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ABSTRACT OF THE DISSERTATION 

 

High Resolution Magnetic Resonance Imaging  
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Professor Robert N. Candler, Chair 

 

 

Magnetic resonance imaging (MRI) is a non-invasive imaging technique that can produce 

high spatial resolution 3D images, especially for non-bony parts or soft tissues. Higher imaging 

resolution is usually preferred, to detect small lesions or irregularities in the imaging subject. This 

dissertation presents two projects that aims for high-resolution MRI. In the first project, we 

designed a single-loop miniature flexible coil that can be surgically positioned millimeters from the 

pituitary gland, enabling high-SNR pituitary MRI. We investigated the spatial distributions of the 

image SNR of the miniature coil, via both numerical simulation and phantom experiments. We 

also explored the feasibility of increased SNR within the pituitary gland based on simulated 

surgical placements. Compared to the commercial head coil, our miniature coil achieved up to a 

19-fold SNR improvement within the region of interest, and the simulation and phantom 
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experiment reached a good agreement, with an error of 1.1% ± 0.8%. High resolution MRI scans 

further demonstrated the visual improvement of the miniature coil against the commercial head 

coil. The cross-validation of the simulation and the phantom experiment showed the potential of 

using the numerical simulation model to accelerate the coil design prototyping and iteration and to 

optimize coil design in the future. The clinical application study describes a transnasally-placed 2-

cm flexible coil to improve the resolution of pituitary imaging. The coil is compatible with 95% of 

patients, can be successfully placed in contact with the sella in cadaver studies, shows no 

temperature changes in phantom studies during scanning, and improves the SNR of the pituitary by 

an order of 17. This study provides feasibility data for the promise of application to the clinical 

setting to improve the detection of small ACTH-secreting pituitary tumors when clinical pituitary 

MRI fails.  

In the second project, we propose a novel slice-profile transformation super-resolution 

(SPTSR) framework with deep generative learning for through-plane super-resolution (SR) of 

multi-slice 2D TSE imaging. The deep generative networks were trained by synthesized low-

resolution training input via slice-profile downsampling (SP-DS), and the trained networks 

inferred on the slice profile convolved (SP-conv) testing input for 5.5x through-plane SR. The 

network output was further slice-profile deconvolved (SP-deconv) to achieve an isotropic super-

resolution. Compared to the state-of-the-art SMORE SR method, where the networks trained by 

conventional downsampling, our SPTSR framework demonstrated the best overall image quality 

from 50 testing cases, evaluated by two abdominal radiologists. The quantitative analysis cross-

validated the expert reader study results. 3D simulation experiments confirmed the quantitative 

improvement of the proposed SPTSR and the effectiveness of the SP-deconv step, compared to 

3D ground-truths. Ablation studies were conducted on the individual contributions of SP-DS and 
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SP-conv, networks structure, training dataset size, and different slice profiles. 

  



 
v 

The dissertation of Jiahao Lin is approved. 

 
Achuta Kadambi 

Aydin Babakhani 

Kyunghyun Sung, Committee co-Chair 

Robert N. Candler, Committee Chair 

 

 

 

University of California, Los Angeles 2023 

 

  



 
vi 

Table of Contents 
Chapter 1: Introduction…………………….………………………….………………………...1 

Miniature Flexible Coil for High-SNR MRI of the Pituitary Gland 

Chapter 2: Introduction……………………….…………………….…………………………...4 

Chapter 3: Coil Design………………………….…………………….………………………….7 

3.1 Design Optimization Related to Surgical Placement………………..…………………………7 

3.2 Coil Interface Design…………………………………….………….………………………...7 

3.3 Coil Performance Simulation…………………………….……………...……………………8 

3.4 Phantom Design and Construction……………………….……………...……………………9 

3.5 MRI Studies Using the Phantom………………………….……….....………………………12 

3.6 SNR Computation………………………………………….………………………….…..…13 

3.7 S11 Comparison…………………………………………….…………….….………………14 

3.8 In-plane SNR map…………………………………………….………….……..……………15 

3.9 Mean SNR vs. Coil Distance & Rotation Angle……………….……….....…………………18 

3.10 Discussion……………………………………………………….….………………………20 

Chapter 4: Clinical Application Study……………….………………….……………..………22 

4.1 Surgical Placements……………………………………………….….……...………………22 

4.2 Sphenoid Sinus Measurements…………………………………….….……..………………23 

4.3 Cadaveric Studies…………………………………………………….………...……………27 

4.3.1 Coil Design Iterations for Cadaveric Studies…………………...……...…….…………27 

4.3.2 Cadaveric Studies Setup………………………………………….……….……………28 

4.3.3 Visual and SNR Improvements with Flexible Coil in Cadaveric Studies………….……29 

4.3.4 Histological Correlation……………………………………….....….…………….……31 

4.3.5 Temperature Measurements……………………………………………………….……32 

4.4 Discussions.…………………………………………………………………………….……34 

Chapter 5: Conclusions…………………….……………………………….…………..………36 

Chapter 6: Future Work………………….……………………………….……………………37 

High-Resolution 3D MRI with Deep Generative Networks via Novel Slice-

Profile Transformation Super-Resolution 

Chapter 7: Introduction and Related Works……………………..……….……………………39 

7.1 Introduction…………………………………………………….……………………………39 

7.2 Related Works ……………………………………………………....….……………………41 

Chapter 8: Slice-Profile Transformation Super-resolution (SPTSR) Framework………..…45 

8.1 Slice-Profile Transformation……………………………………...……………………….…46 

8.2 Deep Generative Networks…………………………………….….……………………….…50 

8.3 Inference Flow………………………………………….……………….……………………51 

Chapter 9: 2D & 3D experiments………………………………..……....……………………53 

9.1: Multi-slice 2D experiments……………….………...……….……….……………………53 

9.1.1 MRI Dataset………………..…………………………..….……….……………………54 

9.1.2 Data Preparation……………………...……………….….…………..…………………54 

9.1.3 Training Scheme…………………...…………….……….…….….……………………54 

9.1.4 Through-plane SR Results…………………...……….….………...……………………55 

9.1.5 Expert Reader Study…………………………….……………...….……………………56 



 
vii 

9.1.6 Quantitative Analysis………………………….………………………..………………58 

9.1.7 Isotropic SR Results………………………...…….……….……….……………………60 

9.2: 3D Experiments……………………………………………….……..………………………60 

9.2.1 MRI Dataset……………………………………….…….………………………………60 

9.2.2 Data Preparation…………………………………...……………………………………61 

9.2.3 Training and Inference Schemes…………...……….………..…….……………………61 

9.2.4 Isotropic SR Results………………………………….…………….……………………61 

9.2.5 Quantitative Analysis………………………………….…………..……………………62 

9.3: Ablation studies………………………………….………….………….……………………63 

9.3.1 Individual Contributions from Two Improvements.………….………….….………..………63 

9.3.2 Network Architectures.…………………………………….……….…...………………64 

9.3.3 Size of the Training Dataset.…………………………………….……..……………...……66 

9.3.4 Slice Profiles……………..………………………………………...……………………67 

Chapter 10: Discussions & Conclusions…………………………………….…..………………68 

Chapter 11: Future Work……………………………….………………….……………...……71 

 



 
viii 

List of Figures 

 

Figure 1.1: (a) Proton spins align their orientations to B0 field, and are disturbed by RF pulses, 

(b) spins recover to align with the B0 field. RF receiver coils are positioned close to the subject, 

for the signal readout of this recovery.  

Figure 2.1: Coil design and its surgical placement. The miniature coil is built on a flexible 

printed circuit board and connected to the tune and match box, which allows fine-tuning and 

matching of the coil remotely. The local pituitary coil is placed against the pituitary gland, and 

the coil rotation angle is defined as the angle between the coil plane and the scanner bed. 

Figure 3.1: Schematic diagram of the miniature coil. The blue cylinders represent the region of 

interest (ROI) at various distances d from the coil. 𝑩𝟎 is in the +z axis. A: The coil resides in the 

x-z plane at θ = 0°. B: The coil is rotated around the x-axis at an angle, θ, where: 0° < θ ≤ 90°. 

Figure 3.2: Experimental setup, including the igloo cavity, resolution plate, and agar phantom. 

An igloo cavity holds the coil and is sealed to hold only air, mimicking the sinus cavity. A 

resolution plate is placed directly on the outside of the igloo cavity to measure the SNR at the 

location where the pituitary gland would be. Outside of the igloo is surrounded by agar gel to act 

as a phantom a: CAD model of the igloo cavity. The coil was placed inside the cavity. b: The 

3D-printed igloo cavity. The cavity was waterproofed with the Plasti Dip (Plasti Dip Int., 

Minneapolis, MN, USA). A U.S. quarter is shown for reference. c: The resolution plate with hole 

diameters 1 mm, 1.6 mm, 2 mm, 2.4 mm, 2.8 mm, and 12.7 mm. The smaller holes were used for 

visual demonstration and the 12.7 mm hole was used for SNR calculation. d: CAD model of the 

phantom set up. The cavity was fixed inside a plastic jar and then placed on two 3D-printed 

supporters, allowing the jar to be set to the desired coil angle. e: Assembled phantom set up. The 

resolution plate was taped tightly under the cavity and then the cavity was fixed in a plastic jar. f: 

The plastic jar was filled with agar gel, and the coil was placed inside the cavity.  

Figure 3.3: The tune and match process and the MRI scan experiment set up. a) A portable 

vector network analyzer (DG8SAQ VNWA 3, SDR-Kits, United Kingdom) was used for tune 

and match analysis after placing the coil inside the agar phantom. b) The tune and match box was 

connected to the pre-amplifier, and MRI scans were performed on the phantom. 

Figure 3.4: Comparison of S11 with and without the load measured with the VNA and simulated 

using COMSOL. The coil in both loaded and unloaded cases was tuned and matched to the 

resonance frequency. 

Figure 3.5: The scan (Table 1 line 1) signal SNR maps and normalized amplitude of the 

simulated effective transverse B1 field distributions at θ = 0°, 38°, 70° and 90°, respectively. d 

indicates the distance between the coil and the imaging plane. The imaging planes were selected 

to be parallel to the coil plane. Column 1&3: The SNR maps at the respective coil distances d 

and rotation angles . Column 2&4: The amplitudes of the simulated effective transverse B1 field 

distributions at the central hole on the resolution Linear color scale indicates the level of the SNR 



 
ix 

and the normalized B1xy effective. The simulation fields were normalized based on the maximum 

B1xy effective field at d = 4.5 mm. 

Figure 3.6: High-resolution PD-TSE image comparisons, using the commercial head coil (left), 

and the pituitary miniature flexible coil at θ = 0° (middle) and θ = 60° (right). The voxel size is 0.2 

× 0.2 × 0.7 mm3. Imaging planes were selected 1 cm from the coil. Images from miniature flexible 

coil are at the same window level, while the image from the commercial head coil is at its own 

window level for better visualization. 

Figure 3.7: Mean SNR from the scan at various ROI depths and rotation angles, compared with 

the corresponding mean of the normalized effective transverse 𝐵1 field from the simulation. The 

simulated fields were normalized to a single point, the mean 𝐵1𝑥𝑦 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 at θ = 0° at 4.5 

mm below the coil.  

Figure 3.8: Bland-Altman plot for SNR of two repeated SD PD-TSE scans, SNR1 and SNR2. X-

axis is the mean of the two scans, and Y-axis is the percentage difference.  

Figure 4.1: Coil surgical placement example on the retrospective patient image. SNR 

improvement using the miniature coil compared to a commercial head coil was estimated using the 

simulated effective field at θ = 30°. The red ellipse indicates the location of the pituitary gland. 

Figure 4.2: Anatomic measurements of the sphenoid sinus in 50 patients using magnetic 

resonance imaging T1 with contrast images in the midline sagittal (a) and axial (b) planes. The 

distributions of the craniocaudal sphenoid distance at various degrees and the lateral intercarotid 

distance (c).  

Figure 4.3: Electromagnetic simulations with a 2 cm radiofrequency coil predicting signal-to-

noise ratio increases at various distances from the coil and with various coil rotation angles 

relative to the horizontal MRI head holder and superposition of these simulations on an MRI T1 

with contrast sphenoid sinus region. 

Figure 4.4: (a) The coil was designed with flexibility for transnasal application and (b) a 

protective coating was applied to the coil to maintain this flexibility.  

Figure 4.5: (a) Cadaveric preparation of the sella with the removal of sphenoid septae and 

mucosa, (b) placement of collagen sponge in clival recess to eliminate air-bone interface 

artifact, (c) placement of exible mini coil at 0 degrees, (d) filling of the sphenoid sinus with 

collagen sponge.  

Figure 4.6: Cadaver heads with the placement of the flexible coil on T1-MPRAGE images 

with 0.9 mm slice thickness (A), 0.4 mm slice thickness (B), and 0.2mm slice thickness (C). 

The images were compared with the images from the Siemens 20-channel Head/Neck coil at 

the same resolutions. The pituitary gland region of interest (marked by white dotted circle) was 

divided into 4 sub-regions with 3 mm width: Region a, Region b, Region c, and Region d (D). 

The noise region of interest is identified by the blue circle. 



 
x 

Figure 4.7: (a) A coronal view of the pituitary gland using high-resolution Proton density 

(0.2mm x 0.2mm x 0.7mm) image with the flexible coil in a cadaveric specimen, (b) the 

annotated image showing highlighted pituitary gland (yellow outline) and hypointensity (red 

outline). (c, d) Corresponding coronal sections with reticulin stain and H&E stain show a cyst 

like structure in the lateral aspect of this gland. 

Figure 4.8: (a) Meat phantom with direct coil placement and thermometer placement and (b) 

schematic illustrations of the two temperature measuring sites. (c) Temperature recordings at 

measuring sites S1 and S2 for the 15-minute fast low angle shot three-dimensional imaging 

(FL3D) sequence scan.  

Figure 8.1: The overall SPTSR framework, with training flow (top) and inference flow (bottom). 

Figure 8.2: a) The proposed SP-downsampling method. Each line of pixels is acquired by 

multiplying the slice profile PSFSI of length L, to the same physical location on the cropped 

coronal scan; b) The KS-ZF downsampling method. Each slice of image is transformed to the 

frequency domain via FFT, cropped its center lines and iFFT back to the downsampled image. 

Figure 8.3: The down-sampling method visual comparison. a) the conventional KS-ZF 

downsampled image patch, b) the SP-downsampled image patch, c) the reformatted axial patch, 

and d) the SP-convolved axial patch. Thickness in each patch represents the voxel thickness in 

the AP-direction. All patches are bilinear interpolated to demonstrate the visual differences. 

Figure 8.4: The WGAN-GP based deep generative networks architecture of  our proposed 

SPTSR framework. 

Figure 8.5: The proposed SR inference flow. T2w-TSE axial scan is cropped and SP-convolved 

in the AP-direction to prepare the input for the deep generative networks. The output of the 

networks is still convolved in the AP-direction and is then transformed to isotropic SR volume 

via SP-deconvolution. Red patches represent coronal views and blue patches represent axial 

views. Patch thickness represents the voxel thickness in the through-plane of the patch. 

Figure 9.1: The through-plane SR testing results with reformatted T2w axial scan input. a) and 

b) represents two image slices from two different testing subjects. From left to right: The T2w 

coronal scan of the subject, as a visual reference; the testing reformatted T2w axial scan as the 

inference input; the bilinear interpolation of the input; SMORE [26]; the baseline inference 

output with KS-ZF trained networks; the proposed SPTSR inference output with SP-

downsampling trained network, and SP-convoluted inference input. Red arrows indicate the 

structural differences between the baseline results and the proposed results. 

Figure 9.2: Two radiologists qualitatively assessed the diagnostic quality of Bilinear 

Interpolation (BI), SMORE [8], KS-ZF trained networks (baseline), SPTSR (proposed), for 

sharpness, artifacts, noise and overall image quality on a 1 to 4 scale (higher the better). The 

ratings were averaged from two readers. Error bar represents the standard deviations. Mann-

Whitney U tests assessed whether the average scores were significantly different (p<0.01) among 

the four groups. 



 
xi 

Figure 9.3. Simulation experiments result with 3D T2w scans. Simulated 2D sagittal input, 

SMORE result, SPTSR result were compared with isotropic high-resolution ground-truth images 

in all three views. 

Figure 9.4: The validation MSE loss with different sizes of the training dataset. The number of 

training dataset cases are 10, 100, 1000, and 3483 respectively. The MSE loss on the validation 

dataset is plotted against the number of training steps, with the same batch size.  

Figure 9.5: Individual impact of SP-DS Network and SP-Conv input on testing output. a) and b) 

represents images from two different testing subjects, same as Fig. 8.1. From left to right: The 

T2w coronal scan of the subject, as a visual reference; the baseline KS-ZF downsampling 

method trained network, without SP-Convolved inference input; SP-DS method trained network, 

without SP-Convolved inference input; KS-ZF downsampling method trained network, with SP-

Convolved inference input; the proposed SPTSR inference output with SP-DS method trained 

network, and SP-convoluted inference input. Red arrows indicate the structural differences 

between different results.  

 

  



 
xii 

List of Tables 

 

Table 3.1: The parameters for High-Resolution 2D PD-weighted TSE sequence and Standard-

Resolution 2D PD-TSE sequence 

Table 4.1: Mean SNR comparison for high-resolution MRI (Proton Density: 0.2×0.2×0.7 

mm3) 

Table 9.1: The T2-weighted turbo spin-echo (T2w-TSE) sequence parameters 

Table 9.2: Testing quantitative results with FID 

Table 9.3: The 3D T2-weighted SPACE sequence parameters  

Table 9.4: Simulation testing quantitative results with PSNR and NMSE 

Table 9.5: The Network Structure Ablation Study Validation Results Comparison 

Table 9.6: The Slice Profiles Ablation Study With Gaussian PSF and Truncated Sinc PSF 

 

  



 
xiii 

ACKNOWLEDGEMENTS 

I would like to thank my advisor Kyunghyun Sung. He is extremely supportive and 

provides precious mentorship, not only in academics and research but in all aspects of my life. 

He is always encouraging and provides direction, guiding me through all the ups and downs in 

my academic pathways. 

I would like to thank all my collaborators and co-workers. Thanks to Dr. Robert N. 

Candler and Dr. Siyuan Liu, Dr. Marvin Bergsneider, Dr. Rock Hadley, Dr. Giyarpuram N. 

Prashant, Dr. Sophie Peeter, Dr. Kunal S Patel for our collaborations in developing the miniature 

flexible coil for the pituitary gland. It is truly an exceptional multidisciplinary collaboration. 

Thanks to Dr. Qi Miao and Dr. Chuthaporn Surawech for helping design the prostate reader 

study and meticulously grading 50 testing subjects. Thanks to Dr. Steven S. Raman, Dr. Kai 

Zhao, and Dr. Holden H. Wu for improving and refining our super-resolution research. 

I would like to thank my committee chair and members, Dr. Rob Candler, Dr. Achuta 

Kadambi, and Dr. Aydin Babakhani, for providing comments and feedback to guide this 

dissertation to completion. 

I would like to thank my fellow friends and colleagues in MRRL, including Fadil Ali, 

Xinzhou Li, Zhaohuan Zhang, Xinran Zhong, Tess Armstrong, Shu-fu Shih, Chang Gao, 

Haoxing Zheng, Qing Dai, etc. I would forever appreciate the camaraderie between us. 

Last but not least, I would like to thank my parents and my wife for your unconditional 

love.  



 
xiv 

VITA 

EDUCATION  

    UNIVERSITY OF CALIFORNIA, LOS ANGELES  Los Angeles, CA  

        Master of Science, Electrical and Computer Engineering  9/2014-6/2016  

    UNIVERSITY OF CALIFORNIA, LOS ANGELES  Los Angeles, CA  

        Bachelor of Science, Physics  9/2010-6/2014  

PUBLICATIONS  

J. Lin, Q. Miao, C. Surawech, S. S. Raman, K. Zhao, H. Wu, K. Sung, "High-Resolution 3D 

MRI With Deep Generative Networks via Novel Slice-Profile Transformation Super-

Resolution," in IEEE Access, vol. 11, pp. 95022-95036, 2023.  

S. Liu, KS Patel, S. Peeters M., J. Lin, A.C. DiRisio, H. Vinters, R. Candler, K. Sung, M. 

Bergsneider, “Flexible In-Cavity MRI Receiving Coil for Ultrahigh Resolution Imaging of the 

Pituitary Gland”, Research Square; 2023. doi: 10.21203/rs.3.rs-2880527/v1. 

S. Liu, J. Lin, M. Bergsneider, J. R. Hadley, N. G. Prashant, S. Peeters, R. Candler, K. Sung, 

"Experimental and Numerical Simulation of the Miniature Flexible Coil for High-SNR Pituitary 

MRI", International Society for Magnetic Resonance in Medicine, May 07-12, 2022. 

J. Lin, Q. Miao, C. Surawech, S. S. Raman, H. Wu, K. Sung, "Super-resolution MRI using 

Novel Slice-profile Based Transformation for Multi-slice 2D TSE Imaging", International 

Society for Magnetic Resonance in Medicine, May 07-12, 2022.  

J. Lin, S. Liu, M. Bergsneider, J. R. Hadley, N. G. Prashant, S. Peeters, R. Candler, K. Sung, "A 

Miniature Flexible Coil for High-SNR MRI of the Pituitary Gland". IEEE Access, 10, 12619– 

12628. 2022. 

J. Lin, S. Liu, R, Hadley, M. Bergsneider, G. Prashant, S. Peeters, R. Candler, K. Sung, " 

Exploration of the Surgical Placement of the Local Pituitary Coil for Microadenomas", 

International Society for Magnetic Resonance in Medicine, May 15-20, 2021. 

S. Peeters M., S. Liu, J. Lin, R. Candler, K. Sung, G. Prashant, M. Bergsneider, "Signal to Noise 

Ratio Increases with Miniature Surface Coil Position as Demonstrated by Both Numerical 

Simulation and Experimental Validation", J Neurol Surg B Skull Base 2021; 82(S 02): S65-S270 

J. Lin, F. Ali, and K. Sung, "Volumetric real-time imaging with deep-learning reconstruction", 

International Society for Magnetic Resonance in Medicine, May 10-13, 2019. 

J. Lin, S. Lefkimmiatis, and K. Sung, "Deep Network Training Based Sparsity Model for 

Reconstruction", International Society for Magnetic Resonance in Medicine, Apr. 22-27, 2017



 
1 

Chapter 1: Introduction 

Magnetic resonance imaging (MRI) is a non-invasive imaging technique that 

produces images of the internal characteristics of an object from its nuclear magnetic 

resonance (NMR) signals. MRI can produce high spatial resolution 3D images, especially 

for non-bony parts or soft tissues that contain water or fat. MRI scans are generally 

considered a safer imaging technique compared to X-ray and computed tomography (CT), 

as MRI does not emit the damaging ionizing radiation. Because of these advantages, MRI 

has become increasingly popular in radiology. 

MRI follows a classic excitation-reception paradigm. The proton spins are aligned 

with the main magnetic field B0 (Fig 1.1a). External excitations are applied to the proton 

spins in the form of Radiofrequency (RF) pulses. The proton spins are tilted and 

misaligned, and slowly recovers back to alignment with the B0 field. RF receiver coils are 

placed close to the subject for the signal readout of this recovery (Fig 1.1b). 

 

Figure 1.1: (a) Proton spins align their orientations to B0 field, and are disturbed by RF 

pulses, (b) spins recover to align with the B0 field. RF receiver coils are positioned close to 

the subject, for the signal readout of this recovery.  
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Different tissues have different longitudinal relaxation time (T1), transverse 

relaxation time (T2), and proton density (PD). Pulse sequence diagrams are designed to 

capture the tissue contrast in the frequency domain. K-space raw data in the frequency 

domain is then reconstructed to MR images. To accelerate the scanning time, it is 

impractical to acquire fully sampled K-space data. Advanced reconstruction and post-

processing are designed for incomplete K-space data. 

Though the high-resolution MRI provides tremendous advantages in clinical 

diagnosis, especially in detecting smaller tumor lesions and diagnosing smaller body parts, 

it is non-trivial to increase the imaging resolution in practical ways under clinical protocols. 

Increase in resolution often comes with tremendous trade-offs, including longer scan times, 

worse imaging contrast and worse imaging artifacts, longer reconstruction times, more 

expensive MRI machines and higher maintenance costs. 

Two projects are presented in this dissertation. In the first project, we designed a 

specific RF receiver coil for ultrahigh-resolution pituitary MRI; in the second project, we 

designed a super-resolution reconstruction framework for multi-slice 2D turbo-spin echo 

(TSE) pulse sequence. 

In the first project, we designed a single-loop miniature flexible coil that can be 

surgically positioned millimeters from the pituitary gland, enabling high-SNR pituitary MRI. 

We investigated the spatial distributions of the image SNR of the miniature coil, via both 

numerical simulation and phantom experiments. We also explored the feasibility of increased 

SNR within the pituitary gland based on simulated surgical placements. Compared to the 

commercial head coil, our miniature coil achieved up to a 19-fold SNR improvement within 

the region of interest, and the simulation and phantom experiment reached a good agreement, 

with an error of 1.1% ± 0.8%. High resolution MRI scans further demonstrated the visual 
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improvement of the miniature coil against the commercial head coil. The cross-validation of 

the simulation and the phantom experiment showed the potential of using the numerical 

simulation model to accelerate the coil design prototyping and iteration and to optimize coil 

design in the future. The clinical application study describes a transnasally-placed 2-cm 

flexible coil to improve the resolution of pituitary imaging. The coil is compatible with 95% 

of patients, can be successfully placed in contact with the sella in cadaver studies, shows no 

temperature changes in phantom studies during scanning, and improves the SNR of the 

pituitary by an order of 17. This study provides feasibility data for the promise of application 

to the clinical setting to improve the detection of small ACTH-secreting pituitary tumors 

when clinical pituitary MRI fails.  

In the second project, we propose a novel slice-profile transformation super-

resolution (SPTSR) framework with deep generative learning for through-plane super-

resolution (SR) of multi-slice 2D TSE imaging. The deep generative networks were trained 

by synthesized low-resolution training input via slice-profile downsampling (SP-DS), and 

the trained networks inferred on the slice profile convolved (SP-conv) testing input for 5.5x 

through-plane SR. The network output was further slice-profile deconvolved (SP-deconv) 

to achieve an isotropic super-resolution. Compared to the state-of-the-art SMORE SR 

method where the networks trained by conventional downsampling, our SPTSR framework 

demonstrated the best overall image quality from 50 testing cases, evaluated by two 

abdominal radiologists. The quantitative analysis cross-validated the expert reader study 

results. 3D simulation experiments confirmed the quantitative improvement of the 

proposed SPTSR and the effectiveness of the SP-deconv step, compared to 3D ground-

truths. Ablation studies were conducted on the individual contributions of SP-DS and SP-

conv, networks structure, training dataset size, and different slice profiles.  
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Miniature Flexible Coil for High-SNR MRI of the Pituitary Gland 

Chapter 2: Introduction 

There is a strong clinical need to improve the resolution of magnetic resonance 

imaging (MRI) for the detection of small pathological lesions. A salient example is 

Cushing’s disease (CD): a potentially fatal disorder caused by an adrenocorticotropin 

hormone (ACTH)-producing pituitary tumor. While the median size of pituitary tumors 

(microadenomas) causing CD is 5 mm [1], a significant percentage is less than 3 mm in 

size [2]. Currently, 3T MRI is unable to detect up to 50% of microadenomas in CD [3]–[6]. 

This failure of diagnostic imaging thwarts the primary and optimal treatment of CD: 

surgical excision of the offending tumor. In such cases without an imaging-identifiable 

tumor, neurosurgeons must consider surgically “exploring” the anterior pituitary gland by 

making multiple parallel incisions typically spaced 2-3 mm apart with the hope of 

fortuitously encountering the tumor. In addition to the real possibility of not finding a 

tumor, this technique adds the risk of permanently damaging the normal gland. 

Standard 3T pituitary MRI protocols generate multi-slice 2-dimensional (2D) 

images with a typical in-plane resolution of 0.7 × 0.7 mm2 and a through-plane slice 

thickness of 3 mm [7]. When considering various shapes of the pituitary gland, partial 

volume averaging, and motion-related degradation [8], it is not surprising that MR images 

with an in-plane pixel size of 0.7 mm commonly fail to detect lesions smaller than 3 mm.  

One of the common factors limiting MRI spatial resolution is signal-to-noise ratio 

(SNR). Two approaches for increased SNR are to use higher strengths (e.g., 7T MRI 

scanner [9], [10]) and to design application-specific radiofrequency (RF) coil arrays. These 

two are generally additive when combined with each other. Advancements have been made 
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with flexible RF coil arrays. Conforming the coil elements to the patient’s surface anatomy 

achieves higher SNR in directly adjacent regions, which unfortunately, is of limited value 

for pituitary imaging given that the pituitary gland is located centrally within the cranium. 

Another approach to improve SNR is to place a separate receive-only RF coil in close 

proximity to the imaging target [11]. One example in clinical use, the endorectal coil 

designed for prostate imaging [12], has had limited use due to patient discomfort related to 

the relatively large diameter of the endorectal component. Chittiboina et al. [13] adopted 

the endorectal prostate coil for pituitary imaging. The study demonstrated a potential 10-

fold increase in SNR by positioning the coil apparatus within the sphenoid sinus via a 

sublabial approach in a cadaver [13]. However, the design included a potential concern that 

the coil is needed to be positioned blindly, given the complete obstruction of the surgical 

corridor by the probe. 

In this work, we report our initial evaluation of this novel coil design using a 

custom-built phantom which allowed us to precisely measure SNR. We designed a single-

loop miniature flexible coil that could easily be placed via one nostril and optimally 

situated within the sphenoid sinus under direct endoscopic visualization (Fig. 1). Our coil 

design shares the same clinical implementation limitation as the previous study [13], in that 

it must be used as part of an elective surgical operation with the aim of removal of the 

tumor. The ideal orientation of the coil is parallel to the orientation of the main magnetic 

field, 𝐵0. As the surgical positioning for endoscopic surgery is supine, our investigations of 

sphenoid sinus anatomy revealed that this coil orientation may not be anatomically possible 

in some cases. We therefore designed the phantom to allow us to study the effect of coil 

angulation relative to the 𝐵0 field [14], [15]. The specific aims of our study are to 1) 

investigate spatial distributions of the image SNR for various coil rotation angles (θ) using  
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Figure 2.1: Coil design and its surgical placement. The miniature coil is built on a flexible 

printed circuit board and connected to the tune and match box, which allows fine-tuning 

and matching of the coil remotely. The local pituitary coil is placed against the pituitary 

gland, and the coil rotation angle is defined as the angle between the coil plane and the 

scanner bed.  

 

a numerical simulation model and phantom experiments, and 2) test the feasibility of 

increased SNR within the pituitary gland based on simulated surgical placement results. 

The miniature coil was tested with high-resolution imaging to confirm its visual 

improvement against the commercial head coil. The coil design was iteratively developed 

by utilizing numerical electromagnetic simulations, and this cross-validation approach will 

be useful in further optimizing the coil in the future, including the potential to select an 

optimal coil from a predetermined range of coil shapes and sizes. 
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Chapter 3: Coil Design and Simulation 

3.1 Design Optimization Related to Surgical Placement  

From a coil design perspective, the coil diameter should not only be large enough to 

provide sufficient coverage for pituitary MRI but must also fit within the physical spatial 

constraint of the sphenoid sinus. Specifically, the diameter of the coil needs to be large 

enough - larger than the pituitary - such that the pituitary is in the region of high sensitivity. 

The diameter also needs to be large enough to achieve sensitivity at a depth of the farthest 

point of the pituitary because the optimal coil diameter is proportional to the imaging depth 

of interest: 𝑅𝑜𝑝𝑡𝑖𝑚𝑎𝑙 =
𝑑𝑚𝑎𝑥

√5
, where dmax is the maximum distance of interest from the coil 

[16]. Endonasal placement requires that the coil be able to bend slightly beyond a U-shape 

in order to pass by the nostril. In 20 consecutive endoscopic pituitary surgeries, various 

sizes of sterile cotton patties (“cottonoids”) were subjectively assessed by author MB. The 

experience revealed that a coil diameter up to 2.5-cm could easily be inserted without 

hyperangulation (kinking). Once past the nostril, further advancement into the sphenoid 

sinus was easy and safe. 

3.2 Coil and Interface Design 

The coil (Fig. 2.1) consisted of a 20 mm inner diameter loop made from a single 

continuous copper trace (3 mm in width and 17.8 μm in thickness) on a flexible 

printed circuit board (PCB). A coaxial cable (Siemens Healthineers, Forchheim, 

Germany: 50 Ω, 1.13 mm diameter, 0.22 mm inner conductor diameter, 20 cm length) 

connected the coil to a custom 3D printed circuit box located outside the body. This 

box housed the electrical pre-amplifier circuit, with adjustable components needed 

for tune and match. All of the electronics can be kept outside the body with only the 

coil loop and cable needing to be inserted endonasally. The coil assembly was tuned to 
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a resonance frequency of 123.2 MHz (for 3T imaging), and impedance matched by 

adjusting the electrical components contained in the box [17]. The circuit was also 

designed to actively decouple the loop, without lumped element capacitors, during the 

transmit portion of the pulse sequence. The active detuning was accomplished by 

putting an inductor in parallel with the net capacitance of the coax cable during the 

transmit portion of the pulse sequence, detuning the inductive coil loop. Due to 

proprietary Siemens hardware, a custom built-in docking port was designed 

specifically for our assembly by author RH via an MCX connector. 

3.3 Coil Performance Simulation 

Modeling of the MRI RF coils is an important step in coil design and 

development. A 3D coil model was developed in COMSOL® (COMSOLAB, Stockholm, 

Sweden) to study the magnetic field distributions of the coil. A circular loop coil with a 

20 mm inner diameter and a trace width of 3 mm was set up in the frequency domain. 

The coil was assigned as Perfect Electric Conductor surface, and the current flowing in 

the coil was set to 1 A. The sample properties in the simulation were set up according 

to the material properties of the agar-carrageenan gel [18]. For this finite element 

simulation, a maximum element size of 0.5 mm was used on the region of interest 

(ROI), and the simulated fields from the coil, 𝑩𝟏 fields, at each vertex were imported 

into MATLAB (The MathWorks, Inc., Natick, Massachusetts, United States) for post-

processing. 

The simulated amplitude of the effective transverse field 𝐵1𝑥𝑦 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒  at the 

resonance frequency within the ROI was evaluated and then compared with the MRI 

scan results. The magnetic field components were simulated with the coil plane 
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parallel to the 𝐵0 field (θ = 0°) (Fig. 3.1a), and then the amplitude of the effective 

transverse field at a certain rotation angle θ (0°< θ ≤ 90°) with respect to 𝐵0 (Fig. 2b) 

was derived as: 

𝐵1𝑦 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 = 𝐵1𝑦 ∙ 𝑐𝑜𝑠𝜃 − 𝐵1𝑧 ∙ 𝑠𝑖𝑛𝜃      (1) 

𝐵1𝑥𝑦 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 = √𝐵1𝑥𝐵1𝑥
∗ + 𝐵1𝑦 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝐵1𝑦 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒

∗   (2) 

where 𝐵1𝑥, 𝐵1𝑦, and 𝐵1𝑧 are the magnetic field components for our RF receiving coil in x, y, 

z directions at θ = 0°. 𝐵1𝑥, 𝐵1𝑦, and 𝐵1𝑧 remain constant during the rotation. 

 

Figure 3.1: Schematic diagram of the miniature coil. The blue cylinders represent the region 

of interest (ROI) at various distances d from the coil. 𝑩𝟎 is in the +z axis. A: The coil resides 

in the x-z plane at θ = 0°. B: The coil is rotated around the x-axis at an angle, θ, where: 0° 

< θ ≤ 90°. 

 

3.4 Phantom Design and Construction 

A 3D-printed phantom was designed and manufactured to roughly mimic the 

sphenoid sinus dimensions as an igloo-shaped configuration (Fig. 3.2a and 3.2b). A 

surrounding cylindrical jar (Fig. 3.2d) allowed for easy rotation of the assembly, 

effectively tilting the coil rotation angle relative to the 𝐵0 field. 

To assess imaging resolution, the five holes, ranging from 1 mm to 2.8 mm in 

diameter, were drilled into an acrylic plate (2.5 cm thick and 7.5 cm wide), which was 

attached under the igloo cavity (Fig. 3.2c). In addition, a center hole of 12.7 mm in 
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diameter was drilled to provide sufficient volume for SNR measurements. The cavity 

and the resolution plate were then fixed inside a transparent cylindrical plastic jar, 

parallel to the jar wall (Fig. 3.2d and 3.2e). The plastic jar was chosen to have a similar 

size as a human head, 13 cm in diameter and 12 cm in height. The plastic jar was 

rested on a pair of 3D-printed supporters, so the jar was able to be rotated and set at 

the desired scan angle. The plastic jar, including the holes in the resolution plate, was 

filled with agar gel, which consists of distilled water, 1% agar powder, 2% Kappa 

carrageenan, and 22 μmol/kg of gadolinium contrast (Fig. 3.2f) [19]. A portable vector 

network analyzer (VNA) was used to tune and match the coil after placing the coil 

inside the igloo cavity of the phantom (Fig. 3.3a). 
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Figure 3.2: Experimental setup, including the igloo cavity, resolution plate, and agar 

phantom. An igloo cavity holds the coil and is sealed to hold only air, mimicking the sinus 

cavity.  A resolution plate is placed directly on the outside of the igloo cavity to measure 

the SNR at the location where the pituitary gland would be. Outside of the igloo is 

surrounded by agar gel to act as a phantom a: CAD model of the igloo cavity. The coil was 

placed inside the cavity. b: The 3D-printed igloo cavity. The cavity was waterproofed with 

the Plasti Dip (Plasti Dip Int., Minneapolis, MN, USA). A U.S. quarter is shown for 

reference. c: The resolution plate with hole diameters 1 mm, 1.6 mm, 2 mm, 2.4 mm, 2.8 

mm, and 12.7 mm. The smaller holes were used for visual demonstration and the 12.7 mm 

hole was used for SNR calculation. d: CAD model of the phantom set up. The cavity was 

fixed inside a plastic jar and then placed on two 3D-printed supporters, allowing the jar to 

be set to the desired coil angle. e: Assembled phantom set up. The resolution plate was 

taped tightly under the cavity and then the cavity was fixed in a plastic jar. f: The plastic 

jar was filled with agar gel, and the coil was placed inside the cavity. 

 

Figure 3.3. The tune and match process and the MRI scan experiment set up. a) A portable 

vector network analyzer (DG8SAQ VNWA 3, SDR-Kits, United Kingdom) was used for 

tune and match analysis after placing the coil inside the agar phantom. b) The tune and 

match box was connected to the pre-amplifier, and MRI scans were performed on the 

phantom.  
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3.5 MRI Studies Using the Phantom 

The tune and match of the miniature coil were performed by measuring the 

frequency response using the portable VNA for loaded and unloaded cases. Loaded 

S11 is measured with the phantom placed under the coil while unloaded S11 is 

measured with no phantom presented. For both loaded and unloaded cases, the 

miniature coil was tuned and matched to the resonance frequency of 123.2 MHz. 

The T1/T2 value of the agar phantom was measured to be 1250/64 ms, with 

T1/T2 map sequences [20]. Standard resolution proton density Turbo Spin Echo (SD 

PD-TSE) sequences (Table 1) were used to compare our miniature coil with the 

commercial Siemens 20-channel HeadNeck coil, both quantitatively and qualitatively. 

Here we chose proton density because it is a direct measure of the maximum signal. 

The 2D SD PD-TSE sequence was scanned at 10 different coil rotation angles, ranging 

from 0 ° to 90°. 

Given the expected higher SNR, we scanned the miniature coil with a 2D high-

resolution proton density Turbo Spin Echo (HD PD-TSE) sequence (Table 1) at 0° and 

60° coil angles. Images were reconstructed from the frequency data directly via 

inverse Fast Fourier Transform (iFFT). The HD PD-TSE scan was also performed on 

the commercial head coil using the same scan sequence. The commercial head coil 

images were sum-of-square combined after coil reduction. 
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Table 3.1: The parameters for High-Resolution 2D PD-weighted TSE sequence and 

Standard-Resolution 2D PD-TSE sequence 

 

 

 

 

 

 

3.6 SNR Computation 

For each angle, SNR measurements for the single-channel custom coil were 

calculated from two repeated standard-resolution 2D PD-TSE scans. The region of 

interest (ROI) was divided into five cylindrical slices - each with 1 cm diameter and 3 

mm thickness (Fig. 2) - inside the resolution plate center hole under the coil (Fig. 3d and 

3e). When combined, the slices form a 1 cm diameter region 3 mm to 18 mm away from 

the miniature coil. The defined ROI has a size comparable to a typical pituitary gland 

[21]. 

SNR measurements were calculated with methods described by Constantinides et 

al. for magnitude images of a single-coil array [22]. SNR was calculated as the ratio of 

signal and noise (𝑆𝑁𝑅 =  𝑆 ⁄ 𝜎). The signals were measured as the mean intensity within 

the ROI: 

𝑆 =
1

𝑁𝑅𝑂𝐼
∑ 𝐴𝑅𝑂𝐼𝑖

𝑁𝑅𝑂𝐼
𝑖=1   (3) 

Where N is the number of samples and A is the pixel intensity. The noise was measured 

as the background standard deviation on a signal-free region: 

 

 SD PD-TSE HD PD-TSE 

Echo time (ms) 9.1 14 

Repetition time (ms) 3000 3000 

Refocusing angle (degree) 160 160 

Bandwidth (Hz/pixel) 250 250 

Acquisition matrix size 320×320×15 320×320×35 

Field of view (mm3) 220×220×45 64×64×25 

Resolution (mm3) 0.7×0.7×3 0.2×0.2×0.7 

Phase over sampling 0% 100% 

Scan time (mm:ss) 03:09 06:21 

Parallel imaging No No 
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σ = √
1

𝑁𝑛
∑ (𝐴𝑛𝑖

− 𝐴𝑛𝑖
̅̅ ̅̅ )

2𝑁𝑛
𝑖=1     (4) 

In this experiment, the signal-free region was selected within the acrylic plastic part of 

the resolution block. 

For the 20-channel commercial head coil, the SNR was calculated based on 

Kellman’s method for root-sum-of-squares magnitude combining images, which is 

the gold standard for multi-channel phased array coils [23]. The scaled noise 

covariance matrix was calculated by averaging pixel SNR within ROI from two 

repeated standard-resolution 2D PD-TSE scans. Standard-resolution proton density 

Turbo Spin Echo (PD-TSE) MRI scans (Table 3.1 line 1) were performed on the 

phantom for SNR measurements for both miniature flexible coil and commercial 

head coil, and a coil simulation model was developed to characterize the 

performance of the coil. We plotted the SNR maps and the amplitudes of the 

simulated effective transverse 𝐵1 field distributions for θ from 0° to 90°, at defined 

ROIs from 4.5 mm to 16.5 mm distance to the coil, shown in Fig. 3.1. 

3.7 S11 Comparison 

The reflection coefficient S11 was recorded and then compared with the simulated 

S11 for the loaded and unloaded cases (Fig. 3.4). The simulated S11 generally agrees 

with the measured S11. The quality factor Q-factor can be approximated as the ratio 

of the resonant frequency (f0) to the 3dB bandwidth (Δf3dB) [24]. The simulated 

quality factors for the loaded case and the unloaded case are found to be 𝑄𝑙𝑜𝑎𝑑𝑒𝑑
𝑠𝑖𝑚 = 

16.88, 𝑄𝑢𝑛𝑙𝑜𝑎𝑑𝑒𝑑
𝑠𝑖𝑚 = 308. And the measured quality factors are 𝑄𝑙𝑜𝑎𝑑𝑒𝑑

𝑚𝑒𝑎 = 11.18, 

𝑄𝑢𝑛𝑙𝑜𝑎𝑑𝑒𝑑
𝑚𝑒𝑎  = 36.29. The lower Q-factors from the measurement are likely to be the 
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result of the environment loss that was not included in the simulation. A common 

measure for sensitivity to loading is the ratio between the unloaded Q-factor and 

loaded Q-factor [25], [26]. The measured Q-ratio is found to be  𝑄𝑟𝑎𝑡𝑖𝑜
𝑚𝑒𝑎 = 3.25 and the 

simulated Q-ratio is 𝑄𝑟𝑎𝑡𝑖𝑜
𝑠𝑖𝑚 = 18.25. A Q-ratio that is larger than 2 indicates that the 

sample noise dominates the coil noise [11].  

Figure 3.4: Comparison of S11 with and without the load measured with the VNA and simulated 
using COMSOL. The coil in both loaded and unloaded cases was tuned and matched to the 

resonance frequency. 

 

3.8 In-plane SNR map 

Phantom scan in-plane SNR maps are shown in Fig. 3.5. The imaging planes 

were selected parallel to the coil surface at 4.5 mm and 10.5 mm below the coil, as a 

zoom-in shot on the resolution plate. The amplitudes of the simulated effective 

transverse 𝐵1 field distributions at the same coil depth distance and rotation angles 

as the SNR maps are also shown in Fig. 6. In the simulation, the in-plane effective 

field amplitudes were normalized based on the maximum  𝐵1𝑥𝑦 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒  field at 4.5 

mm below the coil. 

As the coil angle increases, the overall SNR and the amplitude of the 

𝐵1𝑥𝑦 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒  within the ROI decreases. Because of the circular shape of the small 
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coil, the magnetic field from the coil is not uniform, and dead spots, where 

𝐵1𝑥𝑦 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒drops to zero, were observed in the in-plane results. When the rotation 

angles increased from 0° to 90°, the dead spot gradually moved from the edge of the 

ROI to the center of the ROI in both experiment and simulation. The simulated field 

distributions qualitatively matched with the scan experiment SNR maps.  

A comparison of the high-resolution PD-TSE image between the head coil 

image and the miniature coil images is shown in Fig. 3.6. Though the SNR decreases 

with increasing rotation angle, the phantom signal is still uniform at 60° coil angle, 

and the image SNR is high enough to clearly show the 1 mm hole on the resolution 

plate. 

 

Figure 3.6: High-resolution PD-TSE image comparisons, using the commercial head coil 

(left), and the pituitary miniature flexible coil at θ = 0° (middle) and θ = 60° (right). The 

voxel size is 0.2 × 0.2 × 0.7 mm3. Imaging planes were selected 1 cm from the coil. Images 

from miniature flexible coil are at the same window level, while the image from the 

commercial head coil is at its own window level for better visualization. 
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Figure 3.5: The scan (Table 1 line 1) signal SNR maps and normalized amplitude of the 

simulated effective transverse 𝐵1 field distributions at θ = 0°, 38°, 70° and 90°, 

respectively. d indicates the distance between the coil and the imaging plane. The imaging 

planes were selected to be parallel to the coil plane. Column 1&3: The SNR maps at the 

respective coil distances d and rotation angles . Column 2&4: The amplitudes of the 

simulated effective transverse 𝐵1 field distributions at the central hole on the resolution 

Linear color scale indicates the level of the SNR and the normalized 𝐵1𝑥𝑦 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 . The 

simulation fields were normalized based on the maximum 𝐵1𝑥𝑦 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒  field at d = 4.5 

mm. 
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3.9 Mean SNR vs. Coil Distance & Rotation Angle 

The mean SNR of the ROI from the phantom scan with respect to distance from the 

coil and the rotation angles are shown in Fig. 3.7, and then compared with the normalized 

mean 𝐵1𝑥𝑦 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒  within the ROI from the simulation. We normalized the effective 

transverse field predicted by simulation at a single point (θ = 0° at 4.5 mm below the coil). 

By setting this one point equal to the experimentally measured SNR, we can see that the 

simulations of magnetic field amplitude track with the experimentally measured SNR, with 

an error of 1.1% ± 0.8%. The mean effective field at θ = 90° dropped to around 20% of the 

mean-field found at θ = 0° for all ROI depths. At θ = 0°, the mean effective field at 16.5 

mm slice was 23.1% of the mean effective field at 4.5 mm slice. For an ideal coil, at θ = 

90°, the coil magnetic field 𝐵1 is parallel to the main field 𝐵0, and the SNR is expected to 

drop to zero. However, in the real case, only the 𝐵1𝑦 component of the coil field is parallel 

to 𝐵0 at θ = 90° (Fig. 3.1b), and spins can still be excited by 𝐵1𝑥 and 𝐵1𝑧 components, 

providing a reduced but detectable signal. The mean SNR of the 20-channel commercial 

head coil based on Kellman’s method was 99.5 (Fig. 3.7) [23], which was uniform across 

the ROI. 

A Bland-Altman plot of two repeated standard-resolution PD-TSE scans, as shown 

in Fig. 3.8 was generated to show the inter-scan SNR consistencies. The 95% confidence 

interval indicated majority of repeated scans are within ±5% difference, which 

demonstrated the consistency and the repeatability of measure SNRs from phantom scans. 
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Figure 3.7: Mean SNR from the scan at various ROI depths and rotation angles, compared 

with the corresponding mean of the normalized effective transverse 𝐵1 field from the 

simulation. The simulated fields were normalized to a single point, the mean 𝐵1𝑥𝑦 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒  

at θ = 0° at 4.5 mm below the coil. 

 
 
 

Figure 3.8: Bland-Altman plot for SNR of two repeated SD PD-TSE scans, SNR1 and SNR2. 

X-axis is the mean of the two scans, and Y-axis is the percentage difference. 
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3.10 Discussion 

Our prototype coil, which was specifically designed for intra-operative imaging of 

the pituitary gland, achieved up to a 19-fold SNR improvement compared to a commercial 

head coil in this agar phantom study. Our “worst-case-scenario,” a rotation angle of 60 

degrees and an ROI depth of 16.5 mm, still produced a 2-fold relative increase in SNR.  

Re-tuning or matching is not necessary after the coil placement since the coil is tuned and 

matched after being placed in the sphenoid sinus. Since the coax cable is 20 cm long, it is 

short enough not to pick up any significant currents from the body coil during Tx.  If the 

coax cable is made to be longer than 20 cm, common mode current chokes could be placed 

along the length of the cable to impede the shield currents. This technique is supplemented 

with a balun on the pre-amplifier circuit board. 

The increased SNR from the miniature coil enabled a markedly higher resolution 

imaging compared to the commercial head coil. The voxel size of the high-resolution 

sequence is approximately 1/50th of the standard-resolution. Because the SNR is 

proportional to the voxel size [27], our coil enabled a much-increased spatial resolution of 

that currently used with standard 3T imaging. At this reduced voxel size, the inadequate 

SNR associated with the commercial coil was demonstrable. To the contrary, our phantom 

study suggests that pituitary adenomas of 1 mm and smaller may be detectable using our 

custom miniature intrasphenoidal coil.  

Multiple aspects of the electromagnetic behavior and performance of our custom 

coil were accurately simulated using a COMSOL multiphysics approach. The simulation of 

the effective magnetic field aligns with the experimentally measured SNR across a 

clinically relevant range of coil angles and distance, both in-plane pixel-wise and through-

plane. The consistency of these two groups of simulation data and experiment data 
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validates both the numerical simulation model and SNR experiments. The SNR from 

repeated scans also had little difference, demonstrating precise SNR measurements. The 

discrepancy remaining between the mean SNR curve and the simulation curve is likely 

attributable to errors in the imaging plane alignment. The imaging planes were selected 

manually on the scanner, and any mismatches in distance or rotation angle can create shifts 

in the SNR curves. Validated with the phantom scan experiment, this coil simulation model 

is important in studying the interaction between the RF fields from the surface coil and the 

ROI or the phantom. 

An additional advantage of our design approach, which is modular and relatively 

easily adaptable, is that in theory the same relative multiplicative improvements in SNR 

would be achievable with higher field MRI scanners as they become clinically available. 

Prior research has qualitatively examined the image quality improvement for pituitary MRI 

with 7T scanners [3], [10]. Since a real-time tune and match is performed, the coil can be 

tuned to other resonance frequencies and thus suitable for any MRI scanner.  
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Chapter 4: Clinical Application Study 

4.1 Surgical Placement 

An example hypothetical miniature coil surgical placement with the simulated SNR 

improvements in pituitary region is as shown in Fig.4.1. In the zoom-in view of the 

sphenoid sinus and the pituitary, the 2.6 cm miniature coil could be placed at a 30° angle 

with respect to 𝐵0 field. Both coil placement and pituitary gland contour were drawn by 

an experienced neurosurgeon. The gradient line plots overlay represents the SNR 

improvement factors of our coil compared to the commercial head coil, which were 

estimated based on the mean SNR from the scan of the miniature coil and the commercial 

head coil. In this case, the pituitary gland enjoys a 12 to 19 times of SNR improvement at 

the region close to the coil, and at least 3 times of SNR improvement at the region further 

away.  

 

Figure 4.1: Coil surgical placement example on the retrospective patient image. SNR 

improvement using the miniature coil compared to a commercial head coil was estimated 

using the simulated effective field at θ = 30°. The red ellipse indicates the location of the 

pituitary gland. 
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4.2 Sphenoid Sinus Measurements 

MPRAGE brain MRI sequences of 50 patients without sellar tumors were 

included in this analysis. Images from a 3T MRI (Siemens Prisma, Siemens 

Healthineers, Erlangen, Germany) 3D magnetization prepared radiofrequency pulse 

rapid gradient echo T1 with and without gadolinium (Gd-DTPA, 0.1 mmol/kg) 

contrast were downloaded from the PACS server and subsequently de-identified. 

Using axial slices, the maximum lateral intrercarotid distance and maximum 

distance at sellar face were measured. Using midline sagittal slices, craniocaudal 

sphenoid distance anterior to the sella, distance from coil to the posterior pituitary 

gland, and craniocaudal sellar distance were measured.  

50 patients with available MP RAGE brain MR imaging without sellar tumors 

or prior sinus surgery underwent measurement of sphenoid sinus parameters. On 

midline sagittal images (Fig. 4.2a) the average craniocaudal sphenoid distance 

anterior to the sella was 24 ± 4 mm. The average distance from the planned coil 

placement to the posterior pituitary gland was 13 ± 2 mm. The average craniocaudal 

sellar distance was 7 ± 2 mm. On axial images (Fig. 4.2b), the average maximum 

lateral inter-carotid distance was 27 ± 3 mm. The average maximum distance at the 

sellar face was 16 ± 4 mm. The distributions of the primary measurements, 

craniocaudal sellar distance at 0, 20, and 30 degrees of angulation and lateral 

intercarotid distance, were greater than 20 mm (Fig. 4.2c). For placement at 0° angle 

of the B0 static field, the craniocaudal distance (24 ± 4 mm) was the limiting 

constraint. We chose one standard deviation at the lesser dimension as the basis for 

subsequent simulation experiments and the use of the 20 mm flexible transnasal 
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coil. As shown below, slight angulations up to 20° angle did not significantly degrade 

the coil SNR performance, and therefore we anticipate this size coil could be used in 

nearly every patient. 

 

Figure 4.2: Anatomic measurements of the sphenoid sinus in 50 patients using magnetic 

resonance imaging T1 with contrast images in the midline sagittal (a) and axial (b) planes. 

The distributions of the craniocaudal sphenoid distance at various degrees and the lateral 

intercarotid distance (c).  
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SNR improvement of the transnasal coil compared to the commercial Siemens 20-

channel Head/Neck radiofrequency coil was simulated. The effective transverse field B1xy 

of the coil was simulated at a 0°, 20°, and 30° coil rotation angle in the sella. Gradient 

contour plots spatially represent the SNR improvement from use of the miniature coil 

(Fig. 4.3). For a 0° rotation angle (where the coil plane is parallel to the MR scanner 

headrest), a 20-fold SNR improvement was expected inside an area measuring 6.0 mm × 

17.0 mm around the coil and a 10-fold SNR improvement was expected inside an area 

measuring 15.2 mm × 17.5 mm. With coil rotation, there was a decrease in the height of 

the improved SNR region, but an increase in the width. Simulations with a coil placed at 

a 20° rotation angle yielded an expected 20-fold SNR improvement in an area measuring 

5.8 mm × 18.5 mm around the coil and a 10-fold SNR improvement in an area measuring 

15.0 mm × 19.5 mm around the coil. Simulations with a coil placed at a 30° rotation 

angle yielded an expected 20-fold SNR improvement in an area measuring 5.0 mm × 19.5 

mm around the coil and a 10-fold SNR improvement in an area measuring 14.3 mm × 

20.0 mm around the coil. As shown in the simulation, the transnasal coil is predicted to 

improve the SNR by 12 to 20 times compared to the commercial head coil at the region 

close to the coil, and at least 4 times of SNR improvement at the region further away. 

 



 
26 

 
Figure 4.3: Electromagnetic simulations with a 2 cm radiofrequency coil predicting 

signal-to-noise ratio increases at various distances from the coil and with various coil 

rotation angles relative to the horizontal MRI head holder and superposition of these 

simulations on an MRI T1 with contrast sphenoid sinus region. 
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4.3 Cadaveric Studies 

4.3.1 Coil Design Iterations for Cadaveric Studies 

  Based on the sphenoid sinus measurements, 2-cm diameter is the ideal size for the 

miniature flexible coil to fit 95% of the patients. A 2-cm diameter loop defining the 

radiofrequency coil was made from a single continuous copper trace (2 mm in width and 

17.8 mm in thickness) and attached to a coaxial cable (Siemens Healthineers: 50, 1.13 

mm diameter, 0.22 mm inner conductor diameter, 20 cm length). There were no electrical 

components directly on the coil, and the tune-and-match components were placed at the 

end of the 20 cm coil outside the body. The 20-cm cable is short enough avoid any 

significant current from the body coil during the transmission, while a longer cable would 

require common mode current chokes along the length of the cable in order to impede the 

shield current. The coil component was coated with Plasti Dip (Plasti Dip Int., 

Minneapolis, MN, USA) to prevent fluid electrical coupling and for future planned 

sterilization. This coating was conformal and flexible (Fig 4.4). 

 

Figure 4.4: (a) The coil was designed with flexibility for transnasal application and (b) a 

protective coating was applied to the coil to maintain this flexibility.  
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4.3.2 Cadaveric Studies Setup 

Three cadaveric human heads were used to simulate flexible miniature coil 

placement. A standard endonasal endoscopic approach was carried out to gain 

unobstructed access to the sella [Figure 3D]. Any sphenoid septations were drilled down. 

Bone over the sella was not removed. The coil was inserted through a single nare under 

endoscopic visualization and positioned directly over the sella parallel to the floor 

[Figure 3F] with the cadaver head facing towards the ceiling. A bovine collagen sponge 

(HeliSTAT, Integra LifeSciences Corporation, Plainsboro, NJ) [Figure 3E; 3G] was 

placed in the clival recess and over the coil to limit air-bone interface and associated 

artifact. The coil wire was secured to the external nare with a 3-0 vicryl suture and 

adhesive. The cadaveric specimen was then transported to the MRI scanner and examined 

again to confirm that detachment and movement had not occurred during transport.  

The prepared cadavers with transnasal coils in place were scanned with Siemens 

Prisma 3T MRI Scanner via the T1-MPRAGE sequence and Proton Density sequence at 

varying resolutions (T1: 0.9 mm × 0.9 mm × 0.9 mm; 0.4 mm × 0.4 mm × 0.4 mm; 0.2 

mm × 0.2 mm × 0.2 mm (transnasal coil only); PD: 0.7 mm × 0.7 mm × 3 mm; 0.2mm × 

0.2 mm × 0.7 mm) [Supplementary Tables 1-2]. T1-MPRAGE sequence is commonly 

used clinically, while the Proton Density sequence was performed for pixel SNR 

measurement. For the head coil, the phase oversampling was enabled to avoid phase 

wrapping artifacts due to the small field of view. Phase oversampling was unnecessary 

with the transnasal coil given localized signal. The pituitary gland was segmented into 

four 3mm regions (a, b, c) defined by proximity to the sella. Segmentation was performed 

by two independent observers (S.L., K.P.). Signal was found within each region, noise 

was defined as the standard deviation of the background intensity, and the SNR was 
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calculated as the signal intensity divided by the noise. The mean SNRs within the 

pituitary gland were calculated for the segmented regions of interest from the high-

resolution proton density sequence images and were compared between head coil and 

transnasal coil.  

Figure 4.5: (a) Cadaveric preparation of the sella with the removal of sphenoid septae 

and mucosa, (b) placement of collagen sponge in clival recess to eliminate air-bone 

interface artifact, (c) placement of exible mini coil at 0 degrees, (d) filling of the 

sphenoid sinus with collagen sponge.  

 

4.3.3 Visual and SNR Improvements with Flexible Coil in Cadaveric Studies 

Cadaver heads containing the flexible coil were imaged to compare differences in 

SNR. The sellar region was also imaged with the clinical Head/Neck coil MP-RAGE 

sequences with 0.9 mm slice thickness (Fig. 4.6A) and 0.4 mm slice thickness (Fig 4.6B). 

The transnasal coil shows significantly improved resolution of the pituitary soft tissue as 

compared to the head coil (Fig 4.6C).  

SNR calculations were calculated for various regions of interest (ROI) (Fig 4.6D) 

The mean SNR for the most anterior region (Region a) was 48.5 and the furthest region 

(Region c) was 14.9 (Table 4.1). The mean SNR for the entire pituitary gland ROI (Region 

a+b) was 39.0. The mean SNR for the head coil was 2.3 and was uniform across the all 

ROIs. The flexible coil demonstrated a maximum of 21-fold mean SNR improvement and 
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an average of 17-fold mean SNR improvement of the pituitary gland compared to the 

commercial head coil (Table 4.1).  

 

Figure 4.6: Cadaver heads with the placement of the flexible coil on T1-MPRAGE 

images with 0.9 mm slice thickness (A), 0.4 mm slice thickness (B), and 0.2mm slice 

thickness (C). The images were compared with the images from the Siemens 20-channel 

Head/Neck coil at the same resolutions. The pituitary gland region of interest (marked by 

white dotted circle) was divided into 4 sub-regions with 3 mm width: Region a, Region b, 

Region c, and Region d (D). The noise region of interest is identified by the blue circle. 

 

Table 4.1: Mean SNR comparison for high-resolution MRI 

(Proton Density: 0.2×0.2×0.7 mm3) 
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4.3.4 Histological Correlation 

In a single cadaver head, flexible coil images identified a hypointensity not 

identified on images using the standard head coil [Figure 5A-B]. Following imaging, the 

pituitary was removed en bloc, sectioned in the coronal plane, para31n embedded and 

stained with hemotoxylin and eosin as well as reticulin. [Figure 5C-D]. A board-certi31ed 

pathologist identi31ed a pituitary cyst on histological sections that potentially correlated 

with imaging ndings, although left/right directionality was lost on tissue acquisition and 

processing.  

 

Figure 4.7: (a) A coronal view of the pituitary gland using high-resolution Proton 

density (0.2mm x 0.2mm x 0.7mm) image with the flexible coil in a cadaveric specimen, 

(b) the annotated image showing highlighted pituitary gland (yellow outline) and 

hypointensity (red outline). (c, d) Corresponding coronal sections with reticulin stain and 

H&E stain show a cyst like structure in the lateral aspect of this gland. 
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4.3.5 Temperature Measurements 

To assess for safety, the flexible coil was tested for radiofrequency heating by 

inserting it into a 980 gram pork meat phantom within a room maintained at 20°C. The 

temperature measurements were performed with a benchtop fiber optic thermometer 

(FOTEMP1-4, Optocon®). The probe was positioned at two different positions inside the 

meat phantom. One probe was placed right beneath the coil (measuring site S1) and the 

other one was on the coil trace (measuring site S2). A continuous 15-minute fast low angle 

shot three-dimensional imaging (FL3D) sequence was performed on the meat phantom 

during the temperature measurement (TR = 20 ms, TE = 5 ms, FA = 5°). The body coil was 

used as the transmit coil and the time-averaged RF power was 0.3 W.  

With the 2-cm coil in direct contact with the phantom (Fig. 4.8a-b), the change in 

temperature during a 15-minute scan was measured to evaluate for safety. With a 0.3 W 

time-averaged RF power, there was no detectable change in temperature throughout the 

experiment at two measurement sites [0° change at site 1; 0° change at site 2, Fig. 4.8c].  
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Figure 4.8: (a) Meat phantom with direct coil placement and thermometer placement and 

(b) schematic illustrations of the two temperature measuring sites. (c) Temperature 

recordings at measuring sites S1 and S2 for the 15-minute fast low angle shot three-

dimensional imaging (FL3D) sequence scan.  
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4.4 Discussions 

We show the development, feasibility, and SNR improvement of a flexible coil for 

imaging of the pituitary gland. Establishing a range of anatomic sphenoid sinus 

measurements in the general population allowed for the implementation of a 2 cm coil that 

can be applied to 95% of patients. A coil electromagnetic simulation model was used to 

predict the SNR improvement of using a flexible coil compared to a commercial head coil, 

providing a convenient and time-efficient way to characterize the coil performance in the 

clinical environment. Moreover, the simulation model can also be useful in selecting the 

optimal coil size and shape based on the specific anatomy of each patient in future clinical 

studies. 

The safety and feasibility of the coil placement were evaluated for potential clinical 

use. During the 15-minute scan, no detectable temperature change was found. The average 

specific energy absorption rate (SAR) during the scan can be estimated by dividing the 

time-average input RF power by the sample mass [28]. Therefore, the experimental average 

SAR is well below the guideline value [29]. We demonstrate that the flexible coil is 

unlikely to cause thermal damage to the patient and is safe to be used in the clinical 

environment. In addition, pre-clinical insertion of the coil in a cadaver head was carried out 

with the subsequent demonstration of 17-fold increased SNR of the pituitary gland in this 

model. Lastly, we identify a cadaveric case where flexible coil 1) identified potential lesion 

that was not detected on standard head coil and 2) potentially correlated with histologic 

abnormality. We hypothesize this technique may be applicable to small functioning 

pituitary tumors. 

There is limited published data using this strategy. Chittiboina et al. [13], published 

a cadaveric study using a 12 mm flexible coil inserted using a microscope-based sublabial 
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approach and imaging performed using a 1.5T scanner. The coil was inserted through the 

retractor system, and the tip ended up between 4.2 and 17 mm from the pituitary gland. In 

approximately half of the cases where the coil was in close proximity to the sella there was 

a mean 10-fold SNR improvement, while the other half of the cases showed an 

improvement of less than 5-fold. In comparison, our study uses a larger flexible coil placed 

along the sella through an endonasal endoscopic approach without the need for a custom 

securing apparatus and with complete visualization both before and after coil placement. 

Overall, we utilize a similar strategy of image improvement with potentially increased SNR 

improvements with the more contemporary endonasal endoscopic approach for pituitary 

surgery.  

Of note, the MRI quality in cadaveric tissue is known to be different from clinical 

images, and therefore the overall image quality is reduced from clinical standards. Despite 

this known limitation of our study, we demonstrate a difference in SNR between the head 

coil and flexible coil, as well as an expected improvement with better spatial resolutions in 

each coil. In addition, our pathological analysis is limited in that left/right orientation could 

not be preserved with fixation and staining. Despite this, we found a potential pathological 

correlate in the pituitary sample with a hypointensity seen on the flexible coil MRI and may 

serve as a proof of concept of identification of pituitary lesions not seen on standard MRI. 

Overall, these data demonstrate that the flexible coil can likely be safely used in a clinical 

setting and has the potential to identify pituitary tumors that are missed on standard clinical 

MRI sequences. Further research will investigate the safety and feasibility of the flexible 

coil in patients undergoing surgery for functional ACTH-producing pituitary tumors with 

negative imaging.  
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Chapter 5: Conclusions 

A miniature flexible coil has been developed, and its feasibility was validated using 

numerical simulations and experimental phantom. The proposed coil design can be surgically 

positioned in close proximity to the pituitary gland, which can provide a maximum of 19-fold 

SNR improvement compared to a commercial head coil within a region of interest in the agar 

phantom study. A 3D coil simulation model was cross-validated with the experimental scan 

results, where the simulation model can be used to develop and refine new coil designs with 

predicted SNR gains in future studies.  

The clinical study describes a transnasally-placed 2-cm flexible coil to improve the 

resolution of pituitary imaging. The coil is compatible in 95% of patients, can be successfully 

placed in contact with the sella in cadaver studies, shows no temperature changes in phantom 

studies during scanning, and improves the SNR of the pituitary by an order of 17. This study 

provides feasibility data for the promise of application to the clinical setting to improve 

detection of small ACTH-secreting pituitary tumors when clinical pituitary MRI fails.  
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Chapter 6: Future Work 

A novel miniature flexible coil that can be placed within millimeters of the pituitary 

gland was developed, to drastically improve the SNR and image quality of the gland. While 

the clinical application studies in this work provided surgical feasibilities, there are several 

major areas that can be further studied to enable in-vivo experiments. 

Surgical Coil Placements and Protocols 

While the simulated coil placement results demonstrated that the flexible coil can fit 

95% of the patients, this statistical finding is a retrospective imaging study, and it is not 

confirmed in cadaveric studies. A large cadaveric study with the standard clinical 

transnasal endoscopic procedure is necessary to verify the percentage of the patients whom 

the flexible coil can fit with an ideal scanning coil angle. 

In cadaveric studies, physicians use HeliSTAT to fixate the coil angle and positions. 

This may be sufficient for cadaveric studies as there are no patient motions. A better 

technique and protocol should be developed to better fix the coil positions, as the coil angle 

is crucial for imaging performances. 

Motion Correction 

This study only considered stationary objects as phantoms and cadaver heads. 

Respiratory motion and cardiac-synchronized brain motion during the in-vivo MRI is a 

well-documented problem [30]. Motion compensation techniques in pulse sequence and 

image reconstructions should be applied to mitigate the motion corruption artifacts. 

Respiratory motion is one of the main sources of imaging artifacts, which severely impair 

image quality and clinical diagnosis. A common solution is breath-holding, which requires 

fast scanning time with a highly accelerated pulse. Imaging sequences such as single-shot 

turbo-spin echo (SSTSE), and balanced steady-state free precession (bSSFP), can reduce 
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the scan time to a single breath-hold time [31]. Another solution is free-breathing 

continuous scanning with motion correction image reconstruction algorithms [32], [33]. 

Cardiac-synchronized brain motion can cause sub-millimeter displacements and induce 

blurry motion artifacts, which hinders the detection of microadenomas [8]. ECG-gated or 

self-gated MRI sequences can effectively mitigate the cardiac motion artifacts [34], [35]. 

Motion correction reconstruction with slice-to-volume registration is another direction to 

mitigate the motion artifacts in image reconstruction and post-processing. Multiple sets of 

scans from three orientations are registered onto a single high-resolution 3D volume 

iteratively, with a motion-robust reconstruction [36]. 

Image Quality and Microadenomas Detectability Study 

In one cadaver study, we found a potential pathological correlate in the pituitary sample 

with a hypointensity seen on the transnasal coil MRI, our pathological analysis is limited in that 

left/right orientation could not be preserved with fixation and staining. A large cadaveric study with 

more rigorous pathological assessment cross-validation is necessary to demonstrate the detectability 

of microadenomas of the flexible coil. 

While the cadaver scan images show significant image resolution improvement 

over the commercial head coil, the MRI quality in cadaveric tissue is known to be different 

from clinical images, and therefore, the overall image quality is reduced from clinical 

standards. The actual SNR and image resolution improvements in in-vivo surgical 

applications need further verification. 
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High-Resolution 3D MRI with Deep Generative Networks via Novel Slice-

Profile Transformation Super-Resolution 

Chapter 7: Introduction and Motivation 

7.1 Introduction 

Spin-echo-based acquisitions, such as turbo spin-echo (TSE) or fast spin-echo 

(FSE) imaging, are preferred for clinical magnetic resonance imaging (MRI) image 

interpretation for high spatial and contrast resolution for the detection of pathology [37] 

Three-dimensional (3D) TSE imaging is limited by its long imaging time and related blur 

image artifact associated with patient motion [38]–[40] Instead, multi-slice two-

dimensional (2D) TSE imaging is the standard for a range of clinical applications due to its 

spin-echo-based acquisitions with high contrast and high in-plane resolution (e.g., 0.3-1 

mm). However, a stack of 2D slices in a multi-slice 2D acquisition typically has a thicker 

through-plane resolution (e.g., 3-6 mm), yielding low-resolution (LR) multi-planar 

reformation (MPR) with staircase artifact due to elongated voxels [40], [41]. As a result, 

multiple stacks of 2D TSE scans are often acquired in multiple orthogonal imaging planes 

(e.g., axial, coronal, and sagittal planes), and in some applications, up to five imaging 

planes (axial, coronal, sagittal and two oblique planes) [41]–[43]. These approaches 

increase the overall scan time, decrease patient comfort, and can also limit the streamlined 

interpretation of images (e.g., radiologists may need to draw a region of interest (ROI) 

separately on multiple 2D scans from different orientations). Therefore, methods that 

achieve super-resolution (SR) transformation of a single multi-slice 2D TSE scan into a 

high-resolution (HR) isotropic 3D MRI will be valuable to reduce overall imaging time and 

improve the interpretation of TSE-based MRI images.  



 
40 

 Super-resolution reconstruction (SRR) with slice-to-volume registration (SVR) 

methods have been established to reconstruct a single 3D SR volume from multiple 2D 

MRI scans[43]–[47] Slice-profile downsampling has been proposed to transform SR 

volume back to LR 2D volumes for fidelity constraints. These SVR algorithms are iterative 

and require multiple 2D MRI scans, thus increasing the acquisition time and reconstruction 

time. In contrast, deep-learning-based super-resolution (SR) showed promises in SR of 3D 

MRI or in-plane 2D MRI [48]–[60]. However, applying them to through-plane 2D MRI is 

non-trivial because of the imperfect slice-selection profile[61].  

In this work, we propose a novel slice-profile transformation super-resolution 

(SPTSR) framework. The SPTSR framework enables the application of deep learning 

super-resolution to a single stack of multi-slice 2D TSE MRI to achieve 3D isotropic super-

resolution by using training inputs synthesized by a realistic representation of the low-

resolution through-plane images and slice-profile-transformation based inference pipeline. 

As multiple orthogonal imaging planes are commonly used in clinical multi-slice 2D TSE 

MRI, we apply slice-profile-transformation based downsampling (SP-DS) to multi-slice 2D 

coronal TSE scans as training input to the deep generative model and test our proposed 

generative network on multi-slice 2D axial TSE scans, reformatted to the coronal plane. 

We use multi-slice 2D T2-weighted (T2w) prostate MRI, and our aim is to achieve super-

resolution 3D imaging with an isotropic resolution of (0.625mm)3 from a single multi-

slice 2D T2w MRI scan of 3.6mm slice spacing. In addition, we simulated 2D T2w MRI 

with a large dataset of 3D T2w MRI scans to quantitatively evaluate SPTSR with ground-

truth images. 

The main contributions of our SPTSR framework include that  

1) We used a dedicated observation model (i.e., an appropriate definition of a 2D 
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excitation profile) that enables coronal (or axial) scans for supervised training via SP-

downsampling to perform SR of axial (or coronal) scans. 

2) Both the training and inference images are blurred via SP-downsampling and SP-conv 

to match the slice profile kernel in the two orthogonal directions, and the output images 

are then deblurred via SP-deconv to achieve super-resolved isotropic 3D imaging. 

3) The purpose and necessity of SP-downsampling, SP-conv, and SP-deconv, collectively 

referred to as SPTSR, are proved both in theory and experimental results. 

4) With extensive visual, qualitative, and quantitative comparisons, we establish that 

SPTSR significantly improves the quality of SR images when compared to the SMORE 

method [62] and k-space zero-fill (KS-ZF) trained networks.  

5) The feasibility of using only one multi-slice 2D TSE scan for a high-resolution MPR is 

shown using the SPTSR framework. This can potentially save total MRI scan time 

considerably as it negates the necessity of scanning multiple stacks of 2D TSE scans in 

orthogonal imaging planes. 

7.2 Related Works 

 Existing super-resolution reconstruction (SSR) methods generally require multiple 

2D MRI scans to iteratively register and reconstruct a single 3D SR volume. Greenspan et 

al. proposed an inter-slice super-resolution algorithm that utilized three stacks of multi-

slice 2D images, each volume shifted by a sub-pixel amount in the slice direction [63]. An 

iterative back-projection algorithm was used to reconstruct the high-resolution image 

volume [63]. Rousseau et al. and Jiang et al. developed slice-to-volume registration (SVR) 

to register multiple sets of scans from three orientations onto a single high-resolution 3D 

volume [44], [45]. Gholipour et al. used a total of scans from three orientations to perform 
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SVR and iterative SSR [46], [47]. They proposed a slice acquisition model, including SP-

downsampling, which was used to iteratively transform the SR volume back to LR input 

volume, and enforce the fidelity constraints [46], [47]. For lengthy cardiac cine scans, 

motion-compensated reconstruction was proposed to combine multiple 2D cine scans into a 

3D cine volume [64]. Automated pipelines with CNN-based initial SVR estimation and 

CNN-based localization and segmentations were also developed [36], [43], but iterative 

SSR was still performed. SSR frameworks demonstrated qualitative and quantitative 

improvement from the 2D scans [65], [66]. However, these SSR approaches used multiple 

2D scans and iterative SSR algorithms, which significantly increased the acquisition time 

and the reconstruction time. 

Deep learning SR algorithms are the state-of-the-art for SR in natural images and 

have become increasingly popular for SR in MRI [55], [67]. Many studies focused on SR 

of 3D MRI or in-plane SR for 2D MRI and showed promise in achieving high in-plane 

resolution with single-image SR [48]–[60]. To synthesize the LR training input from the 

HR reference images, these works used either averaging-based or interpolation-based 

downsampling [48]–[54] or KS-ZF downsampling [55]–[60]. However, applying them to 

achieve high through-plane resolution is challenging with multi-slice 2D TSE imaging 

datasets because super-resolution algorithms were trained and tested along with the 

frequency and phase encoding directions. Frequency and phase encoding schemes divide 

the voxels evenly in the frequency domain, where they are continuous, uniform, and non-

overlapping [68]. In this case, training input for super-resolution can be easily synthesized 

by downsampling HR reference images. In contrast, multi-slice 2D TSE imaging is realized 

by applying a radiofrequency (RF)-excitation pulse with a slice-selection profile for each 

individual slice [61]. Due to MR hardware limitations, the slice-selection profiles may not 
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be sharp-edged and can overlap with adjacent slices [61]. To compensate, slice spacing 

greater than the slice thickness is often used to avoid the slice overlapping, resulting in 

physical discrepancies between the evenly-spaced super-resolution and through-plane 

resolution of multi-slice 2D TSE imaging. Training input for super-resolution cannot be 

easily synthesized by simple downsampling due to the fundamental difference between 

actual through-plane resolution and synthesized low-resolution images.    

Several studies have proposed to increase the through-plane resolution of multi-

slice 2D MRI with learning-based super-resolution. Jurek et al. developed a CNN-based 

super-resolution reconstruction using thick slices [69], and Zhang et al. developed a GAN-

based super-resolution algorithm with multiple 2D scans [70]. Bhatia et al. proposed SR of 

cardiac MRI with coupled dictionary learning [71]. These three methods all generate the 

LR simulated input with averaging-based or interpolation-based downsampling. While they 

show impressive with simulated testing data, they did not perform testing on actual 2D 

scans.  Sood et al. [41], [72] used training from conventional k-space zero-filled 

downsampled HR axial prostate MRI to test on reformatted multi-slice 2D coronal MRI. 

Although excellent validation results were shown, the testing results did not fully resolve 

the staircase artifact and were visibly much noisier compared to the reference images. 

SMORE is the state-of-the-art SR algorithm that super-resolves one stack of 2D slices to an 

isotropic 3D volume [62]. SMORE trained on downsampled HR axial slices and infer on 

the reformatted 2D coronal slices. It attempted to factor in staircase artifacts by applying a 

self-supervised anti-aliasing step (SAA) but did not fully consider slice profiles during the 

downsampling and inference. Thus, although it demonstrated good results in brain MRI, 

certain anatomically challenging MRI scans may not be applicable due to the limitations of 

the training data. Our proposed SPTSR will be extensively compared with SMORE as the 
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state-of-the-art.  
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Chapter 8: Slice-profile Transformation Super-resolution (SPTSR) Framework 

 

Figure 8.1: The overall SPTSR framework, with training flow (top) and inference flow 

(bottom). 

We describe the complete framework of our proposed SPTSR in detail, 

summarized in Fig. 8.1. Current clinical MRI scans, including prostate, brain, and 

placenta MRI, commonly include several stacks of multi-slice 2D TSE MRI scans with 

two or three orthogonal orientations (e.g., axial, coronal, and sagittal) to compensate 

for low through-plane resolution. The goal of the proposed SPTSR framework is to 

train from one orientation of a single stack of 2D slices (e.g., a coronal MRI scan) and 

use the orthogonal orientation (e.g., an axial MRI scan) to infer an isotropic high-

resolution 3D imaging volume. The isotropic 3D imaging volume can be transformed 

into other orientations via MPR. For this to work: 

• We designed a novel slice-profile transformation super-resolution (SPTSR) 

framework, with a pre-processing SP-downsampling for an orthogonal stack of 

multi-slice 2D scan as the training input, a pre-processing SP-conv for the 

inference input, and a post-processing SP-deconv for the inference output. 

• We utilized a large clinical prostate MRI dataset, consisting of axial and coronal 

stacks of multi-slice 2D TSE MRI scans, for training, validation, and testing. 

• We designed the WGAN-GP scheme for the training of our deep generative 

networks. 
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8.1 Slice-Profile Transformation 

We define a stack of multi-slice 2D coronal images as 𝐼𝑐𝑜𝑟  (with high resolution 

in the SI-direction) and a stack of multi-slice 2D axial images as 𝐼𝑎𝑥 (with low 

resolution in the SI-direction). A set of 𝐼𝑐𝑜𝑟  is used for training and validation, and 

𝐼𝑎𝑥→𝑐𝑜𝑟 , reformatted from axial to coronal planes is used for the input to the inference 

model. Although not shown, the principle would hold the same way for other 

orientations (e.g., 𝐼𝑎𝑥→𝑠𝑎𝑔 , 𝐼𝑐𝑜𝑟→𝑎𝑥, etc.). We define 𝑉 as the underlying isotropic high-

resolution 3D imaging volume with a matrix size of 𝑁𝐿𝑅 × 𝑁𝐴𝑃 × 𝑁𝑆𝐼 and field-of-view 

(FOV) of 𝐹𝐿𝑅 × 𝐹𝐴𝑃 × 𝐹𝑆𝐼.Then, 𝐼𝑐𝑜𝑟  and 𝐼𝑎𝑥  at the pixel/slice indices, 𝑥, 𝑦, 𝑧, with the 

same FOV are expressed as: 

 𝐼𝑐𝑜𝑟(𝑥, 𝑦, 𝑧)|𝑥∈[1, 𝑁𝐿𝑅],𝑦∈[1,𝑁𝑆𝐴𝑃],𝑧∈[1,𝑁𝑆𝐼]

= ∑ 𝑃𝑆𝐹𝐴𝑃(𝑗)𝑉(𝑥, 𝑗, 𝑧),
𝑗=𝑦×𝐷𝑆𝐴𝑃+⌊𝐿

2⌋

𝑗=𝑦×𝐷𝑆𝐴𝑃−⌊
𝐿
2−1⌋

 
(1) 

   

 

 

𝐼𝑎𝑥(𝑥, 𝑦, 𝑧)|𝑥∈[1,𝑁𝐿𝑅],𝑦∈[1,𝑁𝐴𝑃],𝑧∈[1,𝑁𝑆𝑆𝐼]

= ∑ 𝑃𝑆𝐹𝑆𝐼(𝑘)𝑉(𝑥, 𝑦, 𝑘)
𝑘=𝑧×𝐷𝑆𝑆𝐼+⌊𝐿

2⌋

𝑘=𝑧×𝐷𝑆𝑆𝐼−⌊
𝐿
2−1⌋

, 
(2) 

where 𝑃𝑆𝐹∗ is the normalized one-dimensional (1D) slice profile for a given RF-excitation 

pulse, 𝑁𝑆∗ is the number of slices, and 𝐷𝑆∗ is the spacing between slices in coronal (∗=AP) 

and axial (∗=SI) scans. 𝐿 is the slice thickness, full-width-half-max (FWHM) of 𝑃𝑆𝐹. 𝐷𝑆𝑥  

becomes same as L if there is no slice gap. 𝑗, 𝑘 are upsampled indices to account for non-

integer indices after scaling. The 𝑃𝑆𝐹 is approximated as truncated sinc function. While the 

true slice profile is possible to compute by the combination of slice profiles of RF 

excitation and refocusing pulses, the difference between exact and approximated ones 
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would be subtle and beyond the scope of our work as we apply projection to all signals.  

Figure 8.2: a) The proposed SP-downsampling method. Each line of pixels is acquired by 

multiplying the slice profile 𝑃𝑆𝐹𝑆𝐼 of length 𝐿, to the same physical location on the cropped 

coronal scan; b) The KS-ZF downsampling method. Each slice of image is transformed to 

the frequency domain via FFT, cropped its center lines and iFFT back to the downsampled 

image. 

Figure 8.3: The down-sampling method visual comparison. a) the conventional KS-ZF 

downsampled image patch, b) the SP-downsampled image patch, c) the reformatted axial 

patch, and d) the SP-convolved axial patch. Thickness in each patch represents the voxel 

thickness in the AP-direction. All patches are bilinear interpolated to demonstrate the 

visual differences. 
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Previous studies attempted to synthesize 𝐼𝑎𝑥→𝑐𝑜𝑟 by downsampling 𝐼𝑐𝑜𝑟  via k-space 

zero-filling (KS-ZF) ) [21]–[24]. The KS-ZF transforms the source image to the frequency 

domain via FFT, crops the center at 1/up-sampling factor, and converts it back to the image 

domain via iFFT, as illustrated in Fig. 7.2b. Essentially, the KS-ZF in the axial plane 

𝐿𝑅𝑧𝑓,𝑐𝑜𝑟 can be expressed as applying a 1D-lowpass filter with a rectangular window to 

𝐼𝑐𝑜𝑟  in the SI-direction: 

 𝐿𝑅𝑧𝑓,𝑐𝑜𝑟 = 𝐿𝑃𝑆𝐼(𝐼𝑐𝑜𝑟), (3) 

where 𝐿𝑃𝑆𝐼 is the 1D low-pass filtering along the SI-direction. 𝐿𝑅𝑧𝑓,𝑐𝑜𝑟   and 𝐼𝑐𝑜𝑟  form the 

conventional LR-HR training pair for KS-ZF trained deep learning networks. However, 

𝐿𝑅𝑧𝑓,𝑐𝑜𝑟 is inherently different from its reformatted version from the axial scan 𝐼𝑎𝑥→𝑐𝑜𝑟 , as 

shown in Fig. 3a and 3c. In particular, 𝐼𝑎𝑥→𝑐𝑜𝑟 contains weaving patterns (Fig. 7.3c) while 

𝐿𝑅𝑧𝑓,𝑐𝑜𝑟 is smooth overall (Fig. 7.3a; see the red arrows). This is because:  

a) 𝐿𝑅𝑧𝑓,𝑐𝑜𝑟 does not account for the imaging characteristics due to the convolution of 

𝑃𝑆𝐹𝑆𝐼 on 𝐼𝑎𝑥 ,  

b) the 3 mm slice thickness of 𝐿𝑅𝑧𝑓,𝑐𝑜𝑟 (FWHM of 𝑃𝑆𝐹𝐴𝑃) in the AP-direction is five 

times thicker than the 0.6 mm slice thickness of  𝐼𝑎𝑥→𝑐𝑜𝑟 in the AP-direction, and  

c) the 3 mm voxel spacing of 𝐿𝑅𝑧𝑓,𝑐𝑜𝑟  (FWHM of 𝑃𝑆𝐹𝑆𝐼) in the SI-direction is different 

than the 3.6 mm voxel spacing of  𝐼𝑎𝑥→𝑐𝑜𝑟 in the SI-direction (𝐷𝑆𝑆𝐼). 

To address the above three differences, we transform both 𝐼𝑐𝑜𝑟  and 𝐼𝑎𝑥  to the common 

LR image domain by considering both 𝑃𝑆𝐹𝐴𝑃 and 𝑃𝑆𝐹𝑆𝐼. To synthesize the training input 

with 𝐼𝑐𝑜𝑟 , we convolve 𝐼𝑐𝑜𝑟  with 𝑃𝑆𝐹𝑆𝐼 (Fig. 8.2a): 
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 𝐿𝑅𝑐𝑜𝑟(𝑥, 𝑦, 𝑧)|𝑥∈[1,𝑁𝐿𝑅],𝑦∈[1,𝑁𝑆𝐴𝑃],𝑧∈[1,𝑁𝑆𝑆𝐼]

= ∑ 𝑃𝑆𝐹𝑆𝐼(𝑘)𝐼𝑐𝑜𝑟(𝑥, 𝑦, 𝑘)
𝑘=𝑧×𝐷𝑆𝑆𝐼+⌊𝐿

2
⌋

𝑘=𝑧×𝐷𝑆𝑆𝐼−⌊
𝐿
2−1⌋

, 
(4) 

 

where 𝐿𝑅𝑐𝑜𝑟 and 𝐼𝑐𝑜𝑟  form a LR-HR training pair for our deep generative networks (Fig. 

8.4). The SR training output (𝑆𝑅𝑐𝑜𝑟) has the same dimension and voxel size as the HR 

reference (𝐼𝑐𝑜𝑟). 

For inference, we convolve 𝐼𝑎𝑥  with 𝑃𝑆𝐹𝐴𝑃 to form the convolved input 𝐼𝑎𝑥,𝑐𝑜𝑛𝑣 

(Fig. 5), defined as: 

 𝐼𝑎𝑥,𝑐𝑜𝑛𝑣(𝑥, 𝑦, 𝑧)|𝑥∈[1,𝑁𝐿𝑅],𝑦∈[1,𝑁𝐴𝑃],𝑧∈[1,𝑁𝑆𝑆𝐼]

= ∑ 𝑃𝑆𝐹𝐴𝑃(𝑗)𝐼𝑎𝑥(𝑥, 𝑗, 𝑧)
𝑗=𝑦×𝐷𝑆𝐴𝑃+⌊𝐿

2⌋

𝑗=𝑦×𝐷𝑆𝐴𝑃−⌊
𝐿
2−1⌋

. 
(5) 

Note that the dimension is 𝑁𝑌 in the AP-direction, and we keep the matrix size of 𝐼𝑎𝑥  by 

applying a sliding window for the convolved input 𝐼𝑎𝑥,𝑐𝑜𝑛𝑣 .  

Comparing the training input 𝐿𝑅𝑐𝑜𝑟 and the inference input 𝐼𝑎𝑥,𝑐𝑜𝑛𝑣 (Fig. 8.3b and 

8.3d), both contain similar weaving artifacts in the SI-direction by considering both 

PSFAP and PSFSI. This is because the three physical problems are addressed by: 

a) both 𝐿𝑅𝑐𝑜𝑟 and 𝐼𝑎𝑥,𝑐𝑜𝑛𝑣  that have multiplied with 𝑃𝑆𝐹𝑆𝐼 and 𝑃𝑆𝐹𝐴𝑃, 

b) both 𝐿𝑅𝑐𝑜𝑟 and 𝐼𝑎𝑥,𝑐𝑜𝑛𝑣  that have the same 3 mm slice thickness in the AP-direction 

of FWHM of 𝑃𝑆𝐹𝐴𝑃, and 

c) both 𝐿𝑅𝑐𝑜𝑟 and 𝐼𝑎𝑥,𝑐𝑜𝑛𝑣  that have the same 3.6 mm voxel spacing in the SI-direction 

of 𝐷𝑆𝑆𝐼. 

Thus, we ensure the input to the networks in training/validation, and the input in 
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the inference flow are of the consistent intrinsic voxel size and spacing. 

8.2 Deep Generative Networks 

Our SPTSR framework is model-agnostic, and the specific network architecture for 

deep generative networks was not the focus of our study. We adopted deep generative 

networks architecture largely from SRGAN [73], as shown in Fig. 8.4, with the three key 

differences. First, we used three consecutive low-resolution images as input, with the 

middle slice being the targeted input. By adding the adjacent slices to the original input, the 

networks can learn the spatial relationship between image slices. Because of imperfect slice 

excitation, the voxel information was intertwined between adjacent slices, further helping 

the model to generate super-resolution images. Compared to feeding the whole image 

volume into the networks, 3-slice input significantly lowers the overall graphical memory 

usage. Secondly, batch normalizations and the last sigmoid activation function were 

removed from the discriminator network because our networks were trained using WGAN-

GP [74]. Lastly, the upsampling blocks in the generator model were modified to 1D 

anisotropic upsampling. 
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Figure 8.4: The WGAN-GP based deep generative networks architecture of  our 
proposed SPTSR framework. 
 

8.3 Inference Flow 

The overall inference flow is shown in Fig. 8.5. Similar to the training 3-slice input, 

the input for inference contains three SP-convolved slices, including a center slice (red) and 

two adjacent slices (yellow). Note that the slices between training/validation input 𝐿𝑅𝑐𝑜𝑟 

have slice spacing of 𝐹𝐴𝑃 𝑁𝑆𝐴𝑃⁄ , so for the inference input 𝐼𝑎𝑥,𝑐𝑜𝑛𝑣 , the adjacent slices are 

also convolved at the physical distance of 𝐹𝐴𝑃 𝑁𝑆𝐴𝑃⁄  from the middle slice.  Because the 

LR-HR training pairs are 𝐿𝑅𝑐𝑜𝑟 and 𝐼𝑐𝑜𝑟 , the output from deep generative networks has the 

same voxel dimension and characteristics of 𝐼𝑐𝑜𝑟 . This applies to both the 

training/validation and inference pipeline. Each coronal plane slice of the inference output 

𝑆𝑅𝑎𝑥 is at the same resolution, matrix size and contrast compared to the cropped coronal 

scan Icor. In addition, the inference output SRax is convolved in the AP-direction with an 

elongated voxel size, with the same matrix size FAP NAP⁄  of Iax in AP-direction. Thus, the 

inference through-plane SR output SRax not only synthesizes the coronal scan, but has an 

isotropic voxel spacing. To fully utilize this isotropic voxel spacing characteristic, 
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deconvolution, with the 1D slice profile PSFAP (Fig. 8.5). The end product is the isotropic 

SR volume SRax,deconv. By using this iterative noise-robust Richardson-Lucy 

deconvolution method [75], [76], we transform the SRax with an elongated voxel size of 

(
FLR

NLR
,

FAP

NSAP
,

FSI

NSI
), to an isotropic high-resolution image volumeSRax,deconv, with isotropic 

voxel size (
FLR

NLR
,

FAP

NAP
,

FSI

NSI
). 

 

 

 

 

 

 

 

Figure 8.5: The proposed SR inference flow. T2w-TSE axial scan is cropped and SP-
convolved in the AP-direction to prepare the input for the deep generative networks. The 
output of the networks is still convolved in the AP-direction and is then transformed to 
isotropic SR volume via SP-deconvolution. Red patches represent coronal views and blue 
patches represent axial views. Patch thickness represents the voxel thickness in the 
through-plane of the patch. 
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Chapter 9: 2D & 3D Experiments 

9.1 Multi-slice 2D Experiments 

9.1.1 MRI Dataset 

We retrospectively reviewed clinical prostate MRI scans from March 2013 to 

December 2018 at a single academic institution and identified a total of 3,895 clinical 

subjects with 4,878 paired stacks of axial and coronal images using the multi-slice 2D T2-

weighted turbo spin-echo (T2w-TSE) sequence. Institutional Review Board (IRB) approval 

was obtained for the study. The MRI scans were performed on one of several Siemens 3 

Tesla scanners (including Prisma, Skyra, Vida, and Trio; Siemens Healthineers, Erlangen, 

Germany). Most clinical subjects had one pair of coronal and axial scans, and some 

subjects had more than one pair of scans at different time points. Both axial and coronal 

scans were based on the same imaging sequence except for the imaging-plane orientations. 

Each stack included 20 slices of T2w-TSE images, with an in-plane resolution of 

0.625×0.625mm2 (the matrix size of 320×320). The slice thickness was 3 mm with a slice 

spacing of 3.6 mm (i.e., a nominal gap of 0.6 mm between adjacent slice boundaries). No 

parallel imaging was used for reconstruction. The MRI sequence parameters are shown in 

Table 9.1. 

Table 9.1: The T2-weighted turbo spin-echo (T2w-TSE) sequence parameters 

 

 

 

 

 

 

 

TR/TE (ms) 4000/101 

Refocusing angle (degree) 160 

Bandwidth (Hz/pixel) 200 

Acquisition matrix size 320×320 

In-plane resolution (mm2) 0.625×0.625 

Number of slices 20 

Slice thickness (mm) 3.0 

Slice spacing (mm) 3.6 

Number of averages 2 

Scan time (mm:ss) 01:40×2 
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9.1.2 Data Preparation 

The training/validation/testing splits were 3,453/392/50 from 3,895 clinical 

subjects. Training and validation used coronal scans. All of the training and validation 

coronal scans were cropped (320 to 110) in the z-direction to the same physical coverage 

distance as the axial scans. They were then downsampled by both the conventional KS-ZF 

and SP-downsampling methods to create separate training/validation datasets. Each coronal 

scan had 20 slices, generating 18 three-slice input samples.  

The testing dataset used axial scans, and scans with strong inter-slice motion 

artifacts were manually excluded. The axial scans were reformatted to coronal orientation, 

which produced 320 slices of 20×320 reformatted images. They are also cropped (320 to 

110) to have only imaging volumes of prostates overlapping with the coronal scans. The 

high-resolution coronal images were used as visual references. 

 

9.1.3 Training Scheme 

The deep generative networks were trained using the WGAN-GP scheme [74]. 

Thus, the discriminator loss included a weighted sum of the adversarial and gradient 

penalty loss. The generator loss included the weighted sum of the adversarial loss, mean-

square-error (MSE) loss, and the VGG perceptual loss, where the weights were (10e-3, 1, 

10e-6) respectively. The VGG perceptual loss showed excellent performance as a 

perceptual loss for super-resolution tasks [73], [77]. MSE of VGG-23 network output was 

used as the perceptual loss. The network was trained with 100 epochs, and the actual epoch 

was determined with the lowest validation MSE loss. The batch size was set to 64. Adam 

optimizer was used. The learning rate was 10e-4. 
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9.1.4 Through-plane SR Results 

The output images after 5.5x through-plane SR are shown in Fig. 8.1. The T2w 

coronal and reformatted T2w axial scan images are shown as visual references, and the 

output results from bilinear interpolation, SMORE [62], KS-ZF trained networks, and 

SPTSR are compared to each other. The T2w coronal scan is used as a visual reference, not 

a ground truth, as it was acquired in a different scan. Both SMORE and KS-ZF trained 

networks removed most staircase and smearing artifacts compared to the simple bilinear 

interpolation but failed to reconstruct small structures within the prostate with amplified 

noise. The HR images produced by SPTSR are successfully containing small structures 

within the prostate, visually close to the T2w coronal scan images.  

Figure 9.1: The through-plane SR testing results with reformatted T2w axial scan input. a) 

and b) represents two image slices from two different testing subjects. From left to right: 

The T2w coronal scan of the subject, as a visual reference; the testing reformatted T2w 

axial scan as the inference input; the bilinear interpolation of the input; SMORE [62]; the 

baseline inference output with KS-ZF trained networks; the proposed SPTSR inference 

output with SP-downsampling trained network, and SP-convoluted inference input. Red 

arrows indicate the structural differences between the baseline results and the proposed 

results. 
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9.1.5 Expert Reader Study 

We designed our expert reader study, similar to the recent studies [39], [78], to 

assess the through-plane SR results with scans reformatted to coronal views. After a few 

training sessions, two genitourinary radiologists (M.Q. and C.S.; each had interpreted 500-

1,500 prostate MRI scans with 5+ years of experience) independently assessed four 

methods: bilinear interpolation (BI), SMORE [62], KS-ZF trained networks (baseline), 

SPTSR (proposed). Any information indicating the type of processing was removed from 

all images and randomly shuffled for each subject when they were compared against the 

visual reference of HR in-plane T2w-TSE coronal scan of the same subject. All five image 

sets were simultaneously loaded into OsiriX (Pixmeo SARL, Bernex, Switzerland) and the 

reader scrolled through the coronal slices. Four methods all have a 5.5x number of slices as 

the original coronal scan, within the same physical distance. In total, 50 subjects (each with 

one axial scan) of the testing dataset were examined. Diagnostic quality metrics of 

sharpness (1: severe blurring, 2: moderate blurring, 3: mild blurring, and 4: no blurring), 

artifacts (1: severe artifacts, 2: moderate artifacts, 3: mild artifacts, and 4: no artifacts), 

noise level (1: severe noise, 2: moderate noise, 3: mild noise, and 4: no noise) and overall 

diagnostic image quality (1: severe, 2: moderate, 3: good, and 4: excellent) of each method 

were scored on a 4-point quality scale. The reader also blindly ranked the overall quality of 

the four methods against each other. The visual reference of the HR coronal scans was 

considered as the score 4 in all metrics. The coronal scans were not considered as ground-

truth because they were separate scans from the axial scans and did not align precisely in 

space due to the patient and rectal motion between scans.  

Averaged ratings and rankings from two readers were compared between three 

methods. Mann-Whitney U tests were used to assess the significant differences (p<0.01) 



 
57 

between the four methods. Cohen’s Kappa was calculated for inter-reader variability [79]. 

The image quality assessment of the output results (1: severe, 2: moderate, 3: good, 

and 4: excellent) conducted by the expert readers is shown in Fig. 8.2. In a blinded fashion, 

the SPTSR method received an almost perfect overall image quality score (all cases 

received 4.0 except three cases, which received 3.5). The SPTSR method has significantly 

better overall image quality¬¬ scores (p<0.01) compared to all other methods (BI, 

SMORE, and KS-ZF). For ranking results, the SPTSR method ranked the best in 48 cases 

agreed by both radiologists and best and second-best in 2 cases by two radiologists.  

The proposed SPTSR method is significantly better compared to the baseline KS-ZF 

trained network in terms of sharpness, noise level, and overall image quality (p<0.01). 

Although SMORE had the best artifact score, its overall image quality was limited by its 

poor sharpness quality, thus having its overall score worse than the baseline, and 

significantly worse than the proposed method. The image quality assessment substantially 

agreed between the two readers with Cohen’s Kappa of 0.72 (95% confidence interval: 

0.66-0.78). 
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Figure 9.2: Two radiologists qualitatively assessed the diagnostic quality of Bilinear 

Interpolation (BI), SMORE [8], KS-ZF trained networks (baseline), SPTSR (proposed), for 

sharpness, artifacts, noise and overall image quality on a 1 to 4 scale (higher the better). 

The ratings were averaged from two readers. Error bar represents the standard deviations. 

Mann-Whitney U tests assessed whether the average scores were significantly different 

(p<0.01) among the four groups. 

 

9.1.6 Quantitative Analysis 

Quantitative analysis of the same four methods: BI, SMORE, baseline, and 

proposed method, was also performed to cross-validate with the qualitative reader study 

using the same 50-subject testing dataset. Because the visual reference coronal scans were 

not aligned pixel-by-pixel with the SR images, metrics such as peak signal-to-noise ratio 

(PSNR) or structural similarity index (SSIM) were not suitable here. Fréchet inception 

distance (FID) is one of the most common metrics for assessing the quality of images 

generated by generative models, for both natural images and MRI images [80]–[83]. Real 

and generated images were fed through a pre-trained inception network, and the FID 

measured the distance of the distributions between their activation output without requiring 

for pixel-wise alignment with the reference [80], [81]. 

For each method, 1,995 pairs of real and generated images are used to calculate 

FID. Each pair of images are cropped to 110×320 at the same scanner physical locations. 

The Mann-Whitney U test was used to assess the statistical differences between the four 
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methods. 

The testing image quantitative assessment with FID is shown in Table 8.2. For each 

method, the FIDs of 1,995 images are shown as mean ± standard deviation (SD). Mann-

Whitney U tests confirmed significant differences between each pair of methods (p<0.01). 

The FID results matched the overall image quality scores in the expert reader study. The 

proposed SPTSR method achieved the best FID scores. This quantitative analysis 

confirmed the proposed method has the best image visual quality. 

Table 9.2: Testing quantitative results with FID 
  

Bilinear Interpolation 32.0 ± 12.5 

SMORE [62] 29.5 ± 14.8 

K-space Zero-fill 26.8 ± 10.4 

SPTSR 18.6 ± 8.5 

 

 

Figure 9.3: The isotropic SR output (right), compared to the original T2w-TSE axial scan 

input (left) and through-plane SR volume (middle) with elongated voxel. Two-sided arrows 

indicate the orientations of the slice-profile PSF as the blur kernel. Red patches represent 

coronal views and blue patches represent axial views. 
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9.1.7 Isotropic SR Results 

Fig. 9.2. shows the SP-deconvolved isotropic SR results from the through-plane SR 

image volume. The through-plane results have convolved by the same slice-profile PSF of 

the orthogonal axial scan, so even though it has an isotropic voxel spacing, its image in the 

original coronal plane is blurred by the slice-profile and does not retain its sharpness, 

compared to the coronal scan input. After the SP-deconv via Richardson-Lucy 

deconvolution in the AP-direction [75], [76], the blurring artifacts in the coronal plane are 

deblurred, resulting in an isotropic image volume with non-overlapping cubic voxels. 

 

9.2 3D Simulation Experiments 

3D simulation experiments were also conducted to further evaluate the 

effectiveness of  SPTSR compared with 3D T2w as ground-truth. 

9.2.1 MRI Datatset 

We retrospectively reviewed clinical prostate MRI scans from March 2013 to 

December 2018 at a single academic institution and identified a total of 4,637 clinical 

subjects with 5,848 scans using the 3D T2w-TSE (SPACE) sequence. Institutional Review 

Board (IRB) approval was obtained for the study. The MRI scans were performed on one 

of several 3 Tesla scanners (including Prisma, Skyra, Vida, and Trio; Siemens 

Healthineers, Erlangen, Germany). The sequence parameters are shown in Table 8.3. 

Table 9.3: The 3D T2-weighted SPACE sequence parameters 

 

 

 

 

 

TR/TE (ms) 2200/201 

Refocusing angle (degree) 100 

Bandwidth (Hz/pixel) 315 

Acquisition matrix size 256×256×60 

In-plane resolution (mm2) 0.664×0.664 

Slice thickness (mm) 1.5 

Scan time (mm:ss) 07:00 
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9.2.2 Data Preparation 

The training/validation/testing splits were 4,080/464/93 from 4,637 clinical 

subjects. Each 3D scan volume was first interpolated to isotropic grid with voxel resolution 

of 1mm3, with a matrix size of (170×170×90).  

The isotropic 3D volume was then center-cropped and SP-downsampled, with a 

3mm truncated sinc PSF and 4mm slice thickness (4× downsampling). The 

training/validation datasets were SP-downsampled along the SI direction, simulating 2D 

T2w-TSE axial scans, whereas the testing datasets were SP-downsampled along the LR 

direction, simulating 2D T2w-TSE sagittal scans. 

9.2.3 Training and Inference Schemes 

Training schemes and inference flows for 3D simulation experiments followed the 

procedures of 2D T2w-TSE experiments. The simulated 2D T2w-TSE axial scans for 

training/validation were SP-downsampled along the LR direction to train/validate the deep 

generative networks. For testing, the simulated 2D T2w-TSE sagittal scans were inferenced 

through the trained deep generative networks and SP-deconvolved to reach 4× isotropic 

super-resolution of the original 1mm3 voxel size. 

9.2.4 Isotropic SR Results 

The simulated 2D sagittal scans input, SMORE and SPTSR results were compared 

against the isotropic 3D T2w ground-truth in all three orientations, as shown in Fig. 9. The 

images from SMORE were noticeably blurry in the super-resolved coronal and axial views, 

while the images from SPTSR considerably match well with the 3D T2w ground-truth in 

all three views. 
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Figure 9.4: Simulation experiments result with 3D T2w scans. Simulated 2D sagittal input, 

SMORE result, SPTSR result were compared with isotropic high-resolution ground-truth 

images in all three views. 

 

9.2.5 Quantitative Analysis 

The simulation experiments have 3D isotropic high-resolution ground-truth 

volumes. Peak signal-to-noise ratio (PSNR) and normalized MSE (NMSE) were 

measured for each super-resolution output volume compared to the 3D T2w ground-

truth.  

For each method of SMORE, before-deconv, and after-deconv (SPTSR), 118 3D 

volumes from 93 testing subjects were used to calculate volumetric PSNR and NMSE. 

Mean and standard deviations were calculated, and paired samples t-test were 

conducted between each pair of method to evaluate statistical significance [84]. 

The PSNR and NMSE measurements for simulation experiment are shown in 
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Table 9.3. For each method, the PSNR and NMSE of 118 3D volumes are shown as 

mean  ± SD. Paired samples t-test confirmed significant differences (p<0.01)  between 

each pair of methods for both PSNR and NMSE. 

The numerical results indicated that the proposed SPTSR method can super-

resolve to isotropic high-resolution volume, and performs significantly better than 

SMORE when super-resolving images to isotropic high-resolution volume. This result 

also indicated that the final SP-deconvolution step is necessary to achieve high-quality 

isotropic super-resolution. 

Table 9.4: Simulation testing quantitative results with PSNR and NMSE 

 

 PSNR NMSE 

(×10-2) 

SMORE [62] 26.81 ± 3.03 2.00 ± 1.15 

Before SP-deconv 28.82 ± 2.90 1.00 ± 0.68 

SPTSR 29.08 ± 2.92 0.92 ± 0.54 

 

9.3 Ablation Studies 

9.3.1 Individual Contributions from Two Improvements 

To compare the separate contributions from the SP-downsampled input 

trained network and the SP-convolution pre-processed inference input, four methods 

were compared:  

1) KS-ZF coronal scan training data, without SP-conv pre-processed axial scan 

inference testing data;  

2) SP-DS coronal scan training data, without SP-conv pre-processed axial scan 

inference testing data; 

3) KS-ZF coronal scan training data, with SP-conv pre-processed axial scan 
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inference testing data; 

4) SP-DS coronal scan training data, with SP-conv pre-processed axial scan 

inference testing data (Proposed);  

The comparison results are as shown in Fig. 9.3. Without either SP-downsampled 

training input or the SP-conv pre-processed inference input, the inference results did 

not achieve the desired sharpness and noise level, and could not fully recover the 

structural details. 

Figure 9.5: Individual impact of SP-DS Network and SP-Conv input on testing output. a) 

and b) represents images from two different testing subjects, same as Fig. 8.1. From left to 

right: The T2w coronal scan of the subject, as a visual reference; the baseline KS-ZF 

downsampling method trained network, without SP-Convolved inference input; SP-DS 

method trained network, without SP-Convolved inference input; KS-ZF downsampling 

method trained network, with SP-Convolved inference input; the proposed SPTSR 

inference output with SP-DS method trained network, and SP-convoluted inference input. 

Red arrows indicate the structural differences between different results. 

 

9.3.2 Network Architectures 

Our proposed deep generative networks are compared against three other 

popular deep-learning networks structures, such as U-Net [85], ResUNet [86], and 

SRGAN [73], to demonstrate the compatibility of the SPTSR framework with other 

deep learning networks architecture. For each of all four networks, it is trained with 
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SP-downsampled training data for up to 60 epochs. The epoch with the minimal MSE 

loss in the validation dataset has been chosen as the converged trained networks. 

Synthetic validation input from the validation datasets is used to assess the network 

structure in the ablation study. LR SP-downsampled images were generated directly 

from their high-resolution coronal scans. Both PSNR and structural similarity index 

measure (SSIM) were used to quantify the quality of the network's structure ablation 

because they exactly matched with the ground truth HR coronal scan. The number of 

parameters of the networks is also compared.  

SRGAN is a single-image super-resolution (SISR) network, originally for 2D 

isotropic super-resolution. The upsampling blocks are replaced with anisotropic 

upsampling blocks used in our proposed networks to match the input-to-output 

image size. Similarly, the anisotropic upsampling blocks are concatenated to the front 

of the networks for both U-Net and ResUNet because they are designed for the same 

input and output size. The input images for both U-Net and ResUNet have been 

replaced with 3-slice input, and both networks also use the same training scheme as 

the proposed networks for a fair comparison. 

The networks architectures ablation study is presented in Table 9.4. We 

compared three popular network architectures to our proposed networks. In terms of 

quantitative image metrics in the validation dataset, our proposed architecture 

achieved the best mean PSNR of 24.64, and the best mean SSIM of 0.817. The PSNR 

and SSIM were close compared to the U-Net and ResUNet architecture, but those two 

networks are significantly larger in the number of parameters. Our comparison with 

U-Net and ResUNet demonstrates that our proposed SPTSR does not need a large 
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network to achieve excellent SR results. On the other hand, SRGAN has approximately 

the same number of parameters as our proposed network, but SRGAN has the worst 

PSNR and SSIM numbers among all the networks. Compared to SRGAN, the main 

improvement from our proposed network is the use of 3-slice input instead of SISR in 

the SRGAN structure. Because of the SP-convolved input, the image voxels overlap in 

the slice direction. The use of 3-slice input borrows image information from the 

adjacent slice, which not only helps the through-plane SR results but also preserves 

the inter-slice consistency across the image volume and benefits the isotropic SR 

results. 

Table 9.5: The Network Structure Ablation Study Validation Results Comparison 

 

 

 

 

9.3.3 Size of the Training Dataset 

The validation MSE loss versus the number of training steps for different sizes 

of the training dataset is plotted in Figure 8.4. When N=10, the training dataset was 

too small, and the networks training was quickly overfitted, as the validation MSE loss 

start to skyrocket after 5k training steps. The validation MSE loss plots were similar 

for N=100, 1000, and 3483. This indicates the size of training dataset is sufficient on 

the order of 100 subjects. This is mainly because our proposed networks used a 

relatively small number of parameters, as shown in Table 9.5. 

 

 Number of 

Parameters 
SSIM PSNR 

U-Net [85] 17.3M 0.811±0.033 24.48±1.66 

ResUNet[86] 13.0M 0.797±0.041 24.41±1.62 

SRGAN [73] 0.5M 0.808±0.032 24.30±1.73 

SPTSR 0.5M 0.817±0.031 24.64±1.67 
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Figure 9.6: The validation MSE loss with different sizes of the training dataset. The 

number of training dataset cases are 10, 100, 1000, and 3483 respectively. The MSE loss 

on the validation dataset is plotted against the number of training steps, with the same 

batch size.  

 

9.3.4 Slice Profiles 

The slice profiles ablation study is presented in Table 8.5. Training and 

validating with datasets downsampled by truncated sinc produced better SSIM and 

PSNR results than other combinations, but all four comparisons showed no significant 

differences. Training and validating with Gaussian PSF had similar SSIM and PSNR 

compared to training and validating with truncated sinc PSF, indicating a slight 

inaccurate slice profile used does not affect the image quality; Training and validating 

with different slice profiles also had similar SSIM and PSNR, indicating retraining may 

not be required when the dataset included with different slice profiles was used. 

Table 9.6: The Slice Profiles Ablation Study With Gaussian PSF and Truncated Sinc PSF 

 SSIM PSNR 

Trained w/ Gaussian,  

validated w/ Gaussian 
0.804±0.033 24.18±1.68 

Trained w/ Gaussian,  

validated w/ trunc sinc 
0.806±0.033 24.29±1.64 

Trained w/ trunc sinc,  

validated w/ Gaussian 
0.804±0.033 23.94±1.71 

Trained w/ trunc sinc,  

validated w/ trunc sinc 
0.817±0.031 24.64±1.67 
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Chapter 10: Discussions & Conclusions 

We proposed a novel slice-profile transformation-based super-resolution 

(SPTSR) framework for multi-slice 2D TSE MRI. We utilized a large 2D/3D dataset of 

clinical subjects and scans and demonstrated the visual improvements for 5.5x 

through-plane SSR compared to the k-space zero-filling-based baseline method and 

the SMORE method. We also conducted 3D simulation experiments to demonstrate 

visual and quantitative improvements for 4x isotropic SSR compared to the 3D T2w 

ground-truth. 

The testing output images for 2D clinical scans experiment were compared to 

the SMORE method [62], and a baseline KS-ZF trained network method. The output 

image quality was qualitatively evaluated on a 4-point Likert scale by two 

genitourinary radiologists in a blinded study. Quantitative analysis with FID was 

conducted to cross-validate with the reader study.  

The testing output images for the 3D simulation experiment demonstrated the 

visual improvement of the SPTSR method compared to the SMORE method. The 

quantitative results of PSNR and NMSE confirmed the superiority of SPTSR. The 

quantitative comparison between before and after the last SP-deconvolution step 

indicated the effectiveness of the SP-deconvolution when achieving isotropic super-

resolution. 

The network structure ablation study justified our network structures and 

confirmed our SPTSR framework to be model-agnostic. The training dataset size 

ablation study confirmed that 2,000 images from 100 subjects were sufficient for 

network training because the proposed networks used a relatively small number of 
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parameters. The slice-profile ablation study confirmed that simulated slice profiles 

are sufficient for the SPTSR framework. Furthermore, we demonstrated the 

preliminary results of deconvolved isotropic SR from the through-plane SR image 

volumes. 

In previous studies of super-resolution reconstruction (SSR), most approaches 

use multiple 2D scans, whereas our method only uses a single 2D scan for super-

resolution. In previous studies for deep-learning-based super-resolution, most 

approaches consider the synthesis of LR images a single-image problem, opting for 

the k-space zero-fill or interpolation/averaging method [50]–[55], [57]–[60]. Our 

SPTSR method takes the slice profiles of both training and testing scans into 

consideration, jointly bridging the physical differences between training and testing 

data.  

Compared to the baseline methods of using a KS-ZF trained network for the 

inference of orthogonal volumes, our proposed SPTSR methods output much sharper, 

less artifact, and much less noisy SR images. This is because there exist fundamental 

differences between training and testing data, as the conventional approaches did not 

take slice profiles into consideration. Our proposed method bridges the gap between 

the two by taking both slice profiles into consideration. The image results are strongly 

supported by our reader study results. The proposed SPTSR method received 

excellent overall image quality for 47 out of 50 cases, significantly better overall 

image quality than other methods (p<0.01). The quantitative analysis of FID with the 

testing dataset also confirmed the superiority in perceptual image quality of the 

proposed SPTSR method. This shows the effectiveness of SPTSR and the feasibility of 
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replacing multiple multi-slice 2D MRI scans with a single multi-slice 2D scan. 

The proposed method combined SP-DS trained network and SP-convolution 

pre-processing to improve the overall image quality. Only changing the network from 

the baseline KS-ZF trained network to SP-DS trained network resulted in a sharper 

but noisier image compared to the proposed method. This is because the training 

input voxel is blurred by the slice-profile kernel in two orthogonal directions, whereas 

the inference input without SP-conv is blurred in only one direction. Only pre-

processing the inference input with SP-convolution resulted in a smoother image, 

lacking sharpness and contrast. This is because the KS-ZF downsampled image is 

physically different from the inference input image.  

In conclusion, we developed a novel slice-profile-transformation-based super-

resolution (SPTSR) framework for the super-resolution of multi-slice 2D MRI scans. 

The proposed slice-profile transformations bridge the inherent physical mismatches 

between training and testing inputs due to an imperfect slice-selection profile. A large 

set of 4,878 pairs of axial and coronal MRI scans were used for training, validation, 

and testing of the proposed SPTSR framework. The expert reader study and 

experimental validation demonstrated the effectiveness of SPTSR in 5.5x through-

plane SR with isotropic voxel spacing. Furthermore, we illustrated that SPTSR could 

achieve the isotropic SR with non-overlapping cubic voxels with the 3D simulation 

experiment. 
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Chapter 11: Future Work 

We developed a novel SPTSR framework for isotropic super-resolution of 

multi-slice TSE MRI images. Three major areas can be further studied: 

Clinical Applications 

Our SPTSR framework is not limited to prostate imaging and can be applicable 

to a wide range of MRI applications. Multi-slice 2D MRI sequences are used in many 

different applications, including knee, prostate, brain, placenta, and fetal brain [36], 

[39], [41], [43], [87]. Typical clinical protocols for these applications require multiple 

orthogonal scans and can benefit from the SPTSR framework. 

The benefit in clinical diagnosis from the increased resolution requires further 

validation. To demonstrate the clinical effectiveness of the SPTSR framework, 

experiments for downstream tasks, such as tumor detection, classification and 

segmentation can be performed. These experiments can further illustrate the clinical 

feasibility of replacing the multiple orthogonal scans in current clinical protocols with 

a single scan using our frameworks. 

Network Architecture 

Because our framework focuses on improving the training input synthesis and 

inference input pre-processing, our framework would not be limited to specific deep-

learning architectures or training schemes. Thus, novel deep-learning method 

advancements can be applied jointly in future studies. Promising deep learning 

architectures include diffusion-based models and transformer-based models [88], 

[89]. 
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In this work, a type of generative adversarial network (GAN) models was used 

for super-resolution. These generative models are prone to hallucination artifacts, 

which is detrimental to clinical assessment in medical images, especially if the model 

is optimized for high SSIM scores [90]. Specifically, in Fig 9.2, SPTSR frameworks have 

worse artifact levels than bilinear interpolation methods. This is largely due to the 

hallucination problems caused by GAN models. Recently, implicit neural 

representations (INR) have shown promising results for various tasks in computer 

visions, such as image synthesis [91], [92]. This is a possible direction for 

hallucination mitigation and has shown impressive results for MRI super-resolution 

[93]. 

Network Training Loss Design 

Our framework included several limitations. First, current network training 

only considers the loss functions in through-plane SR. Deep-learning-based 

deconvolution methods [94], [95] enable self-consistency losses in the in-plane 

orientation, which can help further improve isotropic SR output. Second, our current 

approach does not account for inter-slice motion artifacts. In some applications, such 

as fetal brain MRI, motion is obvious and unavoidable [36], while patient motion 

during a typical prostate MRI scan is less significant [96], [97]. A more motion-robust 

SR framework can be achieved by including simulated motion in the training data, or 

enforcing a regularization loss term in the through-plane direction.  
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	4.3.2 Cadaveric Studies Setup
	Three cadaveric human heads were used to simulate flexible miniature coil placement. A standard endonasal endoscopic approach was carried out to gain unobstructed access to the sella [Figure 3D]. Any sphenoid septations were drilled down. Bone over th...
	The prepared cadavers with transnasal coils in place were scanned with Siemens Prisma 3T MRI Scanner via the T1-MPRAGE sequence and Proton Density sequence at varying resolutions (T1: 0.9 mm × 0.9 mm × 0.9 mm; 0.4 mm × 0.4 mm × 0.4 mm; 0.2 mm × 0.2 mm...
	Figure 4.5: (a) Cadaveric preparation of the sella with the removal of sphenoid septae and mucosa, (b) placement of collagen sponge in clival recess to eliminate air-bone interface artifact, (c) placement of exible mini coil at 0 degrees, (d) filling ...
	Figure 4.6: Cadaver heads with the placement of the flexible coil on T1-MPRAGE images with 0.9 mm slice thickness (A), 0.4 mm slice thickness (B), and 0.2mm slice thickness (C). The images were compared with the images from the Siemens 20-channel Head...
	Table 4.1: Mean SNR comparison for high-resolution MRI
	(Proton Density: 0.2×0.2×0.7 mm3)
	Figure 4.7: (a) A coronal view of the pituitary gland using high-resolution Proton density (0.2mm x 0.2mm x 0.7mm) image with the flexible coil in a cadaveric specimen, (b) the annotated image showing highlighted pituitary gland (yellow outline) and h...
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	High-Resolution 3D MRI with Deep Generative Networks via Novel Slice-Profile Transformation Super-Resolution
	Chapter 7: Introduction and Motivation
	7.1 Introduction
	Spin-echo-based acquisitions, such as turbo spin-echo (TSE) or fast spin-echo (FSE) imaging, are preferred for clinical magnetic resonance imaging (MRI) image interpretation for high spatial and contrast resolution for the detection of pathology [37] ...
	Super-resolution reconstruction (SRR) with slice-to-volume registration (SVR) methods have been established to reconstruct a single 3D SR volume from multiple 2D MRI scans[43]–[47] Slice-profile downsampling has been proposed to transform SR volume b...
	In this work, we propose a novel slice-profile transformation super-resolution (SPTSR) framework. The SPTSR framework enables the application of deep learning super-resolution to a single stack of multi-slice 2D TSE MRI to achieve 3D isotropic super-r...
	The main contributions of our SPTSR framework include that
	1) We used a dedicated observation model (i.e., an appropriate definition of a 2D excitation profile) that enables coronal (or axial) scans for supervised training via SP-downsampling to perform SR of axial (or coronal) scans.
	2) Both the training and inference images are blurred via SP-downsampling and SP-conv to match the slice profile kernel in the two orthogonal directions, and the output images are then deblurred via SP-deconv to achieve super-resolved isotropic 3D ima...
	3) The purpose and necessity of SP-downsampling, SP-conv, and SP-deconv, collectively referred to as SPTSR, are proved both in theory and experimental results.
	4) With extensive visual, qualitative, and quantitative comparisons, we establish that SPTSR significantly improves the quality of SR images when compared to the SMORE method [62] and k-space zero-fill (KS-ZF) trained networks.
	5) The feasibility of using only one multi-slice 2D TSE scan for a high-resolution MPR is shown using the SPTSR framework. This can potentially save total MRI scan time considerably as it negates the necessity of scanning multiple stacks of 2D TSE sca...
	7.2 Related Works
	Existing super-resolution reconstruction (SSR) methods generally require multiple 2D MRI scans to iteratively register and reconstruct a single 3D SR volume. Greenspan et al. proposed an inter-slice super-resolution algorithm that utilized three stac...
	Deep learning SR algorithms are the state-of-the-art for SR in natural images and have become increasingly popular for SR in MRI [55], [67]. Many studies focused on SR of 3D MRI or in-plane SR for 2D MRI and showed promise in achieving high in-plane r...
	Several studies have proposed to increase the through-plane resolution of multi-slice 2D MRI with learning-based super-resolution. Jurek et al. developed a CNN-based super-resolution reconstruction using thick slices [69], and Zhang et al. developed a...
	Chapter 8: Slice-profile Transformation Super-resolution (SPTSR) Framework
	We describe the complete framework of our proposed SPTSR in detail, summarized in Fig. 8.1. Current clinical MRI scans, including prostate, brain, and placenta MRI, commonly include several stacks of multi-slice 2D TSE MRI scans with two or three orth...
	• We designed a novel slice-profile transformation super-resolution (SPTSR) framework, with a pre-processing SP-downsampling for an orthogonal stack of multi-slice 2D scan as the training input, a pre-processing SP-conv for the inference input, and a ...
	• We utilized a large clinical prostate MRI dataset, consisting of axial and coronal stacks of multi-slice 2D TSE MRI scans, for training, validation, and testing.
	• We designed the WGAN-GP scheme for the training of our deep generative networks.
	8.1 Slice-Profile Transformation
	We define a stack of multi-slice 2D coronal images as ,𝐼-𝑐𝑜𝑟. (with high resolution in the SI-direction) and a stack of multi-slice 2D axial images as ,𝐼-𝑎𝑥. (with low resolution in the SI-direction). A set of ,𝐼-𝑐𝑜𝑟. is used for training a...
	Comparing the training input ,𝐿𝑅-𝑐𝑜𝑟. and the inference input ,𝐼-𝑎𝑥,𝑐𝑜𝑛𝑣. (Fig. 8.3b and 8.3d), both contain similar weaving artifacts in the SI-direction by considering both ,PSF-AP. and ,PSF-SI.. This is because the three physical proble...
	a) both ,𝐿𝑅-𝑐𝑜𝑟. and ,𝐼-𝑎𝑥,𝑐𝑜𝑛𝑣. that have multiplied with ,𝑃𝑆𝐹-𝑆𝐼. and ,𝑃𝑆𝐹-𝐴𝑃.,
	b) both ,𝐿𝑅-𝑐𝑜𝑟. and ,𝐼-𝑎𝑥,𝑐𝑜𝑛𝑣. that have the same 3 mm slice thickness in the AP-direction of FWHM of ,𝑃𝑆𝐹-𝐴𝑃., and
	c) both ,𝐿𝑅-𝑐𝑜𝑟. and ,𝐼-𝑎𝑥,𝑐𝑜𝑛𝑣. that have the same 3.6 mm voxel spacing in the SI-direction of ,𝐷𝑆-𝑆𝐼..
	Thus, we ensure the input to the networks in training/validation, and the input in the inference flow are of the consistent intrinsic voxel size and spacing.
	8.2 Deep Generative Networks
	Our SPTSR framework is model-agnostic, and the specific network architecture for deep generative networks was not the focus of our study. We adopted deep generative networks architecture largely from SRGAN [73], as shown in Fig. 8.4, with the three ke...
	Figure 8.4: The WGAN-GP based deep generative networks architecture of  our proposed SPTSR framework.
	8.3 Inference Flow
	The overall inference flow is shown in Fig. 8.5. Similar to the training 3-slice input, the input for inference contains three SP-convolved slices, including a center slice (red) and two adjacent slices (yellow). Note that the slices between training/...
	Figure 8.5: The proposed SR inference flow. T2w-TSE axial scan is cropped and SP-convolved in the AP-direction to prepare the input for the deep generative networks. The output of the networks is still convolved in the AP-direction and is then transfo...
	Chapter 9: 2D & 3D Experiments
	9.1 Multi-slice 2D Experiments
	9.1.1 MRI Dataset
	We retrospectively reviewed clinical prostate MRI scans from March 2013 to December 2018 at a single academic institution and identified a total of 3,895 clinical subjects with 4,878 paired stacks of axial and coronal images using the multi-slice 2D T...
	Table 9.1: The T2-weighted turbo spin-echo (T2w-TSE) sequence parameters
	9.1.2 Data Preparation
	The training/validation/testing splits were 3,453/392/50 from 3,895 clinical subjects. Training and validation used coronal scans. All of the training and validation coronal scans were cropped (320 to 110) in the z-direction to the same physical cover...
	The testing dataset used axial scans, and scans with strong inter-slice motion artifacts were manually excluded. The axial scans were reformatted to coronal orientation, which produced 320 slices of 20×320 reformatted images. They are also cropped (32...
	9.1.3 Training Scheme
	The deep generative networks were trained using the WGAN-GP scheme [74]. Thus, the discriminator loss included a weighted sum of the adversarial and gradient penalty loss. The generator loss included the weighted sum of the adversarial loss, mean-squa...
	9.1.4 Through-plane SR Results
	The output images after 5.5x through-plane SR are shown in Fig. 8.1. The T2w coronal and reformatted T2w axial scan images are shown as visual references, and the output results from bilinear interpolation, SMORE [62], KS-ZF trained networks, and SPTS...
	9.1.5 Expert Reader Study
	We designed our expert reader study, similar to the recent studies [39], [78], to assess the through-plane SR results with scans reformatted to coronal views. After a few training sessions, two genitourinary radiologists (M.Q. and C.S.; each had inter...
	Averaged ratings and rankings from two readers were compared between three methods. Mann-Whitney U tests were used to assess the significant differences (p<0.01) between the four methods. Cohen’s Kappa was calculated for inter-reader variability [79].
	The image quality assessment of the output results (1: severe, 2: moderate, 3: good, and 4: excellent) conducted by the expert readers is shown in Fig. 8.2. In a blinded fashion, the SPTSR method received an almost perfect overall image quality score ...
	The proposed SPTSR method is significantly better compared to the baseline KS-ZF trained network in terms of sharpness, noise level, and overall image quality (p<0.01). Although SMORE had the best artifact score, its overall image quality was limited ...
	Figure 9.2: Two radiologists qualitatively assessed the diagnostic quality of Bilinear Interpolation (BI), SMORE [8], KS-ZF trained networks (baseline), SPTSR (proposed), for sharpness, artifacts, noise and overall image quality on a 1 to 4 scale (hig...
	9.1.6 Quantitative Analysis
	Quantitative analysis of the same four methods: BI, SMORE, baseline, and proposed method, was also performed to cross-validate with the qualitative reader study using the same 50-subject testing dataset. Because the visual reference coronal scans were...
	For each method, 1,995 pairs of real and generated images are used to calculate FID. Each pair of images are cropped to 110×320 at the same scanner physical locations. The Mann-Whitney U test was used to assess the statistical differences between the ...
	The testing image quantitative assessment with FID is shown in Table 8.2. For each method, the FIDs of 1,995 images are shown as mean ± standard deviation (SD). Mann-Whitney U tests confirmed significant differences between each pair of methods (p<0.0...
	Table 9.2: Testing quantitative results with FID
	Figure 9.3: The isotropic SR output (right), compared to the original T2w-TSE axial scan input (left) and through-plane SR volume (middle) with elongated voxel. Two-sided arrows indicate the orientations of the slice-profile PSF as the blur kernel. Re...
	9.1.7 Isotropic SR Results
	Fig. 9.2. shows the SP-deconvolved isotropic SR results from the through-plane SR image volume. The through-plane results have convolved by the same slice-profile PSF of the orthogonal axial scan, so even though it has an isotropic voxel spacing, its ...
	9.2 3D Simulation Experiments
	3D simulation experiments were also conducted to further evaluate the effectiveness of  SPTSR compared with 3D T2w as ground-truth.
	9.2.1 MRI Datatset
	We retrospectively reviewed clinical prostate MRI scans from March 2013 to December 2018 at a single academic institution and identified a total of 4,637 clinical subjects with 5,848 scans using the 3D T2w-TSE (SPACE) sequence. Institutional Review Bo...
	Table 9.3: The 3D T2-weighted SPACE sequence parameters
	9.2.2 Data Preparation
	The training/validation/testing splits were 4,080/464/93 from 4,637 clinical subjects. Each 3D scan volume was first interpolated to isotropic grid with voxel resolution of 1mm3, with a matrix size of (170×170×90).
	The isotropic 3D volume was then center-cropped and SP-downsampled, with a 3mm truncated sinc PSF and 4mm slice thickness (4× downsampling). The training/validation datasets were SP-downsampled along the SI direction, simulating 2D T2w-TSE axial scans...
	9.2.3 Training and Inference Schemes
	Training schemes and inference flows for 3D simulation experiments followed the procedures of 2D T2w-TSE experiments. The simulated 2D T2w-TSE axial scans for training/validation were SP-downsampled along the LR direction to train/validate the deep ge...
	9.2.4 Isotropic SR Results
	The simulated 2D sagittal scans input, SMORE and SPTSR results were compared against the isotropic 3D T2w ground-truth in all three orientations, as shown in Fig. 9. The images from SMORE were noticeably blurry in the super-resolved coronal and axial ...
	Figure 9.4: Simulation experiments result with 3D T2w scans. Simulated 2D sagittal input, SMORE result, SPTSR result were compared with isotropic high-resolution ground-truth images in all three views.
	9.2.5 Quantitative Analysis
	The simulation experiments have 3D isotropic high-resolution ground-truth volumes. Peak signal-to-noise ratio (PSNR) and normalized MSE (NMSE) were measured for each super-resolution output volume compared to the 3D T2w ground-truth.
	For each method of SMORE, before-deconv, and after-deconv (SPTSR), 118 3D volumes from 93 testing subjects were used to calculate volumetric PSNR and NMSE. Mean and standard deviations were calculated, and paired samples t-test were conducted between ...
	The PSNR and NMSE measurements for simulation experiment are shown in Table 9.3. For each method, the PSNR and NMSE of 118 3D volumes are shown as mean  ± SD. Paired samples t-test confirmed significant differences (p<0.01)  between each pair of metho...
	The numerical results indicated that the proposed SPTSR method can super-resolve to isotropic high-resolution volume, and performs significantly better than SMORE when super-resolving images to isotropic high-resolution volume. This result also indica...
	Table 9.4: Simulation testing quantitative results with PSNR and NMSE
	9.3 Ablation Studies
	9.3.1 Individual Contributions from Two Improvements
	To compare the separate contributions from the SP-downsampled input trained network and the SP-convolution pre-processed inference input, four methods were compared:
	1) KS-ZF coronal scan training data, without SP-conv pre-processed axial scan inference testing data;
	2) SP-DS coronal scan training data, without SP-conv pre-processed axial scan inference testing data;
	3) KS-ZF coronal scan training data, with SP-conv pre-processed axial scan inference testing data;
	4) SP-DS coronal scan training data, with SP-conv pre-processed axial scan inference testing data (Proposed);
	The comparison results are as shown in Fig. 9.3. Without either SP-downsampled training input or the SP-conv pre-processed inference input, the inference results did not achieve the desired sharpness and noise level, and could not fully recover the st...
	9.3.2 Network Architectures
	Our proposed deep generative networks are compared against three other popular deep-learning networks structures, such as U-Net [85], ResUNet [86], and SRGAN [73], to demonstrate the compatibility of the SPTSR framework with other deep learning networ...
	SRGAN is a single-image super-resolution (SISR) network, originally for 2D isotropic super-resolution. The upsampling blocks are replaced with anisotropic upsampling blocks used in our proposed networks to match the input-to-output image size. Similar...
	The networks architectures ablation study is presented in Table 9.4. We compared three popular network architectures to our proposed networks. In terms of quantitative image metrics in the validation dataset, our proposed architecture achieved the bes...
	Table 9.5: The Network Structure Ablation Study Validation Results Comparison
	9.3.3 Size of the Training Dataset
	The validation MSE loss versus the number of training steps for different sizes of the training dataset is plotted in Figure 8.4. When N=10, the training dataset was too small, and the networks training was quickly overfitted, as the validation MSE lo...
	9.3.4 Slice Profiles
	The slice profiles ablation study is presented in Table 8.5. Training and validating with datasets downsampled by truncated sinc produced better SSIM and PSNR results than other combinations, but all four comparisons showed no significant differences....
	Table 9.6: The Slice Profiles Ablation Study With Gaussian PSF and Truncated Sinc PSF
	Chapter 10: Discussions & Conclusions
	We proposed a novel slice-profile transformation-based super-resolution (SPTSR) framework for multi-slice 2D TSE MRI. We utilized a large 2D/3D dataset of clinical subjects and scans and demonstrated the visual improvements for 5.5x through-plane SSR ...
	The testing output images for 2D clinical scans experiment were compared to the SMORE method [62], and a baseline KS-ZF trained network method. The output image quality was qualitatively evaluated on a 4-point Likert scale by two genitourinary radiolo...
	The testing output images for the 3D simulation experiment demonstrated the visual improvement of the SPTSR method compared to the SMORE method. The quantitative results of PSNR and NMSE confirmed the superiority of SPTSR. The quantitative comparison ...
	The network structure ablation study justified our network structures and confirmed our SPTSR framework to be model-agnostic. The training dataset size ablation study confirmed that 2,000 images from 100 subjects were sufficient for network training b...
	In previous studies of super-resolution reconstruction (SSR), most approaches use multiple 2D scans, whereas our method only uses a single 2D scan for super-resolution. In previous studies for deep-learning-based super-resolution, most approaches cons...
	Compared to the baseline methods of using a KS-ZF trained network for the inference of orthogonal volumes, our proposed SPTSR methods output much sharper, less artifact, and much less noisy SR images. This is because there exist fundamental difference...
	The proposed method combined SP-DS trained network and SP-convolution pre-processing to improve the overall image quality. Only changing the network from the baseline KS-ZF trained network to SP-DS trained network resulted in a sharper but noisier ima...
	In conclusion, we developed a novel slice-profile-transformation-based super-resolution (SPTSR) framework for the super-resolution of multi-slice 2D MRI scans. The proposed slice-profile transformations bridge the inherent physical mismatches between ...
	Chapter 11: Future Work
	We developed a novel SPTSR framework for isotropic super-resolution of multi-slice TSE MRI images. Three major areas can be further studied:
	Clinical Applications
	Our SPTSR framework is not limited to prostate imaging and can be applicable to a wide range of MRI applications. Multi-slice 2D MRI sequences are used in many different applications, including knee, prostate, brain, placenta, and fetal brain [36], [3...
	The benefit in clinical diagnosis from the increased resolution requires further validation. To demonstrate the clinical effectiveness of the SPTSR framework, experiments for downstream tasks, such as tumor detection, classification and segmentation c...
	Network Architecture
	Because our framework focuses on improving the training input synthesis and inference input pre-processing, our framework would not be limited to specific deep-learning architectures or training schemes. Thus, novel deep-learning method advancements c...
	In this work, a type of generative adversarial network (GAN) models was used for super-resolution. These generative models are prone to hallucination artifacts, which is detrimental to clinical assessment in medical images, especially if the model is ...
	Network Training Loss Design
	Our framework included several limitations. First, current network training only considers the loss functions in through-plane SR. Deep-learning-based deconvolution methods [94], [95] enable self-consistency losses in the in-plane orientation, which c...
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