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Research Paper

Cerebellar network alterations in adult 
attention-deficit/hyperactivity disorder

Salla Parkkinen, MSc; Joaquim Radua, MD, PhD; Derek S. Andrews, PhD;  
Declan Murphy, MD; Flavio Dell’Acqua, PhD; Valeria Parlatini, MD, PhD

Introduction

Attention-deficit/hyperactivity disorder (ADHD) is a neuro-
developmental condition characterized by inattentive or 
 hyperactive-impulsive symptoms,1 and is estimated to affect 
about 4% of adults.2 Adult ADHD has been associated with 
increased risk of academic and occupational failure, delin-
quency, and self-medication with alcohol and substances, as 
well as high societal costs, mainly related to health care, edu-
cational support, and income loss.3 Stimulants, such as 
methyl phenidate, represent the first-line treatment for 
ADHD and are effective in reducing core ADHD symptoms, 
but response rates are lower among adults than children.4,5 
The neurobiological characteristics underlying symptom se-
verity, associated cognitive deficits, and treatment response 
in adults require further study.3,6 Imaging studies have iden-

tified alterations in brain anatomy and function among 
 people with ADHD compared with neurotypical controls, al-
though these have mainly focused on children. Observed al-
terations include reduced volume of the basal ganglia and 
frontocingulate cortex,7,8 and hypoactivation of frontostriatal 
regions during inhibition tasks.7 Studies investigating brain 
connectivity are increasingly common.6,9

The anatomy of brain connections can be studied using 
 diffusion-weighted imaging, which measures restriction of 
water diffusivity to identify white-matter bundles and esti-
mate microstructural properties. The most recent systematic 
review included 129 diffusion-weighted imaging studies of 
ADHD and reported alterations in diffuse brain connectivity, 
most consistently in the splenium and body of the corpus cal-
losum.6 The review highlighted that most studies have 
 focused on frontostriatal networks, in line with a dominant 
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Background: Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental condition that often persists into adulthood. 
Under lying alterations in brain connectivity have been identified but some relevant connections, such as the middle, superior, and inferior 
cerebellar peduncles (MCP, SCP, and ICP, respectively), have remained largely unexplored; thus, we sought to investigate whether the 
cerebellar peduncles contribute to ADHD pathophysiology among adults. Methods: We applied diffusion-weighted spherical deconvolu-
tion tractography to dissect the cerebellar peduncles of male adults with ADHD (including those who did or did not respond to methyl-
phenidate, based on at least 30% symptom improvement at 2 months) and controls. We investigated differences in tract metrics between 
controls and the whole ADHD sample and between controls and treatment-response groups using sensitivity analyses. Finally, we ana-
lyzed the association between the tract metrics and cliniconeuropsychological profiles. Results: We included 60 participants with ADHD 
(including 42 treatment responders and 18 nonresponders) and 20 control participants. In the whole ADHD sample, MCP fractional 
 anisotropy (FA; t78 = 3.24, p = 0.002) and hindrance modulated orientational anisotropy (HMOA; t78 = 3.01, p = 0.004) were reduced, and 
radial diffusivity (RD) in the right ICP was increased (t78 = –2.84, p = 0.006), compared with controls. Although case–control differences 
in MCP FA and HMOA, which reflect white-matter microstructural organization, were driven by both treatment response groups, only 
 responders significantly differed from controls in right ICP RD, which relates to myelination (t60 = 3.14, p = 0.003). Hindrance modulated 
orientational anisotropy of the MCP was significantly positively associated with hyperactivity measures. Limitations: This study included 
only male adults with ADHD. Further research needs to investigate potential sex- and development-related differences. Conclusion: 
These results support the role of the cerebellar networks, especially of the MCP, in adult ADHD pathophysiology and should encourage 
further investigation. Clinical trial registration: NCT 03709940
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pathophysiological hypothesis of ADHD. Further, only one-
fifth of studies restricted recruitment to adults. Among stud-
ies that included adult or mixed samples, 17 identified altera-
tions within frontostriatothalamic circuits, 11 in the corpus 
callosum, and 9 in the superior longitudinal fasciculus. These 
findings primarily focused on reduced fractional anisotropy 
(FA), a proxy measure of white-matter microstructural 
organ ization, among people with ADHD compared with 
neurotypical controls.6 Other relevant brain connections, such 
as the cerebellar peduncles, have remained largely un-
explored, especially in adults.

The cerebellar networks likely contribute to ADHD patho-
physiology because the cerebellum supports motor, cogni-
tive, and emotion regulation skills that are impaired in 
ADHD.10–12 The role of the cerebellum in motor control and 
learning is well established. However, studies have shown 
that cerebellar damage may not only cause marked motor 
disturbances but also attention deficits, impulsivity, anxiety, 
and aggressive behaviour, especially when damage occurs 
early during development.12,13 The cerebellum is connected to 
other brain structures — such as the cerebral cortex and the 
basal ganglia — through the cerebellar peduncles, and thus 
forms part of an integrative brain system that supports plan-
ning and execution of complex behavioural sequences.11,12,14

In line with these observations, structural and functional 
cerebellar alterations have been observed among people with 
ADHD.15,16 For instance, an early longitudinal study reported 
persistently smaller cerebellar volumes during childhood 
and adolescence among people with ADHD compared with 
controls.17 Similar alterations were also observed among 
adults with ADHD.18–20 A subsequent study showed that re-
duced volume of the right posterior cerebellar lobe was spe-
cific to people with ADHD in comparison to those with aut-
ism spectrum disorder.15 This is of relevance, as the posterior 
cerebellum primarily supports cognitive functions, such as 
executive functions, which are impaired in ADHD.21 Resting-
state functional connectivity analyses have also identified dif-
ferences in frontocerebellar connectivity among both children 
and adults with ADHD.22–25 Further, a defective interaction 
has been observed between cerebellar areas functionally con-
nected to the default mode network, which is associated with 
mind wandering, and the dorsal attentive network, which 
supports the voluntary control of attention. The altered inter-
play between these functional networks has been associated 
with attentional lapses during cognitive tasks among adults 
with ADHD.22,26 The systematic review6 identified 6 diffusion-
weighted imaging studies reporting reduced FA among chil-
dren with ADHD within the cerebellum or its main afferent 
pathway, the middle cerebellar peduncle (MCP).27–32 Among 
these, only 1 study also investigated the inferior cerebellar 
peduncle (ICP),32 and no study investigated the superior 
 cerebellar peduncle (SCP). Two studies focused on adults; 
1 observed increased FA in the MCP33 and the other identi-
fied a significant association between cerebellar network or-
ganization and symptom severity.34 Accordingly, alterations 
in the structural connections of the cerebellum in ADHD and 
their relation to symptoms are poorly understood, particu-
larly in adults.

Previous diffusion-weighted imaging studies have mostly 
included people under treatment, resulting in research sam-
ples enriched with those who respond to such treatment. The 
biological differences between those who do and do not 
 respond to stimulant treatment are poorly understood. To 
date, only 2 diffusion-weighted imaging studies have re-
ported associations between connectivity measures and treat-
ment response in ADHD. These studies separately focused 
on frontothalamic or frontoparietal connections, either in 
children35 or adults with ADHD.36 The association of cerebel-
lar structural connectivity with ADHD treatment response in 
adults has not been explored, but this could provide valuable 
insights into the biological basis of treatment resistance. 
Overall, a more comprehensive investigation of the role of 
the 3 cerebellar peduncles in adult ADHD and potential dif-
ferences between responders and nonresponders to treat-
ment is warranted. Thus, we sought to investigate whether 
the cerebellar peduncles contribute to ADHD pathophysio-
logy among adults

Methods

To better understand the potential role of the cerebellar net-
works in the pathophysiology of adult ADHD, we investi-
gated the anatomy of the cerebellar peduncles in adults with 
ADHD (including those who did or did not respond to 
 treatment with methylphenidate) and controls. We used 
 diffusion-weighted spherical deconvolution tractography to 
virtually dissect the cerebellar peduncles. We then compared 
controls with the whole ADHD sample, and with treatment-
response groups in sensitivity analyses. Finally, we analyzed 
the association between cerebellar tract metrics and clinico-
neuropsychological profiles. 

Participants

We recruited adults with ADHD (aged 18–45 yr) from the 
Adult ADHD Clinic, Maudsley Hospital (London, UK), to 
take part in a prospective longitudinal study investigating 
neurobiological associates of treatment response.36 We deter-
mined the sample size based on a power calculation. Con-
sidering that around 34% of adults do not respond to methyl-
phenidate,5 we required 60 participants with ADHD to 
obtain a third for whom the treatment was ineffective, con-
sidering an effect size (d) of 0.4 and a statistical power of 80%. 
To enhance sample homogeneity, we included only males, 
among whom ADHD is more commonly diagnosed37 be-
cause there is preliminary evidence of sex differences in brain 
connectivity38–41 and biological response to stimulants.42–44 A 
clinician confirmed the diagnosis of ADHD according to 
DSM-V criteria.1 We included participants with an intelli-
gence quotient (IQ) above 70 and no current comorbidities. 
We mainly recruited medication-naïve participants. No par-
ticipants received any psychotropic treatment for at least a 
year before this study. Finally, we matched neurotypical con-
trols on sex, age, and IQ; this group provided baseline scans 
for secondary comparative analyses.
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Research protocol

This study was part of a larger trial employing a single-blind 
placebo-controlled crossover design, followed by a longitud-
inal open-label phase (NCT 03709940). The full protocol has 
been described previously.36 The trial tests whether pretreat-
ment brain characteristics were associated with treatment 
 response at 2 months among adults with ADHD. In this spe-
cific study, we investigated the anatomy of the cerebellar pe-
duncles and their cliniconeuropsychological correlates. In 
brief, adults with ADHD completed clinical and behavioural 
measures under placebo (i.e., baseline) and, 2 days after, 
 under an acute dose of methylphenidate. Participants were 
blind to the content of the capsules, whose order was re-
versed for the second half of participants to balance potential 
practice and expectation effects. Participants also underwent 
baseline diffusion-weighted imaging. They were then started 
on the same long-acting formulation of methylphenidate 
(Concerta XL, titrated up to 54 mg according to standard clin-
ical care). Clinical and behavioural measures were then re-
peated after 2 months (i.e., follow-up), at which time treat-
ment response was ascertained.

At each time point, participants with ADHD completed the 
 Barkley Adult ADHD Rating Scale-IV (BAARS-IV),45 which 
provided 3 scores (ADHD total score, ADHD inattention, 
and ADHD hyperactivity–impulsivity), and the Quantitative 
Behaviour (Qb) test (https://www.qbtech.com). We selected 
this test because it measures core ADHD symptoms using a 
continuous performance task and infrared monitoring of 
movements, and was granted approval from the Food and 
Drug Administration to aid treatment evaluation.46 We con-
sidered both summary scores (Qb activity, Qb impulsivity, 
and Qb inattention) and underlying individual parameters. 
For instance, the Qb activity score includes parameters meas-
ured by motion-capturing device, such as time active (i.e., 
time the participant moves more than 1 cm/s); microevents 
(i.e., how many times the participant moves more than 
1 mm); distance (i.e., the overall distance, in metres, covered 
by the marker during the task), and area (i.e., the overall area 
covered by the marker). Appendix 1, available at www.jpn.
ca/lookup/doi/10.1503/jpn.230146/tab-related-content, 
provides details on the included parameters. We classified 
participants with ADHD as responders or nonresponders 
 according to an overall symptom improvement of at least 
30% (BAARS-IV total score) at 2 months. We chose this cut-
off as it is commonly used in pharmacological trials of 
ADHD.5,47 We compared baseline cerebellar metrics between 
participants with ADHD and controls, and between ADHD 
responders and nonresponders. We also tested the associa-
tion between baseline cerebellar metrics and clinicobehav-
ioural measures at the 3 time points. 

Diffusion MRI data acquisition and analysis

We acquired diffusion-weighted imaging scans at baseline. De-
tails on imaging data, preprocessing, and tractography proto-
cols are described in Appendix 1. Tracts were visualized using 
Trackvis (http://www.trackvis.org).48 We dissected 5 tracts for 

each participant, as previously described.49 Tracts included the 
left and right SCP, left and right ICP, and the MCP (Figure 1). 
Of note, the MCP was reconstructed as a single large bundle, as 
it was not possible to separate the 2 branches at the level of the 
pontine nuclei. We extracted mean diffusivity, FA, axial diffu-
sivity, radial diffusivity (RD), tract volume, track count, and 
hindrance modulated orientational anisotropy (HMOA) for sta-
tistical analysis (Appendix 1).

Statistical analysis

We used SPSS software (version 26) to conduct the statistical 
analyses. We confirmed normality of tract metrics using 
 histograms and Q–Q plots. We used descriptive statistics to 
analyze the characteristics of the sample and independent- 
sample t tests (2-tailed) to investigate differences in tract met-
rics between the whole ADHD sample and controls. We ap-
plied Bonferroni correction to account for multiple 
comparisons (n = 5 tracts, p < 0.01). For tract metrics that sur-
vived correction for multiple comparisons, we ran a sensitiv-
ity analysis, using 1-way analysis of variance (ANOVA) and, 
where appropriate, post hoc t tests to investigate potential 
group differences among controls and the 2 ADHD treatment 
groups. As we limited the sensitivity analysis to the tract 
metrics that survived Bonferroni correction, these results 
were deemed significant at p less than 0.05. Finally, to ensure 
that the findings were not confounded by age or total IQ, we 
repeated the analyses including age and IQ as covariates via 
multiple regression.

We used correlation analyses to investigate associations be-
tween the tract metrics that survived correction for multiple 
comparisons and cliniconeuropsychological measures in the 
whole ADHD sample. Specifically, we considered baseline 
clinical and neuropsychological measures, their change 
 under an acute dose of methylphenidate (compared with 
baseline), and their change at follow-up (compared with 
baseline). Here, we applied Bonferroni correction for mul-
tiple comparisons by the number of tracts included in the 
correlation analyses. Effects of age and IQ were controlled 
through partial correlations.

Ethics approval

The study was approved by the Camden and Islington 
 Research Ethics Committee (no. 12/LO/0630), and com-
plied with the ethical standards of the relevant national and 
 institutional committees on human experimentation and 
with the Helsinki Declaration. All participants provided 
written consent. 

Results

Full details have been reported previously36 and are sum-
marized in Appendix 1, Table S1. In brief, the sample in-
cluded 60 male adults with ADHD (58% with combined and 
42% with inattentive presentation). Participants with ADHD 
had a mean age of 28.1 (standard deviation [SD] 7.3) years 
and an average full-scale IQ of 109.9 (SD 12.3). They were 
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mostly White British (71.6%), right-handed (78%), and 
 medication-naïve (77%). Twenty controls were matched for 
sex, age, and IQ (Appendix 1, Table S2); they were mostly 
right-handed (90%). All participants with ADHD received 
long-acting methylphenidate. This was titrated up to 54 mg 
for most participants, as per protocol. The dose was modified 
in 34% of participants, mainly because of adverse effects. At 
follow-up, we classified participants into responders (n = 42) 
and non responders (n = 18), based on their improvement in 
BAARS-IV total scores. The 2 groups did not significantly dif-
fer in ethnicity, baseline clinical severity, handedness, age, 
 total IQ, or methylphenidate dose at follow-up. Characteris-
tics of the whole ADHD sample and responder groups, with 
comparisons, have been reported previously36 and are sum-
marized in Appendix 1, Table S1 and Table S2. Among par-
ticipants who received methylphenidate at a dose lower than 
54 mg, 70% were classified as responders.

Participants with ADHD v. neurotypical controls

Independent-sample t tests revealed significant differences 
between the participants with ADHD and controls in MCP 
FA (t78 = 3.24, p = 0.002), MCP HMOA (t78 = 3.01, p = 0.004), 
right ICP RD (t78  =  –2.84, p  =  0.006), MCP RD (t78  =  –2.44, 
p  =  0.017), and right ICP mean diffusivity (t78  =  –2.55, 
p  =  0.013). The first 3 metrics remained significant after 

 Bonferroni correction for multiple comparisons. Multiple re-
gressions showed no effect of age or total IQ on these metrics 
(Appendix 1, Table S3). These results indicate that MCP FA 
and HMOA were reduced, while the RD of the right ICP was 
higher, among participants with ADHD compared with con-
trols (Figure 2). All results are reported in Appendix 1, 
Table S3.

Responders, nonresponders, and neurotypical controls

Sensitivity analyses tested for differences between the 
 treatment-response groups and controls in the 3 tract metrics 
that survived correction for multiple comparisons. We ob-
served a significant effect of group in MCP FA (F77,2 = 5.18, 
p = 0.008), MCP HMOA (F77,2 = 4.46, p = 0.015), and RD of the 
right ICP (F77,2 = 5.73, p = 0.005). Post hoc t tests indicated that 
MCP FA was significantly lower among both responders 
(t60 = –3.00, p = 0.004) and nonresponders (t36 = –2.76, p = 0.009) 
than controls. Similarly, MCP HMOA was significantly lower 
in both treatment-response groups than the control group 
(t60 = –2.79, p = 0.007 v. responder group; t36 = –2.30, p = 0.027 
v. nonresponder group). Finally, RD of the right ICP was sig-
nificantly higher among responders than controls (t60 = 3.14, 
p = 0.003) (Figure 2). We did not observe significant differ-
ences between responders and nonresponders in these 3 tract 
metrics. Group differences in these metrics retained 

Figure 1: Lateral views of the 5 tracts dissected in each participant, including the bilateral superior cerebellar peduncles (SCPs), the bilateral 
inferior cerebellar peduncles (ICPs), and the middle cerebellar peduncle (MCP), presented both (A) together and (B) separately. 

A B

SCP

MCP

ICP
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 significant when we controlled for age and total IQ using 
multiple regressions (Appendix 1, Table S4). We report the 
ANOVA results for all tract metrics in Appendix 1, Table S4.

Correlations between tract metrics and 
 cliniconeuropsychological profiles

We determined correlations between tract metrics and baseline 
neuropsychological variables, measured by the Qb test, among 
participants with ADHD. We found that MCP FA was signifi-
cantly correlated with distance (r = 0.27, p = 0.03), and MCP 
HMOA was correlated with both distance and area (both 
r = 0.31, p = 0.02). Further, MCP FA was significantly correlated 
with change in omission errors under an acute dose of methyl-
phenidate (r  =  0.29, p  =  0.03) and at follow-up (r  =  0.27, 
p = 0.04). These results suggest that microstructural organiza-
tion of the MCP was associated with increased baseline hyper-
activity, as measured by the Qb test, and with improvement in 
the number of omissions (i.e., inattention)  under treatment. As-
sociations between MCP HMOA and baseline hyperactivity 
measures survived correction for multiple comparisons 
(p < 0.025) (Figure 3 and Appendix 1, Table S5 and Table S6). 
All the above associations retained significance when control-
ling for the effects of age and full-scale IQ (Appendix 1, Table 
S7). For completeness, results of correlations for tract metrics 
not included in the main analyses are reported in Appendix 2, 
Table S8, and Appendix 3, Table S9, available at www.jpn.ca/
lookup/doi/10.1503/jpn.230146/tab-related-content.

Discussion

We investigated the 3 cerebellar peduncles and their associa-
tions with cliniconeuropsychological profiles and response to 
methylphenidate treatment among adults with ADHD. The 
results indicate significant reductions in MCP FA and 
HMOA and increased RD in the right ICP among adults with 
ADHD. Participants who responded to methylphenidate did 
not significantly differ from those who did not in these 3 met-
rics. However, while case–control differences in MCP FA and 
HMOA were driven by both treatment response groups, only 
responders had significantly higher RD in the right ICP than 
controls. In addition, MCP HMOA was significantly posi-
tively associated with baseline levels of hyperactivity levels 
among all participants with ADHD.

Comparisons between our results and other findings are 
limited, given the paucity and heterogeneity of published 
studies. For instance, reduced white-matter microstructural 
organization of the MCP has been reported among children 
and adolescents with ADHD.27–31 However, these results are 
inconsistent.6,32 Further, only 2 diffusion-weighted imaging 
studies have reported cerebellar network alterations among 
adults with ADHD.33,34 The study that measured the micro-
structural characteristics of individual tracts reported in-
creased FA in the MCP of participants with ADHD com-
pared with controls.33 This contrasts with our findings and 
those of most studies among children.6 The incongruence be-
tween these findings can likely be attributed to sample and 

Figure 2: Group differences in cerebellar tract metrics, showing significant differences between all participants with attention-deficit/ 
hyperactivity disorder (ADHD) and neurotypical controls that survived correction for multiple comparisons, including (A) fractional anisotropy 
(FA) of the middle cerebellar peduncle (MCP), (B) hindrance modulated orientational anisotropy (HMOA) of the MCP, and (C) radial diffusivity 
(RD) of the right inferior cerebellar peduncle (ICP). Significant differences between ADHD treatment responders, nonresponders, and controls 
are shown in (D) MCP FA, (E) MCP HMOA, and (F) RD of the right ICP. *Significant at p < 0.05; **significant at p < 0.01.
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methodological differences between studies. To our know-
ledge, only 1 diffusion-weighted imaging study reported re-
duced FA in the ICP, but included only children with 
ADHD.32 No study has investigated the SCP in the ADHD 
population. Accordingly, our findings of significant differ-
ences in MCP microstructural organization and in RD in the 
right ICP among adults with ADHD fills an important gap in 
the ADHD literature.6

Significant differences between adults with ADHD and 
neurotypical controls were limited to a few measures among 
cerebellar peduncles. These findings are in line with those of 
structural imaging studies, which often observe less prom-
inent anatomic alterations among adults than children with 
ADHD, especially in the basal ganglia.8,50 Reductions in 
ADHD-associated anatomic alterations with time, especially 
in brain regions involved in the modulation of motor func-
tions, may relate to improvements in hyperactivity and im-
pulsivity symptoms that are often observed among adoles-
cents and adults with ADHD.3 Taken together, our results 
and those of previous studies suggest that, although ana-
tomic differences generally reduce with age, subtle altera-
tions in the microstructural organization of the cerebellar net-
works associated with ADHD, especially of the MCP, may 
contribute to the persistence of ADHD into adulthood.

The suggestion that the MCP plays a role in ADHD patho-
physiology is further supported by the significant correla-
tion between MCP microstructural organization and neuro-
psychological profiles. We observed that MCP HMOA was 
positively associated with increased hyperactivity at base-
line among participants with ADHD, which is in line with 

the role of the cerebellum in modulating motor functions.10 
Very few diffusion-weighted imaging studies have investi-
gated the association between cerebellar white-matter anat-
omy and cliniconeuropsychological profiles, and these 
mostly involved children.6 A study involving adolescents 
with ADHD reported that reduced MCP FA was associated 
with executive dysfunction and inattention.30 Similarly, re-
duced cerebellar FA was reported to be associated with 
 increased severity of inattentive symptoms27 and worse per-
form ance at the continuous performance task among 
youth.51 One study has examined correlations between cere-
bellar anatomy and clinical measures in adult ADHD. Using 
a graph-theoretical approach, this study reported associa-
tions between the cerebellar network and symptom sever-
ity.34 In contrast, we observed group differences associated 
with cognitive deficits but not with symptom severity. How-
ever, these studies are not methodologically comparable, as 
the previous study did not separately investigate the 3 cere-
bellar peduncles.34 Further, we primarily tested associations 
for the tract metrics that survived correction for multiple 
comparisons between participants with ADHD controls. 
Studies have suggested that associations with symptoms 
may also be mediated by white-matter characteristics in ad-
dition to case–control differences.52

We did not identify significant differences between partici-
pants with ADHD who did or did not respond to methyl-
phenidate in the 3 metrics that differed between participants 
with ADHD and controls. However, treatment responders 
differed significantly from controls in RD of the right ICP. 
Structural imaging studies involving children with ADHD 

Figure 3: Correlations surviving correction for multiple comparisons among participants with attention-deficit/hyperactivity disorder. Hindrance 
modulated orientational anistotropy (HMOA) in the middle cerebellar peduncle (MCP) was positively correlated with pretreatment hyperactivity 
levels, as measured by (A) distance and (B) area metrics of the Quantitative Behaviour test.
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reported that nonresponders showed smaller corpus callo-
sum53 and parieto-occipital white matter,54 as well as altered 
developmental trajectories of frontocerebellar regions.55,56 
Two diffusion-weighted imaging studies have reported dif-
ferences between responders and nonresponders, focusing 
on frontothalamic tracts in children with ADHD35 and fronto-
parietal connections in adults with ADHD.36 Taken together, 
the current and previous findings suggest that microstruc-
tural characteristics of specific brain connections may contrib-
ute to variations in treatment response, although further 
studies are needed to investigate potential differences be-
tween children and adults.

Unfortunately, tractography does not allow the direct in-
vestigation of the biological mechanisms through which 
 altered structural connectivity may influence cliniconeuro-
psychological profiles or their change under treatment. Func-
tional anisotropy and HMOA are composite measures that 
reflect several underlying microstructural properties, includ-
ing altered myelination, axonal density or diameter, or fibre 
crossing.57 Although not a direct measure, evidence suggests 
that RD may be more sensitive than FA or HMOA to altera-
tions in myelination.58,59 Accordingly, observed differences 
between adults with ADHD and controls may be indicative 
of delayed or altered myelination, which has been previously 
suggested as a pathogenetic mechanism in ADHD.60 The 
causes of this putative delayed or altered myelination are un-
known, but studies have suggested the involvement of both 
genetic and environmental factors. For example, genes 
 related to myelination have been identified by a recent 
 genome-wide association meta-analysis of ADHD.61 In addi-
tion, the methylation pattern of these genes, which may re-
flect environmental insults, has been shown to be associated 
with the developmental trajectory of ADHD symptoms.62 
Further studies are needed to clarify the exact mechanisms 
underlying ADHD clinical presentations. However, the cur-
rent findings support the suggestion that altered white- 
matter development and resulting structural connectivity 
may affect the ability of the cerebellum to finely coordinate 
motor activity and cognitive functions in ADHD.

Limitations

We included a small percentage of individuals who were pre-
viously exposed to ADHD medication. However, most par-
ticipants were medication-naïve, and previous reports have 
excluded a normalizing effect of stimulants on brain struc-
ture.63 Further, we included only participants with ADHD 
who did not have current comorbid conditions, given find-
ings that neuroanatomical differences exist between people 
with and without comorbidities.6 For instance, meta- analyses 
highlighted that people with ADHD and autism spectrum 
disorder have both shared and specific connectivity altera-
tions.64 Nevertheless, our results should be validated in clin-
ic al samples that include people with comorbidities. Similarly, 
we included only males, among whom ADHD is more com-
monly diagnosed,37 because preliminary evidence showed sex 
differences in brain connectivity and biological response to 
stimulants.40,42–44 However, it is not known how the former 

may relate to the latter; thus, we wanted to avoid potential 
sex-related confounding. Accordingly, studies should be ex-
tended to females. In addition, our prospective study design 
was the most appropriate to identify pretreatment characteris-
tics associated with treatment response but resulted in the in-
clusion of a relatively small number of nonresponders. This is 
similar to the proportion of nonresponders identified in previ-
ous randomized clinical trials,5 and is representative of the 
 actual clinical population of adults with ADHD. Similarly, we 
included a relatively small number of controls, as these were 
originally recruited for secondary comparative analyses to aid 
the interpretation of the results of the primary analysis. Thus, 
although we provided evidence of the involvement of cerebel-
lar peduncles in adult ADHD pathophysiology, our findings 
need to be validated in larger samples to ensure generalizabil-
ity. Finally, given limitations of tractography algorithms in 
 areas with multiple fibre crossings, we were unable to sep-
arate the right and left components of the MCP. Further inves-
tigation in a higher-resolution data set may help resolve lim-
itations related to fibre tracking.

Conclusion

The present study provided evidence that the cerebellar 
 peduncles play a role in adult ADHD pathophysiology. We 
observed white-matter microstructural differences between 
adults with ADHD and neurotypical controls in the MCP 
and right ICP and found associations between tract metrics 
and hyperactivity levels. The limited differences between the 
ADHD and control groups may be reflective of the estab-
lished age-related improvement of ADHD symptoms, al-
though these findings suggest alterations are still detectable 
in adults with persistent symptoms. Future studies are 
needed to clarify potential age-related differences in the role 
that the cerebral peduncles play in ADHD pathophysiology, 
including variation in their associations with cliniconeuro-
psychological profiles and response to treatment.
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