
UCLA
UCLA Electronic Theses and Dissertations

Title
Benchmarking Statistical and Machine-Learning Methods for Single-cell RNA Sequencing
Data

Permalink
https://escholarship.org/uc/item/4091n16g

Author
Xi, Nan

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4091n16g
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Benchmarking Statistical and Machine-Learning Methods for Single-cell RNA

Sequencing Data

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Statistics

by

Nan Xi

2021

© Copyright by

 Nan Xi

2021

ii

ABSTRACT OF THE DISSERTATION

Benchmarking Statistical and Machine-Learning Methods for Single-cell RNA

Sequencing Data

by

Nan Xi

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2021

Professor Jingyi Li, Chair

The large-scale, high-dimensional, and sparse single-cell RNA sequencing (scRNA-seq)

data have raised great challenges in the pipeline of data analysis. A large number of

statistical and machine learning methods have been developed to analyze scRNA-seq

data and answer related scientific questions. Although different methods claim

advantages in certain circumstances, it is difficult for users to select appropriate methods

for their analysis tasks. Benchmark studies aim to provide recommendations for method

selection based on an objective, accurate, and comprehensive comparison among

cutting-edge methods. They can also offer suggestions for further methodological

development through massive evaluations conducted on real data.

In Chapter 2, we conduct the first, systematic benchmark study of nine cutting-edge

computational doublet-detection methods. In scRNA-seq, doublets form when two cells

iii

are encapsulated into one reaction volume by chance. The existence of doublets, which

appear as but are not real cells, is a key confounder in scRNA-seq data analysis.

Computational methods have been developed to detect doublets in scRNA-seq data;

however, the scRNA-seq field lacks a comprehensive benchmarking of these methods,

making it difficult for researchers to choose an appropriate method for their specific

analysis needs. Our benchmark study compares doublet-detection methods in terms of

their detection accuracy under various experimental settings, impacts on downstream

analyses, and computational efficiency. Our results show that existing methods exhibited

diverse performance and distinct advantages in different aspects.

In Chapter 3, we develop an R package DoubletCollection to integrate the installation

and execution of different doublet-detection methods. Traditional benchmark studies can

be quickly out-of-date due to their static design and the rapid growth of available methods.

DoubletCollection addresses this issue in benchmarking doublet-detection methods for

scRNA-seq data. DoubletCollection provides a unified interface to perform and visualize

downstream analysis after doublet-detection. Additionally, we created a protocol using

DoubletCollection to execute and benchmark doublet-detection methods. This protocol

can automatically accommodate new doublet-detection methods in the fast-growing

scRNA-seq field.

In Chapter 4, we conduct the first comprehensive empirical study to explore the best

modeling strategy for autoencoder-based imputation methods specific to scRNA-seq data.

The autoencoder-based imputation method is a family of promising methods to denoise

sparse scRNA-seq data; however, the design of autoencoders has not been formally

discussed in the literature. Current autoencoder-based imputation methods either borrow

iv

the practice from other fields or design the model on an ad hoc basis. We find that the

method performance is sensitive to the key hyperparameter of autoencoders, including

architecture, activation function, and regularization. Their optimal settings on scRNA-seq

are largely different from those on other data types. Our results emphasize the importance

of exploring hyperparameter space in such complex and flexible methods. Our work also

points out the future direction of improving current methods.

v

The dissertation of Nan Xi is approved.

Ker-Chau Li

Yingnian Wu

Hongquan Xu

Jingyi Li, Committee Chair

University of California, Los Angeles

2021

vi

TABLE OF CONTENTS

1 Introduction .. 1

2 Benchmarking Computational Doublet-Detection Methods for Single-cell RNA

Sequencing Data ... 7

2.1 Introduction .. 7

2.2 Results ... 11

2.2.1 Doublet detection accuracy on real scRNA-seq datasets 11

2.2.2 Doublet detection accuracy on synthetic scRNA-seq data under various

experimental settings and biological conditions .. 15

2.2.3 Effects of doublet detection on DE gene analysis 17

2.2.4 Effects of doublet detection on highly variable gene identification 19

2.2.5 Effects of doublet detection on cell clustering .. 20

2.2.6 Effects of doublet detection on cell trajectory inference 23

2.2.7 Performance of doublet-detection methods under distributed computing .. 25

2.2.8 Computational efficiency, scalability, stability, and software implementation

of doublet-detection methods ... 27

2.3 Discussion .. 30

2.4 Methods ... 36

2.4.1 Real data preprocessing .. 36

2.4.2 Benchmark environment and parameter settings 38

2.4.3 Measures of doublet-detection accuracy ... 40

2.4.4 Simulation of scRNA-seq datasets containing doublets 41

2.4.5 Experimental settings used in benchmarking simulations.......................... 42

2.4.6 DE gene analysis ... 43

2.4.7 Identification of highly variable genes .. 44

2.4.8 Cell clustering analysis .. 45

2.4.9 Cell trajectory inference ... 46

2.4.10 Distributed computing .. 48

2.4.11 Scalability, stability, and usability ... 49

2.5 Acknowledgements .. 50

vii

2.6 Figures and Tables .. 51

2.7 Supplementary Materials ... 64

2.7.1 Accuracy of computational doublet detection in relation to experimental

techniques for doublet labeling ... 64

2.7.2 Pairwise similarities of computational doublet-detection methods 65

2.7.3 Comparison of hyperparameter selection in knn-based methods 66

3 An R Package for Benchmarking Computational Doublet-Detection Methods in

Single-Cell RNA Sequencing Data Analysis .. 84

3.1 Introduction .. 84

3.2 A step-by-step protocol .. 85

3.2.1 Data download ... 85

3.2.2 Installation of DoubletCollection .. 87

3.2.3 Doublet detection accuracy on real scRNA-seq datasets 88

3.2.4 Hyperparameter tuning for doublet detection methods (Optional) 91

3.2.5 Doublet detection accuracy under various experimental settings and

biological conditions .. 94

3.2.6 Effects of doublet detection on DE gene analysis 95

3.2.7 Effects of doublet detection on cell clustering .. 98

3.2.8 Effects of doublet detection on cell trajectory inference 100

3.2.9 Performance of doublet-detection methods under distributed computing 104

3.2.10 Computational aspects of doublet-detection methods (optional) 105

3.3 Expected Outcomes ... 106

3.4 Limitations .. 107

3.5 Troubleshooting ... 108

3.6 Figures ... 111

4 Benchmarking the Design of Deep Autoencoders for Denoising Single-Cell RNA

Sequencing Data ... 116

4.1 Introduction .. 116

4.2 Results ... 120

4.2.1 Autoencoder for imputing scRNA-seq data .. 120

4.2.2 Three masking schemes for introducing missing values 122

4.2.3 Impact of autoencoder architecture on the imputation accuracy 123

viii

4.2.4 Impact of activation function on the imputation accuracy 126

4.2.5 Impact of regularization on the imputation accuracy 128

4.2.6 Impact of autoencoder design on cell clustering 131

4.2.7 Impact of autoencoder design on DE gene analysis 134

4.3 Discussion .. 137

4.4 Methods ... 140

4.4.1 Data preprocessing and normalization .. 140

4.4.2 Training of autoencoders and imputation... 141

4.4.3 Calculation of imputation normalized root MSE (NRMSE) 142

4.4.4 Activation functions .. 142

4.4.5 Cell clustering analysis .. 144

4.4.6 Simulation of synthetic scRNA-seq data .. 145

4.4.7 DE gene analysis ... 146

4.5 Figures ... 147

4.6 Supplementary Figures and Tables ... 154

5 Conclusions ... 169

References .. 172

ix

LIST OF FIGURES

Chapter 2

1 Evaluation using real data ... 51

2 Evaluation using synthetic data, the effects on DE analysis, highly variable genes

identification, and cell clustering .. 53

3 Effects on cell trajectory inference... 55

4 Comparison on distributed computing, running time, scalability, and stability 57

5 A summary of benchmark results .. 59

S1 Comparison between DoubletDecon and other methods 68

S2 Cell clustering result by the DBSCAN, stability (AUROC), performance on different

plantforms, and hyperparameter tuning ... 69

Chapter 3

1 Data repository with real and synthetic datasets ... 111

2 Evaluation on real data .. 112

3 Evaluation on synthetic data and the effects on DE analysis 113

4 Effects on cell clustering .. 114

5 Effects on cell trajectory inference and distributed computing 115

Chapter 4

1 Autoencoder and the measurement of imputation accuracy 147

2 The impact of depth and width .. 148

3 The impact of activation functions ... 149

4 The impact of weight decay regularization .. 150

5 The impact of dropout regularization ... 151

6 The impact of design on the cell clustering ... 152

7 The impact of design on the DE gene analysis ... 153

S1 The impact of depth and width (double exponential) ... 158

S2 The impact of depth and width (median) ... 159

S3 The impact of activation functions (double exponential) 160

x

S4 The impact of weight decay regularization (double exponential) 161

S5 The impact of dropout regularization (double exponential) 162

S6 The impact of design on the cell clustering (continued) 163

S7 The impact of design on the cell clustering (AMI) ... 164

S8 The impact of design on the DE gene analysis (precision) 165

S9 The impact of design on the DE gene analysis (recall, continued) 166

S10 The impact of design on the DE gene analysis (TNR) .. 167

S11 The seven activation functions evaluated ... 168

xi

LIST OF TABLES

Chapter 2

1 An overview of nine computational doublet-detection methods 60

2 Real scRNA-seq datasets with experimentally annotated doublets....................... 62

3 Usability of the nine doublet-detection methods .. 63

S1 AUPRC values of ten doublet-detection methods ... 71

S2 AUROC values of ten doublet-detection methods .. 72

S3 The number of outperforming baselines and the number of top-performing for each

method on 16 benchmark scRNA-seq datasets .. 73

S4 Mean precision, recall, and TNR of ten doublet-detection methods 74

S5 Precision of doublets detection on 12 benchmark scRNA-seq datasets 75

S6 Recall of doublets detection on 12 benchmark scRNA-seq datasets 76

S7 TNR of doublets detection on 12 benchmark scRNA-seq datasets 77

S8 The number of identified doublets by DoubletDecon compared with the true

number of doublets on 12 benchmark datasets .. 78

S9 Mean running time of nine doublet-detection methods and their AUPRCs on 16

benchmark scRNA-seq datasets ... 79

S10 Mean AUPRC values of eight doublet-detection methods on benchmark scRNA-

seq datasets, categorized by four experimental techniques .. 80

S11 Mean Pearson correlation coefficient between every pair of doublet-detection

methods in terms of their doublet scores across the 16 benchmark datasets 81

S12 Mean Jaccard index between every pair of doublet-detection methods in terms of

their identified doublets ... 82

S13 The default hyperparameter settings of Scrublet and DoubletFinder 83

Chapter 4

S1 The datasets used to evaluate the imputation accuracy 154

S2 The datasets used to evaluate the cell clustering ... 155

S3 The datasets that generate synthetic data in DE gene analysis 157

xii

ACKNOWLEDGMENTS

I owe a great deal of gratitude to my advisor, Professor Jingyi Jessica Li. She provides

invaluable strategic advice at every stage of my graduate study at UCLA, from choosing

a research topic to succeeding in the job market, as well as work-family balance. Working

with her is among the most rewarding and pleasant experiences in my life. Nobody has a

greater positive impact on my academic career than Professor Li. From her, I have

learned how good an advisor can be and the enormous amounts of time and effort

required to lead a student to grow up as a researcher. I hope to become the kind of

professor to my students that Professor Li has been to her.

I would like to express my deep gratitude to my committee member, Professor

Hongquan Xu, who has always been supportive of my study, research, and academic

development. Professor Xu led me to Statistics. His academic rigor and enthusiasm

always inspire me. I am grateful for his constant encouragement, patient guidance, and

tremendous support throughout my graduate study at UCLA.

I am very fortunate to have Professor Yingnian Wu on my committee. His classes

provide the backbone of the statistical training that I rely on in my career. Discussions

with him during my graduate study are always encouraging and motivating. The

mentorship from him gives me essential support in the academic job market.

I want to thank my committee member Professor Ker-Chau Li for the enormous

insights he gives to help me become a researcher. His outstanding research and teaching

extend my research area. I am deeply indebted to Professor Li for his invaluable advice

on my dissertation. His great academic passion would always inspire me in my career.

xiii

I am very proud to work with my fellow students and junior researchers, especially

Ruochen Jiang, Yiling Chen, Dongyuan Song, Tianyi Sun, Xinzhou Ge, Wei Li, Heather

Zhou, Kexin Li, Yidan Sun, and all other members of the JSB group. Thanks for the help

and advice they bring to my research and life. Their friendship and academic support

make my time at UCLA much more pleasant. Finally, I am very grateful to my wife, Lin

Wang, for her constant support. All of this would not have been possible without her

undivided love and encouragement.

xiv

VITA

2003 — 2007 B.S. in Computer Science, Dalian University of Technology

2007 — 2009 Software Engineer, Panasonic

2010 — 2012 M.S. in Economics, Nankai University

2012 — 2015 Data Analyst, China Development Bank

2016 — 2021 Ph.D. Student and Candidate, Department of Statistics, University

of California, Los Angeles

PUBLICATIONS

Xi, M.N. and Li, J.J. (2021). Benchmarking Computational Doublet-Detection Methods for

Single-Cell RNA Sequencing Data. Cell Systems 12: 1-19.

Xi, M.N. and Li, J.J. (2021). Protocol for Benchmarking Computational doublet-Detection

Methods in Single-Cell RNA Sequencing Data Analysis. STAR Protocols (Preprint).

Xi, N., Ma, D., Liou, M., Steinert-Threlkeld, Z., Anastasopoulos, J., and Joo, J. (2020).

Understanding the Political Ideology of Legislators from Social Media Images. The

International AAAI Conference on Web and Social Media (ICWSM).

Xi, N. and Joo, J. (2019). Face Attribute Dataset for Balanced Race (extended abstract).

The Conference on Computer Vision and Pattern Recognition (CVPR) Workshop.

Xi, N. (2011). The Duopoly Analysis of Graphics Card Market. China Urban Economy 5:

64-65.

xv

HONORS AND AWARDS

2021 Best Poster Award, Duke Industry Statistics Symposium

2020 FDA ORISE Fellowship

2012 CO-WIN Scholarship

2010, 2011, 2012 Graduate Scholarship Award, Nankai University

2006 Outstanding Performance Award in National Undergraduate Art

Competition (Head of Tenors in University Chorus)

 2004, 2005 Undergraduate Scholarship Award, Dalian University of Technology

1

CHAPTER 1

Introduction

Single-cell RNA sequencing (scRNA-seq) is a family of emerging sequencing

technologies that have revolutionized biomedical sciences by revealing genome-wide

gene expression levels within each of thousands to millions of individual cells 1–3. Since

its invention, scRNA-seq has become an essential experimental approach to investigate

cell-to-cell heterogeneity, distinguish cell types and subtypes, identify cell-type-specific

genes, and reveal cellular dynamic processes 4,5. There are two major experimental

techniques of scRNA-seq among many protocols and commercial platforms. The first

approach is droplet microfluidics and well-based protocols 6,7. This approach distributes

a cell suspension into reaction volumes (droplets or wells) to hopefully encapsulate one

cell per volume, and then mRNA molecules in each volume are labeled by a unique

droplet barcode. Droplet microfluidics and well-based protocols have gained popularity

because of their high throughput, low cost per cell, and ability to detect unique mRNA

transcripts via unique molecular identifiers (UMIs) 8,9. The second approach is plated-

based protocol 10. This approach sequences relatively small amounts of cells but with

much deeper sequencing depths than droplet- and well-based protocols 11,12.

https://paperpile.com/c/Kxhkna/W5oMB+4mRPu+yRaw3
https://paperpile.com/c/Kxhkna/rusTj+AkF57
https://paperpile.com/c/Kxhkna/IolF+i1Gl
https://paperpile.com/c/Kxhkna/87WPm+79DlT
https://paperpile.com/c/Kxhkna/iezC
https://paperpile.com/c/Kxhkna/UtAa+pIzH

2

The recent development of experimental techniques in both sequencing approaches

has significantly reduced the cost of scRNA-seq. As a result, many large-scale scRNA-

seq datasets have been generated to answer a wide range of biological questions 13,14.

Each of those datasets may contain up to millions of cells and tens of thousands of genes

per cell. The effective analysis of such large datasets requires a standardized pipeline,

including quality control, normalization, batch effect correction, data integration,

imputation and denoising, future selection, dimension reduction, cell clustering,

differentially expressed (DE) gene analysis, cell trajectory inference, and visualization 15.

The diverse datasets, biological samples, and scientific questions in those analysis tasks

post a great challenge but also an opportunity for computationalists to develop novel

statistical and machine learning methods. At the time of writing, more than 900

computational methods are available for scRNA-seq data analysis, and many more are

under development 16. Researchers in the scRNA-seq community frequently face a

choice among several, if not dozens of, different methods in one single data analysis task.

Benchmark studies aim to provide practitioners a clear guideline to choose

appropriate computational methods for their specific scRNA-seq data analysis. A well-

designed benchmark study systematically compares the performance of different

methods based on real or synthetic scRNA-seq data with ground-truth biological labels.

It should also explore the impacts of different methods on the downstream scRNA-seq

data analysis. A benchmark study must be informative, comprehensive, accurate,

unbiased, up-to-date, and reproducible. Based on those principles, we conducted the first,

systematic benchmark study of computational doublet-detection methods for scRNA-seq

data. We compared doublet-detection methods in terms of their detection accuracy under

https://paperpile.com/c/Kxhkna/qZ3M5+TjAh
https://paperpile.com/c/Kxhkna/cH7D
https://paperpile.com/c/Kxhkna/DKL0N

3

various experimental settings, impacts on downstream analyses, and computational

efficiency. Our results show that existing methods exhibit diverse performance and

distinct advantages in different aspects. Our study provides much-needed guidance to

researchers in choosing appropriate doublet-detection methods for scRNA-seq data

analysis. Our results also point out directions for further methodological development and

improvement in computational doublet detection, an active area of bioinformatics

research 17.

The scRNA-seq community has conducted a number of well-designed benchmark

studies on the aforementioned pipeline of scRNA-seq data analysis 18–23. These studies

are valuable resources that assist researchers in selecting appropriate computational

methods. However, most of those benchmark studies are static, which makes them easily

out-of-data due to the rapid growth of computational methods in the scRNA-seq field 24.

The recommendations from those studies need constant updating to catch up with the

state-of-the-art status in method development. Because of the static design, updating

benchmark studies is time-consuming and tedious, especially for experimentalists who

lack programming skills. To address this issue for the doublet-detection benchmark study,

we developed a statistical software DoubletCollection to automate the benchmark of

doublet detection by integrating the installation and execution of cutting-edge doublet-

detection methods 25. DoubletCollection also provides a unified interface to perform and

visualize downstream analysis after doublet-detection. DoubletCollection can

automatically accommodate new doublet-detection methods and datasets in the fast-

growing scRNA-seq field. Additionally, we created a protocol on how to use

DoubletCollection in real-world applications. Our protocol defines a new paradigm to

https://paperpile.com/c/Kxhkna/R8doO
https://paperpile.com/c/Kxhkna/uL0KQ+b8Cza+3HTTe+T594+W30N+zU6J
https://paperpile.com/c/Kxhkna/mbOqw
https://paperpile.com/c/Kxhkna/hfGq

4

execute and benchmark different doublet-detection methods, fine-tune their

hyperparameters, and replicate the result in a transparent way.

The essential component of scRNA-seq data analysis is the gene expression matrix,

in which each row represents one cell and each column represents one gene (or vice

versa). ScRNA-seq data matrices are typically very sparse — the proportion of zero

entries ranges from ~50% to ~95% 5. Several factors contribute to such a high zero rate,

including shallow sequencing depth (especially in droplet- and well-based protocols), the

random noise introduced in the experimental process, and the biological absence of

certain gene expressions 26. The high sparsity of scRNA-seq data poses a great challenge

to various downstream analyses due to the low signal-noise ratio 22. The scRNA-seq

community tries to address this issue by developing imputation methods to fill up zeros in

data matrices. Currently, there are three broad categories of scRNA-seq imputation

methods. The first is the model-based method that uses probabilistic models to identify

and impute zeros introduced by technical variability 27,28. The second is the data

smoothing method that adjusts all expression values in one cell by using similar cells’

gene expression 29,30. The third is the data-reconstruction method that uses deep learning

to obtain a latent space representation of the cells and then reconstructs a dense data

matrix from the latent space representation 31,32. Among more than 70 currently available

imputation methods, autoencoder-based data-reconstruction methods have raised large

attention due to their superior performance in several benchmark studies 22,33.

Despite their success in some applications, there is no formal discussion on the design

of autoencoders in those imputation methods 22. Current methods either borrow the

experience learned from computer vision study or set up the autoencoder on an ad hoc

https://paperpile.com/c/Kxhkna/AkF57
https://paperpile.com/c/Kxhkna/5u0g
https://paperpile.com/c/Kxhkna/W30N
https://paperpile.com/c/Kxhkna/DijG+GzKn3
https://paperpile.com/c/Kxhkna/wsAOk+eDny
https://paperpile.com/c/Kxhkna/5nLmp+QN3r
https://paperpile.com/c/Kxhkna/W30N+b3EH
https://paperpile.com/c/Kxhkna/W30N

5

basis, which potentially limits the imputation performance on scRNA-seq data 24,34. To

address this issue, we conducted the first empirical study to explore the best modeling

strategies in the design of autoencoders for imputing sparse scRNA-seq data. Specifically,

we adjusted the three fundamental design aspects of autoencoders — architecture,

activation function, and regularization, and examined their impacts on the overall

imputation accuracy, downstream cell clustering, and DE gene analysis. Based on

numerical experiments on large-scale real and synthetic scRNA-seq datasets, we find

that different from current practice using shallow and wide neural networks with ReLU

activation functions 35, deep and narrow neural works with sigmoid or tanh activation

functions 36 provide better imputation accuracy, cell clustering, and DE gene analysis. In

terms of regularization, weight decay 37 significantly improves the cell clustering and DE

gene analysis, while dropout 38 has moderate improvement on the overall imputation

accuracy. Our findings suggest a unique modeling strategy suitable for scRNA-seq data.

Our results also point out directions for future methodological development and

hyperparameter tuning for currently available methods.

Our work has three broad impacts on the field of scRNA-seq data analysis. First, our

benchmark study is the first one that provides practitioners an objective, comprehensive,

and state-of-the-art recommendation on the selection of computational doublet-detection

methods. Second, our statistical software DoubletCollection is the first framework that

standardizes the installation, execution, and benchmark of cutting-edge doublet-detection

methods. Third, we find that the autoencoder requires a unique design for imputing

scRNA-seq data, which is largely different from its applications in other fields. This

dissertation is organized in the following order: In chapter 2, we introduce benchmarking

https://paperpile.com/c/Kxhkna/mbOqw+XWqS
https://paperpile.com/c/Kxhkna/j9Di
https://paperpile.com/c/Kxhkna/CLzt
https://paperpile.com/c/Kxhkna/PwYP
https://paperpile.com/c/Kxhkna/xSEY

6

computational doublet-detection methods for scRNA-seq data; In chapter 3, we introduce

statistical software DoubletCollection and the protocol for benchmarking computational

doublet-detection methods in scRNA-seq data analysis; In chapter 4, we introduce

designing deep autoencoders to denoise scRNA-seq Data; In chapter 5, we summarize

our work and discuss some future research questions.

7

CHAPTER 2

Benchmarking Computational Doublet-Detection

Methods for Single-cell RNA Sequencing Data

2.1 Introduction

In scRNA-seq, two major experimental protocols — droplet microfluidics and well-based

protocols — distribute a cell suspension into reaction volumes (droplets or wells) to

hopefully encapsulate one cell per volume (i.e., a singlet), and then mRNA molecules in

each volume are labeled by a unique droplet barcode. For simplicity, we will refer to a

reaction volume as a droplet in the following text. During the distribution step, however,

one droplet may encapsulate more than one cell, creating a so-called doublet that is

disguised as a single cell 5. The doublet rate (i.e., the proportion of doublets) in a scRNA-

seq experiment depends on the throughput and protocol, and doublets may constitute as

many as 40% of droplets 39. There are two major classes of doublets: homotypic doublets,

which are formed by transcriptionally similar cells, and heterotypic doublets, which are

formed by cells of distinct types, lineages, or states 40,41. Compared with homotypic

https://paperpile.com/c/Kxhkna/AkF57
https://paperpile.com/c/Kxhkna/I3LzE
https://paperpile.com/c/Kxhkna/JizuW+hyzQV

8

doublets, heterotypic doublets are generally easier to detect due to their distinct gene

expression profiles unlike those of singlets 41.

The existence of doublets, especially heterotypic doublets, in scRNA-seq datasets

may confound downstream analysis; for example, doublets can form spurious cell clusters,

interfere with differentially expressed (DE) gene analysis, and obscure the inference of

cell developmental trajectories 5,40. Several experimental techniques have been

developed to detect doublets in scRNA-seq using droplet barcodes. Example techniques

include cell hashing (doublets are the droplets whose barcodes are associated with more

than one oligo-tagged antibody) 42, species mixture (doublets are the droplets whose

barcodes are associated with more than one species) 40, demuxlet (doublets are the

droplets whose barcodes are associated with mutually exclusive sets of SNPs) 43, and

MULTI-seq (doublets are the droplets whose barcodes are associated with more than

one lipid-tagged index) 44. However, these techniques require special experimental

preparation, extra costs, and time, and they are not guaranteed to remove all doublets,

e.g., demuxlet cannot detect the doublets formed by cells from the same individual.

Moreover, they cannot remove doublets from existing scRNA-seq data.

Realizing the limitations of experimental strategies, researchers have attempted to

tackle this doublet challenge from an alternative perspective: developing computational

methods to detect doublets from already-generated scRNA-seq data 5. So far, nine

doublet-detection methods have been developed (with software packages and full-text

manuscripts) based on distinct algorithmic designs 39–41,45–48 (Table 1). Here is a brief

summary of these methods except hybrid, which is a combination of two methods: bcds

and cxds. Seven out of the eight methods (with cxds as the only exception) first generate

https://paperpile.com/c/Kxhkna/hyzQV
https://paperpile.com/c/Kxhkna/AkF57+JizuW
https://paperpile.com/c/Kxhkna/4ONen
https://paperpile.com/c/Kxhkna/JizuW
https://paperpile.com/c/Kxhkna/wB9b8
https://paperpile.com/c/Kxhkna/bnItm
https://paperpile.com/c/Kxhkna/AkF57
https://paperpile.com/c/Kxhkna/JizuW+hyzQV+I3LzE+dD796+I4OGu+opwB0+Dky9Q

9

artificial doublets by combining gene expression profiles of two randomly selected

droplets. Except for DoubletDecon, the other six methods subsequently define a doublet

score for each original droplet as the level of similarity the droplet has to those artificial

doublets; next, with a pre-defined or user-specified threshold, they detect doublets as the

original droplets whose doublet scores exceed the threshold. The key difference of the

seven artificial-doublet-based methods is how they distinguish original droplets from

artificial doublets: five of them use classification algorithms (Scrublet, doubletCells, and

DoubletFinder use k-nearest neighbors (kNN); bcds uses gradient boosting; Solo uses

neural networks), DoubletDetection uses the hypergeometric test, and DoubletDecon

decides whether an original droplet resembles an artificial doublet based on its

deconvolution algorithm (unlike the other methods, DoubletDecon identifies doublets

without providing doublet scores). As the only method that does not generate artificial

doublets, cxds defines doublet scores based on gene co-expression, and similar to the

other six doublet-score-based methods, it subsequently thresholds doublet scores to

identify doublets. While each method was shown to perform well under certain metrics by

its developers, currently, there is no systematic, third-party benchmarking of these

methods’ doublet-detection accuracy, effects on downstream analysis, or computation

efficiency. As a result, users lack guidelines to choose an appropriate doublet-detection

method for their analysis task. Hence, a detailed assessment of existing doublet-detection

methods is in great demand. In addition to assisting users, it will provide useful guidance

for computationalists to improve existing methods or develop new methods.

Here, we conducted the first comprehensive benchmark study of computational

methods for doublet detection. We evaluated nine cutting-edge methods—doubletCells

10

48, Scrublet 40, cxds 45, bcds 45, hybrid 45, Solo 39, DoubletDetection 47, DoubletFinder 41,

and DoubletDecon 46—in three aspects. First, we compared their overall doublet detection

accuracy using two criteria: the area under the precision-recall curve (AUPRC) and the

area under the receiver operating characteristic curve (AUROC), on a collection of 16 real

scRNA-seq datasets containing experimentally annotated doublets. To further evaluate

the performance of these methods under various experimental settings, we simulated 80

realistic scRNA-seq datasets and evaluated the AUPRC and AUROC of each method

under a wide range of doublet rates, sequencing depths, numbers of cell types, and cell-

type heterogeneity levels. Second, considering that the ultimate goal of doublet detection

is to improve the accuracy of downstream scRNA-seq data analyses, we compared these

nine doublet-detection methods in terms of their impacts on three downstream analyses:

cell clustering, DE gene analysis, and cell trajectory inference. We simulated seven

doublet-containing scRNA-seq datasets with pre-specified cell types, DE genes, and cell

trajectories. Then we evaluated the accuracy of the three downstream analyses by their

state-of-the-art computational methods before and after doublets were removed by each

doublet-detection method. The rationale is that a good doublet-detection method should

improve the accuracy of downstream analyses after its use. Third, we compared the

computational efficiency of doublet-detection methods in aspects including distributed

computing, speed, scalability, stability, and usability.

In summary, the nine doublet-detection methods exhibited a large variation in their

performance under each evaluation criterion. First, the benchmarking result of detection

accuracy shows that there is still room for improvement: the best method DoubletFinder

achieved a mean AUPRC value of 0.537 on 16 real datasets (Table S1). On simulated

https://paperpile.com/c/Kxhkna/Dky9Q
https://paperpile.com/c/Kxhkna/JizuW
https://paperpile.com/c/Kxhkna/dD796
https://paperpile.com/c/Kxhkna/dD796
https://paperpile.com/c/Kxhkna/dD796
https://paperpile.com/c/Kxhkna/I3LzE
https://paperpile.com/c/Kxhkna/opwB0
https://paperpile.com/c/Kxhkna/hyzQV
https://paperpile.com/c/Kxhkna/I4OGu

11

datasets, most methods performed better on datasets with higher doublet rates, larger

sequencing depths, more cell types, or greater heterogeneity between cell types. Second,

we observed that doublet removal by most methods indeed improved the elimination of

spurious cell clusters, the identification of DE genes, and the inference of cell trajectories,

yet the degree of improvement varied from method to method. Third, most methods

except cxds had deteriorated performance under distributed computing because global

data information was lost in each distributed data batch. The cxds method also performed

the best in terms of speed and scalability. Overall, DoubletFinder is highlighted as the

best computational doublet-detection method for its highest detection accuracy and

largest improvement on downstream analyses, while cxds is found as the most

computationally efficient method in our benchmark.

2.2 Results

2.2.1 Doublet detection accuracy on real scRNA-seq datasets

To evaluate the overall doublet detection accuracy of the nine methods, we collected 16

public scRNA-seq datasets with doublets annotated by experimental techniques 40,42–44

(Methods). Our collection covers a variety of cell types, droplet and gene numbers,

doublet rates, and sequencing depths, thus representing varying levels of difficulty in

detecting doublets from scRNA-seq data (Table 2). To the best of our knowledge, our

collection is by far the most comprehensive set of scRNA-seq data that contains

experimentally validated doublets, and it can serve as a benchmark standard for future

method development.

https://paperpile.com/c/Kxhkna/wB9b8+4ONen+bnItm+JizuW

12

To benchmark the nine methods, we included two baseline methods, which simply

use the library size (lsize) and the number of expressed genes (ngene) of each droplet

as their respective doublet detection criterion 5,40. Except for DoubletDecon, all the

methods output a doublet score for each droplet (Table 1; the two baseline methods have

lsize and ngene as their doublet scores; a droplet with a larger score is more likely a

doublet), and we define their detection accuracy as their AUPRC and AUROC values

(Methods). We found that all the methods successfully output their identified doublets

from all the 16 datasets except DoubletDetection, which could not run on the pdx-MULTI

dataset. Across the 16 datasets, each method exhibited a large variance in its detection

accuracy, and no method consistently achieved the top performance (Figure 1a–b;

Supplementary Tables S1-S2). Compared with the two baseline methods, doubletCells is

the only method that did not outperform them on a majority of datasets, while Solo and

hybrid are the only two methods that consistently outperformed them on all datasets

(Supplementary Table S3). Overall, DoubletFinder and Solo achieved the highest mean

AUPRC and AUROC values across datasets, respectively (Supplementary Tables S1–

S2). DoubletFinder was also the top-performing method on the most datasets in terms of

both AUPRC and AUROC (Supplementary Table S3). We note that all the methods had

AUPRC values much lower than their AUROC values on every dataset, an expected

phenomenon given the imbalance between the number of singlets and doublets. Since

AUROC is an overly optimistic measure of accuracy under such imbalanced scenarios 49,

we will focus on AUPRC in the following discussion.

The highest AUPRC value on each dataset ranges from 0.239 to 1.000, with a mean

of 0.570 across the 16 datasets (Supplementary Table S1). This large discrepancy

https://paperpile.com/c/Kxhkna/JizuW+AkF57
https://paperpile.com/c/Kxhkna/X0lw0

13

between datasets is further exemplified by the fact that several methods achieved almost

perfect AUPRC values on two datasets: hm-12k and hm-6k, while all the methods

performed poorly on another two datasets: pbmc-1B-dm and J293t-dm (with AUPRC

values under 0.335). A likely reason for this discrepancy is how doublets are annotated

in these real datasets. In hm-12k and hm-6k, doublets are annotated as the droplets that

contain cells of two species, so all doublets are heterotypic and easy to identify 39–41,45. In

contrast, doublets annotated in the other datasets may include homotypic doublets that

are difficult to identify, posing a challenge to doublet-detection methods; or they may miss

certain heterotypic doublets (e.g., if doublets are defined as the droplets that contain cells

from two individuals, then heterotypic doublets formed by cells of different types within an

individual would be missed), creating a downward bias in the calculation of detection

accuracy (see further discussion in the Supplementary). In addition, varied data quality

and cell heterogeneity pose different levels of difficulty to doublet detection. The highest

mean AUPRC value, which was achieved by DoubletFinder, is only 0.537. These results

demonstrate the general difficulty in detecting doublets from scRNA-seq data and suggest

possible room for improvement by future method development.

Motivated by the fact that doublets are identified based on a single threshold in

practice, we further examined the detection accuracy of doublet-detection methods under

a specific identification rate, i.e., the percentage of droplets identified as doublets. For

each method, the top 10%, 20%, and 40% droplets with the highest doublet scores were

identified as doublets, and the corresponding precision, recall, and true negative rates

(TNRs) were calculated (Figure 1c; Supplementary Table S4). As expected, higher

identification rates led to higher recall and lower TNR values. Interestingly, the precision

https://paperpile.com/c/Kxhkna/JizuW+hyzQV+I3LzE+dD796

14

decreased as the identification rate increased, a phenomenon suggesting that all doublet

detection methods tend to assign higher doublet scores to annotated doublets and thus

desirable (Figure 1c). The comparison of doublet-detection methods gave a result

consistent with that based on the overall detection accuracy measures AUPRC and

AUROC. DoubletFinder and Solo were still the top two methods in terms of the mean

precision, recall, and TNR, where the mean was calculated across the 16 datasets

(Supplementary Table S4).

Since DoubletDecon cannot output doublet scores, we could not calculate its AUPRC

or AUROC on a dataset and thus excluded it from the previous comparison. To fairly

compare DoubletDecon with other methods, we ran DoubletDecon on every dataset and

recorded its number of identified doublets if successful; then we thresholded the doublet

scores of other methods so that they identified the same number of doublets as

DoubletDecon did. Based on the resulting doublets identified by each method from every

dataset, we calculated the precision, recall, and TNR (Methods). By these three criteria,

DoubletDecon and doubletCells did not outperform the baseline methods lsize and ngene.

Among the other seven methods, Solo and DoubletFinder achieved the highest precision

and TNRs, while Solo and hybrid obtained the highest recall rates (Supplementary Figure

S1a and Tables S5–S7). Moreover, we observed that DoubletDecon failed to run on four

datasets (hm-12k, pbmc-2ctrl-dm, J293t-dm, and nuc-MULTI) and tended to overestimate

the number of doublets (Supplementary Table S8). Our results suggest that

DoubletDecon needs improvement in its accuracy and robustness. Adding the

functionality that outputs doublet scores will also enhance the usability of DoubletDecon,

15

because users can then have the flexibility to decide the number of doublets to be

detected and removed based on their preference and knowledge 50.

2.2.2 Doublet detection accuracy on synthetic scRNA-seq data under

various experimental settings and biological conditions

To thoroughly evaluate the performance of doublet-detection methods under a wide range

of experimental settings and biological conditions, we utilized scDesign 51,157, a statistical

simulator that generates realistic scRNA-seq datasets well mimicking real data generated

by a variety of scRNA-seq experimental protocols. It is advantageous to use synthetic

data to benchmark doublet-detection methods because we would have the access to

ground-truth doublets and the flexibility to vary experimental settings and biological

conditions in a comprehensive way. Specifically, we generated 80 scRNA-seq datasets

with varying doublet rates (i.e., percentages of doublets), sequencing depths, cell types,

and between-cell-type heterogeneity levels (Methods). Except for DoubletDecon, we

applied every doublet-detection method to all these synthetic datasets and calculated its

AUPRC values to measure its accuracy. Figure 2a shows how the performance of every

method changed as we varied the doublet rate, the sequencing depth, the number of cell

types, or the between-cell-type heterogeneity level. First, all the eight methods had

improved accuracy as the doublet rate increased. This result is not surprising, as these

methods all formulated the doublet detection problem, explicitly or implicitly, as a binary

classification problem where the two classes are singlets and doublets. The more

balanced the two classes are in size, the easier the binary classification is, in general.

Given the fact that, under both droplet microfluidics and well-based scRNA-seq protocols,

https://paperpile.com/c/Kxhkna/xt79a
https://paperpile.com/c/Kxhkna/6hv95

16

doublets are more likely to form as the number of cells increases 5,40,52, our result

suggests that doublet-detection methods would work more effectively on scRNA-seq

datasets with more cells (or droplets). This finding agrees with our previous result that all

the methods performed the worst on the J293t-dm dataset, which contains only 500

droplets, the fewest among all the 16 datasets. Second, we found that the performance

of these methods consistently benefited from a larger sequencing depth. This is in line

with the expectation that deeper sequencing creates a higher data resolution, making

doublet-detection methods more capable of differentiating doublets from singlets. Third,

we evaluated the impact of the number of cell types on the accuracy of doublet-detection

methods. It is expected that a cell mixture with more cell types would result in more

heterotypic doublets, which are formed by cells of different types. Thanks to their distinct

gene expression profiles that do not resemble those of any cell types, heterotypic

doublets are, in general, easier to detect than homotypic doublets, which are formed by

cells of the same type 40. As expected, most methods exhibited improved accuracy as the

number of cell types increased, with cxds, bcds, and hybrid (a combination of cxds and

bcds) as the only three exceptions. Fourth, we investigated how the between-cell-type

heterogeneity level—the extent to which gene expression profiles differ between cell

types—would affect the accuracy of doublet detection. In theory, the greater the

heterogeneity, the more distinct are heterotypic doublets from singlets. Again, all the

methods fit this theory except cxds, bcds, and hybrid. Hence, we saw consistent results

about the effects of the number of cell types and the between-cell-type heterogeneity level

on doublet detection.

https://paperpile.com/c/Kxhkna/zc8Nm+JizuW+AkF57
https://paperpile.com/c/Kxhkna/JizuW

17

We also compared the AUROC values of the eight doublet-detection methods on the

same synthetic scRNA-seq datasets as above (Supplementary Figure S1b). Consistent

with our AUPRC results, most methods performed better on the datasets with a higher

doublet rate, a larger sequencing depth, more cell types, or a greater level of between-

cell-type heterogeneity, though the improvement in AUROC was less significant than in

AUPRC. This is expected as AUPRC is a better accuracy measure than AUROC for

imbalanced binary classification 53. Combining our AUPRC and AUROC results, we found

DoubletFinder as the top-performing method across all the experimental settings and

biological conditions we studied. DoubletDetection and Scrublet also demonstrated

strong performance compared with the rest of methods. We excluded DoubletDecon from

this comparison and the following cell clustering, DE gene identification, and cell trajectory

inference analyses because it failed to run on most of our synthetic datasets, likely due

to its software implementation issue 54.

2.2.3 Effects of doublet detection on DE gene analysis

The existence of doublets in scRNA-seq datasets is expected to confound the

downstream DE gene analysis by violating the necessary “identical distribution”

assumption (i.e., cells of the same type follow the same distribution of gene expression

levels) in statistical tests 5. As a result, if a doublet-detection method is effective, its

doublet removal should improve the accuracy of DE gene analysis. To evaluate the eight

doublet-detection methods from this perspective, we used scDesign to generate a

synthetic scRNA-seq dataset with two cell types and 1126 between-cell-type DE genes

(6% of a total of 18760 genes; Methods). We referred to this dataset as the “clean data.”

We then mixed each cell type with randomly forming doublets by targeting a 40% doublet

https://paperpile.com/c/Kxhkna/gE7JR
https://paperpile.com/c/Kxhkna/rKWMy
https://paperpile.com/c/Kxhkna/AkF57

18

rate, and the resulting dataset was referred to as the “contaminated data.” Next, we

applied each doublet-detection method to the dataset and removed 40% droplets (with

the highest doublet scores assigned by each method) from the contaminated data. Finally,

we conducted DE gene analysis using three methods—DESeq2 55, MAST 56, and

Wilcoxon rank-sum test 57—on the clean data, the contaminated data, and the dataset

after each doublet-detection method was applied. The DE gene analysis result was

summarized in three accuracy measures: precision, recall, and TNR, all of which were

calculated under the Bonferroni-corrected p-value threshold of 0.05, the default threshold

used by DESeq2 and MAST 58. We benchmarked the accuracy resulted from each

doublet-detection method against the negative control (the accuracy based on the

contaminated data) and the positive control (the accuracy based on the clean data).

Figure 2b shows that all the three DE methods achieved extremely high precision (> 98%)

and TNRs (> 97%) even on the contaminated data, an expected result because these DE

methods all utilize statistical tests and are inherently conservative in their identification of

DE genes. Such conservativeness makes these DE methods only identify the genes that

are highly likely DE, leading to high precision (the percentage of true DE genes among

the identified genes) and TNR (the percentage of non-identified genes among the true

non-DE genes). Although the TNR result seems counterintuitive as the TNR values after

doublet detection and removal even exceeded the TNR values of the clean data by

around 0.005, this difference was merely due to the statistical uncertainty of these TNR

values and thus not conclusive. On the other hand, recall (the percentage of identified

genes among the true DE genes) is an informative measure that reflects the negative

influence of doublets: for all the three DE methods, their recall dropped from ~70% on the

https://paperpile.com/c/Kxhkna/PwyoW
https://paperpile.com/c/Kxhkna/myQaq
https://paperpile.com/c/Kxhkna/jRhmu
https://paperpile.com/c/Kxhkna/C6wgi

19

clean data to ~63% on the contaminated data. Pleasantly, all the eight doublet-detection

methods were effective in improving the recall (Figure 2c). In particular,DoubletFinder,

doubletCells, bcds, and hybrid consistently had top performance regardless of the choice

of DE methods. This result confirms that removing doublets is indeed beneficial for DE

gene analysis.

2.2.4 Effects of doublet detection on highly variable gene identification

The identification of highly variable genes (HVGs) is an essential step that precedes cell

dimension reduction, cell clustering, and cell trajectory inference in scRNA-seq data

analysis 59. The goal of this step is to identify HVGs, i.e., the informative genes that exhibit

strong cell-to-cell variations and thus can distinguish cells, so that the dimensions of each

cell can be reduced from tens of thousands of genes to thousands, or even hundreds of

genes, to facilitate those downstream analyses. Considering the importance of HVG

identification, we evaluated the extent to which the identification would be negatively

affected by doublets 60 and how much the eight doublet-detection methods could alleviate

such negative impacts. For this purpose, we simulated a clean scRNA-seq dataset

without doublets by scDesign, and then we added randomly formed doublets to generate

three contaminated datasets with 10%, 20%, and 40% doublet rates. For each

contaminated dataset, we applied the eight doublet-detection methods to remove a

percentage of droplets that received the highest doublet scores, and the percentage was

set as the dataset’s doublet rate. As a result, each contaminated dataset corresponds to

eight post-doublet-detection datasets. Then we used Seurat 61,62 to identify HVGs from

the clean dataset, the three contaminated datasets, and the 24 post-doublet-detection

datasets. We refer to the identification results as a set of clean HVGs, three sets of

https://paperpile.com/c/Kxhkna/btSq2
https://paperpile.com/c/Kxhkna/6SeHA
https://paperpile.com/c/Kxhkna/sFM0Y+I7s7r

20

contaminated HVGs, and 24 sets of post-doublet-detection HVGs. An effective doublet-

detection method is expected to result in post-doublet-detection HVGs that agree better

with the clean HVGs than the corresponding contaminated HVGs do. To measure the

agreement between two sets of HVGs, we used the Jaccard index, which is the ratio of

the size of the intersection to the size of the union of the two sets. The larger the Jaccard

index, the better agreement the two sets have. In our evaluation, for each doublet rate,

the Jaccard index between the contaminated HVGs and the clean HVGs served as the

negative control. Figure 2d shows that the negative control Jaccard index decreased from

0.772 to 0.447 as the doublet rate increased from 10% to 40%, matching our expectation.

Among the eight doublet-detection methods, DoubletFinder and Scrublet were the only

two methods whose post-doublet-detection HVGs consistently led to better Jaccard

indices than the negative controls under all three doublet rates. Notably, the benefit of

doublet detection on HVG identification was most obvious at the 40% doublet rate, under

which all the doublet-detection methods outperformed the negative control.

2.2.5 Effects of doublet detection on cell clustering

Another major motivation to remove doublets from scRNA-seq data is to avoid the

misinterpretation of spurious cell clusters (i.e., droplet clusters) formed by heterotypic

doublets as novel cell types 5,40. To evaluate the capacity of doublet-detection methods

for removing spurious cell clusters, we used scDesign to simulate realistic scRNA-seq

datasets composed of four, six, or eight cell types and mixed with 20% randomly forming

doublets (i.e., the true doublet rate is 20%). We performed cell clustering on each of these

datasets after we applied every doublet-detection method and removed a certain percent

of droplets that received the highest doublet scores from that method (Methods).

https://paperpile.com/c/Kxhkna/AkF57+JizuW

21

Considering that the true doublet rate is unknown and difficult to estimate in practice, we

varied this removal percentage from 0% to 25%, with a step size of 1%. For the

subsequent cell clustering, we followed the most popular Seurat method to apply the

Louvain clustering algorithm 63, which automatically determines the number of cell

clusters in a data-driven way. Then for each dataset, every doublet-detection method,

and each removal percentage, we compared the number of cell clusters with the number

of cell types. Figure 2e shows that, under the ideal scenario that the removal percentage

was set to the true doublet rate 20%, four methods (Scrublet, Solo, DoubletDetection,

and DoubletFinder) consistently removed spurious cell clusters and led to the correct

numbers of cell types. Among the eight methods, DoubletDetection and DoubletFinder

exhibited the most robust performance, as they successfully led to the correct numbers

of cell types under the widest range of removal percentages. Scrublet and Solo also

exhibited good performance in removing spurious cell clusters. In contrast, doubletCells,

cxds, bcds, and hybrid all had unstable performance, and they did not always remove

spurious cell clusters even under the ideal scenario (when the removal percentage was

set to 20%). Overall, this result supports the use of DoubletDetection and DoubletFinder

to remove doublets before the application of cell clustering to identify novel cell types.

Unlike heterotypic doublets, homotypic doublets do not form spurious clusters

because of their similar gene expression profiles to those of singlets of the same cell type

40. In other words, homotypic doublets tend to cluster together with singlets. Even though

the existence of homotypic doublets does not much affect cell clustering, it may potentially

bias the identification of cell-type-specific genes by DE gene analysis because homotypic

doublets are not real cells. To evaluate the capacity of doublet-detection methods in

https://paperpile.com/c/Kxhkna/9HNrS
https://paperpile.com/c/Kxhkna/JizuW

22

eliminating homotypic doublets, we calculated the proportion of singlets in each identified

cell cluster when the number of cell clusters matched the number of cell types in Figure

2e (Methods). Figure 2f shows that Scrublet led to cell clusters with the highest

proportions of singlets. DoubletDetection and DoubletFinder also had excellent

performance, and these three methods all clearly outperformed the rest of the methods.

Combining the results in Figure 2e–f, we conclude that Scrublet, DoubletDetection, and

DoubletFinder demonstrated the best capacity in removing heterotypic and homotypic

doublets.

To examine how robust the above results are to the choice of clustering algorithms,

we repeated the above analyses using a second clustering algorithm: the density-based

spatial clustering of applications with noise (DBSCAN) 64. Compared with the Louvain

clustering algorithm, the DBSCAN algorithm led to the correct numbers of cell clusters

under fewer and more sporadic removal percentages for all the doublet-detection

methods (Supplementary Figure S2a). This result suggests that the DBSCAN algorithm

works less effectively than the Louvain algorithm for clustering cells in scRNA-seq data

19,65. Nevertheless, with the DBSCAN algorithm, Scrublet, DoubletDetection, and

DoubletFinder still achieved the top performance in removing spurious cell clusters and

homotypic doublets (Supplementary Figure S2a–b). In summary, based on the results of

two clustering algorithms, we would recommend DoubletDetection and DoubletFinder as

the top two choices for removing spurious cell clusters in cell clustering analysis, and we

identified Scrublet and DoubletFinder as the best-performing algorithms for removing

homotypic doublets before the identification of cell-type-specific genes.

https://paperpile.com/c/Kxhkna/jrhxm
https://paperpile.com/c/Kxhkna/b8Cza+LSXdh

23

2.2.6 Effects of doublet detection on cell trajectory inference

Another important scRNA-seq data analysis is to infer a cell trajectory, which corresponds

to a cellular process such as cell differentiation, immune responses, and carcinogenesis,

based on the similarity of cells in terms of gene expression profiles 20. An inferred cell

trajectory is called pseudotime, an ordering of cells in a path or a tree 66,158. The accuracy

of cell trajectory inference depends on both the inference methods and the scRNA-seq

data quality. Similar to cell clustering, cell trajectory inference is also biased by the

existence of doublets 18. In particular, heterotypic doublets may result in spurious

branches in an inferred trajectory. We expect that doublet-detection methods, if effective,

should increase the accuracy of cell trajectory inference. To evaluate the eight doublet-

detection methods from this perspective, we used Splatter 67 to generate two scRNA-seq

datasets: one including a bifurcating trajectory and the other containing a conjunction of

three sequential trajectories (Methods). We referred to them as the “clean data.” Then we

mixed the two datasets with randomly forming doublets by targeting a 20% doublet rate,

and the resulting datasets were referred to as the “contaminated data.” Similar to our DE

gene analysis, we used each doublet-detection method to remove 20% droplets (with the

highest doublet scores assigned by that method) from each contaminated dataset. As a

result, we obtained two suites of datasets corresponding to a bifurcating trajectory and a

conjunction of three sequential trajectories, with each suite containing the clean data, the

contaminated data, and the data cleaned by each doublet-detection method. For cell

trajectory inference, we applied Slingshot 68 to the first suite of datasets (Figure 3a) and

minimum spanning tree (MST) 69 to the second suite of datasets (Figure 3b). We chose

Slingshot and MST because they were the top-performing methods in previous

https://paperpile.com/c/Kxhkna/3HTTe
https://paperpile.com/c/Kxhkna/KO8Uz
https://paperpile.com/c/Kxhkna/uL0KQ
https://paperpile.com/c/Kxhkna/9ciDr
https://paperpile.com/c/Kxhkna/N1qrT
https://paperpile.com/c/Kxhkna/zPt4W

24

benchmark studies 18,20. We considered the cell trajectories inferred from the clean data

and the contaminated data as the positive and negative controls, respectively. Figure 3a–

b shows that the doublets in the contaminated data indeed led to spurious branches that

did not exist in the inferred trajectories from the clean data. Except for doubletCells, all

the doublet-detection methods effectively removed doublets such that spurious branches

no longer existed in the inferred cell trajectories. In particular, in the second task of

inferring a conjunction of three sequential trajectories (Figure 3b), Scrublet,

DoubletDetection, and DoubletFinder led to inferred trajectories that most resembled the

trajectory inferred from the clean data. Figure 3a–b also shows that DoubletDetection and

DoubletFinder are the best two methods for removing the “outlier” doublets whose gene

expression profiles do not resemble those of any singlets.

Following cell trajectory inference, a typical next step is to explore gene expression

dynamics along the inferred trajectory and to identify temporally DE genes 5,20. Hence,

the accuracy of cell trajectory inference largely determines the accuracy of temporally DE

gene identification. Beyond checking the inferred cell trajectories after doublet removal

as in Figure 3a–b, we evaluated the effects of doublet removal on the identification of

temporally DE genes. We used Splatter to simulate a scRNA-seq dataset with a single

lineage and 250 temporally DE genes out of a total of 750 genes (Methods). We referred

to this dataset as the “clean data.” We then mixed the data with randomly forming doublets

by targeting a 20% doublet rate, and the resulting dataset was referred to as the

“contaminated data.” Next, we used eight doublet-detection methods to remove 20%

droplets (with the highest doublet scores assigned by each method) from the

contaminated data. Finally, we employed a general additive model (GAM) 70 to regress

https://paperpile.com/c/Kxhkna/3HTTe+uL0KQ
https://paperpile.com/c/Kxhkna/3HTTe+AkF57
https://paperpile.com/c/Kxhkna/Dr9uP

25

each gene’s expression levels on the corresponding cell/droplet pseudotime inferred by

Slingshot or TSCAN 71 on the clean data, the contaminated data, and the dataset after

each doublet-detection method was applied. Note that we replaced MST by TSCAN

because MST does not output pseudotime values for droplets and TSCAN is built upon

the MST algorithm. The temporally DE gene analysis result was summarized in three

accuracy measures: precision, recall, and TNR, all of which were calculated under the

Bonferroni-corrected p-value threshold of 0.05. Again, we used the accuracy obtained

from the clean data and the contaminated data as the positive and negative controls,

respectively. Doublet removal made a more significant improvement on the identification

of temporally DE genes when Slingshot was used for trajectory inference (Figure 3c–d).

With Slingshot, all the eight doublet-detection methods except doubletCells successfully

restored the precision, recall, and TNR from low values on the contaminated data to

values as high as those on the clean data. With TSCAN, however, the restoration effects

were only obvious in precision and TNR by Solo and cxds. In summary, doublet removal

is beneficial for cell trajectory inference and the subsequent identification of temporally

DE genes, and we observed strong beneficial effects when Slingshot was used for

trajectory inference.

2.2.7 Performance of doublet-detection methods under distributed

computing

A grand challenge in single-cell data sciences is the skyrocketing demand for

computational and storage resources due to the rapidly increasing data sizes 24. For

example, a scRNA-seq dataset may contain up to millions of droplets, each of which has

https://paperpile.com/c/Kxhkna/DZeYW
https://paperpile.com/c/Kxhkna/mbOqw

26

expression levels of tens of thousands of genes 13. Analyzing such huge datasets is often

beyond the capacity of a single computer but requires distributed computing, which

analyzes data subsets in parallel. Specific to the doublet-detection task, distributed

computing means that droplets are divided into batches, one batch per computer node,

due to massive data sizes or limited computational capacity; then a doublet-detection

method would be applied separately to assigning doublet scores to droplets in each batch.

After this parallelization step, doublet scores would be pooled from multiple batches, and

a threshold would be set on the pooled doublet scores to detect doublets. Compared with

the centralized computing that uses all the droplets together, distributed computing may

have deteriorated doublet-detection accuracy due to the limited data information within

each droplet batch. Hence, how a doublet-detection method performs under distributed

computing is an important evaluation criterion for the scalability and flexibility of the

method.

To investigate the performance of doublet-detection methods under distributed

computing, we randomly divided two large real scRNA-seq datasets—pbmc-ch and

pbmc-2ctrl-dm—into a varying number of batches with equal numbers of droplets, and

we evaluated how the doublet-detection accuracy of each method changed with the

number of batches. It is expected that the more batches, the worse the accuracy, and our

results confirmed this. Figure 4a–b shows the AUPRC and AUROC values of each

method under each number of batches, which varied from 1 to 10. The AUPRC and

AUROC values were calculated based on the pooled doublet scores as described above.

We excluded DoubletDecon from this comparison because it failed to run for most

numbers of batches, again suggesting its software implementation issue 54. With only one

https://paperpile.com/c/Kxhkna/qZ3M5
https://paperpile.com/c/Kxhkna/rKWMy

27

batch, distributed computing is reduced to centralized computing, and the corresponding

accuracy is supposedly the performance ceiling of every method. As expected, most

doublet-detection methods had decreasing accuracy, which is more clear in AUPRC

(Figure 4a) than AUROC (Figure 4b), as the number of batches increased. Among the

eight methods, doubletCells is an underperforming outlier with the lowest overall accuracy.

DoubletDetection and Solo are among the top-performing methods under centralized

computing; however, they exhibited the largest accuracy decrease under distributed

computing. In contrast, DoubletFinder is consistently a top performer, demonstrating its

superior accuracy again and its robustness under distributed computing.

2.2.8 Computational efficiency, scalability, stability, and software

implementation of doublet-detection methods

In addition to the above evaluation that focused on the effects of doublet removal on

various scRNA-seq data analyses, we also compared doublet-detection methods in four

computational aspects: efficiency, scalability, stability, and software implementation. First,

we summarized the running time of the nine doublet-detection methods (including their

required data preprocessing steps; Methods) on the 16 real scRNA-seq datasets in Table

2. Figure 4c shows that cxds is the fastest method, while Solo, DoubletDecon,

DoubletDetection, and DoubletFinder are significantly slower than the other methods.

Figure 4d shows that there was no straightforward relationship between the mean

AUPRC and the mean running time of eight doublet-detection methods (with the mean

calculated across the 16 real datasets). Nevertheless, the three most computationally

intensive methods—Solo, DoubletDetection, and DoubletFinder—had better accuracy

28

than the other methods except hybrid did. Interestingly, the hybrid method, an ensemble

of cxds and bcds, largely improved on its both base methods without much running time

increase. Among all methods, DoubletFinder achieved the highest mean AUPRC while

not being the most computationally intensive method. Normalizing the mean running time

by the mean AUPRC value for every method, we found cxds as the most resource-

efficient method (Supplementary Table S9).

Second, we examined the scalability of doublet-detection methods by showing how

fast their running time increases as the number of droplets grows. We used scDesign to

generate 25 synthetic scRNA-seq datasets with the number of droplets ranging from 400

to 10,000 (Methods). Then we applied each doublet-detection method to these datasets

and recorded its running time. (DoubletDecon was excluded because it failed to run on

most synthetic data.) As shown in Figure 4e, all methods except Solo had running time

scaled linearly with the number of droplets. The reason that Solo exhibited an erratic

relationship between its running time and the number of droplets is probably due to its

neural-network design. Among the other seven methods, cxds and DoubletDetection

demonstrated the best and worst scalability, respectively.

Third, we evaluated doublet-detection methods in terms of the statistical stability, i.e.,

how much their AUPRC and AUROC values vary across subsets of droplets and genes.

The smaller the variation, the larger the statistical stability. We randomly downsampled

two large real scRNA-seq datasets—pbmc-ch and pbmc-2ctrl-dm—into 20 data subsets

with 90% droplets and 90% genes. Then we applied each doublet-detection method to

these data subsets and recorded the resulting AUPRC and AUROC values.

(DoubletDecon was excluded because we were unable to calculate its AUPRC and

29

AUROC values, as explained before.) Figures 4f and S2c show the distributions of

AUPRC and AUROC values of each method when applied to the subsets generated from

each original dataset. Interestingly, we observed a roughly inverse relationship between

the overall doublet-detection accuracy and the statistical stability. For example,

DoubletFinder has the best overall accuracy in terms of both AUPRC and AUROC, yet

its variation across data subsets is much greater than that of Scrublet, which has a much

lower overall accuracy. Despite its suboptimal stability, we still found DoubletFinder as a

top performer if we compare the lower-quartile accuracy (i.e., the 25-th percentile of

AUPRC and AUROC values) of these methods. To summarize, even though statistical

stability is an important criterion, in practice, it is often overruled by the overall accuracy

reflected by the mean, median, or lower-quartile accuracy value. In terms of the overall

accuracy, we found DoubletFinder, Solo, and hybrid as the top three methods.

Fourth, we evaluated the software implementation of doublet-detection methods,

because user-friendliness, software quality, and active maintenance are crucial to the

success of bioinformatics tools 72. We scored each method in four aspects: software

quality, execution convenience, publication, and documentation & support (Methods).

Table 3 lists our score reasoning and the overall usability score of each method. In

particular,DoubletDetection and DoubletDecon did not successfully run on one or more

datasets. Regarding user support, Solo, DoubletDetection, DoubletFinder, and

DoubletDecon have active Q&As on their software webpages for collecting users’

feedback and answering users’ questions. Among the nine methods, DoubletFinder

achieved the highest usability score thanks to its excellent implementation.

https://paperpile.com/c/Kxhkna/aYh8w

30

2.3 Discussion

With the rapid development of scRNA-seq technologies, a skyrocketing number of

computational methods have been developed for various scRNA-seq data analyses 16.

For example, since 2018, more than 45 imputation methods have already been developed

to recover missing gene expression (commonly referred to as “dropouts”) in scRNA-seq

data 24,28,29,31,73. Such richness of computational methods is a double-sided blade. On the

one hand, scRNA-seq researchers have more blocks to build analysis pipelines that

accommodate their scientific investigation needs; on the other hand, it becomes

increasingly difficult for researchers to choose the method, from dozens of methods

developed for the same purpose, that best fits each step of their pipeline. Unlike in

experimental sciences where new technologies often replace old ones, there are usually

no clear-cut or universal choices of computational methods. An appropriate choice of

computational method is case by case, depending on data characteristics and scientific

questions at hand. Inappropriate method choices would, to varying extents, bias data

analysis (such as by introducing artificial, non-biological signals) and ultimately lead to

false discoveries 74,75. To avoid this issue, the scRNA-seq field and the broad biomedical

science community yearn for comprehensive benchmark studies that independently and

fairly evaluate computational methods 24. A well-designed benchmark study should offer

users objective, accurate, and informative guidance on selecting the appropriate

method(s) for a specific analysis task.

To provide the first, comprehensive benchmark of computational doublet-detection

methods, in this study, we evaluated nine existing methods using 16 real and 112

synthetic scRNA-seq datasets from three perspectives: overall detection accuracy,

https://paperpile.com/c/Kxhkna/DKL0N
https://paperpile.com/c/Kxhkna/mbOqw+GzKn3+wsAOk+SgUhD+5nLmp
https://paperpile.com/c/Kxhkna/bVNX7+aSNlT
https://paperpile.com/c/Kxhkna/mbOqw

31

impacts on downstream analyses, and computational efficiency. We further categorized

our benchmark results in nine aspects, including four related to doublet-detection

accuracy and five associated with software implementation (Figure 5, which does not

include DoubletDecon because it failed to run in most evaluations). In summary,

DoubletFinder is the best method in terms of accuracy, yet its computational efficiency

and stability are not among the best. The cxds method is the opposite: it has the best

computational efficiency, excellent stability, but medium accuracy. Our summary is

consistent with the aforementioned principle of computational methods that no method is

universally the best, so a fair comparison of computational methods should be

multifaceted.

Although our benchmark study has collected all the available scRNA-seq datasets to

date that contain doublet annotations, we note that none of the annotations is utterly

accurate due to experimental limitations. For example, the two species-mixture datasets,

hm12k and hm6k, only labeled the heterotypic doublets formed by a human cell and a

mouse cell; the six demuxlet datasets only labeled the doublets formed by cells of two

individuals; many homotypic doublets were unlabeled in all these datasets. As a result,

the incompleteness of doublet annotations would have inflated the false negative rates

and reduced the precision of computational doublet-detection methods in our benchmark.

To overcome this limitation, we designed extensive simulations to benchmark

computational doublet-detection methods in a fair and comprehensive manner. Yet, how

to generate accurate doublet annotations by experimental techniques remains an open

question to experimental scientists.

32

Regarding the future development and benchmark of computational doublet-detection

methods, here we list five open questions we deem important for computational scientists.

1. How to estimate the unknown doublet rate in a scRNA-seq dataset? Some

methods provide heuristic guidance to estimate the doublet rates or select the

threshold on doublet scores. For example, DoubletFinder suggests using the rates

of heterotypic doublets and Poisson doublet formation as the respective lower and

upper bounds of the expected doublet rate 41,50; Scrublet recommends setting the

doublet-score threshold in the middle of the two modes, which it expects to appear,

in the doublet-score distribution 40; Solo sets the doublet-score threshold to 0.5 by

default 39. However, there lacks consensus or direct estimation of the doublet rate

from scRNA-seq data. To address this issue, we suggest estimating the null

distribution of doublet scores (of singlets) as a preceding step; with a reliable null

distribution estimate, estimating the doublet rate would then become feasible 76.

2. How to distinguish homotypic doublets from singlets? Existing computational

doublet-detection methods cannot well identify the homotypic doublets that have

similar transcriptome profiles to those of singlets, likely due to the ways they

generate artificial doublets 39–41,45–48. A possible direction is to extract and

incorporate features that can distinguish homotypic doublets from singlets, such

as the droplet library size.

3. How to distinguish doublets from droplets contaminated by ambient mRNA?

Ambient mRNA molecules are released from lysed cells into the cell suspension;

they may enter droplets and contaminate the measured transcriptome profiles of

those droplets. Similar to doublets, contaminated droplets by ambient mRNA also

https://paperpile.com/c/Kxhkna/xt79a+hyzQV
https://paperpile.com/c/Kxhkna/JizuW
https://paperpile.com/c/Kxhkna/I3LzE
https://paperpile.com/c/Kxhkna/U68N0
https://paperpile.com/c/Kxhkna/JizuW+hyzQV+I3LzE+Dky9Q+dD796+opwB0+I4OGu

33

confound scRNA-seq data analysis 5. Existing computational doublet-detection

methods do not distinguish these two types of non-singlet droplets; instead,

computational methods have been developed separately to detect contaminated

droplets 77,78. Ideally, the single-cell field desires a computational method that can

simultaneously remove all non-singlet droplets, including doublets, contaminated

droplets, and empty droplets, from scRNA-seq data.

4. How to improve doublet-detection algorithms regarding the use of artificial doublets?

The majority of existing computational methods tackle the doublet detection task

as a binary classification problem (Table 1). To train a classification algorithm, they

use original droplets in data and artificial doublets they simulate to represent

“singlets” and “doublets,” respectively. However, not all original droplets are

singlets, because otherwise we would not need doublet detection. By neglecting

differences between original droplets and singlets, existing methods do not supply

their classification algorithms with quality training data, and a likely consequence

is that their post-training classifiers would be biased 79 and thus miss a substantial

number of doublets among original droplets. A possible remedy for this drawback

is to filter out the likely doublets from the original droplets, e.g., by applying outlier

detection methods 80, before simulating artificial doublets and subsequently

training a classification algorithm. An alternative remedy is to keep the training data

but train a classification algorithm under the “learning with noise labels” machine-

learning framework 79,81. Moreover, there are possible improvements to be made

in the generation of artificial doublets. Instead of simply adding or averaging the

gene expression profiles of two random droplets as done in existing methods, finer

https://paperpile.com/c/Kxhkna/AkF57
https://paperpile.com/c/Kxhkna/nxpH0+tnq4s
https://paperpile.com/c/Kxhkna/FqkDh
https://paperpile.com/c/Kxhkna/uVuuu
https://paperpile.com/c/Kxhkna/evtw5+FqkDh

34

adjustments can be made to the mixing of two droplets so as to generate more

realistic artificial doublets.

5. How to ensemble doublet-detection methods? As a multi-faceted problem, doublet

detection can hardly be solved by one single computational method. This is due to

the diversity of scRNA-seq datasets. The success of the method hybrid, an

ensemble of two methods bcds and cxds, motivated us to think that ensembling

reasonable and complementary methods, a technique widely used in machine

learning 82,83, may boost the accuracy of doublet detection. Supplementary Tables

S11 and S12 show the pairwise similarities of doublet-detection methods in terms

of their doublet scores and identified doublets in the 16 real datasets. Seeing that

the top-performing methods exhibited noticeable differences, we expect that there

is room for using the ensemble technique to develop a more accurate doublet-

detection method (see further discussion in the Supplementary).

By dissecting existing doublet-detection methods, we found method performance

highly dependent on the values of hyperparameters (also known as tuning parameters),

if any. For example, DoubletFinder, Scrublet, and doubletCells all use the k-nearest

neighbor (kNN) algorithm to distinguish doublets from singlets; however, surprisingly,

DoubletFinder outperformed the other two methods in most of our comparisons. A

probable reason is that DoubletFinder optimizes several key hyperparameters of the kNN

algorithm in a reasonable and data-driven way. For example, DoubletFinder selects the

number of nearest neighbors k by maximizing the bimodality of the doublet score

distribution. This advantage makes DoubletFinder adaptable to scRNA-seq datasets with

distinct characteristics 40,41,48. In contrast, Scrublet and doubletCells each assign a fixed

https://paperpile.com/c/Kxhkna/K5P6Z+8Lmaa
https://paperpile.com/c/Kxhkna/hyzQV+JizuW+Dky9Q

35

default value to k, restricting their flexibility and generalizability 40,41,48 (single-cell RNA

sequencing discussion in the Supplementary). The choice of hyperparameter values is

especially important for methods built upon complex algorithms. For example, bcds uses

the gradient boosting algorithm 45, a leading classification algorithm that has more

hyperparameters than the simple kNN algorithm does 84; however, the additional

complexity did not make bcds outperform DoubletFinder, probably due to the lack of

hyperparameter optimization. This phenomenon emphasizes the importance for

bioinformatics tools to optimize hyperparameter values in a scientific, data-driven way

85,86.

Ideally, doublet removal requires both experimental techniques and computational

methods. If permitted, researchers may use an experimental technique and a

computational method sequentially. That is, they first use an experimental technique such

as multiplexing to filter out obvious doublets (e.g., the doublets formed by cells of different

samples) and then apply a computational method to further screening for the remaining

droplets that are likely doublets. Or they may combine the doublet scores assigned to

each droplet by an experimental technique and a computational method, as proposed by

the method Solo. This second approach requires the experimental technique to have a

doublet scoring system 39.

In summary, computational doublet detection is critical for the quality control of

scRNA-seq data analysis 5. Our study is the first comprehensive benchmark of currently

available doublet-detection methods under a wide variety of biological and technical

settings. Our study provides much-needed guidance to researchers in choosing

appropriate doublet-detection methods for scRNA-seq data analysis. Our results also

https://paperpile.com/c/Kxhkna/hyzQV+JizuW+Dky9Q
https://paperpile.com/c/Kxhkna/dD796
https://paperpile.com/c/Kxhkna/9XoTK
https://paperpile.com/c/Kxhkna/zAOka+9PU6u
https://paperpile.com/c/Kxhkna/I3LzE
https://paperpile.com/c/Kxhkna/AkF57

36

point out directions for further methodological development and improvement in

computational doublet detection.

2.4 Methods

2.4.1 Real data preprocessing

Whenever preprocessed datasets were available, they were directly used in this study.

Otherwise, datasets were preprocessed in the same way as in the original studies in

which they were generated. In every dataset, genes and droplets were removed if they

had no reads in any droplets and any genes, respectively. Below is the preprocessing

detail for every dataset.

pbmc-ch 42: human peripheral blood mononuclear cells (PBMCs) from eight donors.

Doublets were annotated by cell hashing with CD45 as the hashing antibody. This dataset

is available at

https://www.dropbox.com/sh/ntc33ium7cg1za1/AAD_8XIDmu4F7lJ-5sp-rGFYa?dl=0

in files pbmc_hto_mtx.rds and pbmc_umi_mtx.rds. Its preprocessing pipeline is available

at https://satijalab.org/seurat/v3.1/hashing_vignette.html, including an instruction about

how to extract the doublet annotation.

cline-ch 42: four human cell lines HEK, K562, KG1, and THP1. Doublets were

annotated by cell hashing with CD29 and CD45 as the hashing antibodies. The access

URL and preprocessing pipeline of this dataset are the same as those of the pbmc-ch

dataset. The dataset is in files hto12_hto_mtx.rds and hto12_umi_mtx.rds.

Mkidney-ch 39: dissociated mouse kidney cells. Doublets were annotated by cell

hashing with cholesterol modified oligos (CMOs) as the hashing antibodies. The raw

https://paperpile.com/c/Kxhkna/4ONen
https://www.dropbox.com/sh/ntc33ium7cg1za1/AAD_8XIDmu4F7lJ-5sp-rGFYa?dl=0
https://satijalab.org/seurat/v3.1/hashing_vignette.html
https://paperpile.com/c/Kxhkna/4ONen
https://paperpile.com/c/Kxhkna/I3LzE

37

count matrix and doublet annotations were downloaded from the Gene Expression

Omnibus (GEO) 87 with the accession GSE140262.

hm-12k and hm-6k 52: two mixtures of human HEK293T and mouse NIH3T3 cells with

12,000 and 6000 droplets respectively. The raw count matrices were downloaded from

https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/hgmm_12k

and

https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/hgmm_6k.

A droplet was annotated as a doublet if its barcode was associated with both human

and mouse. Mouse genes were mapped into their human orthologs using R package

biomaRt 88 (v 2.44.1). Then each pair of human and mouse count matrices was

concatenated into each of the two datasets.

pbmc-1A-dm, pbmc-1B-dm, and pbmc-1C-dm 43: three samples of PBMCs from

systemic lupus erythematosus (SLE) patients. Droplets were sequenced immediately

after thawing. Doublets were annotated by demuxlet 43. The raw count matrix and doublet

annotations were downloaded from the GEO with the accession GSE96583.

pbmc-2ctrl-dm and pbmc-2stiml-dm 43: two samples of PBMCs from SLE patients.

Droplets were sequenced after being cultured for six hours following thawing, with (pbmc-

2stiml-dm) or without (pbmc-2ctrl-dm) IFN-beta stimulation. Doublets were annotated by

demuxlet. The raw count matrix and doublet annotations were downloaded from the GEO

with the accession GSE96583.

J293t-dm 43: a mixture of human Jurkat and HEK293T cell lines. Doublets were

annotated by demuxlet. The raw count matrix was downloaded from

https://ucsf.app.box.com/s/vg1bycvsjgyg63gkqsputprq5rxzjl6k/file/220975201845.

https://paperpile.com/c/Kxhkna/xpLz3
https://paperpile.com/c/Kxhkna/zc8Nm
https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/hgmm_12k
https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/hgmm_6k
https://paperpile.com/c/Kxhkna/XPCQK
https://paperpile.com/c/Kxhkna/wB9b8
https://paperpile.com/c/Kxhkna/wB9b8
https://paperpile.com/c/Kxhkna/wB9b8
https://paperpile.com/c/Kxhkna/wB9b8
https://ucsf.app.box.com/s/vg1bycvsjgyg63gkqsputprq5rxzjl6k/file/220975201845

38

Doublet annotations were obtained from

https://ucsf.app.box.com/s/vg1bycvsjgyg63gkqsputprq5rxzjl6k/file/220974993609.

pdx-MULTI 44: a mixture of human breast cancer cells and mouse immune cells from

a patient-derived xenograft (PDX) mouse model. Doublets were annotated by MULTI-seq

44. The dataset was downloaded from the GEO with the accession GSE129578. Doublet

were annotated by following the data processing pipeline available at

https://github.com/chris-mcginnis-ucsf/MULTI-seq.

HMEC-orig-MULTI and HMEC-rep-MULTI 44: human primary mammary epithelial

cells (HMECs) with HMEC-orig-MULTI as the original sample and HMEC-rep-MULTI as

a technical replica. The GEO accession and preprocessing pipeline of this dataset are

the same as those of the pdx-MULTI dataset.

HEK-HMEC-MULTI 44: a mixture of human HEK293Ts and HMECs. The GEO

accession and preprocessing pipeline of this dataset are the same as those of the pdx-

MULTI dataset.

nuc-MULTI 44: a mixture of purified nuclei from human HEK293Ts, Jurkats, and

mouse embryonic fibroblasts (MEFs). The GEO accession and preprocessing pipeline of

this dataset are the same as those of the pdx-MULTI dataset. Mouse genes were mapped

into their human orthologs using R package biomaRt (v 2.44.1).

2.4.2 Benchmark environment and parameter settings

All doublet-detection methods were executed on a server with two Intel(R) Xeon(R) E5-

2687W v4 CPUs, 256GB memory, and Ubuntu 18.04 system. An Nvidia(R) Geforce(R)

RTX 2080 Ti GPU was used to accelerate the execution of the Solo method as suggested

39. The parameters of doublet-detection methods were set to their recommended values

https://ucsf.app.box.com/s/vg1bycvsjgyg63gkqsputprq5rxzjl6k/file/220974993609
https://paperpile.com/c/Kxhkna/bnItm
https://paperpile.com/c/Kxhkna/bnItm
https://github.com/chris-mcginnis-ucsf/MULTI-seq
https://paperpile.com/c/Kxhkna/bnItm
https://paperpile.com/c/Kxhkna/bnItm
https://paperpile.com/c/Kxhkna/bnItm
https://paperpile.com/c/Kxhkna/I3LzE

39

or default values if no recommendation was available. The latest version of each method

(by September 2020; Table 1) was used. Random seeds were fixed and saved in our

code to ensure reproducibility. The detailed configuration for each method is summarized

below.

doubletCells: The method was executed by following the instruction at

https://bioconductor.statistik.tu-

dortmund.de/packages/3.8/workflows/vignettes/simpleSingleCell/inst/doc/work-6-

doublet.html. Doublet scores were obtained from the doubletCells function in R package

scran (v 1.16.0) with parameters set to default.

Scrublet: R package reticulate (v 1.16) was used to execute the python module

scrublet (v 0.2.1). The parameters were set by following the instruction at

https://github.com/AllonKleinLab/scrublet/blob/master/examples/scrublet_basics.ipynb.

Doublet scores were obtained from the function Scrublet.scrub_doublets.

cxds, bcds and hybrid: These three methods were executed by following the

instructions at https://github.com/kostkalab/scds. Doublet scores were obtained from the

functions cxds, bcds and cxds_bcds_hybrid in R package scds (v 1.2.0) with parameters

set to default.

DoubletDetection: R package reticulate (v 1.16) was used to execute the python

module doubletdetection. The parameters were set by following the instruction at

https://nbviewer.jupyter.org/github/JonathanShor/DoubletDetection/blob/master/tests/no

tebooks/PBMC_8k_vignette.ipynb. The parameter n_iters was set to 5, as larger values

were found to increase the running time significantly, but with little improvement in

https://bioconductor.statistik.tu-dortmund.de/packages/3.8/workflows/vignettes/simpleSingleCell/inst/doc/work-6-doublet.html
https://bioconductor.statistik.tu-dortmund.de/packages/3.8/workflows/vignettes/simpleSingleCell/inst/doc/work-6-doublet.html
https://bioconductor.statistik.tu-dortmund.de/packages/3.8/workflows/vignettes/simpleSingleCell/inst/doc/work-6-doublet.html
https://github.com/AllonKleinLab/scrublet/blob/master/examples/scrublet_basics.ipynb
https://github.com/kostkalab/scds
https://nbviewer.jupyter.org/github/JonathanShor/DoubletDetection/blob/master/tests/notebooks/PBMC_8k_vignette.ipynb
https://nbviewer.jupyter.org/github/JonathanShor/DoubletDetection/blob/master/tests/notebooks/PBMC_8k_vignette.ipynb

40

performance. Doublet scores were obtained from the function

doubletdetection.BoostClassifier.fit.

DoubletFinder: The method was executed by following the instruction at

https://github.com/chris-mcginnis-ucsf/DoubletFinder. Doublet scores were obtained

from the function doubletFinder_v3 in R package DoubletFinder (2.0.3) with parameters

set to default.

DoubletDecon: The method was executed by following the instruction at

https://github.com/EDePasquale/DoubletDecon. Doublet predictions were obtained from

the function Main_Doublet_Decon in R package DoubletDecon (v 1.1.5) with parameters

set to default.

Solo: The method was executed by following the instruction at the GitHub repository

https://github.com/calico/Solo. Every scRNA-seq count matrix was transformed into the

loom format as required by the method. The parameters were set the same as those in

the file Solo_params_example.json, which was downloaded from the GitHub repository.

Doublet scores were obtained from the file softmax_scores.npy.

2.4.3 Measures of doublet-detection accuracy

Methodologically, computational doublet-detection methods employ binary classification

algorithms to distinguish between two classes: singlets and doublets. AUPRC and

AUROC, two measures of the overall accuracy of a binary classification algorithm, were

used to evaluate the overall doublet-detection accuracy of each method. These two

measures were calculated using the functions pr.curve and roc.curve in R package

PRROC (v 1.3.1). Both functions input two vectors: the predicted doublet scores of true

singlets and those of true doublets, and they output AUPRC and AUROC, one value each.

https://github.com/chris-mcginnis-ucsf/DoubletFinder
https://github.com/EDePasquale/DoubletDecon
https://github.com/calico/solo

41

2.4.4 Simulation of scRNA-seq datasets containing doublets

All synthetic scRNA-seq datasets used in this study were generated in two steps. In Step

1, singlets in each dataset were generated by scDesign 51, which estimated a generative

model of gene expression profiles from a real scRNA-seq dataset (cell type: HEK293t;

protocol: 10x Genomics; gene number: 18760). The detailed experimental settings are

described in the next subsection. In Step 2, given the number of singlets and a pre-

specified doublet rate (i.e., the proportion of doublets among all droplets), the

corresponding number of doublets were generated by random pairing of singlets. In detail,

two randomly sampled singlets had their gene expression profiles (in UMI counts)

averaged by gene, and that averaged profile is called a prototype doublet. For each of

the 16 real scRNA-seq datasets, a doublet-to-singlet size ratio, defined as (average

doublet library size)/(average singlet library size), was calculated. Then the library size of

each prototype doublet was multiplied by a factor sampled from a normal distribution,

whose mean and standard division were set to the mean and standard deviation of the

16 doublet-to-singlet size ratios. This scaling step turned prototype doublets into doublets,

so that the doublet-to-singlet size ratios in the synthetic data were similar to those in the

real data. Finally, the singlets used to generate doublets were removed. In mathematical

terms, if X singlets were generated in Step 1 and the doublet rate was Y (a value between

0 and 1), then after Step 2 the numbers of doublets and singlets would be XY/(1+Y) and

X(1-Y)/(1+Y), respectively, both rounded to the nearest integers. For example, if 1000

singlets were generated in Step 1 and the doublet rate was 20%, the numbers of doublets

and singlets in the final dataset would be 167 and 667, respectively, making a total

number of 834 droplets.

https://paperpile.com/c/Kxhkna/6hv95

42

2.4.5 Experimental settings used in benchmarking simulations

80 scRNA-seq datasets were generated by scDesign to benchmark doublet-detection

methods in four aspects: varying doublet rates, sequencing depths (i.e., per-cell library

sizes), cell types, and between-cell-type heterogeneity levels.

● 20 synthetic datasets were generated with doublet rates increasing from 2% to 40%

by a step size of 2%. The per-cell library size was set to 2000 UMI counts. All

datasets contained two cell types. Based on the data generation scheme described

in the last subsection, 500 singlets were generated for each cell type in Step 1. In

Step 2, doublets were introduced based on each doublet rate, and the singlets

used to generate doublets were removed.

● 20 synthetic datasets were generated with per-cell library sizes increasing from

500 to 10,000 UMI counts by a step size of 500 counts. All datasets contained two

cell types. Based on the data generation scheme described in the last subsection,

500 singlets were generated for each cell type in Step 1. In Step 2, doublets were

introduced based on a 20% doublet rate, and the singlets used to generate

doublets were removed.

● 19 synthetic datasets were generated with numbers of cell types increasing from

2 to 20 by a step size of 1. The per-cell library size was set to 2000 UMI counts.

Based on the data generation scheme described in the last subsection, 500

singlets were generated for each cell type in Step 1. In Step 2, doublets were

introduced based on a 20% doublet rate, and the singlets used to generate

doublets were removed.

43

● 21 synthetic datasets were generated with varying heterogeneity levels between

two cell types. The heterogeneity level was controlled by four parameters (pUp,

pDown, fU, and fL) in scDesign. Specifically, pUp and pDown denote the

proportions of up- and down-regulated genes, and fU and fL define the upper and

lower bounds of fold changes in the expression levels of DE genes. The following

parameter combinations were used to generate 21 heterogeneity levels:

Level 1: pUp = 0.010, pDown = 0.010, fU = 1.0, and fL = 0.5;

Level 2: pUp = 0.012, pDown = 0.012, fU = 1.2, and fL = 0.6;

…

Level 21: pUp = 0.050, pDown = 0.050, fU = 5.0, and fL = 2.5.

At all heterogeneity levels, the per-cell library size was set to 2000 UMI counts.

Based on the data generation scheme described in the last subsection, 500

singlets were generated for each cell type in Step 1. In Step 2, doublets were

introduced based on a 20% doublet rate, and the singlets used to generate

doublets were removed.

2.4.6 DE gene analysis

One synthetic scRNA-seq dataset was generated by scDesign to have two cell types. The

per-cell library size was 10,000 UMI counts. The pUp and pDown parameters in scDesign

were both set to 0.03, suggesting that a total of 6% of genes were DE between the two

cell types (3% up-expressed and 3% down-expressed). The fU and fL parameters in

scDesign (i.e., the upper and lower bound of fold changes for DE genes) were set to 3

and 1.5, respectively. Based on the data generation scheme described in the Subsection

“Simulation of scRNA-seq datasets containing doublets,” 500 singlets were generated for

44

each cell type in Step 1. In Step 2, doublets were introduced based on the 40% doublet

rate, and the singlets used to generate doublets were removed. Three DE methods—

DESeq2 55, MAST 56, and the Wilcoxon rank-sum test 57 implemented in the R package

Seurat (v 3.1.5) 61,62—were applied to this dataset (“contaminated dataset” containing

both singlets and doublets), its clean version without doublets (“clean dataset” only

containing singlets), and its post-doublet-detection version after each doublet-detection

method was applied (the top 40% droplets that received the highest doublet scores were

removed). After each DE method was applied to every dataset, genes whose Bonferroni-

corrected p-values did not exceed 0.05 were identified as DE. Three accuracy

measures—precision, recall, and TNR—were calculated for every set of identified DE

genes. For each DE method, its accuracy on the contaminated dataset and the clean

dataset were used as the negative and positive controls, respectively, for benchmarking

its accuracy on the post-doublet-detection datasets (Figure 2b–2c).

2.4.7 Identification of highly variable genes

Three synthetic datasets were generated with 10%, 20%, and 40% doublet rates,

respectively. The per-cell library size was set to 2000 UMI counts. All datasets contained

two cell types. Based on the data generation scheme described in the Subsection

“Simulation of scRNA-seq datasets containing doublets,” 500 singlets were generated for

each cell type in Step 1. In Step 2, doublets were introduced based on each doublet rate,

and the singlets used to generate doublets were removed. To identify the highly variable

genes (HVGs), we applied the function FindVariableFeatures in R package Seurat (v

3.1.5) with default parameters to the three datasets (“contaminated datasets” containing

both singlets and doublets; one dataset per doublet rate), their clean versions without

https://paperpile.com/c/Kxhkna/PwyoW
https://paperpile.com/c/Kxhkna/myQaq
https://paperpile.com/c/Kxhkna/jRhmu
https://paperpile.com/c/Kxhkna/sFM0Y+I7s7r

45

doublets (“clean datasets” only containing singlets), and their post-doublet-detection

version after each doublet-detection method was applied (the top 10%, 20%, or 40%

droplets that received the highest doublet scores were removed, and the removal

percentage was set to the doublet rate). We refer to the identified HVGs as contaminated

HVGs, clean HVGs, and post-doublet-detection HVGs, respectively. The Jaccard index

between two sets of HVGs was calculated by the function simi in R package proxy (v 0.4-

24) (Figure 2d).

2.4.8 Cell clustering analysis

Three synthetic scRNA-seq datasets were generated by scDesign to have four, six, and

eight cell types. The per-cell library size was 2000 UMI counts. Based on the data

generation scheme described in the Subsection “Simulation of scRNA-seq datasets

containing doublets,” 500 singlets were generated for each cell type in Step 1. In Step 2,

doublets were introduced based on a 20% doublet rate, and the singlets used to generate

doublets were removed. The heterogeneity between cell types was determined by the

default pUp, pDown, fU, and fL parameters in scDesign. After each doublet-detection

method was applied to each dataset, the top x% of droplets, which received the highest

doublet scores (with the removal percentage x% ranging from 0% to 25% by a step size

of 1%), were removed; then two clustering algorithms—Louvain clustering implemented

in R package Seurat (v 3.1.5) and DBSCAN 64 implemented in R package dbscan (v 1.1-

5)—were used to identify cell clusters. Finally, the numbers of cell clusters were

compared with the numbers of cell types to evaluate the effectiveness of doublet removal

(Figure 2e; Supplementary Figure S2a). Whenever the number of cell clusters matched

the number of cell types, the proportion of singlets among the remaining droplets was

https://paperpile.com/c/Kxhkna/jrhxm

46

used to measure each doublet-detection method’s capacity for removing homotypic

doublets (Figure 2f; Supplementary Figure S2b). In the example of four cell types, if a

doublet-detection method (given a clustering algorithm) correctly led to four cell clusters

under six removal percentages, then a proportion of singlets was calculated for each of

the 24 clusters (four clusters times six removal percentages), resulting in 24 proportions.

2.4.9 Cell trajectory inference

Two scRNA-seq datasets were generated by Splatter 67 to have cell trajectories. Both

datasets contained 1000 genes. In Step 1 of the data generation scheme described in the

Subsection “Simulation of scRNA-seq datasets containing doublets,” the first dataset had

500 singlets following a bifurcating trajectory, whose two branches had 250 singlets each,

and the second dataset had 1000 singlets from a conjunction of three sequential

trajectories, two of which had 333 singlets and the other had 334 singlets. In Step 2 for

both datasets, doublets were introduced based on a 20% doublet rate, and the singlets

used to generate doublets were removed. Parameters in Splatter were set to default

except for de.prob and de.facLoc, which were set to 0.5 and 0.2, respectively. Each

dataset was expanded into a suite, including its original version (“contaminated dataset”),

clean version without doublets (“clean dataset”), and its post-doublet-detection version

after each doublet-detection method was applied (the top 20% droplets that received the

highest doublet scores were removed). For the first suite of datasets, cell trajectories were

constructed by Slingshot 68 based on the pipeline available at

https://github.com/kstreet13/slingshot/blob/master/vignettes/vignette.Rmd. For the

second suite of datasets, the minimum spanning tree (MST) algorithm implemented in R

package slingshot (v 1.6.1) was used to construct cell trajectories. The trajectories

https://paperpile.com/c/Kxhkna/9ciDr
https://paperpile.com/c/Kxhkna/N1qrT
https://github.com/kstreet13/slingshot/blob/master/vignettes/vignette.Rmd

47

constructed from the contaminated dataset and the clean dataset were used as the

negative and positive controls, respectively, for benchmarking the trajectories inferred

from the post-doublet-detection datasets (Figure 3a–2b).

In the temporally DE genes analysis, a scRNA-seq dataset with a single trajectory was

generated by following the Slingshot pipeline available at

https://github.com/kstreet13/slingshot/blob/master/vignettes/vignette.Rmd. This dataset

contained 750 genes, whose temporal expression dynamics were categorized into four

types: 500 stable genes with unchanged mean expression levels, 100 activated genes

with increasing mean expression levels, 100 deactivated genes with decreasing mean

expression levels, and 50 transient genes with mean expression levels first increasing

and then decreasing, along the trajectory. The genes of the latter three types were defined

as temporally DE genes. The mean expression levels of all 750 genes were specified by

following the Slingshot pipeline. The per-cell library sizes were sampled from a negative

binomial distribution with mean 1875 and dispersion 4. In the generation of a singlet, the

750 gene expression levels were sampled from a multinomial distribution with the number

of trials as the (randomly sampled) per-cell library size and the probability of success as

the 750 genes’ normalized mean expression levels (summing up to 1). Following this, 300

singlets were generated in Step 1 of the data generation scheme described in the

Subsection “Simulation of scRNA-seq datasets containing doublets.” In Step 2, doublets

were introduced based on a 20% doublet rate, and the singlets used to generate doublets

were removed. After data generation, the pseudotime of each droplet was inferred by

Slingshot and TSCAN on this dataset (“contaminated data”), its clean version without

doublets (“clean data”), and its post-doublet-detection version after each doublet-

https://github.com/kstreet13/slingshot/blob/master/vignettes/vignette.Rmd

48

detection method was applied (the top 20% droplets that received the highest doublet

scores were removed). Then for each dataset, we regressed each gene’s expression

levels in all droplets on the inferred pseudotime of the same droplets by the general

additive model (GAM), which was implemented in the R function gam, and obtained a p-

value. As a result, the genes with Bonferroni-corrected p-values under 0.05 were

identified as temporally DE genes. Three accuracy measures—precision, recall, and

TNR—were calculated for every set of identified temporally DE genes. The accuracy on

the contaminated data and the clean data were used as the negative and positive controls,

respectively, for benchmarking the accuracy on the post-doublet-detection data obtained

by each doublet-detection method (Figure 3c–2d).

2.4.10 Distributed computing

We used two real scRNA-seq datasets pbmc-ch and pbmc-2ctrl-dm to compare the

performance of doublet-detection methods under distributed computing. These two

datasets are relatively large in our real data collection, containing 15,272 and 13,913

droplets (Table 1). For each doublet-detection method, its accuracy (AUPRC and AUROC)

on the original datasets were used as the baselines. Next, the original dataset was

randomly split into two, four, six, eight, and ten equally-sized batches for distributed

computing. For every number of batches, each doublet-detection method was executed

on each batch separately, the resulting doublet scores were concatenated across batches,

and AUPRC and AUROC were calculated for the concatenated doublet scores and

compared with the baselines (Figure 4a–b).

49

2.4.11 Scalability, stability, and usability

25 synthetic scRNA-seq datasets with varying numbers of droplets were generated by

scDesign to examine the scalability of doublet-detection methods. Specifically, the

number of genes was fixed to 5000, and the number of droplets increased from 400 to

10,000, with a step size of 400. Each doublet-detection method was executed on the 25

datasets, and the relationship between its running time and the number of droplets was

plotted in Figure 4e.

Two real datasets, pbmc-ch and pbmc-2ctrl-dm, were used to evaluate the stability of

doublet-detection methods. From each dataset, 20 subsets were generated by randomly

subsampling 90% of droplets and 90% of genes. Each doublet-detection method was

executed on all these subsets, and its stability was shown by the distributions of the

resulting AUPRC and AUROC across subsets (Figure 4f).

Four criteria were defined for doublet-detection methods’ usability: software quality,

execution convenience, publication, and documentation & support. The software quality

criterion indicates whether a doublet-detection method can be executed on all real and

synthetic datasets used in this study. The execution convenience criterion is related to

the popularity of the computational platform required to run a method. Methods written in

R and Python packages are preferred because of the popularity of these two languages.

The publication criterion is regarding whether a doublet-detection method has been

published in a peer-reviewed journal. The documentation & support criterion evaluates a

method’s user-support resources, such as open-source code, tutorials, and active Q&As.

Each criterion has three levels: excellent, good, and fair, corresponding to a score of 2,

50

1, and 0, respectively. The final usability score of a method was defined as the sum of the

method’s scores in these four criteria.

2.5 Acknowledgements

This chapter is based on the joint work with Dr. Jingyi Jessica Li. We would like to thank

Dr. Bo Li at University of Texas Southwestern Medical Center (https://www.lilab-

utsw.org/research) for bringing our attention to the doublet detection problem. We also

appreciate the comments and feedback from our group members in the Junction of

Statistics and Biology at UCLA (http://jsb.ucla.edu).

https://www.lilab-utsw.org/research
https://www.lilab-utsw.org/research
http://jsb.ucla.edu/

51

2.6 Figures and Tables

52

Figure 1. Evaluation of the eight doublet detection methods (except DoubletDecon)

using 16 benchmark scRNA-seq datasets.

a-b, Performance (AUPRC and AUROC values) of each method applied to benchmark

datasets, with (a) showing the distributions and (b) showing the values per dataset (white

squares indicating failed runs); two baseline methods (lsize and ngene) are included in

the comparison.

c, Precision, recall, and true negative rate (TNR) of each method under the 10%, 20%,

or 40% identification rate, which is the percentage of droplets that received the highest

doublet scores and were identified as doublets.

53

54

Figure 2. Evaluation of the eight doublet detection methods (except DoubletDecon)
using four simulation studies, and the effects of doublet detection on DE analysis,
highly variable genes (HVG) identification, and cell clustering.
a, Performance (AUPRC values) of each method in four simulation settings: varying

doublet rates (from 2% to 40% with a step size of 2%), varying sequencing depths (from

500 to 10,000 UMI counts per cell, with a step size of 500 counts), varying numbers of

cell types (from 2 to 20 with a step size of 1), and 20 heterogeneity levels, which specify

the extent to which genes are differentiated between two cell types (Methods).

b, Precision, recall, and TNR by each of three differential expression (DE) methods:
DESeq2, MAST, and the Wilcoxon rank-sum test (Wilcox), after each of the eight doublet
detection methods was applied to a simulated dataset; for negative and positive controls,
we included the DE accuracies on the contaminated data with 40% doublets and the clean
data without doublets.
c, We re-illustrate the results in b) by showing the improved DE accuracy in each metric
(precision, recall, and TNR) after removing detected doublets from the contaminated data;
the results on the clean data without doublets are shown as a positive control.
d, Left panel: the Jaccard index between the post-doublet-detection HVGs of each
doublet-detection method and the clean HVGs under the 10%, 20%, or 40% doublet rate.
The Jaccard index between the contaminated HVGs and the clean HVGs was used as
negative control for each doublet rate. Right panel: illustration of the left panel; the
improved Jaccard indices upon the negative controls (i.e., Jaccard index differences) after
the detected doublets by each method were removed from the contaminated data.
e, Cell clustering result by the Louvain algorithm after each of the eight doublet-detection
method was applied to remove a varying percentage of droplets as the identified doublets
(y-axis, from 0% to 25% with step size of 1%); the true numbers of cell clusters are four,
six, and eight under three simulation settings, each containing 20% true doublets; the
yellow color indicates that the correct number of clusters was identified, while the red
color indicates otherwise. The true percentage of doublets, 20%, is highlighted in blue.
For each method, its average correctness (i.e., the percent of yellow colors across all the
removal percentages) is also highlighted in blue.
f, Under the same three simulation settings as in a), the distributions of the singlet
proportions are shown after doublet removal by each method, if the remaining droplets
led to the correct number of cell clusters in a); doubletCells is not shown for the four-
cluster setting because it did not lead to the correct number of cell clusters in a).

55

56

Figure 3. Effects of doublet detection on cell trajectory inference.

a, Trajectories constructed by Slingshot after each of the eight doublet-detection methods

was applied to remove the identified doublets, whose percentage among all the droplets

was set to 20%, the percentage of true doublets in the simulated dataset. The true cell

topology is bifurcating. For negative and positive controls, we included the trajectories

constructed on the original dataset with 20% doublets and its cleaned version without

doublets.

b, Trajectories constructed by minimum spanning tree (MST) after each of the eight

doublet detection methods was applied to remove the identified doublets, whose

percentage among all the droplets was set to 20%, the percentage of true doublets in the

simulated dataset. The true cell topology is a conjunction of three trajectories. For

negative and positive controls, we included the trajectories constructed on the original

dataset with 20% doublets and its cleaned version without doublets.

c, Precision, recall, and TNR of temporally differentially expressed genes identified by the

general additive model (GAM) applied to trajectories constructed by Slingshot and

TSCAN, after each of the eight doublet-detection method was applied to remove the

identified doublets, whose percentage among all the droplets was set to 20%, the

percentage of true doublets in the simulated dataset. The true cell topology is a single

lineage. For negative and positive controls, we included the accuracy of temporally

differentially expressed genes identified from the contaminated data with 20% doublets

and the clean data without doublets.

d, We re-illustrate the results in c) by showing the improved accuracy in each metric

(precision, recall, and TNR) after removing detected doublets from the contaminated data;

the results on the clean data without doublets are shown as a positive control.

57

Figure 4. Comparison of doublet detection methods in terms of distributed

computing, running time, scalability, and stability.

a-b, Distributed computing performance of each method on two real datasets pbmc-ch

and pmc-2ctrl-dm. We first divided the original datasets into varying numbers of batches

with equal sizes; then we applied each method to individual batches separately to identify

and remove doublets; finally we pooled batches together to assess the detection accuracy

(AUPRC and AUROC values) of each method.

c, Distribution of running time in (natural log) seconds of each method across 16 real

datasets.

58

d, Mean AUPRC vs. mean running time (across 16 real datasets) of eight doublet-

detection methods.

e, Scalability of each method. We calculated the relationship between running time and

droplet number for each method on simulated datasets with varying droplet numbers.

f, Stability of each method. We generated 20 datasets by randomly subsampling 90%

droplets and 90% genes from the real datasets pbmc-ch and pbmc-2ctrl-dm, and we

applied each method to all the subsampled datasets. For each real dataset, the

distribution of AUPRC values of each method across subsampling is shown, with 25%

quantiles connected. We use the variance of the distribution to measure the stability of

each method.

59

Figure 5. A graphical summary of benchmark results. The four aspects related to doublet
detection accuracy are marked in blue, while other five aspects related to software
implementation are marked in black.

60

Table 1. An overview of nine computational doublet-detection methods evaluated in this

study.

Method
Programming

language
Artificial
doublets

Dimension
reduction

Algorithm description

Scrublet 40 Python Yes

Principal
component

analysis
(PCA)

It generates artificial doublets by adding two randomly selected
droplets’ gene expression profiles. The doublet score of each
droplet is defined as the proportion of artificial doublets among
its k-nearest neighboring droplets in the principal component
(PC) space, whose number of dimensions is specified by users.

doubletCells 48 R Yes PCA

It generates artificial doublets by adding two randomly selected
droplets’ gene expression profiles. For each droplet, it
calculates the proportion of artificial doublets, 𝑝𝐴 , in a
neighborhood in the PC space, whose number of dimensions is
specified by users. The radius of the neighborhood is set to be
the median distance from the droplet to its 50th nearest
neighbor. The doublet score of each droplet is defined as
𝑝𝐴/(1 − 𝑝𝐴)2.

cxds 45 R No
Highly

variable
genes

It calculates a p-value for each pair of genes under the null
hypothesis that the number of droplets where exactly one of the
two genes is expressed follows a binomial distribution. The
doublet score of each droplet is defined as the sum of negative
(natural) log p-values of co-expressed gene pairs, where two
genes in each pair both have non-zero expression levels in this
droplet.

bcds 45 R Yes
Highly

variable
genes

It generates artificial doublets by adding two randomly selected
droplets’ gene expression profiles and pools these artificial
doublets with the original droplets. Then it trains a gradient
boosting classifier to classify the pooled droplets into original
droplets and artificial doublets. The doublet score of each
droplet is defined as the predicted probability of being an
artificial doublet.

hybrid 45 R - -
It normalizes the doublet scores of cxds and bcds to values
between 0 and 1. The doublet score of each droplet is defined
as the sum of the two normalized doublet scores.

DoubletDetection
47

Python Yes PCA

It generates artificial doublets by adding two randomly selected
droplets’ gene expression profiles and pools these artificial
doublets with the original droplets. Then it conducts Louvain
clustering on the pooled droplets. For each droplet cluster, it
performs a hypergeometric test and computes p-value = 1 -
hypergeom.cdf(N, K, n, k), where N is the number of droplets,
K is the number of artificial doublets, n is the number of droplets
in this cluster, and k is the number of artificial doublets in this
cluster. All droplets in this cluster will have the same p-value. It
repeats the above steps (starting from artificial doublet
generation) for a user-specified number of runs. The doublet
score of each droplet is defined as its average p-value across
all runs.

DoubletFinder 41 R Yes PCA

It generates artificial doublets by averaging two randomly
selected droplets’ gene expression profiles. The doublet score
of each droplet is defined as the proportion of artificial doublets
among its k-nearest neighboring droplets in the principal
component (PC) space, whose number of dimensions is
specified by users. The number of neighbors, k, is selected by
maximizing the mean-variance normalized bimodality
coefficient 89 of the distribution of doublet scores.

https://paperpile.com/c/Kxhkna/JizuW
https://paperpile.com/c/Kxhkna/Dky9Q
https://paperpile.com/c/Kxhkna/dD796
https://paperpile.com/c/Kxhkna/dD796
https://paperpile.com/c/Kxhkna/dD796
https://paperpile.com/c/Kxhkna/opwB0
https://paperpile.com/c/Kxhkna/hyzQV
https://paperpile.com/c/Kxhkna/BPSqT

61

Solo 39
Linux

command
Yes

Variational
autoencoder

For a randomly selected droplet pair, it estimates a multinomial
distribution whose number of trials equals the sum of total
counts in these two droplets and whose event probabilities
equal the gene proportions calculated from the mean gene
expression profile of these two droplets. Then it generates
artificial doublets by randomly sampling a gene expression
profile from this multinomial distribution. That is, the number of
artificial doublets equals the number of randomly selected
droplet pairs. These artificial doublets are pooled with the
original droplets. Then it trains a neural network to classify the
pooled droplets into original droplets and artificial doublets. The
doublet score of each droplet is defined as the predicted
probability of being an artificial doublet.

DoubletDecon 46 R Yes Deconvolution

It generates artificial doublets by taking a weighted average of
two randomly selected droplets’ gene expression profiles (the
default weights are 0.7 and 0.3). Putative doublets are defined
as those droplets whose gene expression profiles after
deconvolution 90 are concentrated on the centroids of artificial
doublet clusters. Finally, it defines doublets as those putative
doublets whose gene expression profiles are dissimilar to those
of original droplet clusters.

https://paperpile.com/c/Kxhkna/I3LzE
https://paperpile.com/c/Kxhkna/I4OGu
https://paperpile.com/c/Kxhkna/Fl0dR

62

Table 2. 16 real scRNA-seq datasets with experimentally annotated doublets used in

this study.

Dataset
Doublet

annotation
technique

Cell types
Droplet

Gene

Doublet

rate
Median

UMI count

Median # of
expressed

genes
Reference

pbmc-ch Cell hashing pbmc 15272 21639 16.66% 556 323

42

cline-ch Cell hashing
HEK293T,
K562, KG1,

THP1
7954 25221 18.42% 4824 2149

mkidney-ch Cell hashing
Mouse
kidney

21179 18940 37.31% 3929 1687 39

hm-12k
Species
mixture

HEK293T,
NIH3T3

12820 15106 5.69% 12424 3147

52

hm-6k
Species
mixture

HEK293T,
NIH3T3

6806 15080 2.51% 21301 4032

pbmc-1A-dm demuxlet pbmc 3298 15170 3.64% 973 384

43

pbmc-1B-dm demuxlet pbmc 3790 15143 3.43% 862 361

pbmc-1C-dm demuxlet pbmc 5270 15865 6.00% 829 352

pbmc-2ctrl-dm demuxlet pbmc 13913 17584 11.49% 1276 526

pbmc-2stim-dm demuxlet pbmc 13916 17315 11.72% 1360 550

J293t-dm demuxlet
Jurkat,

HEK293T
500 16374 8.40% 14134 3461

pdx-MULTI MULTI-seq

Human
breast
cancer,
mouse
immune

10296 14025 12.79% 2242 1029

44

HMEC-orig-
MULTI

MULTI-seq HMEC 26426 24199 13.50% 23502 4598

HMEC-rep-MULTI MULTI-seq HMEC 10580 17473 31.02% 1188 601

HEK-HMEC-
MULTI

MULTI-seq
HEK293T,

HMEC
10641 23982 4.60% 17424 3795

nuc-MULTI MULTI-seq
nuclei

(HEK293T,
MEF, Jurkat)

5578 21490 8.52% 1021 786

https://paperpile.com/c/Kxhkna/4ONen
https://paperpile.com/c/Kxhkna/I3LzE
https://paperpile.com/c/Kxhkna/zc8Nm
https://paperpile.com/c/Kxhkna/wB9b8
https://paperpile.com/c/Kxhkna/bnItm

63

Table 3. Usability of the nine doublet-detection methods. We measured the usability of

each method in four aspects: software quality, execution convenience, publication, and

documentation & support. Each aspect has three levels: excellent, good, and fair, which

correspond to scores 2, 1, and 0, respectively. The usability score of a method is the sum

of its four scores under the four aspects.

 Software quality
Execution

convenience
Publication Documentation & support

Usability
score

doubletCells

Excellent
(success on all

datasets)

Excellent
(R package)

Good
(published as a part
of a research paper

in peer-reviewed
journal)

Good
(documentation, custom
webpage, but no Q&A)

6

Scrublet
Excellent

(Python module)

Excellent
(published as an

independent
research paper in a

peer-reviewed
journal)

Good
(documentation, GitHub
webpage, but no Q&A)

7

cxds

Excellent
(R package)

7

bcds 7

hybrid 7

Solo

Good
(Linux command-line

with a stringent
requirement on input

data format:
loom/hd5)

Excellent
(published as an

independent
research paper in a

peer-reviewed
journal)

Excellent
(documentation, GitHub

webpage, and active Q&A)

7

DoubletDetection
Good

(failure on one real
dataset)

Excellent
(Python module)

Fair
 (GitHub webpage,

manuscript with
algorithm

description)

5

DoubletFinder
Excellent

(success on all
datasets)

Excellent
(R package)

Excellent
(published as an

independent
research paper in a

peer-reviewed
journal)

8

DoubletDecon

Fair
(failure on four real
datasets and the

majority of
synthetic datasets)

Excellent
(R package)

Excellent
(published as an

independent
research paper in a

peer-reviewed
journal)

Excellent
(documentation, GitHub

webpage, and active Q&A)
6

64

2.7 Supplementary Materials

2.7.1 Accuracy of computational doublet detection in relation to experimental

techniques for doublet labeling

Four experimental techniques were used to label doublets in the 16 real datasets used in

this study: cell hashing 42, species mixture 40, demuxlet 43, and MULTI-seq 44. To examine

the relationship between the accuracy of computational doublet-detection methods and

the use of experimental techniques for doublet labeling, we calculated the mean AUPRC

of each computational method across the datasets labeled by each experimental

technique (Supplementary Figure S2d; Supplementary Table S10). Overall, all

computational doublet-detection methods achieved the highest accuracy on the species-

mixture datasets, followed by the cell-hashing, MULTI-seq, and demuxlet datasets. This

is an expected result since doublet-detection methods are more capable of identifying

heterotypic doublets than homotypic doublets by design 39–41,45–48, and all the labeled

doublets in the species-mixture datasets are heterotypic (i.e., formed by cells of two

species); meanwhile, the cell-hashing, MULTI-seq, and demuxlet datasets contain

labeled doublets that are both heterotypic and homotypic (e.g., formed by cells of the

same type from two samples or individuals), and they miss certain heterotypic doublets

(e.g., formed by cells of different types from the same sample or individual). Among the

eight doublet-detection methods (excluding DoubletDecon which cannot generate

doublet scores), DoubletFinder, cxds, and Solo achieved the highest detection accuracy

on the species-mixture datasets, demonstrating their strength of identifying heterotypic

doublets. DoubletFinder was also the top performer on the MULTI-seq and demuxlet

https://paperpile.com/c/Kxhkna/4ONen
https://paperpile.com/c/Kxhkna/JizuW
https://paperpile.com/c/Kxhkna/wB9b8
https://paperpile.com/c/Kxhkna/bnItm
https://paperpile.com/c/Kxhkna/JizuW+hyzQV+dD796+I4OGu+opwB0+I3LzE+Dky9Q

65

datasets in terms of mean AUPRC, while Solo excelled on the cell-hashing datasets.

Interestingly, cxds exhibited the largest performance discrepancy between the species-

mixture datasets and the other three types of datasets, highlighting its stronger priority

towards identifying heterotypic doublets than other methods’.

2.7.2 Pairwise similarities of computational doublet-detection methods

First, we calculated the Pearson correlation coefficient between every two doublet-

detection methods (except hybrid, which is an ensemble of bcds and cxds, and

DoubletDecon, which cannot generate doublet scores) in terms of their doublet scores in

each of the 16 benchmark datasets; for every pair of methods, we averaged their 16

Pearson correlation coefficients (Supplementary Table S11). Among the 21 pairs of

methods, DoubletFinder-DoubletDetection, Solo-bcds, and DoubletFinder-bcds have the

largest mean correlations. Second, we calculated the Jaccard index between every two

doublet-detection methods (except hybrid and DoubletDecon) in terms of their identified

doublets, whose numbers are set equal to the number of labeled doublets, in each of the

16 benchmark datasets; for every pair of methods, we averaged their 16 Jaccard indices

(Supplementary Table S12). Among the 21 pairs of methods, DoubletFinder-

DoubletDetection, DoubletDetection-Solo, and DoubletFinder-Solo have the largest

mean Jaccard indices, which reflect the large overlaps of their identified doublets. These

two similarity analyses indicate the possibility of developing an ensemble method to

combine the top-performing methods that are not too similar 83. Given the high accuracy

of DoubletFinder and the distinctive algorithm design of cxds (the only method without

artificial doublets), these two methods may serve as good candidates to be combined into

an ensemble method.

https://paperpile.com/c/Kxhkna/8Lmaa

66

2.7.3 Comparison of hyperparameter selection in knn-based methods

The algorithm designs of Scrublet and DoubletFinder are similar because they both define

each droplet’s doublet score as the proportion of artificial doublets among the k-nearest

neighbors of this droplet in the principal component (PC) space. The major difference

between Scrublet and DoubletFinder is how they select hyperparameters, including the

number of artificial doublets to generate, the number of genes used to perform the

principal component analysis, the number of PCs to define nearest neighbors, and the

number of nearest neighbors k. Supplementary Table S13 summarizes the default

hyperparameter settings of Scrublet and DoubletFinder. In particular, DoubletFinder

automatically selects k by maximizing the mean-variance normalized bimodality

coefficient 89 of the distribution of doublet scores. To examine the effect of

hyperparameter selection on the method performance, we selected four real datasets on

which DoubletFinder outperformed Scrublet, and replaced the hyperparameters of

Scrublet by those of DoubletFinder, including the ks selected by DoubletFinder for those

datasets. Supplementary Figure S2e summarizes the AUPRC values of three methods—

DoubletFinder, Scrublet with default hyperparameters, and Scrublet with the same

hyperparameters as DoubletFinder—on each of the four datasets. With the

hyperparameters of DoubletFinder, Scrublet improved its detection accuracy on two

datasets, nuc-MULTI and pbmc-1C-dm, but it still underperformed DoubletFinder. On the

other two datasets, cline-ch and pbmc-1A-dim, Scrublet performed similarly or even

worse, respectively, with the hyperparameters of DoubletFinder. This result suggests that

hyperparameter selection is an important but not the only factor that determines the

https://paperpile.com/c/Kxhkna/BPSqT

67

performance of doublet-detection methods. Other aspects of algorithm design, including

the generation of artificial doublets and algorithm implementation, also play critical rules.

68

Supplementary Figure S1. a, Comparison between DoubletDecon (grey) and other

methods in terms of precision, recall, and true negative rates (TNRs) on 16 benchmark

scRNA-seq datasets. The number of doublets is determined by the prediction result of

DoubletDecon. Two baseline detection methods (lsize and ngenes) are included in the

comparison. b, Performance (AUROC values) of each method in four simulation settings:

varying doublet rates (from 2% to 40% with a step size of 2%), varying sequencing depth

(from 500 to 10,000 UMI counts per cell, with a step size of 500 counts), varying numbers

of cell types (from 2 to 20 with a step size of 1), and 20 heterogeneity levels, which specify

the extent to which genes are differentiated between two cell types (see Methods).

69

Supplementary Figure S2. a, Cell clustering result by the DBSCAN algorithm after each

of the eight doublet-detection method was applied to remove a varying percentage of

droplets as the identified doublets (y-axis, from 0% to 25% with step size of 1%); the true

numbers of cell clusters are four, six, and eight under three simulation settings, each

containing 20% true doublets; the yellow color indicates that the correct number of

clusters was identified, while the red color indicates otherwise. The true percentage of

doublets, 20%, is highlighted in blue. For each method, its average correctness (i.e., the

percent of yellow colors across all the removal percentages) is also highlighted in blue. b,

Under the same three simulation settings as in a), the distributions of the singlet

proportions are shown after doublet removal by each method, if the remaining droplets

led to the correct number of cell clusters in a); doubletCells, cxds, bcds, and hybrid are

not shown for the four-cluster setting because it did not lead to the correct number of cell

clusters in a). c, Stability of each method. We generated 20 datasets by randomly

70

subsampling 90% cells and 90% genes from the real datasets pbmc-ch and pbmc-2ctrl-

dm, and we applied each method to all the subsampled datasets. For each real dataset,

the distribution of AUPRC values of each method across subsampling is shown, with 25%

quantiles connected. We use the variance of the distribution to measure the stability of

each method. d, Mean AUPRC of each doublet-detection method across the real datasets

with doublets labeled by each of four experimental techniques (cell hashing, species

mixture, demuxlet, and MULTI-seq). Due to the low mean AUPRC values of doubletCells,

we excluded it to show a more clear comparison of the other methods. The mean AUPRC

of doubletCells can be found in Supplementary Table S10. e, AUPRCs of DoubletFinder,

Scrublet with default hyperparameters, and Scrublet with same hyperparameters as

DoubletFinder on four real datasets (nuc-MULTI, pbmc-1C-dm, cline-ch, and pbmc-1A-

dm).

71

Supplementary Table S1. AUPRC values of ten doublet-detection methods, including
two baselines lsize and ngene, applied to 16 benchmark scRNA-seq datasets. The top-
performing method on each dataset is boldfaced and underlined.

 lsize ngene doubletCells Scrublet cxds bcds hybrid Solo DoubletDetection DoubletFinder

pbmc-ch 0.438 0.449 0.150 0.526 0.556 0.583 0.609 0.641 0.624 0.584

cline-ch 0.231 0.246 0.311 0.378 0.332 0.396 0.391 0.372 0.389 0.402

mkidney-ch 0.476 0.483 0.565 0.546 0.549 0.618 0.607 0.651 0.529 0.454

hm-12k 0.274 0.326 0.382 0.932 0.998 0.594 0.952 0.995 0.810 0.994

hm-6k 0.142 0.200 0.615 0.965 1.000 0.743 0.991 0.972 0.995 0.997

pbmc-1A-dm 0.134 0.115 0.088 0.252 0.273 0.458 0.381 0.239 0.333 0.460

pbmc-1B-dm 0.109 0.092 0.057 0.201 0.156 0.299 0.233 0.123 0.232 0.335

pbmc-1C-dm 0.201 0.176 0.069 0.307 0.306 0.470 0.413 0.353 0.477 0.529

pbmc-2ctrl-
dm

0.311 0.381 0.241 0.573 0.503 0.627 0.594 0.675 0.603 0.665

pbmc-2stim-
dm

0.300 0.394 0.296 0.547 0.459 0.634 0.596 0.674 0.609 0.648

J293t-dm 0.067 0.067 0.181 0.239 0.189 0.103 0.158 0.175 0.192 0.230

pdx-MULTI 0.263 0.274 0.186 0.251 0.255 0.402 0.371 0.452 - 0.384

HMEC-orig-
MULTI

0.359 0.420 0.306 0.401 0.363 0.380 0.428 0.473 0.496 0.383

HMEC-rep-
MULTI

0.501 0.522 0.327 0.487 0.549 0.576 0.588 0.589 0.550 0.610

HEK-HMEC-
MULTI

0.185 0.249 0.381 0.459 0.514 0.318 0.455 0.357 0.361 0.475

nuc-MULTI 0.217 0.260 0.107 0.356 0.367 0.355 0.383 0.294 0.422 0.441

mean
0.263 0.291 0.266 0.464 0.461 0.472 0.509 0.502 0.508 0.537

72

Supplementary Table S2. AUROC values of ten doublet-detection methods, including
two baselines lsize and ngene, applied to 16 benchmark scRNA-seq datasets. The top-
performing method on each dataset is boldfaced and underlined.

 lsize ngene doubletCells Scrublet cxds bcds hybrid Solo DoubletDetection DoubletFinder

pbmc-ch 0.774 0.791 0.478 0.776 0.786 0.810 0.822 0.848 0.815 0.837

cline-ch 0.544 0.547 0.587 0.603 0.595 0.626 0.625 0.607 0.590 0.603

mkidney-ch 0.603 0.598 0.667 0.656 0.642 0.711 0.692 0.754 0.622 0.563

hm-12k 0.881 0.902 0.905 0.992 1.000 0.968 0.995 1.000 0.979 0.999

hm-6k 0.888 0.921 0.971 0.995 1.000 0.991 0.999 0.999 0.999 1.000

pbmc-1A-dm 0.781 0.787 0.532 0.726 0.807 0.828 0.834 0.808 0.787 0.842

pbmc-1B-dm 0.689 0.684 0.504 0.747 0.725 0.709 0.736 0.711 0.721 0.780

pbmc-1C-dm 0.771 0.769 0.518 0.755 0.783 0.824 0.821 0.804 0.808 0.837

pbmc-2ctrl-
dm

0.800 0.836 0.714 0.874 0.874 0.900 0.905 0.926 0.906 0.917

pbmc-2stim-
dm

0.797 0.846 0.732 0.865 0.856 0.898 0.898 0.931 0.902 0.912

J293t-dm 0.420 0.413 0.557 0.557 0.483 0.550 0.491 0.496 0.506 0.613

pdx-MULTI 0.640 0.644 0.593 0.643 0.657 0.741 0.725 0.756 - 0.701

HMEC-orig-
MULTI

0.701 0.734 0.691 0.730 0.704 0.724 0.741 0.755 0.770 0.727

HMEC-rep-
MULTI

0.644 0.663 0.512 0.646 0.693 0.698 0.710 0.717 0.689 0.718

HEK-HMEC-
MULTI

0.767 0.784 0.732 0.759 0.835 0.798 0.831 0.796 0.773 0.775

nuc-MULTI 0.720 0.739 0.560 0.732 0.764 0.763 0.772 0.751 0.770 0.794

mean 0.714 0.729 0.641 0.753 0.763 0.784 0.787 0.791 0.776 0.789

73

Supplementary Table S3. The number of outperforming baselines and the number of
top-performing for each method on 16 benchmark scRNA-seq datasets. The largest
number is boldfaced and underlined.

 doubletCells Scrublet cxds bcds hybrid Solo DoubletDetection DoubletFinder

of outperforming baselines
(AUPRC)

6 13 14 15 16 16 15 14

of top-performing (AUPRC) 0 1 3 0 0 5 1 6

of outperforming baselines
(AUROC)

5 8 14 15 16 16 14 13

of top-performing (AUROC) 0 0 3 1 0 6 1 7

74

Supplementary Table S4. Mean precision, recall, and true negative rates (TNRs) of ten
doublet-detection methods, including the two baseline methods lsize and ngene, under
three identification rates (10%, 20%, and 40%) across 16 benchmark scRNA-seq
datasets. The top-performing method of each metric is boldfaced and underlined.

Identific
ation
rate

Mean lsize ngene doubletCells Scrublet cxds bcds hybrid Solo
DoubletD
etection

DoubletF
inder

10%

Precisi
on

0.314 0.337 0.257 0.423 0.404 0.457 0.468 0.476 0.453 0.464

Recall 0.330 0.349 0.272 0.435 0.445 0.488 0.505 0.498 0.481 0.505

TNR 0.923 0.926 0.923 0.940 0.933 0.940 0.941 0.942 0.940 0.941

20%

Precisi
on

0.254 0.275 0.208 0.289 0.290 0.324 0.326 0.338 0.313 0.324

Recall 0.503 0.543 0.403 0.551 0.575 0.624 0.631 0.636 0.615 0.624

TNR 0.831 0.836 0.824 0.844 0.840 0.849 0.849 0.852 0.847 0.854

40%

Precisi
on

0.191 0.196 0.165 0.200 0.201 0.211 0.211 0.216 0.202 0.219

Recall 0.694 0.707 0.582 0.701 0.727 0.746 0.752 0.756 0.738 0.734

TNR 0.633 0.636 0.621 0.647 0.638 0.644 0.644 0.647 0.642 0.680

75

Supplementary Table S5. Precision of doublets detection on 12 benchmark scRNA-seq
datasets. We executed DoubletDecon on each dataset to calculate its precision. For other
methods, we calculated precision by setting up appropriate cutoffs based on the number
of doublets determined by DoubletDecon. The top-performing method on each dataset is
boldfaced and underlined. We excluded four datasets that DoubletDecon failed to run
through.

 lsize ngene doubletCells Scrublet cxds bcds hybrid Solo DoubletDetection DoubletFinder DoubletDecon

pbmc-ch 0.262 0.274 0.160 0.261 0.260 0.269 0.271 0.279 0.263 0.279 0.173

cline-ch 0.214 0.214 0.245 0.250 0.241 0.259 0.261 0.249 0.240 0.254 0.184

mkidney-ch 0.465 0.469 0.536 0.514 0.499 0.567 0.552 0.613 0.472 0.446 0.373

hm-6k 0.059 0.059 0.060 0.062 0.061 0.061 0.061 0.061 0.061 0.062 0.035

pbmc-1A-

dm
0.076 0.080 0.037 0.074 0.078 0.078 0.079 0.079 0.075 0.104 0.038

pbmc-1B-

dm
0.058 0.059 0.038 0.062 0.064 0.060 0.064 0.061 0.060 0.068 0.031

pbmc-1C-

dm
0.126 0.128 0.065 0.115 0.122 0.127 0.127 0.126 0.125 0.159 0.061

pbmc-

2stim-dm
0.289 0.331 0.252 0.331 0.330 0.351 0.350 0.368 0.356 0.361 0.117

pdx-MULTI 0.197 0.197 0.171 0.202 0.201 0.247 0.237 0.254 -- 0.229 0.131

HMEC-orig-

MULTI
0.163 0.166 0.165 0.171 0.167 0.169 0.170 0.171 0.172 0.170 0.134

HMEC-rep-

MULTI
0.333 0.337 0.319 0.336 0.345 0.345 0.348 0.348 0.338 0.413 0.315

HEK-

HMEC-

MULTI

0.110 0.112 0.102 0.104 0.118 0.115 0.119 0.114 0.110 0.103 0.046

mean 0.196 0.202 0.179 0.207 0.207 0.221 0.220 0.227 0.207 0.221 0.137

76

Supplementary Table S6. Recall of doublets detection on 12 benchmark scRNA-seq
datasets. We executed DoubletDecon on each dataset to calculate its recall. For other
methods, we calculated recall by setting up appropriate cutoffs based on the number of
doublets determined by DoubletDecon. The top-performing method on each dataset is
boldfaced and underlined. We excluded four datasets that DoubletDecon failed to run
through.

 lsize ngene doubletCells Scrublet cxds bcds hybrid Solo DoubletDetection DoubletFinder DoubletDecon

pbmc-ch 0.810 0.842 0.495 0.796 0.803 0.833 0.837 0.864 0.815 0.861 0.536

cline-ch 0.412 0.412 0.472 0.461 0.463 0.498 0.502 0.480 0.461 0.453 0.355

mkidney-

ch
0.495 0.499 0.570 0.545 0.532 0.604 0.588 0.653 0.503 0.475 0.397

hm-6k 0.965 0.971 0.982 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.573

pbmc-1A-

dm
0.767 0.808 0.375 0.700 0.792 0.792 0.808 0.800 0.767 0.783 0.383

pbmc-1B-

dm
0.669 0.677 0.431 0.677 0.731 0.685 0.731 0.700 0.692 0.731 0.354

pbmc-1C-

dm
0.778 0.788 0.405 0.690 0.756 0.788 0.788 0.782 0.775 0.772 0.380

pbmc-

2stim-dm
0.722 0.825 0.629 0.804 0.825 0.877 0.874 0.920 0.879 0.898 0.292

pdx-

MULTI
0.519 0.519 0.451 0.527 0.532 0.651 0.626 0.672 -- 0.569 0.347

HMEC-

orig-

MULTI

0.824 0.838 0.835 0.860 0.841 0.854 0.857 0.862 0.851 0.856 0.677

HMEC-

rep-

MULTI

0.856 0.866 0.822 0.861 0.887 0.887 0.896 0.895 0.869 0.736 0.810

HEK-

HMEC-

MULTI

0.701 0.718 0.652 0.663 0.755 0.734 0.759 0.730 0.699 0.652 0.292

mean 0.710 0.730 0.593 0.715 0.743 0.767 0.772 0.780 0.756 0.732 0.450

77

Supplementary Table S7. True negative rate (TNR) of doublets detection on 12
benchmark scRNA-seq datasets. We executed DoubletDecon on each dataset to
calculate its TNR. For other methods, we calculated TNR by setting up appropriate cutoffs
based on the number of doublets determined by DoubletDecon. The top-performing
method on each dataset is boldfaced and underlined. We excluded four datasets that
DoubletDecon failed to run through.

 lsize ngene doubletCells Scrublet cxds bcds hybrid Solo DoubletDetection DoubletFinder DoubletDecon

pbmc-ch 0.544 0.553 0.481 0.549 0.542 0.548 0.549 0.554 0.544 0.556 0.489

cline-ch 0.658 0.658 0.672 0.688 0.670 0.678 0.679 0.674 0.671 0.699 0.645

mkidney-

ch
0.661 0.664 0.706 0.693 0.683 0.725 0.716 0.755 0.665 0.649 0.602

hm-6k 0.601 0.601 0.602 0.607 0.602 0.602 0.602 0.602 0.603 0.607 0.591

pbmc-

1A-dm
0.646 0.648 0.632 0.669 0.645 0.645 0.646 0.646 0.644 0.744 0.630

pbmc-

1B-dm
0.616 0.619 0.608 0.635 0.618 0.617 0.618 0.617 0.617 0.647 0.605

pbmc-

1C-dm
0.654 0.657 0.630 0.660 0.653 0.655 0.655 0.654 0.654 0.739 0.628

pbmc-

2stim-

dm

0.764 0.779 0.752 0.784 0.778 0.785 0.784 0.790 0.789 0.789 0.707

pdx-

MULTI
0.689 0.689 0.679 0.696 0.691 0.708 0.705 0.711 -- 0.719 0.663

HMEC-

orig-

MULTI

0.341 0.343 0.343 0.349 0.344 0.346 0.346 0.347 0.362 0.347 0.318

HMEC-

rep-

MULTI

0.228 0.233 0.212 0.236 0.241 0.241 0.245 0.245 0.233 0.529 0.207

HEK-

HMEC-

MULTI

0.726 0.727 0.724 0.726 0.729 0.728 0.729 0.728 0.726 0.725 0.706

mean 0.594 0.598 0.587 0.608 0.600 0.607 0.606 0.610 0.592 0.646 0.566

78

Supplementary Table S8. The number of identified doublets by DoubletDecon compared
with the true number of doublets on 12 benchmark datasets. We excluded four datasets
that DoubletDecon failed to run through.

pbmc-

ch
cline-

ch

mkidney-

ch
hm-6k

pbmc-

1A-dm

pbmc-1B-

dm
pbmc-1C-dm

pbmc-

2stim-dm
pdx-MULTI

HMEC-

orig-

MULTI

HMEC-

rep-

MULTI

HEK-

HMEC-

MULTI

of
predicted
doublets

7872 2822 8417 2813 1223 1493 1961 4077 3479 18007 8448 3124

of true
doublets

2545 1465 7901 171 120 130 316 1631 1317 3568 3282 489

79

Supplementary Table S9. Mean running time of nine doublet-detection methods and
their AUPRCs on 16 benchmark scRNA-seq datasets. The last row is the running time
normalized by AUPRC. The top-performing method of each metric is boldfaced and
underlined. The mean running time of DoubletDecon was calculated on 12 datasets that
it ran through successfully.

 doubletCells Scrublet cxds bcds hybrid DoubletDetection DoubletFinder Solo DoubletDecon

Mean time
(s)

37 64 5 46 47 380 243 618 903

Mean
AUPRC

0.266 0.464 0.461 0.472 0.509 0.508 0.537 0.502 -

Time/AUPRC 137 130 11 97 92 749 452 1232 -

80

Supplementary Table S10. Mean AUPRC values of eight doublet-detection methods on
benchmark scRNA-seq datasets, categorized by four experimental techniques that were
used to label doublets. The mean was calculated across the datasets labeled by each
technique. The top-performing method for each technique is boldfaced and underlined.

 doubletCells Scrublet cxds bcds hybrid Solo DoubletDetection DoubletFinder

Cell
hashing

0.342 0.483 0.479 0.532 0.536 0.555 0.514 0.480

Species
mixture

0.499 0.949 0.999 0.669 0.972 0.984 0.903 0.996

Demuxlet 0.155 0.353 0.314 0.432 0.396 0.373 0.408 0.478

MULTI-
seq

0.261 0.391 0.410 0.406 0.445 0.433 0.457 0.459

81

Supplementary Table S11. Mean Pearson correlation coefficient between every pair of
doublet-detection methods in terms of their doublet scores across the 16 benchmark
datasets; that is, a Pearson correlation coefficient was calculated for every pair of
methods on each dataset, and the 16 coefficients were averaged into the mean coefficient
for that pair.

doubletCells 1.000

Scrublet 0.249 1.000

cxds 0.142 0.478 1.000

bcds 0.109 0.455 0.642 1.000

Solo 0.126 0.484 0.603 0.682 1.000

DoubletDetection 0.200 0.604 0.598 0.637 0.615 1.000

DoubletFinder 0.155 0.559 0.639 0.664 0.628 0.700 1.000

 doubletCells Scrublet cxds bcds Solo DoubletDetection DoubletFinder

82

Supplementary Table S12. Mean Jaccard index between every pair of doublet-detection
methods in terms of their identified doublets, whose numbers equal to the numbers of
labeled doublets, across the 16 benchmark datasets; that is, a Jaccard index was
calculated for every pair of methods on each dataset, and the 16 indices were averaged
into the mean index for that pair.

doubletCells 1.000

Scrublet 0.188 1.000

cxds 0.169 0.316 1.000

bcds 0.152 0.290 0.397 1.000

Solo 0.176 0.352 0.442 0.452 1.000

DoubletDetection 0.169 0.370 0.430 0.438 0.483 1.000

DoubletFinder 0.174 0.359 0.424 0.433 0.481 0.525 1.000

 doubletCells Scrublet cxds bcds Solo DoubletDetection DoubletFinder

83

Supplementary Table S13. The default hyperparameter settings of Scrublet and
DoubletFinder.

Method
Generation of artificial

doublets
of artificial

doublet

of genes to perform
principal component

analysis

of principle
component

k, # of nearest
neighbors

Scrublet
Adding two randomly

selected droplets’ gene
expression profiles

One-third of the
of original

droplets

Top 85% highly
variable genes

30
𝑟𝑜𝑢𝑛𝑑 (0.5 ∗

√# 𝑜𝑓 𝑑𝑟𝑜𝑝𝑙𝑒𝑡𝑠)

DoubletFinder

Averaging two randomly
selected

droplets’ gene expression
profiles

Twice of the #
of original
droplets

Top 2000 highly
variable genes

10

Selected by
maximizing the
mean-variance

normalized
bimodality

coefficient of the
distribution of
doublet scores

84

CHAPTER 3

An R Package for Benchmarking Computational

Doublet-Detection Methods in Single-Cell RNA

Sequencing Data Analysis

3.1 Introduction

The existence of doublets is a key confounder in single-cell RNA sequencing (scRNA-

seq) data analysis. There are several computational methods for detecting doublets from

scRNA-seq data. We develop an R package DoubletCollection to integrate the installation

and execution of those methods. DoubletCollection also provides a unified interface to

perform and visualize downstream analysis after doublet detection. Here, we present a

protocol of using DoubletCollection to benchmark doublet-detection methods. This

protocol can automatically accommodate new doublet-detection methods in the fast-

growing scRNA-seq field.

85

3.2 A step-by-step protocol

3.2.1 Data download

We collect 16 real scRNA-seq datasets with doublets annotated by experimental

techniques. This collection covers a variety of cell types, droplet and gene numbers,

doublet rates, and sequencing depths. It represents varying levels of difficulty in detecting

doublets from scRNA-seq data. The data collection and preprocessing details are

described in our previous work 91. The datasets are available at Zenodo

https://zenodo.org/record/4562782#.YI2lhWf0mbg in the file real_datasets.zip (Figure 1).

We save the datasets in rds format. The name of each dataset file is the same as the

name defined in 91. After being loaded into R, each dataset is a list containing two

elements: the first element is a scRNA-seq count matrix with rows as genes and columns

as droplets; the second element is a vector containing the singlet/doublet annotation of

each droplet, which corresponds to each column in the first element.

We utilize two simulators, scDesign 51 and Splatter 67 to generate realistic scRNA-seq

datasets with varying doublet rates (i.e., percentages of doublets among all droplets),

sequencing depths, cell types, and between-cell-type heterogeneity levels. The synthetic

datasets contain ground-truth doublets, cell types, differentially expressed (DE) genes,

and cell trajectories. The simulation details are described in 91. The datasets are available

at Zenodo https://zenodo.org/record/4562782#.YI2lhWf0mbg in the file

synthetic_datasets.zip (Figure 1). We save the datasets in rds format. All the synthetic

datasets contain count matrices with rows as genes and columns as droplets. Below is

the data structure of each dataset after being loaded into R.

https://paperpile.com/c/Kxhkna/BWPM
https://zenodo.org/record/4562782#.YI2lhWf0mbg
https://paperpile.com/c/Kxhkna/BWPM
https://paperpile.com/c/Kxhkna/6hv95
https://paperpile.com/c/Kxhkna/9ciDr
https://paperpile.com/c/Kxhkna/BWPM
https://zenodo.org/record/4562782#.YI2lhWf0mbg

86

sim_rate.rds: An R list with two elements. The first element contains 20 scRNA-seq

count matrices that are independently generated with the doublet rates ranging from 0.02

to 0.4. Each element is named by its doublet rate and has rows as genes and columns

as droplets. The second element contains 20 singlet/doublet annotation vectors, which

correspond to the columns of the 20 count matrices in the first element.

sim_depth.rds: An R list with two elements. The first element contains 20 scRNA-

seq count matrices that are independently generated with sequencing depth ranging from

500 to 10,000 UMI counts. Each element is named by its sequencing depth and has rows

as genes and columns as droplets. The second element contains 20 singlet/doublet

annotation vectors, which correspond to the columns of the 20 count matrices in the first

element.

sim_type.rds: An R list with two elements. The first element contains 19 scRNA-seq

count matrices that are independently generated with cell type numbers ranging from 2

to 20. Each element is named by its cell type numbers and has rows as genes and

columns as droplets. The second element contains 19 singlet/doublet annotation vectors,

which correspond to the columns of the 19 count matrices in the first element.

sim_hetero.rds: An R list with two elements. The first element contains 21 scRNA-

seq count matrices that are independently generated with different between-cell-type

heterogeneity levels as defined in 91. Each element is named by its between-cell-type

heterogeneity levels and has rows as genes and columns as droplets. The second

element contains 21 singlet/doublet annotation vectors, which correspond to the columns

of the 21 count matrices in the first element.

https://paperpile.com/c/Kxhkna/BWPM

87

sim_clustering.rds: An R list with two elements. The first element contains three

scRNA-seq count matrices with four, six, or eight cell types. Each element is named by

its cell type numbers and has rows as genes and columns as droplets. The second

element contains three singlet/doublet annotation vectors, which correspond to the

columns of the three count matrices in the first element.

sim_DE.rds: An R list with four elements, including one synthetic scRNA-seq count

matrix, its doublet indices, cell type annotations, and DE genes. This dataset contains 6%

DE genes between two cell types and 40% doublets.

sim_trajectory.rds: An R list with two elements, including one synthetic scRNA-seq

count matrix and its singlet/doublet annotations. This dataset contains a bifurcating cell

trajectory and 20% doublets.

sim_temporally_DE.rds: An R list with three elements, including one synthetic

scRNA-seq count matrix, its singlet/doublet annotations, and temporally DE genes. This

dataset contains one cell trajectory with 250 temporally DE genes and 20% doublets.

Note: Please download the latest version of the datasets from the Zenodo repository.

The timing for data downloading depends on the network condition.

3.2.2 Installation of DoubletCollection

DoubletCollection is an R package that integrates the installation, execution, and

benchmark of eight doublet-detection methods. The source code and documentation of

DoubletDetection are available at https://github.com/xnnba1984/DoubletCollection. To

install DoubletDetection, execute the following R code.

if(!require(devtools)){

https://github.com/xnnba1984/DoubletCollection

88

 install.packages("devtools")

}

devtools::install_github("xnnba1984/DoubletCollection")

Note: DoubletCollection automatically installs eight doublet-detection methods:

Scrublet 40, doubletCells 48, scds 45 (including cxds, bcds, and hybrid), DoubletDetection

92, DoubletFinder 41, and scDblFinder 93. It also installs other packages required for

downstream analysis and visualization.

Optional: Solo 39 is a doublet-detection method implemented as a Linux command-

line tool. DoubletCollection does not include this method. The installation and execution

of Solo are available at https://github.com/calico/solo.

3.2.3 Doublet detection accuracy on real scRNA-seq datasets

This section illustrates how to apply DoubletCollection to 16 real scRNA-seq datasets,

calculate the detection accuracy, and visualize the result. Every doublet-detection method

in DoubletCollection outputs a doublet score for each droplet in the dataset. The larger

the doublet score is, the more likely the droplet is a doublet. The following R code

calculates doublet scores of user-specified methods on 16 real datasets.

library(DoubletCollection)

read 16 datasets in the folder real_datasets

data.list <- ReadData(path = ".../real_datasets")

count.list <- data.list$count

https://paperpile.com/c/Kxhkna/JizuW
https://paperpile.com/c/Kxhkna/Dky9Q
https://paperpile.com/c/Kxhkna/dD796
https://paperpile.com/c/Kxhkna/8UYhL
https://paperpile.com/c/Kxhkna/hyzQV
https://paperpile.com/c/Kxhkna/ndAwl
https://paperpile.com/c/Kxhkna/I3LzE
https://github.com/calico/solo

89

transform doublet annotations to 0/1

label.list <- lapply(data.list$label, FUN = function(label){

 ifelse(label == 'doublet', 1, 0)

})

methods <- c('doubletCells','cxds','bcds','hybrid','scDblFinder',

'Scrublet','DoubletDetection','DoubletFinder')

calculate doublet scores

score.list.all <- FindScores.All(count.list, methods)

Note: All 16 rds files need to be saved under the folder real_datasets. Users can

perform doublet detection on any scRNA-seq datasets by including them into count.list.

Users can also choose doublet-detection methods by modifying the methods vector.

Doublet detection is essentially a binary classification problem. Therefore, the area

under the precision-recall curve (AUPRC) and the area under the receiver operating

characteristic curve (AUROC) are appropriate for evaluating the overall doublet-detection

accuracy. The following R code calculates AUPRC and AUROC based on the doublet

scores.

auprc.list.all <- FindAUC.All(score.list.all, label.list, 'AUPRC')

auroc.list.all <- FindAUC.All(score.list.all, label.list, 'AUROC')

We use boxplots to visualize the distributions of AUPRC and AUROC values of every

doublet-detection method on the 16 real scRNA-seq datasets. The following R code

outputs Figure 2A.

90

transform the output of FindAUC.All to a data frame for visualization

result.auprc <- ListToDataframe(auprc.list.all, 'boxplot')

result.auroc <- ListToDataframe(auroc.list.all, 'boxplot')

visualize AUPRC and AUROC by boxplots

Plot_Boxplot(result.auprc, 'AUPRC')

Plot_Boxplot(result.auroc, 'AUROC')

Note: Users can save data frames result.auprc and result.auroc to compare the

AUPRC and AUROC values of doublet-detection methods.

In practice, doublets are identified based on a single threshold. To accommodate this

scenario, we examine the detection accuracy of doublet-detection methods under a

specific identification rate x%. For each method and each dataset, we identify the top x%

droplets with the highest doublet scores as doublets. Then we calculate the

corresponding precision, recall, and true negative rate (TNR). The following R code

calculates precision, recall, and TNR under a 10% identification rate.

call doublets based on a 10% doublet rate

doublet.list.all <- FindDoublets.All(score.list.all, rate=0.1)

calculate precision, recall, and TNR of identified doublets

precision.list.all<- FindACC.All(doublet.list.all,label.list,'precision')

recall.list.all <- FindACC.All(doublet.list.all, label.list, 'recall')

tnr.list.all <- FindACC.All(doublet.list.all, label.list, 'TNR')

91

Optional: Users can calculate the precision, recall, and TNR under varying doublet

rates to conduct a more comprehensive comparison of doublet-detection methods.

Again, we use boxplots to visualize the distributions of precision, recall, and TNR

values of each method under specific identification rates. The following R code outputs

Figure 2B.

transform the output of FindAcc.All to a data frame for visualization

result.precision <- ListToDataframe(precision.list.all, 'boxplot')

result.recall <- ListToDataframe(recall.list.all, 'boxplot')

result.tnr <- ListToDataframe(tnr.list.all, 'boxplot')

visualize precision, recall, and TNR by boxplots

Plot_Boxplot(result.precision, 'Precision')

Plot_Boxplot(result.recall, 'Recall')

Plot_Boxplot(result.tnr, 'TNR')

Note: Users can save data frames result.precision, result.recall, and result.tnr to

compare the precision, recall, and TNR values of doublet-detection methods.

3.2.4 Hyperparameter tuning for doublet detection methods (Optional)

The previous R code sets the hyperparameters of doublet-detection methods to their

recommended or default values. This section explains how to use DoubletCollection to

search for the hyperparameters that may potentially improve the doublet-detection

methods’ performance.

92

We set up a series of hyperparameter values and use DoubletCollection to conduct a

grid search. DoubletCollection returns a combination of hyperparameters that optimizes

a user-specified accuracy measure on a dataset. The following R code searches for

optimal hyperparameters in terms of AUPRC for the methods Scrublet, DoubletFinder,

and scDblFinder on the dataset pbmc-1A-dm.

data.list <- ReadData(path = ".../real_datasets")

count.list <- data.list$count

label.list <- lapply(data.list$label, FUN = function(label){

 ifelse(label == 'doublet', 1, 0)

})

read dataset

count <- count.list$`pbmc-1A-dm`

label <- label.list$`pbmc-1A-dm`

search for optimal hyperparameters of Scrublet

result.parameter.Scrublet <- FindParameters(count, label, method =

'Scrublet', type = 'AUPRC', n_neighbors = c(27, 28, 29, 30, 31),

 n_prin_comps = c(20, 25, 30, 35, 40),

 min_gene_variability_pctl = c(60, 65, 70, 85, 90))

search for optimal hyperparameters of DoubletFinder

result.parameter.DoubletFinder <- FindParameters(count, label,

method = 'DoubletFinder', type = 'AUPRC',

 nfeatures = c(1000, 1500, 2000, 2500, 3000),

 PCs = c(10, 15, 20, 25, 30))

93

search for optimal hyperparameters of scDblFinder

result.parameter.scDblFinder <- FindParameters(count, label,

method = 'scDblFinder', type = 'AUPRC',

 nf=c(500, 1000, 1500, 2000, 2500),

 includePCs=c(3, 4, 5, 6, 7),

 max_depth=c(3, 4, 5, 6, 7))

Note: Users can search for optimal hyperparameters of other doublet-detection

methods on any datasets. The searchable hyperparameters of a doublet-detection

method can be shown by executing ?FindParameters.

The optimal hyperparameters found from a representative dataset provide guidance

for applying a doublet-detection method to similar datasets. The following R code sets the

hyperparameters of three doublet-detection methods, which are to be applied to the

dataset pbmc-1B-dm, to their optimal values found from the dataset pbmc-1A-dm. These

two datasets share the same cell types and experimental protocol.

score.list <- FindScores(count = count.list$`pbmc-1B-dm`,

 methods = c('Scrublet','DoubletFinder','scDblFinder'),

 n_neighbors=31, min_gene_variability_pctl=60, n_prin_comps=40,

 nfeatures=1000, PCs=10, nf=1000, includePCs=6, max_depth=5)

Note: Users can also adjust hyperparameters based on their prior knowledge. The R

code in the following sections uses the recommended or default hyperparameter values

of doublet-detection methods.

94

3.2.5 Doublet detection accuracy under various experimental settings and

biological conditions

This section illustrates how to apply DoubletCollection to synthetic scRNA-seq datasets

under a wide range of experimental settings and biological conditions, calculate the

detection accuracy of different doublet-detection methods, and visualize the result.

As in the previous section, we first calculate doublet scores on synthetic datasets. The

following R code calculates doublet scores on the dataset sim_rate with different doublet

rates.

data.list <- readRDS(".../synthetic_datasets/sim_rate.rds")

count.list <- data.list$count

label.list <- lapply(data.list$label, FUN = function(label){

 ifelse(label == 'doublet', 1, 0)

})

score.list.all <- FindScores.All(count.list, methods)

Note: Users can read datasets sim_depth, sim_type, or sim_hetero to calculate

doublet scores under various sequencing depth, number of cell types, or degree of

between-cell-type heterogeneity. The code in the following sections can be applied to

those datasets without modification.

Similar to real datasets, we use AUPRC and AUROC to measure the overall detection

accuracy on synthetic datasets. The following R code calculates AUPRC and AUROC

based on the doublet scores obtained from the previous step.

95

auprc.list.all <- FindAUC.All(score.list.all, label.list, 'AUPRC')

auroc.list.all <- FindAUC.All(score.list.all, label.list, 'AUROC')

We use line plots to show how the performance of each doublet-detection method

changes when we vary the experimental settings and biological conditions. The following

R code draws line plots for AUPRC and AUROC under varying doublet rates. Figure 3A

shows the AUPRC and AUROC values of different doublet-detection methods under

different doublet rates, sequencing depths, numbers of cell types, and heterogeneity

between cell types.

transform the output of FindAuc.All to a data frames for visualization

result.auprc <- ListToDataframe(auprc.list.all, 'lineplot')

result.auroc <- ListToDataframe(auroc.list.all, 'lineplot')

visualize AUPRC and AUROC by line plots

Plot_Lineplot(result.auprc, 'Doublet Rate', 'AUPRC')

Plot_Lineplot(result.auroc, 'Doublet Rate', 'AUROC')

3.2.6 Effects of doublet detection on DE gene analysis

This section illustrates how to use DoubletCollection to conduct differentially expressed

(DE) gene analysis. We compare the results of DE gene analysis on the contaminated

dataset (with 40% doublets), the clean dataset (without doublets), and the dataset after

each doublet-detection method is applied.

96

We first read in the dataset sim_DE that includes the ground-truth DE genes and 40%

doublets. Then we apply doublet-detection methods to obtain doublet scores. Finally, we

remove the top 40% droplets that receive the highest doublet scores from each method.

data.de <- readRDS('.../synthetic_datasets/sim_DE.rds')

score.list <- FindScores(data.de$count, methods)

doublet.list <- FindDoublets(score.list, rate=0.4)

add the clean data matrix to the data list

doublet.list[['Clean Data']] <- data.de$label.doublet

remove identified doublets

data.removal.list <- RemoveDoublets.Method(data.de$count,

data.de$label.cluster, doublet.list)

add original contaminated data to the data list

data.removal.list[['Contaminated Data']] <- list(count=data.de$count,

label=data.de$label.cluster)

We use the Wilcoxon rank-sum test 57, MAST 56, and likelihood-ratio test 94 (bimod) to

identify DE genes between two cell types. The accuracy of DE gene identification is

measured by precision, recall, and TNR.

create a data frame to save result for visualization

table.DE.all <- data.frame()

use three DE methods

https://paperpile.com/c/Kxhkna/jRhmu
https://paperpile.com/c/Kxhkna/myQaq
https://paperpile.com/c/Kxhkna/55aJ

97

for(DE.method in c('MAST', 'wilcox', 'bimod')){

identify DE genes

DE.list <- FindDE(data.removal.list, DE.method)

calculate precision, recall, and TNR of identified DE genes

DE.acc.list <- FindDEACC(DE.list, data.de$gene.de, rownames(data.de$count))

transform to a data frame for visualization

 table.DE <- ListToDataframe(DE.acc.list, 'barplot')

 table.DE[['DE_method']] <- DE.method

 table.DE.all <- rbind(table.DE.all, table.DE)

}

Note: Users can choose from seven DE methods by specifying the second parameter

of the function FindDE, including ‘wilcox’, ‘bimod’, ‘t’, ‘poisson’, ‘negbinom’, ‘LR’, and

‘MAST’. A detailed demonstration of those methods is available at

https://satijalab.org/seurat/articles/de_vignette.html.

We use barplots to compare the results of DE gene analysis on the contaminated

dataset (negative control), the clean dataset (positive control), and post-doublet-detection

datasets. The following R code outputs barplots that compare the precision, recall, and

TNR in Figure 3B. Each barplot stacks the results of three DE methods: Wilcoxon rank-

sum test, MAST, and likelihood-ratio test (bimod).

Plot_Barplot(table.DE.all[table.DE.all$measurement=='precision',],

'Precision')

https://satijalab.org/seurat/articles/de_vignette.html

98

Plot_Barplot(table.DE.all[table.DE.all$measurement=='recall',], 'Recall')

Plot_Barplot(table.DE.all[table.DE.all$measurement=='tnr',], 'TNR')

3.2.7 Effects of doublet detection on cell clustering

This section illustrates how to use DoubletCollection to evaluate the effects of doublet-

detection methods on cell clustering. First, we examine the efficacy of doublet-detection

methods for removing spurious cell clusters formed by doublets. Second, we compare

the proportion of singlets in the correctly identified cell clusters after each doublet-

detection method is applied.

We first read the dataset sim_clustering that includes three datasets with four, six, and

eight cell types and 20% doublets. Then we apply doublet-detection methods to obtain

doublet scores and remove doublets based on various doublet rates.

data.list <- readRDS(".../synthetic_datasets/sim_clustering.rds")

count.list <- data.list$count

label.list <- lapply(data.list$label, FUN = function(label){

 ifelse(label == 'doublet', 1, 0)

})

score.list.all <- FindScores.All(count.list, methods)

call doublets based on doublet rates from 0.01 to 0.25

doublet.list.all.rate <- FindDoublets.All.Rate(score.list.all,rates =

seq(0.01, 0.25, 0.01))

remove identified doublets under different doublet rates

99

data.removal.all.rate <- RemoveDoublets.All.Rate(count.list, label.list,

doublet.list.all.rate)

We apply Louvain clustering 63 to the post-doublet-removal datasets to identify cell

clusters.

result.cluster.all.rate <- Clustering.All.Rate(data.removal.all.rate)

We use heatmaps to compare the efficacy of doublet-detection methods for removing

spurious cell clusters. The following R code outputs heatmaps of clustering results on

datasets with four, six, and eight cell clusters under various doublet rates (Figure 4A).

transform the output of Clustering.All.Rate to a data frame for

visualization

table.cluster <- ListToDataframe(result.cluster.all.rate, type='heatmap')

draw heatmaps of clustering results

Plot_Heatmap(table.cluster, cluster = 4)

Plot_Heatmap(table.cluster, cluster = 6)

Plot_Heatmap(table.cluster, cluster = 8)

Homotypic doublets tend to cluster together with singlets and thus do not form

spurious clusters. To evaluate the efficacy of doublet-detection methods for eliminating

homotypic doublets, we calculate the proportion of singlets in each identified cell cluster

when the number of cell clusters matches the number of cell types.

https://paperpile.com/c/Kxhkna/9HNrS

100

table.cluster.quality <- Clustering.Quality(table.cluster,

 result.cluster.all.rate, data.removal.all.rate)

We use boxplots to visualize the singlet proportions within clusters after applying

doublet-detection methods, if the remaining droplets lead to the correct number of cell

clusters (Figure 4B).

Plot_Boxplot(table.cluster.quality[table.cluster.quality$correct=='4',],

'Singlet Rates (Four Clusters)')

Plot_Boxplot(table.cluster.quality[table.cluster.quality$correct=='6',],

'Singlet Rates (Six Clusters)')

Plot_Boxplot(table.cluster.quality[table.cluster.quality$correct=='8',],

'Singlet Rates (Eight Clusters)')

3.2.8 Effects of doublet detection on cell trajectory inference

This section illustrates how to use DoubletCollection to evaluate the effects of doublet-

detection methods on cell trajectory inference. First, we examine the efficacy of doublet-

detection methods for removing spurious cell branches formed by doublets. Second, we

compare the accuracy of temporally DE gene identification after doublet-detection

methods are applied.

We use Slingshot 68 to infer the cell trajectories on the dataset sim_trajectory. It

contains two cell branches mixed with 20% doublets (contaminated dataset). The

following R code shows a two-dimensional visualization of the inference result. It contains

https://paperpile.com/c/Kxhkna/N1qrT

101

three cell trajectories instead of two, and the intermediate trajectory is formed by doublets

(Figure 5A).

data.trajectory <- readRDS('.../synthetic_datasets/sim_trajectory.rds')

count <- data.trajectory$count

label <- data.trajectory$label

cell trajectory inference by Slingshot and visualization

FindTrajectory(count, label, title='Contaminated Data')

We use Slingshot to infer the cell trajectories on the dataset sim_trajectory after

removing all 20% doublets (clean dataset). The following R code shows a two-

dimensional visualization of the inference result with two correct cell trajectories (Figure

5A).

remove all doublets

count.clean <- count[,which(label==0)]

label.clean <- label[which(label==0)]

cell trajectory inference by Slingshot and visualization

FindTrajectory(count.clean, label.clean, title='Clean Data')

We first perform doublet detection on the dataset sim_trajectory to obtain doublet

scores. Then for each method, we remove the top 20% droplets that receive the highest

doublet scores. Finally, we infer and visualize cell trajectories on each post-doublet-

102

removal dataset to examine if the corresponding doublet-detection method removes the

spurious cell branches formed by doublets (Figure 5A).

score.list <- FindScores(count, methods)

doublet.list <- FindDoublets(score.list, rate = .2)

data.removal.list <- RemoveDoublets.Method(count, label,doublet.list)

infer trajectory on each post-doublet-removal dataset

for(method in methods){

FindTrajectory(data.removal.list[[method]]$count,

data.removal.list[[method]]$label, title = method)

}

We first use Slingshot to infer the cell pseudotime on the dataset sim_temporally_DE

(contaminated dataset). It contains a single cell lineage with 250 temporally DE genes out

of 750 genes, mixed with 20% doublets. Second, we use a general additive model (GAM)

83 to regress each gene’s expression levels on the inferred pseudotime. Finally, we

calculate the precision, recall, and TNR of the inferred temporally DE genes identified

using the Bonferroni-corrected p-value threshold of 0.05. We repeat the same analysis

on the clean dataset (without doublets) and each post-doublet-removal dataset.

data.trajectory <-readRDS('.../synthetic_datasets/sim_temporally_DE.rds')

count <- data.trajectory$count

label <- data.trajectory$label

ground-truth temporally DE genes

https://paperpile.com/c/Kxhkna/8Lmaa

103

gene.de <- data.trajectory$gene.de

calculate precision, recall, and TNR of temporally DE genes for

contaminated data

de.temp.list <- FindTempDE(count, gene.de)

calculate doublet scores and remove doublets

score.list <- FindScores(count, methods)

count.clean <- count[,which(label==0)]

label.clean <- label[which(label==0)]

doublet.list <- FindDoublets(score.list, rate=0.2)

data.removal.list <- RemoveDoublets.Method(count, label, doublet.list)

add clean data

data.removal.list[['Clean Data']] <- list(count.clean, label.clean)

calculate precision, recall, and TNR of temporal DE genes for

post-doublet-removal data

de.temp.result.all <- FindTempDE.All(data.removal.list, gene.de)

add the result of contaminated data

de.temp.result.all[['Contaminated Data']] <- de.temp.list

We use barplots to compare the results of temporally DE genes identification on the

contaminated dataset, the clean dataset, and the post-doublet-removal datasets (Figure

5B). The barplot stacks the results of precision, recall, and TNR for different doublet-

detection methods.

104

transform to data frame for visualization

table.DE.temp <- ListToDataframe(de.temp.result.all, type='barplot')

draw barplot

Plot_Barplot_temp(table.DE.temp, title='Temporally DE Genes')

3.2.9 Performance of doublet-detection methods under distributed

computing

This section illustrates how to use DoubletCollection to evaluate the accuracy of doublet-

detection methods under distributed computing. This benchmark simulates the scenario

when the large scRNA-seq dataset is beyond the capacity of a single computer so that

the dataset must be divided into subsets to be analyzed in parallel.

First, we randomly split the dataset pbmc-ch into two up to ten equal-sized batches.

Second, for each batch number, we execute every doublet-detection method on each

batch separately and concatenate the resulting doublet scores across batches. Finally,

we calculate the distributed AUPRC based on the concatenated doublet scores.

read dataset pbmc-ch

data.list <- ReadData(path = ".../real_datasets")

count <- data.list$count$`pbmc-ch`

label <- data.list$label$`pbmc-ch`

label <- ifelse(label == 'doublet', 1, 0)

105

calculate distributed AUPRC for different methods

auc.list.batch <- FindDistributedAUC.All(count,label,methods,

batches=2:10, type='AUPRC')

We use line plots to show how the detection accuracy of each method changes as the

number of batches increases. The following R code places the batch numbers on the x-

axis and connects AUPRC values to show the trend of each method (Figure 5C).

transform the output of FindDistributedAUC.All to a data frame for

visualization

table.batch <- ListToDataframe(auc.list.batch, type='distributed')

draw line plots

Plot_Lineplot_Distributed(table.batch,data='pbmc-ch',measurement='AUPRC')

Optional: Users can apply the same pipeline to evaluate the detection accuracy of

doublet-detection methods under distributed computing on any other real datasets.

3.2.10 Computational aspects of doublet-detection methods (optional)

The benchmark of computational aspects of doublet-detection methods includes but is

not limited to efficiency, scalability, stability, and software implementation. First, we can

summarize the running time of doublet-detection methods on the 16 real scRNA-seq

datasets. The result can be visualized by boxplots similar to Figure 2A to compare the

computational efficiency of doublet-detection methods. Second, we can examine how fast

each method’s running time increases as the number of droplets grows. The result can

106

be visualized by line plots similar to Figure 3A to examine the scalability of doublet-

detection methods. Third, we can evaluate how much each method’s AUPRC and

AUROC values vary across subsets of droplets and genes. The result can be visualized

by violin plots to compare the statistical stability of doublet-detection methods. Finally, we

can qualitatively evaluate the software implementation of doublet-detection methods from

the aspects of user-friendliness, software quality, and active maintenance. The complete

visualization details are available in 91.

3.3 Expected Outcomes

The major outcomes of this protocol are the measures of doublet-detection accuracy and

the result of downstream analysis, including AUPRC, AUROC, precision, recall, TNR,

number of cell clusters, cell trajectories, DE genes, and their visualization. These

outcomes are in the intermediate outputs of the R code shown in previous sections. The

visualizations are shown in Figures 2 to 5. More visualizations, tables, and interpretations

are available in our previous work 91.

Another important result in this protocol paper is the benchmark of a new method

scDblFinder, which was not included in the previous benchmark study 91. On the 16 real

RNA-seq datasets, scDblFinder achieves the highest mean AUPRC and AUROC values,

and it is also the top method in terms of precision, recall, and TNR under the 10%

identification rate. On the synthetic RNA-seq datasets, scDblFinder exhibits similar

performance trends to those of other doublet-detection methods under various

experimental settings and biological conditions, and it is also a near-top method in terms

of AUPRC. In particular, scDblFinder is able to consistently improve downstream

https://paperpile.com/c/Kxhkna/BWPM
https://paperpile.com/c/Kxhkna/BWPM
https://paperpile.com/c/Kxhkna/BWPM

107

analyses, including DE gene, cell clustering, and cell trajectory inference. Similar to other

doublet-detection methods, scDblFinder has decreased detection accuracy as the

number of batches increases under distributed computing. scDblFinder is also one of the

fastest doublet-detection methods (the comparison of running time is not shown). Overall,

scDblFinder has excellent detection accuracy and high computational efficiency.

3.4 Limitations

The first limitation of this protocol is that the current benchmark results are based on the

default hyperparameters of doublet-detection methods 24,91. Therefore, the benchmark

results in this protocol may have underestimated the performance of some doublet-

detection methods. With the functionality of hyperparameter tuning provided in the R

package DoubletCollection, users can conduct an independent study to explore the

optimal hyperparameters of doublet-detection methods.

The second limitation of this protocol is that the doublet annotations in the 16 real

scRNA-seq datasets are not completely accurate due to experimental limitations. For

example, datasets hm12k and hm6k only labeled the heterotypic doublets formed by a

human cell and a mouse cell 52; datasets generated by demuxlet only labeled the doublets

formed by cells of two individuals 43; many homotypic doublets were unlabeled in real

datasets 91. The incompleteness of doublet annotations would have inflated the false

negative rates and reduced the precision of computational doublet-detection methods.

The synthetic datasets used in this protocol contain ground-truth doublets and thus can

partly alleviate this issue.

https://paperpile.com/c/Kxhkna/mbOqw+BWPM
https://paperpile.com/c/Kxhkna/zc8Nm
https://paperpile.com/c/Kxhkna/wB9b8
https://paperpile.com/c/Kxhkna/BWPM

108

The third limitation of this protocol is that it mainly focuses on doublet-detection

methods that can generate a doublet score for every droplet in the dataset. Among

currently available doublet-detection methods, DoubletDecon directly outputs identified

doublets without providing doublet scores. To fairly compare DoubletDecon with other

methods, we suggest users to first execute it on every dataset and record its number of

identified doublets; then users can threshold the doublet scores of the other methods so

that every method identifies the same number of doublets as DoubletDecon does; finally,

users can calculate the precision, recall, and TNR based on the doublets identified by

each method from every dataset. A detailed comparison between DoubletDecon and

other methods has been discussed by 91. Guidance for executing DoubletDecon is

available at 46,95.

3.5 Troubleshooting

Problem 1: Method Scrublet or DoubletDetection fails to be installed even with a

Python environment installed in the system.

Potential Solution: This problem typically happens in the Windows system with error

information “Microsoft Visual C++ 14.0 is required”. To solve this problem, users can

download and install the latest version of Visual Studio Build Tools at

https://visualstudio.microsoft.com/downloads/ under the menu “Tools for Visual Studio

2019 -> Build Tools for Visual Studio 2019”.

Problem 2: The installation of DoubletCollection fails to install some dependent

packages.

https://paperpile.com/c/Kxhkna/BWPM
https://paperpile.com/c/Kxhkna/I4OGu+SnLA
https://visualstudio.microsoft.com/downloads/

109

Potential Solution: This problem is caused by the version conflict when updating

certain packages already installed in R. We recommend users skip the updating step

suggested by R. Ignoring the update of dependent packages will not affect the

functionality of DoubletCollection.

Problem 3: Some methods fail to generate doublet scores on 16 real scRNA-seq

datasets.

Potential Solution: This problem is caused by memory shortage when executing

certain methods on large-scale datasets. For example, we observed such issues for

DoubletFinder on a laptop with 16GB memory. However, using the same code and data,

the issue disappears on a server with 256GB memory. To successfully replicate the result

in this protocol, we suggest users execute DoubletCollection on a computer with 64GB or

more memory. If users perform doublet detection on smaller datasets, then the memory

size requirement is less.

Problem 4: The ReadData function cannot read scRNA-seq datasets into the R

environment.

Potential Solution: The ReadData function is designed to read all rds files under the

user-specified directory. Therefore, users need to save all rds files in the directory

indicated by the path parameter of ReadData. Users can also use the generic R function

readRDS to read the single rds file.

Problem 5: The p-values of the hypergeometric test (which are also doublet scores)

output by DoubletDetection are negative.

Potential Solution: This problem occasionally happens and is likely due to the

numerical overflow of DoubletDetection. We suggest users add the abs() function outside

110

the output doublet scores to fix this issue. Our experiments find that DoubletDetection

performs well under this correction.

111

3.6 Figures

Figure 1. The Zenodo repository for downloading real and synthetic scRNA-seq

datasets used in this protocol.

112

Figure 2. Evaluation of Doublet-Detection Methods Using 16 Real scRNA-Seq
Datasets. (A) AUPRC and AUROC values of each method applied to 16 datasets. (B)
Precision, recall, and TNR values of each method under the 10% identification rate.
Methods are ordered by their average performance measurement across 16 datasets
(low to high).

113

Figure 3. Evaluation of Doublet-Detection Methods Using Four Simulation Studies,
and the Effects of Doublet Detection on DE Gene Analysis. (A) AUPRC of each
method in four simulation settings: varying doublet rates (from 2% to 40% with a step size
of 2%), varying sequencing depths (from 500 to 10,000 UMI counts per cell, with a step
size of 500 counts), varying numbers of cell types (from 2 to 20 with a step size of 1), and
20 heterogeneity levels, which specify the extent to which genes are differentiated
between two cell types. (B) Precision, recall, and TNR by each of three DE methods:
Wilcoxon rank-sum test (wilcox), MAST, and likelihood-ratio test (bimod) after each
doublet-detection method is applied to a simulated dataset; for negative and positive
controls, we included the DE accuracies on the contaminated data with 40% doublets and
the clean data without doublets.

114

Figure 4. The Effects of Doublet Detection on Cell Clustering. (A) Cell clustering
results by the Louvain algorithm after each doublet-detection method is applied to remove
a varying percentage of droplets as the identified doublets (y-axis, from 1% to 25% with
a step size of 1%); the true numbers of cell clusters are four, six, and eight under three
simulation settings, each containing 20% true doublets; the yellow color indicates that the
correct number of clusters was identified, while the red color indicates otherwise. (B)
Under the same three simulation settings as in (A), the distributions of the singlet
proportions are shown after doublet removal by each method, if the remaining droplets
lead to the correct number of cell clusters in (A); some methods are not shown because
they do not lead to the correct number of cell clusters in (A). Methods are ordered by their
average performance measurement across 16 datasets (low to high).

115

Figure 5. Effects of Doublet Detection on Cell Trajectory Inference and the
detection accuracy under distributed computing. (A) Cell trajectories constructed by
Slingshot. (B) Precision, recall, and TNR of temporally DE genes inferred by the GAM.
Both (A) and (B) are performed on contaminated, clean, and post-doublet-detection
datasets. (C) AUPRC of each doublet detection method on the real dataset pbmc-ch
under distributed computing.

116

CHAPTER 4

Benchmarking the Design of Deep Autoencoders for

Denoising Single-Cell RNA Sequencing Data

4.1 Introduction

Single-cell RNA-sequencing (scRNA-seq) enables the measurement of genome-wide

gene expression at single-cell levels 8,9,96. scRNA-seq can generate datasets with tens of

thousands of genes and up to millions of cells 14, which allows for the investigation of cell-

to-cell heterogeneity 97, identification of distinguished cell type 98, and quantification of cell

state transition 99. One characteristic of scRNA-seq data is the high proportion of zeros

or high sparsity. Depending on the sequencing platform and sequencing depth, the zero

proportion of one scRNA-seq data matrix ranges from 50% to more than 90% 24. There

are two types of zeros in scRNA-seq data — biological zeros and non-biological zeros 26.

Biological zeros indicate the actual absence of gene expression in the cell, while non-

biological zeros originate from the technical limitation or noise in the scRNA-seq

experiment 100. Without external reference or prior biological knowledge, it is usually

https://paperpile.com/c/Kxhkna/87WPm+FMJ0u+79DlT
https://paperpile.com/c/Kxhkna/TjAh
https://paperpile.com/c/Kxhkna/OGNWW
https://paperpile.com/c/Kxhkna/fCbnH
https://paperpile.com/c/Kxhkna/9qhTo
https://paperpile.com/c/Kxhkna/mbOqw
https://paperpile.com/c/Kxhkna/5u0g
https://paperpile.com/c/Kxhkna/oeMH0

117

difficult to distinguish between these two types of zeros in scRNA-seq data 24. In the

following text, we will interchangeably use the terminology non-biological zeros, technical

zeros, and missing values.

The high sparsity of scRNA-seq data, especially the non-biological zeros, poses a

great challenge in downstream analysis of scRNA-seq data 24. Many computational

methods have been developed to impute and denoise the non-biological zeros

(sometimes also biological zeros), and they can be divided into three broad categories.

First, model-based imputation methods infer probabilistic models to capture the

distribution of gene expression in scRNA-seq data. They aim to differentiate between

biological zeros and non-biological zeros and only impute the former 27,28. Second, data-

smoothing methods modify the gene expression in each cell based on the similar cells in

the datasets. The similarity is defined by the neighborhood of each cell in a low

dimensional space 29,30. Data-smoothing methods impute all zeros and also change the

non-zero values in scRNA-seq data. Third, data-reconstruction methods utilize machine

learning techniques to learn a latent space of the original sparse data. The latent space

is further used to reconstruct the imputed dense data 31,32. Data-reconstruction methods

also impute all zeros but keep non-zero values unchanged in scRNA-seq data.

Recently, autoencoder-based imputation methods have gained much attention due to

their superior imputation accuracy, a large improvement on downstream analysis, high

degree of flexibility, and capacity of extending to large-scale datasets 22,33. These

methods belong to the data-reconstruction category and use neural networks to learn a

latent space and reconstruct the imputed scRNA-seq data. Specifically, an autoencoder

contains one encoder neural network and one decoder neural network — the encoder

https://paperpile.com/c/Kxhkna/mbOqw
https://paperpile.com/c/Kxhkna/mbOqw
https://paperpile.com/c/Kxhkna/GzKn3+DijG
https://paperpile.com/c/Kxhkna/wsAOk+eDny
https://paperpile.com/c/Kxhkna/5nLmp+QN3r
https://paperpile.com/c/Kxhkna/b3EH+W30N

118

neural network first compresses the high-dimensional scRNA-seq data into a low-

dimensional latent space; then a decoder neural network recovers the data to its original

dimension from the latent space. The recovered data is used to impute the sparse scRNA-

seq data. One challenge when designing an autoencoder-based imputation method is

how to select its hyperparameters, including the neural network structure, activation

function, and regularization 24. The existing methods either copy the practice in other

fields, especially the computer vision study, or set up the autoencoder on an ad hoc basis

31,32,103-106. Currently, there is no formal discussion on the choice of hyperparameters in

the autoencoder for imputing scRNA-seq data.

Here, we conduct the first empirical study to systematically explore the best modeling

strategies for autoencoder-based scRNA-seq imputation methods. In particular, we first

design three masking schemes to introduce ground-truth non-biological zeros on 12 real

scRNA-seq datasets. Second, we train autoencoders with a large variety of depth and

width, seven activation functions, and two types of regularization on those datasets, and

further impute them to calculate the imputation accuracy based on the masked values.

We compare the imputed normalized root mean square error (NRMSE) and imputed

Pearson correlation coefficient of different autoencoders to examine the impact of their

design on the overall imputation accuracy. Third, we train autoencoders with the

aforementioned hyperparameter settings on 20 real scRNA-seq datasets with ground-

truth cell type information. Then we conduct cell clustering on pre-imputed and imputed

datasets after applying different autoencoders. We compare the adjusted Rand index

(ARI) and adjusted mutual information (AMI) to examine the impact of autoencoder design

on downstream cell clustering. Fourth, we simulate 20 synthetic datasets with ground-

https://paperpile.com/c/Kxhkna/mbOqw
https://paperpile.com/c/Kxhkna/wsAOk+eDny
https://paperpile.com/c/Kxhkna/wsAOk+eDny

119

truth differentially expression (DE) genes based on 20 real scRNA-seq datasets. Again,

we train autoencoders with the aforementioned hyperparameter settings on those

synthetic datasets and identify DE genes on pre-imputed and imputed datasets after

applying different autoencoders. We compare the precision, recall, and true negative rate

(TNR) of identified DE genes to examine the impact of autoencoder design on

downstream DE gene analysis.

Our analysis shows results that are largely ignored in the previous method

development. First, deeper autoencoders provide better overall imputation accuracy, cell

clustering, and DE gene analysis. The benefits from depth generally saturate when the

autoencoder passes 10 hidden layers. Second, narrower autoencoders improve the

overall imputation accuracy but are similar to wider autoencoders in terms of cell

clustering and DE gene analysis. Third, the sigmoid and tanh activation functions

consistently outperform others in all evaluations. Fourth, the weight decay and dropout

regularization are critical to the performance of autoencoder-base imputation methods. In

particular, weight decay is more capable of improving cell clustering and DE gene

analysis while dropout shows superiority in improving overall imputation accuracy. The

optimal hyperparameters of these two regularizations largely depend on datasets. Our

findings contradict the common practice in previous methods, where shallower and wider

autoencoder with ReLU activation functions are widely used. Those findings highlight the

unique characteristics of scRNA-seq data in imputation tasks and call cautions on

borrowing model design directly from other fields. Our empirical study provides insights

for the future development of autoencoder-based imputation methods for scRNA-seq data.

120

4.2 Results

4.2.1 Autoencoder for imputing scRNA-seq data

An autoencoder is a multi-layer neural network that aims to reconstruct the input data

through its hidden layers 101. When being applied to imputing the scRNA-seq data, the

autoencoder is able to learn a low-dimensional representation of the input data and use

it to recover the missing values (Figure 1a). Let 𝑋 be the sparse scRNA-seq input matrix

after appropriate preprocessing and normalization (Methods). Let 𝑌 be the dense scRNA-

seq output matrix. Both 𝑋 and 𝑌 have 𝑛 rows (cells) and 𝑚 genes (columns). Suppose 𝐻𝑘

is the 𝑘th hidden layer of the autoencoder, where 𝑘 = 1, 2, . . . , ℎ and ℎ is the number of

hidden layers. Then the first hidden layer 𝐻1 is calculated as

 𝐻1 = 𝑓 (𝑋𝑊1 + 𝑏1),

where 𝑊1 is an 𝑚 by 𝑙1 weight matrix and 𝑏1 is an 𝑙1dimensional bias vector. 𝑓 is an

element-wise nonlinear activation function. Similarly, the 𝑘 + 1th hidden layer 𝐻𝑘+1 is

calculated as

𝐻𝑘+1 = 𝑓 (𝐻𝑘𝑊𝑘+1 + 𝑏𝑘+1),

where 𝑊𝑘+1 is an 𝑙𝑘 by 𝑙𝑘+1 weight matrix and 𝑏𝑘+1 is a 𝑙𝑘+1dimensional bias vector.

Finally, the output of the autoencoder 𝑌 is calculated as

𝑌 = 𝐻ℎ𝑊ℎ + 𝑏ℎ,

where 𝑊ℎ is an 𝑙ℎ−1
 by 𝑙ℎ weight matrix and 𝑏ℎ is an 𝑙ℎ dimensional bias vector. The

autoencoder learns the parameters in weight matrices 𝑊1, 𝑊2, . . . , 𝑊ℎ and bias vectors

𝑏1, 𝑏2, . . . , 𝑏ℎ by minimizing the mean squared error (MSE) between input 𝑋 and output

https://paperpile.com/c/Kxhkna/lOmVN

121

𝑌on nonzero values of 𝑋. Let 𝑊 be the set of weight matrices 𝑊1, 𝑊2, . . . , 𝑊ℎ and 𝑏 be the

set of bias vectors 𝑏1, 𝑏2, . . . , 𝑏ℎ, then

𝑀𝑆𝐸 (𝑊, 𝑏) =
∑ ∑ (𝑌𝑖𝑗−𝑋𝑖𝑗)2𝐼(𝑋𝑖𝑗≠0)𝑚

𝑗
𝑛
𝑖

∑ ∑ 𝐼(𝑋𝑖𝑗≠0)𝑚
𝑗

𝑛
𝑖

.

The weight and bias parameters (𝑊̂, 𝑏̂) are given by

(𝑊̂, 𝑏̂) = 𝑎𝑟𝑔𝑚𝑖𝑛 (𝑊,𝑏) 𝑀𝑆𝐸 (𝑊, 𝑏),

where 𝐼(𝑥) is an indicator function that outputs one for nonzero input and zero otherwise.

The MSE is the loss function in the optimization process.

The minimization of MSE is a non-convex optimization problem 37 and the

backpropagation algorithm 102 is utilized for training the autoencoder (Methods). In the

imputation step, the zero entries in the input matrix 𝑋 are replaced by their nonzero

counterparts in the output matrix 𝑌. Let 𝐴𝐸̂ be the autoencoder with parameters (𝑊̂, 𝑏̂)

learned by backpropagation, then the imputed scRNA-seq data matrix 𝑌̂ is calculated as

𝑌̂ = 𝑋 + 𝐴𝐸̂(𝑋) ∘ 𝐼(𝑋 = 0),

where ∘ is the element-wise product.

Several modifications to the original model design have been made since the debut

of autoencoder-based imputation methods. For example, DCA 32 models the scRNA-seq

data by a negative binomial distribution with or without zero-inflation (NB or ZINB) and

learns the autoencoder by maximizing the likelihood of NB or ZINB calculated by the

output 𝑌; scVI 31 learns a variational autoencoder 103 by forcing the hidden layers to follow

a ZINB distribution; DeepImpute 104 learns the autoencoder by minimizing the weighted

MSE between two sets of highly correlated genes in input and output; LATE 105 treats

cells or genes as observations to learn two autoencoders and selects the one with smaller

MSE; scScope 106 learns an iterative autoencoder by using the imputed data as input

https://paperpile.com/c/Kxhkna/PwYP
https://paperpile.com/c/Kxhkna/FTcUE
https://paperpile.com/c/Kxhkna/QN3r
https://paperpile.com/c/Kxhkna/5nLmp
https://paperpile.com/c/Kxhkna/8MH08
https://paperpile.com/c/Kxhkna/XBR75
https://paperpile.com/c/Kxhkna/14lHj
https://paperpile.com/c/Kxhkna/UAQzG

122

repeatedly. Despite the aforementioned modifications, the essential structure,

hyperparameters, and training process of the autoencoder for imputing scRNA-seq data

remain the same.

4.2.2 Three masking schemes for introducing missing values

In scRNA-seq data, the knowledge of which observed zeros are truly missing is unknown

due to the lack of external reference 22,33. To evaluate the overall imputation accuracy in

this scenario, we design three masking schemes that introduce missing values to scRNA-

seq data and measure the difference between the imputed and true values on the masked

data (Figure 1b-1d). These masking schemes represent different assumptions of missing

mechanisms in scRNA-seq data 26.

First, we randomly mask 50% nonzero entries in the scRNA-seq data matrix (set their

values to zero). We call this masking scheme random masking in the following text.

Random masking indicates that the missing mechanism is completely independent of the

true gene expression levels. It has been widely used in previous work to evaluate the

imputation accuracy 22. Second, we mask the nonzero entries less or equal to their

median in the scRNA-seq data matrix. We call this masking scheme median masking in

the following text. Median masking assumes a complete dependence of the missing

mechanism on the true gene expression levels. Third, we assume that the probability of

missing values for one gene depends on the mean expression level of that gene across

cells. Lowly expressed genes are more likely to have missing values than highly

expressed genes. Specifically, for gene 𝑖, let 𝜇𝑖 be the mean expression level of nonzero

values across cells (log-transformed read count), and 𝑝𝑖 be the probability of missing

https://paperpile.com/c/Kxhkna/b3EH+W30N
https://paperpile.com/c/Kxhkna/5u0g
https://paperpile.com/c/Kxhkna/W30N

123

values. Then the missing mechanism can be modeled by a double exponential function

55

𝑝𝑖 = 𝑒𝑥𝑝 (−𝜆𝜇𝑖
2),

where 𝜆 is a parameter learned from scRNA-seq data. Let 𝑍𝑖𝑗 be a random variable that

indicates whether to mask the nonzero expression of gene 𝑖 in cell 𝑗 , then 𝑍𝑖𝑗 ∼

𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑝𝑖). All nonzero expression of gene 𝑖 with 𝑍𝑖𝑗 = 0 will be masked. The value

of 𝜆 was determined such that 50% of nonzero entries in the scRNA-seq data matrix were

masked. We call this masking scheme double exponential masking in the following text.

4.2.3 Impact of autoencoder architecture on the imputation accuracy

We collect 12 real scRNA-seq datasets to evaluate the overall imputation accuracy of the

autoencoder under a variety of architectures. These datasets cover a wide range of cell

types, sequencing depths, zero rates, and experimental platforms (Supplementary Table

S1). We apply the three masking schemes to generate three sets of masked data, each

containing 12 datasets. To make different datasets comparable, we use the normalized

root MSE (NRMSE; Methods) and Pearson correlation coefficient between the imputed

and true masked values to measure the imputation accuracy. We call them imputation

NRMSE and imputation correlation, respectively, in the following text.

We build autoencoders of different architectures by increasing the number of hidden

layers (depth) from 1 to 15. For each depth, we set the number of hidden units per layer

(width) to 32, 64, 128, or 256, respectively. All hidden layers are fully connected with the

same number of hidden units. Different depth-width combinations generate 60 (15×4)

autoencoders in total. We choose the rectified linear unit (ReLU) 35 as the activation

https://paperpile.com/c/Kxhkna/PwyoW
https://paperpile.com/c/Kxhkna/j9Di

124

function and train the autoencoders by the Adam optimization algorithm 107 (Methods).

We set 10 random seeds in the training of each autoencoder-dataset combination to

obtain 10 different imputed datasets. We average the corresponding imputation NRMSEs

and imputation correlations to reduce the variability introduced by the stochastic training

process.

Figures 2a and 2b show the impact of depth and width on the imputation NRMSE and

correlation based on the random masking scheme. First, the deeper autoencoders

provide lower imputation NRMSE and higher imputation correlation. The benefits of depth

are more significant when the number of layers is less than 10. Second, the narrower

autoencoders (32 hidden units per layer) typically provide more accurate imputation than

wider autoencoders (64 or more hidden units per layer) of the same depth. This finding is

consistent with the observation in computation vision study that deeper and narrower

neural networks have better performance in multiple tasks (e.g., image classification and

object detection) 108,109. We observe a similar relationship between network architecture

and imputation accuracy under the double exponential masking scheme, except for the

dataset bmmc (Supplementary Figure S1). Conversely, the same relationship breaks

under the median masking scheme, where deeper autoencoders mostly reduce the

imputation accuracy while the width does not have a significant impact (Supplementary

Figure S2). The imputation accuracy on the random masking is the highest among the

three masking schemes, followed by the doublet exponential masking. The imputation

fails on most datasets under median masking, indicated by many larger-than-one

imputation NRMSEs and close-to-zero imputation correlations (Supplementary Figure

S2).

https://paperpile.com/c/Kxhkna/tBlss
https://paperpile.com/c/Kxhkna/abw7L+RdFN5

125

The previous result is likely due to the different gene-to-gene associations preserved

by different masking schemes. Both random masking and double exponential masking

are stochastic processes. The difference between them is whether the probability of

masking depends on the original gene expression levels. Under these two masking

schemes, some strong singles (large values in the scRNA-seq data matrix) are masked

while others are left, making the gene-to-gene association similar in masked and

unmasked values. Therefore, the autoencoder is able to learn this common association

from nonzero values to impute the masked values. Because of the high complexity of the

scRNA-seq data 9, autoencoders with high representational capacity (deep) and low

tendency toward overfitting (shallow) are more capable of learning this association and

provide more accurate imputation.

On the other hand, median masking is a deterministic process that only masks the

small nonzero values in scRNA-seq data (the medians of nonzero values in most real

datasets in our analysis are one or two). This hinders the autoencoder from accurately

imputing masking values for two reasons. First, very small values in scRNA-seq data are

more likely to be random noise caused by the technical variance from the experimental

process 110. It is infeasible for autoencoders or any machine learning methods to recover

random noise from singles in unmasked data. Second, for those small values that are

actually weak singles instead of random noise, their gene-to-gene association is

systematically different from the one of strong singles in unmasked data. This discrepancy

causes the domain shift issue 111 and makes autoencoders trained on unmasked data

generalize poorly on masked data, resulting in inaccurate imputation. Due to any of those

two reasons, high model complexity (deep) causes overfitting and low imputation

https://paperpile.com/c/Kxhkna/79DlT
https://paperpile.com/c/Kxhkna/RHtSj
https://paperpile.com/c/Kxhkna/ljs4G

126

accuracy, as shown in Supplementary Figure S2. The following analysis will mainly focus

on random masking and double exponential masking.

4.2.4 Impact of activation function on the imputation accuracy

An activation function is a nonlinear transformation applied to the hidden units of the

neural network 36. It provides autoencoders the capacity to learn complex nonlinear

patterns, e.g., the gene-to-gene association in scRNA-seq data. ReLU is a widely used

activation function in autoencoder-based imputation methods, motivated by its success

in computer vision study 36. However, the validity of using ReLU for imputing scRNA-seq

data has rarely been discussed, and the empirical comparison between ReLU and other

activation functions is lacking.

Here, we train autoencoders with seven different activation functions, including

sigmoid, tanh, ReLU, LeakyReLU (with two different hyperparameter settings) 112, ELU

113, and SELU 114, to compare their impact on the imputation accuracy (Methods). For

each activation function, we imputed the aforementioned 12 scRNA-seq datasets using

20 autoencoders obtained by setting different random seeds in the training process.

Figure 3 and Supplementary Figure S3 compare the distributions of imputation NRMSEs

and imputation correlations for different activation functions under random masking or

double exponential masking. We observe that sigmoid and tanh outperform other

activation functions in all datasets under two masking schemes. Additionally, the

variability of imputation NRMSE and imputation correlation are significantly lower for

sigmoid and tanh than others, indicating more stable imputation accuracy. Between

sigmoid and tanh, they have similar imputation accuracy except for datasets pbmc and

https://paperpile.com/c/Kxhkna/CLzt
https://paperpile.com/c/Kxhkna/CLzt
https://paperpile.com/c/Kxhkna/hS9ly
https://paperpile.com/c/Kxhkna/1n6vz
https://paperpile.com/c/Kxhkna/c0PLO

127

human_mix. The performance of sigmoid is more stable on datasets mbrain, pbmc,

human_mix, and mouse_cortex.

The comparison of different activation functions has three insights. First, one

argument for using ReLU is that it can improve the low dimensional representation of data

by introducing sparsity into the hidden layers 112. Contrarily, sigmoid and tanh (mostly)

generate nonzero hidden units, and thus, dense hidden layers. Our empirical results show

that the imputation of scRNA-seq data did not benefit much from sparse hidden layers,

probably because the scRNA-seq data itself is highly sparse and thus needs a dense

representation in the low-dimensional space (hidden layers). Second, Leaky ReLU, ELU,

and SELU are modifications to ReLU by inducing small nonzero output values in hidden

units when the input is negative (Methods). They generate pseudo-sparsity in the hidden

layers and avoid the dead ReLU problem 115. Also, the nonzero hidden units provide the

autoencoder more flexibility to adjust its parameters. However, our empirical result shows

no consistent improvement of those activation functions over ReLU in terms of imputation

accuracy. A possible interpretation is that the derivative shape of the activation function

is critical to the training of the autoencoder — sigmoid and tanh have continuous

derivatives, while all ReLU-related activation functions have discrete derivatives. Third,

we do not observe vanishing gradient or exploding gradient problems 116 in the training of

autoencoders with sigmoid or tanh activation functions. We suspect that the appropriate

preprocessing and normalization of scRNA-seq data stabilize the gradients in the training

of the autoencoder.

https://paperpile.com/c/Kxhkna/hS9ly
https://paperpile.com/c/Kxhkna/m7hPp
https://paperpile.com/c/Kxhkna/tixQV

128

4.2.5 Impact of regularization on the imputation accuracy

Regularization is a technique to constrain the complexity of machine learning models

such that they can generalize better to the data not used in training 83. There are two

commonly used regularization methods among others to improve the imputation accuracy

of autoencoders — weight decay 37 and dropout 38. Weight decay incorporates the 𝐿2

norm of weight parameters into the loss function to penalize large weights in the

autoencoder. The weight and bias parameters under the weight decay (𝑊̂, 𝑏̂)′ are given

by

(𝑊̂, 𝑏̂)′ = 𝑎𝑟𝑔𝑚𝑖𝑛 (𝑊,𝑏) 𝑀𝑆𝐸 (𝑊, 𝑏) + 𝜆||𝑊||2
2,

where ||𝑊||2 is the 𝐿2 norm of weight parameters and 𝜆 is a tuning parameter that

controls the degree of penalization.

Rather than penalizing the scale of weights, dropout regularization randomly sets a

proportion of hidden units to zero in the training of autoencoders. It forces the autoencoder

not to rely on particular hidden units and thus reduces overfitting 38. Specifically, suppose

that 𝑍𝑘 is a random vector with the same dimension as the hidden layer 𝑘. Each random

variable in 𝑍𝑘 independently follows a Bernoulli distribution with parameter 𝑝𝑘 ∈ (0, 1).

Then in the training, the calculation of hidden layer 𝑘 + 1 under dropout regularization is

𝐻𝑘+1 = 𝑓 [(𝐻𝑘 ∘ 𝑍𝑘)𝑊𝑘+1 + 𝑏𝑘+1],

where ∘ is the element-wise product. Note that the calculation of hidden layers in the

testing (imputation) does not involve the dropout operation. In our analysis, we set 𝑝1 =

𝑝2 =. . . = 𝑝ℎ = 𝑝, where ℎ is the number of hidden layers. We call 𝑝 dropout rate in the

following text.

https://paperpile.com/c/Kxhkna/8Lmaa
https://paperpile.com/c/Kxhkna/PwYP
https://paperpile.com/c/Kxhkna/xSEY
https://paperpile.com/c/Kxhkna/xSEY

129

Some autoencoder-based imputation methods have utilized weight decay or dropout

in their implementations 104,117. However, the selection of regularization methods and

corresponding hyperparameters (i.e., the 𝜆 in weight decay and the 𝑝 in dropout) tuning

are mostly ad hoc 24. To examine the impact of regularization on the imputation accuracy,

we train autoencoders with weight decay or dropout and impute the aforementioned 12

real scRNA-seq datasets (Methods). We set the hyperparameters to a broad range of

values and compare their imputation NRMSE and imputation correlation (Figure 4 and 5;

Supplementary Figure S4 and S5). All autoencoders have the same architecture and

activation function — 10 fully connected hidden layers, 32 hidden units per hidden layer,

and a sigmoid activation function. We set 10 random seeds in the training of each

autoencoder-dataset combination to obtain 10 different imputed datasets. We average

the corresponding imputation NRMSEs and imputation correlations to reduce the

variability introduced by the stochastic training process.

Under the random masking, weight decay barely improves the imputation accuracy

except for datasets mouse_spleen and human_mix. The larger values of 𝜆 even reduce

the imputation accuracy, which indicates an over-regularization (Figure 4). On the other

hand, dropout improves the imputation NRMSE on six datasets and imputation correlation

on 11 datasets if paired with an appropriate dropout rate 𝑝. The optimal 𝑝s are small to

moderate values (between 0.02 and 0.2; Figure 5) in terms of imputation NRMSE while

moderate to large values (between 0.2 and 0.4) in terms of imputed correlation.

Under the double exponential masking, both regularization methods improve the

imputation accuracy (Supplementary Figure S4 and S5). Weight decay improves the

imputation NRMSE on six datasets and imputation correlation on 11 datasets

https://paperpile.com/c/Kxhkna/XBR75+vJJ0Q
https://paperpile.com/c/Kxhkna/mbOqw

130

(Supplementary Figure S4). The optimal 𝜆s are small to moderate values (between 1e-7

and 5e-5) in terms of imputed NRMS while moderate to large values (between 5e-6 and

5e-4) in terms of imputed correlation. The dropout also exhibits a strong positive impact

on imputation accuracy, with imputation NRMSE improved on 10 datasets and imputation

correlation improved on all 12 datasets (Supplementary Figure S5). The optimal dropout

rate 𝑝 is similar to those under random masking, with smaller values in terms of

imputation NRMSE and larger values in terms of imputation correlation.

The impact of regularization on imputation accuracy can be summarized in three

perspectives. First, dropout is more capable of improving both imputation NRMSE and

imputation correlation than weight decay. The autoencoders with dropout improve the

imputation on more datasets under both masking schemes - accuracy measurement

combinations. Second, both regularization methods are more effective under double

exponential masking than under random masking. As illustrated in the previous section,

double exponential masking tends to mask small nonzero values in the scRNA-seq data

matrix and thus introduces slightly different gene-to-gene associations between masked

and unmasked values. This difference causes moderate domain shifting and overfitting

in the autoencoder. Instead, random masking does not have this issue. Therefore, as a

counter-overfitting technique, the effect of regularization is stronger under double

exponential masking where more overfitting exists. Third, the optimal hyperparameters of

regularizations largely depend on the datasets and masking schemes. It is difficult to find

a universal hyperparameter setting that accommodates all scenarios. Interestingly,

compared with the imputation NRMSE, the imputed correlation requires a higher degree

of regularization to achieve its optimum under both weight decay and dropout.

131

4.2.6 Impact of autoencoder design on cell clustering

The ultimate goal of imputation is to improve the downstream bioinformatic analysis

through the enhancement of signals in the sparse scRNA-seq data 5. We collect 20 real

scRNA-seq datasets with ground-truth cell types to examine the impact of autoencoder

design on cell clustering (Supplementary Table S2). The datasets used in cell clustering

are different from those in the evaluation of overall imputation accuracy. Specifically, we

first conduct k-means clustering on the pre-imputed datasets and calculate the adjusted

Rand index (ARI) and adjusted mutual information (AMI) to measure the clustering

performance (Methods). We call them baseline ARI and baseline AMI in the following text.

Second, we train autoencoders with various architectures, activation functions, and

regularizations to impute the aforementioned 20 datasets. Finally, we conduct k-means

clustering on each imputed dataset and calculate the corresponding ARI and AMI. We

call them imputation ARI and imputation AMI in the following text.

Figure 6a, Supplementary Figure S6a, and S7a show the impact of autoencoder

architecture on cell clustering. Similar to the previous analysis, we increase the depth of

autoencoders from 1 to 15 and set the width to 32, 64, 128, and 256 for each depth,

respectively. All hidden layers in each autoencoder are fully connected with the same

number of hidden units. Different depth-width combinations generate 60 (15 × 4)

autoencoders in total. We chose sigmoid as the activation function because of their

superior performance in the evaluation of imputation accuracy. We set five random seeds

in the training of each autoencoder-dataset combination to obtain five different imputed

datasets. We average the corresponding imputation ARIs and imputation AMIs to reduce

the variability introduced by the stochastic training process. We observe that deeper

https://paperpile.com/c/Kxhkna/AkF57

132

autoencoders provide a greater improvement on cell clustering than their shallower

counterparts. The benefit of depth saturates after the number of hidden layers is greater

than 10. On the other hand, width has no significant impact on cell clustering (Figure 6a;

Supplementary Figure S6a; Supplementary Figure S7a). Those patterns are consistent

in terms of both imputed ARI and imputed AMI. Surprisingly, the cell clustering after

imputation only outperforms baseline ARIs on eight datasets and baseline AMIs on four

datasets, regardless of autoencoder architectures.

Figure 6b, Supplementary Figure S6b, and S7b compare the impact of activation

functions on cell clustering. Similar to the previous analysis, we train autoencoders with

seven different activation functions, including sigmoid, tanh, ReLU, LeakyReLU (with two

different hyperparameters), ELU, and SELU. For each activation function, we impute the

aforementioned 20 scRNA-seq datasets using 10 autoencoders obtained by setting 10

different random seeds in the training process. All autoencoders have 10 fully connected

hidden layers with 32 hidden units per layer. We observe that sigmoid and tanh

outperform other activation functions in terms of both imputed AMI and imputed ARI on

all datasets. They also exhibit more stable cell clustering performance than other

activation functions. The performance of sigmoid and tanh are fairly comparable except

for datasets Zeisel and klein, where tanh has a slight advantage over sigmoid.

Figure 6c-6d, Supplementary Figure S6c-S6d, and S7c-S7d show the impact of

regularization on cell clustering. Similar to the previous analysis, we utilize weight decay

or dropout in autoencoders and adjust their hyperparameters in a broad range of values.

All autoencoders have 10 fully connected hidden layers with 32 hidden units per layer

and sigmoid activation functions. Interestingly, weight decay significantly improves cell

133

clustering — cell clustering after imputation with weight decay outperforms baseline ARIs

on all 20 datasets and baseline AMIs on 18 datasets if paired with appropriate

hyperparameter. The optimal hyperparameters of weight decay are mostly between 0.01

and 0.1 on both imputed ARI and imputed AMI. However, the same improvement does

not happen on dropout regularization — cell clustering after imputation with dropout only

outperforms baseline ARIs on eight datasets and baseline AMIs on four datasets, if paired

with appropriate dropout rate 𝑝 . Dropout regularization has limited benefits for

autoencoders to improve cell clustering through imputation. Its optimal hyperparameters

cover a broad range depending on the datasets.

The previous comparison demonstrates the critical role of regularization for

autoencoders to improve cell clustering. Autoencoder-based imputation methods impute

all zero values in the scRNA-seq data matrix without differentiating between biological

zeros from technical zeros. This causes an over-imputation issue because only technical

zeros need to be imputed 118. Over-imputation introduces false signals to scRNA-seq data.

If the harms of false signals surpass the benefits of true signals recovered, then overall,

the imputation cannot improve cell clustering, as shown in Figure 6, Supplementary

Figure S6, and S7. The weight decay regularization relieves over-imputation by shrinking

the weights of the autoencoder while still being able to recover true signals at the same

time. Therefore, weight decay with appropriate degrees of penalization improves cell

clustering. Contrarily, dropout regularization tries to break the reliance on particular

hidden units instead of adjusting the size of weight parameters. Our empirical result

shows that this regularization mechanism is not able to effectively reduce over-imputation

or improve cell clustering. Note that there is no over-imputation issue in the evaluation of

https://paperpile.com/c/Kxhkna/LwWuY

134

overall imputation accuracy because the technical zeros (i.e., masked values) are known

in advance and imputed NRMSE and imputed correlation are calculated based on those

values.

4.2.7 Impact of autoencoder design on DE gene analysis

The enhancement of signals in scRNA-seq data by imputation is supposed to benefit

another important downstream analysis — the identification of differentially expressed

(DE) genes. To examine the impact of autoencoder design on DE gene analysis, we

utilize simulator scDesign 51 to generate 20 synthetic datasets with ground truth DE genes

(Methods). Each synthetic dataset is generated by learning the distribution of gene

expression in one real scRNA-seq dataset (20 real datasets in total; Supplementary Table

S3). These real datasets (and their synthetic counterparts) cover a wide range of

biological and technical conditions. We use synthetic data in this analysis since the

ground truth DE genes are typically unknown in real scRNA-seq datasets.

After simulation, we apply the MAST method 56 to pre-imputed synthetic datasets to

identify DE genes and calculate the corresponding precision, recall, and true negative

rate (TNR). We call them baseline precision, baseline recall, and baseline TNR in the

following text. Next, we train autoencoders with various architectures, activation functions,

and regularizations, and impute the aforementioned 20 synthetic datasets. Finally, we

apply MAST to each imputed dataset and calculate the corresponding precision, recall,

and TNR (Methods). We call them imputed precision, imputed recall, and imputed TNR

in the following text.

Figure 7a, Supplementary Figure S8a, S9a, and S10a show the impact of autoencoder

architecture on imputed precision, imputed recall, and imputed TNR. The settings of depth,

https://paperpile.com/c/Kxhkna/6hv95
https://paperpile.com/c/Kxhkna/myQaq

135

width and activation function for autoencoders are the same as in the evaluation of cell

clustering (1 to 15 fully-connected hidden layers; 32, 64, 128, or 256 hidden units per

layer; sigmoid activation function). We set five random seeds in the training of each

autoencoder-dataset combination to obtain five different imputed datasets. We average

the corresponding imputed precisions, imputed recalls, and imputed TNR to reduce the

variability introduced by the stochastic training process. First, we observe that the imputed

precision is similar across different depths and widths of the autoencoder, except for the

dataset Interneurons, Epithelial_cells, and astrocytes, where deeper

autoencoders slightly improved the imputed precision. Overall, the imputation improves

the precision of identified DE genes over the baseline on 19 datasets. Second, deeper

autoencoders provide higher imputed recall while the benefits generally saturate after the

depth passes five. On the other hand, width has no significant impact on the imputed

recall. Unfortunately, the imputation fails to improve the imputed recall over the baseline

on all datasets, regardless of the autoencoder architecture. Third, the impact of depth and

width on imputed TNR is limited, partially because all baseline TNRs are already close to

one, and the gaps between them and imputed TNRs are less than 0.05. Finally, it is worth

noting that the imputation by autoencoders has a clear priority to improving the precision

over the recall in DE gene analysis. The increase of imputed precision often comes at the

cost of the decrease of imputed recall. In other words, the imputation by the autoencoder

makes the DE gene analysis more conservative.

Figure 7b, Supplementary Figure S8b, S9b, and S10b compare the impact of

activation functions on the imputed precision, imputed recall, and imputed TNR. Again,

we train autoencoders with seven different activation functions, and for each of them, we

136

impute the aforementioned 20 synthetic datasets using 10 autoencoders obtained by

setting different random seeds in the training process. All autoencoders have 10 fully

connected hidden layers with 32 hidden units per layer. In terms of imputed precision,

sigmoid and tanh outperform other activation functions on nine datasets and had

comparable performance to others on 10 datasets. The only exception is the dataset

Endotherial_cell, where ELU and SELU achieve the highest imputed precision. The

advantage of sigmoid and tanh is more obvious in terms of imputed recall — they

outperform other activation functions on 15 datasets. The comparison among activation

functions on the imputed TNR is similar. The performance of sigmoid and tanh is generally

comparable and they both provide a more stable improvement on the identification of DE

genes than other activation functions.

Figure 7c-7d, Supplementary Figure S8c-S8d, S9c-S9d, and S10c-S10d show the

impact of regularizations on the imputed precision, imputed recall, and imputed TNR.

Again, we add weight decay or dropout to autoencoders and adjust their hyperparameters

as in the previous analysis. All autoencoders have 10 fully connected hidden layers with

32 hidden units per layer and sigmoid activation functions. We observe that weight decay

exhibits greater improvement on all three measurements of DE gene analysis than

dropout. Specifically, weight decay improves the imputed precision, imputed recall, and

imputed TNR over their no-regularization counterparts on 9, 20, and 20 datasets,

respectively, if paired with appropriate hyperparameters. Moreover, weight decay with

optimal hyperparameters makes imputed recall and imputed TNR surpass the baseline

in all datasets. Dropout is able to improve imputed precision, imputed recall, and imputed

TNR over their no-regularization counterparts on 6, 17, and 17 datasets, respectively, if

137

paired with appropriate hyperparameters. However, the improvement is much less than

weight decay and fails to make the imputed recall and imputed TNR surpass the baseline

on all but one dataset.

Similar to the evaluation of cell clustering, regularization is also critical for

autoencoders to improve DE gene analysis. Again, the weight decay reduces over-

imputation by constraining the size of weight parameters in autoencoders. With an

appropriate degree of penalty, weight decay balances the recovery of true signals against

the introduction of false signals to scRNA-seq data. Our empirical result also shows that

dropout does not reduce over-imputation well as weight decay. Finally, hyperparameter

tuning plays a critical role in determining the impact of regularization on DE gene analysis,

especially for weight decay. The optimal hyperparameters of weight decay are mostly

between 0.1 and 1 in terms of imputed recall and imputed TNR while less than 0.01 in

terms of imputed precision. On the other hand, the DE analysis is relatively insensitive to

the hyperparameter of dropout — the imputed precision, imputed recall, and imputed TNR

are similar across a wide range of dropout rates.

4.3 Discussion

The high degree of sparsity is one of the major hurdles of analyzing scRNA-seq data,

especially those induced by technical variability. This issue has brought much attention

in scRNA-seq fields since the emergence of the first experimental protocols of scRNA-

seq 119. There are more than 70 computational imputation methods that explicitly or

implicitly try to impute or denoise sparse scRNA-seq data 16. The autoencoder-based

imputation methods are motivated by the success of deep learning and its application to

https://paperpile.com/c/Kxhkna/BsjDX
https://paperpile.com/c/Kxhkna/DKL0N

138

signal recovery in computer vision 120. Compared with traditional statistical and machine

learning methods, they exhibit several advantages. First, autoencoder-based imputation

methods require no assumptions about the underlying distribution of scRNA-seq data.

This data-driven characteristic avoids model specification error and bias in traditional

methods. Second, autoencoder-based imputation methods can effectively handle large-

scare scRNA-seq data by using innovative hardware, e.g., the GPU. Third, autoencoder-

based imputation methods have high flexibility due to their neural network work design.

They can incorporate multiple functionalities in one framework, including imputation,

dimension reduction, and batch effect normalization 31.

Albeit all aforementioned advantages, however, how to design autoencoders remains

a great challenge due to the large number of hyperparameters. The successful

applications of autoencoders in other fields, especially computer vision, rely on systematic

empirical studies conducted on massive datasets to search for the best hyperparameters.

Current imputation methods mainly borrow the experience from those fields to set up their

autoencoders. Although some of those practices may also perform well on scRNA-seq

data, there is no guarantee that every design consideration is exactly the same among

distinctive data types. Our comprehensive empirical study echoes the previous argument.

On the one hand, the better performance of deeper and narrower autoencoders is

consistent with the theoretical and empirical results widely accepted by the deep learning

community. On the other hand, the observation that sigmoid and tanh outperform other

activation functions, especially ReLU, is unexpected. This result reflects the unique

characteristic of scRNA-seq data compared with image data. Our result is partially

validated by another study which found that a neural network with tanh activation function

https://paperpile.com/c/Kxhkna/drSs9
https://paperpile.com/c/Kxhkna/5nLmp

139

outperforms its ReLU counterpart in the cell-type classification task based on scRNA-seq

data 121.

The shallow and wide autoencoder design in current methods may be motivated by

the observation that deeper neural networks do not improve cell-type classification on

scRNA-seq data 122. The reason is that the ground-truth cell type labels are mainly

generated based on known marker genes, which makes different cell types relatively easy

to be separated and limits the classification capacity of deep neural networks. However,

the imputation task is essentially a regression rather than a classification problem. The

predictive variable is continuous gene expression values (after pre-processing) instead

of discrete cell-type labels. Therefore, the imputation is a more difficult prediction task

than cell-type classification and needs deep neural networks with high predictive capacity

37. On the other hand, even though deeper autoencoders exhibit advantages in our study,

the benefits saturate when the number of layers passes 10. This is a much shallower

architecture compared to state-of-the-art deep neural networks with hundreds of layers in

computer vision study. Still, it reflects the consistency between data complexity and model

capacity. One image is typically saved in a three-dimensional tensor format (three RGB

channels, width, and length) 123, which is much more complex than one cell in a one-

dimensional vector format in scRNA-seq data. Any learning task on such complex data

requires highly capable models (i.e., deeper neural networks).

We find that dropout improves more on the overall imputation accuracy while weight

decay excels in downstream cell clustering and DE gene analysis. Although dropout does

not directly penalize the size of weight parameters in the autoencoder, it actually

introduces sparsity into the weight parameters by randomly shutting down connections

https://paperpile.com/c/Kxhkna/djAXR
https://paperpile.com/c/Kxhkna/W6yQd
https://paperpile.com/c/Kxhkna/PwYP
https://paperpile.com/c/Kxhkna/4P2Fz

140

between hidden units. In other words, dropout can be understood as a stochastic 𝐿1

penalty. From this point of view, we actually observe that 𝐿1penalization benefits the

overall imputation accuracy while 𝐿2 improves downstream analysis. We should also note

that the three masking schemes are imitations of but not the true missing mechanism and

ultimately, the goal of imputation is to enhance downstream analysis. Therefore, 𝐿2

penalization (weight decay) may provide stronger benefits in real-world applications.

In summary, the performance of autoencoder-based imputation methods is sensitive

to key aspects of the autoencoder design, including architecture, activation function, and

regularization. Borrowing practice learned from other fields does not guarantee optimal

performance on scRNA-seq data. The future methodological development should pay

more attention to those design aspects and also offer the flexibility that allows users to

adjust them based on their specific applications.

4.4 Methods

4.4.1 Data preprocessing and normalization

All real and synthetic scRNA-seq datasets used in this study are count matrices. They

are preprocessed and normalized by the following three steps. First, we remove genes

expressed in less than three cells and cells with less than 200 genes expressed. Second,

the gene expression counts of each cell are divided by the total counts of that cell (library

size) and then multiplied by 10000 (library size normalization). The results are further

added by one and then natural-log transformed. Third, we select 2000 highly variable

genes by using the vst method implemented in the FindVariableFeatures function

141

of the Seurat package 124 (v 4.0). After preprocessing and normalization, the dimension

of all scRNA-seq data matrices is cell number × 2000. Note that the previous

preprocessing and normalization only apply to the pre-imputed datasets. The imputed

datasets as the input of cell clustering and DE gene analysis will not go through the same

process.

4.4.2 Training of autoencoders and imputation

All the training of autoencoders was implemented by the Pytorch deep learning library

125 (v 1.8.1) on a server with two Intel Xeon E5-2687W v4 CPUs, 256GB memory, an

Nvidia Geforce RTX 2080 Ti GPU, and Ubuntu 18.04 system. After preprocessing,

normalization, and masking (masking is only necessary for the evaluation of overall

imputation accuracy), we split each dataset’s 80% cells into a training set and another

20% cells into a validation set. We utilize the Adam optimization algorithm 107 to train the

autoencoder set with a 0.001 learning rate and a 64 batch size. After every epoch of

training on the training set, we impute the validation set using the current autoencoder

and calculate the MSE between imputed and original nonzero values of the validation set.

We stop the training until the aforementioned MSE does not decrease over 20 epochs or

the total number of epochs surpasses 10000. In the imputation step, the trained

autoencoder accepts the preprocessed and normalized scRNA-seq data matrix as input

(with the dimension as cell number × 2000) and outputs a data matrix of the same

dimension. The final imputed data matrix is generated by replacing the zero entries in the

input matrix with their counterparts in the output matrix. The nonzero entries in the input

matrix remain the same in the final imputed data matrix.

https://paperpile.com/c/Kxhkna/ZUwz5
https://paperpile.com/c/Kxhkna/XgcAP
https://paperpile.com/c/Kxhkna/tBlss

142

4.4.3 Calculation of imputation normalized root MSE (NRMSE)

Suppose 𝑋 is the sparse scRNA-seq input matrix after appropriate preprocessing and

normalization; 𝑌̂ is the imputed scRNA-seq data matrix; 𝑀 is the set of masked entries in

the scRNA-seq data matrix. The MSE between imputed and true masked values 𝑀𝑆𝐸mask

is calculated as

𝑀𝑆𝐸mask =
∑ ∑ (𝑋𝑖𝑗−𝑌𝑖𝑗̂)2𝐼(𝑋𝑖𝑗∈𝑀)𝑚

𝑗
𝑛
𝑖

∑ ∑ 𝐼(𝑋𝑖𝑗∈𝑀)𝑚
𝑗

𝑛
𝑖

.

Suppose the mean masked values 𝑋mask is

𝑋mask =
∑ ∑ 𝑋𝑖𝑗𝐼(𝑋𝑖𝑗∈𝑀)𝑚

𝑗=1
𝑛
𝑖=1

∑ ∑ 𝐼(𝑋𝑖𝑗∈𝑀)𝑚
𝑗=1

𝑛
𝑖=1

,

then the imputation NRMSE 𝑁𝑅𝑀𝑆𝐸imputation is calculated as

𝑁𝑅𝑀𝑆𝐸imputation =
√MSEmask

𝑋mask
.

4.4.4 Activation functions

We evaluate seven activation functions in this study, including logistic function (sigmoid),

hyperbolic tangent function (tanh), rectified linear unit (ReLU), leaky ReLU (with two

different hyperparameters), exponential linear units (ELU), and scaled exponential linear

units (SELU). In neural networks, they accept a linear transformation of the outputs from

the last layer as input and apply a nonlinear transformation on top of them. The shapes

of the seven activation functions are shown in Supplementary Figure S11.

The sigmoid activation function is a bounded differentiable function with positive and

continuous derivatives. It ranges from 0 to 1. The function form of sigmoid is given by

𝑓(𝑥) =
1

(1+𝑒−𝑥)
.

143

The tanh activation function is also a bounded differentiable function with positive and

continuous derivatives. It ranges from -1 to 1. The function form of tanh is given by

𝑓(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥.

The ReLU activation function conducts a threshold operation that outputs zeros for

negative inputs and preserves the positive inputs. It ranges from 0 to +∞ and has discrete

derivatives. The function form of ReLU is given by

.

The leaky ReLU activation function modifies ReLU by introducing a small negative

slope when the input is negative. It ranges from −∞ to +∞ and has discrete derivatives.

The function form of leaky ReLU is given by

,

where 𝛼 is a hyperparameter. In our analysis, we set 𝛼 to 0.01 and 0.2 — the default

values in two popular deep learning libraries Pytorch 125 and TensorFlow 126.

The ELU activation function replaces the linear negative part of leaky ReLU with an

exponential function. It ranges from −∞ to +∞ and has discrete derivatives. The function

form of ELU is given by

,

where 𝛼 is a hyperparameter. In our analysis, we set 𝛼 to 1 — the default value in

Pytorch.

https://paperpile.com/c/Kxhkna/XgcAP
https://paperpile.com/c/Kxhkna/g2UwR

144

The SELU activation function further adds a scale factor to ELU and changes its

constant in the negative part. It ranges from −∞ to +∞ and has discrete derivatives. The

function form of ELU is given by

,

where 𝜏 and 𝛼 are predefined parameters with 𝜏 = 1.05 and 𝛼 = 1.67.

4.4.5 Cell clustering analysis

We utilize the function kmeans in R programming language to conduct k-means

clustering on the pre-imputed and imputed scRNA-seq datasets (Supplementary Table

S2). We set parameter centers (i.e., k in the k-means clustering) to the correct number

of cell types in each dataset. We set parameter nstart to 25, which repeats the

clustering 25 times by randomly selecting 25 sets of initial cluster centers and returns the

result with a minimum sum of pairwise distances within clusters 127. The dimension of

input data matrices for k-means clustering is cell number × 2000 without further

dimension reduction. Note that before clustering, pre-imputed datasets are preprocessed

by following the procedure described in the section “Data preprocessing and

normalization.” On the other hand, the imputed datasets are directly clustered by k-means

clustering.

We use adjusted Rand index (ARI) and adjusted mutual information (AMI) to measure

the performance of cell clustering. Let 𝑈 = {𝑢1, 𝑢2, . . . , 𝑢𝑐} be the true partition of 𝑐 classes

and 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑐} be the partition obtained by k-means clustering. Let 𝑛𝑖 and 𝑛𝑗 be

https://paperpile.com/c/Kxhkna/C8LX1

145

the numbers of observations in class 𝑢𝑖 and cluster 𝑣𝑖 , respectively. Let 𝑛𝑖𝑗 be the

number of observations in both class 𝑢𝑖 and cluster 𝑣𝑖. The ARI is calculated as

,

where 𝑛 is the number of observations and 𝑛 = ∑𝑐
𝑖=1 𝑛𝑖 = ∑𝑐

𝑗=1 𝑛𝑗. The AMI is

calculated as

2𝐼(𝑈,𝑉)

𝐻(𝑈)+𝐻(𝑉)
,

where 𝐼(𝑈, 𝑉) is the mutual information of 𝑈 and 𝑉, and 𝐻(𝑈) and 𝐻(𝑉) are the entropies

of 𝑈 and 𝑉 respectively 128. We utilize the functions ARI and AMI in the package

aricode of R programming language to calculate ARI and AMI, respectively.

4.4.6 Simulation of synthetic scRNA-seq data

We utilize simulator scDesign 51 to generate 20 synthetic scRNA-seq data with ground-

truth DE genes. 20 real datasets (Supplementary Table S3) are preprocessed by

following the procedure described in the section “Data preprocessing and normalization.”

For each real dataset, we execute function design_data in R package scDesign to

simulate one synthetic dataset based on the distribution of gene expression in that real

dataset. Each synthetic dataset contains two cell types with 1000 cells per type. 10%

genes are differentially expressed between the two cell types in the synthetic dataset.

The sequencing depth of each synthetic dataset is equal to the sequencing depth of the

https://paperpile.com/c/Kxhkna/J2snN
https://paperpile.com/c/Kxhkna/6hv95

146

corresponding real dataset (sequencing depth = library size × cell number). Other

parameters of function design_data are set as their default values. All synthetic

datasets are count matrices with dimensions as cell number × 2000.

4.4.7 DE gene analysis

We conduct DE gene analysis on the aforementioned 20 synthetic datasets and their

imputed counterparts. For pre-imputed synthetic datasets, the gene expression counts of

each cell are divided by the total counts of that cell (library size) and then multiplied by

10000 (library size normalization). The results are further added by one and then natural-

log transformed. We utilize the function FindMarkers in R package Seurat to identify

the DE genes between the two cell types. We set the parameter test.use to “MAST”

and identify genes with Bonferroni-corrected p-values under 0.05 as DE genes. Based on

the ground-truth DE genes, we calculate the precision, recall, and TNR for each pre-

imputed synthetic dataset and imputed dataset.

147

4.5 Figures

Figure 1. Autoencoder and the measurement of imputation accuracy. a, The basic
structure of an autoencoder. b, The introduction of technical zeros by using three masking
schemes. c, The training of autoencoders for imputation. d, the calculator of imputation
accuracy on masked values.

148

Figure 2. The impact of depth and width on the imputation NRMSE (a) and correlation (b)
based on the random masking scheme.

149

Figure 3. The impact of activation functions on the imputation NRMSE (a) and correlation
(b) based on the random masking scheme. Sg: sigmoid; Th: tanh; RL: ReLU; LRL:
LeakyReLU (𝛼 = 0.01); LRL: LeakyReLU.2 (𝛼 = 0.2); EL: ELU; SEL: SELU.

150

Figure 4. The impact of weight decay regularization on the imputation NRMSE (a) and
correlation (b) based on the random masking scheme.

151

Figure 5. The impact of dropout regularization on the imputation NRMSE (a) and
correlation (b) based on the random masking scheme.

152

Figure 6. The impact of autoencoder design on the cell clustering measured by ARI. a,
Depth and width. b, Activation function. c, Weight decay regularization. d, Dropout
regularization. Eight datasets are shown here (from left to right; from top to bottom):
Zhengmix4uneq, Zeisel, mouse1_umifm_counts, Silver, lake, li, human2_umifm_counts,
human4_umifm_counts.

153

Figure 7. The impact of autoencoder design on the DE gene analysis measured by recall.
a, Depth and width. b, Activation function. c, Weight decay regularization. d, Dropout
regularization. Eight datasets are shown here (from left to right; from top to bottom): T,
cd8, 293t, Fibroblasts, Macrophages, Endothelial_cells, Hematopoietic_stem_cells, NK.

154

4.6 Supplementary Figures and Tables

Supplementary Table S1. The 12 scRNA-seq datasets used to evaluate the overall
imputation accuracy.

Dataset Tissue/Cell type
Experimental

protocol
of cells # of genes Zero rate Reference

jurkat Jurkat cells 10x Genomics 3258 32738 90.23% 52

monocyte
CD14+

Monocytes
10x Genomics 2612 32738 98.59% 52

mbrain Mouse brain cells 10x Genomics 9099 27998 90.97% 52

pbmc
Peripheral blood

mononuclear cells
10x Genomics 7783 32738 97.89% 52

lymphoma Lymphoma cells 10x Genomics 8412 33555 96.17% 52

293t 293T Cells 10x Genomics 2885 32738 89.56% 52

bmmc

Primary bone
marrow

mononuclear
Cells

10x Genomics 1985 32738 97.64% 52

human_mix
Mixture of

HEK293T and
MCF7

Smart-seq-total 633 58660 89.58% 129

mouse_spleen
T-cells from the

mouse spleen and
small intestine

Smart-seq2 574 23998 84.79% 130

mouse_cortex
Mouse cortex and

hippocampus
Fluidigm C1 3005 19972 81.21% 131,132

mouse_skin Mouse skin Fluidigm C1 1422 26024 90.03% 133

cbmc
Cord blood

mononuclear cells
CITE-seq 8617 14438 95.54% 134

https://paperpile.com/c/Kxhkna/zc8Nm
https://paperpile.com/c/Kxhkna/zc8Nm
https://paperpile.com/c/Kxhkna/zc8Nm
https://paperpile.com/c/Kxhkna/zc8Nm
https://paperpile.com/c/Kxhkna/zc8Nm
https://paperpile.com/c/Kxhkna/zc8Nm
https://paperpile.com/c/Kxhkna/zc8Nm
https://paperpile.com/c/Kxhkna/oZ9dy
https://paperpile.com/c/Kxhkna/iQlru
https://paperpile.com/c/Kxhkna/FyN8w+Gjld4
https://paperpile.com/c/Kxhkna/NrOom
https://paperpile.com/c/Kxhkna/qEJ7F

155

Supplementary Table S2. The 20 scRNA-seq datasets with cell type labels used to

evaluate the cell clustering.

Dataset
Tissue/Cell

type
Experimental

protocol
of
cells

of
genes

of
cell

types

Zero
rate

Reference

Zhengmix4uneq

Peripheral
blood

mononuclear
cells

10x Genomics 6498 16443 4 96.81% 52

Zhengmix4eq

Peripheral
blood

mononuclear
cells

10x Genomics 3994 15568 4 96.62% 52

mouse_cortex
Mouse cortex

and
hippocampus

Fluidigm C1 3005 19972 9 81.21% 131,132

mouse1_umifm_counts
Mouse

pancreatic
islets

inDrop 822 14878 13 90.48% 135

mouse2_umifm_counts
Mouse

pancreatic
islets

inDrop 1064 14878 13 87.80% 135

human1_umifm_counts
Human

pancreatic
islets

inDrop 1937 16381 14 90.41% 135

human2_umifm_counts
Human

pancreatic
islets

inDrop 1724 20125 14 90.59% 135

human3_umifm_counts
Human

pancreatic
islets

inDrop 3605 20125 14 91.30% 135

human4_umifm_counts
Human

pancreatic
islets

inDrop 1303 16381 14 89.01% 135

Sliver

Peripheral
blood

mononuclear
cells

10x Genomics 2590 58302 11 98.42% 136

Lake
Human brain

cells
Fluidigm C1 3042 25051 16 53.69% 137

Li
Human

colorectal
tumors

SMARTer 561 55186 9 78.52% 138

liver Human liver SMARTer 777 19020 7 68.14% 139

https://paperpile.com/c/Kxhkna/zc8Nm
https://paperpile.com/c/Kxhkna/zc8Nm
https://paperpile.com/c/Kxhkna/FyN8w+Gjld4
https://paperpile.com/c/Kxhkna/X4wko
https://paperpile.com/c/Kxhkna/X4wko
https://paperpile.com/c/Kxhkna/X4wko
https://paperpile.com/c/Kxhkna/X4wko
https://paperpile.com/c/Kxhkna/X4wko
https://paperpile.com/c/Kxhkna/X4wko
https://paperpile.com/c/Kxhkna/ozqRw
https://paperpile.com/c/Kxhkna/77t3u
https://paperpile.com/c/Kxhkna/91LC4
https://paperpile.com/c/Kxhkna/ddVS4

156

Romanov
Mouse brain

cells
Drop-seq 2881 24341 7 87.72% 140

Camp
Human brain

cells
SMARTer 734 18927 6 80.11% 141

manno_human
Human brain

cells
STRT-Seq UMI 4029 20560 56 39.69% 142

Klein
mouse

embryonic
stem cells

inDrop 2717 24175 4 82.86% 143

Usoskin
Mouse brain

cells
STRT-Seq 622 25334 4 39.47% 144

Tasic
Mouse visual
cortex cells

SMARTer 1679 24150 18 68.30% 145

Chen
Mouse

hypothalamus
Drop-seq 14437 23530 47 93.35% 146

https://paperpile.com/c/Kxhkna/xRlRY
https://paperpile.com/c/Kxhkna/4g1LN
https://paperpile.com/c/Kxhkna/DSKLu
https://paperpile.com/c/Kxhkna/5MYly
https://paperpile.com/c/Kxhkna/DVK3U
https://paperpile.com/c/Kxhkna/06YIs
https://paperpile.com/c/Kxhkna/EvKwB

157

Supplementary Table S3. The 20 scRNA-seq datasets that generate synthetic datasets
in the evaluation of DE gene analysis.

Dataset Tissue/Cell type
Experimental

protocol
of
cells

of
genes

Zero rate Reference

T Pan T cells 10x Genomics 3551 33694 96.60% 52

cd8
CD8+ Cytotoxic

T cells
10x Genomics 10209 32738 98.21% 52

293t 293T cells 10x Genomics 2885 32738 89.56% 52

Acinar_cells Acinar cells 10x Genomics 1514 30036 99.74% 14

Astrocytes Astrocytes Drop-seq 655 29651 95.42% 14

Oligodendrocytes Oligodendrocytes Drop-seq 428 29651 94.79% 14

Keratinocytes Keratinocytes 10x Genomics 3241 33293 96.07% 14

Myoepithelial_cells
Myoepithelial

cells
Drop-seq 896 28660 96.23% 14

Epithelial_cells Epithelial cells Drop-seq 611 28660 94.42% 14

NK
Natural killer

cells
10x Genomics 2889 33321 94.52% 14

Endothelial_cells Endothelial cells 10x Genomics 861 32925 94.04% 14

Hematopoietic_stem_cells
Hematopoietic

stem cells
SMART-seq2 1386 38240 88.08% 14

Fibroblasts Fibroblasts SMART-seq2 2238 47873 92.94% 14

Macrophages Macrophages SMART-seq2 744 47873 93.42% 14

Interneurons Interneurons inDrops 2607 35443 96.11% 14

Foveolar_cells Foveolar cells Microwell-seq 503 18521 95.49% 14

Neutrophils Neutrophils Microwell-seq 1049 19460 96.95% 14

Neurons Mouse neurons Drop-seq 641 28142 92.72% 14

Tanycytes Tanycytes Drop-seq 507 28142 95.52% 14

Pulmonary
Pulmonary

alveolar type I
cells

10x Genomics 727 27140 91.27% 14

https://paperpile.com/c/Kxhkna/zc8Nm
https://paperpile.com/c/Kxhkna/zc8Nm
https://paperpile.com/c/Kxhkna/zc8Nm
https://paperpile.com/c/Kxhkna/TjAh
https://paperpile.com/c/Kxhkna/TjAh
https://paperpile.com/c/Kxhkna/TjAh
https://paperpile.com/c/Kxhkna/TjAh
https://paperpile.com/c/Kxhkna/TjAh
https://paperpile.com/c/Kxhkna/TjAh
https://paperpile.com/c/Kxhkna/TjAh
https://paperpile.com/c/Kxhkna/TjAh
https://paperpile.com/c/Kxhkna/TjAh
https://paperpile.com/c/Kxhkna/TjAh
https://paperpile.com/c/Kxhkna/TjAh
https://paperpile.com/c/Kxhkna/TjAh
https://paperpile.com/c/Kxhkna/TjAh
https://paperpile.com/c/Kxhkna/TjAh
https://paperpile.com/c/Kxhkna/TjAh
https://paperpile.com/c/Kxhkna/TjAh
https://paperpile.com/c/Kxhkna/TjAh

158

Supplementary figure S1. The impact of depth and width on the imputation NRMSE (a)
and correlation (b) based on the double exponential masking scheme.

159

Supplementary figure S2. The impact of depth and width on the imputation NRMSE (a)
and correlation (b) based on the median masking scheme.

160

Supplementary Figure S3. The impact of activation functions on the imputation NRMSE
(a) and correlation (b) based on the double exponential masking scheme. Sg: sigmoid;
Th: tanh; RL: ReLU; LRL: LeakyReLU (𝛼 = 0.01); LRL: LeakyReLU.2 (𝛼 = 0.2); EL: ELU;
SEL: SELU.

161

Supplementary Figure S4. The impact of weight decay regularization on the imputation
NRMSE (a) and correlation (b) based on the double exponential masking scheme.

162

Supplementary Figure S5. The impact of dropout regularization on the imputation
NRMSE (a) and correlation (b) based on the double exponential masking scheme.

163

Supplementary Figure S6. The impact of autoencoder design on the cell clustering
measured by ARI (continued). a, Depth and width. b,Activation function. c, Weight decay
regularization. d, Dropout regularization. 12 datasets are shown here (from left to right;
from top to bottom): human3_umifm_counts, Zhengmix4eq, liver, romanov, camp,
manno_human, klein, usoskin, tasic, human1_umifm_counts, mouse2_umifm_counts,
chen.

164

Supplementary Figure S7. The impact of autoencoder design on the cell clustering
measured by AMI (continued). a, Depth and width. b, Activation function. c, Weight decay
regularization. d, Dropout regularization. 20 datasets are shown here (from left to right;
from top to bottom): Zhengmix4uneq, Zeisel, mouse1_umifm_counts, Silver, lake, li,
human2_umifm_counts, human4_umifm_counts, human3_umifm_counts, Zhengmix4eq,
liver, romanov, camp, manno_human, klein, usoskin, tasic, human1_umifm_counts,
mouse2_umifm_counts, chen.

165

Supplementary Figure S8. The impact of autoencoder design on the DE gene analysis
measured by precision. a, Depth and width. b,Activation function. c, Weight decay
regularization. d, Dropout regularization. 20 datasets are shown here (from left to right;
from top to bottom): T, cd8, 293t, Fibroblasts, Macrophages, Endothelial_cells,
Hematopoietic_stem_cells, NK, Keratinocytes, Neurons, Pulmonary, Myoepithelial_cells,
Interneurons, Oligodendrocytes, Neutrophils, Foveolar_cells, Epithelial_cells, Tanycytes,
Astrocytes, Acinar_cells .

166

Supplementary Figure S9. The impact of autoencoder design on the DE gene analysis
measured by recall (continued). a, Depth and width. b,Activation function. c, Weight
decay regularization. d, Dropout regularization. 12 datasets are shown here (from left to
right; from top to bottom): Keratinocytes, Neurons, Pulmonary, Myoepithelial_cells,
Interneurons, Oligodendrocytes, Neutrophils, Foveolar_cells, Epithelial_cells, Tanycytes,
Astrocytes, Acinar_cells.

167

Supplementary Figure S10. The impact of autoencoder design on the DE gene analysis
measured by TNR. a, Depth and width. b,Activation function. c, Weight decay
regularization. d, Dropout regularization. 20 datasets are shown here (from left to right;
from top to bottom): T, cd8, 293t, Fibroblasts, Macrophages, Endothelial_cells,
Hematopoietic_stem_cells, NK, Keratinocytes, Neurons, Pulmonary, Myoepithelial_cells,
Interneurons, Oligodendrocytes, Neutrophils, Foveolar_cells, Epithelial_cells, Tanycytes,
Astrocytes, Acinar_cells.

168

Supplementary Figure S11. The seven activation functions evaluated in this study. The
LeakyReLU activation function has two hyperparameter settings: 𝛼 = 0.01and 𝛼 = 0.2.

169

CHAPTER 5

Conclusions

Single-cell RNA sequencing (scRNA-seq) has brought up enormous opportunities and

challenges. The scRNA-seq community starts to name the scRNA-seq data analysis as

single-cell data science (SCDS) 147. SCDS tries to handle those challenges in a

statistically solid and computationally efficient fashion. To echo this trend, we attempt to

answer three critical questions in this dissertation: how to systematically benchmark the

computational doublet detection methods; how to automate such benchmark so that it

can accommodate the fast-growing methods efficiently; how to design autoencoder-

based imputation method to denoise scRNA-seq data. Our results provide promising

solutions to those questions.

There are several issues in scRNA-seq data analysis which have not been discussed

thoroughly. We plan to explore potential solutions in future work. First, how to

construct/infer/predict the whole-genome gene expression of single cells under different

time points or experimental conditions. In principle, scRNA-seq data is a snapshot of

single cells’ genomic appearance. The measurement of gene expression in one cell

requires dissolving that cell, which means it is infeasible to remeasure its gene expression

https://paperpile.com/c/Kxhkna/3yySq

170

thereafter. This cell lysis process excludes the possibility to obtain the single cells’ time-

series gene expression or their gene expression under both treatment and control. With

those data, however, researchers can construct the real cell developmental trajectory and

the causal effect of treatment. Although machine learning methods can be used to

construct/infer/predict those “counterfactual” data 148, the major challenge is how to

validate the result due to the lack of ground truth. Fluorescence in situ hybridization

(FISH)-based experimental protocols may provide expression measurements for a small

number of genes across time or conditions 149. Yet how to validate the machine learning

models on the rest of the genes remains a challenge.

Second, how to design a subsampling method that can improve the computational

efficiency and downstream analysis simultaneously. A scRNA-seq dataset may contain

up to millions of cells, each of which has expression levels up to thousands of genes.

Analyzing such huge datasets is often beyond the capacity of a single computer. A

subsample is necessary to provide a computable subset with the essential information

preserved from the full data. The naive random subsampling has limited impacts on

downstream analysis, especially cell clustering since it does not change the distribution

of cell types in the full data. A better subsampling method should improve cell clustering

by generating samples with more balanced cell types than the full data. Moreover, a

balanced subsample will benefit the identification of rare cell types since it includes more

of them than the full data and random sample. A potential solution is to use space-filling

design 150–155,159 to select cells close to the center of each cluster without the information

of cell types. The subsample will mainly cover cells close to the center of each cluster

and thus improve the performance of the clustering algorithm.

https://paperpile.com/c/Kxhkna/BTNNB
https://paperpile.com/c/Kxhkna/GdGx8
https://paperpile.com/c/Kxhkna/Qup7+Usr9+eVfL+CPzB+3gBg+R2U2

171

Finally, how to effectively utilize innovative hardware, especially the graphics

processing unit (GPU), to improve the computational efficiency of current and future

methods. The increasingly large number of cells and genes in scRNA-seq data has posed

a great computational challenge on current methods that are mainly developed in the R

programming language. In scientific computing, GPUs are used to accelerate the training

of deep neural networks in computer vision and natural language processing. Although

some deep learning methods have been developed for scRNA-seq data, they are limited

to certain machine learning tasks, for example, imputation and dimension reduction 24.

The field lacks a comprehensive software package with GPU acceleration that includes

the life-cycle functionalities of scRNA-seq data analysis. The recently-developed general-

purpose Python libraries with GPU support (e.g., Pytorch 125 and CuPy 156) make it

feasible to reimplement popular methods on GPUs. Such reimplementation will

significantly increase the computational efficiency of current methods and handle the

massive scRNA-seq data in the future.

https://paperpile.com/c/Kxhkna/mbOqw
https://paperpile.com/c/Kxhkna/XgcAP
https://paperpile.com/c/Kxhkna/yKOeT

172

References

1. Saliba, A.-E., Westermann, A. J., Gorski, S. A. & Vogel, J. Single-cell RNA-seq:

advances and future challenges. Nucleic Acids Research vol. 42 8845–8860

(2014).

2. Vallejos, C. A., Marioni, J. C. & Richardson, S. BASiCS: Bayesian Analysis of

Single-Cell Sequencing Data. PLoS Comput. Biol. 11, e1004333 (2015).

3. Kolodziejczyk, A. A., Kim, J. K., Svensson, V., Marioni, J. C. & Teichmann, S. A.

The technology and biology of single-cell RNA sequencing. Mol. Cell 58, 610–620

(2015).

4. Liu, S. & Trapnell, C. Single-cell transcriptome sequencing: recent advances and

remaining challenges. F1000Res. 5, (2016).

5. Luecken, M. D. & Theis, F. J. Current best practices in single-cell RNA-seq

analysis: a tutorial. Mol. Syst. Biol. 15, (2019).

6. Han, X. et al. Mapping the Mouse Cell Atlas by Microwell-Seq. Cell 173, 1307

(2018).

7. Cao, J. et al. The single-cell transcriptional landscape of mammalian

organogenesis. Nature 566, 496–502 (2019).

8. Hwang, B., Lee, J. H. & Bang, D. Single-cell RNA sequencing technologies and

bioinformatics pipelines. Exp. Mol. Med. 50, 96 (2018).

9. Chen, G., Ning, B. & Shi, T. Single-Cell RNA-Seq Technologies and Related

Computational Data Analysis. Front. Genet. 10, 317 (2019).

10. Picelli, S. et al. Smart-seq2 for sensitive full-length transcriptome profiling in single

http://paperpile.com/b/Kxhkna/W5oMB
http://paperpile.com/b/Kxhkna/W5oMB
http://paperpile.com/b/Kxhkna/W5oMB
http://paperpile.com/b/Kxhkna/W5oMB
http://paperpile.com/b/Kxhkna/W5oMB
http://paperpile.com/b/Kxhkna/4mRPu
http://paperpile.com/b/Kxhkna/4mRPu
http://paperpile.com/b/Kxhkna/4mRPu
http://paperpile.com/b/Kxhkna/4mRPu
http://paperpile.com/b/Kxhkna/4mRPu
http://paperpile.com/b/Kxhkna/4mRPu
http://paperpile.com/b/Kxhkna/yRaw3
http://paperpile.com/b/Kxhkna/yRaw3
http://paperpile.com/b/Kxhkna/yRaw3
http://paperpile.com/b/Kxhkna/yRaw3
http://paperpile.com/b/Kxhkna/yRaw3
http://paperpile.com/b/Kxhkna/yRaw3
http://paperpile.com/b/Kxhkna/yRaw3
http://paperpile.com/b/Kxhkna/rusTj
http://paperpile.com/b/Kxhkna/rusTj
http://paperpile.com/b/Kxhkna/rusTj
http://paperpile.com/b/Kxhkna/rusTj
http://paperpile.com/b/Kxhkna/rusTj
http://paperpile.com/b/Kxhkna/rusTj
http://paperpile.com/b/Kxhkna/AkF57
http://paperpile.com/b/Kxhkna/AkF57
http://paperpile.com/b/Kxhkna/AkF57
http://paperpile.com/b/Kxhkna/AkF57
http://paperpile.com/b/Kxhkna/AkF57
http://paperpile.com/b/Kxhkna/AkF57
http://paperpile.com/b/Kxhkna/IolF
http://paperpile.com/b/Kxhkna/IolF
http://paperpile.com/b/Kxhkna/IolF
http://paperpile.com/b/Kxhkna/IolF
http://paperpile.com/b/Kxhkna/IolF
http://paperpile.com/b/Kxhkna/IolF
http://paperpile.com/b/Kxhkna/IolF
http://paperpile.com/b/Kxhkna/IolF
http://paperpile.com/b/Kxhkna/i1Gl
http://paperpile.com/b/Kxhkna/i1Gl
http://paperpile.com/b/Kxhkna/i1Gl
http://paperpile.com/b/Kxhkna/i1Gl
http://paperpile.com/b/Kxhkna/i1Gl
http://paperpile.com/b/Kxhkna/i1Gl
http://paperpile.com/b/Kxhkna/i1Gl
http://paperpile.com/b/Kxhkna/i1Gl
http://paperpile.com/b/Kxhkna/87WPm
http://paperpile.com/b/Kxhkna/87WPm
http://paperpile.com/b/Kxhkna/87WPm
http://paperpile.com/b/Kxhkna/87WPm
http://paperpile.com/b/Kxhkna/87WPm
http://paperpile.com/b/Kxhkna/87WPm
http://paperpile.com/b/Kxhkna/79DlT
http://paperpile.com/b/Kxhkna/79DlT
http://paperpile.com/b/Kxhkna/79DlT
http://paperpile.com/b/Kxhkna/79DlT
http://paperpile.com/b/Kxhkna/79DlT
http://paperpile.com/b/Kxhkna/79DlT
http://paperpile.com/b/Kxhkna/iezC
http://paperpile.com/b/Kxhkna/iezC
http://paperpile.com/b/Kxhkna/iezC

173

cells. Nat. Methods 10, 1096–1098 (2013).

11. Svensson, V. et al. Power analysis of single-cell RNA-sequencing experiments.

Nat. Methods 14, 381–387 (2017).

12. Ziegenhain, C. et al. Comparative Analysis of Single-Cell RNA Sequencing

Methods. Mol. Cell 65, 631–643.e4 (2017).

13. Regev, A. et al. Science forum: the human cell atlas. Elife 6, e27041 (2017).

14. Franzén, O., Gan, L.-M. & Björkegren, J. L. M. PanglaoDB: a web server for

exploration of mouse and human single-cell RNA sequencing data. Database

2019, (2019).

15. Andrews, T. S., Kiselev, V. Y., McCarthy, D. & Hemberg, M. Tutorial: guidelines for

the computational analysis of single-cell RNA sequencing data. Nat. Protoc. 16, 1–

9 (2021).

16. Zappia, L., Phipson, B. & Oshlack, A. Exploring the single-cell RNA-seq analysis

landscape with the scRNA-tools database. PLoS Comput. Biol. 14, e1006245

(2018).

17. Pierre-Luc. scDblFinder. (GitHub).

18. Tian, L. et al. Benchmarking single cell RNA-sequencing analysis pipelines using

mixture control experiments. Nat. Methods 16, 479–487 (2019).

19. Duò, A., Robinson, M. D. & Soneson, C. A systematic performance evaluation of

clustering methods for single-cell RNA-seq data. F1000Res. 7, 1141 (2018).

20. Saelens, W., Cannoodt, R., Todorov, H. & Saeys, Y. A comparison of single-cell

trajectory inference methods: towards more accurate and robust tools.

doi:10.1101/276907.

http://paperpile.com/b/Kxhkna/iezC
http://paperpile.com/b/Kxhkna/iezC
http://paperpile.com/b/Kxhkna/iezC
http://paperpile.com/b/Kxhkna/iezC
http://paperpile.com/b/Kxhkna/iezC
http://paperpile.com/b/Kxhkna/UtAa
http://paperpile.com/b/Kxhkna/UtAa
http://paperpile.com/b/Kxhkna/UtAa
http://paperpile.com/b/Kxhkna/UtAa
http://paperpile.com/b/Kxhkna/UtAa
http://paperpile.com/b/Kxhkna/UtAa
http://paperpile.com/b/Kxhkna/UtAa
http://paperpile.com/b/Kxhkna/UtAa
http://paperpile.com/b/Kxhkna/pIzH
http://paperpile.com/b/Kxhkna/pIzH
http://paperpile.com/b/Kxhkna/pIzH
http://paperpile.com/b/Kxhkna/pIzH
http://paperpile.com/b/Kxhkna/pIzH
http://paperpile.com/b/Kxhkna/pIzH
http://paperpile.com/b/Kxhkna/pIzH
http://paperpile.com/b/Kxhkna/pIzH
http://paperpile.com/b/Kxhkna/qZ3M5
http://paperpile.com/b/Kxhkna/qZ3M5
http://paperpile.com/b/Kxhkna/qZ3M5
http://paperpile.com/b/Kxhkna/qZ3M5
http://paperpile.com/b/Kxhkna/qZ3M5
http://paperpile.com/b/Kxhkna/qZ3M5
http://paperpile.com/b/Kxhkna/qZ3M5
http://paperpile.com/b/Kxhkna/TjAh
http://paperpile.com/b/Kxhkna/TjAh
http://paperpile.com/b/Kxhkna/TjAh
http://paperpile.com/b/Kxhkna/TjAh
http://paperpile.com/b/Kxhkna/TjAh
http://paperpile.com/b/Kxhkna/TjAh
http://paperpile.com/b/Kxhkna/TjAh
http://paperpile.com/b/Kxhkna/cH7D
http://paperpile.com/b/Kxhkna/cH7D
http://paperpile.com/b/Kxhkna/cH7D
http://paperpile.com/b/Kxhkna/cH7D
http://paperpile.com/b/Kxhkna/cH7D
http://paperpile.com/b/Kxhkna/cH7D
http://paperpile.com/b/Kxhkna/cH7D
http://paperpile.com/b/Kxhkna/DKL0N
http://paperpile.com/b/Kxhkna/DKL0N
http://paperpile.com/b/Kxhkna/DKL0N
http://paperpile.com/b/Kxhkna/DKL0N
http://paperpile.com/b/Kxhkna/DKL0N
http://paperpile.com/b/Kxhkna/DKL0N
http://paperpile.com/b/Kxhkna/DKL0N
http://paperpile.com/b/Kxhkna/R8doO
http://paperpile.com/b/Kxhkna/R8doO
http://paperpile.com/b/Kxhkna/R8doO
http://paperpile.com/b/Kxhkna/uL0KQ
http://paperpile.com/b/Kxhkna/uL0KQ
http://paperpile.com/b/Kxhkna/uL0KQ
http://paperpile.com/b/Kxhkna/uL0KQ
http://paperpile.com/b/Kxhkna/uL0KQ
http://paperpile.com/b/Kxhkna/uL0KQ
http://paperpile.com/b/Kxhkna/uL0KQ
http://paperpile.com/b/Kxhkna/uL0KQ
http://paperpile.com/b/Kxhkna/b8Cza
http://paperpile.com/b/Kxhkna/b8Cza
http://paperpile.com/b/Kxhkna/b8Cza
http://paperpile.com/b/Kxhkna/b8Cza
http://paperpile.com/b/Kxhkna/b8Cza
http://paperpile.com/b/Kxhkna/b8Cza
http://paperpile.com/b/Kxhkna/3HTTe
http://paperpile.com/b/Kxhkna/3HTTe
http://paperpile.com/b/Kxhkna/3HTTe
http://dx.doi.org/10.1101/276907
http://paperpile.com/b/Kxhkna/3HTTe

174

21. Tran, H. T. N. et al. A benchmark of batch-effect correction methods for single-cell

RNA sequencing data. Genome Biol. 21, 12 (2020).

22. Hou, W., Ji, Z., Ji, H. & Hicks, S. C. A systematic evaluation of single-cell RNA-

sequencing imputation methods. Genome Biol. 21, 218 (2020).

23. Abdelaal, T. et al. A comparison of automatic cell identification methods for single-

cell RNA sequencing data. Genome Biol. 20, 194 (2019).

24. Lähnemann, D. et al. Eleven grand challenges in single-cell data science. Genome

Biol. 21, 31 (2020).

25. Miles Xi, N. & Li, J. J. Protocol for Benchmarking Computational Doublet-Detection

Methods in Single-Cell RNA Sequencing Data Analysis. arXiv e-prints

arXiv:2101.08860 (2021).

26. Jiang, R., Sun, T., Song, D. & Li, J. J. Zeros in scRNA-seq data: good or bad? How

to embrace or tackle zeros in scRNA-seq data analysis? bioRxiv (2020).

27. Azizi, E., Prabhakaran, S., Carr, A. & Pe’er, D. Bayesian Inference for Single-cell

Clustering and Imputing. Genomics and Computational Biology vol. 3 46 (2017).

28. Li, W. V. & Li, J. J. An accurate and robust imputation method scImpute for single-

cell RNA-seq data. Nat. Commun. 9, 997 (2018).

29. van Dijk, D. et al. Recovering Gene Interactions from Single-Cell Data Using Data

Diffusion. Cell vol. 174 716–729.e27 (2018).

30. Wagner, F., Yan, Y. & Yanai, I. K-nearest neighbor smoothing for high-throughput

single-cell RNA-Seq data. BioRxiv (2017).

31. Lopez, R., Regier, J., Cole, M. B., Jordan, M. I. & Yosef, N. Deep generative

modeling for single-cell transcriptomics. Nat. Methods 15, 1053–1058 (2018).

http://paperpile.com/b/Kxhkna/T594
http://paperpile.com/b/Kxhkna/T594
http://paperpile.com/b/Kxhkna/T594
http://paperpile.com/b/Kxhkna/T594
http://paperpile.com/b/Kxhkna/T594
http://paperpile.com/b/Kxhkna/T594
http://paperpile.com/b/Kxhkna/T594
http://paperpile.com/b/Kxhkna/T594
http://paperpile.com/b/Kxhkna/W30N
http://paperpile.com/b/Kxhkna/W30N
http://paperpile.com/b/Kxhkna/W30N
http://paperpile.com/b/Kxhkna/W30N
http://paperpile.com/b/Kxhkna/W30N
http://paperpile.com/b/Kxhkna/W30N
http://paperpile.com/b/Kxhkna/zU6J
http://paperpile.com/b/Kxhkna/zU6J
http://paperpile.com/b/Kxhkna/zU6J
http://paperpile.com/b/Kxhkna/zU6J
http://paperpile.com/b/Kxhkna/zU6J
http://paperpile.com/b/Kxhkna/zU6J
http://paperpile.com/b/Kxhkna/zU6J
http://paperpile.com/b/Kxhkna/zU6J
http://paperpile.com/b/Kxhkna/mbOqw
http://paperpile.com/b/Kxhkna/mbOqw
http://paperpile.com/b/Kxhkna/mbOqw
http://paperpile.com/b/Kxhkna/mbOqw
http://paperpile.com/b/Kxhkna/mbOqw
http://paperpile.com/b/Kxhkna/mbOqw
http://paperpile.com/b/Kxhkna/mbOqw
http://paperpile.com/b/Kxhkna/mbOqw
http://paperpile.com/b/Kxhkna/hfGq
http://paperpile.com/b/Kxhkna/hfGq
http://paperpile.com/b/Kxhkna/hfGq
http://paperpile.com/b/Kxhkna/hfGq
http://paperpile.com/b/Kxhkna/hfGq
http://paperpile.com/b/Kxhkna/5u0g
http://paperpile.com/b/Kxhkna/5u0g
http://paperpile.com/b/Kxhkna/5u0g
http://paperpile.com/b/Kxhkna/5u0g
http://paperpile.com/b/Kxhkna/DijG
http://paperpile.com/b/Kxhkna/DijG
http://paperpile.com/b/Kxhkna/DijG
http://paperpile.com/b/Kxhkna/DijG
http://paperpile.com/b/Kxhkna/GzKn3
http://paperpile.com/b/Kxhkna/GzKn3
http://paperpile.com/b/Kxhkna/GzKn3
http://paperpile.com/b/Kxhkna/GzKn3
http://paperpile.com/b/Kxhkna/GzKn3
http://paperpile.com/b/Kxhkna/GzKn3
http://paperpile.com/b/Kxhkna/wsAOk
http://paperpile.com/b/Kxhkna/wsAOk
http://paperpile.com/b/Kxhkna/wsAOk
http://paperpile.com/b/Kxhkna/wsAOk
http://paperpile.com/b/Kxhkna/wsAOk
http://paperpile.com/b/Kxhkna/wsAOk
http://paperpile.com/b/Kxhkna/eDny
http://paperpile.com/b/Kxhkna/eDny
http://paperpile.com/b/Kxhkna/eDny
http://paperpile.com/b/Kxhkna/eDny
http://paperpile.com/b/Kxhkna/5nLmp
http://paperpile.com/b/Kxhkna/5nLmp
http://paperpile.com/b/Kxhkna/5nLmp
http://paperpile.com/b/Kxhkna/5nLmp
http://paperpile.com/b/Kxhkna/5nLmp
http://paperpile.com/b/Kxhkna/5nLmp

175

32. Eraslan, G., Simon, L. M., Mircea, M., Mueller, N. S. & Theis, F. J. Single-cell RNA-

seq denoising using a deep count autoencoder. Nat. Commun. 10, 390 (2019).

33. Zhang, L. & Zhang, S. Comparison of computational methods for imputing single-

cell RNA-sequencing data. IEEE/ACM Trans. Comput. Biol. Bioinform. 17, 376–389

(2020).

34. Xi, N. et al. Understanding the Political Ideology of Legislators from Social Media

Images. ICWSM 14, 726–737 (2020).

35. Nair, V. & Hinton, G. E. Rectified linear units improve restricted boltzmann

machines. in Icml (2010).

36. Nwankpa, C., Ijomah, W., Gachagan, A. & Marshall, S. Activation Functions:

Comparison of trends in Practice and Research for Deep Learning. arXiv [cs.LG]

(2018).

37. Goodfellow, I., Bengio, Y., Courville, A. & Bengio, Y. Deep learning. vol. 1 (MIT

press Cambridge, 2016).

38. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R.

Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.

Res. 15, 1929–1958 (2014).

39. Bernstein, N. J. et al. Solo: Doublet Identification in Single-Cell RNA-Seq via Semi-

Supervised Deep Learning. Cell Syst 11, 95–101.e5 (2020).

40. Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: Computational Identification of

Cell Doublets in Single-Cell Transcriptomic Data. Cell Syst 8, 281–291.e9 (2019).

41. McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: Doublet Detection in

Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors. Cell Syst 8,

http://paperpile.com/b/Kxhkna/QN3r
http://paperpile.com/b/Kxhkna/QN3r
http://paperpile.com/b/Kxhkna/QN3r
http://paperpile.com/b/Kxhkna/QN3r
http://paperpile.com/b/Kxhkna/QN3r
http://paperpile.com/b/Kxhkna/QN3r
http://paperpile.com/b/Kxhkna/b3EH
http://paperpile.com/b/Kxhkna/b3EH
http://paperpile.com/b/Kxhkna/b3EH
http://paperpile.com/b/Kxhkna/b3EH
http://paperpile.com/b/Kxhkna/b3EH
http://paperpile.com/b/Kxhkna/b3EH
http://paperpile.com/b/Kxhkna/b3EH
http://paperpile.com/b/Kxhkna/XWqS
http://paperpile.com/b/Kxhkna/XWqS
http://paperpile.com/b/Kxhkna/XWqS
http://paperpile.com/b/Kxhkna/XWqS
http://paperpile.com/b/Kxhkna/XWqS
http://paperpile.com/b/Kxhkna/XWqS
http://paperpile.com/b/Kxhkna/XWqS
http://paperpile.com/b/Kxhkna/XWqS
http://paperpile.com/b/Kxhkna/j9Di
http://paperpile.com/b/Kxhkna/j9Di
http://paperpile.com/b/Kxhkna/j9Di
http://paperpile.com/b/Kxhkna/j9Di
http://paperpile.com/b/Kxhkna/CLzt
http://paperpile.com/b/Kxhkna/CLzt
http://paperpile.com/b/Kxhkna/CLzt
http://paperpile.com/b/Kxhkna/CLzt
http://paperpile.com/b/Kxhkna/CLzt
http://paperpile.com/b/Kxhkna/PwYP
http://paperpile.com/b/Kxhkna/PwYP
http://paperpile.com/b/Kxhkna/PwYP
http://paperpile.com/b/Kxhkna/PwYP
http://paperpile.com/b/Kxhkna/xSEY
http://paperpile.com/b/Kxhkna/xSEY
http://paperpile.com/b/Kxhkna/xSEY
http://paperpile.com/b/Kxhkna/xSEY
http://paperpile.com/b/Kxhkna/xSEY
http://paperpile.com/b/Kxhkna/xSEY
http://paperpile.com/b/Kxhkna/xSEY
http://paperpile.com/b/Kxhkna/I3LzE
http://paperpile.com/b/Kxhkna/I3LzE
http://paperpile.com/b/Kxhkna/I3LzE
http://paperpile.com/b/Kxhkna/I3LzE
http://paperpile.com/b/Kxhkna/I3LzE
http://paperpile.com/b/Kxhkna/I3LzE
http://paperpile.com/b/Kxhkna/I3LzE
http://paperpile.com/b/Kxhkna/I3LzE
http://paperpile.com/b/Kxhkna/JizuW
http://paperpile.com/b/Kxhkna/JizuW
http://paperpile.com/b/Kxhkna/JizuW
http://paperpile.com/b/Kxhkna/JizuW
http://paperpile.com/b/Kxhkna/JizuW
http://paperpile.com/b/Kxhkna/JizuW
http://paperpile.com/b/Kxhkna/hyzQV
http://paperpile.com/b/Kxhkna/hyzQV
http://paperpile.com/b/Kxhkna/hyzQV
http://paperpile.com/b/Kxhkna/hyzQV
http://paperpile.com/b/Kxhkna/hyzQV
http://paperpile.com/b/Kxhkna/hyzQV

176

329–337.e4 (2019).

42. Stoeckius, M. et al. Cell Hashing with barcoded antibodies enables multiplexing

and doublet detection for single cell genomics. Genome Biol. 19, 224 (2018).

43. Kang, H. M. et al. Multiplexed droplet single-cell RNA-sequencing using natural

genetic variation. Nat. Biotechnol. 36, 89–94 (2018).

44. McGinnis, C. S. et al. MULTI-seq: sample multiplexing for single-cell RNA

sequencing using lipid-tagged indices. Nature Methods vol. 16 619–626 (2019).

45. Bais, A. S. & Kostka, D. scds: computational annotation of doublets in single-cell

RNA sequencing data. Bioinformatics (2019) doi:10.1093/bioinformatics/btz698.

46. DePasquale, E. A. K. et al. DoubletDecon: Deconvoluting Doublets from Single-Cell

RNA-Sequencing Data. Cell Rep. 29, 1718–1727.e8 (2019).

47. Gayoso, A. & Shor, J. DoubletDetection. Zenodo (2018).

48. Lun, A. T. L., McCarthy, D. J. & Marioni, J. C. A step-by-step workflow for low-level

analysis of single-cell RNA-seq data with Bioconductor. F1000Research vol. 5

2122 (2016).

49. Branco, P., Torgo, L. & Ribeiro, R. P. A Survey of Predictive Modeling on

Imbalanced Domains. (2016).

50. Bloom, J. D. Estimating the frequency of multiplets in single-cell RNA sequencing

from cell-mixing experiments. PeerJ 6, e5578 (2018).

51. Li, W. V. & Li, J. J. A statistical simulator scDesign for rational scRNA-seq

experimental design. Bioinformatics 35, i41–i50 (2019).

52. Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single

cells. Nat. Commun. 8, 14049 (2017).

http://paperpile.com/b/Kxhkna/hyzQV
http://paperpile.com/b/Kxhkna/4ONen
http://paperpile.com/b/Kxhkna/4ONen
http://paperpile.com/b/Kxhkna/4ONen
http://paperpile.com/b/Kxhkna/4ONen
http://paperpile.com/b/Kxhkna/4ONen
http://paperpile.com/b/Kxhkna/4ONen
http://paperpile.com/b/Kxhkna/4ONen
http://paperpile.com/b/Kxhkna/4ONen
http://paperpile.com/b/Kxhkna/wB9b8
http://paperpile.com/b/Kxhkna/wB9b8
http://paperpile.com/b/Kxhkna/wB9b8
http://paperpile.com/b/Kxhkna/wB9b8
http://paperpile.com/b/Kxhkna/wB9b8
http://paperpile.com/b/Kxhkna/wB9b8
http://paperpile.com/b/Kxhkna/wB9b8
http://paperpile.com/b/Kxhkna/wB9b8
http://paperpile.com/b/Kxhkna/bnItm
http://paperpile.com/b/Kxhkna/bnItm
http://paperpile.com/b/Kxhkna/bnItm
http://paperpile.com/b/Kxhkna/bnItm
http://paperpile.com/b/Kxhkna/bnItm
http://paperpile.com/b/Kxhkna/bnItm
http://paperpile.com/b/Kxhkna/dD796
http://paperpile.com/b/Kxhkna/dD796
http://paperpile.com/b/Kxhkna/dD796
http://paperpile.com/b/Kxhkna/dD796
http://dx.doi.org/10.1093/bioinformatics/btz698
http://paperpile.com/b/Kxhkna/dD796
http://paperpile.com/b/Kxhkna/I4OGu
http://paperpile.com/b/Kxhkna/I4OGu
http://paperpile.com/b/Kxhkna/I4OGu
http://paperpile.com/b/Kxhkna/I4OGu
http://paperpile.com/b/Kxhkna/I4OGu
http://paperpile.com/b/Kxhkna/I4OGu
http://paperpile.com/b/Kxhkna/I4OGu
http://paperpile.com/b/Kxhkna/I4OGu
http://paperpile.com/b/Kxhkna/opwB0
http://paperpile.com/b/Kxhkna/opwB0
http://paperpile.com/b/Kxhkna/opwB0
http://paperpile.com/b/Kxhkna/Dky9Q
http://paperpile.com/b/Kxhkna/Dky9Q
http://paperpile.com/b/Kxhkna/Dky9Q
http://paperpile.com/b/Kxhkna/Dky9Q
http://paperpile.com/b/Kxhkna/Dky9Q
http://paperpile.com/b/Kxhkna/X0lw0
http://paperpile.com/b/Kxhkna/X0lw0
http://paperpile.com/b/Kxhkna/xt79a
http://paperpile.com/b/Kxhkna/xt79a
http://paperpile.com/b/Kxhkna/xt79a
http://paperpile.com/b/Kxhkna/xt79a
http://paperpile.com/b/Kxhkna/xt79a
http://paperpile.com/b/Kxhkna/xt79a
http://paperpile.com/b/Kxhkna/6hv95
http://paperpile.com/b/Kxhkna/6hv95
http://paperpile.com/b/Kxhkna/6hv95
http://paperpile.com/b/Kxhkna/6hv95
http://paperpile.com/b/Kxhkna/6hv95
http://paperpile.com/b/Kxhkna/6hv95
http://paperpile.com/b/Kxhkna/zc8Nm
http://paperpile.com/b/Kxhkna/zc8Nm
http://paperpile.com/b/Kxhkna/zc8Nm
http://paperpile.com/b/Kxhkna/zc8Nm
http://paperpile.com/b/Kxhkna/zc8Nm
http://paperpile.com/b/Kxhkna/zc8Nm
http://paperpile.com/b/Kxhkna/zc8Nm
http://paperpile.com/b/Kxhkna/zc8Nm

177

53. Saito, T. & Rehmsmeier, M. The precision-recall plot is more informative than the

ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS One 10,

e0118432 (2015).

54. https://github.com/EDePasquale/DoubletDecon/issues.

55. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and

dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

56. Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional

changes and characterizing heterogeneity in single-cell RNA sequencing data.

Genome Biol. 16, 278 (2015).

57. Fay, M. P. & Proschan, M. A. Wilcoxon-Mann-Whitney or t-test? On assumptions

for hypothesis tests and multiple interpretations of decision rules. Stat. Surv. 4, 1–

39 (2010).

58. Wang, T., Li, B., Nelson, C. E. & Nabavi, S. Comparative analysis of differential

gene expression analysis tools for single-cell RNA sequencing data. BMC

Bioinformatics 20, 40 (2019).

59. Yip, S. H., Sham, P. C. & Wang, J. Evaluation of tools for highly variable gene

discovery from single-cell RNA-seq data. Brief. Bioinform. 20, 1583–1589 (2019).

60. Amezquita, R. A. et al. Orchestrating single-cell analysis with Bioconductor. Nature

Methods (2019) doi:10.1038/s41592-019-0654-x.

61. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell

transcriptomic data across different conditions, technologies, and species. Nat.

Biotechnol. 36, 411–420 (2018).

62. Stuart, T. et al. Comprehensive Integration of Single-Cell Data. Cell 177, 1888–

http://paperpile.com/b/Kxhkna/gE7JR
http://paperpile.com/b/Kxhkna/gE7JR
http://paperpile.com/b/Kxhkna/gE7JR
http://paperpile.com/b/Kxhkna/gE7JR
http://paperpile.com/b/Kxhkna/gE7JR
http://paperpile.com/b/Kxhkna/gE7JR
http://paperpile.com/b/Kxhkna/gE7JR
http://paperpile.com/b/Kxhkna/rKWMy
http://paperpile.com/b/Kxhkna/PwyoW
http://paperpile.com/b/Kxhkna/PwyoW
http://paperpile.com/b/Kxhkna/PwyoW
http://paperpile.com/b/Kxhkna/PwyoW
http://paperpile.com/b/Kxhkna/PwyoW
http://paperpile.com/b/Kxhkna/PwyoW
http://paperpile.com/b/Kxhkna/myQaq
http://paperpile.com/b/Kxhkna/myQaq
http://paperpile.com/b/Kxhkna/myQaq
http://paperpile.com/b/Kxhkna/myQaq
http://paperpile.com/b/Kxhkna/myQaq
http://paperpile.com/b/Kxhkna/myQaq
http://paperpile.com/b/Kxhkna/myQaq
http://paperpile.com/b/Kxhkna/myQaq
http://paperpile.com/b/Kxhkna/jRhmu
http://paperpile.com/b/Kxhkna/jRhmu
http://paperpile.com/b/Kxhkna/jRhmu
http://paperpile.com/b/Kxhkna/jRhmu
http://paperpile.com/b/Kxhkna/jRhmu
http://paperpile.com/b/Kxhkna/jRhmu
http://paperpile.com/b/Kxhkna/jRhmu
http://paperpile.com/b/Kxhkna/C6wgi
http://paperpile.com/b/Kxhkna/C6wgi
http://paperpile.com/b/Kxhkna/C6wgi
http://paperpile.com/b/Kxhkna/C6wgi
http://paperpile.com/b/Kxhkna/C6wgi
http://paperpile.com/b/Kxhkna/C6wgi
http://paperpile.com/b/Kxhkna/C6wgi
http://paperpile.com/b/Kxhkna/btSq2
http://paperpile.com/b/Kxhkna/btSq2
http://paperpile.com/b/Kxhkna/btSq2
http://paperpile.com/b/Kxhkna/btSq2
http://paperpile.com/b/Kxhkna/btSq2
http://paperpile.com/b/Kxhkna/btSq2
http://paperpile.com/b/Kxhkna/6SeHA
http://paperpile.com/b/Kxhkna/6SeHA
http://paperpile.com/b/Kxhkna/6SeHA
http://paperpile.com/b/Kxhkna/6SeHA
http://paperpile.com/b/Kxhkna/6SeHA
http://paperpile.com/b/Kxhkna/6SeHA
http://dx.doi.org/10.1038/s41592-019-0654-x
http://paperpile.com/b/Kxhkna/6SeHA
http://paperpile.com/b/Kxhkna/sFM0Y
http://paperpile.com/b/Kxhkna/sFM0Y
http://paperpile.com/b/Kxhkna/sFM0Y
http://paperpile.com/b/Kxhkna/sFM0Y
http://paperpile.com/b/Kxhkna/sFM0Y
http://paperpile.com/b/Kxhkna/sFM0Y
http://paperpile.com/b/Kxhkna/sFM0Y
http://paperpile.com/b/Kxhkna/I7s7r
http://paperpile.com/b/Kxhkna/I7s7r
http://paperpile.com/b/Kxhkna/I7s7r
http://paperpile.com/b/Kxhkna/I7s7r
http://paperpile.com/b/Kxhkna/I7s7r
http://paperpile.com/b/Kxhkna/I7s7r
http://paperpile.com/b/Kxhkna/I7s7r

178

1902.e21 (2019).

63. Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of

communities in large networks. Journal of Statistical Mechanics: Theory and

Experiment vol. 2008 P10008 (2008).

64. Ester, M., Kriegel, H.-P., Sander, J., Xu, X. & Others. A density-based algorithm for

discovering clusters in large spatial databases with noise. in Kdd vol. 96 226–231

(1996).

65. Feng, C. et al. Dimension Reduction and Clustering Models for Single-Cell RNA

Sequencing Data: A Comparative Study. Int. J. Mol. Sci. 21, (2020).

66. Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed

by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).

67. Zappia, L., Phipson, B. & Oshlack, A. Splatter: simulation of single-cell RNA

sequencing data. Genome Biol. 18, 174 (2017).

68. Street, K. et al. Slingshot: cell lineage and pseudotime inference for single-cell

transcriptomics. BMC Genomics vol. 19 (2018).

69. Herring, C. A., Chen, B., McKinley, E. T. & Lau, K. S. Single-Cell Computational

Strategies for Lineage Reconstruction in Tissue Systems. Cell Mol Gastroenterol

Hepatol 5, 539–548 (2018).

70. Hastie, T. J. & Tibshirani, R. J. Generalized Additive Models. (CRC Press, 1990).

71. Ji, Z. & Ji, H. TSCAN: Pseudo-time reconstruction and evaluation in single-cell

RNA-seq analysis. Nucleic Acids Res. 44, e117 (2016).

72. Mangul, S., Martin, L. S., Eskin, E. & Blekhman, R. Improving the usability and

archival stability of bioinformatics software. Genome Biol. 20, 47 (2019).

http://paperpile.com/b/Kxhkna/I7s7r
http://paperpile.com/b/Kxhkna/9HNrS
http://paperpile.com/b/Kxhkna/9HNrS
http://paperpile.com/b/Kxhkna/9HNrS
http://paperpile.com/b/Kxhkna/9HNrS
http://paperpile.com/b/Kxhkna/9HNrS
http://paperpile.com/b/Kxhkna/jrhxm
http://paperpile.com/b/Kxhkna/jrhxm
http://paperpile.com/b/Kxhkna/jrhxm
http://paperpile.com/b/Kxhkna/jrhxm
http://paperpile.com/b/Kxhkna/jrhxm
http://paperpile.com/b/Kxhkna/LSXdh
http://paperpile.com/b/Kxhkna/LSXdh
http://paperpile.com/b/Kxhkna/LSXdh
http://paperpile.com/b/Kxhkna/LSXdh
http://paperpile.com/b/Kxhkna/LSXdh
http://paperpile.com/b/Kxhkna/LSXdh
http://paperpile.com/b/Kxhkna/LSXdh
http://paperpile.com/b/Kxhkna/LSXdh
http://paperpile.com/b/Kxhkna/KO8Uz
http://paperpile.com/b/Kxhkna/KO8Uz
http://paperpile.com/b/Kxhkna/KO8Uz
http://paperpile.com/b/Kxhkna/KO8Uz
http://paperpile.com/b/Kxhkna/KO8Uz
http://paperpile.com/b/Kxhkna/KO8Uz
http://paperpile.com/b/Kxhkna/KO8Uz
http://paperpile.com/b/Kxhkna/KO8Uz
http://paperpile.com/b/Kxhkna/9ciDr
http://paperpile.com/b/Kxhkna/9ciDr
http://paperpile.com/b/Kxhkna/9ciDr
http://paperpile.com/b/Kxhkna/9ciDr
http://paperpile.com/b/Kxhkna/9ciDr
http://paperpile.com/b/Kxhkna/9ciDr
http://paperpile.com/b/Kxhkna/N1qrT
http://paperpile.com/b/Kxhkna/N1qrT
http://paperpile.com/b/Kxhkna/N1qrT
http://paperpile.com/b/Kxhkna/N1qrT
http://paperpile.com/b/Kxhkna/N1qrT
http://paperpile.com/b/Kxhkna/N1qrT
http://paperpile.com/b/Kxhkna/zPt4W
http://paperpile.com/b/Kxhkna/zPt4W
http://paperpile.com/b/Kxhkna/zPt4W
http://paperpile.com/b/Kxhkna/zPt4W
http://paperpile.com/b/Kxhkna/zPt4W
http://paperpile.com/b/Kxhkna/zPt4W
http://paperpile.com/b/Kxhkna/zPt4W
http://paperpile.com/b/Kxhkna/Dr9uP
http://paperpile.com/b/Kxhkna/Dr9uP
http://paperpile.com/b/Kxhkna/Dr9uP
http://paperpile.com/b/Kxhkna/DZeYW
http://paperpile.com/b/Kxhkna/DZeYW
http://paperpile.com/b/Kxhkna/DZeYW
http://paperpile.com/b/Kxhkna/DZeYW
http://paperpile.com/b/Kxhkna/DZeYW
http://paperpile.com/b/Kxhkna/DZeYW
http://paperpile.com/b/Kxhkna/aYh8w
http://paperpile.com/b/Kxhkna/aYh8w
http://paperpile.com/b/Kxhkna/aYh8w
http://paperpile.com/b/Kxhkna/aYh8w
http://paperpile.com/b/Kxhkna/aYh8w
http://paperpile.com/b/Kxhkna/aYh8w

179

73. Risso, D., Perraudeau, F., Gribkova, S., Dudoit, S. & Vert, J.-P. A general and

flexible method for signal extraction from single-cell RNA-seq data. Nat. Commun.

9, 284 (2018).

74. Weber, L. M. et al. Essential guidelines for computational method benchmarking.

Genome Biol. 20, 125 (2019).

75. Andrews, T. S. & Hemberg, M. False signals induced by single-cell imputation.

F1000Research vol. 7 1740 (2018).

76. Efron, B. & Hastie, T. Computer Age Statistical Inference. (Cambridge University

Press, 2016).

77. Young, M. D. & Behjati, S. SoupX removes ambient RNA contamination from

droplet based single cell RNA sequencing data. BioRxiv (2020).

78. Yang, S. et al. Decontamination of ambient RNA in single-cell RNA-seq with

DecontX. Genome Biology vol. 21 (2020).

79. Nettleton, D. F., Orriols-Puig, A. & Fornells, A. A study of the effect of different

types of noise on the precision of supervised learning techniques. Artificial

Intelligence Review 33, 275–306 (2010).

80. Domingues, R., Filippone, M., Michiardi, P. & Zouaoui, J. A comparative evaluation

of outlier detection algorithms: Experiments and analyses. Pattern Recognit. 74,

406–421 (2018).

81. Natarajan, N., Dhillon, I. S., Ravikumar, P. K. & Tewari, A. Learning with Noisy

Labels. in Advances in Neural Information Processing Systems 26 (eds. Burges, C.

J. C., Bottou, L., Welling, M., Ghahramani, Z. & Weinberger, K. Q.) 1196–1204

(Curran Associates, Inc., 2013).

http://paperpile.com/b/Kxhkna/SgUhD
http://paperpile.com/b/Kxhkna/SgUhD
http://paperpile.com/b/Kxhkna/SgUhD
http://paperpile.com/b/Kxhkna/SgUhD
http://paperpile.com/b/Kxhkna/SgUhD
http://paperpile.com/b/Kxhkna/SgUhD
http://paperpile.com/b/Kxhkna/SgUhD
http://paperpile.com/b/Kxhkna/bVNX7
http://paperpile.com/b/Kxhkna/bVNX7
http://paperpile.com/b/Kxhkna/bVNX7
http://paperpile.com/b/Kxhkna/bVNX7
http://paperpile.com/b/Kxhkna/bVNX7
http://paperpile.com/b/Kxhkna/bVNX7
http://paperpile.com/b/Kxhkna/bVNX7
http://paperpile.com/b/Kxhkna/bVNX7
http://paperpile.com/b/Kxhkna/aSNlT
http://paperpile.com/b/Kxhkna/aSNlT
http://paperpile.com/b/Kxhkna/aSNlT
http://paperpile.com/b/Kxhkna/aSNlT
http://paperpile.com/b/Kxhkna/U68N0
http://paperpile.com/b/Kxhkna/U68N0
http://paperpile.com/b/Kxhkna/U68N0
http://paperpile.com/b/Kxhkna/U68N0
http://paperpile.com/b/Kxhkna/nxpH0
http://paperpile.com/b/Kxhkna/nxpH0
http://paperpile.com/b/Kxhkna/nxpH0
http://paperpile.com/b/Kxhkna/nxpH0
http://paperpile.com/b/Kxhkna/tnq4s
http://paperpile.com/b/Kxhkna/tnq4s
http://paperpile.com/b/Kxhkna/tnq4s
http://paperpile.com/b/Kxhkna/tnq4s
http://paperpile.com/b/Kxhkna/tnq4s
http://paperpile.com/b/Kxhkna/tnq4s
http://paperpile.com/b/Kxhkna/FqkDh
http://paperpile.com/b/Kxhkna/FqkDh
http://paperpile.com/b/Kxhkna/FqkDh
http://paperpile.com/b/Kxhkna/FqkDh
http://paperpile.com/b/Kxhkna/FqkDh
http://paperpile.com/b/Kxhkna/FqkDh
http://paperpile.com/b/Kxhkna/FqkDh
http://paperpile.com/b/Kxhkna/uVuuu
http://paperpile.com/b/Kxhkna/uVuuu
http://paperpile.com/b/Kxhkna/uVuuu
http://paperpile.com/b/Kxhkna/uVuuu
http://paperpile.com/b/Kxhkna/uVuuu
http://paperpile.com/b/Kxhkna/uVuuu
http://paperpile.com/b/Kxhkna/uVuuu
http://paperpile.com/b/Kxhkna/evtw5
http://paperpile.com/b/Kxhkna/evtw5
http://paperpile.com/b/Kxhkna/evtw5
http://paperpile.com/b/Kxhkna/evtw5
http://paperpile.com/b/Kxhkna/evtw5
http://paperpile.com/b/Kxhkna/evtw5

180

82. Dietterich, T. G. Ensemble Methods in Machine Learning. in Multiple Classifier

Systems 1–15 (Springer Berlin Heidelberg, 2000).

83. Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data

Mining, Inference, and Prediction, Second Edition. (Springer Science & Business

Media, 2009).

84. Chen, T. & Guestrin, C. XGBoost: A Scalable Tree Boosting System. in

Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining 785–794 (Association for Computing Machinery, 2016).

85. Feurer, M. & Hutter, F. Hyperparameter Optimization. in Automated Machine

Learning: Methods, Systems, Challenges (eds. Hutter, F., Kotthoff, L. &

Vanschoren, J.) 3–33 (Springer International Publishing, 2019).

86. Waring, J., Lindvall, C. & Umeton, R. Automated machine learning: Review of the

state-of-the-art and opportunities for healthcare. Artif. Intell. Med. 104, 101822

(2020).

87. Edgar, R., Domrachev, M. & Lash, A. E. Gene Expression Omnibus: NCBI gene

expression and hybridization array data repository. Nucleic Acids Res. 30, 207–210

(2002).

88. Durinck, S., Spellman, P. T., Birney, E. & Huber, W. Mapping identifiers for the

integration of genomic datasets with the R/Bioconductor package biomaRt. Nat.

Protoc. 4, 1184–1191 (2009).

89. Pfister, R., Schwarz, K. A., Janczyk, M., Dale, R. & Freeman, J. B. Good things

peak in pairs: a note on the bimodality coefficient. Front. Psychol. 4, 700 (2013).

90. Gong, T. & Szustakowski, J. D. DeconRNASeq: a statistical framework for

http://paperpile.com/b/Kxhkna/K5P6Z
http://paperpile.com/b/Kxhkna/K5P6Z
http://paperpile.com/b/Kxhkna/K5P6Z
http://paperpile.com/b/Kxhkna/K5P6Z
http://paperpile.com/b/Kxhkna/8Lmaa
http://paperpile.com/b/Kxhkna/8Lmaa
http://paperpile.com/b/Kxhkna/8Lmaa
http://paperpile.com/b/Kxhkna/8Lmaa
http://paperpile.com/b/Kxhkna/8Lmaa
http://paperpile.com/b/Kxhkna/9XoTK
http://paperpile.com/b/Kxhkna/9XoTK
http://paperpile.com/b/Kxhkna/9XoTK
http://paperpile.com/b/Kxhkna/9XoTK
http://paperpile.com/b/Kxhkna/9XoTK
http://paperpile.com/b/Kxhkna/zAOka
http://paperpile.com/b/Kxhkna/zAOka
http://paperpile.com/b/Kxhkna/zAOka
http://paperpile.com/b/Kxhkna/zAOka
http://paperpile.com/b/Kxhkna/zAOka
http://paperpile.com/b/Kxhkna/9PU6u
http://paperpile.com/b/Kxhkna/9PU6u
http://paperpile.com/b/Kxhkna/9PU6u
http://paperpile.com/b/Kxhkna/9PU6u
http://paperpile.com/b/Kxhkna/9PU6u
http://paperpile.com/b/Kxhkna/9PU6u
http://paperpile.com/b/Kxhkna/9PU6u
http://paperpile.com/b/Kxhkna/xpLz3
http://paperpile.com/b/Kxhkna/xpLz3
http://paperpile.com/b/Kxhkna/xpLz3
http://paperpile.com/b/Kxhkna/xpLz3
http://paperpile.com/b/Kxhkna/xpLz3
http://paperpile.com/b/Kxhkna/xpLz3
http://paperpile.com/b/Kxhkna/xpLz3
http://paperpile.com/b/Kxhkna/XPCQK
http://paperpile.com/b/Kxhkna/XPCQK
http://paperpile.com/b/Kxhkna/XPCQK
http://paperpile.com/b/Kxhkna/XPCQK
http://paperpile.com/b/Kxhkna/XPCQK
http://paperpile.com/b/Kxhkna/XPCQK
http://paperpile.com/b/Kxhkna/XPCQK
http://paperpile.com/b/Kxhkna/BPSqT
http://paperpile.com/b/Kxhkna/BPSqT
http://paperpile.com/b/Kxhkna/BPSqT
http://paperpile.com/b/Kxhkna/BPSqT
http://paperpile.com/b/Kxhkna/BPSqT
http://paperpile.com/b/Kxhkna/BPSqT
http://paperpile.com/b/Kxhkna/Fl0dR

181

deconvolution of heterogeneous tissue samples based on mRNA-Seq data.

Bioinformatics 29, 1083–1085 (2013).

91. Xi, N. M. & Li, J. J. Benchmarking Computational Doublet-Detection Methods for

Single-Cell RNA Sequencing Data. Cell Systems 12, 176–194.e6 (2021).

92. Gayoso, A. & Shor, J. GitHub: DoubletDetection. (2019).

93. Germain, P.-L., Sonrel, A. & Robinson, M. D. pipeComp, a general framework for

the evaluation of computational pipelines, reveals performant single cell RNA-seq

preprocessing tools. Genome Biol. 21, 227 (2020).

94. McDavid, A. et al. Data exploration, quality control and testing in single-cell qPCR-

based gene expression experiments. Bioinformatics 29, 461–467 (2013).

95. DePasquale, E. A. K., Schnell, D., Chetal, K. & Salomonis, N. Protocol for

Identification and Removal of Doublets with DoubletDecon. STAR Protoc 1, 100085

(2020).

96. Stuart, T. & Satija, R. Integrative single-cell analysis. Nat. Rev. Genet. 20, 257–272

(2019).

97. Choi, Y. H. & Kim, J. K. Dissecting Cellular Heterogeneity Using Single-Cell RNA

Sequencing. Mol. Cells 42, 189–199 (2019).

98. Kiselev, V. Y., Andrews, T. S. & Hemberg, M. Challenges in unsupervised

clustering of single-cell RNA-seq data. Nat. Rev. Genet. 20, 273–282 (2019).

99. Van den Berge, K. et al. Trajectory-based differential expression analysis for single-

cell sequencing data. Nat. Commun. 11, 1–13 (2020).

100. Bai, Y.-L., Baddoo, M., Flemington, E. K., Nakhoul, H. N. & Liu, Y.-Z. Screen

technical noise in single cell RNA sequencing data. Genomics 112, 346–355

http://paperpile.com/b/Kxhkna/Fl0dR
http://paperpile.com/b/Kxhkna/Fl0dR
http://paperpile.com/b/Kxhkna/Fl0dR
http://paperpile.com/b/Kxhkna/Fl0dR
http://paperpile.com/b/Kxhkna/Fl0dR
http://paperpile.com/b/Kxhkna/Fl0dR
http://paperpile.com/b/Kxhkna/BWPM
http://paperpile.com/b/Kxhkna/BWPM
http://paperpile.com/b/Kxhkna/BWPM
http://paperpile.com/b/Kxhkna/BWPM
http://paperpile.com/b/Kxhkna/BWPM
http://paperpile.com/b/Kxhkna/BWPM
http://paperpile.com/b/Kxhkna/8UYhL
http://paperpile.com/b/Kxhkna/ndAwl
http://paperpile.com/b/Kxhkna/ndAwl
http://paperpile.com/b/Kxhkna/ndAwl
http://paperpile.com/b/Kxhkna/ndAwl
http://paperpile.com/b/Kxhkna/ndAwl
http://paperpile.com/b/Kxhkna/ndAwl
http://paperpile.com/b/Kxhkna/ndAwl
http://paperpile.com/b/Kxhkna/55aJ
http://paperpile.com/b/Kxhkna/55aJ
http://paperpile.com/b/Kxhkna/55aJ
http://paperpile.com/b/Kxhkna/55aJ
http://paperpile.com/b/Kxhkna/55aJ
http://paperpile.com/b/Kxhkna/55aJ
http://paperpile.com/b/Kxhkna/55aJ
http://paperpile.com/b/Kxhkna/55aJ
http://paperpile.com/b/Kxhkna/SnLA
http://paperpile.com/b/Kxhkna/SnLA
http://paperpile.com/b/Kxhkna/SnLA
http://paperpile.com/b/Kxhkna/SnLA
http://paperpile.com/b/Kxhkna/SnLA
http://paperpile.com/b/Kxhkna/SnLA
http://paperpile.com/b/Kxhkna/SnLA
http://paperpile.com/b/Kxhkna/FMJ0u
http://paperpile.com/b/Kxhkna/FMJ0u
http://paperpile.com/b/Kxhkna/FMJ0u
http://paperpile.com/b/Kxhkna/FMJ0u
http://paperpile.com/b/Kxhkna/FMJ0u
http://paperpile.com/b/Kxhkna/FMJ0u
http://paperpile.com/b/Kxhkna/OGNWW
http://paperpile.com/b/Kxhkna/OGNWW
http://paperpile.com/b/Kxhkna/OGNWW
http://paperpile.com/b/Kxhkna/OGNWW
http://paperpile.com/b/Kxhkna/OGNWW
http://paperpile.com/b/Kxhkna/OGNWW
http://paperpile.com/b/Kxhkna/fCbnH
http://paperpile.com/b/Kxhkna/fCbnH
http://paperpile.com/b/Kxhkna/fCbnH
http://paperpile.com/b/Kxhkna/fCbnH
http://paperpile.com/b/Kxhkna/fCbnH
http://paperpile.com/b/Kxhkna/fCbnH
http://paperpile.com/b/Kxhkna/9qhTo
http://paperpile.com/b/Kxhkna/9qhTo
http://paperpile.com/b/Kxhkna/9qhTo
http://paperpile.com/b/Kxhkna/9qhTo
http://paperpile.com/b/Kxhkna/9qhTo
http://paperpile.com/b/Kxhkna/9qhTo
http://paperpile.com/b/Kxhkna/9qhTo
http://paperpile.com/b/Kxhkna/9qhTo
http://paperpile.com/b/Kxhkna/oeMH0
http://paperpile.com/b/Kxhkna/oeMH0
http://paperpile.com/b/Kxhkna/oeMH0
http://paperpile.com/b/Kxhkna/oeMH0
http://paperpile.com/b/Kxhkna/oeMH0
http://paperpile.com/b/Kxhkna/oeMH0

182

(2020).

101. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

102. Werbos, P. J. Backpropagation through time: what it does and how to do it. Proc.

IEEE 78, 1550–1560 (1990).

103. Kingma, D. P. & Welling, M. Auto-Encoding Variational Bayes. arXiv [stat.ML]

(2013).

104. Arisdakessian, C., Poirion, O., Yunits, B., Zhu, X. & Garmire, L. X. DeepImpute: an

accurate, fast, and scalable deep neural network method to impute single-cell RNA-

seq data. Genome Biol. 20, 211 (2019).

105. Badsha, M. B. et al. Imputation of single-cell gene expression with an autoencoder

neural network. Quantitative Biology 8, 78–94 (2020).

106. Deng, Y., Bao, F., Dai, Q., Wu, L. F. & Altschuler, S. J. Scalable analysis of cell-

type composition from single-cell transcriptomics using deep recurrent learning.

Nat. Methods 16, 311–314 (2019).

107. Kingma, D. P. & Ba, J. Adam: A Method for Stochastic Optimization. arXiv [cs.LG]

(2014).

108. Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet Classification with Deep

Convolutional Neural Networks. in Advances in Neural Information Processing

Systems (eds. Pereira, F., Burges, C. J. C., Bottou, L. & Weinberger, K. Q.) vol. 25

(Curran Associates, Inc., 2012).

109. Zhao, Z.-Q., Zheng, P., Xu, S.-T. & Wu, X. Object Detection with Deep Learning: A

Review. arXiv [cs.CV] (2018).

110. Hicks, S. C., Townes, F. W., Teng, M. & Irizarry, R. A. Missing data and technical

http://paperpile.com/b/Kxhkna/oeMH0
http://paperpile.com/b/Kxhkna/lOmVN
http://paperpile.com/b/Kxhkna/lOmVN
http://paperpile.com/b/Kxhkna/lOmVN
http://paperpile.com/b/Kxhkna/lOmVN
http://paperpile.com/b/Kxhkna/lOmVN
http://paperpile.com/b/Kxhkna/FTcUE
http://paperpile.com/b/Kxhkna/FTcUE
http://paperpile.com/b/Kxhkna/FTcUE
http://paperpile.com/b/Kxhkna/FTcUE
http://paperpile.com/b/Kxhkna/FTcUE
http://paperpile.com/b/Kxhkna/FTcUE
http://paperpile.com/b/Kxhkna/8MH08
http://paperpile.com/b/Kxhkna/8MH08
http://paperpile.com/b/Kxhkna/8MH08
http://paperpile.com/b/Kxhkna/8MH08
http://paperpile.com/b/Kxhkna/XBR75
http://paperpile.com/b/Kxhkna/XBR75
http://paperpile.com/b/Kxhkna/XBR75
http://paperpile.com/b/Kxhkna/XBR75
http://paperpile.com/b/Kxhkna/XBR75
http://paperpile.com/b/Kxhkna/XBR75
http://paperpile.com/b/Kxhkna/XBR75
http://paperpile.com/b/Kxhkna/14lHj
http://paperpile.com/b/Kxhkna/14lHj
http://paperpile.com/b/Kxhkna/14lHj
http://paperpile.com/b/Kxhkna/14lHj
http://paperpile.com/b/Kxhkna/14lHj
http://paperpile.com/b/Kxhkna/14lHj
http://paperpile.com/b/Kxhkna/14lHj
http://paperpile.com/b/Kxhkna/14lHj
http://paperpile.com/b/Kxhkna/UAQzG
http://paperpile.com/b/Kxhkna/UAQzG
http://paperpile.com/b/Kxhkna/UAQzG
http://paperpile.com/b/Kxhkna/UAQzG
http://paperpile.com/b/Kxhkna/UAQzG
http://paperpile.com/b/Kxhkna/UAQzG
http://paperpile.com/b/Kxhkna/tBlss
http://paperpile.com/b/Kxhkna/tBlss
http://paperpile.com/b/Kxhkna/tBlss
http://paperpile.com/b/Kxhkna/tBlss
http://paperpile.com/b/Kxhkna/abw7L
http://paperpile.com/b/Kxhkna/abw7L
http://paperpile.com/b/Kxhkna/abw7L
http://paperpile.com/b/Kxhkna/abw7L
http://paperpile.com/b/Kxhkna/abw7L
http://paperpile.com/b/Kxhkna/abw7L
http://paperpile.com/b/Kxhkna/RdFN5
http://paperpile.com/b/Kxhkna/RdFN5
http://paperpile.com/b/Kxhkna/RdFN5
http://paperpile.com/b/Kxhkna/RdFN5
http://paperpile.com/b/Kxhkna/RHtSj

183

variability in single-cell RNA-sequencing experiments. Biostatistics 19, 562–578

(2018).

111. Quiñonero-Candela, J., Sugiyama, M., Lawrence, N. D. & Schwaighofer, A. Dataset

Shift in Machine Learning. (MIT Press, 2009).

112. Xu, B., Wang, N., Chen, T. & Li, M. Empirical Evaluation of Rectified Activations in

Convolutional Network. arXiv [cs.LG] (2015).

113. Clevert, D.-A., Unterthiner, T. & Hochreiter, S. Fast and Accurate Deep Network

Learning by Exponential Linear Units (ELUs). arXiv [cs.LG] (2015).

114. Klambauer, G., Unterthiner, T., Mayr, A. & Hochreiter, S. Self-Normalizing Neural

Networks. arXiv [cs.LG] (2017).

115. Lu, L., Shin, Y., Su, Y. & Karniadakis, G. E. Dying ReLU and Initialization: Theory

and Numerical Examples. arXiv [stat.ML] (2019).

116. Pascanu, R., Mikolov, T. & Bengio, Y. On the difficulty of training Recurrent Neural

Networks. arXiv [cs.LG] (2012).

117. Talwar, D., Mongia, A., Sengupta, D. & Majumdar, A. AutoImpute: Autoencoder

based imputation of single-cell RNA-seq data. Sci. Rep. 8, 16329 (2018).

118. Andrews, T. S. & Hemberg, M. False signals induced by single-cell imputation.

F1000Res. 7, 1740 (2018).

119. Tang, F. et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat.

Methods 6, 377–382 (2009).

120. Fan, L., Zhang, F., Fan, H. & Zhang, C. Brief review of image denoising techniques.

Visual Computing for Industry, Biomedicine, and Art 2, 1–12 (2019).

121. Lin, C., Jain, S., Kim, H. & Bar-Joseph, Z. Using neural networks for reducing the

http://paperpile.com/b/Kxhkna/RHtSj
http://paperpile.com/b/Kxhkna/RHtSj
http://paperpile.com/b/Kxhkna/RHtSj
http://paperpile.com/b/Kxhkna/RHtSj
http://paperpile.com/b/Kxhkna/RHtSj
http://paperpile.com/b/Kxhkna/RHtSj
http://paperpile.com/b/Kxhkna/ljs4G
http://paperpile.com/b/Kxhkna/ljs4G
http://paperpile.com/b/Kxhkna/ljs4G
http://paperpile.com/b/Kxhkna/ljs4G
http://paperpile.com/b/Kxhkna/hS9ly
http://paperpile.com/b/Kxhkna/hS9ly
http://paperpile.com/b/Kxhkna/hS9ly
http://paperpile.com/b/Kxhkna/hS9ly
http://paperpile.com/b/Kxhkna/1n6vz
http://paperpile.com/b/Kxhkna/1n6vz
http://paperpile.com/b/Kxhkna/1n6vz
http://paperpile.com/b/Kxhkna/1n6vz
http://paperpile.com/b/Kxhkna/c0PLO
http://paperpile.com/b/Kxhkna/c0PLO
http://paperpile.com/b/Kxhkna/c0PLO
http://paperpile.com/b/Kxhkna/c0PLO
http://paperpile.com/b/Kxhkna/m7hPp
http://paperpile.com/b/Kxhkna/m7hPp
http://paperpile.com/b/Kxhkna/m7hPp
http://paperpile.com/b/Kxhkna/m7hPp
http://paperpile.com/b/Kxhkna/tixQV
http://paperpile.com/b/Kxhkna/tixQV
http://paperpile.com/b/Kxhkna/tixQV
http://paperpile.com/b/Kxhkna/tixQV
http://paperpile.com/b/Kxhkna/vJJ0Q
http://paperpile.com/b/Kxhkna/vJJ0Q
http://paperpile.com/b/Kxhkna/vJJ0Q
http://paperpile.com/b/Kxhkna/vJJ0Q
http://paperpile.com/b/Kxhkna/vJJ0Q
http://paperpile.com/b/Kxhkna/vJJ0Q
http://paperpile.com/b/Kxhkna/LwWuY
http://paperpile.com/b/Kxhkna/LwWuY
http://paperpile.com/b/Kxhkna/LwWuY
http://paperpile.com/b/Kxhkna/LwWuY
http://paperpile.com/b/Kxhkna/LwWuY
http://paperpile.com/b/Kxhkna/LwWuY
http://paperpile.com/b/Kxhkna/BsjDX
http://paperpile.com/b/Kxhkna/BsjDX
http://paperpile.com/b/Kxhkna/BsjDX
http://paperpile.com/b/Kxhkna/BsjDX
http://paperpile.com/b/Kxhkna/BsjDX
http://paperpile.com/b/Kxhkna/BsjDX
http://paperpile.com/b/Kxhkna/BsjDX
http://paperpile.com/b/Kxhkna/BsjDX
http://paperpile.com/b/Kxhkna/drSs9
http://paperpile.com/b/Kxhkna/drSs9
http://paperpile.com/b/Kxhkna/drSs9
http://paperpile.com/b/Kxhkna/drSs9
http://paperpile.com/b/Kxhkna/drSs9
http://paperpile.com/b/Kxhkna/drSs9
http://paperpile.com/b/Kxhkna/djAXR

184

dimensions of single-cell RNA-Seq data. Nucleic Acids Res. 45, e156–e156 (2017).

122. Köhler, N. D., Büttner, M. & Theis, F. J. Deep learning does not outperform

classical machine learning for cell-type annotation. bioRxiv 653907 (2019)

doi:10.1101/653907.

123. Tensors in Image Processing and Computer Vision. (Springer, London, 2009).

124. Hao, Y. et al. Integrated analysis of multimodal single-cell data. bioRxiv

2020.10.12.335331 (2020) doi:10.1101/2020.10.12.335331.

125. Paszke, A. et al. PyTorch: An Imperative Style, High-Performance Deep Learning

Library. in Advances in Neural Information Processing Systems (eds. Wallach, H. et

al.) vol. 32 (Curran Associates, Inc., 2019).

126. Abadi, M. et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous

Distributed Systems. arXiv [cs.DC] (2016).

127. Fränti, P. & Sieranoja, S. How much can k-means be improved by using better

initialization and repeats? Pattern Recognit. 93, 95–112 (2019).

128. Reza, F. M. An Introduction to Information Theory. (Courier Corporation, 1994).

129. Isakova, A., Neff, N. & Quake, S. Single cell profiling of total RNA using Smart-seq-

total. bioRxiv (2020).

130. Brockmann, L. et al. Molecular and functional heterogeneity of IL-10-producing

CD4+ T cells. Nat. Commun. 9, 5457 (2018).

131. Lake, B. B. et al. A comparative strategy for single-nucleus and single-cell

transcriptomes confirms accuracy in predicted cell-type expression from nuclear

RNA. Sci. Rep. 7, 1–8 (2017).

132. Zeisel, A. et al. Cell types in the mouse cortex and hippocampus revealed by

http://paperpile.com/b/Kxhkna/djAXR
http://paperpile.com/b/Kxhkna/djAXR
http://paperpile.com/b/Kxhkna/djAXR
http://paperpile.com/b/Kxhkna/djAXR
http://paperpile.com/b/Kxhkna/djAXR
http://paperpile.com/b/Kxhkna/W6yQd
http://paperpile.com/b/Kxhkna/W6yQd
http://paperpile.com/b/Kxhkna/W6yQd
http://paperpile.com/b/Kxhkna/W6yQd
http://paperpile.com/b/Kxhkna/W6yQd
http://dx.doi.org/10.1101/653907
http://paperpile.com/b/Kxhkna/W6yQd
http://paperpile.com/b/Kxhkna/4P2Fz
http://paperpile.com/b/Kxhkna/4P2Fz
http://paperpile.com/b/Kxhkna/ZUwz5
http://paperpile.com/b/Kxhkna/ZUwz5
http://paperpile.com/b/Kxhkna/ZUwz5
http://paperpile.com/b/Kxhkna/ZUwz5
http://paperpile.com/b/Kxhkna/ZUwz5
http://paperpile.com/b/Kxhkna/ZUwz5
http://dx.doi.org/10.1101/2020.10.12.335331
http://paperpile.com/b/Kxhkna/ZUwz5
http://paperpile.com/b/Kxhkna/XgcAP
http://paperpile.com/b/Kxhkna/XgcAP
http://paperpile.com/b/Kxhkna/XgcAP
http://paperpile.com/b/Kxhkna/XgcAP
http://paperpile.com/b/Kxhkna/XgcAP
http://paperpile.com/b/Kxhkna/XgcAP
http://paperpile.com/b/Kxhkna/XgcAP
http://paperpile.com/b/Kxhkna/g2UwR
http://paperpile.com/b/Kxhkna/g2UwR
http://paperpile.com/b/Kxhkna/g2UwR
http://paperpile.com/b/Kxhkna/g2UwR
http://paperpile.com/b/Kxhkna/g2UwR
http://paperpile.com/b/Kxhkna/g2UwR
http://paperpile.com/b/Kxhkna/C8LX1
http://paperpile.com/b/Kxhkna/C8LX1
http://paperpile.com/b/Kxhkna/C8LX1
http://paperpile.com/b/Kxhkna/C8LX1
http://paperpile.com/b/Kxhkna/C8LX1
http://paperpile.com/b/Kxhkna/C8LX1
http://paperpile.com/b/Kxhkna/J2snN
http://paperpile.com/b/Kxhkna/J2snN
http://paperpile.com/b/Kxhkna/J2snN
http://paperpile.com/b/Kxhkna/oZ9dy
http://paperpile.com/b/Kxhkna/oZ9dy
http://paperpile.com/b/Kxhkna/oZ9dy
http://paperpile.com/b/Kxhkna/oZ9dy
http://paperpile.com/b/Kxhkna/iQlru
http://paperpile.com/b/Kxhkna/iQlru
http://paperpile.com/b/Kxhkna/iQlru
http://paperpile.com/b/Kxhkna/iQlru
http://paperpile.com/b/Kxhkna/iQlru
http://paperpile.com/b/Kxhkna/iQlru
http://paperpile.com/b/Kxhkna/iQlru
http://paperpile.com/b/Kxhkna/iQlru
http://paperpile.com/b/Kxhkna/FyN8w
http://paperpile.com/b/Kxhkna/FyN8w
http://paperpile.com/b/Kxhkna/FyN8w
http://paperpile.com/b/Kxhkna/FyN8w
http://paperpile.com/b/Kxhkna/FyN8w
http://paperpile.com/b/Kxhkna/FyN8w
http://paperpile.com/b/Kxhkna/FyN8w
http://paperpile.com/b/Kxhkna/FyN8w
http://paperpile.com/b/Kxhkna/FyN8w
http://paperpile.com/b/Kxhkna/Gjld4
http://paperpile.com/b/Kxhkna/Gjld4
http://paperpile.com/b/Kxhkna/Gjld4

185

single-cell RNA-seq. Science 347, 1138–1142 (2015).

133. Joost, S. et al. Single-Cell Transcriptomics Reveals that Differentiation and Spatial

Signatures Shape Epidermal and Hair Follicle Heterogeneity. Cell Syst 3, 221–

237.e9 (2016).

134. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single

cells. Nat. Methods 14, 865–868 (2017).

135. Baron, M. et al. A Single-Cell Transcriptomic Map of the Human and Mouse

Pancreas Reveals Inter- and Intra-cell Population Structure. Cell Syst 3, 346–

360.e4 (2016).

136. Freytag, S., Tian, L., Lönnstedt, I., Ng, M. & Bahlo, M. Comparison of clustering

tools in R for medium-sized 10x Genomics single-cell RNA-sequencing data.

F1000Res. 7, 1297 (2018).

137. Lake, B. B. et al. Neuronal subtypes and diversity revealed by single-nucleus RNA

sequencing of the human brain. Science 352, 1586–1590 (2016).

138. Li, H. et al. Reference component analysis of single-cell transcriptomes elucidates

cellular heterogeneity in human colorectal tumors. Nat. Genet. 49, 708–718 (2017).

139. Camp, J. G. et al. Multilineage communication regulates human liver bud

development from pluripotency. Nature 546, 533–538 (2017).

140. Romanov, R. A. et al. Molecular interrogation of hypothalamic organization reveals

distinct dopamine neuronal subtypes. Nat. Neurosci. 20, 176–188 (2016).

141. Gray Camp, J. et al. Human cerebral organoids recapitulate gene expression

programs of fetal neocortex development. Proc. Natl. Acad. Sci. U. S. A. 112,

15672–15677 (2015).

http://paperpile.com/b/Kxhkna/Gjld4
http://paperpile.com/b/Kxhkna/Gjld4
http://paperpile.com/b/Kxhkna/Gjld4
http://paperpile.com/b/Kxhkna/Gjld4
http://paperpile.com/b/Kxhkna/Gjld4
http://paperpile.com/b/Kxhkna/NrOom
http://paperpile.com/b/Kxhkna/NrOom
http://paperpile.com/b/Kxhkna/NrOom
http://paperpile.com/b/Kxhkna/NrOom
http://paperpile.com/b/Kxhkna/NrOom
http://paperpile.com/b/Kxhkna/NrOom
http://paperpile.com/b/Kxhkna/NrOom
http://paperpile.com/b/Kxhkna/NrOom
http://paperpile.com/b/Kxhkna/NrOom
http://paperpile.com/b/Kxhkna/qEJ7F
http://paperpile.com/b/Kxhkna/qEJ7F
http://paperpile.com/b/Kxhkna/qEJ7F
http://paperpile.com/b/Kxhkna/qEJ7F
http://paperpile.com/b/Kxhkna/qEJ7F
http://paperpile.com/b/Kxhkna/qEJ7F
http://paperpile.com/b/Kxhkna/qEJ7F
http://paperpile.com/b/Kxhkna/qEJ7F
http://paperpile.com/b/Kxhkna/X4wko
http://paperpile.com/b/Kxhkna/X4wko
http://paperpile.com/b/Kxhkna/X4wko
http://paperpile.com/b/Kxhkna/X4wko
http://paperpile.com/b/Kxhkna/X4wko
http://paperpile.com/b/Kxhkna/X4wko
http://paperpile.com/b/Kxhkna/X4wko
http://paperpile.com/b/Kxhkna/X4wko
http://paperpile.com/b/Kxhkna/X4wko
http://paperpile.com/b/Kxhkna/ozqRw
http://paperpile.com/b/Kxhkna/ozqRw
http://paperpile.com/b/Kxhkna/ozqRw
http://paperpile.com/b/Kxhkna/ozqRw
http://paperpile.com/b/Kxhkna/ozqRw
http://paperpile.com/b/Kxhkna/ozqRw
http://paperpile.com/b/Kxhkna/77t3u
http://paperpile.com/b/Kxhkna/77t3u
http://paperpile.com/b/Kxhkna/77t3u
http://paperpile.com/b/Kxhkna/77t3u
http://paperpile.com/b/Kxhkna/77t3u
http://paperpile.com/b/Kxhkna/77t3u
http://paperpile.com/b/Kxhkna/77t3u
http://paperpile.com/b/Kxhkna/77t3u
http://paperpile.com/b/Kxhkna/91LC4
http://paperpile.com/b/Kxhkna/91LC4
http://paperpile.com/b/Kxhkna/91LC4
http://paperpile.com/b/Kxhkna/91LC4
http://paperpile.com/b/Kxhkna/91LC4
http://paperpile.com/b/Kxhkna/91LC4
http://paperpile.com/b/Kxhkna/91LC4
http://paperpile.com/b/Kxhkna/91LC4
http://paperpile.com/b/Kxhkna/ddVS4
http://paperpile.com/b/Kxhkna/ddVS4
http://paperpile.com/b/Kxhkna/ddVS4
http://paperpile.com/b/Kxhkna/ddVS4
http://paperpile.com/b/Kxhkna/ddVS4
http://paperpile.com/b/Kxhkna/ddVS4
http://paperpile.com/b/Kxhkna/ddVS4
http://paperpile.com/b/Kxhkna/ddVS4
http://paperpile.com/b/Kxhkna/xRlRY
http://paperpile.com/b/Kxhkna/xRlRY
http://paperpile.com/b/Kxhkna/xRlRY
http://paperpile.com/b/Kxhkna/xRlRY
http://paperpile.com/b/Kxhkna/xRlRY
http://paperpile.com/b/Kxhkna/xRlRY
http://paperpile.com/b/Kxhkna/xRlRY
http://paperpile.com/b/Kxhkna/xRlRY
http://paperpile.com/b/Kxhkna/4g1LN
http://paperpile.com/b/Kxhkna/4g1LN
http://paperpile.com/b/Kxhkna/4g1LN
http://paperpile.com/b/Kxhkna/4g1LN
http://paperpile.com/b/Kxhkna/4g1LN
http://paperpile.com/b/Kxhkna/4g1LN
http://paperpile.com/b/Kxhkna/4g1LN
http://paperpile.com/b/Kxhkna/4g1LN
http://paperpile.com/b/Kxhkna/4g1LN

186

142. La Manno, G. et al. Molecular Diversity of Midbrain Development in Mouse,

Human, and Stem Cells. Cell 167, 566–580.e19 (2016).

143. Klein, A. M. et al. Droplet Barcoding for Single-Cell Transcriptomics Applied to

Embryonic Stem Cells. Cell 161, 1187–1201 (2015).

144. Usoskin, D. et al. Unbiased classification of sensory neuron types by large-scale

single-cell RNA sequencing. Nat. Neurosci. 18, 145–153 (2015).

145. Tasic, B. et al. Adult mouse cortical cell taxonomy revealed by single cell

transcriptomics. Nat. Neurosci. 19, 335–346 (2016).

146. Chen, R., Wu, X., Jiang, L. & Zhang, Y. Single-Cell RNA-Seq Reveals

Hypothalamic Cell Diversity. Cell Rep. 18, 3227–3241 (2017).

147. Hicks, S. C. & Peng, R. D. Elements and Principles for Characterizing Variation

between Data Analyses. arXiv [stat.AP] (2019).

148. Johansen, N. & Quon, G. scAlign: a tool for alignment, integration, and rare cell

identification from scRNA-seq data. Genome Biol. 20, 1–21 (2019).

149. Langer-Safer, P. R., Levine, M. & Ward, D. C. Immunological method for mapping

genes on Drosophila polytene chromosomes. Proc. Natl. Acad. Sci. U. S. A. 79,

4381–4385 (1982).

150. Wang, L., Xiao, Q. & Xu, H. Optimal maximin L1-distance Latin hypercube designs

based on good lattice point designs. aos 46, 3741–3766 (2018).

151. Wang, L., Yang, J.-F., Lin, D. K. J. & Liu, M.-Q. NEARLY ORTHOGONAL LATIN

HYPERCUBE DESIGNS FOR MANY DESIGN COLUMNS. Stat. Sin. 25, 1599–

1612 (2015).

152. Xiao, Q., Wang, L. & Xu, H. Application of kriging models for a drug combination

http://paperpile.com/b/Kxhkna/DSKLu
http://paperpile.com/b/Kxhkna/DSKLu
http://paperpile.com/b/Kxhkna/DSKLu
http://paperpile.com/b/Kxhkna/DSKLu
http://paperpile.com/b/Kxhkna/DSKLu
http://paperpile.com/b/Kxhkna/DSKLu
http://paperpile.com/b/Kxhkna/DSKLu
http://paperpile.com/b/Kxhkna/DSKLu
http://paperpile.com/b/Kxhkna/5MYly
http://paperpile.com/b/Kxhkna/5MYly
http://paperpile.com/b/Kxhkna/5MYly
http://paperpile.com/b/Kxhkna/5MYly
http://paperpile.com/b/Kxhkna/5MYly
http://paperpile.com/b/Kxhkna/5MYly
http://paperpile.com/b/Kxhkna/5MYly
http://paperpile.com/b/Kxhkna/5MYly
http://paperpile.com/b/Kxhkna/DVK3U
http://paperpile.com/b/Kxhkna/DVK3U
http://paperpile.com/b/Kxhkna/DVK3U
http://paperpile.com/b/Kxhkna/DVK3U
http://paperpile.com/b/Kxhkna/DVK3U
http://paperpile.com/b/Kxhkna/DVK3U
http://paperpile.com/b/Kxhkna/DVK3U
http://paperpile.com/b/Kxhkna/DVK3U
http://paperpile.com/b/Kxhkna/06YIs
http://paperpile.com/b/Kxhkna/06YIs
http://paperpile.com/b/Kxhkna/06YIs
http://paperpile.com/b/Kxhkna/06YIs
http://paperpile.com/b/Kxhkna/06YIs
http://paperpile.com/b/Kxhkna/06YIs
http://paperpile.com/b/Kxhkna/06YIs
http://paperpile.com/b/Kxhkna/06YIs
http://paperpile.com/b/Kxhkna/EvKwB
http://paperpile.com/b/Kxhkna/EvKwB
http://paperpile.com/b/Kxhkna/EvKwB
http://paperpile.com/b/Kxhkna/EvKwB
http://paperpile.com/b/Kxhkna/EvKwB
http://paperpile.com/b/Kxhkna/EvKwB
http://paperpile.com/b/Kxhkna/3yySq
http://paperpile.com/b/Kxhkna/3yySq
http://paperpile.com/b/Kxhkna/3yySq
http://paperpile.com/b/Kxhkna/3yySq
http://paperpile.com/b/Kxhkna/BTNNB
http://paperpile.com/b/Kxhkna/BTNNB
http://paperpile.com/b/Kxhkna/BTNNB
http://paperpile.com/b/Kxhkna/BTNNB
http://paperpile.com/b/Kxhkna/BTNNB
http://paperpile.com/b/Kxhkna/BTNNB
http://paperpile.com/b/Kxhkna/GdGx8
http://paperpile.com/b/Kxhkna/GdGx8
http://paperpile.com/b/Kxhkna/GdGx8
http://paperpile.com/b/Kxhkna/GdGx8
http://paperpile.com/b/Kxhkna/GdGx8
http://paperpile.com/b/Kxhkna/GdGx8
http://paperpile.com/b/Kxhkna/GdGx8
http://paperpile.com/b/Kxhkna/Qup7
http://paperpile.com/b/Kxhkna/Qup7
http://paperpile.com/b/Kxhkna/Qup7
http://paperpile.com/b/Kxhkna/Qup7
http://paperpile.com/b/Kxhkna/Qup7
http://paperpile.com/b/Kxhkna/Qup7
http://paperpile.com/b/Kxhkna/Usr9
http://paperpile.com/b/Kxhkna/Usr9
http://paperpile.com/b/Kxhkna/Usr9
http://paperpile.com/b/Kxhkna/Usr9
http://paperpile.com/b/Kxhkna/Usr9
http://paperpile.com/b/Kxhkna/Usr9
http://paperpile.com/b/Kxhkna/Usr9
http://paperpile.com/b/Kxhkna/eVfL

187

experiment on lung cancer. Stat. Med. 38, 236–246 (2019).

153. Wang, L., Sun, F., Lin, D. K. J. & Liu, M.-Q. CONSTRUCTION OF ORTHOGONAL

SYMMETRIC LATIN HYPERCUBE DESIGNS. Stat. Sin. 28, 1503–1520 (2018).

154. Wang, L. Space-Filling Designs and Big Data Subsampling. (UCLA, 2019).

155. Wang, L. & Xu, H. A Class of Multilevel Nonregular Designs for Studying

Quantitative Factors. arXiv e-prints arXiv:1812.05202 (2018).

156. Nishino, R. & Loomis, S. H. C. CuPy: A NumPy-compatible library for NVIDIA GPU

calculations. 31st conference on neural information processing systems 151

(2017).

157. Sun, T., Song, D., Li, W. V. & Li, J. J. scDesign2: a transparent simulator that

generates high-fidelity single-cell gene expression count data with gene

correlations captured. Genome Biol. 22, 1–37 (2021).

158. Song, D. & Li, J. J. PseudotimeDE: inference of differential gene expression along

cell pseudotime with well-calibrated p -values from single-cell RNA sequencing

data. Genome Biol. 22, 1–25 (2021).

159. Wang, L., Elmstedt, J., Wong, W. K. & Xu, H. Orthogonal Subsampling for Big Data

Linear Regression. arXiv [stat.ME] (2021).

http://paperpile.com/b/Kxhkna/eVfL
http://paperpile.com/b/Kxhkna/eVfL
http://paperpile.com/b/Kxhkna/eVfL
http://paperpile.com/b/Kxhkna/eVfL
http://paperpile.com/b/Kxhkna/eVfL
http://paperpile.com/b/Kxhkna/CPzB
http://paperpile.com/b/Kxhkna/CPzB
http://paperpile.com/b/Kxhkna/CPzB
http://paperpile.com/b/Kxhkna/CPzB
http://paperpile.com/b/Kxhkna/CPzB
http://paperpile.com/b/Kxhkna/CPzB
http://paperpile.com/b/Kxhkna/3gBg
http://paperpile.com/b/Kxhkna/R2U2
http://paperpile.com/b/Kxhkna/R2U2
http://paperpile.com/b/Kxhkna/R2U2
http://paperpile.com/b/Kxhkna/R2U2
http://paperpile.com/b/Kxhkna/yKOeT
http://paperpile.com/b/Kxhkna/yKOeT
http://paperpile.com/b/Kxhkna/yKOeT
http://paperpile.com/b/Kxhkna/yKOeT
http://paperpile.com/b/Kxhkna/yKOeT
http://paperpile.com/b/Kxhkna/yKOeT
http://paperpile.com/b/Kxhkna/yKOeT

