJ ~ ~F.Ij31~13i$ @lS!J;:J:igS!J~ ~, ~ 
~~~~~~.,~@«)~~ 

'. 




