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SUMMARY

Ribosome profiling is a widespread tool for studying translational dynamics in human cells. Its
central assumption is that ribosome footprint density on a transcript quantitatively reflects protein
synthesis. Here, we test this assumption using pulsed-SILAC (pSILAC) high-accuracy targeted
proteomics. We focus on multiple myeloma cells exposed to bortezomib, a first-line chemotherapy
and proteasome inhibitor. In the absence of bortezomib, we found that direct measurement of
protein synthesis by pSILAC correlated well with indirect measurement of synthesis from
ribosome footprint density. This correlation, however, broke down at high bortezomib doses. By
developing a statistical model integrating longitudinal proteomic and mRNA-sequencing
measurements, we found that proteomics could directly detect global alterations in translational
rate caused by bortezomib; these changes are not detectable by ribosomal profiling alone. Further,
by incorporating pSILAC data into a gene expression model, we predict cell-stress specific
proteome remodeling events. These results demonstrate that pSILAC provides an important
complement to ribosome profiling in measuring proteome dynamics.
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Direct measurement of protein synthesis by pulsed-SILAC mass spectrometry after cancer therapy

reveals proteomic effects of global translational repression and predicts proteome remodeling
under cellular stress.
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INTRODUCTION

Dynamic changes in the cancer proteome control tumor growth, proliferation, metastasis,

and response to therapy. Targeting aberrant mMRNA translation in cancer has recently

garnered significant interest as a therapeutic strategy (Boussemart et al., 2014; Hsieh et al.,
2012; Wolfe et al., 2014). Furthermore, a myriad of cellular stresses, including exposure to
various chemotherapeutics, leads to global inhibition of protein synthesis and remodeling of

the cancer proteome (de Haro et al., 1996; Walter and Ron, 2011).

A powerful new tool to measure gene-specific regulation of translation is ribosome profiling,

the deep sequencing of mMRNA fragments protected by actively translating ribosomes

(Ingolia et al., 2009, 2011; Michel and Baranov, 2013). A central assumption of ribosome

profiling is that indirect measurement of ribosome footprint occupancy on transcripts is

directly reflective of true protein synthesis. While this assumption has been shown to be
largely true in bacteria (Li et al., 2014a), the relationship between footprint occupancy and
protein synthesis remains less clear in the more complex translational system of eukaryotes

(Liu et al., 2016). Furthermore, using standard ribosome profiling approaches it can be

difficult to capture global cellular changes in translational capacity (Ingolia, 2016), such as

those which occur in response to drug therapy in cancer.

A potential orthogonal method to measure gene-specific translational regulation is pulsed-
SILAC (pSILAC) proteomics. In this approach, stable isotope-labeled amino acids are added

to the cellular media and subsequently incorporated into all newly synthesized proteins.

pSILAC has been used to directly monitor the synthesis of new proteins in various systems
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using shotgun proteomic approaches (Jovanovic et al., 2015; Schwanhausser et al., 2011).
Therefore, combining pSILAC with high-accuracy quantitative proteomics may offer an
alternate approach to assess gene-specific translational regulation through the direct
measurement of newly synthesized proteins.

Here, as a test-bed for comparing ribosomal footprint profiling and pSILAC, we monitor the
effects of low-dose bortezomib therapy on translation in multiple myeloma cells using both
methods. Bortezomib is a first-line therapy for this hematologic cancer, and proteasomal
blockade by this drug is known to lead to ER stress due to accumulation of unfolded and
misfolded proteins (Obeng et al., 2006; Vincenz et al., 2013). This stress triggers
downstream signaling pathways that inhibit the translation of the large majority of mRNAs
(Walter and Ron, 2011). We demonstrate that before the onset of bortezomib-mediated
translational repression, ribosomal footprint profiling and pSILAC measurements were well
correlated, providing important support for the assumption that ribosome footprint density is
quantitatively reflective of protein synthesis in eukaryotes. However, we observed that under
conditions of proteasomal blockade this correlation breaks down in characteristic ways.
Using a quantitative statistical model to describe protein synthetic rates, we found that
pSILAC methods were able to directly detect global alterations of translation not identified
by standard ribosome profiling approaches, including dynamic, protein-level responses to
different levels of stress-induced translational inhibition. These findings underscore the
utility of pSILAC proteomics as a complementary method in studies of translational
regulation to ribosome profiling, particularly under conditions of cellular stress. Given that
similar, global perturbations of translation occur during heat shock, DNA damage, and
oxidative stress (Duncan and Hershey, 1984; Powley et al., 2009; Shenton et al., 2006), we
suggest that this approach may be widely applicable.

In the first portion of this study, we directly compared ribosomal footprint profiling and
pSILAC in MM1.S multiple myeloma cells treated with a low dose (0.5 nM) of bortezomib
(Figure S1A). This dose is well below the half-maximal effective concentration (ECsg ~ 8
nM) for inhibition of proteasomal catalytic activity (Chauhan et al., 2005). We previously
studied MML.S response to a high dose of bortezomib (20 nM), but found that due to wides-
pread mRNA degradation during rapid apoptosis we could not establish a quantitative
relationship between ribosome footprint occupancy and protein synthesis (Wiita et al.,
2013). The low dose of bortezomib used here is able to suppress cell growth over 48 hr,
indicating some degree of drug-induced stress, but does not lead to appreciable apoptosis
(Figures S1B-S1E).

At each of six time points over 48 hr after 0.5 nM bortezomib treatment, we harvested cells
for mRNA sequencing (MRNA-seq), ribosome profiling, and quantitative proteomics (Figure
S1A). mRNA-seq and ribosome profiling were performed as described previously (Wiita et
al., 2013). For high-accuracy quantification of newly synthesized proteins, we designed
quantitative selected reaction monitoring (SRM) assays (Picotti and Aebersold, 2012)
measuring synthesis (“heavy” channel) and degradation (“light” channel) of 272 proteins in
this cellular system. This analysis included monitoring at least two unique sequence peptides
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per protein, in technical duplicate, in both the light and heavy channels by SRM (Figure 1A).
SRM data were normalized across time points using the total intensity (light + heavy
channel intensity) of a panel of “housekeeping” proteins that remain unchanged at the
transcript level (STAR Methods). While SRM has the advantage of consistent quantification
of targeted peptides across all time points, a main drawback is the lower throughput
compared with “shotgun” proteomic methods. Therefore, our analysis is necessarily limited
to a subset of expressed proteins.

Overall Changes over the Time Course

We first compared the relative read density of transcripts identified by mRNA-seq and
ribosome profiling across the time course to those found at baseline (untreated cells at 0 hr).
We found a strong correlation between mRNA-seq and ribosome footprint density at the
baseline and 6 hr time points (Figures SIF-S1H). As expected, we also found that relative
ribosome footprint density generally moves in concert with relative transcript abundance
(Figures S2A and S2B). The biological effects of low-dose proteasome inhibition were
similar to those seen previously at high dose (Wiita et al., 2013), with prominent
upregulation of proteasomal subunits and downregulation of ribosomal subunits (Data S2).
However, this general correlation between mRNA abundance and ribosome footprint density
does not capture dynamics in this system at the protein level. For example, when comparing
the relative fold change to O hr of total abundance of the 272 proteins monitored by SRM
across the time course with that of mMRNA-seq and ribosome footprint read density on the
corresponding transcript, we observed that while relative increases in mMRNA indeed drove
increases in protein abundance, most protein-level increases were less prominent than
transcript-level increases (Figure 1B). Furthermore, downregulated transcripts did not lead to
detectable decreases in protein abundance over 48 hr (Figure 1B). This finding is consistent
with those of others (Jovanovic et al., 2015; Schwanhausser et al., 2011) suggesting that
high-abundance proteins, as we primarily monitored here, typically have long half-lives.
These half-lives may be further extended by partial blockade of proteasomal degradation by
bortezomib treatment (Figure S4E).

To further investigate the quantitative relationship between these two orthogonal methods to
measure protein synthesis, we compared the amount of protein synthesis inferred from
ribosome profiling with that directly measured by SRM for individual proteins. For these
comparative measurements we first required an estimate of the absolute copy number of
newly synthesized proteins per cell. We therefore used the intensity Based Absolute
Quantification (iBAQ) approach (Schwanhausser et al., 2011) to estimate baseline protein
copy number per cell in untreated MM1.S cells. This estimate is based on measured peptide
intensities in label-free shotgun proteomic analyses of biological duplicate samples (Figures
S2F and S2G).

Compared with iBAQ-estimated absolute protein abundance across the MM1.S proteome,
we found a stronger correlation with ribosome footprint read density (R = 0.76) than with
mRNA-seq read density (R = 0.62) (Figures S11 and S1J), consistent with prior studies
(Ingolia et al., 2009). To ensure that these baseline copy numbers were of the correct order
of magnitude, we verified protein copy number per cell for three representative proteins,
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spanning the range of estimated copy numbers per cell (~10° to ~107) for the majority of
proteins included in the SRM assay, using quantitative western blotting (Figures S2D and
S2E). Using the heavy-channel SRM intensity, which represents newly synthesized proteins,
and extrapolating from baseline protein copies per cell, we estimated the number of protein
copies per cell synthesized between the 0 hr and 12 hr time points, when cellular protein
synthesis appears largely unaffected by drug treatment (Figures S2H, S2I, and 3A). We
compared these data with the average ribosome footprint density (in reads per kilobase
million [RPKM]) across the 0, 6, and 12 hr time points (Figure 2A). We found a good
correlation between ribosome footprint density and protein synthesis (Pearson’s R = 0.80 on
log-transformed data). A linear best fit to these data on a log scale resulted in a slope of 0.97
(95% confidence interval 0.86—1.06). This strong correlation and linear fit with slope near
unity in this eukaryotic system suggests that indirect measurement of synthesis via ribosome
footprint occupancy for any gene indeed appears to quantitatively reflect absolute protein
synthesis. However, the observed correlation is not perfect, requiring further exploration of
potential causes of divergence between these two orthogonal measurements.

To generate hypotheses as to the causes of this divergence, we turned to mathematical
modeling. We explored the dynamics of protein degradation and production by using a
system of differential equations. For each protein, we fitted the estimated number of “heavy”
and “light” protein copies per cell, as well as the total protein abundance based on the
addition of these two SRM intensities (Figure 2B), using orthogonal natural cubic splines

with linearity constraints to obtain functional forms, denoted by 7, (t), Pgd(t), and
P;(t)+Pgd(t), respectively (STAR Methods). This enabled us to describe changes of protein

abundance (dP; (t)/dt and dPgd(t) /dt) in terms of protein synthesis and degradation (Figure
2C). For each corresponding transcript we also monitored the mRNA-seq read density
(Mortazavi et al., 2008) and ribosome footprint density in RPKM.

For estimating the degradation rate constant k;l for each gene g, we found that a single-
exponential fit well described protein degradation for the included proteins. Other proteomic
and deep-sequencing data were fitted using the same approach described above (see STAR

Methods). The primary gene-specific free parameter in this model is k (%), the translation
rate parameter at time #for gene g describing the number of protein molecules produced per
transcript per unit time, which provides a proteomic-based measure of translational

efficiency for each gene. Notably, our model allows us to determine changes in k() as a
function of time, as needed after cellular perturbation, unlike in prior approaches describing

a static k; term in steady-state cells (Schwanhausser et al., 2011).

With our model in hand, we directly compared & () with a measure of translational
efficiency (7E) used in the ribosome profiling literature, where TE is defined as the ratio of
the relative ribosome footprint read density to the relative mMRNA-seq read density (Ingolia
et al., 2009, 2011). Using standard ribosome profiling analysis methods (see STAR
Methods), we observed little change in 7E (Figure 2E) over time. This finding is in

surprising contrast to changes found in k() as measured by proteomics, where comparisons
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to 0 hr indicate a reduction in proteins synthesized per transcript across the time course
(Figure 2F).

We reasoned that our proteomic methods may be directly detecting global decreases in
protein synthesis induced by bortezomib treatment not captured by standard ribosome
profiling approaches. In agreement with this notion, polysome analysis by sucrose gradient
centrifugation (Figure S2H), incorporation of puromycin into nascent proteins (Figure 3A),
and dephosphorylation of the translation initiation factor elF4E-binding protein 1 (4EBP1)
(Figure S2I) all supported a diminishment of global translational capacity at time points after
12 hr, despite little decrease in global mRNA levels compared with baseline (Figure S1D).
We also computed the ratio of bulk puromycin incorporation (Figure 3C) to the total mMRNA
nucleotide abundance, Gy (9, (Figure 3F) to represent bulk translational efficiency from
biochemistry experiments (Figure 3G). This showed a response over time of decreasing
translational capacity similar to that of the average normalized translational rate parameter,

ky(t) (Figure 3H).

The inability of standard ribosome profiling approaches to detect global changes in
translational capacity has been previously recognized (Ingolia, 2016). To address this issue,
we used a recently described method of normalization incorporating ribosome footprints
mapping to mitochondria-encoded genes (ChrM), which are proposed to remain constant
despite inhibition of cytosolic translation (Iwasaki et al., 2016). The normalized translational
efficiency from ribosome profiling is critical for assessing global changes in translational
capacity under conditions of cellular stress. This normalized 7£, denoted by -7 (see STAR
Methods), demonstrates qualitative agreement between changes in global translational
capacity as measured by both ribosome profiling and proteomics across the time course
(Figures 2F and 2G). At 48 hr we measure a median ~40% decrease in translational
efficiency of measured transcripts by both methods, albeit with greater variance in the
proteomic measurement. However, we note that the normalization method above may be
limited by the low number of ribosome footprint reads mapping to ChrM (Figure S2C), the
long duration of low-dose bortezomib treatment, or other alterations in mitochondrial
ribosome dynamics in this system. Therefore, while this comparison is supportive of our
proteomic data, we cannot exclude the possibility that this concordance is coincidental.
Importantly, however, the overall decrease in translational efficiency we measure by pSILAC
also appears consistent with biochemical measurements indicating decreased global
translational efficiency (Figures S2H, S2I, and 3). This finding highlights that monitoring
protein synthesis by mass spectrometry can directly confirm global changes in translational
capacity independent of ribosome profiling data.

Given the potential limitations of the mitochondrial footprint normalization approach, we
also developed an algorithm to computationally estimate the changes in global protein
synthetic capacity. A scaling function G,(#) (common to all genes) was incorporated into the
system of differential equations. This function G;(# was used to correct 7Eto reflect
changes in the global synthetic capacity in the cell (blue curve in Figures 4A and 3E). We
inferred a G;(?) that optimizes a squared loss function based on proteomic data (STAR
Methods). When our inferred G;() was included in simulations of low-dose bortezomib
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treatment (Figure 3B), the resulting simulated protein synthesis dynamics (Figure 3E) were
similar to those noted by puromycin incorporation (Figure 3A). G;(# further demonstrates a
very similar pattern to both the puromycin incorporation measurements (Figure 3C) and the
ratio of total ribosome footprint reads to the total number of ChrM-mapping reads (Figure
3D).

As a further comparison between ribosome profiling and pSILAC proteomics, we also

investigated the correlation at baseline between translational efficiency and &, (t) across
proteins (Figure 2D). We first estimated a multiplicative constant, 5 that, when applied to all

genes, largely reconciles the 7£ measured from ribosome profiling with /; (¢) estimated
from proteomic experiments (STAR Methods). A major question is whether the discrepancy

of the fit between 7£and k(t) for different genes represents real biology (i.e., gene-specific
translational regulation at the post-translational level, only detectable by proteomics) or
systematic biases in one or both methods. Notably, our quantitative model relies on absolute
protein copy-number estimates from the iBAQ method (Schwanhausser et al., 2011). While
the proteins included in our targeted SRM assay on MM1.S showed high reproducibility by
iBAQ (Figure S2G), simulations suggest that even this limited iBAQ replicate error could
account for over one-third of the residual variance of the correlation presented in Figure 2A
(Figure S3B). To evaluate further potential sources of error, we examined whether
accounting for annotated transcript isoforms could improve the correlation between footprint
and proteomic data, but found only minor improvements (Figure S3D).

Extensions of the Model: Quantitative Predictions of Protein Synthesis

One direct application of our model is predicting absolute protein synthesis and abundance

under different global levels of translational inhibition. Using our estimated values of k()
in combination with baseline mRNA-seq and ribosome profiling data, we predicted
proteome remodeling under three different scenarios of G.(#) in MML.S cells (Figure 4A):
untreated cells, low-dose bortezomib, and high-dose bortezomib. Our model predicted
significantly reduced absolute protein synthesis under conditions of strong translation
inhibition by high-dose bortezomib (Figures 4B and 4C), consistent with that found in our
prior study (Wiita et al., 2013).

The model can also be used to define protein synthesis rates in other systems. For example,
we obtained a similar dataset of pSILAC proteomics paired with baseline mRNA-seq and
ribosome profiling in untreated Epstein-Barr virus (EBV)-immortalized B cells (Figures 4D
and S4). Importantly, the relationship between absolute protein synthesis and footprint
RPKM (Figure 4D) is also strong in this setting (Pearson’s R = 0.84 on log-transformed
data). A linear fit to these data on a log scale results in a slope of 0.93 (95% confidence
interval 0.84-1.02). Again, this strong correlation and linear relationship indicates that
ribosome footprint occupancy is quantitatively reflective of absolute protein synthesis in a
different cell type and without any drug perturbation.

Using our mathematical model, we predicted the “heavy” (newly synthesized) protein copy
number in these B cells at later times (measured using SRM), using inputs of iBAQ protein
copy number, ribosome footprint density, and mRNA-seq measured in untreated B cells at
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baseline, and gand kg estimated from MML.S data (Figure 4E, right). In our prediction
model, we assumed that ribosome footprint read density, mMRNA-seq read density, Gn(%), and
G:(9 remain constant over time in this untreated scenario. Indeed, the values predicted by
our model were similar to the experimental pSILAC measurements of heavy protein copy
number (Figure 4E, left). Our results from Figures 2A and 4D further support the notion that
ribosome profiling data, in combination with biochemical knowledge of global translational
inhibition, may be sufficient to predict changes in the proteome using our quantitative
model.

DISCUSSION

Here, we directly measured protein synthesis and ribosome footprint density in the setting of
cancer therapy. Ribosome profiling has become a widespread technique to assess
translational regulation and protein synthesis. One important question about this technique,
however, is whether the resulting data truly reflect protein synthesis and translational rate. A
recent study in Escherichia coli demonstrated that when compared with previously published
absolute copy numbers per cell, extrapolated synthesis rates based on ribosome footprint
density correlated very well (R =0.98) (Li et al., 2014a). In our work, we also find a strong
positive correlation between ribosome footprint density and absolute protein synthesis as
measured by targeted time-resolved pSILAC (Figures 2A [R = 0.80] and 4D [R = 0.84]),
supporting the notion that ribosome footprint density, as measured by ribosome profiling, is
directly reflective of absolute protein synthesis, even in the more complex translational
system of eukaryotes (Jackson et al., 2010; Kozak, 1999).

Others have compared the capture and analysis of nascently translated proteins by mass
spectrometry with ribosome profiling data and have found weaker correlations (R = 0.66)
(Zur et al., 2016). However, this “Punch-P” approach has significant disadvantages as an
orthogonal quantitative validation of ribosome profiling data as it relies on incorporation of a
chain-terminating puromycin analog for enrichment. Such truncated polypeptides will likely
be rapidly degraded, skewing abundances in the captured cohort. Furthermore, enrichment-
based methods suffer from biases in differential protein capture on streptavidin beads and
artifacts from non-specific binding. These limitations make it difficult to quantitatively
compare ribosome profiling with Punch-P. In contrast, the pSILAC approach we take here,
combined with high-accuracy targeted quantification, allows us to directly measure protein
synthesis in a complex system in an unbiased fashion.

With these data, we find that noise in baseline absolute protein abundance using the iBAQ
method (Li et al., 2014b; Wilhelm et al., 2014) strongly affects the correlation between
proteomic and ribosome profiling data. Other sources of error in our comparison that remain
to be investigated may relate to ribosome footprint sample preparation methods (Weinberg et
al., 2016) or splice isoform-specific translational control (Floor and Doudna, 2016). Due to
these limitations, we cannot exclude the possibility that for some genes there is a divergence
between ribosome footprint occupancy and true protein synthesis, despite their overall
strong correlation across the monitored genes.

Cell Syst. Author manuscript; available in PMC 2018 June 28.
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The quantitative model we develop also allows us to determine a measure of translational

efficiency (% (t)) using proteomic data and compare this with translational efficiency as
measured by ribosome profiling. Our results, with a Pearson’s R = 0.58 on log-transformed
data at baseline (Figure 2D), are in line with that of a recent extensive time-course study of
protein synthesis in murine dendritic cells, in which Jovanovic et al. (2015) performed
ribosome profiling at the baseline time point alone and also found a similar correlation (R =

0.5) between 7£ from ribosome profiling and &, measured from shotgun proteomic data.
Given our findings (Figures 2E-2G), it appears that while proteomics may be able to broadly
detect global changes in translational capacity, ribosome profiling may be more sensitive in
determining translational efficiency changes for individual genes.

In the context of cancer therapy, our results here underscore that standard measurements of
ribosome footprint density may not reflect absolute protein synthesis when global changes in
translational capacity (i.e., the number of actively translating ribosomes) are present,
whereas proteomics can more directly detect these changes (Figures 2E and 2F). pSILAC
combined with targeted mass spectrometry may therefore be an important method to
orthogonally validate quantitative changes in translational rate found by normalization of
ribosome profiling data under conditions of cellular stress (Andreev et al., 2015; Ingolia,
2016).

Furthermore, we develop a new quantitative model that can capture and predict dynamic
changes in protein synthesis during cancer therapy. As we find a linear relationship between
ribosome footprint density and absolute protein synthesis across genes, we suggest that with
inputs of untreated mRNA-seq, ribosome profiling, and absolute protein abundance
estimates, in conjunction with biochemical data to describe the degree of translational
inhibition, our model will provide a new window to predict the remodeling of the cancer
proteome in response to therapeutic perturbation, even in the absence of a full pSILAC
dataset. We suggest that this quantitative framework can readily be applied to any human
cellular system exposed to cellular stress impinging on the translational machinery.

STARXMETHODS
KEY RESOURCES TABLE

REAGENT or RESOURCE

SOURCE

IDENTIFIER

Antibodies

Rabbit monoclonal anti-GAPDH

Cell Signaling Technology

Cat# 2118L; RRID: AB_56105

Rabbit monoclonal anti-vimentin

Cell Signaling Technology

Cat# 5741P; RRID: AB_10695

Rabbit polyclonal anti-Bid

Cell Signaling Technology

Cat# 2002P; RRID: AB_10830

Mouse monoclonal anit-puromycin

KeraFast

Cat# 3RH11

Rabbit monoclonal anti-4E-BP1

Cell Signaling Technology

Cat# 53H11; RRID: AB_1069]

Rabbit monoclonal anti-phospho-4E-BP1 (T37/46)

Cell Signaling Technology

Cat# 236B4; RRID: AB_10695

Chemicals, Peptides, and Recombinant Proteins

Bortezomib

LC Laboratories

B-1408
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REAGENT or RESOURCE

SOURCE

IDENTIFIER

Cycloheximide

Sigma-Aldrich

Cat# C4859; CAS: 66-81-9

L-Lysine 4,4,5,5-D4 (Lys4)

Cambridge Isotope Laboratories

Cat# DLM-2640

L-Avrginine 13Cg (Arg6)

Cambridge Isotope Laboratories

Cat# CLM-2265-H

L-Lysine 13CgN, (Lys8)

Cambridge Isotope Laboratories

Cat# CNLM-291-H

L-Lysine 13C¢15N, (Arg10)

Cambridge Isotope Laboratories

Cat# CNLM-593-H

L-Lysine Sigma-Aldrich Cat# 8662; CAS: 657-27-2
L-Arginine Sigma-Aldrich Cat# A6969; CAS: 1119-34-2
TRIzol® reagent Life Technologies Cat# 15596026

HALT protease and phosphatase inhibitor single use cocktail Thermo Fisher Cat# 78443

Sequencing Grade Modified Trypsin Promega Cat# V5111

GAPDH recombinant protein Abcam Cat# ab82633

Vimentin recombinant protein PeptroTech Cat# 110-10

Bid recombinant protein

Sino Biological

Cat# 10468-HNCE-59

Critical Commercial Assays

Rneasy mini kit QIlAgen Cat# 74104
Quantifluor RNA assay Promega Cat# E3310
Oligo(dT)25 Magnetic Beads kit New England BioLabs Cat# S1419S
Pierce™ BCA Protein Assay Kit Thermo Fisher Scientific Cat# 23225
SepPak C18 columns Waters Cat# WAT020515
CellTiter-Glo® Luminescent Cell Viability Assay Promega Cat# G7570
Caspase-Glo® 3/7 Assay Systems Promega Cat# G8090
Invitrogen MyOne streptavidin C1 dynabeads Thermo Fisher Cat# 65001

Deposited Data

Raw genetic sequencing data

This paper

http://www.ncbi.nlm.nih.gov/ge

Raw SRM data

This paper

https://panoramaweb.org/labke

Human reference genome NCBI build