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ABSTRACT OF THE DISSERTATION 

 

Benchmarking Statistical and Machine-Learning Methods for Single-cell RNA 

Sequencing Data 

 

by 

 

Nan Xi 

Doctor of Philosophy in Statistics 

University of California, Los Angeles, 2021 

Professor Jingyi Li, Chair 

 

The large-scale, high-dimensional, and sparse single-cell RNA sequencing (scRNA-seq) 

data have raised great challenges in the pipeline of data analysis. A large number of 

statistical and machine learning methods have been developed to analyze scRNA-seq 

data and answer related scientific questions. Although different methods claim 

advantages in certain circumstances, it is difficult for users to select appropriate methods 

for their analysis tasks. Benchmark studies aim to provide recommendations for method 

selection based on an objective, accurate, and comprehensive comparison among 

cutting-edge methods. They can also offer suggestions for further methodological 

development through massive evaluations conducted on real data. 

In  Chapter 2, we conduct the first, systematic benchmark study of nine cutting-edge 

computational doublet-detection methods. In scRNA-seq, doublets form when two cells 
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are encapsulated into one reaction volume by chance. The existence of doublets, which 

appear as but are not real cells, is a key confounder in scRNA-seq data analysis. 

Computational methods have been developed to detect doublets in scRNA-seq data; 

however, the scRNA-seq field lacks a comprehensive benchmarking of these methods, 

making it difficult for researchers to choose an appropriate method for their specific 

analysis needs. Our benchmark study compares doublet-detection methods in terms of 

their detection accuracy under various experimental settings, impacts on downstream 

analyses, and computational efficiency. Our results show that existing methods exhibited 

diverse performance and distinct advantages in different aspects.  

In Chapter 3, we develop an R package DoubletCollection to integrate the installation 

and execution of different doublet-detection methods. Traditional benchmark studies can 

be quickly out-of-date due to their static design and the rapid growth of available methods. 

DoubletCollection addresses this issue in benchmarking doublet-detection methods for 

scRNA-seq data. DoubletCollection provides a unified interface to perform and visualize 

downstream analysis after doublet-detection. Additionally, we created a protocol using 

DoubletCollection to execute and benchmark doublet-detection methods. This protocol 

can automatically accommodate new doublet-detection methods in the fast-growing 

scRNA-seq field. 

In Chapter 4, we conduct the first comprehensive empirical study to explore the best 

modeling strategy for autoencoder-based imputation methods specific to scRNA-seq data. 

The autoencoder-based imputation method is a family of promising methods to denoise 

sparse scRNA-seq data; however, the design of autoencoders has not been formally 

discussed in the literature. Current autoencoder-based imputation methods either borrow 
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the practice from other fields or design the model on an ad hoc basis. We find that the 

method performance is sensitive to the key hyperparameter of autoencoders, including 

architecture, activation function, and regularization. Their optimal settings on scRNA-seq 

are largely different from those on other data types. Our results emphasize the importance 

of exploring hyperparameter space in such complex and flexible methods. Our work also 

points out the future direction of improving current methods. 
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CHAPTER 1 

Introduction 

 

Single-cell RNA sequencing (scRNA-seq) is a family of emerging sequencing 

technologies that have revolutionized biomedical sciences by revealing genome-wide 

gene expression levels within each of thousands to millions of individual cells 1–3. Since 

its invention, scRNA-seq has become an essential experimental approach to investigate 

cell-to-cell heterogeneity, distinguish cell types and subtypes, identify cell-type-specific 

genes, and reveal cellular dynamic processes 4,5. There are two major experimental 

techniques of scRNA-seq among many protocols and commercial platforms. The first 

approach is droplet microfluidics and well-based protocols 6,7. This approach distributes 

a cell suspension into reaction volumes (droplets or wells) to hopefully encapsulate one 

cell per volume, and then mRNA molecules in each volume are labeled by a unique 

droplet barcode. Droplet microfluidics and well-based protocols have gained popularity 

because of their high throughput, low cost per cell, and ability to detect unique mRNA 

transcripts via unique molecular identifiers (UMIs) 8,9. The second approach is plated-

based protocol 10. This approach sequences relatively small amounts of cells but with 

much deeper sequencing depths than droplet- and well-based protocols 11,12. 

https://paperpile.com/c/Kxhkna/W5oMB+4mRPu+yRaw3
https://paperpile.com/c/Kxhkna/rusTj+AkF57
https://paperpile.com/c/Kxhkna/IolF+i1Gl
https://paperpile.com/c/Kxhkna/87WPm+79DlT
https://paperpile.com/c/Kxhkna/iezC
https://paperpile.com/c/Kxhkna/UtAa+pIzH
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The recent development of experimental techniques in both sequencing approaches 

has significantly reduced the cost of scRNA-seq. As a result, many large-scale scRNA-

seq datasets have been generated to answer a wide range of biological questions 13,14. 

Each of those datasets may contain up to millions of cells and tens of thousands of genes 

per cell. The effective analysis of such large datasets requires a standardized pipeline, 

including quality control, normalization, batch effect correction, data integration, 

imputation and denoising, future selection, dimension reduction, cell clustering, 

differentially expressed (DE) gene analysis, cell trajectory inference, and visualization 15. 

The diverse datasets, biological samples, and scientific questions in those analysis tasks 

post a great challenge but also an opportunity for computationalists to develop novel 

statistical and machine learning methods. At the time of writing, more than 900 

computational methods are available for scRNA-seq data analysis, and many more are 

under development 16. Researchers in the scRNA-seq community frequently face a 

choice among several, if not dozens of, different methods in one single data analysis task.  

Benchmark studies aim to provide practitioners a clear guideline to choose 

appropriate computational methods for their specific scRNA-seq data analysis. A well-

designed benchmark study systematically compares the performance of different 

methods based on real or synthetic scRNA-seq data with ground-truth biological labels. 

It should also explore the impacts of different methods on the downstream scRNA-seq 

data analysis. A benchmark study must be informative, comprehensive, accurate, 

unbiased, up-to-date, and reproducible. Based on those principles, we conducted the first, 

systematic benchmark study of computational doublet-detection methods for scRNA-seq 

data. We compared doublet-detection methods in terms of their detection accuracy under 

https://paperpile.com/c/Kxhkna/qZ3M5+TjAh
https://paperpile.com/c/Kxhkna/cH7D
https://paperpile.com/c/Kxhkna/DKL0N
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various experimental settings, impacts on downstream analyses, and computational 

efficiency. Our results show that existing methods exhibit diverse performance and 

distinct advantages in different aspects. Our study provides much-needed guidance to 

researchers in choosing appropriate doublet-detection methods for scRNA-seq data 

analysis. Our results also point out directions for further methodological development and 

improvement in computational doublet detection, an active area of bioinformatics 

research 17.  

The scRNA-seq community has conducted a number of well-designed benchmark 

studies on the aforementioned pipeline of scRNA-seq data analysis 18–23. These studies 

are valuable resources that assist researchers in selecting appropriate computational 

methods. However, most of those benchmark studies are static, which makes them easily 

out-of-data due to the rapid growth of computational methods in the scRNA-seq field 24. 

The recommendations from those studies need constant updating to catch up with the 

state-of-the-art status in method development. Because of the static design, updating 

benchmark studies is time-consuming and tedious, especially for experimentalists who 

lack programming skills. To address this issue for the doublet-detection benchmark study, 

we developed a statistical software DoubletCollection to automate the benchmark of 

doublet detection by integrating the installation and execution of cutting-edge doublet-

detection methods 25. DoubletCollection also provides a unified interface to perform and 

visualize downstream analysis after doublet-detection. DoubletCollection can 

automatically accommodate new doublet-detection methods and datasets in the fast-

growing scRNA-seq field. Additionally, we created a protocol on how to use 

DoubletCollection in real-world applications. Our protocol defines a new paradigm to 

https://paperpile.com/c/Kxhkna/R8doO
https://paperpile.com/c/Kxhkna/uL0KQ+b8Cza+3HTTe+T594+W30N+zU6J
https://paperpile.com/c/Kxhkna/mbOqw
https://paperpile.com/c/Kxhkna/hfGq
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execute and benchmark different doublet-detection methods, fine-tune their 

hyperparameters, and replicate the result in a transparent way. 

The essential component of scRNA-seq data analysis is the gene expression matrix, 

in which each row represents one cell and each column represents one gene (or vice 

versa). ScRNA-seq data matrices are typically very sparse — the proportion of zero 

entries ranges from ~50% to ~95% 5. Several factors contribute to such a high zero rate, 

including shallow sequencing depth (especially in droplet- and well-based protocols), the 

random noise introduced in the experimental process, and the biological absence of 

certain gene expressions 26. The high sparsity of scRNA-seq data poses a great challenge 

to various downstream analyses due to the low signal-noise ratio 22. The scRNA-seq 

community tries to address this issue by developing imputation methods to fill up zeros in 

data matrices. Currently, there are three broad categories of scRNA-seq imputation 

methods. The first is the model-based method that uses probabilistic models to identify 

and impute zeros introduced by technical variability 27,28. The second is the data 

smoothing method that adjusts all expression values in one cell by using similar cells’ 

gene expression 29,30. The third is the data-reconstruction method that uses deep learning 

to obtain a latent space representation of the cells and then reconstructs a dense data 

matrix from the latent space representation 31,32. Among more than 70 currently available 

imputation methods, autoencoder-based data-reconstruction methods have raised large 

attention due to their superior performance in several benchmark studies 22,33. 

Despite their success in some applications, there is no formal discussion on the design 

of autoencoders in those imputation methods 22. Current methods either borrow the 

experience learned from computer vision study or set up the autoencoder on an ad hoc 

https://paperpile.com/c/Kxhkna/AkF57
https://paperpile.com/c/Kxhkna/5u0g
https://paperpile.com/c/Kxhkna/W30N
https://paperpile.com/c/Kxhkna/DijG+GzKn3
https://paperpile.com/c/Kxhkna/wsAOk+eDny
https://paperpile.com/c/Kxhkna/5nLmp+QN3r
https://paperpile.com/c/Kxhkna/W30N+b3EH
https://paperpile.com/c/Kxhkna/W30N
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basis, which potentially limits the imputation performance on scRNA-seq data 24,34. To 

address this issue, we conducted the first empirical study to explore the best modeling 

strategies in the design of autoencoders for imputing sparse scRNA-seq data. Specifically, 

we adjusted the three fundamental design aspects of autoencoders — architecture, 

activation function, and regularization, and examined their impacts on the overall 

imputation accuracy, downstream cell clustering, and DE gene analysis. Based on 

numerical experiments on large-scale real and synthetic scRNA-seq datasets, we find 

that different from current practice using shallow and wide neural networks with ReLU 

activation functions 35, deep and narrow neural works with sigmoid or tanh activation 

functions 36 provide better imputation accuracy, cell clustering, and DE gene analysis. In 

terms of regularization, weight decay 37 significantly improves the cell clustering and DE 

gene analysis, while dropout 38 has moderate improvement on the overall imputation 

accuracy. Our findings suggest a unique modeling strategy suitable for scRNA-seq data. 

Our results also point out directions for future methodological development and 

hyperparameter tuning for currently available methods. 

Our work has three broad impacts on the field of scRNA-seq data analysis. First, our 

benchmark study is the first one that provides practitioners an objective, comprehensive, 

and state-of-the-art recommendation on the selection of computational doublet-detection 

methods. Second, our statistical software DoubletCollection is the first framework that 

standardizes the installation, execution, and benchmark of cutting-edge doublet-detection 

methods. Third, we find that the autoencoder requires a unique design for imputing 

scRNA-seq data, which is largely different from its applications in other fields. This 

dissertation is organized in the following order: In chapter 2, we introduce benchmarking 

https://paperpile.com/c/Kxhkna/mbOqw+XWqS
https://paperpile.com/c/Kxhkna/j9Di
https://paperpile.com/c/Kxhkna/CLzt
https://paperpile.com/c/Kxhkna/PwYP
https://paperpile.com/c/Kxhkna/xSEY
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computational doublet-detection methods for scRNA-seq data; In chapter 3, we introduce 

statistical software DoubletCollection and the protocol for benchmarking computational 

doublet-detection methods in scRNA-seq data analysis; In chapter 4, we introduce 

designing deep autoencoders to denoise scRNA-seq Data; In chapter 5, we summarize 

our work and discuss some future research questions. 
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CHAPTER 2 

 

Benchmarking Computational Doublet-Detection 

Methods for Single-cell RNA Sequencing Data 

 

2.1 Introduction 

In scRNA-seq, two major experimental protocols — droplet microfluidics and well-based 

protocols — distribute a cell suspension into reaction volumes (droplets or wells) to 

hopefully encapsulate one cell per volume (i.e., a singlet), and then mRNA molecules in 

each volume are labeled by a unique droplet barcode. For simplicity, we will refer to a 

reaction volume as a droplet in the following text. During the distribution step, however, 

one droplet may encapsulate more than one cell, creating a so-called doublet that is 

disguised as a single cell 5. The doublet rate (i.e., the proportion of doublets) in a scRNA-

seq experiment depends on the throughput and protocol, and doublets may constitute as 

many as 40% of droplets 39. There are two major classes of doublets: homotypic doublets, 

which are formed by transcriptionally similar cells, and heterotypic doublets, which are 

formed by cells of distinct types, lineages, or states 40,41. Compared with homotypic 

https://paperpile.com/c/Kxhkna/AkF57
https://paperpile.com/c/Kxhkna/I3LzE
https://paperpile.com/c/Kxhkna/JizuW+hyzQV
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doublets, heterotypic doublets are generally easier to detect due to their distinct gene 

expression profiles unlike those of singlets 41.  

The existence of doublets, especially heterotypic doublets, in scRNA-seq datasets 

may confound downstream analysis; for example, doublets can form spurious cell clusters, 

interfere with differentially expressed (DE) gene analysis, and obscure the inference of 

cell developmental trajectories 5,40. Several experimental techniques have been 

developed to detect doublets in scRNA-seq using droplet barcodes. Example techniques 

include cell hashing (doublets are the droplets whose barcodes are associated with more 

than one oligo-tagged antibody) 42, species mixture (doublets are the droplets whose 

barcodes are associated with more than one species) 40, demuxlet (doublets are the 

droplets whose barcodes are associated with mutually exclusive sets of SNPs) 43, and 

MULTI-seq (doublets are the droplets whose barcodes are associated with more than 

one lipid-tagged index) 44. However, these techniques require special experimental 

preparation, extra costs, and time, and they are not guaranteed to remove all doublets, 

e.g., demuxlet cannot detect the doublets formed by cells from the same individual. 

Moreover, they cannot remove doublets from existing scRNA-seq data. 

Realizing the limitations of experimental strategies, researchers have attempted to 

tackle this doublet challenge from an alternative perspective: developing computational 

methods to detect doublets from already-generated scRNA-seq data 5. So far, nine 

doublet-detection methods have been developed (with software packages and full-text 

manuscripts) based on distinct algorithmic designs 39–41,45–48 (Table 1). Here is a brief 

summary of these methods except hybrid, which is a combination of two methods: bcds 

and cxds. Seven out of the eight methods (with cxds as the only exception) first generate 

https://paperpile.com/c/Kxhkna/hyzQV
https://paperpile.com/c/Kxhkna/AkF57+JizuW
https://paperpile.com/c/Kxhkna/4ONen
https://paperpile.com/c/Kxhkna/JizuW
https://paperpile.com/c/Kxhkna/wB9b8
https://paperpile.com/c/Kxhkna/bnItm
https://paperpile.com/c/Kxhkna/AkF57
https://paperpile.com/c/Kxhkna/JizuW+hyzQV+I3LzE+dD796+I4OGu+opwB0+Dky9Q
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artificial doublets by combining gene expression profiles of two randomly selected 

droplets. Except for DoubletDecon, the other six methods subsequently define a doublet 

score for each original droplet as the level of similarity the droplet has to those artificial 

doublets; next, with a pre-defined or user-specified threshold, they detect doublets as the 

original droplets whose doublet scores exceed the threshold. The key difference of the 

seven artificial-doublet-based methods is how they distinguish original droplets from 

artificial doublets: five of them use classification algorithms (Scrublet, doubletCells, and 

DoubletFinder use k-nearest neighbors (kNN); bcds uses gradient boosting; Solo uses 

neural networks), DoubletDetection uses the hypergeometric test, and DoubletDecon 

decides whether an original droplet resembles an artificial doublet based on its 

deconvolution algorithm (unlike the other methods, DoubletDecon identifies doublets 

without providing doublet scores). As the only method that does not generate artificial 

doublets, cxds defines doublet scores based on gene co-expression, and similar to the 

other six doublet-score-based methods, it subsequently thresholds doublet scores to 

identify doublets. While each method was shown to perform well under certain metrics by 

its developers, currently, there is no systematic, third-party benchmarking of these 

methods’ doublet-detection accuracy, effects on downstream analysis, or computation 

efficiency. As a result, users lack guidelines to choose an appropriate doublet-detection 

method for their analysis task. Hence, a detailed assessment of existing doublet-detection 

methods is in great demand. In addition to assisting users, it will provide useful guidance 

for computationalists to improve existing methods or develop new methods. 

Here, we conducted the first comprehensive benchmark study of computational 

methods for doublet detection. We evaluated nine cutting-edge methods—doubletCells 
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48, Scrublet 40, cxds 45, bcds 45, hybrid 45, Solo 39, DoubletDetection 47, DoubletFinder 41, 

and DoubletDecon 46—in three aspects. First, we compared their overall doublet detection 

accuracy using two criteria: the area under the precision-recall curve (AUPRC) and the 

area under the receiver operating characteristic curve (AUROC), on a collection of 16 real 

scRNA-seq datasets containing experimentally annotated doublets. To further evaluate 

the performance of these methods under various experimental settings, we simulated 80 

realistic scRNA-seq datasets and evaluated the AUPRC and AUROC of each method 

under a wide range of doublet rates, sequencing depths, numbers of cell types, and cell-

type heterogeneity levels. Second, considering that the ultimate goal of doublet detection 

is to improve the accuracy of downstream scRNA-seq data analyses, we compared these 

nine doublet-detection methods in terms of their impacts on three downstream analyses: 

cell clustering, DE gene analysis, and cell trajectory inference. We simulated seven 

doublet-containing scRNA-seq datasets with pre-specified cell types, DE genes, and cell 

trajectories. Then we evaluated the accuracy of the three downstream analyses by their 

state-of-the-art computational methods before and after doublets were removed by each 

doublet-detection method. The rationale is that a good doublet-detection method should 

improve the accuracy of downstream analyses after its use. Third, we compared the 

computational efficiency of doublet-detection methods in aspects including distributed 

computing, speed, scalability, stability, and usability. 

In summary, the nine doublet-detection methods exhibited a large variation in their 

performance under each evaluation criterion. First, the benchmarking result of detection 

accuracy shows that there is still room for improvement: the best method DoubletFinder 

achieved a mean AUPRC value of 0.537 on 16 real datasets (Table S1). On simulated 

https://paperpile.com/c/Kxhkna/Dky9Q
https://paperpile.com/c/Kxhkna/JizuW
https://paperpile.com/c/Kxhkna/dD796
https://paperpile.com/c/Kxhkna/dD796
https://paperpile.com/c/Kxhkna/dD796
https://paperpile.com/c/Kxhkna/I3LzE
https://paperpile.com/c/Kxhkna/opwB0
https://paperpile.com/c/Kxhkna/hyzQV
https://paperpile.com/c/Kxhkna/I4OGu
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datasets, most methods performed better on datasets with higher doublet rates, larger 

sequencing depths, more cell types, or greater heterogeneity between cell types. Second, 

we observed that doublet removal by most methods indeed improved the elimination of 

spurious cell clusters, the identification of DE genes, and the inference of cell trajectories, 

yet the degree of improvement varied from method to method. Third, most methods 

except cxds had deteriorated performance under distributed computing because global 

data information was lost in each distributed data batch. The cxds method also performed 

the best in terms of speed and scalability. Overall, DoubletFinder is highlighted as the 

best computational doublet-detection method for its highest detection accuracy and 

largest improvement on downstream analyses, while cxds is found as the most 

computationally efficient method in our benchmark. 

2.2 Results 

2.2.1 Doublet detection accuracy on real scRNA-seq datasets 

To evaluate the overall doublet detection accuracy of the nine methods, we collected 16 

public scRNA-seq datasets with doublets annotated by experimental techniques 40,42–44 

(Methods). Our collection covers a variety of cell types, droplet and gene numbers, 

doublet rates, and sequencing depths, thus representing varying levels of difficulty in 

detecting doublets from scRNA-seq data (Table 2). To the best of our knowledge, our 

collection is by far the most comprehensive set of scRNA-seq data that contains 

experimentally validated doublets, and it can serve as a benchmark standard for future 

method development. 

https://paperpile.com/c/Kxhkna/wB9b8+4ONen+bnItm+JizuW
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To benchmark the nine methods, we included two baseline methods, which simply 

use the library size (lsize) and the number of expressed genes (ngene) of each droplet 

as their respective doublet detection criterion 5,40. Except for DoubletDecon, all the 

methods output a doublet score for each droplet (Table 1; the two baseline methods have 

lsize and ngene as their doublet scores; a droplet with a larger score is more likely a 

doublet), and we define their detection accuracy as their AUPRC and AUROC values 

(Methods). We found that all the methods successfully output their identified doublets 

from all the 16 datasets except DoubletDetection, which could not run on the pdx-MULTI 

dataset. Across the 16 datasets, each method exhibited a large variance in its detection 

accuracy, and no method consistently achieved the top performance (Figure 1a–b; 

Supplementary Tables S1-S2). Compared with the two baseline methods, doubletCells is 

the only method that did not outperform them on a majority of datasets, while Solo and 

hybrid are the only two methods that consistently outperformed them on all datasets 

(Supplementary Table S3). Overall, DoubletFinder and Solo achieved the highest mean 

AUPRC and AUROC values across datasets, respectively (Supplementary Tables S1–

S2). DoubletFinder was also the top-performing method on the most datasets in terms of 

both AUPRC and AUROC (Supplementary Table S3). We note that all the methods had 

AUPRC values much lower than their AUROC values on every dataset, an expected 

phenomenon given the imbalance between the number of singlets and doublets. Since 

AUROC is an overly optimistic measure of accuracy under such imbalanced scenarios 49, 

we will focus on AUPRC in the following discussion. 

The highest AUPRC value on each dataset ranges from 0.239 to 1.000, with a mean 

of 0.570 across the 16 datasets (Supplementary Table S1). This large discrepancy 

https://paperpile.com/c/Kxhkna/JizuW+AkF57
https://paperpile.com/c/Kxhkna/X0lw0
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between datasets is further exemplified by the fact that several methods achieved almost 

perfect AUPRC values on two datasets: hm-12k and hm-6k, while all the methods 

performed poorly on another two datasets: pbmc-1B-dm and J293t-dm (with AUPRC 

values under 0.335). A likely reason for this discrepancy is how doublets are annotated 

in these real datasets. In hm-12k and hm-6k, doublets are annotated as the droplets that 

contain cells of two species, so all doublets are heterotypic and easy to identify 39–41,45. In 

contrast, doublets annotated in the other datasets may include homotypic doublets that 

are difficult to identify, posing a challenge to doublet-detection methods; or they may miss 

certain heterotypic doublets (e.g., if doublets are defined as the droplets that contain cells 

from two individuals, then heterotypic doublets formed by cells of different types within an 

individual would be missed), creating a downward bias in the calculation of detection 

accuracy (see further discussion in the Supplementary). In addition, varied data quality 

and cell heterogeneity pose different levels of difficulty to doublet detection. The highest 

mean AUPRC value, which was achieved by DoubletFinder, is only 0.537. These results 

demonstrate the general difficulty in detecting doublets from scRNA-seq data and suggest 

possible room for improvement by future method development.  

Motivated by the fact that doublets are identified based on a single threshold in 

practice, we further examined the detection accuracy of doublet-detection methods under 

a specific identification rate, i.e., the percentage of droplets identified as doublets. For 

each method, the top 10%, 20%, and 40% droplets with the highest doublet scores were 

identified as doublets, and the corresponding precision, recall, and true negative rates 

(TNRs) were calculated (Figure 1c; Supplementary Table S4). As expected, higher 

identification rates led to higher recall and lower TNR values. Interestingly, the precision 

https://paperpile.com/c/Kxhkna/JizuW+hyzQV+I3LzE+dD796
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decreased as the identification rate increased, a phenomenon suggesting that all doublet 

detection methods tend to assign higher doublet scores to annotated doublets and thus 

desirable (Figure 1c). The comparison of doublet-detection methods gave a result 

consistent with that based on the overall detection accuracy measures AUPRC and 

AUROC. DoubletFinder and Solo were still the top two methods in terms of the mean 

precision, recall, and TNR, where the mean was calculated across the 16 datasets 

(Supplementary Table S4).   

Since DoubletDecon cannot output doublet scores, we could not calculate its AUPRC 

or AUROC on a dataset and thus excluded it from the previous comparison. To fairly 

compare DoubletDecon with other methods, we ran DoubletDecon on every dataset and 

recorded its number of identified doublets if successful; then we thresholded the doublet 

scores of other methods so that they identified the same number of doublets as 

DoubletDecon did. Based on the resulting doublets identified by each method from every 

dataset, we calculated the precision, recall, and TNR (Methods). By these three criteria, 

DoubletDecon and doubletCells did not outperform the baseline methods lsize and ngene. 

Among the other seven methods, Solo and DoubletFinder achieved the highest precision 

and TNRs, while Solo and hybrid obtained the highest recall rates (Supplementary Figure 

S1a and Tables S5–S7). Moreover, we observed that DoubletDecon failed to run on four 

datasets (hm-12k, pbmc-2ctrl-dm, J293t-dm, and nuc-MULTI) and tended to overestimate 

the number of doublets (Supplementary Table S8). Our results suggest that 

DoubletDecon needs improvement in its accuracy and robustness. Adding the 

functionality that outputs doublet scores will also enhance the usability of DoubletDecon, 
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because users can then have the flexibility to decide the number of doublets to be 

detected and removed based on their preference and knowledge 50. 

2.2.2 Doublet detection accuracy on synthetic scRNA-seq data under 

various experimental settings and biological conditions 

To thoroughly evaluate the performance of doublet-detection methods under a wide range 

of experimental settings and biological conditions, we utilized scDesign 51,157, a statistical 

simulator that generates realistic scRNA-seq datasets well mimicking real data generated 

by a variety of scRNA-seq experimental protocols. It is advantageous to use synthetic 

data to benchmark doublet-detection methods because we would have the access to 

ground-truth doublets and the flexibility to vary experimental settings and biological 

conditions in a comprehensive way. Specifically, we generated 80 scRNA-seq datasets 

with varying doublet rates (i.e., percentages of doublets), sequencing depths, cell types, 

and between-cell-type heterogeneity levels (Methods). Except for DoubletDecon, we 

applied every doublet-detection method to all these synthetic datasets and calculated its 

AUPRC values to measure its accuracy. Figure 2a shows how the performance of every 

method changed as we varied the doublet rate, the sequencing depth, the number of cell 

types, or the between-cell-type heterogeneity level. First, all the eight methods had 

improved accuracy as the doublet rate increased. This result is not surprising, as these 

methods all formulated the doublet detection problem, explicitly or implicitly, as a binary 

classification problem where the two classes are singlets and doublets. The more 

balanced the two classes are in size, the easier the binary classification is, in general. 

Given the fact that, under both droplet microfluidics and well-based scRNA-seq protocols, 

https://paperpile.com/c/Kxhkna/xt79a
https://paperpile.com/c/Kxhkna/6hv95
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doublets are more likely to form as the number of cells increases 5,40,52, our result 

suggests that doublet-detection methods would work more effectively on scRNA-seq 

datasets with more cells (or droplets). This finding agrees with our previous result that all 

the methods performed the worst on the J293t-dm dataset, which contains only 500 

droplets, the fewest among all the 16 datasets. Second, we found that the performance 

of these methods consistently benefited from a larger sequencing depth. This is in line 

with the expectation that deeper sequencing creates a higher data resolution, making 

doublet-detection methods more capable of differentiating doublets from singlets. Third, 

we evaluated the impact of the number of cell types on the accuracy of doublet-detection 

methods. It is expected that a cell mixture with more cell types would result in more 

heterotypic doublets, which are formed by cells of different types. Thanks to their distinct 

gene expression profiles that do not resemble those of any cell types, heterotypic 

doublets are, in general, easier to detect than homotypic doublets, which are formed by 

cells of the same type 40. As expected, most methods exhibited improved accuracy as the 

number of cell types increased, with cxds, bcds, and hybrid (a combination of cxds and 

bcds) as the only three exceptions. Fourth, we investigated how the between-cell-type 

heterogeneity level—the extent to which gene expression profiles differ between cell 

types—would affect the accuracy of doublet detection. In theory, the greater the 

heterogeneity, the more distinct are heterotypic doublets from singlets. Again, all the 

methods fit this theory except cxds, bcds, and hybrid. Hence, we saw consistent results 

about the effects of the number of cell types and the between-cell-type heterogeneity level 

on doublet detection. 

https://paperpile.com/c/Kxhkna/zc8Nm+JizuW+AkF57
https://paperpile.com/c/Kxhkna/JizuW
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We also compared the AUROC values of the eight doublet-detection methods on the 

same synthetic scRNA-seq datasets as above (Supplementary Figure S1b). Consistent 

with our AUPRC results, most methods performed better on the datasets with a higher 

doublet rate, a larger sequencing depth, more cell types, or a greater level of between-

cell-type heterogeneity, though the improvement in AUROC was less significant than in 

AUPRC. This is expected as AUPRC is a better accuracy measure than AUROC for 

imbalanced binary classification 53. Combining our AUPRC and AUROC results, we found 

DoubletFinder as the top-performing method across all the experimental settings and 

biological conditions we studied. DoubletDetection and Scrublet also demonstrated 

strong performance compared with the rest of methods. We excluded DoubletDecon from 

this comparison and the following cell clustering, DE gene identification, and cell trajectory 

inference analyses because it failed to run on most of our synthetic datasets, likely due 

to its software implementation issue 54. 

2.2.3 Effects of doublet detection on DE gene analysis 

The existence of doublets in scRNA-seq datasets is expected to confound the 

downstream DE gene analysis by violating the necessary “identical distribution” 

assumption (i.e., cells of the same type follow the same distribution of gene expression 

levels) in statistical tests 5. As a result, if a doublet-detection method is effective, its 

doublet removal should improve the accuracy of DE gene analysis. To evaluate the eight 

doublet-detection methods from this perspective, we used scDesign to generate a 

synthetic scRNA-seq dataset with two cell types and 1126 between-cell-type DE genes 

(6% of a total of 18760 genes; Methods). We referred to this dataset as the “clean data.” 

We then mixed each cell type with randomly forming doublets by targeting a 40% doublet 

https://paperpile.com/c/Kxhkna/gE7JR
https://paperpile.com/c/Kxhkna/rKWMy
https://paperpile.com/c/Kxhkna/AkF57
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rate, and the resulting dataset was referred to as the “contaminated data.” Next, we 

applied each doublet-detection method to the dataset and removed 40% droplets (with 

the highest doublet scores assigned by each method) from the contaminated data. Finally, 

we conducted DE gene analysis using three methods—DESeq2 55, MAST 56, and 

Wilcoxon rank-sum test 57—on the clean data, the contaminated data, and the dataset 

after each doublet-detection method was applied. The DE gene analysis result was 

summarized in three accuracy measures: precision, recall, and TNR, all of which were 

calculated under the Bonferroni-corrected p-value threshold of 0.05, the default threshold 

used by DESeq2 and MAST 58. We benchmarked the accuracy resulted from each 

doublet-detection method against the negative control (the accuracy based on the 

contaminated data) and the positive control (the accuracy based on the clean data). 

Figure 2b shows that all the three DE methods achieved extremely high precision (> 98%) 

and TNRs (> 97%) even on the contaminated data, an expected result because these DE 

methods all utilize statistical tests and are inherently conservative in their identification of 

DE genes. Such conservativeness makes these DE methods only identify the genes that 

are highly likely DE, leading to high precision (the percentage of true DE genes among 

the identified genes) and TNR (the percentage of non-identified genes among the true 

non-DE genes). Although the TNR result seems counterintuitive as the TNR values after 

doublet detection and removal even exceeded the TNR values of the clean data by 

around 0.005, this difference was merely due to the statistical uncertainty of these TNR 

values and thus not conclusive. On the other hand, recall (the percentage of identified 

genes among the true DE genes) is an informative measure that reflects the negative 

influence of doublets: for all the three DE methods, their recall dropped from ~70% on the 

https://paperpile.com/c/Kxhkna/PwyoW
https://paperpile.com/c/Kxhkna/myQaq
https://paperpile.com/c/Kxhkna/jRhmu
https://paperpile.com/c/Kxhkna/C6wgi
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clean data to ~63% on the contaminated data. Pleasantly, all the eight doublet-detection 

methods were effective in improving the recall (Figure 2c). In particular,DoubletFinder, 

doubletCells, bcds, and hybrid consistently had top performance regardless of the choice 

of DE methods. This result confirms that removing doublets is indeed beneficial for DE 

gene analysis. 

2.2.4 Effects of doublet detection on highly variable gene identification 

The identification of highly variable genes (HVGs) is an essential step that precedes cell 

dimension reduction, cell clustering, and cell trajectory inference in scRNA-seq data 

analysis 59.  The goal of this step is to identify HVGs, i.e., the informative genes that exhibit 

strong cell-to-cell variations and thus can distinguish cells, so that the dimensions of each 

cell can be reduced from tens of thousands of genes to thousands, or even hundreds of 

genes, to facilitate those downstream analyses. Considering the importance of HVG 

identification, we evaluated the extent to which the identification would be negatively 

affected by doublets 60 and how much the eight doublet-detection methods could alleviate 

such negative impacts. For this purpose, we simulated a clean scRNA-seq dataset 

without doublets by scDesign, and then we added randomly formed doublets to generate 

three contaminated datasets with 10%, 20%, and 40% doublet rates. For each 

contaminated dataset, we applied the eight doublet-detection methods to remove a 

percentage of droplets that received the highest doublet scores, and the percentage was 

set as the dataset’s doublet rate. As a result, each contaminated dataset corresponds to 

eight post-doublet-detection datasets. Then we used Seurat 61,62 to identify HVGs from 

the clean dataset, the three contaminated datasets, and the 24 post-doublet-detection 

datasets. We refer to the identification results as a set of clean HVGs, three sets of 

https://paperpile.com/c/Kxhkna/btSq2
https://paperpile.com/c/Kxhkna/6SeHA
https://paperpile.com/c/Kxhkna/sFM0Y+I7s7r


20 

contaminated HVGs, and 24 sets of post-doublet-detection HVGs. An effective doublet-

detection method is expected to result in post-doublet-detection HVGs that agree better 

with the clean HVGs than the corresponding contaminated HVGs do. To measure the 

agreement between two sets of HVGs, we used the Jaccard index, which is the ratio of 

the size of the intersection to the size of the union of the two sets. The larger the Jaccard 

index, the better agreement the two sets have. In our evaluation, for each doublet rate, 

the Jaccard index between the contaminated HVGs and the clean HVGs served as the 

negative control. Figure 2d shows that the negative control Jaccard index decreased from 

0.772 to 0.447 as the doublet rate increased from 10% to 40%, matching our expectation. 

Among the eight doublet-detection methods, DoubletFinder and Scrublet were the only 

two methods whose post-doublet-detection HVGs consistently led to better Jaccard 

indices than the negative controls under all three doublet rates. Notably, the benefit of 

doublet detection on HVG identification was most obvious at the 40% doublet rate, under 

which all the doublet-detection methods outperformed the negative control. 

2.2.5 Effects of doublet detection on cell clustering 

Another major motivation to remove doublets from scRNA-seq data is to avoid the 

misinterpretation of spurious cell clusters (i.e., droplet clusters) formed by heterotypic 

doublets as novel cell types 5,40. To evaluate the capacity of doublet-detection methods 

for removing spurious cell clusters, we used scDesign to simulate realistic scRNA-seq 

datasets composed of four, six, or eight cell types and mixed with 20% randomly forming 

doublets (i.e., the true doublet rate is 20%). We performed cell clustering on each of these 

datasets after we applied every doublet-detection method and removed a certain percent 

of droplets that received the highest doublet scores from that method (Methods). 

https://paperpile.com/c/Kxhkna/AkF57+JizuW
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Considering that the true doublet rate is unknown and difficult to estimate in practice, we 

varied this removal percentage from 0% to 25%, with a step size of 1%. For the 

subsequent cell clustering, we followed the most popular Seurat method to apply the 

Louvain clustering algorithm 63, which automatically determines the number of cell 

clusters in a data-driven way. Then for each dataset, every doublet-detection method, 

and each removal percentage, we compared the number of cell clusters with the number 

of cell types.  Figure 2e shows that, under the ideal scenario that the removal percentage 

was set to the true doublet rate 20%, four methods (Scrublet, Solo, DoubletDetection, 

and DoubletFinder) consistently removed spurious cell clusters and led to the correct 

numbers of cell types. Among the eight methods, DoubletDetection and DoubletFinder 

exhibited the most robust performance, as they successfully led to the correct numbers 

of cell types under the widest range of removal percentages. Scrublet and Solo also 

exhibited good performance in removing spurious cell clusters. In contrast, doubletCells, 

cxds, bcds, and hybrid all had unstable performance, and they did not always remove 

spurious cell clusters even under the ideal scenario (when the removal percentage was 

set to 20%). Overall, this result supports the use of DoubletDetection and DoubletFinder 

to remove doublets before the application of cell clustering to identify novel cell types. 

Unlike heterotypic doublets, homotypic doublets do not form spurious clusters 

because of their similar gene expression profiles to those of singlets of the same cell type 

40. In other words, homotypic doublets tend to cluster together with singlets. Even though 

the existence of homotypic doublets does not much affect cell clustering, it may potentially 

bias the identification of cell-type-specific genes by DE gene analysis because homotypic 

doublets are not real cells. To evaluate the capacity of doublet-detection methods in 

https://paperpile.com/c/Kxhkna/9HNrS
https://paperpile.com/c/Kxhkna/JizuW
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eliminating homotypic doublets, we calculated the proportion of singlets in each identified 

cell cluster when the number of cell clusters matched the number of cell types in Figure 

2e (Methods). Figure 2f shows that Scrublet led to cell clusters with the highest 

proportions of singlets. DoubletDetection and DoubletFinder also had excellent 

performance, and these three methods all clearly outperformed the rest of the methods.  

Combining the results in Figure 2e–f, we conclude that Scrublet, DoubletDetection, and 

DoubletFinder demonstrated the best capacity in removing heterotypic and homotypic 

doublets. 

To examine how robust the above results are to the choice of clustering algorithms, 

we repeated the above analyses using a second clustering algorithm: the density-based 

spatial clustering of applications with noise (DBSCAN) 64. Compared with the Louvain 

clustering algorithm, the DBSCAN algorithm led to the correct numbers of cell clusters 

under fewer and more sporadic removal percentages for all the doublet-detection 

methods (Supplementary Figure S2a). This result suggests that the DBSCAN algorithm 

works less effectively than the Louvain algorithm for clustering cells in scRNA-seq data 

19,65. Nevertheless, with the DBSCAN algorithm, Scrublet, DoubletDetection, and 

DoubletFinder still achieved the top performance in removing spurious cell clusters and 

homotypic doublets (Supplementary Figure S2a–b). In summary, based on the results of 

two clustering algorithms, we would recommend DoubletDetection and DoubletFinder as 

the top two choices for removing spurious cell clusters in cell clustering analysis, and we 

identified Scrublet and DoubletFinder as the best-performing algorithms for removing 

homotypic doublets before the identification of cell-type-specific genes. 

https://paperpile.com/c/Kxhkna/jrhxm
https://paperpile.com/c/Kxhkna/b8Cza+LSXdh
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2.2.6 Effects of doublet detection on cell trajectory inference 

Another important scRNA-seq data analysis is to infer a cell trajectory, which corresponds 

to a cellular process such as cell differentiation, immune responses, and carcinogenesis, 

based on the similarity of cells in terms of gene expression profiles 20. An inferred cell 

trajectory is called pseudotime, an ordering of cells in a path or a tree 66,158. The accuracy 

of cell trajectory inference depends on both the inference methods and the scRNA-seq 

data quality. Similar to cell clustering, cell trajectory inference is also biased by the 

existence of doublets 18. In particular, heterotypic doublets may result in spurious 

branches in an inferred trajectory. We expect that doublet-detection methods, if effective, 

should increase the accuracy of cell trajectory inference. To evaluate the eight doublet-

detection methods from this perspective, we used Splatter 67 to generate two scRNA-seq 

datasets: one including a bifurcating trajectory and the other containing a conjunction of 

three sequential trajectories (Methods). We referred to them as the “clean data.” Then we 

mixed the two datasets with randomly forming doublets by targeting a 20% doublet rate, 

and the resulting datasets were referred to as the “contaminated data.” Similar to our DE 

gene analysis, we used each doublet-detection method to remove 20% droplets (with the 

highest doublet scores assigned by that method) from each contaminated dataset. As a 

result, we obtained two suites of datasets corresponding to a bifurcating trajectory and a 

conjunction of three sequential trajectories, with each suite containing the clean data, the 

contaminated data, and the data cleaned by each doublet-detection method. For cell 

trajectory inference, we applied Slingshot 68 to the first suite of datasets (Figure 3a) and 

minimum spanning tree (MST) 69 to the second suite of datasets (Figure 3b). We chose 

Slingshot and MST because they were the top-performing methods in previous 

https://paperpile.com/c/Kxhkna/3HTTe
https://paperpile.com/c/Kxhkna/KO8Uz
https://paperpile.com/c/Kxhkna/uL0KQ
https://paperpile.com/c/Kxhkna/9ciDr
https://paperpile.com/c/Kxhkna/N1qrT
https://paperpile.com/c/Kxhkna/zPt4W
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benchmark studies 18,20. We considered the cell trajectories inferred from the clean data 

and the contaminated data as the positive and negative controls, respectively. Figure 3a–

b shows that the doublets in the contaminated data indeed led to spurious branches that 

did not exist in the inferred trajectories from the clean data. Except for doubletCells, all 

the doublet-detection methods effectively removed doublets such that spurious branches 

no longer existed in the inferred cell trajectories. In particular, in the second task of 

inferring a conjunction of three sequential trajectories (Figure 3b), Scrublet, 

DoubletDetection, and DoubletFinder led to inferred trajectories that most resembled the 

trajectory inferred from the clean data. Figure 3a–b also shows that DoubletDetection and 

DoubletFinder are the best two methods for removing the “outlier” doublets whose gene 

expression profiles do not resemble those of any singlets. 

Following cell trajectory inference, a typical next step is to explore gene expression 

dynamics along the inferred trajectory and to identify temporally DE genes 5,20. Hence, 

the accuracy of cell trajectory inference largely determines the accuracy of temporally DE 

gene identification. Beyond checking the inferred cell trajectories after doublet removal 

as in Figure 3a–b, we evaluated the effects of doublet removal on the identification of 

temporally DE genes. We used Splatter to simulate a scRNA-seq dataset with a single 

lineage and 250 temporally DE genes out of a total of 750 genes (Methods). We referred 

to this dataset as the “clean data.” We then mixed the data with randomly forming doublets 

by targeting a 20% doublet rate, and the resulting dataset was referred to as the 

“contaminated data.” Next, we used eight doublet-detection methods to remove 20% 

droplets (with the highest doublet scores assigned by each method) from the 

contaminated data. Finally, we employed a general additive model (GAM) 70 to regress 

https://paperpile.com/c/Kxhkna/3HTTe+uL0KQ
https://paperpile.com/c/Kxhkna/3HTTe+AkF57
https://paperpile.com/c/Kxhkna/Dr9uP
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each gene’s expression levels on the corresponding cell/droplet pseudotime inferred by 

Slingshot or TSCAN 71 on the clean data, the contaminated data, and the dataset after 

each doublet-detection method was applied. Note that we replaced MST by TSCAN 

because MST does not output pseudotime values for droplets and TSCAN is built upon 

the MST algorithm. The temporally DE gene analysis result was summarized in three 

accuracy measures: precision, recall, and TNR, all of which were calculated under the 

Bonferroni-corrected p-value threshold of 0.05. Again, we used the accuracy obtained 

from the clean data and the contaminated data as the positive and negative controls, 

respectively. Doublet removal made a more significant improvement on the identification 

of temporally DE genes when Slingshot was used for trajectory inference (Figure 3c–d). 

With Slingshot, all the eight doublet-detection methods except doubletCells successfully 

restored the precision, recall, and TNR from low values on the contaminated data to 

values as high as those on the clean data. With TSCAN, however, the restoration effects 

were only obvious in precision and TNR by Solo and cxds. In summary, doublet removal 

is beneficial for cell trajectory inference and the subsequent identification of temporally 

DE genes, and we observed strong beneficial effects when Slingshot was used for 

trajectory inference. 

2.2.7 Performance of doublet-detection methods under distributed 

computing 

A grand challenge in single-cell data sciences is the skyrocketing demand for 

computational and storage resources due to the rapidly increasing data sizes 24. For 

example, a scRNA-seq dataset may contain up to millions of droplets, each of which has 

https://paperpile.com/c/Kxhkna/DZeYW
https://paperpile.com/c/Kxhkna/mbOqw
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expression levels of tens of thousands of genes 13. Analyzing such huge datasets is often 

beyond the capacity of a single computer but requires distributed computing, which 

analyzes data subsets in parallel. Specific to the doublet-detection task, distributed 

computing means that droplets are divided into batches, one batch per computer node, 

due to massive data sizes or limited computational capacity; then a doublet-detection 

method would be applied separately to assigning doublet scores to droplets in each batch. 

After this parallelization step, doublet scores would be pooled from multiple batches, and 

a threshold would be set on the pooled doublet scores to detect doublets. Compared with 

the centralized computing that uses all the droplets together, distributed computing may 

have deteriorated doublet-detection accuracy due to the limited data information within 

each droplet batch. Hence, how a doublet-detection method performs under distributed 

computing is an important evaluation criterion for the scalability and flexibility of the 

method.  

To investigate the performance of doublet-detection methods under distributed 

computing, we randomly divided two large real scRNA-seq datasets—pbmc-ch and 

pbmc-2ctrl-dm—into a varying number of batches with equal numbers of droplets, and 

we evaluated how the doublet-detection accuracy of each method changed with the 

number of batches. It is expected that the more batches, the worse the accuracy, and our 

results confirmed this. Figure 4a–b shows the AUPRC and AUROC values of each 

method under each number of batches, which varied from 1 to 10. The AUPRC and 

AUROC values were calculated based on the pooled doublet scores as described above. 

We excluded DoubletDecon from this comparison because it failed to run for most 

numbers of batches, again suggesting its software implementation issue 54. With only one 

https://paperpile.com/c/Kxhkna/qZ3M5
https://paperpile.com/c/Kxhkna/rKWMy
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batch, distributed computing is reduced to centralized computing, and the corresponding 

accuracy is supposedly the performance ceiling of every method. As expected, most 

doublet-detection methods had decreasing accuracy, which is more clear in AUPRC 

(Figure 4a) than AUROC (Figure 4b), as the number of batches increased. Among the 

eight methods, doubletCells is an underperforming outlier with the lowest overall accuracy. 

DoubletDetection and Solo are among the top-performing methods under centralized 

computing; however, they exhibited the largest accuracy decrease under distributed 

computing. In contrast, DoubletFinder is consistently a top performer, demonstrating its 

superior accuracy again and its robustness under distributed computing. 

2.2.8 Computational efficiency, scalability, stability, and software 

implementation of doublet-detection methods 

In addition to the above evaluation that focused on the effects of doublet removal on 

various scRNA-seq data analyses, we also compared doublet-detection methods in four 

computational aspects: efficiency, scalability, stability, and software implementation. First, 

we summarized the running time of the nine doublet-detection methods (including their 

required data preprocessing steps; Methods) on the 16 real scRNA-seq datasets in Table 

2. Figure 4c shows that cxds is the fastest method, while Solo, DoubletDecon, 

DoubletDetection, and DoubletFinder are significantly slower than the other methods. 

Figure 4d shows that there was no straightforward relationship between the mean 

AUPRC and the mean running time of eight doublet-detection methods (with the mean 

calculated across the 16 real datasets). Nevertheless, the three most computationally 

intensive methods—Solo, DoubletDetection, and DoubletFinder—had better accuracy 
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than the other methods except hybrid did. Interestingly, the hybrid method, an ensemble 

of cxds and bcds, largely improved on its both base methods without much running time 

increase.  Among all methods, DoubletFinder achieved the highest mean AUPRC while 

not being the most computationally intensive method. Normalizing the mean running time 

by the mean AUPRC value for every method, we found cxds as the most resource-

efficient method (Supplementary Table S9).  

Second, we examined the scalability of doublet-detection methods by showing how 

fast their running time increases as the number of droplets grows. We used scDesign to 

generate 25 synthetic scRNA-seq datasets with the number of droplets ranging from 400 

to 10,000 (Methods). Then we applied each doublet-detection method to these datasets 

and recorded its running time. (DoubletDecon was excluded because it failed to run on 

most synthetic data.) As shown in Figure 4e, all methods except Solo had running time 

scaled linearly with the number of droplets. The reason that Solo exhibited an erratic 

relationship between its running time and the number of droplets is probably due to its 

neural-network design. Among the other seven methods, cxds and DoubletDetection 

demonstrated the best and worst scalability, respectively.  

Third, we evaluated doublet-detection methods in terms of the statistical stability, i.e., 

how much their AUPRC and AUROC values vary across subsets of droplets and genes. 

The smaller the variation, the larger the statistical stability. We randomly downsampled 

two large real scRNA-seq datasets—pbmc-ch and pbmc-2ctrl-dm—into 20 data subsets 

with 90% droplets and 90% genes. Then we applied each doublet-detection method to 

these data subsets and recorded the resulting AUPRC and AUROC values. 

(DoubletDecon was excluded because we were unable to calculate its AUPRC and 
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AUROC values, as explained before.) Figures 4f and S2c show the distributions of 

AUPRC and AUROC values of each method when applied to the subsets generated from 

each original dataset. Interestingly, we observed a roughly inverse relationship between 

the overall doublet-detection accuracy and the statistical stability. For example, 

DoubletFinder has the best overall accuracy in terms of both AUPRC and AUROC, yet 

its variation across data subsets is much greater than that of Scrublet, which has a much 

lower overall accuracy. Despite its suboptimal stability, we still found DoubletFinder as a 

top performer if we compare the lower-quartile accuracy (i.e., the 25-th percentile of 

AUPRC and AUROC values) of these methods. To summarize, even though statistical 

stability is an important criterion, in practice, it is often overruled by the overall accuracy 

reflected by the mean, median, or lower-quartile accuracy value. In terms of the overall 

accuracy, we found DoubletFinder, Solo, and hybrid as the top three methods.  

Fourth, we evaluated the software implementation of doublet-detection methods, 

because user-friendliness, software quality, and active maintenance are crucial to the 

success of bioinformatics tools 72. We scored each method in four aspects: software 

quality, execution convenience, publication, and documentation & support (Methods). 

Table 3 lists our score reasoning and the overall usability score of each method. In 

particular,DoubletDetection and DoubletDecon did not successfully run on one or more 

datasets. Regarding user support, Solo, DoubletDetection, DoubletFinder, and 

DoubletDecon have active Q&As on their software webpages for collecting users’ 

feedback and answering users’ questions. Among the nine methods, DoubletFinder 

achieved the highest usability score thanks to its excellent implementation. 

https://paperpile.com/c/Kxhkna/aYh8w
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2.3 Discussion 

With the rapid development of scRNA-seq technologies, a skyrocketing number of 

computational methods have been developed for various scRNA-seq data analyses 16. 

For example, since 2018, more than 45 imputation methods have already been developed 

to recover missing gene expression (commonly referred to as “dropouts”) in scRNA-seq 

data 24,28,29,31,73. Such richness of computational methods is a double-sided blade. On the 

one hand, scRNA-seq researchers have more blocks to build analysis pipelines that 

accommodate their scientific investigation needs; on the other hand, it becomes 

increasingly difficult for researchers to choose the method, from dozens of methods 

developed for the same purpose, that best fits each step of their pipeline. Unlike in 

experimental sciences where new technologies often replace old ones, there are usually 

no clear-cut or universal choices of computational methods. An appropriate choice of 

computational method is case by case, depending on data characteristics and scientific 

questions at hand. Inappropriate method choices would, to varying extents, bias data 

analysis (such as by introducing artificial, non-biological signals) and ultimately lead to 

false discoveries 74,75. To avoid this issue, the scRNA-seq field and the broad biomedical 

science community yearn for comprehensive benchmark studies that independently and 

fairly evaluate computational methods 24. A well-designed benchmark study should offer 

users objective, accurate, and informative guidance on selecting the appropriate 

method(s) for a specific analysis task. 

To provide the first, comprehensive benchmark of computational doublet-detection 

methods, in this study, we evaluated nine existing methods using 16 real and 112 

synthetic scRNA-seq datasets from three perspectives: overall detection accuracy, 

https://paperpile.com/c/Kxhkna/DKL0N
https://paperpile.com/c/Kxhkna/mbOqw+GzKn3+wsAOk+SgUhD+5nLmp
https://paperpile.com/c/Kxhkna/bVNX7+aSNlT
https://paperpile.com/c/Kxhkna/mbOqw
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impacts on downstream analyses, and computational efficiency. We further categorized 

our benchmark results in nine aspects, including four related to doublet-detection 

accuracy and five associated with software implementation (Figure 5, which does not 

include DoubletDecon because it failed to run in most evaluations). In summary, 

DoubletFinder is the best method in terms of accuracy, yet its computational efficiency 

and stability are not among the best. The cxds method is the opposite: it has the best 

computational efficiency, excellent stability, but medium accuracy. Our summary is 

consistent with the aforementioned principle of computational methods that no method is 

universally the best, so a fair comparison of computational methods should be 

multifaceted.  

Although our benchmark study has collected all the available scRNA-seq datasets to 

date that contain doublet annotations, we note that none of the annotations is utterly 

accurate due to experimental limitations. For example, the two species-mixture datasets, 

hm12k and hm6k, only labeled the heterotypic doublets formed by a human cell and a 

mouse cell; the six demuxlet datasets only labeled the doublets formed by cells of two 

individuals; many homotypic doublets were unlabeled in all these datasets. As a result, 

the incompleteness of doublet annotations would have inflated the false negative rates 

and reduced the precision of computational doublet-detection methods in our benchmark. 

To overcome this limitation, we designed extensive simulations to benchmark 

computational doublet-detection methods in a fair and comprehensive manner. Yet, how 

to generate accurate doublet annotations by experimental techniques remains an open 

question to experimental scientists.  
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Regarding the future development and benchmark of computational doublet-detection 

methods, here we list five open questions we deem important for computational scientists. 

1. How to estimate the unknown doublet rate in a scRNA-seq dataset? Some 

methods provide heuristic guidance to estimate the doublet rates or select the 

threshold on doublet scores. For example, DoubletFinder suggests using the rates 

of heterotypic doublets and Poisson doublet formation as the respective lower and 

upper bounds of the expected doublet rate 41,50; Scrublet recommends setting the 

doublet-score threshold in the middle of the two modes, which it expects to appear, 

in the doublet-score distribution 40; Solo sets the doublet-score threshold to 0.5 by 

default 39. However, there lacks consensus or direct estimation of the doublet rate 

from scRNA-seq data. To address this issue, we suggest estimating the null 

distribution of doublet scores (of singlets) as a preceding step; with a reliable null 

distribution estimate, estimating the doublet rate would then become feasible 76. 

2. How to distinguish homotypic doublets from singlets? Existing computational 

doublet-detection methods cannot well identify the homotypic doublets that have 

similar transcriptome profiles to those of singlets, likely due to the ways they 

generate artificial doublets 39–41,45–48. A possible direction is to extract and 

incorporate features that can distinguish homotypic doublets from singlets, such 

as the droplet library size.       

3. How to distinguish doublets from droplets contaminated by ambient mRNA? 

Ambient mRNA molecules are released from lysed cells into the cell suspension; 

they may enter droplets and contaminate the measured transcriptome profiles of 

those droplets. Similar to doublets, contaminated droplets by ambient mRNA also 

https://paperpile.com/c/Kxhkna/xt79a+hyzQV
https://paperpile.com/c/Kxhkna/JizuW
https://paperpile.com/c/Kxhkna/I3LzE
https://paperpile.com/c/Kxhkna/U68N0
https://paperpile.com/c/Kxhkna/JizuW+hyzQV+I3LzE+Dky9Q+dD796+opwB0+I4OGu
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confound scRNA-seq data analysis 5. Existing computational doublet-detection 

methods do not distinguish these two types of non-singlet droplets; instead, 

computational methods have been developed separately to detect contaminated 

droplets 77,78. Ideally, the single-cell field desires a computational method that can 

simultaneously remove all non-singlet droplets, including doublets, contaminated 

droplets, and empty droplets, from scRNA-seq data. 

4. How to improve doublet-detection algorithms regarding the use of artificial doublets? 

The majority of existing computational methods tackle the doublet detection task 

as a binary classification problem (Table 1). To train a classification algorithm, they 

use original droplets in data and artificial doublets they simulate to represent 

“singlets” and “doublets,” respectively. However, not all original droplets are 

singlets, because otherwise we would not need doublet detection. By neglecting 

differences between original droplets and singlets, existing methods do not supply 

their classification algorithms with quality training data, and a likely consequence 

is that their post-training classifiers would be biased 79 and thus miss a substantial 

number of doublets among original droplets. A possible remedy for this drawback 

is to filter out the likely doublets from the original droplets, e.g., by applying outlier 

detection methods 80, before simulating artificial doublets and subsequently 

training a classification algorithm. An alternative remedy is to keep the training data 

but train a classification algorithm under the “learning with noise labels” machine-

learning framework 79,81.  Moreover, there are possible improvements to be made 

in the generation of artificial doublets. Instead of simply adding or averaging the 

gene expression profiles of two random droplets as done in existing methods, finer 

https://paperpile.com/c/Kxhkna/AkF57
https://paperpile.com/c/Kxhkna/nxpH0+tnq4s
https://paperpile.com/c/Kxhkna/FqkDh
https://paperpile.com/c/Kxhkna/uVuuu
https://paperpile.com/c/Kxhkna/evtw5+FqkDh


34 

adjustments can be made to the mixing of two droplets so as to generate more 

realistic artificial doublets. 

5. How to ensemble doublet-detection methods? As a multi-faceted problem, doublet 

detection can hardly be solved by one single computational method. This is due to 

the diversity of scRNA-seq datasets. The success of the method hybrid, an 

ensemble of two methods bcds and cxds, motivated us to think that ensembling 

reasonable and complementary methods, a technique widely used in machine 

learning 82,83, may boost the accuracy of doublet detection. Supplementary Tables 

S11 and S12 show the pairwise similarities of doublet-detection methods in terms 

of their doublet scores and identified doublets in the 16 real datasets. Seeing that 

the top-performing methods exhibited noticeable differences, we expect that there 

is room for using the ensemble technique to develop a more accurate doublet-

detection method (see further discussion in the Supplementary). 

By dissecting existing doublet-detection methods, we found method performance 

highly dependent on the values of hyperparameters (also known as tuning parameters), 

if any. For example, DoubletFinder, Scrublet, and doubletCells all use the k-nearest 

neighbor (kNN) algorithm to distinguish doublets from singlets; however, surprisingly, 

DoubletFinder outperformed the other two methods in most of our comparisons. A 

probable reason is that DoubletFinder optimizes several key hyperparameters of the kNN 

algorithm in a reasonable and data-driven way. For example, DoubletFinder selects the 

number of nearest neighbors k by maximizing the bimodality of the doublet score 

distribution. This advantage makes DoubletFinder adaptable to scRNA-seq datasets with 

distinct characteristics 40,41,48. In contrast, Scrublet and doubletCells each assign a fixed 

https://paperpile.com/c/Kxhkna/K5P6Z+8Lmaa
https://paperpile.com/c/Kxhkna/hyzQV+JizuW+Dky9Q
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default value to k, restricting their flexibility and generalizability 40,41,48 (single-cell RNA 

sequencing discussion in the Supplementary). The choice of hyperparameter values is 

especially important for methods built upon complex algorithms. For example, bcds uses 

the gradient boosting algorithm 45, a leading classification algorithm that has more 

hyperparameters than the simple kNN algorithm does 84; however, the additional 

complexity did not make bcds outperform DoubletFinder, probably due to the lack of 

hyperparameter optimization. This phenomenon emphasizes the importance for 

bioinformatics tools to optimize hyperparameter values in a scientific, data-driven way 

85,86. 

Ideally, doublet removal requires both experimental techniques and computational 

methods. If permitted, researchers may use an experimental technique and a 

computational method sequentially. That is, they first use an experimental technique such 

as multiplexing to filter out obvious doublets (e.g., the doublets formed by cells of different 

samples) and then apply a computational method to further screening for the remaining 

droplets that are likely doublets. Or they may combine the doublet scores assigned to 

each droplet by an experimental technique and a computational method, as proposed by 

the method Solo. This second approach requires the experimental technique to have a 

doublet scoring system 39. 

In summary, computational doublet detection is critical for the quality control of 

scRNA-seq data analysis 5. Our study is the first comprehensive benchmark of currently 

available doublet-detection methods under a wide variety of biological and technical 

settings. Our study provides much-needed guidance to researchers in choosing 

appropriate doublet-detection methods for scRNA-seq data analysis. Our results also 

https://paperpile.com/c/Kxhkna/hyzQV+JizuW+Dky9Q
https://paperpile.com/c/Kxhkna/dD796
https://paperpile.com/c/Kxhkna/9XoTK
https://paperpile.com/c/Kxhkna/zAOka+9PU6u
https://paperpile.com/c/Kxhkna/I3LzE
https://paperpile.com/c/Kxhkna/AkF57
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point out directions for further methodological development and improvement in 

computational doublet detection. 

2.4 Methods 

2.4.1 Real data preprocessing 

Whenever preprocessed datasets were available, they were directly used in this study. 

Otherwise, datasets were preprocessed in the same way as in the original studies in 

which they were generated. In every dataset, genes and droplets were removed if they 

had no reads in any droplets and any genes, respectively. Below is the preprocessing 

detail for every dataset. 

pbmc-ch 42: human peripheral blood mononuclear cells (PBMCs) from eight donors. 

Doublets were annotated by cell hashing with CD45 as the hashing antibody. This dataset 

is available at  

https://www.dropbox.com/sh/ntc33ium7cg1za1/AAD_8XIDmu4F7lJ-5sp-rGFYa?dl=0  

in files pbmc_hto_mtx.rds and pbmc_umi_mtx.rds. Its preprocessing pipeline is available 

at https://satijalab.org/seurat/v3.1/hashing_vignette.html, including an instruction about 

how to extract the doublet annotation.  

cline-ch 42: four human cell lines HEK, K562, KG1, and THP1. Doublets were 

annotated by cell hashing with CD29 and CD45 as the hashing antibodies. The access 

URL and preprocessing pipeline of this dataset are the same as those of the pbmc-ch 

dataset. The dataset is in files hto12_hto_mtx.rds and hto12_umi_mtx.rds. 

Mkidney-ch 39: dissociated mouse kidney cells. Doublets were annotated by cell 

hashing with cholesterol modified oligos (CMOs) as the hashing antibodies. The raw 

https://paperpile.com/c/Kxhkna/4ONen
https://www.dropbox.com/sh/ntc33ium7cg1za1/AAD_8XIDmu4F7lJ-5sp-rGFYa?dl=0
https://satijalab.org/seurat/v3.1/hashing_vignette.html
https://paperpile.com/c/Kxhkna/4ONen
https://paperpile.com/c/Kxhkna/I3LzE
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count matrix and doublet annotations were downloaded from the Gene Expression 

Omnibus (GEO) 87 with the accession GSE140262.  

hm-12k and hm-6k 52: two mixtures of human HEK293T and mouse NIH3T3 cells with 

12,000 and 6000 droplets respectively. The raw count matrices were downloaded from  

https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/hgmm_12k 

and 

https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/hgmm_6k.  

A droplet was annotated as a doublet if its barcode was associated with both human 

and mouse. Mouse genes were mapped into their human orthologs using R package 

biomaRt 88 (v 2.44.1). Then each pair of human and mouse count matrices was 

concatenated into each of the two datasets.  

pbmc-1A-dm, pbmc-1B-dm, and pbmc-1C-dm 43: three samples of PBMCs from 

systemic lupus erythematosus (SLE) patients. Droplets were sequenced immediately 

after thawing. Doublets were annotated by demuxlet 43. The raw count matrix and doublet 

annotations were downloaded from the GEO with the accession GSE96583. 

pbmc-2ctrl-dm and pbmc-2stiml-dm 43: two samples of PBMCs from SLE patients. 

Droplets were sequenced after being cultured for six hours following thawing, with (pbmc-

2stiml-dm) or without (pbmc-2ctrl-dm) IFN-beta stimulation. Doublets were annotated by 

demuxlet. The raw count matrix and doublet annotations were downloaded from the GEO 

with the accession GSE96583. 

J293t-dm 43: a mixture of human Jurkat and HEK293T cell lines. Doublets were 

annotated by demuxlet. The raw count matrix was downloaded from  

https://ucsf.app.box.com/s/vg1bycvsjgyg63gkqsputprq5rxzjl6k/file/220975201845. 

https://paperpile.com/c/Kxhkna/xpLz3
https://paperpile.com/c/Kxhkna/zc8Nm
https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/hgmm_12k
https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/hgmm_6k
https://paperpile.com/c/Kxhkna/XPCQK
https://paperpile.com/c/Kxhkna/wB9b8
https://paperpile.com/c/Kxhkna/wB9b8
https://paperpile.com/c/Kxhkna/wB9b8
https://paperpile.com/c/Kxhkna/wB9b8
https://ucsf.app.box.com/s/vg1bycvsjgyg63gkqsputprq5rxzjl6k/file/220975201845
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Doublet annotations were obtained from  

https://ucsf.app.box.com/s/vg1bycvsjgyg63gkqsputprq5rxzjl6k/file/220974993609. 

pdx-MULTI 44: a mixture of human breast cancer cells and mouse immune cells from 

a patient-derived xenograft (PDX) mouse model. Doublets were annotated by MULTI-seq 

44. The dataset was downloaded from the GEO with the accession GSE129578. Doublet 

were annotated by following the data processing pipeline available at 

https://github.com/chris-mcginnis-ucsf/MULTI-seq. 

HMEC-orig-MULTI and HMEC-rep-MULTI 44: human primary mammary epithelial 

cells (HMECs) with HMEC-orig-MULTI as the original sample and HMEC-rep-MULTI as 

a technical replica. The GEO accession and preprocessing pipeline of this dataset are 

the same as those of the pdx-MULTI dataset. 

HEK-HMEC-MULTI 44: a mixture of human HEK293Ts and HMECs. The GEO 

accession and preprocessing pipeline of this dataset are the same as those of the pdx-

MULTI dataset. 

nuc-MULTI 44: a mixture of purified nuclei from human HEK293Ts, Jurkats, and 

mouse embryonic fibroblasts (MEFs). The GEO accession and preprocessing pipeline of 

this dataset are the same as those of the pdx-MULTI dataset. Mouse genes were mapped 

into their human orthologs using R package biomaRt (v 2.44.1).   

2.4.2 Benchmark environment and parameter settings 

All doublet-detection methods were executed on a server with two Intel(R) Xeon(R) E5-

2687W v4 CPUs, 256GB memory, and Ubuntu 18.04 system. An Nvidia(R) Geforce(R) 

RTX 2080 Ti GPU was used to accelerate the execution of the Solo method as suggested 

39. The parameters of doublet-detection methods were set to their recommended values 

https://ucsf.app.box.com/s/vg1bycvsjgyg63gkqsputprq5rxzjl6k/file/220974993609
https://paperpile.com/c/Kxhkna/bnItm
https://paperpile.com/c/Kxhkna/bnItm
https://github.com/chris-mcginnis-ucsf/MULTI-seq
https://paperpile.com/c/Kxhkna/bnItm
https://paperpile.com/c/Kxhkna/bnItm
https://paperpile.com/c/Kxhkna/bnItm
https://paperpile.com/c/Kxhkna/I3LzE
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or default values if no recommendation was available. The latest version of each method 

(by September 2020; Table 1) was used. Random seeds were fixed and saved in our 

code to ensure reproducibility. The detailed configuration for each method is summarized 

below. 

doubletCells: The method was executed by following the instruction at 

https://bioconductor.statistik.tu-

dortmund.de/packages/3.8/workflows/vignettes/simpleSingleCell/inst/doc/work-6-

doublet.html. Doublet scores were obtained from the doubletCells function in R package 

scran (v 1.16.0) with parameters set to default. 

Scrublet: R package reticulate (v 1.16) was used to execute the python module 

scrublet (v 0.2.1). The parameters were set by following the instruction at  

https://github.com/AllonKleinLab/scrublet/blob/master/examples/scrublet_basics.ipynb. 

Doublet scores were obtained from the function Scrublet.scrub_doublets. 

cxds, bcds and hybrid: These three methods were executed by following the 

instructions at  https://github.com/kostkalab/scds. Doublet scores were obtained from the 

functions cxds, bcds and cxds_bcds_hybrid in R package scds (v 1.2.0) with parameters 

set to default. 

DoubletDetection: R package reticulate (v 1.16) was used to execute the python 

module doubletdetection. The parameters were set by following the instruction at 

https://nbviewer.jupyter.org/github/JonathanShor/DoubletDetection/blob/master/tests/no

tebooks/PBMC_8k_vignette.ipynb. The parameter n_iters was set to 5, as larger values 

were found to increase the running time significantly, but with little improvement in 

https://bioconductor.statistik.tu-dortmund.de/packages/3.8/workflows/vignettes/simpleSingleCell/inst/doc/work-6-doublet.html
https://bioconductor.statistik.tu-dortmund.de/packages/3.8/workflows/vignettes/simpleSingleCell/inst/doc/work-6-doublet.html
https://bioconductor.statistik.tu-dortmund.de/packages/3.8/workflows/vignettes/simpleSingleCell/inst/doc/work-6-doublet.html
https://github.com/AllonKleinLab/scrublet/blob/master/examples/scrublet_basics.ipynb
https://github.com/kostkalab/scds
https://nbviewer.jupyter.org/github/JonathanShor/DoubletDetection/blob/master/tests/notebooks/PBMC_8k_vignette.ipynb
https://nbviewer.jupyter.org/github/JonathanShor/DoubletDetection/blob/master/tests/notebooks/PBMC_8k_vignette.ipynb
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performance. Doublet scores were obtained from the function 

doubletdetection.BoostClassifier.fit. 

DoubletFinder: The method was executed by following the instruction at   

https://github.com/chris-mcginnis-ucsf/DoubletFinder. Doublet scores were obtained 

from the function doubletFinder_v3 in R package DoubletFinder (2.0.3) with parameters 

set to default. 

DoubletDecon: The method was executed by following the instruction at   

https://github.com/EDePasquale/DoubletDecon. Doublet predictions were obtained from 

the function Main_Doublet_Decon in R package DoubletDecon (v 1.1.5) with parameters 

set to default. 

Solo: The method was executed by following the instruction at the GitHub repository 

https://github.com/calico/Solo. Every scRNA-seq count matrix was transformed into the 

loom format as required by the method. The parameters were set the same as those in 

the file Solo_params_example.json, which was downloaded from the GitHub repository. 

Doublet scores were obtained from the file softmax_scores.npy. 

2.4.3 Measures of doublet-detection accuracy 

Methodologically, computational doublet-detection methods employ binary classification 

algorithms to distinguish between two classes: singlets and doublets. AUPRC and 

AUROC, two measures of the overall accuracy of a binary classification algorithm, were 

used to evaluate the overall doublet-detection accuracy of each method. These two 

measures were calculated using the functions pr.curve and roc.curve in R package 

PRROC (v 1.3.1). Both functions input two vectors: the predicted doublet scores of true 

singlets and those of true doublets, and they output AUPRC and AUROC, one value each. 

https://github.com/chris-mcginnis-ucsf/DoubletFinder
https://github.com/EDePasquale/DoubletDecon
https://github.com/calico/solo
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2.4.4 Simulation of scRNA-seq datasets containing doublets 

All synthetic scRNA-seq datasets used in this study were generated in two steps. In Step 

1, singlets in each dataset were generated by scDesign 51, which estimated a generative 

model of gene expression profiles from a real scRNA-seq dataset (cell type: HEK293t; 

protocol: 10x Genomics; gene number: 18760). The detailed experimental settings are 

described in the next subsection. In Step 2, given the number of singlets and a pre-

specified doublet rate (i.e., the proportion of doublets among all droplets), the 

corresponding number of doublets were generated by random pairing of singlets. In detail, 

two randomly sampled singlets had their gene expression profiles (in UMI counts) 

averaged by gene, and that averaged profile is called a prototype doublet. For each of 

the 16 real scRNA-seq datasets, a doublet-to-singlet size ratio, defined as (average 

doublet library size)/(average singlet library size), was calculated. Then the library size of 

each prototype doublet was multiplied by a factor sampled from a normal distribution, 

whose mean and standard division were set to the mean and standard deviation of the 

16 doublet-to-singlet size ratios. This scaling step turned prototype doublets into doublets, 

so that the doublet-to-singlet size ratios in the synthetic data were similar to those in the 

real data. Finally, the singlets used to generate doublets were removed. In mathematical 

terms, if X singlets were generated in Step 1 and the doublet rate was Y (a value between 

0 and 1), then after Step 2 the numbers of doublets and singlets would be XY/(1+Y) and 

X(1-Y)/(1+Y), respectively, both rounded to the nearest integers. For example, if 1000 

singlets were generated in Step 1 and the doublet rate was 20%, the numbers of doublets 

and singlets in the final dataset would be 167 and 667, respectively, making a total 

number of 834 droplets. 

https://paperpile.com/c/Kxhkna/6hv95
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2.4.5 Experimental settings used in benchmarking simulations 

80 scRNA-seq datasets were generated by scDesign to benchmark doublet-detection 

methods in four aspects: varying doublet rates, sequencing depths (i.e., per-cell library 

sizes), cell types, and between-cell-type heterogeneity levels.  

● 20 synthetic datasets were generated with doublet rates increasing from 2% to 40% 

by a step size of 2%. The per-cell library size was set to 2000 UMI counts. All 

datasets contained two cell types. Based on the data generation scheme described 

in the last subsection, 500 singlets were generated for each cell type in Step 1. In 

Step 2, doublets were introduced based on each doublet rate, and the singlets 

used to generate doublets were removed. 

● 20 synthetic datasets were generated with per-cell library sizes increasing from 

500 to 10,000 UMI counts by a step size of 500 counts. All datasets contained two 

cell types. Based on the data generation scheme described in the last subsection, 

500 singlets were generated for each cell type in Step 1. In Step 2, doublets were 

introduced based on a 20% doublet rate, and the singlets used to generate 

doublets were removed. 

● 19 synthetic datasets were generated with numbers of cell types increasing from 

2 to 20 by a step size of 1. The per-cell library size was set to 2000 UMI counts. 

Based on the data generation scheme described in the last subsection, 500 

singlets were generated for each cell type in Step 1. In Step 2, doublets were 

introduced based on a 20% doublet rate, and the singlets used to generate 

doublets were removed. 
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● 21 synthetic datasets were generated with varying heterogeneity levels between 

two cell types. The heterogeneity level was controlled by four parameters (pUp, 

pDown, fU, and fL) in scDesign. Specifically, pUp and pDown denote the 

proportions of up- and down-regulated genes, and fU and fL define the upper and 

lower bounds of fold changes in the expression levels of DE genes. The following 

parameter combinations were used to generate 21 heterogeneity levels: 

Level 1:  pUp = 0.010, pDown = 0.010, fU = 1.0, and fL = 0.5; 

Level 2:  pUp = 0.012, pDown = 0.012, fU = 1.2, and fL = 0.6; 

… 

Level 21:  pUp = 0.050, pDown = 0.050, fU = 5.0, and fL = 2.5. 

At all heterogeneity levels, the per-cell library size was set to 2000 UMI counts. 

Based on the data generation scheme described in the last subsection, 500 

singlets were generated for each cell type in Step 1. In Step 2, doublets were 

introduced based on a 20% doublet rate, and the singlets used to generate 

doublets were removed. 

2.4.6 DE gene analysis 

One synthetic scRNA-seq dataset was generated by scDesign to have two cell types. The 

per-cell library size was 10,000 UMI counts. The pUp and pDown parameters in scDesign 

were both set to 0.03, suggesting that a total of 6% of genes were DE between the two 

cell types (3% up-expressed and 3% down-expressed). The fU and fL parameters in 

scDesign (i.e., the upper and lower bound of fold changes for DE genes) were set to 3 

and 1.5, respectively. Based on the data generation scheme described in the Subsection 

“Simulation of scRNA-seq datasets containing doublets,” 500 singlets were generated for 
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each cell type in Step 1. In Step 2, doublets were introduced based on the 40% doublet 

rate, and the singlets used to generate doublets were removed. Three DE methods—

DESeq2 55, MAST 56, and the Wilcoxon rank-sum test 57 implemented in the R package 

Seurat (v 3.1.5) 61,62—were applied to this dataset (“contaminated dataset” containing 

both singlets and doublets), its clean version without doublets (“clean dataset” only 

containing singlets), and its post-doublet-detection version after each doublet-detection 

method was applied (the top 40% droplets that received the highest doublet scores were 

removed). After each DE method was applied to every dataset, genes whose Bonferroni-

corrected p-values did not exceed 0.05 were identified as DE. Three accuracy 

measures—precision, recall, and TNR—were calculated for every set of identified DE 

genes. For each DE method, its accuracy on the contaminated dataset and the clean 

dataset were used as the negative and positive controls, respectively, for benchmarking 

its accuracy on the post-doublet-detection datasets (Figure 2b–2c). 

2.4.7 Identification of highly variable genes 

Three synthetic datasets were generated with 10%, 20%, and 40% doublet rates, 

respectively. The per-cell library size was set to 2000 UMI counts. All datasets contained 

two cell types. Based on the data generation scheme described in the Subsection 

“Simulation of scRNA-seq datasets containing doublets,” 500 singlets were generated for 

each cell type in Step 1. In Step 2, doublets were introduced based on each doublet rate, 

and the singlets used to generate doublets were removed. To identify the highly variable 

genes (HVGs), we applied the function FindVariableFeatures in R package Seurat (v 

3.1.5) with default parameters to the three datasets (“contaminated datasets” containing 

both singlets and doublets; one dataset per doublet rate), their clean versions without 

https://paperpile.com/c/Kxhkna/PwyoW
https://paperpile.com/c/Kxhkna/myQaq
https://paperpile.com/c/Kxhkna/jRhmu
https://paperpile.com/c/Kxhkna/sFM0Y+I7s7r
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doublets (“clean datasets” only containing singlets), and their post-doublet-detection 

version after each doublet-detection method was applied (the top 10%, 20%, or 40% 

droplets that received the highest doublet scores were removed, and the removal 

percentage was set to the doublet rate). We refer to the identified HVGs as contaminated 

HVGs, clean HVGs, and post-doublet-detection HVGs, respectively. The Jaccard index 

between two sets of HVGs was calculated by the function simi in R package proxy (v 0.4-

24) (Figure 2d). 

2.4.8 Cell clustering analysis 

Three synthetic scRNA-seq datasets were generated by scDesign to have four, six, and 

eight cell types. The per-cell library size was 2000 UMI counts. Based on the data 

generation scheme described in the Subsection “Simulation of scRNA-seq datasets 

containing doublets,” 500 singlets were generated for each cell type in Step 1. In Step 2, 

doublets were introduced based on a 20% doublet rate, and the singlets used to generate 

doublets were removed. The heterogeneity between cell types was determined by the 

default pUp, pDown, fU, and fL parameters in scDesign. After each doublet-detection 

method was applied to each dataset, the top x% of droplets, which received the highest 

doublet scores (with the removal percentage x% ranging from 0% to 25% by a step size 

of 1%), were removed; then two clustering algorithms—Louvain clustering implemented 

in R package Seurat (v 3.1.5) and DBSCAN 64 implemented in R package dbscan (v 1.1-

5)—were used to identify cell clusters. Finally, the numbers of cell clusters were 

compared with the numbers of cell types to evaluate the effectiveness of doublet removal 

(Figure 2e; Supplementary Figure S2a). Whenever the number of cell clusters matched 

the number of cell types, the proportion of singlets among the remaining droplets was 

https://paperpile.com/c/Kxhkna/jrhxm
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used to measure each doublet-detection method’s capacity for removing homotypic 

doublets (Figure 2f; Supplementary Figure S2b). In the example of four cell types, if a 

doublet-detection method (given a clustering algorithm) correctly led to four cell clusters 

under six removal percentages, then a proportion of singlets was calculated for each of 

the 24 clusters (four clusters times six removal percentages), resulting in 24 proportions. 

2.4.9 Cell trajectory inference 

Two scRNA-seq datasets were generated by Splatter 67 to have cell trajectories. Both 

datasets contained 1000 genes. In Step 1 of the data generation scheme described in the 

Subsection “Simulation of scRNA-seq datasets containing doublets,” the first dataset had 

500 singlets following a bifurcating trajectory, whose two branches had 250 singlets each, 

and the second dataset had 1000 singlets from a conjunction of three sequential 

trajectories, two of which had 333 singlets and the other had 334 singlets. In Step 2 for 

both datasets, doublets were introduced based on a 20% doublet rate, and the singlets 

used to generate doublets were removed. Parameters in Splatter were set to default 

except for de.prob and de.facLoc, which were set to 0.5 and 0.2, respectively. Each 

dataset was expanded into a suite, including its original version (“contaminated dataset”), 

clean version without doublets (“clean dataset”), and its post-doublet-detection version 

after each doublet-detection method was applied (the top 20% droplets that received the 

highest doublet scores were removed). For the first suite of datasets, cell trajectories were 

constructed by Slingshot 68 based on the pipeline available at 

https://github.com/kstreet13/slingshot/blob/master/vignettes/vignette.Rmd. For the 

second suite of datasets, the minimum spanning tree (MST) algorithm implemented in R 

package slingshot (v 1.6.1) was used to construct cell trajectories. The trajectories 

https://paperpile.com/c/Kxhkna/9ciDr
https://paperpile.com/c/Kxhkna/N1qrT
https://github.com/kstreet13/slingshot/blob/master/vignettes/vignette.Rmd
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constructed from the contaminated dataset and the clean dataset were used as the 

negative and positive controls, respectively, for benchmarking the trajectories inferred 

from the post-doublet-detection datasets (Figure 3a–2b).  

In the temporally DE genes analysis, a scRNA-seq dataset with a single trajectory was 

generated by following the Slingshot pipeline available at 

https://github.com/kstreet13/slingshot/blob/master/vignettes/vignette.Rmd. This dataset 

contained 750 genes, whose temporal expression dynamics were categorized into four 

types: 500 stable genes with unchanged mean expression levels, 100 activated genes 

with increasing mean expression levels, 100 deactivated genes with decreasing mean 

expression levels, and 50 transient genes with mean expression levels first increasing 

and then decreasing, along the trajectory. The genes of the latter three types were defined 

as temporally DE genes. The mean expression levels of all 750 genes were specified by 

following the Slingshot pipeline. The per-cell library sizes were sampled from a negative 

binomial distribution with mean 1875 and dispersion 4. In the generation of a singlet, the 

750 gene expression levels were sampled from a multinomial distribution with the number 

of trials as the (randomly sampled) per-cell library size and the probability of success as 

the 750 genes’ normalized mean expression levels (summing up to 1). Following this, 300 

singlets were generated in Step 1 of the data generation scheme described in the 

Subsection “Simulation of scRNA-seq datasets containing doublets.” In Step 2, doublets 

were introduced based on a 20% doublet rate, and the singlets used to generate doublets 

were removed. After data generation, the pseudotime of each droplet was inferred by 

Slingshot and TSCAN on this dataset (“contaminated data”), its clean version without 

doublets (“clean data”), and  its post-doublet-detection version after each doublet-

https://github.com/kstreet13/slingshot/blob/master/vignettes/vignette.Rmd
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detection method was applied (the top 20% droplets that received the highest doublet 

scores were removed). Then for each dataset, we regressed each gene’s expression 

levels in all droplets on the inferred pseudotime of the same droplets by the general 

additive model (GAM), which was implemented in the R function gam, and obtained a p-

value. As a result, the genes with Bonferroni-corrected p-values under 0.05 were 

identified as temporally DE genes. Three accuracy measures—precision, recall, and 

TNR—were calculated for every set of identified temporally DE genes. The accuracy on 

the contaminated data and the clean data were used as the negative and positive controls, 

respectively, for benchmarking the accuracy on the post-doublet-detection data obtained 

by each doublet-detection method (Figure 3c–2d).  

2.4.10   Distributed computing 

We used two real scRNA-seq datasets pbmc-ch and pbmc-2ctrl-dm to compare the 

performance of doublet-detection methods under distributed computing. These two 

datasets are relatively large in our real data collection, containing 15,272 and 13,913 

droplets (Table 1). For each doublet-detection method, its accuracy (AUPRC and AUROC) 

on the original datasets were used as the baselines. Next, the original dataset was 

randomly split into two, four, six, eight, and ten equally-sized batches for distributed 

computing. For every number of batches, each doublet-detection method was executed 

on each batch separately, the resulting doublet scores were concatenated across batches, 

and AUPRC and AUROC were calculated for the concatenated doublet scores and 

compared with the baselines (Figure 4a–b).  
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2.4.11   Scalability, stability, and usability 

25 synthetic scRNA-seq datasets with varying numbers of droplets were generated by 

scDesign to examine the scalability of doublet-detection methods. Specifically, the 

number of genes was fixed to 5000, and the number of droplets increased from 400 to 

10,000, with a step size of 400. Each doublet-detection method was executed on the 25 

datasets, and the relationship between its running time and the number of droplets was 

plotted in Figure 4e. 

Two real datasets, pbmc-ch and pbmc-2ctrl-dm, were used to evaluate the stability of 

doublet-detection methods. From each dataset, 20 subsets were generated by randomly 

subsampling 90% of droplets and 90% of genes. Each doublet-detection method was 

executed on all these subsets, and its stability was shown by the distributions of the 

resulting AUPRC and AUROC across subsets (Figure 4f). 

Four criteria were defined for doublet-detection methods’ usability: software quality, 

execution convenience, publication, and documentation & support. The software quality 

criterion indicates whether a doublet-detection method can be executed on all real and 

synthetic datasets used in this study. The execution convenience criterion is related to 

the popularity of the computational platform required to run a method. Methods written in 

R and Python packages are preferred because of the popularity of these two languages. 

The publication criterion is regarding whether a doublet-detection method has been 

published in a peer-reviewed journal. The documentation & support criterion evaluates a 

method’s user-support resources, such as open-source code, tutorials, and active Q&As.  

Each criterion has three levels: excellent, good, and fair, corresponding to a score of 2, 
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1, and 0, respectively. The final usability score of a method was defined as the sum of the 

method’s scores in these four criteria. 

2.5 Acknowledgements 

This chapter is based on the joint work with Dr. Jingyi Jessica Li. We would like to thank 

Dr. Bo Li at University of Texas Southwestern Medical Center (https://www.lilab-

utsw.org/research) for bringing our attention to the doublet detection problem. We also 

appreciate the comments and feedback from our group members in the Junction of 

Statistics and Biology at UCLA (http://jsb.ucla.edu). 

 

 

 

 

 

 
  

https://www.lilab-utsw.org/research
https://www.lilab-utsw.org/research
http://jsb.ucla.edu/


51 

2.6 Figures and Tables 
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Figure 1. Evaluation of the eight doublet detection methods (except DoubletDecon) 

using 16 benchmark scRNA-seq datasets.  

a-b, Performance (AUPRC and AUROC values) of each method applied to benchmark 

datasets, with (a) showing the distributions and (b) showing the values per dataset (white 

squares indicating failed runs); two baseline methods (lsize and ngene) are included in 

the comparison.  

c, Precision, recall, and true negative rate (TNR) of each method under the 10%, 20%, 

or 40% identification rate, which is the percentage of droplets that received the highest 

doublet scores and were identified as doublets. 
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Figure 2. Evaluation of the eight doublet detection methods (except DoubletDecon) 
using four simulation studies, and the effects of doublet detection on DE analysis, 
highly variable genes (HVG) identification, and cell clustering.  
a, Performance (AUPRC values) of each method in four simulation settings: varying 

doublet rates (from 2% to 40% with a step size of 2%), varying sequencing depths (from 

500 to 10,000 UMI counts per cell, with a step size of 500 counts), varying numbers of 

cell types (from 2 to 20 with a step size of 1), and 20 heterogeneity levels, which specify 

the extent to which genes are differentiated between two cell types (Methods). 

b, Precision, recall, and TNR by each of three differential expression (DE) methods: 
DESeq2, MAST, and the Wilcoxon rank-sum test (Wilcox), after each of the eight doublet 
detection methods was applied to a simulated dataset; for negative and positive controls, 
we included the DE accuracies on the contaminated data with 40% doublets and the clean 
data without doublets.  
c, We re-illustrate the results in b) by showing the improved DE accuracy in each metric 
(precision, recall, and TNR) after removing detected doublets from the contaminated data; 
the results on the clean data without doublets are shown as a positive control. 
d, Left panel: the Jaccard index between the post-doublet-detection HVGs of each 
doublet-detection method and the clean HVGs under the 10%, 20%, or 40% doublet rate. 
The Jaccard index between the contaminated HVGs and the clean HVGs was used as 
negative control for each doublet rate. Right panel: illustration of the left panel; the 
improved Jaccard indices upon the negative controls (i.e., Jaccard index differences) after 
the detected doublets by each method were removed from the contaminated data. 
e, Cell clustering result by the Louvain algorithm after each of the eight doublet-detection 
method was applied to remove a varying percentage of droplets as the identified doublets 
(y-axis, from 0% to 25% with step size of 1%); the true numbers of cell clusters are four, 
six, and eight under three simulation settings, each containing 20% true doublets; the 
yellow color indicates that the correct number of clusters was identified, while the red 
color indicates otherwise. The true percentage of doublets, 20%, is highlighted in blue. 
For each method, its average correctness (i.e., the percent of yellow colors across all the 
removal percentages) is also highlighted in blue.  
f, Under the same three simulation settings as in a), the distributions of the singlet 
proportions are shown after doublet removal by each method, if the remaining droplets 
led to the correct number of cell clusters in a); doubletCells is not shown for the four-
cluster setting because it did not lead to the correct number of cell clusters in a).   
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Figure 3. Effects of doublet detection on cell trajectory inference.  

a, Trajectories constructed by Slingshot after each of the eight doublet-detection methods 

was applied to remove the identified doublets, whose percentage among all the droplets 

was set to 20%, the percentage of true doublets in the simulated dataset. The true cell 

topology is bifurcating. For negative and positive controls, we included the trajectories 

constructed on the original dataset with 20% doublets and its cleaned version without 

doublets.  

b, Trajectories constructed by minimum spanning tree (MST) after each of the eight 

doublet detection methods was applied to remove the identified doublets, whose 

percentage among all the droplets was set to 20%, the percentage of true doublets in the 

simulated dataset. The true cell topology is a conjunction of three trajectories. For 

negative and positive controls, we included the trajectories constructed on the original 

dataset with 20% doublets and its cleaned version without doublets.  

c, Precision, recall, and TNR of temporally differentially expressed genes identified by the 

general additive model (GAM) applied to trajectories constructed by Slingshot and 

TSCAN, after each of the eight doublet-detection method was applied to remove the 

identified doublets, whose percentage among all the droplets was set to 20%, the 

percentage of true doublets in the simulated dataset. The true cell topology is a single 

lineage. For negative and positive controls, we included the accuracy of temporally 

differentially expressed genes identified from the contaminated data with 20% doublets 

and the clean data without doublets.  

d, We re-illustrate the results in c) by showing the improved accuracy in each metric 

(precision, recall, and TNR) after removing detected doublets from the contaminated data; 

the results on the clean data without doublets are shown as a positive control. 

  



57 

 
 

 

Figure 4. Comparison of doublet detection methods in terms of distributed 

computing, running time, scalability, and stability.  

a-b, Distributed computing performance of each method on two real datasets pbmc-ch 

and pmc-2ctrl-dm. We first divided the original datasets into varying numbers of batches 

with equal sizes; then we applied each method to individual batches separately to identify 

and remove doublets; finally we pooled batches together to assess the detection accuracy 

(AUPRC and AUROC values) of each method.  

c, Distribution of running time in (natural log) seconds of each method across 16 real 

datasets.  
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d, Mean AUPRC vs. mean running time (across 16 real datasets) of eight doublet-

detection methods. 

e, Scalability of each method. We calculated the relationship between running time and 

droplet number for each method on simulated datasets with varying droplet numbers.  

f, Stability of each method. We generated 20 datasets by randomly subsampling 90% 

droplets and 90% genes from the real datasets pbmc-ch and pbmc-2ctrl-dm, and we 

applied each method to all the subsampled datasets. For each real dataset, the 

distribution of AUPRC values of each method across subsampling is shown, with 25% 

quantiles connected. We use the variance of the distribution to measure the stability of 

each method.  
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Figure 5. A graphical summary of benchmark results. The four aspects related to doublet 
detection accuracy are marked in blue, while other five aspects related to software 
implementation are marked in black. 
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Table 1. An overview of nine computational doublet-detection methods evaluated in this 

study. 

 

Method 
Programming 

language 
Artificial 
doublets 

Dimension 
reduction 

Algorithm description 

Scrublet 40 Python Yes 

Principal 
component 

analysis 
(PCA) 

It generates artificial doublets by adding two randomly selected 
droplets’ gene expression profiles. The doublet score of each 
droplet is defined as the proportion of artificial doublets among 
its k-nearest neighboring droplets in the principal component 
(PC) space, whose number of dimensions is specified by users. 

doubletCells 48 R Yes PCA 

It generates artificial doublets by adding two randomly selected 
droplets’ gene expression profiles. For each droplet, it 
calculates the proportion of artificial doublets, 𝑝𝐴 , in a 
neighborhood in the PC space, whose number of dimensions is 
specified by users. The radius of the neighborhood is set to be 
the median distance from the droplet to its 50th nearest 
neighbor. The doublet score of each droplet is defined as 
𝑝𝐴/(1 − 𝑝𝐴)2. 

cxds 45 R No 
Highly 

variable 
genes 

It calculates a p-value for each pair of genes under the null 
hypothesis that the number of droplets where exactly one of the 
two genes is expressed follows a binomial distribution. The 
doublet score of each droplet is defined as the sum of negative 
(natural) log p-values of co-expressed gene pairs, where two 
genes in each pair both have non-zero expression levels in this 
droplet. 

bcds 45 R Yes 
Highly 

variable 
genes 

It generates artificial doublets by adding two randomly selected 
droplets’ gene expression profiles and pools these artificial 
doublets with the original droplets. Then it trains a gradient 
boosting classifier to classify the pooled droplets into original 
droplets and artificial doublets. The doublet score of each 
droplet is defined as the predicted probability of being an 
artificial doublet. 

hybrid 45 R - - 
It normalizes the doublet scores of cxds and bcds to values 
between 0 and 1. The doublet score of each droplet is defined 
as the sum of the two normalized doublet scores.  

DoubletDetection 
47 

Python Yes PCA 

It generates artificial doublets by adding two randomly selected 
droplets’ gene expression profiles and pools these artificial 
doublets with the original droplets. Then it conducts Louvain 
clustering on the pooled droplets. For each droplet cluster, it 
performs a hypergeometric test and computes p-value = 1 - 
hypergeom.cdf(N, K, n, k), where N is the number of droplets, 
K is the number of artificial doublets, n is the number of droplets 
in this cluster, and k is the number of artificial doublets in this 
cluster. All droplets in this cluster will have the same p-value. It 
repeats the above steps (starting from artificial doublet 
generation) for a user-specified number of runs. The doublet 
score of each droplet is defined as its average p-value across 
all runs. 

DoubletFinder 41 R Yes PCA 

It generates artificial doublets by averaging two randomly 
selected droplets’ gene expression profiles. The doublet score 
of each droplet is defined as the proportion of artificial doublets 
among its k-nearest neighboring droplets in the principal 
component (PC) space, whose number of dimensions is 
specified by users. The number of neighbors, k, is selected by 
maximizing the mean-variance normalized bimodality 
coefficient 89 of the distribution of doublet scores. 

https://paperpile.com/c/Kxhkna/JizuW
https://paperpile.com/c/Kxhkna/Dky9Q
https://paperpile.com/c/Kxhkna/dD796
https://paperpile.com/c/Kxhkna/dD796
https://paperpile.com/c/Kxhkna/dD796
https://paperpile.com/c/Kxhkna/opwB0
https://paperpile.com/c/Kxhkna/hyzQV
https://paperpile.com/c/Kxhkna/BPSqT
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Solo 39 
Linux 

command 
Yes 

Variational 
autoencoder 

For a randomly selected droplet pair, it estimates a multinomial 
distribution whose number of trials equals the sum of total 
counts in these two droplets and whose event probabilities 
equal the gene proportions calculated from the mean gene 
expression profile of these two droplets. Then it generates 
artificial doublets by randomly sampling a gene expression 
profile from this multinomial distribution. That is, the number of 
artificial doublets equals the number of randomly selected 
droplet pairs. These artificial doublets are pooled with the 
original droplets. Then it trains a neural network to classify the 
pooled droplets into original droplets and artificial doublets. The 
doublet score of each droplet is defined as the predicted 
probability of being an artificial doublet. 

DoubletDecon 46 R Yes Deconvolution 

It generates artificial doublets by taking a weighted average of 
two randomly selected droplets’ gene expression profiles (the 
default weights are 0.7 and 0.3). Putative doublets are defined 
as those droplets whose gene expression profiles after 
deconvolution 90 are concentrated on the centroids of artificial 
doublet clusters. Finally, it defines doublets as those putative 
doublets whose gene expression profiles are dissimilar to those 
of original droplet clusters.  

 

  

https://paperpile.com/c/Kxhkna/I3LzE
https://paperpile.com/c/Kxhkna/I4OGu
https://paperpile.com/c/Kxhkna/Fl0dR
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Table 2. 16 real scRNA-seq datasets with experimentally annotated doublets used in 

this study. 

 

Dataset 
Doublet 

annotation 
technique 

Cell types 
Droplet 

# 
Gene 

# 
Doublet 

rate 
Median 

UMI count 

Median # of 
expressed 

genes 
Reference 

pbmc-ch Cell hashing  pbmc 15272 21639 16.66% 556 323 

42 

cline-ch Cell hashing  
HEK293T, 
K562, KG1, 

THP1 
7954 25221 18.42% 4824 2149 

mkidney-ch Cell hashing  
Mouse 
kidney 

21179 18940 37.31% 3929 1687 39 

hm-12k 
Species 
mixture 

HEK293T, 
NIH3T3 

12820 15106 5.69% 12424 3147 

52 

hm-6k 
Species 
mixture 

HEK293T, 
NIH3T3 

6806 15080 2.51% 21301 4032 

pbmc-1A-dm demuxlet pbmc 3298 15170 3.64% 973 384 

43 

pbmc-1B-dm demuxlet pbmc 3790 15143 3.43% 862 361 

pbmc-1C-dm demuxlet pbmc 5270 15865 6.00% 829 352 

pbmc-2ctrl-dm demuxlet pbmc 13913 17584 11.49% 1276 526 

pbmc-2stim-dm demuxlet pbmc 13916 17315 11.72% 1360 550 

J293t-dm demuxlet 
Jurkat, 

HEK293T 
500 16374 8.40% 14134 3461 

pdx-MULTI MULTI-seq 

Human 
breast 
cancer, 
mouse 
immune 

10296 14025 12.79% 2242 1029 

44 

HMEC-orig-
MULTI 

MULTI-seq HMEC 26426 24199 13.50% 23502 4598 

HMEC-rep-MULTI MULTI-seq HMEC 10580 17473 31.02% 1188 601 

HEK-HMEC-
MULTI 

MULTI-seq 
HEK293T, 

HMEC 
10641 23982 4.60% 17424 3795 

nuc-MULTI MULTI-seq 
nuclei 

(HEK293T, 
MEF, Jurkat) 

5578 21490 8.52% 1021 786 

 

  

https://paperpile.com/c/Kxhkna/4ONen
https://paperpile.com/c/Kxhkna/I3LzE
https://paperpile.com/c/Kxhkna/zc8Nm
https://paperpile.com/c/Kxhkna/wB9b8
https://paperpile.com/c/Kxhkna/bnItm
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Table 3. Usability of the nine doublet-detection methods. We measured the usability of 

each method in four aspects: software quality, execution convenience, publication, and 

documentation & support. Each aspect has three levels: excellent, good, and fair, which 

correspond to scores 2, 1, and 0, respectively. The usability score of a method is the sum 

of its four scores under the four aspects. 

 

 Software quality 
Execution 

convenience 
Publication Documentation & support 

Usability 
score 

doubletCells 

Excellent 
(success on all 

datasets) 

Excellent 
(R package) 

Good  
(published as a part 
of a research paper 

in peer-reviewed 
journal) 

Good 
(documentation, custom 
webpage, but no Q&A)   

6 

Scrublet 
Excellent 

(Python module) 

Excellent 
(published as an 

independent 
research paper in a 

peer-reviewed 
journal) 

Good 
(documentation, GitHub 
webpage, but no Q&A) 

7 

cxds 

Excellent 
(R package) 

7 

bcds 7 

hybrid 7 

Solo 

Good 
(Linux command-line 

with a stringent 
requirement on input 

data format: 
loom/hd5) 

Excellent 
(published as an 

independent 
research paper in a 

peer-reviewed 
journal) 

Excellent 
(documentation, GitHub 

webpage, and active Q&A) 

7 

DoubletDetection 
Good 

(failure on one real 
dataset) 

Excellent 
(Python module) 

Fair 
 (GitHub webpage, 

manuscript with 
algorithm 

description) 

5 

DoubletFinder 
Excellent 

(success on all 
datasets) 

Excellent 
(R package) 

Excellent 
(published as an 

independent 
research paper in a 

peer-reviewed 
journal) 

8 

DoubletDecon 

Fair 
(failure on four real 
datasets and the 

majority of 
synthetic datasets) 

Excellent 
(R package) 

Excellent 
(published as an 

independent 
research paper in a 

peer-reviewed 
journal) 

Excellent 
(documentation, GitHub 

webpage, and active Q&A) 
6 
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2.7 Supplementary Materials 

2.7.1 Accuracy of computational doublet detection in relation to experimental 

techniques for doublet labeling 

Four experimental techniques were used to label doublets in the 16 real datasets used in 

this study: cell hashing 42, species mixture 40, demuxlet 43, and MULTI-seq 44. To examine 

the relationship between the accuracy of computational doublet-detection methods and 

the use of experimental techniques for doublet labeling, we calculated the mean AUPRC 

of each computational method across the datasets labeled by each experimental 

technique (Supplementary Figure S2d; Supplementary Table S10). Overall, all 

computational doublet-detection methods achieved the highest accuracy on the species-

mixture datasets, followed by the cell-hashing, MULTI-seq, and demuxlet datasets. This 

is an expected result since doublet-detection methods are more capable of identifying 

heterotypic doublets than homotypic doublets by design 39–41,45–48, and all the labeled 

doublets in the species-mixture datasets are heterotypic (i.e., formed by cells of two 

species); meanwhile, the cell-hashing, MULTI-seq, and demuxlet datasets contain 

labeled doublets that are both heterotypic and homotypic (e.g., formed by cells of the 

same type from two samples or individuals), and they miss certain heterotypic doublets 

(e.g., formed by cells of different types from the same sample or individual). Among the 

eight doublet-detection methods (excluding DoubletDecon which cannot generate 

doublet scores), DoubletFinder, cxds, and Solo achieved the highest detection accuracy 

on the species-mixture datasets, demonstrating their strength of identifying heterotypic 

doublets. DoubletFinder was also the top performer on the MULTI-seq and demuxlet 

https://paperpile.com/c/Kxhkna/4ONen
https://paperpile.com/c/Kxhkna/JizuW
https://paperpile.com/c/Kxhkna/wB9b8
https://paperpile.com/c/Kxhkna/bnItm
https://paperpile.com/c/Kxhkna/JizuW+hyzQV+dD796+I4OGu+opwB0+I3LzE+Dky9Q
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datasets in terms of mean AUPRC, while Solo excelled on the cell-hashing datasets. 

Interestingly, cxds exhibited the largest performance discrepancy between the species-

mixture datasets and the other three types of datasets, highlighting its stronger priority 

towards identifying heterotypic doublets than other methods’. 

2.7.2 Pairwise similarities of computational doublet-detection methods 

First, we calculated the Pearson correlation coefficient between every two doublet-

detection methods (except hybrid, which is an ensemble of bcds and cxds, and 

DoubletDecon, which cannot generate doublet scores) in terms of their doublet scores in 

each of the 16 benchmark datasets; for every pair of methods, we averaged their 16 

Pearson correlation coefficients (Supplementary Table S11). Among the 21 pairs of 

methods, DoubletFinder-DoubletDetection, Solo-bcds, and DoubletFinder-bcds have the 

largest mean correlations. Second, we calculated the Jaccard index between every two 

doublet-detection methods (except hybrid and DoubletDecon) in terms of their identified 

doublets, whose numbers are set equal to the number of labeled doublets, in each of the 

16 benchmark datasets; for every pair of methods, we averaged their 16 Jaccard indices 

(Supplementary Table S12). Among the 21 pairs of methods, DoubletFinder-

DoubletDetection, DoubletDetection-Solo, and DoubletFinder-Solo have the largest 

mean Jaccard indices, which reflect the large overlaps of their identified doublets. These 

two similarity analyses indicate the possibility of developing an ensemble method to 

combine the top-performing methods that are not too similar 83. Given the high accuracy 

of DoubletFinder and the distinctive algorithm design of cxds (the only method without 

artificial doublets), these two methods may serve as good candidates to be combined into 

an ensemble method. 

https://paperpile.com/c/Kxhkna/8Lmaa
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2.7.3 Comparison of hyperparameter selection in knn-based methods 

The algorithm designs of Scrublet and DoubletFinder are similar because they both define 

each droplet’s doublet score as the proportion of artificial doublets among the k-nearest 

neighbors of this droplet in the principal component (PC) space. The major difference 

between Scrublet and DoubletFinder is how they select hyperparameters, including the 

number of artificial doublets to generate, the number of genes used to perform the 

principal component analysis, the number of PCs to define nearest neighbors, and the 

number of nearest neighbors k. Supplementary Table S13 summarizes the default 

hyperparameter settings of Scrublet and DoubletFinder. In particular, DoubletFinder 

automatically selects k by maximizing the mean-variance normalized bimodality 

coefficient 89 of the distribution of doublet scores. To examine the effect of 

hyperparameter selection on the method performance, we selected four real datasets on 

which DoubletFinder outperformed Scrublet, and replaced the hyperparameters of 

Scrublet by those of DoubletFinder, including the ks selected by DoubletFinder for those 

datasets. Supplementary Figure S2e summarizes the AUPRC values of three methods—

DoubletFinder, Scrublet with default hyperparameters, and Scrublet with the same 

hyperparameters as DoubletFinder—on each of the four datasets. With the 

hyperparameters of DoubletFinder, Scrublet improved its detection accuracy on two 

datasets, nuc-MULTI and pbmc-1C-dm, but it still underperformed DoubletFinder. On the 

other two datasets, cline-ch and pbmc-1A-dim, Scrublet performed similarly or even 

worse, respectively, with the hyperparameters of DoubletFinder. This result suggests that 

hyperparameter selection is an important but not the only factor that determines the 

https://paperpile.com/c/Kxhkna/BPSqT
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performance of doublet-detection methods. Other aspects of algorithm design, including 

the generation of artificial doublets and algorithm implementation, also play critical rules. 
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Supplementary Figure S1. a, Comparison between DoubletDecon (grey) and other 

methods in terms of precision, recall, and true negative rates (TNRs) on 16 benchmark 

scRNA-seq datasets. The number of doublets is determined by the prediction result of 

DoubletDecon. Two baseline detection methods (lsize and ngenes) are included in the 

comparison. b, Performance (AUROC values) of each method in four simulation settings: 

varying doublet rates (from 2% to 40% with a step size of 2%), varying sequencing depth 

(from 500 to 10,000 UMI counts per cell, with a step size of 500 counts), varying numbers 

of cell types (from 2 to 20 with a step size of 1), and 20 heterogeneity levels, which specify 

the extent to which genes are differentiated between two cell types (see Methods). 
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Supplementary Figure S2. a, Cell clustering result by the DBSCAN algorithm after each 

of the eight doublet-detection method was applied to remove a varying percentage of 

droplets as the identified doublets (y-axis, from 0% to 25% with step size of 1%); the true 

numbers of cell clusters are four, six, and eight under three simulation settings, each 

containing 20% true doublets; the yellow color indicates that the correct number of 

clusters was identified, while the red color indicates otherwise. The true percentage of 

doublets, 20%, is highlighted in blue. For each method, its average correctness (i.e., the 

percent of yellow colors across all the removal percentages) is also highlighted in blue. b, 

Under the same three simulation settings as in a), the distributions of the singlet 

proportions are shown after doublet removal by each method, if the remaining droplets 

led to the correct number of cell clusters in a); doubletCells, cxds, bcds, and hybrid are 

not shown for the four-cluster setting because it did not lead to the correct number of cell 

clusters in a). c, Stability of each method. We generated 20 datasets by randomly 
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subsampling 90% cells and 90% genes from the real datasets pbmc-ch and pbmc-2ctrl-

dm, and we applied each method to all the subsampled datasets. For each real dataset, 

the distribution of AUPRC values of each method across subsampling is shown, with 25% 

quantiles connected. We use the variance of the distribution to measure the stability of 

each method. d, Mean AUPRC of each doublet-detection method across the real datasets 

with doublets labeled by each of four experimental techniques (cell hashing, species 

mixture, demuxlet, and MULTI-seq). Due to the low mean AUPRC values of doubletCells, 

we excluded it to show a more clear comparison of the other methods. The mean AUPRC 

of doubletCells can be found in Supplementary Table S10. e, AUPRCs of DoubletFinder, 

Scrublet with default hyperparameters, and Scrublet with same hyperparameters as 

DoubletFinder on four real datasets (nuc-MULTI, pbmc-1C-dm, cline-ch, and pbmc-1A-

dm). 
  



71 

Supplementary Table S1. AUPRC values of ten doublet-detection methods, including 
two baselines lsize and ngene, applied to 16 benchmark scRNA-seq datasets. The top-
performing method on each dataset is boldfaced and underlined. 
 

 lsize ngene doubletCells Scrublet cxds bcds hybrid Solo DoubletDetection DoubletFinder 

pbmc-ch 0.438 0.449 0.150 0.526 0.556 0.583 0.609 0.641 0.624 0.584 

cline-ch 0.231 0.246 0.311 0.378 0.332 0.396 0.391 0.372 0.389 0.402 

mkidney-ch 0.476 0.483 0.565 0.546 0.549 0.618 0.607 0.651 0.529 0.454 

hm-12k 0.274 0.326 0.382 0.932 0.998 0.594 0.952 0.995 0.810 0.994 

hm-6k 0.142 0.200 0.615 0.965 1.000 0.743 0.991 0.972 0.995 0.997 

pbmc-1A-dm 0.134 0.115 0.088 0.252 0.273 0.458 0.381 0.239 0.333 0.460 

pbmc-1B-dm 0.109 0.092 0.057 0.201 0.156 0.299 0.233 0.123 0.232 0.335 

pbmc-1C-dm 0.201 0.176 0.069 0.307 0.306 0.470 0.413 0.353 0.477 0.529 

pbmc-2ctrl-
dm 

0.311 0.381 0.241 0.573 0.503 0.627 0.594 0.675 0.603 0.665 

pbmc-2stim-
dm 

0.300 0.394 0.296 0.547 0.459 0.634 0.596 0.674 0.609 0.648 

J293t-dm 0.067 0.067 0.181 0.239 0.189 0.103 0.158 0.175 0.192 0.230 

pdx-MULTI 0.263 0.274 0.186 0.251 0.255 0.402 0.371 0.452 - 0.384 

HMEC-orig-
MULTI 

0.359 0.420 0.306 0.401 0.363 0.380 0.428 0.473 0.496 0.383 

HMEC-rep-
MULTI 

0.501 0.522 0.327 0.487 0.549 0.576 0.588 0.589 0.550 0.610 

HEK-HMEC-
MULTI 

0.185 0.249 0.381 0.459 0.514 0.318 0.455 0.357 0.361 0.475 

nuc-MULTI 0.217 0.260 0.107 0.356 0.367 0.355 0.383 0.294 0.422 0.441 

mean 
0.263 0.291 0.266 0.464 0.461 0.472 0.509 0.502 0.508 0.537 
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Supplementary Table S2. AUROC values of ten doublet-detection methods, including 
two baselines lsize and ngene, applied to 16 benchmark scRNA-seq datasets. The top-
performing method on each dataset is boldfaced and underlined. 
 

 lsize ngene doubletCells Scrublet cxds bcds hybrid Solo DoubletDetection DoubletFinder 

pbmc-ch 0.774 0.791 0.478 0.776 0.786 0.810 0.822 0.848 0.815 0.837 

cline-ch 0.544 0.547 0.587 0.603 0.595 0.626 0.625 0.607 0.590 0.603 

mkidney-ch 0.603 0.598 0.667 0.656 0.642 0.711 0.692 0.754 0.622 0.563 

hm-12k 0.881 0.902 0.905 0.992 1.000 0.968 0.995 1.000 0.979 0.999 

hm-6k 0.888 0.921 0.971 0.995 1.000 0.991 0.999 0.999 0.999 1.000 

pbmc-1A-dm 0.781 0.787 0.532 0.726 0.807 0.828 0.834 0.808 0.787 0.842 

pbmc-1B-dm 0.689 0.684 0.504 0.747 0.725 0.709 0.736 0.711 0.721 0.780 

pbmc-1C-dm 0.771 0.769 0.518 0.755 0.783 0.824 0.821 0.804 0.808 0.837 

pbmc-2ctrl-
dm 

0.800 0.836 0.714 0.874 0.874 0.900 0.905 0.926 0.906 0.917 

pbmc-2stim-
dm 

0.797 0.846 0.732 0.865 0.856 0.898 0.898 0.931 0.902 0.912 

J293t-dm 0.420 0.413 0.557 0.557 0.483 0.550 0.491 0.496 0.506 0.613 

pdx-MULTI 0.640 0.644 0.593 0.643 0.657 0.741 0.725 0.756 - 0.701 

HMEC-orig-
MULTI 

0.701 0.734 0.691 0.730 0.704 0.724 0.741 0.755 0.770 0.727 

HMEC-rep-
MULTI 

0.644 0.663 0.512 0.646 0.693 0.698 0.710 0.717 0.689 0.718 

HEK-HMEC-
MULTI 

0.767 0.784 0.732 0.759 0.835 0.798 0.831 0.796 0.773 0.775 

nuc-MULTI 0.720 0.739 0.560 0.732 0.764 0.763 0.772 0.751 0.770 0.794 

mean 0.714 0.729 0.641 0.753 0.763 0.784 0.787 0.791 0.776 0.789  
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Supplementary Table S3. The number of outperforming baselines and the number of 
top-performing for each method on 16 benchmark scRNA-seq datasets. The largest 
number is boldfaced and underlined. 
 

 doubletCells Scrublet cxds bcds hybrid Solo DoubletDetection DoubletFinder 

# of outperforming baselines 
(AUPRC) 

6 13 14 15 16 16 15 14 

# of top-performing (AUPRC)  0 1 3 0 0 5 1 6 

# of outperforming baselines 
(AUROC) 

5 8 14 15 16 16 14 13 

# of top-performing  (AUROC) 0 0 3 1 0 6 1 7 

  



74 

Supplementary Table S4. Mean precision, recall, and true negative rates (TNRs) of ten 
doublet-detection methods, including the two baseline methods lsize and ngene, under 
three identification rates (10%, 20%, and 40%) across 16 benchmark scRNA-seq 
datasets. The top-performing method of each metric is boldfaced and underlined. 
 

Identific
ation 
rate 

Mean lsize ngene doubletCells Scrublet cxds bcds hybrid Solo 
DoubletD
etection 

DoubletF
inder 

10% 

Precisi
on 

0.314 0.337 0.257 0.423 0.404 0.457 0.468 0.476 0.453 0.464 

Recall 0.330 0.349 0.272 0.435 0.445 0.488 0.505 0.498 0.481 0.505 

TNR 0.923 0.926 0.923 0.940 0.933 0.940 0.941 0.942 0.940 0.941 

20% 

Precisi
on 

0.254 0.275 0.208 0.289 0.290 0.324 0.326 0.338 0.313 0.324 

Recall 0.503 0.543 0.403 0.551 0.575 0.624 0.631 0.636 0.615 0.624 

TNR 0.831 0.836 0.824 0.844 0.840 0.849 0.849 0.852 0.847 0.854 

40% 

Precisi
on 

0.191 0.196 0.165 0.200 0.201 0.211 0.211 0.216 0.202 0.219 

Recall 0.694 0.707 0.582 0.701 0.727 0.746 0.752 0.756 0.738 0.734 

TNR 0.633 0.636 0.621 0.647 0.638 0.644 0.644 0.647 0.642 0.680 
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Supplementary Table S5. Precision of doublets detection on 12 benchmark scRNA-seq 
datasets. We executed DoubletDecon on each dataset to calculate its precision. For other 
methods, we calculated precision by setting up appropriate cutoffs based on the number 
of doublets determined by DoubletDecon. The top-performing method on each dataset is 
boldfaced and underlined. We excluded four datasets that DoubletDecon failed to run 
through. 
       

 lsize ngene doubletCells Scrublet cxds bcds hybrid Solo DoubletDetection DoubletFinder DoubletDecon 

pbmc-ch 0.262 0.274 0.160 0.261 0.260 0.269 0.271 0.279 0.263 0.279 0.173 

cline-ch 0.214 0.214 0.245 0.250 0.241 0.259 0.261 0.249 0.240 0.254 0.184 

mkidney-ch 0.465 0.469 0.536 0.514 0.499 0.567 0.552 0.613 0.472 0.446 0.373 

hm-6k 0.059 0.059 0.060 0.062 0.061 0.061 0.061 0.061 0.061 0.062 0.035 

pbmc-1A-

dm 
0.076 0.080 0.037 0.074 0.078 0.078 0.079 0.079 0.075 0.104 0.038 

pbmc-1B-

dm 
0.058 0.059 0.038 0.062 0.064 0.060 0.064 0.061 0.060 0.068 0.031 

pbmc-1C-

dm 
0.126 0.128 0.065 0.115 0.122 0.127 0.127 0.126 0.125 0.159 0.061 

pbmc-

2stim-dm 
0.289 0.331 0.252 0.331 0.330 0.351 0.350 0.368 0.356 0.361 0.117 

pdx-MULTI 0.197 0.197 0.171 0.202 0.201 0.247 0.237 0.254 -- 0.229 0.131 

HMEC-orig-

MULTI 
0.163 0.166 0.165 0.171 0.167 0.169 0.170 0.171 0.172 0.170 0.134 

HMEC-rep-

MULTI 
0.333 0.337 0.319 0.336 0.345 0.345 0.348 0.348 0.338 0.413 0.315 

HEK-

HMEC-

MULTI 

0.110 0.112 0.102 0.104 0.118 0.115 0.119 0.114 0.110 0.103 0.046 

mean 0.196 0.202 0.179 0.207 0.207 0.221 0.220 0.227 0.207 0.221 0.137 
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Supplementary Table S6. Recall of doublets detection on 12 benchmark scRNA-seq 
datasets. We executed DoubletDecon on each dataset to calculate its recall. For other 
methods, we calculated recall by setting up appropriate cutoffs based on the number of 
doublets determined by DoubletDecon. The top-performing method on each dataset is 
boldfaced and underlined. We excluded four datasets that DoubletDecon failed to run 
through. 
        

 lsize ngene doubletCells Scrublet cxds bcds hybrid Solo DoubletDetection DoubletFinder DoubletDecon 

pbmc-ch 0.810 0.842 0.495 0.796 0.803 0.833 0.837 0.864 0.815 0.861 0.536 

cline-ch 0.412 0.412 0.472 0.461 0.463 0.498 0.502 0.480 0.461 0.453 0.355 

mkidney-

ch 
0.495 0.499 0.570 0.545 0.532 0.604 0.588 0.653 0.503 0.475 0.397 

hm-6k 0.965 0.971 0.982 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.573 

pbmc-1A-

dm 
0.767 0.808 0.375 0.700 0.792 0.792 0.808 0.800 0.767 0.783 0.383 

pbmc-1B-

dm 
0.669 0.677 0.431 0.677 0.731 0.685 0.731 0.700 0.692 0.731 0.354 

pbmc-1C-

dm 
0.778 0.788 0.405 0.690 0.756 0.788 0.788 0.782 0.775 0.772 0.380 

pbmc-

2stim-dm 
0.722 0.825 0.629 0.804 0.825 0.877 0.874 0.920 0.879 0.898 0.292 

pdx-

MULTI 
0.519 0.519 0.451 0.527 0.532 0.651 0.626 0.672 -- 0.569 0.347 

HMEC-

orig-

MULTI 

0.824 0.838 0.835 0.860 0.841 0.854 0.857 0.862 0.851 0.856 0.677 

HMEC-

rep-

MULTI 

0.856 0.866 0.822 0.861 0.887 0.887 0.896 0.895 0.869 0.736 0.810 

HEK-

HMEC-

MULTI 

0.701 0.718 0.652 0.663 0.755 0.734 0.759 0.730 0.699 0.652 0.292 

mean 0.710 0.730 0.593 0.715 0.743 0.767 0.772 0.780 0.756 0.732 0.450 
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Supplementary Table S7. True negative rate (TNR) of doublets detection on 12 
benchmark scRNA-seq datasets. We executed DoubletDecon on each dataset to 
calculate its TNR. For other methods, we calculated TNR by setting up appropriate cutoffs 
based on the number of doublets determined by DoubletDecon. The top-performing 
method on each dataset is boldfaced and underlined. We excluded four datasets that 
DoubletDecon failed to run through. 
 

 lsize ngene doubletCells Scrublet cxds bcds hybrid Solo DoubletDetection DoubletFinder DoubletDecon 

pbmc-ch 0.544 0.553 0.481 0.549 0.542 0.548 0.549 0.554 0.544 0.556 0.489 

cline-ch 0.658 0.658 0.672 0.688 0.670 0.678 0.679 0.674 0.671 0.699 0.645 

mkidney-

ch 
0.661 0.664 0.706 0.693 0.683 0.725 0.716 0.755 0.665 0.649 0.602 

hm-6k 0.601 0.601 0.602 0.607 0.602 0.602 0.602 0.602 0.603 0.607 0.591 

pbmc-

1A-dm 
0.646 0.648 0.632 0.669 0.645 0.645 0.646 0.646 0.644 0.744 0.630 

pbmc-

1B-dm 
0.616 0.619 0.608 0.635 0.618 0.617 0.618 0.617 0.617 0.647 0.605 

pbmc-

1C-dm 
0.654 0.657 0.630 0.660 0.653 0.655 0.655 0.654 0.654 0.739 0.628 

pbmc-

2stim-

dm 

0.764 0.779 0.752 0.784 0.778 0.785 0.784 0.790 0.789 0.789 0.707 

pdx-

MULTI 
0.689 0.689 0.679 0.696 0.691 0.708 0.705 0.711 -- 0.719 0.663 

HMEC-

orig-

MULTI 

0.341 0.343 0.343 0.349 0.344 0.346 0.346 0.347 0.362 0.347 0.318 

HMEC-

rep-

MULTI 

0.228 0.233 0.212 0.236 0.241 0.241 0.245 0.245 0.233 0.529 0.207 

HEK-

HMEC-

MULTI 

0.726 0.727 0.724 0.726 0.729 0.728 0.729 0.728 0.726 0.725 0.706 

mean 0.594 0.598 0.587 0.608 0.600 0.607 0.606 0.610 0.592 0.646 0.566 
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Supplementary Table S8. The number of identified doublets by DoubletDecon compared 
with the true number of doublets on 12 benchmark datasets. We excluded four datasets 
that DoubletDecon failed to run through. 
 

 
pbmc-

ch 
cline-

ch 

mkidney-

ch 
hm-6k 

pbmc-

1A-dm 

pbmc-1B-

dm 
pbmc-1C-dm 

pbmc-

2stim-dm 
pdx-MULTI 

HMEC-

orig-

MULTI 

HMEC-

rep-

MULTI 

HEK-

HMEC-

MULTI 

# of 
predicted 
doublets 

7872 2822 8417 2813 1223 1493 1961 4077 3479 18007 8448 3124 

# of true 
doublets 

2545 1465 7901 171 120 130 316 1631 1317 3568 3282 489 
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Supplementary Table S9. Mean running time of nine doublet-detection methods and 
their AUPRCs on 16 benchmark scRNA-seq datasets. The last row is the running time 
normalized by AUPRC. The top-performing method of each metric is boldfaced and 
underlined. The mean running time of DoubletDecon was calculated on 12 datasets that 
it ran through successfully. 
 

 doubletCells Scrublet cxds bcds hybrid DoubletDetection DoubletFinder Solo DoubletDecon 

Mean time 
(s) 

37 64 5 46 47 380 243 618 903 

Mean 
AUPRC 

0.266 0.464 0.461 0.472 0.509 0.508 0.537 0.502 - 

Time/AUPRC 137 130 11 97 92 749 452 1232 - 
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Supplementary Table S10. Mean AUPRC values of eight doublet-detection methods on 
benchmark scRNA-seq datasets, categorized by four experimental techniques that were 
used to label doublets. The mean was calculated across the datasets labeled by each 
technique. The top-performing method for each technique is boldfaced and underlined. 
 

 doubletCells Scrublet cxds bcds hybrid Solo DoubletDetection DoubletFinder 

Cell 
hashing 

0.342 0.483 0.479 0.532 0.536 0.555 0.514 0.480 

Species 
mixture 

0.499 0.949 0.999 0.669 0.972 0.984 0.903 0.996 

Demuxlet 0.155 0.353 0.314 0.432 0.396 0.373 0.408 0.478 

MULTI-
seq 

0.261 0.391 0.410 0.406 0.445 0.433 0.457 0.459 
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Supplementary Table S11. Mean Pearson correlation coefficient between every pair of 
doublet-detection methods in terms of their doublet scores across the 16 benchmark 
datasets; that is, a Pearson correlation coefficient was calculated for every pair of 
methods on each dataset, and the 16 coefficients were averaged into the mean coefficient 
for that pair. 
 

doubletCells 1.000       

Scrublet 0.249 1.000      

cxds 0.142 0.478 1.000     

bcds 0.109 0.455 0.642 1.000    

Solo 0.126 0.484 0.603 0.682 1.000   

DoubletDetection 0.200 0.604 0.598 0.637 0.615 1.000  

DoubletFinder 0.155 0.559 0.639 0.664 0.628 0.700 1.000 

 doubletCells Scrublet cxds bcds Solo DoubletDetection DoubletFinder 
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Supplementary Table S12. Mean Jaccard index between every pair of doublet-detection 
methods in terms of their identified doublets, whose numbers equal to the numbers of 
labeled doublets, across the 16 benchmark datasets; that is, a Jaccard index was 
calculated for every pair of methods on each dataset, and the 16 indices were averaged 
into the mean index for that pair. 
 

doubletCells 1.000       

Scrublet 0.188 1.000      

cxds 0.169 0.316 1.000     

bcds 0.152 0.290 0.397 1.000    

Solo 0.176 0.352 0.442 0.452 1.000   

DoubletDetection 0.169 0.370 0.430 0.438 0.483 1.000  

DoubletFinder 0.174 0.359 0.424 0.433 0.481 0.525 1.000 

 doubletCells Scrublet cxds bcds Solo DoubletDetection DoubletFinder 
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Supplementary Table S13. The default hyperparameter settings of Scrublet and 
DoubletFinder. 
 

Method 
Generation of artificial 

doublets 
# of artificial 

doublet 

# of genes to perform 
principal component 

analysis 

# of principle 
component 

k, # of nearest 
neighbors 

Scrublet 
Adding two randomly 

selected droplets’ gene 
expression profiles 

One-third of the 
# of original 

droplets 

Top 85% highly 
variable genes 

30 
𝑟𝑜𝑢𝑛𝑑 (0.5 ∗

√# 𝑜𝑓 𝑑𝑟𝑜𝑝𝑙𝑒𝑡𝑠 ) 

DoubletFinder 

Averaging two randomly 
selected 

droplets’ gene expression 
profiles 

Twice of the # 
of original 
droplets 

Top 2000 highly 
variable genes 

10 

Selected by 
maximizing the 
mean-variance 

normalized 
bimodality 

coefficient of the 
distribution of 
doublet scores 
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CHAPTER 3 

 

An R Package for Benchmarking Computational 

Doublet-Detection Methods in Single-Cell RNA 

Sequencing Data Analysis 

 

3.1 Introduction 

The existence of doublets is a key confounder in single-cell RNA sequencing (scRNA-

seq) data analysis. There are several computational methods for detecting doublets from 

scRNA-seq data. We develop an R package DoubletCollection to integrate the installation 

and execution of those methods. DoubletCollection also provides a unified interface to 

perform and visualize downstream analysis after doublet detection. Here, we present a 

protocol of using DoubletCollection to benchmark doublet-detection methods. This 

protocol can automatically accommodate new doublet-detection methods in the fast-

growing scRNA-seq field. 
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3.2 A step-by-step protocol 

3.2.1 Data download 

We collect 16 real scRNA-seq datasets with doublets annotated by experimental 

techniques. This collection covers a variety of cell types, droplet and gene numbers, 

doublet rates, and sequencing depths. It represents varying levels of difficulty in detecting 

doublets from scRNA-seq data. The data collection and preprocessing details are 

described in our previous work 91. The datasets are available at Zenodo 

https://zenodo.org/record/4562782#.YI2lhWf0mbg in the file real_datasets.zip (Figure 1). 

We save the datasets in rds format. The name of each dataset file is the same as the 

name defined in 91. After being loaded into R, each dataset is a list containing two 

elements: the first element is a scRNA-seq count matrix with rows as genes and columns 

as droplets; the second element is a vector containing the singlet/doublet annotation of 

each droplet, which corresponds to each column in the first element. 

We utilize two simulators, scDesign 51 and Splatter 67 to generate realistic scRNA-seq 

datasets with varying doublet rates (i.e., percentages of doublets among all droplets), 

sequencing depths, cell types, and between-cell-type heterogeneity levels. The synthetic 

datasets contain ground-truth doublets, cell types, differentially expressed (DE) genes, 

and cell trajectories. The simulation details are described in 91. The datasets are available 

at Zenodo https://zenodo.org/record/4562782#.YI2lhWf0mbg in the file 

synthetic_datasets.zip (Figure 1). We save the datasets in rds format. All the synthetic 

datasets contain count matrices with rows as genes and columns as droplets. Below is 

the data structure of each dataset after being loaded into R. 

https://paperpile.com/c/Kxhkna/BWPM
https://zenodo.org/record/4562782#.YI2lhWf0mbg
https://paperpile.com/c/Kxhkna/BWPM
https://paperpile.com/c/Kxhkna/6hv95
https://paperpile.com/c/Kxhkna/9ciDr
https://paperpile.com/c/Kxhkna/BWPM
https://zenodo.org/record/4562782#.YI2lhWf0mbg
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sim_rate.rds: An R list with two elements. The first element contains 20 scRNA-seq 

count matrices that are independently generated with the doublet rates ranging from 0.02 

to 0.4. Each element is named by its doublet rate and has rows as genes and columns 

as droplets. The second element contains 20 singlet/doublet annotation vectors, which 

correspond to the columns of the 20 count matrices in the first element. 

sim_depth.rds: An R list with two elements. The first element contains 20 scRNA-

seq count matrices that are independently generated with sequencing depth ranging from 

500 to 10,000 UMI counts. Each element is named by its sequencing depth and has rows 

as genes and columns as droplets. The second element contains 20 singlet/doublet 

annotation vectors, which correspond to the columns of the 20 count matrices in the first 

element. 

sim_type.rds: An R list with two elements. The first element contains 19 scRNA-seq 

count matrices that are independently generated with cell type numbers ranging from 2 

to 20. Each element is named by its cell type numbers and has rows as genes and 

columns as droplets. The second element contains 19 singlet/doublet annotation vectors, 

which correspond to the columns of the 19 count matrices in the first element. 

sim_hetero.rds: An R list with two elements. The first element contains 21 scRNA-

seq count matrices that are independently generated with different between-cell-type 

heterogeneity levels as defined in 91. Each element is named by its between-cell-type 

heterogeneity levels and has rows as genes and columns as droplets. The second 

element contains 21 singlet/doublet annotation vectors, which correspond to the columns 

of the 21 count matrices in the first element. 

https://paperpile.com/c/Kxhkna/BWPM


87 

sim_clustering.rds: An R list with two elements. The first element contains three 

scRNA-seq count matrices with four, six, or eight cell types. Each element is named by 

its cell type numbers and has rows as genes and columns as droplets. The second 

element contains three singlet/doublet annotation vectors, which correspond to the 

columns of the three count matrices in the first element. 

sim_DE.rds: An R list with four elements, including one synthetic scRNA-seq count 

matrix, its doublet indices, cell type annotations, and DE genes. This dataset contains 6% 

DE genes between two cell types and 40% doublets.  

sim_trajectory.rds: An R list with two elements, including one synthetic scRNA-seq 

count matrix and its singlet/doublet annotations. This dataset contains a bifurcating cell 

trajectory and 20% doublets. 

sim_temporally_DE.rds: An R list with three elements, including one synthetic 

scRNA-seq count matrix, its singlet/doublet annotations, and temporally DE genes. This 

dataset contains one cell trajectory with 250 temporally DE genes and 20% doublets. 

Note: Please download the latest version of the datasets from the Zenodo repository. 

The timing for data downloading depends on the network condition. 

3.2.2 Installation of DoubletCollection 

 

DoubletCollection is an R package that integrates the installation, execution, and 

benchmark of eight doublet-detection methods. The source code and documentation of 

DoubletDetection are available at https://github.com/xnnba1984/DoubletCollection. To 

install DoubletDetection, execute the following R code. 

 

if(!require(devtools)){ 

https://github.com/xnnba1984/DoubletCollection
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  install.packages("devtools")  

} 

devtools::install_github("xnnba1984/DoubletCollection") 

 

Note: DoubletCollection automatically installs eight doublet-detection methods: 

Scrublet 40, doubletCells 48, scds 45 (including cxds, bcds, and hybrid), DoubletDetection 

92, DoubletFinder 41, and scDblFinder 93. It also installs other packages required for 

downstream analysis and visualization.  

Optional: Solo 39 is a doublet-detection method implemented as a Linux command-

line tool. DoubletCollection does not include this method. The installation and execution 

of Solo are available at https://github.com/calico/solo. 

3.2.3 Doublet detection accuracy on real scRNA-seq datasets   

This section illustrates how to apply DoubletCollection to 16 real scRNA-seq datasets, 

calculate the detection accuracy, and visualize the result. Every doublet-detection method 

in DoubletCollection outputs a doublet score for each droplet in the dataset. The larger 

the doublet score is, the more likely the droplet is a doublet. The following R code 

calculates doublet scores of user-specified methods on 16 real datasets. 

 

library(DoubletCollection) 

 

# read 16 datasets in the folder real_datasets 

data.list <- ReadData(path = ".../real_datasets") 

count.list <- data.list$count 

 

https://paperpile.com/c/Kxhkna/JizuW
https://paperpile.com/c/Kxhkna/Dky9Q
https://paperpile.com/c/Kxhkna/dD796
https://paperpile.com/c/Kxhkna/8UYhL
https://paperpile.com/c/Kxhkna/hyzQV
https://paperpile.com/c/Kxhkna/ndAwl
https://paperpile.com/c/Kxhkna/I3LzE
https://github.com/calico/solo
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# transform doublet annotations to 0/1 

label.list <- lapply(data.list$label, FUN = function(label){ 

     ifelse(label == 'doublet', 1, 0) 

}) 

methods <- c('doubletCells','cxds','bcds','hybrid','scDblFinder', 

'Scrublet','DoubletDetection','DoubletFinder') 

 

# calculate doublet scores 

score.list.all <- FindScores.All(count.list, methods) 

 

Note: All 16 rds files need to be saved under the folder real_datasets. Users can 

perform doublet detection on any scRNA-seq datasets by including them into count.list. 

Users can also choose doublet-detection methods by modifying the methods vector. 

Doublet detection is essentially a binary classification problem. Therefore, the area 

under the precision-recall curve (AUPRC) and the area under the receiver operating 

characteristic curve (AUROC) are appropriate for evaluating the overall doublet-detection 

accuracy. The following R code calculates AUPRC and AUROC based on the doublet 

scores. 

 

auprc.list.all <- FindAUC.All(score.list.all, label.list, 'AUPRC') 

auroc.list.all <- FindAUC.All(score.list.all, label.list, 'AUROC') 

 

We use boxplots to visualize the distributions of AUPRC and AUROC values of every 

doublet-detection method on the 16 real scRNA-seq datasets. The following R code 

outputs Figure 2A. 
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# transform the output of FindAUC.All to a data frame for visualization 

result.auprc <- ListToDataframe(auprc.list.all, 'boxplot') 

result.auroc <- ListToDataframe(auroc.list.all, 'boxplot') 

 

# visualize AUPRC and AUROC by boxplots 

Plot_Boxplot(result.auprc, 'AUPRC') 

Plot_Boxplot(result.auroc, 'AUROC') 

 

Note: Users can save data frames result.auprc and result.auroc to compare the 

AUPRC and AUROC values of doublet-detection methods. 

In practice, doublets are identified based on a single threshold. To accommodate this 

scenario, we examine the detection accuracy of doublet-detection methods under a 

specific identification rate x%. For each method and each dataset, we identify the top x% 

droplets with the highest doublet scores as doublets. Then we calculate the 

corresponding precision, recall, and true negative rate (TNR). The following R code 

calculates precision, recall, and TNR under a 10% identification rate. 

 

# call doublets based on a 10% doublet rate 

doublet.list.all <- FindDoublets.All(score.list.all, rate=0.1) 

 

# calculate precision, recall, and TNR of identified doublets 

precision.list.all<- FindACC.All(doublet.list.all,label.list,'precision') 

recall.list.all <- FindACC.All(doublet.list.all, label.list, 'recall') 

tnr.list.all <- FindACC.All(doublet.list.all, label.list, 'TNR') 
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Optional: Users can calculate the precision, recall, and TNR under varying doublet 

rates to conduct a more comprehensive comparison of doublet-detection methods. 

Again, we use boxplots to visualize the distributions of precision, recall, and TNR 

values of each method under specific identification rates. The following R code outputs 

Figure 2B. 

 

# transform the output of FindAcc.All to a data frame for visualization 

result.precision <- ListToDataframe(precision.list.all, 'boxplot') 

result.recall <- ListToDataframe(recall.list.all, 'boxplot') 

result.tnr <- ListToDataframe(tnr.list.all, 'boxplot') 

 

# visualize precision, recall, and TNR by boxplots 

Plot_Boxplot(result.precision, 'Precision') 

Plot_Boxplot(result.recall, 'Recall') 

Plot_Boxplot(result.tnr, 'TNR') 

 

Note: Users can save data frames result.precision, result.recall, and result.tnr to 

compare the precision, recall, and TNR values of doublet-detection methods. 

3.2.4 Hyperparameter tuning for doublet detection methods (Optional)  

The previous R code sets the hyperparameters of doublet-detection methods to their 

recommended or default values. This section explains how to use DoubletCollection to 

search for the hyperparameters that may potentially improve the doublet-detection 

methods’ performance. 
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We set up a series of hyperparameter values and use DoubletCollection to conduct a 

grid search. DoubletCollection returns a combination of hyperparameters that optimizes 

a user-specified accuracy measure on a dataset. The following R code searches for 

optimal hyperparameters in terms of AUPRC for the methods Scrublet, DoubletFinder, 

and scDblFinder on the dataset pbmc-1A-dm. 

 

data.list <- ReadData(path = ".../real_datasets") 

count.list <- data.list$count 

label.list <- lapply(data.list$label, FUN = function(label){ 

  ifelse(label == 'doublet', 1, 0) 

}) 

 

# read dataset  

count <- count.list$`pbmc-1A-dm` 

label <- label.list$`pbmc-1A-dm` 

 

# search for optimal hyperparameters of Scrublet 

result.parameter.Scrublet <- FindParameters(count, label, method =  

'Scrublet', type = 'AUPRC', n_neighbors = c(27, 28, 29, 30, 31), 

                            n_prin_comps = c(20, 25, 30, 35, 40), 

                      min_gene_variability_pctl = c(60, 65, 70, 85, 90)) 

 

# search for optimal hyperparameters of DoubletFinder 

result.parameter.DoubletFinder <- FindParameters(count, label,  

method = 'DoubletFinder', type = 'AUPRC', 

                           nfeatures = c(1000, 1500, 2000, 2500, 3000), 

                           PCs = c(10, 15, 20, 25, 30)) 
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# search for optimal hyperparameters of scDblFinder 

result.parameter.scDblFinder <- FindParameters(count, label,  

method = 'scDblFinder', type = 'AUPRC', 

                           nf=c(500, 1000, 1500, 2000, 2500), 

                           includePCs=c(3, 4, 5, 6, 7), 

                           max_depth=c(3, 4, 5, 6, 7)) 

 

Note: Users can search for optimal hyperparameters of other doublet-detection 

methods on any datasets. The searchable hyperparameters of a doublet-detection 

method can be shown by executing ?FindParameters.   

The optimal hyperparameters found from a representative dataset provide guidance 

for applying a doublet-detection method to similar datasets. The following R code sets the 

hyperparameters of three doublet-detection methods, which are to be applied to the 

dataset pbmc-1B-dm, to their optimal values found from the dataset pbmc-1A-dm. These 

two datasets share the same cell types and experimental protocol. 

 

score.list <- FindScores(count = count.list$`pbmc-1B-dm`, 

       methods = c('Scrublet','DoubletFinder','scDblFinder'), 

         n_neighbors=31, min_gene_variability_pctl=60, n_prin_comps=40, 

         nfeatures=1000, PCs=10, nf=1000, includePCs=6, max_depth=5) 

 

Note: Users can also adjust hyperparameters based on their prior knowledge. The R 

code in the following sections uses the recommended or default hyperparameter values 

of doublet-detection methods. 
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3.2.5 Doublet detection accuracy under various experimental settings and 

biological conditions 

This section illustrates how to apply DoubletCollection to synthetic scRNA-seq datasets 

under a wide range of experimental settings and biological conditions, calculate the 

detection accuracy of different doublet-detection methods, and visualize the result.  

As in the previous section, we first calculate doublet scores on synthetic datasets. The 

following R code calculates doublet scores on the dataset sim_rate with different doublet 

rates.  

 

data.list <- readRDS(".../synthetic_datasets/sim_rate.rds") 

count.list <- data.list$count 

label.list <- lapply(data.list$label, FUN = function(label){ 

  ifelse(label == 'doublet', 1, 0) 

}) 

score.list.all <- FindScores.All(count.list, methods) 

 

Note: Users can read datasets sim_depth, sim_type, or sim_hetero to calculate 

doublet scores under various sequencing depth, number of cell types, or degree of 

between-cell-type heterogeneity. The code in the following sections can be applied to 

those datasets without modification. 

Similar to real datasets, we use AUPRC and AUROC to measure the overall detection 

accuracy on synthetic datasets. The following R code calculates AUPRC and AUROC 

based on the doublet scores obtained from the previous step.  
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auprc.list.all <- FindAUC.All(score.list.all, label.list, 'AUPRC') 

auroc.list.all <- FindAUC.All(score.list.all, label.list, 'AUROC') 

 

We use line plots to show how the performance of each doublet-detection method 

changes when we vary the experimental settings and biological conditions. The following 

R code draws line plots for AUPRC and AUROC under varying doublet rates. Figure 3A 

shows the AUPRC and AUROC values of different doublet-detection methods under 

different doublet rates, sequencing depths, numbers of cell types, and heterogeneity 

between cell types. 

 

# transform the output of FindAuc.All to a data frames for visualization 

result.auprc <- ListToDataframe(auprc.list.all, 'lineplot') 

result.auroc <- ListToDataframe(auroc.list.all, 'lineplot') 

 

# visualize AUPRC and AUROC by line plots 

Plot_Lineplot(result.auprc, 'Doublet Rate', 'AUPRC') 

Plot_Lineplot(result.auroc, 'Doublet Rate', 'AUROC') 

 

3.2.6 Effects of doublet detection on DE gene analysis 

This section illustrates how to use DoubletCollection to conduct differentially expressed 

(DE) gene analysis. We compare the results of DE gene analysis on the contaminated 

dataset (with 40% doublets), the clean dataset (without doublets), and the dataset after 

each doublet-detection method is applied.  
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We first read in the dataset sim_DE that includes the ground-truth DE genes and 40% 

doublets. Then we apply doublet-detection methods to obtain doublet scores. Finally, we 

remove the top 40% droplets that receive the highest doublet scores from each method.  

 

data.de <- readRDS('.../synthetic_datasets/sim_DE.rds') 

score.list <- FindScores(data.de$count, methods) 

doublet.list <- FindDoublets(score.list, rate=0.4) 

 

# add the clean data matrix to the data list 

doublet.list[['Clean Data']] <- data.de$label.doublet 

 

# remove identified doublets 

data.removal.list <- RemoveDoublets.Method(data.de$count,  

data.de$label.cluster, doublet.list) 

 

# add original contaminated data to the data list 

data.removal.list[['Contaminated Data']] <- list(count=data.de$count,  

label=data.de$label.cluster) 

 

We use the Wilcoxon rank-sum test 57, MAST 56, and likelihood-ratio test 94 (bimod) to 

identify DE genes between two cell types. The accuracy of DE gene identification is 

measured by precision, recall, and TNR. 

 

# create a data frame to save result for visualization 

table.DE.all <- data.frame() 

 

# use three DE methods 

https://paperpile.com/c/Kxhkna/jRhmu
https://paperpile.com/c/Kxhkna/myQaq
https://paperpile.com/c/Kxhkna/55aJ
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for(DE.method in c('MAST', 'wilcox', 'bimod')){ 

 

# identify DE genes 

DE.list <- FindDE(data.removal.list, DE.method) 

 

# calculate precision, recall, and TNR of identified DE genes 

DE.acc.list <- FindDEACC(DE.list, data.de$gene.de, rownames(data.de$count)) 

 

# transform to a data frame for visualization 

   table.DE <- ListToDataframe(DE.acc.list, 'barplot') 

   table.DE[['DE_method']] <- DE.method 

   table.DE.all <- rbind(table.DE.all, table.DE) 

} 

 

Note: Users can choose from seven DE methods by specifying the second parameter 

of the function FindDE, including ‘wilcox’, ‘bimod’, ‘t’, ‘poisson’, ‘negbinom’, ‘LR’, and 

‘MAST’. A detailed demonstration of those methods is available at 

https://satijalab.org/seurat/articles/de_vignette.html. 

We use barplots to compare the results of DE gene analysis on the contaminated 

dataset (negative control), the clean dataset (positive control), and post-doublet-detection 

datasets. The following R code outputs barplots that compare the precision, recall, and 

TNR in Figure 3B.  Each barplot stacks the results of three DE methods: Wilcoxon rank-

sum test, MAST, and likelihood-ratio test (bimod). 

 

Plot_Barplot(table.DE.all[table.DE.all$measurement=='precision',], 

'Precision') 

https://satijalab.org/seurat/articles/de_vignette.html
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Plot_Barplot(table.DE.all[table.DE.all$measurement=='recall',], 'Recall') 

Plot_Barplot(table.DE.all[table.DE.all$measurement=='tnr',], 'TNR') 

 

3.2.7 Effects of doublet detection on cell clustering 

This section illustrates how to use DoubletCollection to evaluate the effects of doublet-

detection methods on cell clustering. First, we examine the efficacy of doublet-detection 

methods for removing spurious cell clusters formed by doublets. Second, we compare 

the proportion of singlets in the correctly identified cell clusters after each doublet-

detection method is applied. 

We first read the dataset sim_clustering that includes three datasets with four, six, and 

eight cell types and 20% doublets. Then we apply doublet-detection methods to obtain 

doublet scores and remove doublets based on various doublet rates.  

 

data.list <- readRDS(".../synthetic_datasets/sim_clustering.rds") 

count.list <- data.list$count 

label.list <- lapply(data.list$label, FUN = function(label){ 

  ifelse(label == 'doublet', 1, 0) 

}) 

score.list.all <- FindScores.All(count.list, methods) 

 

# call doublets based on doublet rates from 0.01 to 0.25 

doublet.list.all.rate <- FindDoublets.All.Rate(score.list.all,rates =  

seq(0.01, 0.25, 0.01)) 

 

# remove identified doublets under different doublet rates 



99 

data.removal.all.rate <- RemoveDoublets.All.Rate(count.list, label.list,                                     

doublet.list.all.rate) 

 

We apply Louvain clustering 63 to the post-doublet-removal datasets to identify cell 

clusters.  

 

result.cluster.all.rate <- Clustering.All.Rate(data.removal.all.rate) 

 

We use heatmaps to compare the efficacy of doublet-detection methods for removing 

spurious cell clusters. The following R code outputs heatmaps of clustering results on 

datasets with four, six, and eight cell clusters under various doublet rates (Figure 4A). 

 

# transform the output of Clustering.All.Rate to a data frame for  

# visualization 

table.cluster <- ListToDataframe(result.cluster.all.rate, type='heatmap') 

 

# draw heatmaps of clustering results 

Plot_Heatmap(table.cluster, cluster = 4) 

Plot_Heatmap(table.cluster, cluster = 6) 

Plot_Heatmap(table.cluster, cluster = 8) 

 

Homotypic doublets tend to cluster together with singlets and thus do not form 

spurious clusters. To evaluate the efficacy of doublet-detection methods for eliminating 

homotypic doublets, we calculate the proportion of singlets in each identified cell cluster 

when the number of cell clusters matches the number of cell types. 

https://paperpile.com/c/Kxhkna/9HNrS


100 

 

table.cluster.quality <- Clustering.Quality(table.cluster, 

     result.cluster.all.rate, data.removal.all.rate) 

 

We use boxplots to visualize the singlet proportions within clusters after applying 

doublet-detection methods, if the remaining droplets lead to the correct number of cell 

clusters (Figure 4B). 

 

Plot_Boxplot(table.cluster.quality[table.cluster.quality$correct=='4',],  

'Singlet Rates (Four Clusters)') 

Plot_Boxplot(table.cluster.quality[table.cluster.quality$correct=='6',],  

'Singlet Rates (Six Clusters)') 

Plot_Boxplot(table.cluster.quality[table.cluster.quality$correct=='8',],  

'Singlet Rates (Eight Clusters)') 

 

3.2.8 Effects of doublet detection on cell trajectory inference 

This section illustrates how to use DoubletCollection to evaluate the effects of doublet-

detection methods on cell trajectory inference. First,  we examine the efficacy of doublet-

detection methods for removing spurious cell branches formed by doublets. Second, we 

compare the accuracy of temporally DE gene identification after doublet-detection 

methods are applied.  

We use Slingshot 68 to infer the cell trajectories on the dataset sim_trajectory. It 

contains two cell branches mixed with 20% doublets (contaminated dataset). The 

following R code shows a two-dimensional visualization of the inference result. It contains 

https://paperpile.com/c/Kxhkna/N1qrT
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three cell trajectories instead of two, and the intermediate trajectory is formed by doublets 

(Figure 5A). 

 

data.trajectory <- readRDS('.../synthetic_datasets/sim_trajectory.rds') 

count <- data.trajectory$count 

label <- data.trajectory$label 

 

# cell trajectory inference by Slingshot and visualization 

FindTrajectory(count, label, title='Contaminated Data') 

 

We use Slingshot to infer the cell trajectories on the dataset sim_trajectory after 

removing all 20% doublets (clean dataset). The following R code shows a two-

dimensional visualization of the inference result with two correct cell trajectories (Figure 

5A). 

 

# remove all doublets 

count.clean <- count[,which(label==0)] 

label.clean <- label[which(label==0)] 

 

# cell trajectory inference by Slingshot and visualization 

FindTrajectory(count.clean, label.clean, title='Clean Data') 

 

We first perform doublet detection on the dataset sim_trajectory to obtain doublet 

scores. Then for each method, we remove the top 20% droplets that receive the highest 

doublet scores. Finally, we infer and visualize cell trajectories on each post-doublet-
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removal dataset to examine if the corresponding doublet-detection method removes the 

spurious cell branches formed by doublets (Figure 5A). 

 

score.list <- FindScores(count, methods) 

doublet.list <- FindDoublets(score.list, rate = .2) 

data.removal.list <- RemoveDoublets.Method(count, label,doublet.list) 

 

# infer trajectory on each post-doublet-removal dataset 

for(method in methods){ 

FindTrajectory(data.removal.list[[method]]$count, 

data.removal.list[[method]]$label, title = method) 

} 

 

We first use Slingshot to infer the cell pseudotime on the dataset sim_temporally_DE 

(contaminated dataset). It contains a single cell lineage with 250 temporally DE genes out 

of 750 genes, mixed with 20% doublets. Second, we use a general additive model (GAM) 

83 to regress each gene’s expression levels on the inferred pseudotime. Finally, we 

calculate the precision, recall, and TNR of the inferred temporally DE genes identified 

using the Bonferroni-corrected p-value threshold of 0.05. We repeat the same analysis 

on the clean dataset (without doublets) and each post-doublet-removal dataset.  

 

data.trajectory <-readRDS('.../synthetic_datasets/sim_temporally_DE.rds') 

count <- data.trajectory$count 

label <- data.trajectory$label 

 

# ground-truth temporally DE genes 

https://paperpile.com/c/Kxhkna/8Lmaa
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gene.de <- data.trajectory$gene.de 

 

# calculate precision, recall, and TNR of temporally DE genes for  

# contaminated data 

de.temp.list <- FindTempDE(count, gene.de) 

 

# calculate doublet scores and remove doublets 

score.list <- FindScores(count, methods) 

count.clean <- count[,which(label==0)] 

label.clean <- label[which(label==0)] 

doublet.list <- FindDoublets(score.list, rate=0.2) 

data.removal.list <- RemoveDoublets.Method(count, label, doublet.list) 

 

# add clean data 

data.removal.list[['Clean Data']] <- list(count.clean, label.clean) 

 

# calculate precision, recall, and TNR of temporal DE genes for  

# post-doublet-removal data 

de.temp.result.all <- FindTempDE.All(data.removal.list, gene.de) 

 

# add the result of contaminated data 

de.temp.result.all[['Contaminated Data']] <- de.temp.list 

 

We use barplots to compare the results of temporally DE genes identification on the 

contaminated dataset, the clean dataset, and the post-doublet-removal datasets (Figure 

5B). The barplot stacks the results of precision, recall, and TNR for different doublet-

detection methods.  



104 

 

# transform to data frame for visualization 

table.DE.temp <- ListToDataframe(de.temp.result.all, type='barplot') 

 

# draw barplot 

Plot_Barplot_temp(table.DE.temp, title='Temporally DE Genes') 

 

3.2.9 Performance of doublet-detection methods under distributed 

computing 

This section illustrates how to use DoubletCollection to evaluate the accuracy of doublet-

detection methods under distributed computing. This benchmark simulates the scenario 

when the large scRNA-seq dataset is beyond the capacity of a single computer so that 

the dataset must be divided into subsets to be analyzed in parallel.  

First, we randomly split the dataset pbmc-ch into two up to ten equal-sized batches. 

Second, for each batch number, we execute every doublet-detection method on each 

batch separately and concatenate the resulting doublet scores across batches. Finally, 

we calculate the distributed AUPRC based on the concatenated doublet scores.  

 

# read dataset pbmc-ch 

data.list <- ReadData(path = ".../real_datasets") 

count <- data.list$count$`pbmc-ch` 

label <- data.list$label$`pbmc-ch` 

label <- ifelse(label == 'doublet', 1, 0) 
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# calculate distributed AUPRC for different methods 

auc.list.batch <- FindDistributedAUC.All(count,label,methods, 

batches=2:10, type='AUPRC') 

 

We use line plots to show how the detection accuracy of each method changes as the 

number of batches increases. The following R code places the batch numbers on the x-

axis and connects AUPRC values to show the trend of each method (Figure 5C). 

 

# transform the output of FindDistributedAUC.All to a data frame for  

# visualization  

table.batch <- ListToDataframe(auc.list.batch, type='distributed') 

 

# draw line plots 

Plot_Lineplot_Distributed(table.batch,data='pbmc-ch',measurement='AUPRC') 

 

Optional: Users can apply the same pipeline to evaluate the detection accuracy of 

doublet-detection methods under distributed computing on any other real datasets. 

3.2.10 Computational aspects of doublet-detection methods (optional) 

The benchmark of computational aspects of doublet-detection methods includes but is 

not limited to efficiency, scalability, stability, and software implementation. First, we can 

summarize the running time of doublet-detection methods on the 16 real scRNA-seq 

datasets. The result can be visualized by boxplots similar to Figure 2A to compare the 

computational efficiency of doublet-detection methods. Second, we can examine how fast 

each method’s running time increases as the number of droplets grows. The result can 
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be visualized by line plots similar to Figure 3A to examine the scalability of doublet-

detection methods. Third, we can evaluate how much each method’s AUPRC and 

AUROC values vary across subsets of droplets and genes. The result can be visualized 

by violin plots to compare the statistical stability of doublet-detection methods. Finally, we 

can qualitatively evaluate the software implementation of doublet-detection methods from 

the aspects of user-friendliness, software quality, and active maintenance. The complete 

visualization details are available in 91.  

3.3 Expected Outcomes 

The major outcomes of this protocol are the measures of doublet-detection accuracy and 

the result of downstream analysis, including AUPRC, AUROC, precision, recall, TNR, 

number of cell clusters, cell trajectories, DE genes, and their visualization. These 

outcomes are in the intermediate outputs of the R code shown in previous sections. The 

visualizations are shown in Figures 2 to 5. More visualizations, tables, and interpretations 

are available in our previous work 91. 

Another important result in this protocol paper is the benchmark of a new method 

scDblFinder, which was not included in the previous benchmark study 91. On the 16 real 

RNA-seq datasets, scDblFinder achieves the highest mean AUPRC and AUROC values, 

and it is also the top method in terms of precision, recall, and TNR under the 10% 

identification rate. On the synthetic RNA-seq datasets, scDblFinder exhibits similar 

performance trends to those of other doublet-detection methods under various 

experimental settings and biological conditions, and it is also a near-top method in terms 

of AUPRC. In particular, scDblFinder is able to consistently improve downstream 

https://paperpile.com/c/Kxhkna/BWPM
https://paperpile.com/c/Kxhkna/BWPM
https://paperpile.com/c/Kxhkna/BWPM
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analyses, including DE gene, cell clustering, and cell trajectory inference. Similar to other 

doublet-detection methods, scDblFinder has decreased detection accuracy as the 

number of batches increases under distributed computing. scDblFinder is also one of the 

fastest doublet-detection methods (the comparison of running time is not shown). Overall, 

scDblFinder has excellent detection accuracy and high computational efficiency.  

3.4 Limitations 

The first limitation of this protocol is that the current benchmark results are based on the 

default hyperparameters of doublet-detection methods 24,91. Therefore, the benchmark 

results in this protocol may have underestimated the performance of some doublet-

detection methods. With the functionality of hyperparameter tuning provided in the R 

package DoubletCollection, users can conduct an independent study to explore the 

optimal hyperparameters of doublet-detection methods. 

The second limitation of this protocol is that the doublet annotations in the 16 real 

scRNA-seq datasets are not completely accurate due to experimental limitations. For 

example, datasets hm12k and hm6k only labeled the heterotypic doublets formed by a 

human cell and a mouse cell 52; datasets generated by demuxlet only labeled the doublets 

formed by cells of two individuals 43; many homotypic doublets were unlabeled in real 

datasets 91. The incompleteness of doublet annotations would have inflated the false 

negative rates and reduced the precision of computational doublet-detection methods. 

The synthetic datasets used in this protocol contain ground-truth doublets and thus can 

partly alleviate this issue. 

https://paperpile.com/c/Kxhkna/mbOqw+BWPM
https://paperpile.com/c/Kxhkna/zc8Nm
https://paperpile.com/c/Kxhkna/wB9b8
https://paperpile.com/c/Kxhkna/BWPM
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The third limitation of this protocol is that it mainly focuses on doublet-detection 

methods that can generate a doublet score for every droplet in the dataset. Among 

currently available doublet-detection methods, DoubletDecon directly outputs identified 

doublets without providing doublet scores. To fairly compare DoubletDecon with other 

methods, we suggest users to first execute it on every dataset and record its number of 

identified doublets; then users can threshold the doublet scores of the other methods so 

that every method identifies the same number of doublets as DoubletDecon does; finally, 

users can calculate the precision, recall, and TNR based on the doublets identified by 

each method from every dataset. A detailed comparison between DoubletDecon and 

other methods has been discussed by 91. Guidance for executing DoubletDecon is 

available at 46,95. 

3.5 Troubleshooting 

Problem 1: Method Scrublet or DoubletDetection fails to be installed even with a 

Python environment installed in the system. 

Potential Solution: This problem typically happens in the Windows system with error 

information “Microsoft Visual C++ 14.0 is required”. To solve this problem, users can 

download and install the latest version of Visual Studio Build Tools at 

https://visualstudio.microsoft.com/downloads/ under the menu “Tools for Visual Studio 

2019 -> Build Tools for Visual Studio 2019”. 

Problem 2: The installation of DoubletCollection fails to install some dependent 

packages. 

https://paperpile.com/c/Kxhkna/BWPM
https://paperpile.com/c/Kxhkna/I4OGu+SnLA
https://visualstudio.microsoft.com/downloads/
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Potential Solution: This problem is caused by the version conflict when updating 

certain packages already installed in R. We recommend users skip the updating step 

suggested by R. Ignoring the update of dependent packages will not affect the 

functionality of DoubletCollection. 

Problem 3: Some methods fail to generate doublet scores on 16 real scRNA-seq 

datasets. 

Potential Solution: This problem is caused by memory shortage when executing 

certain methods on large-scale datasets. For example, we observed such issues for 

DoubletFinder on a laptop with 16GB memory. However, using the same code and data, 

the issue disappears on a server with 256GB memory. To successfully replicate the result 

in this protocol, we suggest users execute DoubletCollection on a computer with 64GB or 

more memory. If users perform doublet detection on smaller datasets, then the memory 

size requirement is less. 

Problem 4: The ReadData function cannot read scRNA-seq datasets into the R 

environment. 

Potential Solution: The ReadData function is designed to read all rds files under the 

user-specified directory. Therefore, users need to save all rds files in the directory 

indicated by the path parameter of ReadData. Users can also use the generic R function 

readRDS to read the single rds file.  

Problem 5: The p-values of the hypergeometric test (which are also doublet scores) 

output by DoubletDetection are negative. 

Potential Solution: This problem occasionally happens and is likely due to the 

numerical overflow of DoubletDetection. We suggest users add the abs() function outside 
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the output doublet scores to fix this issue. Our experiments find that DoubletDetection 

performs well under this correction. 
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3.6 Figures 

 
 

Figure 1. The Zenodo repository for downloading real and synthetic scRNA-seq 

datasets used in this protocol. 
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Figure 2. Evaluation of Doublet-Detection Methods Using 16 Real scRNA-Seq 
Datasets. (A) AUPRC and AUROC values of each method applied to 16 datasets. (B) 
Precision, recall, and TNR values of each method under the 10% identification rate. 
Methods are ordered by their average performance measurement across 16 datasets 
(low to high). 
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Figure 3. Evaluation of Doublet-Detection Methods Using Four Simulation Studies, 
and the Effects of Doublet Detection on DE Gene Analysis. (A) AUPRC of each 
method in four simulation settings: varying doublet rates (from 2% to 40% with a step size 
of 2%), varying sequencing depths (from 500 to 10,000 UMI counts per cell, with a step 
size of 500 counts), varying numbers of cell types (from 2 to 20 with a step size of 1), and 
20 heterogeneity levels, which specify the extent to which genes are differentiated 
between two cell types. (B) Precision, recall, and TNR by each of three DE methods: 
Wilcoxon rank-sum test (wilcox), MAST, and likelihood-ratio test (bimod) after each 
doublet-detection method is applied to a simulated dataset; for negative and positive 
controls, we included the DE accuracies on the contaminated data with 40% doublets and 
the clean data without doublets. 
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Figure 4. The Effects of Doublet Detection on Cell Clustering. (A) Cell clustering 
results by the Louvain algorithm after each doublet-detection method is applied to remove 
a varying percentage of droplets as the identified doublets (y-axis, from 1% to 25% with 
a step size of 1%); the true numbers of cell clusters are four, six, and eight under three 
simulation settings, each containing 20% true doublets; the yellow color indicates that the 
correct number of clusters was identified, while the red color indicates otherwise. (B) 
Under the same three simulation settings as in (A), the distributions of the singlet 
proportions are shown after doublet removal by each method, if the remaining droplets 
lead to the correct number of cell clusters in (A); some methods are not shown because 
they do not lead to the correct number of cell clusters in (A). Methods are ordered by their 
average performance measurement across 16 datasets (low to high). 
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Figure 5. Effects of Doublet Detection on Cell Trajectory Inference and the 
detection accuracy under distributed computing. (A) Cell trajectories constructed by 
Slingshot. (B) Precision, recall, and TNR of temporally DE genes inferred by the GAM. 
Both (A) and (B) are performed on contaminated, clean, and post-doublet-detection 
datasets. (C) AUPRC of each doublet detection method on the real dataset pbmc-ch 
under distributed computing. 
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CHAPTER 4 

 

Benchmarking the Design of Deep Autoencoders for 

Denoising Single-Cell RNA Sequencing Data 

 

4.1 Introduction 

Single-cell RNA-sequencing (scRNA-seq) enables the measurement of genome-wide 

gene expression at single-cell levels 8,9,96. scRNA-seq can generate datasets with tens of 

thousands of genes and up to millions of cells 14, which allows for the investigation of cell-

to-cell heterogeneity 97, identification of distinguished cell type 98, and quantification of cell 

state transition 99. One characteristic of scRNA-seq data is the high proportion of zeros 

or high sparsity. Depending on the sequencing platform and sequencing depth, the zero 

proportion of one scRNA-seq data matrix ranges from 50% to more than 90% 24. There 

are two types of zeros in scRNA-seq data — biological zeros and non-biological zeros 26. 

Biological zeros indicate the actual absence of gene expression in the cell, while non-

biological zeros originate from the technical limitation or noise in the scRNA-seq 

experiment 100. Without external reference or prior biological knowledge, it is usually 

https://paperpile.com/c/Kxhkna/87WPm+FMJ0u+79DlT
https://paperpile.com/c/Kxhkna/TjAh
https://paperpile.com/c/Kxhkna/OGNWW
https://paperpile.com/c/Kxhkna/fCbnH
https://paperpile.com/c/Kxhkna/9qhTo
https://paperpile.com/c/Kxhkna/mbOqw
https://paperpile.com/c/Kxhkna/5u0g
https://paperpile.com/c/Kxhkna/oeMH0
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difficult to distinguish between these two types of zeros in scRNA-seq data 24. In the 

following text, we will interchangeably use the terminology non-biological zeros, technical 

zeros, and missing values. 

The high sparsity of scRNA-seq data, especially the non-biological zeros, poses a 

great challenge in downstream analysis of scRNA-seq data 24. Many computational 

methods have been developed to impute and denoise the non-biological zeros 

(sometimes also biological zeros), and they can be divided into three broad categories. 

First, model-based imputation methods infer probabilistic models to capture the 

distribution of gene expression in scRNA-seq data. They aim to differentiate between 

biological zeros and non-biological zeros and only impute the former 27,28. Second, data-

smoothing methods modify the gene expression in each cell based on the similar cells in 

the datasets. The similarity is defined by the neighborhood of each cell in a low 

dimensional space 29,30. Data-smoothing methods impute all zeros and also change the 

non-zero values in scRNA-seq data. Third, data-reconstruction methods utilize machine 

learning techniques to learn a latent space of the original sparse data. The latent space 

is further used to reconstruct the imputed dense data 31,32. Data-reconstruction methods 

also impute all zeros but keep non-zero values unchanged in scRNA-seq data. 

Recently, autoencoder-based imputation methods have gained much attention due to 

their superior imputation accuracy, a large improvement on downstream analysis, high 

degree of flexibility, and capacity of extending to large-scale datasets 22,33. These 

methods belong to the data-reconstruction category and use neural networks to learn a 

latent space and reconstruct the imputed scRNA-seq data. Specifically, an autoencoder 

contains one encoder neural network and one decoder neural network — the encoder 

https://paperpile.com/c/Kxhkna/mbOqw
https://paperpile.com/c/Kxhkna/mbOqw
https://paperpile.com/c/Kxhkna/GzKn3+DijG
https://paperpile.com/c/Kxhkna/wsAOk+eDny
https://paperpile.com/c/Kxhkna/5nLmp+QN3r
https://paperpile.com/c/Kxhkna/b3EH+W30N
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neural network first compresses the high-dimensional scRNA-seq data into a low-

dimensional latent space; then a decoder neural network recovers the data to its original 

dimension from the latent space. The recovered data is used to impute the sparse scRNA-

seq data. One challenge when designing an autoencoder-based imputation method is 

how to select its hyperparameters, including the neural network structure, activation 

function, and regularization 24. The existing methods either copy the practice in other 

fields, especially the computer vision study, or set up the autoencoder on an ad hoc basis 

31,32,103-106. Currently, there is no formal discussion on the choice of hyperparameters in 

the autoencoder for imputing scRNA-seq data. 

Here, we conduct the first empirical study to systematically explore the best modeling 

strategies for autoencoder-based scRNA-seq imputation methods. In particular, we first 

design three masking schemes to introduce ground-truth non-biological zeros on 12 real 

scRNA-seq datasets. Second, we train autoencoders with a large variety of depth and 

width, seven activation functions, and two types of regularization on those datasets, and 

further impute them to calculate the imputation accuracy based on the masked values. 

We compare the imputed normalized root mean square error (NRMSE) and imputed 

Pearson correlation coefficient of different autoencoders to examine the impact of their 

design on the overall imputation accuracy. Third, we train autoencoders with the 

aforementioned hyperparameter settings on 20 real scRNA-seq datasets with ground-

truth cell type information. Then we conduct cell clustering on pre-imputed and imputed 

datasets after applying different autoencoders. We compare the adjusted Rand index 

(ARI) and adjusted mutual information (AMI) to examine the impact of autoencoder design 

on downstream cell clustering. Fourth, we simulate 20 synthetic datasets with ground-

https://paperpile.com/c/Kxhkna/mbOqw
https://paperpile.com/c/Kxhkna/wsAOk+eDny
https://paperpile.com/c/Kxhkna/wsAOk+eDny
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truth differentially expression (DE) genes based on 20 real scRNA-seq datasets. Again, 

we train autoencoders with the aforementioned hyperparameter settings on those 

synthetic datasets and identify DE genes on pre-imputed and imputed datasets after 

applying different autoencoders. We compare the precision, recall, and true negative rate 

(TNR) of identified DE genes to examine the impact of autoencoder design on 

downstream DE gene analysis. 

Our analysis shows results that are largely ignored in the previous method 

development. First, deeper autoencoders provide better overall imputation accuracy, cell 

clustering, and DE gene analysis. The benefits from depth generally saturate when the 

autoencoder passes 10 hidden layers. Second, narrower autoencoders improve the 

overall imputation accuracy but are similar to wider autoencoders in terms of cell 

clustering and DE gene analysis. Third, the sigmoid and tanh activation functions 

consistently outperform others in all evaluations. Fourth, the weight decay and dropout 

regularization are critical to the performance of autoencoder-base imputation methods. In 

particular, weight decay is more capable of improving cell clustering and DE gene 

analysis while dropout shows superiority in improving overall imputation accuracy. The 

optimal hyperparameters of these two regularizations largely depend on datasets. Our 

findings contradict the common practice in previous methods, where shallower and wider 

autoencoder with ReLU activation functions are widely used. Those findings highlight the 

unique characteristics of scRNA-seq data in imputation tasks and call cautions on 

borrowing model design directly from other fields. Our empirical study provides insights 

for the future development of autoencoder-based imputation methods for scRNA-seq data.  
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4.2 Results 

4.2.1 Autoencoder for imputing scRNA-seq data 

An autoencoder is a multi-layer neural network that aims to reconstruct the input data 

through its hidden layers 101. When being applied to imputing the scRNA-seq data, the 

autoencoder is able to learn a low-dimensional representation of the input data and use 

it to recover the missing values (Figure 1a). Let 𝑋 be the sparse scRNA-seq input matrix 

after appropriate preprocessing and normalization (Methods). Let 𝑌 be the dense scRNA-

seq output matrix. Both 𝑋 and 𝑌 have 𝑛 rows (cells) and 𝑚 genes (columns). Suppose 𝐻𝑘 

is the 𝑘th hidden layer of the autoencoder, where 𝑘 = 1, 2, . . . , ℎ and ℎ is the number of 

hidden layers. Then the first hidden layer 𝐻1 is calculated as 

 𝐻1 = 𝑓 (𝑋𝑊1 + 𝑏1), 

where 𝑊1  is an 𝑚  by 𝑙1  weight matrix and 𝑏1  is an 𝑙1dimensional bias vector. 𝑓  is an 

element-wise nonlinear activation function. Similarly, the 𝑘 + 1th hidden layer 𝐻𝑘+1  is 

calculated as 

𝐻𝑘+1 = 𝑓 (𝐻𝑘𝑊𝑘+1 + 𝑏𝑘+1), 

where 𝑊𝑘+1 is an 𝑙𝑘  by 𝑙𝑘+1  weight matrix and 𝑏𝑘+1 is a 𝑙𝑘+1dimensional bias vector. 

Finally, the output of the autoencoder 𝑌 is calculated as  

𝑌 = 𝐻ℎ𝑊ℎ + 𝑏ℎ, 

where 𝑊ℎ  is an 𝑙ℎ−1
 by 𝑙ℎ  weight matrix and 𝑏ℎ  is an 𝑙ℎ  dimensional bias vector. The 

autoencoder learns the parameters in weight matrices 𝑊1, 𝑊2, . . . , 𝑊ℎ and bias vectors 

𝑏1, 𝑏2, . . . , 𝑏ℎ by minimizing the mean squared error (MSE) between input 𝑋 and output 

https://paperpile.com/c/Kxhkna/lOmVN


121 

𝑌on nonzero values of 𝑋. Let 𝑊 be the set of weight matrices 𝑊1, 𝑊2, . . . , 𝑊ℎ and 𝑏 be the 

set of bias vectors 𝑏1, 𝑏2, . . . , 𝑏ℎ, then  

𝑀𝑆𝐸 (𝑊, 𝑏) =
∑ ∑ (𝑌𝑖𝑗−𝑋𝑖𝑗)2𝐼(𝑋𝑖𝑗≠0)𝑚

𝑗
𝑛
𝑖

∑ ∑ 𝐼(𝑋𝑖𝑗≠0)𝑚
𝑗

𝑛
𝑖

. 

The weight and bias parameters (𝑊̂, 𝑏̂) are given by 

(𝑊̂, 𝑏̂)  =  𝑎𝑟𝑔𝑚𝑖𝑛 (𝑊,𝑏) 𝑀𝑆𝐸 (𝑊, 𝑏), 

where 𝐼(𝑥) is an indicator function that outputs one for nonzero input and zero otherwise. 

The MSE is the loss function in the optimization process. 

The minimization of MSE is a non-convex optimization problem 37 and the 

backpropagation algorithm 102 is utilized for training the autoencoder (Methods). In the 

imputation step, the zero entries in the input matrix 𝑋  are replaced by their nonzero 

counterparts in the output matrix 𝑌. Let 𝐴𝐸̂ be the autoencoder with parameters (𝑊̂, 𝑏̂) 

learned by backpropagation, then the imputed scRNA-seq data matrix 𝑌̂ is calculated as 

𝑌̂ = 𝑋 + 𝐴𝐸̂(𝑋) ∘ 𝐼(𝑋 = 0), 

where ∘ is the element-wise product.  

Several modifications to the original model design have been made since the debut 

of autoencoder-based imputation methods. For example, DCA 32 models the scRNA-seq 

data by a negative binomial distribution with or without zero-inflation (NB or ZINB) and 

learns the autoencoder by maximizing the likelihood of NB or ZINB calculated by the 

output 𝑌; scVI 31 learns a variational autoencoder 103 by forcing the hidden layers to follow 

a ZINB distribution; DeepImpute 104 learns the autoencoder by minimizing the weighted 

MSE between two sets of highly correlated genes in input and output; LATE 105 treats 

cells or genes as observations to learn two autoencoders and selects the one with smaller 

MSE; scScope 106 learns an iterative autoencoder by using the imputed data as input 

https://paperpile.com/c/Kxhkna/PwYP
https://paperpile.com/c/Kxhkna/FTcUE
https://paperpile.com/c/Kxhkna/QN3r
https://paperpile.com/c/Kxhkna/5nLmp
https://paperpile.com/c/Kxhkna/8MH08
https://paperpile.com/c/Kxhkna/XBR75
https://paperpile.com/c/Kxhkna/14lHj
https://paperpile.com/c/Kxhkna/UAQzG
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repeatedly. Despite the aforementioned modifications, the essential structure, 

hyperparameters, and training process of the autoencoder for imputing scRNA-seq data 

remain the same. 

4.2.2 Three masking schemes for introducing missing values 

In scRNA-seq data, the knowledge of which observed zeros are truly missing is unknown 

due to the lack of external reference 22,33. To evaluate the overall imputation accuracy in 

this scenario, we design three masking schemes that introduce missing values to scRNA-

seq data and measure the difference between the imputed and true values on the masked 

data (Figure 1b-1d). These masking schemes represent different assumptions of missing 

mechanisms in scRNA-seq data 26. 

First, we randomly mask 50% nonzero entries in the scRNA-seq data matrix (set their 

values to zero). We call this masking scheme random masking in the following text. 

Random masking indicates that the missing mechanism is completely independent of the 

true gene expression levels. It has been widely used in previous work to evaluate the 

imputation accuracy 22. Second, we mask the nonzero entries less or equal to their 

median in the scRNA-seq data matrix. We call this masking scheme median masking in 

the following text. Median masking assumes a complete dependence of the missing 

mechanism on the true gene expression levels. Third, we assume that the probability of 

missing values for one gene depends on the mean expression level of that gene across 

cells. Lowly expressed genes are more likely to have missing values than highly 

expressed genes. Specifically, for gene 𝑖, let 𝜇𝑖 be the mean expression level of nonzero 

values across cells (log-transformed read count), and 𝑝𝑖  be the probability of missing 

https://paperpile.com/c/Kxhkna/b3EH+W30N
https://paperpile.com/c/Kxhkna/5u0g
https://paperpile.com/c/Kxhkna/W30N
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values. Then the missing mechanism can be modeled by a double exponential function 

55 

𝑝𝑖 = 𝑒𝑥𝑝 (−𝜆𝜇𝑖
2), 

where 𝜆 is a parameter learned from scRNA-seq data. Let 𝑍𝑖𝑗 be a random variable that 

indicates whether to mask the nonzero expression of gene 𝑖  in cell 𝑗 , then 𝑍𝑖𝑗 ∼

𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑝𝑖). All nonzero expression of gene 𝑖 with 𝑍𝑖𝑗 = 0 will be masked. The value 

of 𝜆 was determined such that 50% of nonzero entries in the scRNA-seq data matrix were 

masked. We call this masking scheme double exponential masking in the following text. 

4.2.3 Impact of autoencoder architecture on the imputation accuracy 

We collect 12 real scRNA-seq datasets to evaluate the overall imputation accuracy of the 

autoencoder under a variety of architectures. These datasets cover a wide range of cell 

types, sequencing depths, zero rates, and experimental platforms (Supplementary Table 

S1). We apply the three masking schemes to generate three sets of masked data, each 

containing 12 datasets. To make different datasets comparable, we use the normalized 

root MSE (NRMSE; Methods) and Pearson correlation coefficient between the imputed 

and true masked values to measure the imputation accuracy. We call them imputation 

NRMSE and imputation correlation, respectively, in the following text.  

We build autoencoders of different architectures by increasing the number of hidden 

layers (depth) from 1 to 15. For each depth, we set the number of hidden units per layer 

(width) to 32, 64, 128, or 256, respectively. All hidden layers are fully connected with the 

same number of hidden units. Different depth-width combinations generate 60 (15×4) 

autoencoders in total. We choose the rectified linear unit (ReLU) 35 as the activation 

https://paperpile.com/c/Kxhkna/PwyoW
https://paperpile.com/c/Kxhkna/j9Di


124 

function and train the autoencoders by the Adam optimization algorithm 107 (Methods).  

We set 10 random seeds in the training of each autoencoder-dataset combination to 

obtain 10 different imputed datasets. We average the corresponding imputation NRMSEs 

and imputation correlations to reduce the variability introduced by the stochastic training 

process. 

Figures 2a and 2b show the impact of depth and width on the imputation NRMSE and 

correlation based on the random masking scheme. First, the deeper autoencoders 

provide lower imputation NRMSE and higher imputation correlation. The benefits of depth 

are more significant when the number of layers is less than 10. Second, the narrower 

autoencoders (32 hidden units per layer) typically provide more accurate imputation than 

wider autoencoders (64 or more hidden units per layer) of the same depth. This finding is 

consistent with the observation in computation vision study that deeper and narrower 

neural networks have better performance in multiple tasks (e.g., image classification and 

object detection) 108,109. We observe a similar relationship between network architecture 

and imputation accuracy under the double exponential masking scheme, except for the 

dataset bmmc (Supplementary Figure S1). Conversely, the same relationship breaks 

under the median masking scheme, where deeper autoencoders mostly reduce the 

imputation accuracy while the width does not have a significant impact (Supplementary 

Figure S2). The imputation accuracy on the random masking is the highest among the 

three masking schemes, followed by the doublet exponential masking. The imputation 

fails on most datasets under median masking, indicated by many larger-than-one 

imputation NRMSEs and close-to-zero imputation correlations (Supplementary Figure 

S2). 

https://paperpile.com/c/Kxhkna/tBlss
https://paperpile.com/c/Kxhkna/abw7L+RdFN5


125 

The previous result is likely due to the different gene-to-gene associations preserved 

by different masking schemes. Both random masking and double exponential masking 

are stochastic processes. The difference between them is whether the probability of 

masking depends on the original gene expression levels. Under these two masking 

schemes, some strong singles (large values in the scRNA-seq data matrix) are masked 

while others are left, making the gene-to-gene association similar in masked and 

unmasked values. Therefore, the autoencoder is able to learn this common association 

from nonzero values to impute the masked values. Because of the high complexity of the 

scRNA-seq data 9, autoencoders with high representational capacity (deep) and low 

tendency toward overfitting (shallow) are more capable of learning this association and 

provide more accurate imputation.  

On the other hand, median masking is a deterministic process that only masks the 

small nonzero values in scRNA-seq data (the medians of nonzero values in most real 

datasets in our analysis are one or two). This hinders the autoencoder from accurately 

imputing masking values for two reasons. First, very small values in scRNA-seq data are 

more likely to be random noise caused by the technical variance from the experimental 

process 110. It is infeasible for autoencoders or any machine learning methods to recover 

random noise from singles in unmasked data. Second, for those small values that are 

actually weak singles instead of random noise, their gene-to-gene association is 

systematically different from the one of strong singles in unmasked data. This discrepancy 

causes the domain shift issue 111 and makes autoencoders trained on unmasked data 

generalize poorly on masked data, resulting in inaccurate imputation. Due to any of those 

two reasons, high model complexity (deep) causes overfitting and low imputation 

https://paperpile.com/c/Kxhkna/79DlT
https://paperpile.com/c/Kxhkna/RHtSj
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accuracy, as shown in Supplementary Figure S2. The following analysis will mainly focus 

on random masking and double exponential masking. 

4.2.4 Impact of activation function on the imputation accuracy 

An activation function is a nonlinear transformation applied to the hidden units of the 

neural network 36. It provides autoencoders the capacity to learn complex nonlinear 

patterns, e.g., the gene-to-gene association in scRNA-seq data. ReLU is a widely used 

activation function in autoencoder-based imputation methods, motivated by its success 

in computer vision study 36. However, the validity of using ReLU for imputing scRNA-seq 

data has rarely been discussed, and the empirical comparison between ReLU and other 

activation functions is lacking.  

Here, we train autoencoders with seven different activation functions, including 

sigmoid, tanh, ReLU, LeakyReLU (with two different hyperparameter settings) 112, ELU 

113, and SELU 114, to compare their impact on the imputation accuracy (Methods). For 

each activation function, we imputed the aforementioned 12 scRNA-seq datasets using 

20 autoencoders obtained by setting different random seeds in the training process. 

Figure 3 and Supplementary Figure S3 compare the distributions of imputation NRMSEs 

and imputation correlations for different activation functions under random masking or 

double exponential masking. We observe that sigmoid and tanh outperform other 

activation functions in all datasets under two masking schemes. Additionally, the 

variability of imputation NRMSE and imputation correlation are significantly lower for 

sigmoid and tanh than others, indicating more stable imputation accuracy. Between 

sigmoid and tanh, they have similar imputation accuracy except for datasets pbmc and 

https://paperpile.com/c/Kxhkna/CLzt
https://paperpile.com/c/Kxhkna/CLzt
https://paperpile.com/c/Kxhkna/hS9ly
https://paperpile.com/c/Kxhkna/1n6vz
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human_mix. The performance of sigmoid is more stable on datasets mbrain, pbmc, 

human_mix, and mouse_cortex. 

The comparison of different activation functions has three insights. First, one 

argument for using ReLU is that it can improve the low dimensional representation of data 

by introducing sparsity into the hidden layers 112. Contrarily, sigmoid and tanh (mostly) 

generate nonzero hidden units, and thus, dense hidden layers. Our empirical results show 

that the imputation of scRNA-seq data did not benefit much from sparse hidden layers, 

probably because the scRNA-seq data itself is highly sparse and thus needs a dense 

representation in the low-dimensional space (hidden layers). Second, Leaky ReLU, ELU, 

and SELU are modifications to ReLU by inducing small nonzero output values in hidden 

units when the input is negative (Methods). They generate pseudo-sparsity in the hidden 

layers and avoid the dead ReLU problem 115. Also, the nonzero hidden units provide the 

autoencoder more flexibility to adjust its parameters. However, our empirical result shows 

no consistent improvement of those activation functions over ReLU in terms of imputation 

accuracy. A possible interpretation is that the derivative shape of the activation function 

is critical to the training of the autoencoder — sigmoid and tanh have continuous 

derivatives, while all ReLU-related activation functions have discrete derivatives. Third, 

we do not observe vanishing gradient or exploding gradient problems 116 in the training of 

autoencoders with sigmoid or tanh activation functions. We suspect that the appropriate 

preprocessing and normalization of scRNA-seq data stabilize the gradients in the training 

of the autoencoder. 

https://paperpile.com/c/Kxhkna/hS9ly
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4.2.5 Impact of regularization on the imputation accuracy 

Regularization is a technique to constrain the complexity of machine learning models 

such that they can generalize better to the data not used in training 83. There are two 

commonly used regularization methods among others to improve the imputation accuracy 

of autoencoders — weight decay 37 and dropout 38. Weight decay incorporates the 𝐿2 

norm of weight parameters into the loss function to penalize large weights in the 

autoencoder. The weight and bias parameters under the weight decay (𝑊̂, 𝑏̂)′ are given 

by 

(𝑊̂, 𝑏̂)′ =  𝑎𝑟𝑔𝑚𝑖𝑛 (𝑊,𝑏) 𝑀𝑆𝐸 (𝑊, 𝑏)  + 𝜆||𝑊||2
2, 

where ||𝑊||2  is the 𝐿2  norm of weight parameters and 𝜆  is a tuning parameter that 

controls the degree of penalization.  

Rather than penalizing the scale of weights, dropout regularization randomly sets a 

proportion of hidden units to zero in the training of autoencoders. It forces the autoencoder 

not to rely on particular hidden units and thus reduces overfitting 38. Specifically, suppose 

that 𝑍𝑘 is a random vector with the same dimension as the hidden layer 𝑘. Each random 

variable in 𝑍𝑘  independently follows a Bernoulli distribution with parameter 𝑝𝑘 ∈ (0, 1). 

Then in the training, the calculation of hidden layer 𝑘 + 1 under dropout regularization is 

𝐻𝑘+1 = 𝑓 [(𝐻𝑘 ∘ 𝑍𝑘)𝑊𝑘+1 + 𝑏𝑘+1], 

where ∘ is the element-wise product. Note that the calculation of hidden layers in the 

testing (imputation) does not involve the dropout operation. In our analysis, we set 𝑝1 =

𝑝2 =. . . = 𝑝ℎ = 𝑝, where ℎ is the number of hidden layers. We call 𝑝 dropout rate in the 

following text. 

https://paperpile.com/c/Kxhkna/8Lmaa
https://paperpile.com/c/Kxhkna/PwYP
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Some autoencoder-based imputation methods have utilized weight decay or dropout 

in their implementations 104,117. However, the selection of regularization methods and 

corresponding hyperparameters (i.e., the 𝜆 in weight decay and the 𝑝 in dropout) tuning 

are mostly ad hoc 24. To examine the impact of regularization on the imputation accuracy, 

we train autoencoders with weight decay or dropout and impute the aforementioned 12 

real scRNA-seq datasets (Methods). We set the hyperparameters to a broad range of 

values and compare their imputation NRMSE and imputation correlation (Figure 4 and 5; 

Supplementary Figure S4 and S5). All autoencoders have the same architecture and 

activation function — 10 fully connected hidden layers, 32 hidden units per hidden layer, 

and a sigmoid activation function. We set 10 random seeds in the training of each 

autoencoder-dataset combination to obtain 10 different imputed datasets. We average 

the corresponding imputation NRMSEs and imputation correlations to reduce the 

variability introduced by the stochastic training process. 

Under the random masking, weight decay barely improves the imputation accuracy 

except for datasets mouse_spleen and human_mix. The larger values of 𝜆 even reduce 

the imputation accuracy, which indicates an over-regularization (Figure 4). On the other 

hand, dropout improves the imputation NRMSE on six datasets and imputation correlation 

on 11 datasets if paired with an appropriate dropout rate 𝑝. The optimal 𝑝s are small to 

moderate values (between 0.02 and 0.2; Figure 5) in terms of imputation NRMSE while 

moderate to large values (between 0.2 and 0.4) in terms of imputed correlation.  

Under the double exponential masking, both regularization methods improve the 

imputation accuracy (Supplementary Figure S4 and S5). Weight decay improves the 

imputation  NRMSE on six datasets and imputation correlation on 11 datasets 

https://paperpile.com/c/Kxhkna/XBR75+vJJ0Q
https://paperpile.com/c/Kxhkna/mbOqw
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(Supplementary Figure S4). The optimal 𝜆s are small to moderate values  (between 1e-7 

and 5e-5) in terms of imputed NRMS while moderate to large values (between 5e-6 and 

5e-4) in terms of imputed correlation. The dropout also exhibits a strong positive impact 

on imputation accuracy, with imputation NRMSE improved on 10 datasets and imputation 

correlation improved on all 12 datasets (Supplementary Figure S5). The optimal dropout 

rate 𝑝  is similar to those under random masking, with smaller values in terms of 

imputation NRMSE and larger values in terms of imputation correlation. 

The impact of regularization on imputation accuracy can be summarized in three 

perspectives. First, dropout is more capable of improving both imputation NRMSE and 

imputation correlation than weight decay. The autoencoders with dropout improve the 

imputation on more datasets under both masking schemes - accuracy measurement 

combinations. Second, both regularization methods are more effective under double 

exponential masking than under random masking. As illustrated in the previous section, 

double exponential masking tends to mask small nonzero values in the scRNA-seq data 

matrix and thus introduces slightly different gene-to-gene associations between masked 

and unmasked values. This difference causes moderate domain shifting and overfitting 

in the autoencoder. Instead, random masking does not have this issue. Therefore, as a 

counter-overfitting technique, the effect of regularization is stronger under double 

exponential masking where more overfitting exists. Third, the optimal hyperparameters of 

regularizations largely depend on the datasets and masking schemes. It is difficult to find 

a universal hyperparameter setting that accommodates all scenarios. Interestingly, 

compared with the imputation NRMSE, the imputed correlation requires a higher degree 

of regularization to achieve its optimum under both weight decay and dropout.  



131 

4.2.6 Impact of autoencoder design on cell clustering 

The ultimate goal of imputation is to improve the downstream bioinformatic analysis 

through the enhancement of signals in the sparse scRNA-seq data 5. We collect 20 real 

scRNA-seq datasets with ground-truth cell types to examine the impact of autoencoder 

design on cell clustering (Supplementary Table S2). The datasets used in cell clustering 

are different from those in the evaluation of overall imputation accuracy. Specifically, we 

first conduct k-means clustering on the pre-imputed datasets and calculate the adjusted 

Rand index (ARI) and adjusted mutual information (AMI) to measure the clustering 

performance (Methods). We call them baseline ARI and baseline AMI in the following text. 

Second, we train autoencoders with various architectures, activation functions, and 

regularizations to impute the aforementioned 20 datasets. Finally, we conduct k-means 

clustering on each imputed dataset and calculate the corresponding ARI and AMI. We 

call them imputation ARI and imputation AMI in the following text.  

Figure 6a, Supplementary Figure S6a, and S7a show the impact of autoencoder 

architecture on cell clustering. Similar to the previous analysis, we increase the depth of 

autoencoders from 1 to 15 and set the width to 32, 64, 128, and 256 for each depth, 

respectively. All hidden layers in each autoencoder are fully connected with the same 

number of hidden units. Different depth-width combinations generate 60 (15 × 4) 

autoencoders in total. We chose sigmoid as the activation function because of their 

superior performance in the evaluation of imputation accuracy. We set five random seeds 

in the training of each autoencoder-dataset combination to obtain five different imputed 

datasets. We average the corresponding imputation ARIs and imputation AMIs to reduce 

the variability introduced by the stochastic training process. We observe that deeper 

https://paperpile.com/c/Kxhkna/AkF57
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autoencoders provide a greater improvement on cell clustering than their shallower 

counterparts. The benefit of depth saturates after the number of hidden layers is greater 

than 10. On the other hand, width has no significant impact on cell clustering (Figure 6a; 

Supplementary Figure S6a; Supplementary Figure S7a). Those patterns are consistent 

in terms of both imputed ARI and imputed AMI. Surprisingly, the cell clustering after 

imputation only outperforms baseline ARIs on eight datasets and baseline AMIs on four 

datasets, regardless of autoencoder architectures.  

Figure 6b, Supplementary Figure S6b, and S7b compare the impact of activation 

functions on cell clustering. Similar to the previous analysis, we train autoencoders with 

seven different activation functions, including sigmoid, tanh, ReLU, LeakyReLU (with two 

different hyperparameters), ELU, and SELU. For each activation function, we impute the 

aforementioned 20 scRNA-seq datasets using 10 autoencoders obtained by setting 10 

different random seeds in the training process. All autoencoders have 10 fully connected 

hidden layers with 32 hidden units per layer. We observe that sigmoid and tanh 

outperform other activation functions in terms of both imputed AMI and imputed ARI on 

all datasets. They also exhibit more stable cell clustering performance than other 

activation functions. The performance of sigmoid and tanh are fairly comparable except 

for datasets Zeisel and klein, where tanh has a slight advantage over sigmoid. 

Figure 6c-6d, Supplementary Figure S6c-S6d, and S7c-S7d show the impact of 

regularization on cell clustering. Similar to the previous analysis, we utilize weight decay 

or dropout in autoencoders and adjust their hyperparameters in a broad range of values. 

All autoencoders have 10 fully connected hidden layers with 32 hidden units per layer 

and sigmoid activation functions. Interestingly, weight decay significantly improves cell 
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clustering — cell clustering after imputation with weight decay outperforms baseline ARIs 

on all 20 datasets and baseline AMIs on 18 datasets if paired with appropriate 

hyperparameter. The optimal hyperparameters of weight decay are mostly between 0.01 

and 0.1 on both imputed ARI and imputed AMI. However, the same improvement does 

not happen on dropout regularization — cell clustering after imputation with dropout only 

outperforms baseline ARIs on eight datasets and baseline AMIs on four datasets, if paired 

with appropriate dropout rate 𝑝 . Dropout regularization has limited benefits for 

autoencoders to improve cell clustering through imputation. Its optimal hyperparameters 

cover a broad range depending on the datasets. 

The previous comparison demonstrates the critical role of regularization for 

autoencoders to improve cell clustering. Autoencoder-based imputation methods impute 

all zero values in the scRNA-seq data matrix without differentiating between biological 

zeros from technical zeros. This causes an over-imputation issue because only technical 

zeros need to be imputed 118. Over-imputation introduces false signals to scRNA-seq data. 

If the harms of false signals surpass the benefits of true signals recovered, then overall, 

the imputation cannot improve cell clustering, as shown in Figure 6, Supplementary 

Figure S6, and S7. The weight decay regularization relieves over-imputation by shrinking 

the weights of the autoencoder while still being able to recover true signals at the same 

time. Therefore, weight decay with appropriate degrees of penalization improves cell 

clustering. Contrarily, dropout regularization tries to break the reliance on particular 

hidden units instead of adjusting the size of weight parameters. Our empirical result 

shows that this regularization mechanism is not able to effectively reduce over-imputation 

or improve cell clustering. Note that there is no over-imputation issue in the evaluation of 

https://paperpile.com/c/Kxhkna/LwWuY
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overall imputation accuracy because the technical zeros (i.e., masked values) are known 

in advance and imputed NRMSE and imputed correlation are calculated based on those 

values. 

4.2.7 Impact of autoencoder design on DE gene analysis 

The enhancement of signals in scRNA-seq data by imputation is supposed to benefit 

another important downstream analysis — the identification of differentially expressed 

(DE) genes. To examine the impact of autoencoder design on DE gene analysis, we 

utilize simulator scDesign 51 to generate 20 synthetic datasets with ground truth DE genes 

(Methods). Each synthetic dataset is generated by learning the distribution of gene 

expression in one real scRNA-seq dataset (20 real datasets in total; Supplementary Table 

S3). These real datasets (and their synthetic counterparts) cover a wide range of 

biological and technical conditions. We use synthetic data in this analysis since the 

ground truth DE genes are typically unknown in real scRNA-seq datasets.  

After simulation, we apply the MAST method 56 to pre-imputed synthetic datasets to 

identify DE genes and calculate the corresponding precision, recall, and true negative 

rate (TNR). We call them baseline precision, baseline recall, and baseline TNR in the 

following text. Next, we train autoencoders with various architectures, activation functions, 

and regularizations, and impute the aforementioned 20 synthetic datasets. Finally, we 

apply MAST to each imputed dataset and calculate the corresponding precision, recall, 

and TNR (Methods). We call them imputed precision, imputed recall, and imputed TNR 

in the following text. 

Figure 7a, Supplementary Figure S8a, S9a, and S10a show the impact of autoencoder 

architecture on imputed precision, imputed recall, and imputed TNR. The settings of depth, 

https://paperpile.com/c/Kxhkna/6hv95
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width and activation function for autoencoders are the same as in the evaluation of cell 

clustering (1 to 15 fully-connected hidden layers; 32, 64, 128, or 256 hidden units per 

layer; sigmoid activation function). We set five random seeds in the training of each 

autoencoder-dataset combination to obtain five different imputed datasets. We average 

the corresponding imputed precisions, imputed recalls, and imputed TNR to reduce the 

variability introduced by the stochastic training process. First, we observe that the imputed 

precision is similar across different depths and widths of the autoencoder, except for the 

dataset Interneurons, Epithelial_cells, and astrocytes, where deeper 

autoencoders slightly improved the imputed precision. Overall, the imputation improves 

the precision of identified DE genes over the baseline on 19 datasets. Second, deeper 

autoencoders provide higher imputed recall while the benefits generally saturate after the 

depth passes five. On the other hand, width has no significant impact on the imputed 

recall. Unfortunately, the imputation fails to improve the imputed recall over the baseline 

on all datasets, regardless of the autoencoder architecture. Third, the impact of depth and 

width on imputed TNR is limited, partially because all baseline TNRs are already close to 

one, and the gaps between them and imputed TNRs are less than 0.05. Finally, it is worth 

noting that the imputation by autoencoders has a clear priority to improving the precision 

over the recall in DE gene analysis. The increase of imputed precision often comes at the 

cost of the decrease of imputed recall. In other words, the imputation by the autoencoder 

makes the DE gene analysis more conservative. 

Figure 7b, Supplementary Figure S8b, S9b, and S10b compare the impact of 

activation functions on the imputed precision, imputed recall, and imputed TNR. Again, 

we train autoencoders with seven different activation functions, and for each of them, we 
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impute the aforementioned 20 synthetic datasets using 10 autoencoders obtained by 

setting different random seeds in the training process. All autoencoders have 10 fully 

connected hidden layers with 32 hidden units per layer. In terms of imputed precision, 

sigmoid and tanh outperform other activation functions on nine datasets and had 

comparable performance to others on 10 datasets. The only exception is the dataset 

Endotherial_cell, where ELU and SELU achieve the highest imputed precision. The 

advantage of sigmoid and tanh is more obvious in terms of imputed recall — they 

outperform other activation functions on 15 datasets. The comparison among activation 

functions on the imputed TNR is similar. The performance of sigmoid and tanh is generally 

comparable and they both provide a more stable improvement on the identification of DE 

genes than other activation functions. 

Figure 7c-7d, Supplementary Figure S8c-S8d, S9c-S9d, and S10c-S10d show the 

impact of regularizations on the imputed precision, imputed recall, and imputed TNR. 

Again, we add weight decay or dropout to autoencoders and adjust their hyperparameters 

as in the previous analysis. All autoencoders have 10 fully connected hidden layers with 

32 hidden units per layer and sigmoid activation functions. We observe that weight decay 

exhibits greater improvement on all three measurements of DE gene analysis than 

dropout. Specifically, weight decay improves the imputed precision, imputed recall, and 

imputed TNR over their no-regularization counterparts on 9, 20, and 20 datasets, 

respectively, if paired with appropriate hyperparameters. Moreover, weight decay with 

optimal hyperparameters makes imputed recall and imputed TNR surpass the baseline 

in all datasets. Dropout is able to improve imputed precision, imputed recall, and imputed 

TNR over their no-regularization counterparts on 6, 17, and 17 datasets, respectively, if 
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paired with appropriate hyperparameters. However, the improvement is much less than 

weight decay and fails to make the imputed recall and imputed TNR surpass the baseline 

on all but one dataset. 

Similar to the evaluation of cell clustering, regularization is also critical for 

autoencoders to improve DE gene analysis. Again, the weight decay reduces over-

imputation by constraining the size of weight parameters in autoencoders. With an 

appropriate degree of penalty, weight decay balances the recovery of true signals against 

the introduction of false signals to scRNA-seq data. Our empirical result also shows that 

dropout does not reduce over-imputation well as weight decay. Finally, hyperparameter 

tuning plays a critical role in determining the impact of regularization on DE gene analysis, 

especially for weight decay. The optimal hyperparameters of weight decay are mostly 

between 0.1 and 1 in terms of imputed recall and imputed TNR while less than 0.01 in 

terms of imputed precision. On the other hand, the DE analysis is relatively insensitive to 

the hyperparameter of dropout — the imputed precision, imputed recall, and imputed TNR 

are similar across a wide range of dropout rates. 

4.3 Discussion 

The high degree of sparsity is one of the major hurdles of analyzing scRNA-seq data, 

especially those induced by technical variability. This issue has brought much attention 

in scRNA-seq fields since the emergence of the first experimental protocols of scRNA-

seq 119. There are more than 70 computational imputation methods that explicitly or 

implicitly try to impute or denoise sparse scRNA-seq data 16. The autoencoder-based 

imputation methods are motivated by the success of deep learning and its application to 

https://paperpile.com/c/Kxhkna/BsjDX
https://paperpile.com/c/Kxhkna/DKL0N
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signal recovery in computer vision 120. Compared with traditional statistical and machine 

learning methods, they exhibit several advantages. First, autoencoder-based imputation 

methods require no assumptions about the underlying distribution of scRNA-seq data. 

This data-driven characteristic avoids model specification error and bias in traditional 

methods. Second, autoencoder-based imputation methods can effectively handle large-

scare scRNA-seq data by using innovative hardware, e.g., the GPU. Third, autoencoder-

based imputation methods have high flexibility due to their neural network work design. 

They can incorporate multiple functionalities in one framework, including imputation, 

dimension reduction, and batch effect normalization 31.  

Albeit all aforementioned advantages, however, how to design autoencoders remains 

a great challenge due to the large number of hyperparameters. The successful 

applications of autoencoders in other fields, especially computer vision, rely on systematic 

empirical studies conducted on massive datasets to search for the best hyperparameters. 

Current imputation methods mainly borrow the experience from those fields to set up their 

autoencoders. Although some of those practices may also perform well on scRNA-seq 

data, there is no guarantee that every design consideration is exactly the same among 

distinctive data types. Our comprehensive empirical study echoes the previous argument. 

On the one hand, the better performance of deeper and narrower autoencoders is 

consistent with the theoretical and empirical results widely accepted by the deep learning 

community. On the other hand, the observation that sigmoid and tanh outperform other 

activation functions, especially ReLU, is unexpected. This result reflects the unique 

characteristic of scRNA-seq data compared with image data. Our result is partially 

validated by another study which found that a neural network with tanh activation function 

https://paperpile.com/c/Kxhkna/drSs9
https://paperpile.com/c/Kxhkna/5nLmp
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outperforms its ReLU counterpart in the cell-type classification task based on scRNA-seq 

data 121. 

The shallow and wide autoencoder design in current methods may be motivated by 

the observation that deeper neural networks do not improve cell-type classification on 

scRNA-seq data 122. The reason is that the ground-truth cell type labels are mainly 

generated based on known marker genes, which makes different cell types relatively easy 

to be separated and limits the classification capacity of deep neural networks. However, 

the imputation task is essentially a regression rather than a classification problem. The 

predictive variable is continuous gene expression values (after pre-processing) instead 

of discrete cell-type labels. Therefore, the imputation is a more difficult prediction task 

than cell-type classification and needs deep neural networks with high predictive capacity 

37. On the other hand, even though deeper autoencoders exhibit advantages in our study, 

the benefits saturate when the number of layers passes 10. This is a much shallower 

architecture compared to state-of-the-art deep neural networks with hundreds of layers in 

computer vision study. Still, it reflects the consistency between data complexity and model 

capacity. One image is typically saved in a three-dimensional tensor format (three RGB 

channels, width, and length) 123, which is much more complex than one cell in a one-

dimensional vector format in scRNA-seq data. Any learning task on such complex data 

requires highly capable models (i.e., deeper neural networks).  

We find that dropout improves more on the overall imputation accuracy while weight 

decay excels in downstream cell clustering and DE gene analysis. Although dropout does 

not directly penalize the size of weight parameters in the autoencoder, it actually 

introduces sparsity into the weight parameters by randomly shutting down connections 

https://paperpile.com/c/Kxhkna/djAXR
https://paperpile.com/c/Kxhkna/W6yQd
https://paperpile.com/c/Kxhkna/PwYP
https://paperpile.com/c/Kxhkna/4P2Fz
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between hidden units. In other words, dropout can be understood as a stochastic 𝐿1 

penalty. From this point of view, we actually observe that 𝐿1penalization benefits the 

overall imputation accuracy while 𝐿2 improves downstream analysis. We should also note 

that the three masking schemes are imitations of but not the true missing mechanism and 

ultimately, the goal of imputation is to enhance downstream analysis. Therefore, 𝐿2 

penalization (weight decay) may provide stronger benefits in real-world applications. 

In summary, the performance of autoencoder-based imputation methods is sensitive 

to key aspects of the autoencoder design, including architecture, activation function, and 

regularization. Borrowing practice learned from other fields does not guarantee optimal 

performance on scRNA-seq data. The future methodological development should pay 

more attention to those design aspects and also offer the flexibility that allows users to 

adjust them based on their specific applications. 

4.4 Methods 

4.4.1 Data preprocessing and normalization 

All real and synthetic scRNA-seq datasets used in this study are count matrices. They 

are preprocessed and normalized by the following three steps. First, we remove genes 

expressed in less than three cells and cells with less than 200 genes expressed. Second, 

the gene expression counts of each cell are divided by the total counts of that cell (library 

size) and then multiplied by 10000 (library size normalization). The results are further 

added by one and then natural-log transformed. Third, we select 2000 highly variable 

genes by using the vst method implemented in the FindVariableFeatures function 
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of the Seurat package 124 (v 4.0). After preprocessing and normalization, the dimension 

of all scRNA-seq data matrices is cell number ×  2000. Note that the previous 

preprocessing and normalization only apply to the pre-imputed datasets. The imputed 

datasets as the input of cell clustering and DE gene analysis will not go through the same 

process. 

4.4.2 Training of autoencoders and imputation 

All the training of autoencoders was implemented by the Pytorch deep learning library 

125 (v 1.8.1) on a server with two Intel Xeon E5-2687W v4 CPUs, 256GB memory, an 

Nvidia Geforce RTX 2080 Ti GPU, and Ubuntu 18.04 system. After preprocessing, 

normalization, and masking (masking is only necessary for the evaluation of overall 

imputation accuracy), we split each dataset’s 80% cells into a training set and another 

20% cells into a validation set. We utilize the Adam optimization algorithm 107 to train the 

autoencoder set with a 0.001 learning rate and a 64 batch size. After every epoch of 

training on the training set, we impute the validation set using the current autoencoder 

and calculate the MSE between imputed and original nonzero values of the validation set. 

We stop the training until the aforementioned MSE does not decrease over 20 epochs or 

the total number of epochs surpasses 10000. In the imputation step, the trained 

autoencoder accepts the preprocessed and normalized scRNA-seq data matrix as input 

(with the dimension as cell number × 2000) and outputs a data matrix of the same 

dimension. The final imputed data matrix is generated by replacing the zero entries in the 

input matrix with their counterparts in the output matrix. The nonzero entries in the input 

matrix remain the same in the final imputed data matrix. 

https://paperpile.com/c/Kxhkna/ZUwz5
https://paperpile.com/c/Kxhkna/XgcAP
https://paperpile.com/c/Kxhkna/tBlss
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4.4.3 Calculation of imputation normalized root MSE (NRMSE) 

Suppose 𝑋 is the sparse scRNA-seq input matrix after appropriate preprocessing and 

normalization; 𝑌̂ is the imputed scRNA-seq data matrix; 𝑀 is the set of masked entries in 

the scRNA-seq data matrix. The MSE between imputed and true masked values 𝑀𝑆𝐸mask 

is calculated as 

𝑀𝑆𝐸mask =
∑ ∑ (𝑋𝑖𝑗−𝑌𝑖𝑗̂)2𝐼(𝑋𝑖𝑗∈𝑀)𝑚

𝑗
𝑛
𝑖

∑ ∑ 𝐼(𝑋𝑖𝑗∈𝑀)𝑚
𝑗

𝑛
𝑖

. 

Suppose the mean masked values 𝑋mask is 

𝑋mask =
∑ ∑ 𝑋𝑖𝑗𝐼(𝑋𝑖𝑗∈𝑀)𝑚

𝑗=1
𝑛
𝑖=1

∑ ∑ 𝐼(𝑋𝑖𝑗∈𝑀)𝑚
𝑗=1

𝑛
𝑖=1

, 

then the imputation NRMSE 𝑁𝑅𝑀𝑆𝐸imputation is calculated as  

𝑁𝑅𝑀𝑆𝐸imputation =  
√MSEmask

𝑋mask
. 

4.4.4 Activation functions 

We evaluate seven activation functions in this study, including logistic function (sigmoid), 

hyperbolic tangent function (tanh), rectified linear unit (ReLU), leaky ReLU (with two 

different hyperparameters), exponential linear units (ELU), and scaled exponential linear 

units (SELU). In neural networks, they accept a linear transformation of the outputs from 

the last layer as input and apply a nonlinear transformation on top of them. The shapes 

of the seven activation functions are shown in Supplementary Figure S11. 

The sigmoid activation function is a bounded differentiable function with positive and 

continuous derivatives. It ranges from 0 to 1. The function form of sigmoid is given by  

𝑓(𝑥) =
1

(1+𝑒−𝑥)
. 
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The tanh activation function is also a bounded differentiable function with positive and 

continuous derivatives. It ranges from -1 to 1. The function form of tanh is given by  

𝑓(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥. 

The ReLU activation function conducts a threshold operation that outputs zeros for 

negative inputs and preserves the positive inputs. It ranges from 0 to +∞ and has discrete 

derivatives. The function form of ReLU is given by 

. 

The leaky ReLU activation function modifies ReLU by introducing a small negative 

slope when the input is negative. It ranges from −∞ to +∞ and has discrete derivatives. 

The function form of leaky ReLU is given by 

, 

where 𝛼 is a hyperparameter. In our analysis, we set 𝛼 to 0.01 and 0.2 — the default 

values in two popular deep learning libraries Pytorch 125  and TensorFlow 126. 

The ELU activation function replaces the linear negative part of leaky ReLU with an 

exponential function. It ranges from −∞ to +∞ and has discrete derivatives. The function 

form of ELU is given by 

, 

where 𝛼 is a hyperparameter. In our analysis, we set 𝛼 to 1 — the default value in 

Pytorch. 

https://paperpile.com/c/Kxhkna/XgcAP
https://paperpile.com/c/Kxhkna/g2UwR
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The SELU activation function further adds a scale factor to ELU and changes its 

constant in the negative part. It ranges from −∞ to +∞ and has discrete derivatives. The 

function form of ELU is given by 

, 

where 𝜏 and 𝛼 are predefined parameters with 𝜏 = 1.05 and 𝛼 = 1.67. 

4.4.5 Cell clustering analysis 

We utilize the function kmeans in R programming language to conduct k-means 

clustering on the pre-imputed and imputed scRNA-seq datasets (Supplementary Table 

S2). We set parameter centers (i.e., k in the k-means clustering) to the correct number 

of cell types in each dataset. We set parameter nstart to 25, which repeats the 

clustering 25 times by randomly selecting 25 sets of initial cluster centers and returns the 

result with a minimum sum of pairwise distances within clusters 127. The dimension of 

input data matrices for k-means clustering is cell number ×  2000 without further 

dimension reduction. Note that before clustering, pre-imputed datasets are preprocessed 

by following the procedure described in the section “Data preprocessing and 

normalization.” On the other hand, the imputed datasets are directly clustered by k-means 

clustering. 

We use adjusted Rand index (ARI) and adjusted mutual information (AMI) to measure 

the performance of cell clustering. Let 𝑈 = {𝑢1,  𝑢2, . . . , 𝑢𝑐} be the true partition of 𝑐 classes 

and 𝑉 = {𝑣1,  𝑣2, . . . , 𝑣𝑐} be the partition obtained by k-means clustering. Let 𝑛𝑖 and 𝑛𝑗 be 

https://paperpile.com/c/Kxhkna/C8LX1
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the numbers of observations in class 𝑢𝑖  and cluster 𝑣𝑖 , respectively. Let 𝑛𝑖𝑗  be the 

number of observations in both class 𝑢𝑖 and cluster 𝑣𝑖. The ARI is calculated as 

 

, 

where 𝑛 is the number of observations and 𝑛 = ∑𝑐
𝑖=1 𝑛𝑖 = ∑𝑐

𝑗=1 𝑛𝑗. The AMI is 

calculated as  

2𝐼(𝑈,𝑉)

𝐻(𝑈)+𝐻(𝑉)
, 

where 𝐼(𝑈, 𝑉) is the mutual information of 𝑈 and 𝑉, and 𝐻(𝑈) and 𝐻(𝑉) are the entropies 

of 𝑈  and 𝑉  respectively 128. We utilize the functions ARI and AMI in the package 

aricode of R programming language to calculate ARI and AMI, respectively. 

4.4.6 Simulation of synthetic scRNA-seq data 

We utilize simulator scDesign 51 to generate 20 synthetic scRNA-seq data with ground-

truth DE genes. 20 real datasets (Supplementary Table S3) are preprocessed by 

following the procedure described in the section “Data preprocessing and normalization.” 

For each real dataset, we execute function design_data in R package scDesign to 

simulate one synthetic dataset based on the distribution of gene expression in that real 

dataset. Each synthetic dataset contains two cell types with 1000 cells per type. 10% 

genes are differentially expressed between the two cell types in the synthetic dataset. 

The sequencing depth of each synthetic dataset is equal to the sequencing depth of the 

https://paperpile.com/c/Kxhkna/J2snN
https://paperpile.com/c/Kxhkna/6hv95


146 

corresponding real dataset (sequencing depth =  library size ×  cell number). Other 

parameters of function design_data are set as their default values. All synthetic 

datasets are count matrices with dimensions as cell number × 2000.  

4.4.7 DE gene analysis 

We conduct DE gene analysis on the aforementioned 20 synthetic datasets and their 

imputed counterparts. For pre-imputed synthetic datasets, the gene expression counts of 

each cell are divided by the total counts of that cell (library size) and then multiplied by 

10000 (library size normalization). The results are further added by one and then natural-

log transformed. We utilize the function FindMarkers in R package Seurat to identify 

the DE genes between the two cell types. We set the parameter test.use to “MAST” 

and identify genes with Bonferroni-corrected p-values under 0.05 as DE genes. Based on 

the ground-truth DE genes, we calculate the precision, recall, and TNR for each pre-

imputed synthetic dataset and imputed dataset. 
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4.5 Figures 

 

 

Figure 1.  Autoencoder and the measurement of imputation accuracy. a, The basic 
structure of an autoencoder. b, The introduction of technical zeros by using three masking 
schemes. c, The training of autoencoders for imputation. d, the calculator of imputation 
accuracy on masked values. 
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Figure 2. The impact of depth and width on the imputation NRMSE (a) and correlation (b) 
based on the random masking scheme. 
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Figure 3. The impact of activation functions on the imputation NRMSE (a) and correlation 
(b) based on the random masking scheme. Sg: sigmoid; Th: tanh; RL: ReLU; LRL: 
LeakyReLU (𝛼 = 0.01); LRL: LeakyReLU.2 (𝛼 = 0.2); EL: ELU; SEL: SELU. 
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Figure 4. The impact of weight decay regularization on the imputation NRMSE (a) and 
correlation (b) based on the random masking scheme. 
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Figure 5. The impact of dropout regularization on the imputation NRMSE (a) and 
correlation (b) based on the random masking scheme. 
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Figure 6. The impact of autoencoder design on the cell clustering measured by ARI. a, 
Depth and width. b, Activation function. c, Weight decay regularization. d, Dropout 
regularization. Eight datasets are shown here (from left to right; from top to bottom): 
Zhengmix4uneq, Zeisel, mouse1_umifm_counts, Silver, lake, li, human2_umifm_counts, 
human4_umifm_counts.  
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Figure 7. The impact of autoencoder design on the DE gene analysis measured by recall. 
a, Depth and width. b, Activation function. c, Weight decay regularization. d, Dropout 
regularization. Eight datasets are shown here (from left to right; from top to bottom): T, 
cd8, 293t, Fibroblasts, Macrophages, Endothelial_cells, Hematopoietic_stem_cells, NK. 
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4.6 Supplementary Figures and Tables 

 
Supplementary Table S1. The 12 scRNA-seq datasets used to evaluate the overall 
imputation accuracy. 
 

Dataset Tissue/Cell type 
Experimental 

protocol 
# of cells # of genes Zero rate Reference 

jurkat Jurkat cells 10x Genomics 3258 32738 90.23% 52 

monocyte 
CD14+ 

Monocytes 
10x Genomics 2612 32738 98.59% 52 

mbrain Mouse brain cells 10x Genomics 9099 27998 90.97% 52 

pbmc 
Peripheral blood 

mononuclear cells 
10x Genomics 7783 32738 97.89% 52 

lymphoma Lymphoma cells 10x Genomics 8412 33555 96.17% 52 

293t 293T Cells 10x Genomics 2885 32738 89.56% 52 

bmmc 

Primary bone 
marrow 

mononuclear 
Cells 

10x Genomics 1985 32738 97.64% 52 

human_mix 
Mixture of 

HEK293T and 
MCF7 

Smart-seq-total 633 58660 89.58% 129 

mouse_spleen 
T-cells from the 

mouse spleen and 
small intestine 

Smart-seq2 574 23998 84.79% 130 

mouse_cortex 
Mouse cortex and 

hippocampus 
Fluidigm C1 3005 19972 81.21% 131,132 

mouse_skin Mouse skin Fluidigm C1 1422 26024 90.03% 133 

cbmc 
Cord blood 

mononuclear cells 
CITE-seq 8617 14438 95.54% 134 

 

  

https://paperpile.com/c/Kxhkna/zc8Nm
https://paperpile.com/c/Kxhkna/zc8Nm
https://paperpile.com/c/Kxhkna/zc8Nm
https://paperpile.com/c/Kxhkna/zc8Nm
https://paperpile.com/c/Kxhkna/zc8Nm
https://paperpile.com/c/Kxhkna/zc8Nm
https://paperpile.com/c/Kxhkna/zc8Nm
https://paperpile.com/c/Kxhkna/oZ9dy
https://paperpile.com/c/Kxhkna/iQlru
https://paperpile.com/c/Kxhkna/FyN8w+Gjld4
https://paperpile.com/c/Kxhkna/NrOom
https://paperpile.com/c/Kxhkna/qEJ7F
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Supplementary Table S2. The 20 scRNA-seq datasets with cell type labels used to 

evaluate the cell clustering. 

 

Dataset 
Tissue/Cell 

type 
Experimental 

protocol 
# of 
cells 

# of 
genes 

# of 
cell 

types 

Zero 
rate 

Reference 

Zhengmix4uneq 

Peripheral 
blood 

mononuclear 
cells 

10x Genomics 6498 16443 4 96.81% 52 

Zhengmix4eq 

Peripheral 
blood 

mononuclear 
cells 

10x Genomics 3994 15568 4 96.62% 52 

mouse_cortex 
Mouse cortex 

and 
hippocampus 

Fluidigm C1 3005 19972 9 81.21% 131,132 

mouse1_umifm_counts 
Mouse 

pancreatic 
islets 

inDrop 822 14878 13 90.48% 135 

mouse2_umifm_counts 
Mouse 

pancreatic 
islets 

inDrop 1064 14878 13 87.80% 135 

human1_umifm_counts 
Human 

pancreatic 
islets 

inDrop 1937 16381 14 90.41% 135 

human2_umifm_counts 
Human 

pancreatic 
islets 

inDrop 1724 20125 14 90.59% 135 

human3_umifm_counts 
Human 

pancreatic 
islets 

inDrop 3605 20125 14 91.30% 135 

human4_umifm_counts 
Human 

pancreatic 
islets 

inDrop 1303 16381 14 89.01% 135 

Sliver 

Peripheral 
blood 

mononuclear 
cells 

10x Genomics 2590 58302 11 98.42% 136 

Lake 
Human brain 

cells 
Fluidigm C1 3042 25051 16 53.69% 137 

Li 
Human 

colorectal 
tumors 

SMARTer 561 55186 9 78.52% 138 

liver Human liver SMARTer 777 19020 7 68.14% 139 

https://paperpile.com/c/Kxhkna/zc8Nm
https://paperpile.com/c/Kxhkna/zc8Nm
https://paperpile.com/c/Kxhkna/FyN8w+Gjld4
https://paperpile.com/c/Kxhkna/X4wko
https://paperpile.com/c/Kxhkna/X4wko
https://paperpile.com/c/Kxhkna/X4wko
https://paperpile.com/c/Kxhkna/X4wko
https://paperpile.com/c/Kxhkna/X4wko
https://paperpile.com/c/Kxhkna/X4wko
https://paperpile.com/c/Kxhkna/ozqRw
https://paperpile.com/c/Kxhkna/77t3u
https://paperpile.com/c/Kxhkna/91LC4
https://paperpile.com/c/Kxhkna/ddVS4
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Romanov 
Mouse brain 

cells 
Drop-seq 2881 24341 7 87.72% 140 

Camp 
Human brain 

cells 
SMARTer 734 18927 6 80.11% 141 

manno_human 
Human brain 

cells 
STRT-Seq UMI 4029 20560 56 39.69% 142 

Klein 
mouse 

embryonic 
stem cells 

inDrop 2717 24175 4 82.86% 143 

Usoskin 
Mouse brain 

cells 
STRT-Seq 622 25334 4 39.47% 144 

Tasic 
Mouse visual 
cortex cells 

SMARTer 1679 24150 18 68.30% 145 

Chen 
Mouse 

hypothalamus 
Drop-seq 14437 23530 47 93.35% 146 

 

  

https://paperpile.com/c/Kxhkna/xRlRY
https://paperpile.com/c/Kxhkna/4g1LN
https://paperpile.com/c/Kxhkna/DSKLu
https://paperpile.com/c/Kxhkna/5MYly
https://paperpile.com/c/Kxhkna/DVK3U
https://paperpile.com/c/Kxhkna/06YIs
https://paperpile.com/c/Kxhkna/EvKwB
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Supplementary Table S3. The 20 scRNA-seq datasets that generate synthetic datasets 
in the evaluation of DE gene analysis. 
 

Dataset Tissue/Cell type 
Experimental 

protocol 
# of 
cells 

# of 
genes 

Zero rate Reference 

T Pan T cells 10x Genomics 3551 33694 96.60% 52 

cd8 
CD8+ Cytotoxic 

T cells 
10x Genomics 10209 32738 98.21% 52 

293t 293T cells 10x Genomics 2885 32738 89.56% 52 

Acinar_cells Acinar cells 10x Genomics 1514 30036 99.74% 14 

Astrocytes Astrocytes Drop-seq 655 29651 95.42% 14 

Oligodendrocytes Oligodendrocytes Drop-seq 428 29651 94.79% 14 

Keratinocytes Keratinocytes 10x Genomics 3241 33293 96.07% 14 

Myoepithelial_cells 
Myoepithelial 

cells 
Drop-seq 896 28660 96.23% 14 

Epithelial_cells Epithelial cells Drop-seq 611 28660 94.42% 14 

NK 
Natural killer 

cells 
10x Genomics 2889 33321 94.52% 14 

Endothelial_cells Endothelial cells 10x Genomics 861 32925 94.04% 14 

Hematopoietic_stem_cells 
Hematopoietic 

stem cells 
SMART-seq2 1386 38240 88.08% 14 

Fibroblasts Fibroblasts SMART-seq2 2238 47873 92.94% 14 

Macrophages Macrophages SMART-seq2 744 47873 93.42% 14 

Interneurons Interneurons inDrops 2607 35443 96.11% 14 

Foveolar_cells Foveolar cells Microwell-seq 503 18521 95.49% 14 

Neutrophils Neutrophils Microwell-seq 1049 19460 96.95% 14 

Neurons Mouse neurons Drop-seq 641 28142 92.72% 14 

Tanycytes Tanycytes Drop-seq 507 28142 95.52% 14 

Pulmonary 
Pulmonary 

alveolar type I 
cells 

10x Genomics 727 27140 91.27% 14 

 

 
 

https://paperpile.com/c/Kxhkna/zc8Nm
https://paperpile.com/c/Kxhkna/zc8Nm
https://paperpile.com/c/Kxhkna/zc8Nm
https://paperpile.com/c/Kxhkna/TjAh
https://paperpile.com/c/Kxhkna/TjAh
https://paperpile.com/c/Kxhkna/TjAh
https://paperpile.com/c/Kxhkna/TjAh
https://paperpile.com/c/Kxhkna/TjAh
https://paperpile.com/c/Kxhkna/TjAh
https://paperpile.com/c/Kxhkna/TjAh
https://paperpile.com/c/Kxhkna/TjAh
https://paperpile.com/c/Kxhkna/TjAh
https://paperpile.com/c/Kxhkna/TjAh
https://paperpile.com/c/Kxhkna/TjAh
https://paperpile.com/c/Kxhkna/TjAh
https://paperpile.com/c/Kxhkna/TjAh
https://paperpile.com/c/Kxhkna/TjAh
https://paperpile.com/c/Kxhkna/TjAh
https://paperpile.com/c/Kxhkna/TjAh
https://paperpile.com/c/Kxhkna/TjAh
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Supplementary figure S1. The impact of depth and width on the imputation NRMSE (a) 
and correlation (b) based on the double exponential masking scheme. 
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Supplementary figure S2. The impact of depth and width on the imputation NRMSE (a) 
and correlation (b) based on the median masking scheme. 
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Supplementary Figure S3. The impact of activation functions on the imputation NRMSE 
(a) and correlation (b) based on the double exponential masking scheme. Sg: sigmoid; 
Th: tanh; RL: ReLU; LRL: LeakyReLU (𝛼 = 0.01); LRL: LeakyReLU.2 (𝛼 = 0.2); EL: ELU; 
SEL: SELU.  
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Supplementary Figure S4. The impact of weight decay regularization on the imputation 
NRMSE (a) and correlation (b) based on the double exponential masking scheme. 
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Supplementary Figure S5. The impact of dropout regularization on the imputation 
NRMSE (a) and correlation (b) based on the double exponential masking scheme. 
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Supplementary Figure S6. The impact of autoencoder design on the cell clustering 
measured by ARI (continued). a, Depth and width. b,Activation function. c, Weight decay 
regularization. d, Dropout regularization. 12 datasets are shown here (from left to right; 
from top to bottom): human3_umifm_counts, Zhengmix4eq, liver, romanov, camp, 
manno_human, klein, usoskin, tasic, human1_umifm_counts, mouse2_umifm_counts, 
chen.  
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Supplementary Figure S7. The impact of autoencoder design on the cell clustering 
measured by AMI (continued). a, Depth and width. b, Activation function. c, Weight decay 
regularization. d, Dropout regularization. 20 datasets are shown here (from left to right; 
from top to bottom): Zhengmix4uneq, Zeisel, mouse1_umifm_counts, Silver, lake, li, 
human2_umifm_counts, human4_umifm_counts, human3_umifm_counts, Zhengmix4eq, 
liver, romanov, camp, manno_human, klein, usoskin, tasic, human1_umifm_counts, 
mouse2_umifm_counts, chen.  
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Supplementary Figure S8. The impact of autoencoder design on the DE gene analysis 
measured by precision. a, Depth and width. b,Activation function. c, Weight decay 
regularization. d, Dropout regularization. 20 datasets are shown here (from left to right; 
from top to bottom): T, cd8, 293t, Fibroblasts, Macrophages, Endothelial_cells, 
Hematopoietic_stem_cells, NK, Keratinocytes, Neurons, Pulmonary, Myoepithelial_cells, 
Interneurons, Oligodendrocytes, Neutrophils, Foveolar_cells, Epithelial_cells, Tanycytes, 
Astrocytes, Acinar_cells .  
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Supplementary Figure S9. The impact of autoencoder design on the DE gene analysis 
measured by recall (continued). a, Depth and width. b,Activation function. c, Weight 
decay regularization. d, Dropout regularization. 12 datasets are shown here (from left to 
right; from top to bottom): Keratinocytes, Neurons, Pulmonary, Myoepithelial_cells, 
Interneurons, Oligodendrocytes, Neutrophils, Foveolar_cells, Epithelial_cells, Tanycytes, 
Astrocytes, Acinar_cells.  
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Supplementary Figure S10. The impact of autoencoder design on the DE gene analysis 
measured by TNR. a, Depth and width. b,Activation function. c, Weight decay 
regularization. d, Dropout regularization. 20 datasets are shown here (from left to right; 
from top to bottom): T, cd8, 293t, Fibroblasts, Macrophages, Endothelial_cells, 
Hematopoietic_stem_cells, NK, Keratinocytes, Neurons, Pulmonary, Myoepithelial_cells, 
Interneurons, Oligodendrocytes, Neutrophils, Foveolar_cells, Epithelial_cells, Tanycytes, 
Astrocytes, Acinar_cells.  
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Supplementary Figure S11. The seven activation functions evaluated in this study. The 
LeakyReLU activation function has two hyperparameter settings: 𝛼 = 0.01and 𝛼 = 0.2.  
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CHAPTER 5 

 

Conclusions 

 

Single-cell RNA sequencing (scRNA-seq) has brought up enormous opportunities and 

challenges. The scRNA-seq community starts to name the scRNA-seq data analysis as 

single-cell data science (SCDS) 147. SCDS tries to handle those challenges in a 

statistically solid and computationally efficient fashion. To echo this trend, we attempt to 

answer three critical questions in this dissertation: how to systematically benchmark the 

computational doublet detection methods; how to automate such benchmark so that it 

can accommodate the fast-growing methods efficiently; how to design autoencoder-

based imputation method to denoise scRNA-seq data. Our results provide promising 

solutions to those questions. 

There are several issues in scRNA-seq data analysis which have not been discussed 

thoroughly. We plan to explore potential solutions in future work. First, how to 

construct/infer/predict the whole-genome gene expression of single cells under different 

time points or experimental conditions. In principle, scRNA-seq data is a snapshot of 

single cells’ genomic appearance. The measurement of gene expression in one cell 

requires dissolving that cell, which means it is infeasible to remeasure its gene expression 

https://paperpile.com/c/Kxhkna/3yySq
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thereafter. This cell lysis process excludes the possibility to obtain the single cells’ time-

series gene expression or their gene expression under both treatment and control. With 

those data, however, researchers can construct the real cell developmental trajectory and 

the causal effect of treatment. Although machine learning methods can be used to 

construct/infer/predict those “counterfactual” data 148, the major challenge is how to 

validate the result due to the lack of ground truth. Fluorescence in situ hybridization 

(FISH)-based experimental protocols may provide expression measurements for a small 

number of genes across time or conditions 149. Yet how to validate the machine learning 

models on the rest of the genes remains a challenge. 

Second, how to design a subsampling method that can improve the computational 

efficiency and downstream analysis simultaneously. A scRNA-seq dataset may contain 

up to millions of cells, each of which has expression levels up to thousands of genes. 

Analyzing such huge datasets is often beyond the capacity of a single computer. A 

subsample is necessary to provide a computable subset with the essential information 

preserved from the full data. The naive random subsampling has limited impacts on 

downstream analysis, especially cell clustering since it does not change the distribution 

of cell types in the full data. A better subsampling method should improve cell clustering 

by generating samples with more balanced cell types than the full data. Moreover, a 

balanced subsample will benefit the identification of rare cell types since it includes more 

of them than the full data and random sample. A potential solution is to use space-filling 

design 150–155,159 to select cells close to the center of each cluster without the information 

of cell types. The subsample will mainly cover cells close to the center of each cluster 

and thus improve the performance of the clustering algorithm. 

https://paperpile.com/c/Kxhkna/BTNNB
https://paperpile.com/c/Kxhkna/GdGx8
https://paperpile.com/c/Kxhkna/Qup7+Usr9+eVfL+CPzB+3gBg+R2U2
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Finally, how to effectively utilize innovative hardware, especially the graphics 

processing unit (GPU), to improve the computational efficiency of current and future 

methods. The increasingly large number of cells and genes in scRNA-seq data has posed 

a great computational challenge on current methods that are mainly developed in the R 

programming language. In scientific computing, GPUs are used to accelerate the training 

of deep neural networks in computer vision and natural language processing. Although 

some deep learning methods have been developed for scRNA-seq data, they are limited 

to certain machine learning tasks, for example, imputation and dimension reduction 24. 

The field lacks a comprehensive software package with GPU acceleration that includes 

the life-cycle functionalities of scRNA-seq data analysis. The recently-developed general-

purpose Python libraries with GPU support (e.g., Pytorch 125 and CuPy 156) make it 

feasible to reimplement popular methods on GPUs. Such reimplementation will 

significantly increase the computational efficiency of current methods and handle the 

massive scRNA-seq data in the future.  

https://paperpile.com/c/Kxhkna/mbOqw
https://paperpile.com/c/Kxhkna/XgcAP
https://paperpile.com/c/Kxhkna/yKOeT
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