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Nox2 redox signaling maintains essential cell populations in the 
brain
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Abstract

Reactive oxygen species (ROS) are conventionally classified as toxic consequences of aerobic life, 

and the brain is particularly susceptible to ROS-induced oxidative stress and damage owing to its 

high energy and oxygen demands. In this context, NAPDH oxidases (Nox) are a widespread 

source of brain ROS implicated in seizures, stroke, and neurodegeneration. A physiological role 

for ROS generation in normal brain function has not been established, despite the fact that mice 

and humans lacking functional Nox proteins exhibit cognitive deficits. Using molecular imaging 

with Peroxyfluor-6 (PF6), a new selective fluorescent indicator for hydrogen peroxide (H2O2), we 

show that adult hippocampal stem/progenitor cells (AHPs) generate H2O2 through Nox2 to 

regulate intracellular growth signaling pathways, which in turn maintains their normal 

proliferation in vitro and in vivo. Our results challenge the traditional view that brain ROS are 

solely deleterious by demonstrating that controlled ROS chemistry is needed for maintaining 

specific cell populations.

Aberrant accumulation of reactive oxygen species (ROS) over time can trigger oxidative 

stress and damage1 of proteins, lipids, and nucleic acids that form the molecular 

underpinning of the free-radical theory of aging2. The brain is particularly sensitive to ROS 

damage owing to its high oxygen demand and low antioxidant capacity, and oxidative stress 

is connected to stroke and neurodegenerative diseases where age is a risk factor3. However, 

this organ also purposefully produces ROS throughout development and adult life, and a 

major source of brain ROS are the NAPDH oxidase enzymes (Nox) that are expressed 

throughout the central nervous system (CNS)4,5. These membrane-spanning protein 
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complexes generate hydrogen peroxide (H2O2) as their final chemical product by the direct 

two-electron reduction of molecular oxygen by NAPDH5,6, or through the one-electron 

reduction to superoxide (O2
-) followed by conversion to H2O24,5. The established 

physiological function for Nox proteins is in the immune system, where they participate in 

phagocytic killing of pathogen invaders5. More recently, however, the discovery of Nox 

enzymes in nonphagocytic cell types throughout the body6,7 has greatly expanded the scope 

and potential roles for these complexes, and emerging data links their H2O2-producing 

activity to beneficial cell signaling events4-15.

The H2O2 generated from Nox proteins in the brain and CNS has been traditionally 

associated with stroke16, aging17, seizures18, and neurodegenerative Alzheimer's19 and 

Parkinson's20 diseases. However, the presence of these proteins in the brain and CNS 

throughout adult life presages a beneficial role for endogenous ROS production that remains 

insufficiently understood21. Along these lines, both mice and humans that lack functional 

Nox2 exhibit cognitive deficits22,23, most notably in learning and memory, suggesting a 

role for this Nox isoform within the hippocampus. In this context, a population of neural 

stem/progenitor cells reside within the dentate gyrus of the hippocampus and form new 

neural tissue in the adult brain that plays a role in memory formation24. We hypothesized 

that Nox-generated H2O2, which acts as a molecular signal for growth within cultured cell 

lines8,9, could help maintain the proliferation of these stem cell populations in the brain.

In this report, we show that H2O2 redox signaling derived from Nox2 is essential for normal 

growth and proliferation of neural stem cells in vitro and in vivo. Motivated by the dearth of 

chemical tools to selectively probe H2O2 production in cell types that would not be expected 

to produce high concentrations of this ROS, we developed Peroxyfluor-6 acetoxymethyl 

ester (PF6-AM), a new chemoselective fluorescent indicator for H2O2 with improved 

sensitivity. This fluorescent probe features a boronate chemical switch that allows for 

selective detection of H2O2 over other ROS, combined with acetoxymethylester (AM) 

protected phenol and carboxylic acid groups for enhanced cellular retention and sensitivity. 

After validating that PF6 is more responsive than previous boronate H2O2 reporters, we use 

this new trappable probe to demonstrate that adult hippocampal stem/progenitor (AHP) cells 

produce H2O2 when stimulated with fibroblast growth factor 2 (FGF-2), a mitogen that 

regulates their proliferation25. We then show that endogenous H2O2 production is important 

for normal cell signaling through the kinase hub Akt and is mediated by the H2O2-producing 

enzyme Nox2. Moreover, RNAi knockdown of Nox2 in cell culture and gene knockout of 

Nox2 in mice abrogates normal Akt signaling and AHP function in vitro and in vivo. Our 

results highlight the utility of PF6-AM as a tool to help discover new redox chemistry in 

biological systems and provide evidence that the controlled production of H2O2 in the brain 

can be beneficial to its physiology.

Results

Synthesis and evaluation of Peroxyfluor-6 (PF6)

Redox signaling mediated by H2O2 has been studied primarily in proliferating cell culture 

models stimulated with mitogens9. As the majority of brain tissue is comprised of terminally 

differentiated cells, we turned our attention to AHPs, which grow and proliferate throughout 
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development and adult life to feed into neuronal and glial populations. Accordingly, we first 

sought to test whether these neural stem cells produce endogenous H2O2 under growth 

conditions. In this regard, traditional methodologies for imaging H2O2 and related ROS in 

living cells typically utilize non-specific indicators that rely on general oxidation and 

therefore detect an assortment of oxidants26. Because neural tissue is highly susceptible to 

oxidative stress1,2,21,27 the specific ROS that the AHPs come in contact with is a critical 

determinant of the ultimate downstream cellular responses. We have shown that the 

conversion of aryl boronates to phenols is a useful chemoselective methodology for the 

detection of H2O2 in biological systems28. The first generation of Peroxy dyes, exemplified 

by PF1 (Supplementary Fig. 1), possess two boronate protecting groups, which after reaction 

with two equivalents of H2O2, yield fluorescent products29-32. This initial work established 

that boronate cages offer a general motif for creating fluorescent indicators that can 

selectively image H2O2 over other biologically relevant ROS. Second generation boronate 

probes such as PG1 and MitoPY1 (Supplementary Fig. 1) utilize a single boronate 

deprotection to increase sensitivity and allow for detection of H2O2 generated in oxidative 

stress33, neurodegenerative disease34,35, immune36, and growth factor signaling 

models37,38. Unfortunately, these available boronate dyes were not sufficiently sensitive to 

visualize potential H2O2 production in AHPs after stimulation with the endogenous mitogen 

FGF-2 (Supplementary Fig. 2).

We sought to improve the sensitivity of boronate-based probes while maintaining their high 

selectivity for H2O2. Inspired by work showing that increasing cellular retention of 

fluorescent probes is a practical strategy to improve sensitivity39-43, we designed and 

synthesized PF6-AM, a carboxyfluorescein-based probe combining a boronate-masked 

phenol for H2O2 detection and AM groups to cap phenol and carboxylic acid functionalities 

for enhanced cellular retention (Scheme 1). Briefly, monotriflation of 6-carboxyfluorescein 

using stoichiometric N-phenyl bis(trifluoromethanesulfonamide) affords triflate 2 in 60% 

yield. Palladium-mediated borylation of 2 with cyclohexyl JohnPhos, 

bis(pinacolato)diboron, and diisopropylethylamine in anhydrous 1,4-dioxane at room 

temperature provides PF6 in 80% yield. Finally, protection with bromomethyl acetate 

furnishes AM-ester protected PF6-AM. The lipophilic AM esters allow the probe to pass 

readily through cell membranes, where esterases can then deprotect the AM groups to reveal 

PF6, a dianionic form of the probe that is membrane impermeable and thus trapped inside 

the cell, where it can respond to changes in intracellular H2O2 levels. We reasoned that this 

trappable probe should have increased sensitivity owing to a combination of increased local 

concentration of probe substrate retained within cells as well as a decreased rate of 

deprotected probe product leaking out of cells. PF6 features two visible region absorptions 

(λabs = 460 nm, ε = 14,000 M-1cm-1; 370 nm, ε = 10,000 M-1cm-1) and a weak emission 

(λem = 530 nm, Φ = 0.10). Spectrophotometric studies confirm that PF6 responds to H2O2 

by a turn-on fluorescence response and is selective for H2O2 over a host of other ROS 

oxidants (Fig. 1a,b). Kinetics measurements of the H2O2-mediated boronate deprotection 

were performed under pseudo-first-order conditions (5 μM dye, 10 mM H2O2), giving an 

observed rate constant of k = 3.3(1) × 10-3 s-1.
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Validation of PF6 for molecular imaging in cell culture

With data characterizing the properties and H2O2-induced turn-on response of PF6 in vitro, 

we sought to evaluate its utility for molecular imaging in cell culture model systems. First, 

we assayed whether the AM ester cage groups were sufficient to increase retention of the 

probe within living cells. We utilized the boronate-based H2O2 probe Peroxy Green 1 

(PG1), which is sensitive to signaling levels of H2O2 but does not possess esterase-cleavable 

groups, as a benchmark for these studies. PG1 and PF6 utilize the same excitation and 

emission wavelengths and exhibit similar emission characteristics, allowing for direct 

comparison of the uptake and retention these probes in cell culture by scanning confocal 

microscopy. After loading HeLa cells with either PG1 or PF6-AM, excess dye was 

thoroughly washed away. The cells were then imaged immediately after washing and 

visualized again after 10, 30, and 60 minutes (Fig. 1c,d). Cells loaded with PG1 show 

modest intracellular fluorescence immediately after washing, but the signal drops off 

markedly by the 10-minute time point. In contrast, cells loaded with PF6-AM exhibit 

intracellular fluorescence immediately after washing that is approximately twice as bright as 

PG1-loaded cells and maintain this emission intensity throughout the time course of the 

measurements. A similar trend is observed in analogous experiments using HEK 293 cells 

(Supplementary Fig. 3).

We next established whether this increased cellular uptake and retention would permit PF6 

to detect low levels of H2O2 in live samples. HeLa cells were loaded with PF6-AM and then 

stimulated with either 10 μM H2O2 or carrier for 30 minutes (Fig. 1e,f). Cells treated with 

H2O2 show increased intracellular fluorescence compared to control samples, even at this 

relatively low level of exogenously added H2O2. Similar results are seen in HEK 293 cells 

(Supplementary Fig. 3). A drawback to this approach is the probe is not retained after 

fixation, making it incompatible with immunostaining in fixed cell and tissue samples. 

Future synthetic directions include enhancing the photostability of these dyes, adding 

functional groups that allow for maintenance of the probe upon fixation, and expanding the 

color palette of trappable H2O2 probes for multicolor imaging experiments. Nevertheless, 

these experiments confirm that PF6 is a selective and sensitive reporter for intracellular 

H2O2 in live cells and further validate the strategy of increased cellular uptake and retention 

as a general method for increasing the sensitivity of small-molecule fluorescent probes. In 

this context, PF6 adds a H2O2-specific fluorescent probe with selectivity and sensitivity to 

signaling levels of this oxygen metabolite to the arsenal of currently available ROS probes, 

including those for general oxidants44 and superoxide35,45.

PF6 reveals that AHPs produce H2O2 upon FGF stimulation

After validation of PF6 in model systems, we sought to apply this new tool to the study of 

AHP cells. To this end, AHPs were isolated from the hippocampi of 6-week-old female 

Fisher 344 rats as previously described25. After growth factor withdrawal, AHPs were 

loaded with PF6-AM and treated with either FGF-2 mitogen or carrier. Cells stimulated with 

FGF-2 show increased intracellular fluorescence compared to unstimulated control AHPs as 

shown by PF6 imaging (Fig. 2, Supplementary Fig. 7). Toxicity studies demonstrate that 

PF6-AM is non-toxic at the concentration utilized in this study (Supplementary Figs. 4 and 

5). When coupled with the in vitro selectivity characterization of PF6, these data indicate 
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that FGF-2 induces the endogenous production of H2O2 in AHPs. Furthermore, these data 

illustrate the utility of this new chemical tool for detecting changes in low levels of H2O2 in 

live-cell settings. Intrigued at that finding that AHPs, an essential cell population of the 

central nervous system from development throughout adult life, produce a compound known 

to have potential toxic consequences in the brain46, we next turned our attention to 

elucidating potential roles for H2O2 in physiological (rather than pathological) processes of 

these cells.

H2O2 is required for growth signaling in AHPs

With molecular imaging data establishing that AHPs produce H2O2 upon mitogen 

stimulation, we then probed whether FGF-2-induced H2O2 generation could influence 

downstream cell signaling cascades. In this regard, an intriguing relationship has emerged 

between endogenous H2O2 production and PI3-kinase-dependent (PI3K) activation of the 

kinase Akt, a signaling pathway that has several potentially redox-regulated components. 

For example, previous studies have demonstrated that PTEN, a phosphatase that opposes 

forward PI3K signaling, contains a catalytic active site residue Cys-124 that is reversibly 

oxidized by H2O2 to form a disulfide with Cys-71. This oxidative redox switch turns off the 

activity of the phosphatase, allowing the PI3K/Akt signaling cascade to propagate forward; 

re-reduction of this disulfide to the corresponding thiols restores PTEN phosphatase activity, 

resetting the cycle.47 The PI3K-dependent activatpion of Akt is critical for the growth and 

proliferation of AHPs, as previous studies using either pharmacological inhibition of Akt or 

the expression of a dominant negative Akt inhibited their proliferation.48 Accordingly, we 

first investigated the effects of exogenous H2O2 addition to AHPs by monitoring the 

phosphorylation status of Akt. Toxicity studies demonstrate that AHPs can withstand H2O2 

to surprisingly high concentrations (Supplementary Fig. 6). Treatment of AHPs with H2O2 

in the absence of FGF-2 stimulation is sufficient to trigger a marked dose-dependent 

increase in phospho-Akt, without increasing the phosphorylation status of another major 

signaling hub, the MAP kinase ERK1/2 (Fig. 3a, Supplementary Fig. 8). Previous work has 

shown that pharmological inhibition of the ERK1/2 MAP kinase pathway does not strongly 

affect AHP proliferation.48

We then probed the role of endogenously produced H2O2 on the phosphorylation status of 

Akt. FGF-2 stimulation of AHPs triggers a time dependent increase in the phosphorylation 

of Akt compared to control samples. In contrast, cells expressing Catalase, an enzyme that 

quickly destroys H2O2, have diminished FGF-2-induced phosphorylation of Akt (Fig. 3b) 

and produce less detectable H2O2 by PF6-AM imaging (Fig. 2b, Supplementary Fig. 7). 

Additionally, pretreatment with the general antioxidant N-acetylcysteine (NAC), which will 

quench H2O2, or the flavin/Nox inhibitor diphenyliodonium (DPI), which inhibits the 

majority of potential intracellular sources of H2O2, both block the FGF-2-induced 

phosphorylation of Akt, as well as affect the phosphorylation of ERK1/2 to a lesser extent 

(Fig. 3c). To confirm that DPI at this concentration is concomitantly blocking the H2O2 

signal and Akt phosphorylation, pretreatment of PF6-AM-loaded AHPs with DPI was 

shown to abolish FGF-2-induced H2O2 production (Fig. 2a, Supplementary Fig. 7). These 

experiments demonstrate that AHPs utilize redox chemistry to modulate this growth-

signaling kinase pathway. We then attempted to identify potential targets of the H2O2 along 
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the Akt pathway. We utilized a methodology for assaying the oxidation status of PTEN that 

relies on differences in gel mobility between the oxidized, disulfide form and the reduced 

form of the protein49 to demonstrate that FGF stimulation does indeed produce a small but 

detectable amount of oxidized PTEN (Supplementary Fig. 9). However, this approach 

toward assaying the oxidation state of PTEN is not very sensitive or consistent in this 

system, which is why we continued to monitor Akt phosphorylation, a much more reliable 

readout of redox signaling.

Nox2 is the source of H2O2-mediated signaling in AHPs

We next elucidated the molecular source of the redox signal within the AHPs. Given the 

vast expression of Nox2 in the CNS21, we looked to this protein as a potential redox 

modulator in AHPs. Both RT-PCR (Fig. 3d) and western blot analysis using two separate 

Nox2 antibodies, a rabbit and a mouse (Fig. 3e), confirm its presence in AHPs. Both 

antibodies show a band at the same molecular weight that corresponds to the approximate 

molecular weight of Nox2 (c.a. 65 kDa) and whose intensity selectively decreases upon 

genetic manipulation with Nox2-targeted shRNA. The mouse antibody has a nonspecific 

band slightly below the Nox2 band that does not change upon treatment with Nox2 shRNA, 

which can serve as a loading control. We utilized genetic manipulation of Nox2 to elucidate 

the contributions of this protein to Akt proliferation/signaling pathways as well as the 

fluorescent signal measured by PF6-AM. AHPs transfected with Nox2-targeted shRNA 

exhibit decreased Nox2 levels and show a concomitant marked decrease in FGF-2-induced 

phosphorylation of Akt compared to control cells transfected with an empty vector (Fig. 3f). 

As was observed for chemical inhibition by NAC or DPI, the ERK1/2 pathway in AHPs also 

appears to be affected by the lack of Nox2. AHPs transfected with Nox2-targeted shRNA 

also show less H2O2 production in response to FGF-2 stimulation (Fig. 2c, Supplementary 

Fig. 7). As a further validation of the shRNA knockdown experiments, we designed and 

tested another shRNA construct to target an alternative member of the Nox family, Nox3. 

Again, Nox2-shRNA transfected cells show reduced levels of Nox2 compared to Nox3-

shRNA transfected cells and concomitantly exhibit a decreased response to FGF-2-induced 

phospho-Akt production (Fig. 3g), confirming the specific effects of the Nox2 shRNA. 

Taken together, these data demonstrate that Nox2-generated H2O2 contributes to the 

regulation of growth-signaling pathways within the AHPs.

Nox2 is required for normal AHP proliferation in vitro

With data establishing that intracellular redox changes affect signaling at the protein level, 

we then sought to determine whether decreased redox signaling would also manifest similar 

results in functional assays. We therefore investigated the effects of diminished redox 

signaling on AHP proliferation in the presence of FGF-2. First, 5-day in vitro proliferation 

experiments were performed in the presence of varying levels of DPI. We observed a dose-

dependent decrease in growth rate with DPI inhibition, with concentrations as low as 50 nM 

having an inhibitory effect (Fig. 4a). As DPI is relatively non-specific and will block all 

flavin-containing sources of ROS, we sought to elucidate the role of Nox2 specifically. We 

therefore transfected AHPs with shRNA constructs targeting Nox2 or the empty vector. In 

agreement with the chemical inhibition experiments and western blot analysis, the Nox2 

shRNA transfected cells show a diminished proliferation rate compared to AHPs containing 

Dickinson et al. Page 6

Nat Chem Biol. Author manuscript; available in PMC 2011 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the empty vector (Fig. 4b), or compared to cells expressing Nox3 shRNA as a control (Fig. 

4c). Taken together, these data indicate that FGF-2 signaling involves the production of 

H2O2 through the activation of Nox2, which influences signaling through Akt and ultimately 

the downstream phenotype of growth rate.

Nox2 is required for normal AHP function in vivo

We then sought to extend these in vitro findings to an in vivo system. To this end, we 

performed bromodeoxyuridine (BrdU) incorporation experiments in Nox2 knockout 

(Nox2-/-) mice and CL57BL/6J control mice. BrdU incorporates into the genome of 

dividing cells, which can then be detected by immunohistochemistry post fixation along 

with stem cell or neuronal markers. Therefore, cells that stain for both BrdU as well as a 

stem cell marker are AHPs that proliferated during the course of the injections. Mice were 

injected with BrdU daily for 7 days and perfused 24 h after the final injection. 

Immunohistochemical assessments of the dentate gyri from Nox2-/- and control mice show 

no morphological abnormalities (Fig. 4d,e), suggesting that the dentate gyrus develops 

normally in the Nox2-/- mice. However, quantification of the proliferating AHP populations 

based on colocalization of BrdU and Sox2, a stem cell marker,50 reveals a marked decrease 

in the number of proliferating AHPs in the Nox2-/- mice (Fig. 4f-h), establishing that Nox2 

contributes to the normal proliferation of AHPs in vivo.

Finally, we assayed the effects of Nox2 deficiency on adult neurogenesis in vivo. For these 

experiments mice were injected with BrdU daily for 7 days and were then perfused 28 days 

after the final injection. The brains were then analyzed for cells that stain for both BrdU and 

NeuN, a neuronal marker, which would indicate neurons that had differentiated from AHPs 

within the time course of the experiment. Quantification of the colocalization of BrdU and 

NeuN reveals a reduction in the number of newborn neurons in the Nox2-/- mice (Fig. 4i-k), 

establishing that Nox2 also contributes to adult neurogenesis in vivo.

Discussion

H2O2 is emerging as a newly recognized messenger for cell signaling, and a major source of 

peroxide produced through stimulation of various cell surface receptors is the Nox family of 

proteins5,9,10,26. These ROS-generating enzymes are classically associated with 

phagocytic cells during immune responses, where they are used to combat pathogens by 

attacking them with controlled oxidative bursts. More recent results have revealed the 

widespread distribution of Nox complexes in non-phagocytic cell types throughout the 

body5, presaging that H2O2 generation is a necessary component for physiological purposes; 

however, many aspects of how and why this small-molecule oxidant is required and used for 

the benefit of living organisms remain elusive. To address these questions, we developed a 

novel H2O2-specific fluorescent probe, PF6, and applied this new chemical tool to help 

demonstrate that AHPs, an essential population of cells that proliferate in the brain from 

development throughout adult life, respond to growth conditions by producing H2O2. 

Through a combination of imaging, pharmacological, and genetic experiments, we reveal 

that Nox2 and H2O2 are important for maintaining normal signaling and proliferation of 

AHPs in vitro. Moreover, we show that mice lacking functional Nox2 have a decreased 
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number of proliferating neural stem cells and less adult neurogenesis in the hippocampus, 

which establishes that H2O2-mediated redox signaling is essential on the whole organism 

scale.

The collective data provide a molecular model for the cognitive deficits observed in mice 

and humans lacking the ROS-generating Nox2 enzyme (Fig. 5) and establish that ROS are 

not exclusively detrimental to brain tissue in the context of seizures, stroke, and 

neurodegeneration. Since various isoforms of the Nox family are present throughout the 

brain and CNS4, there are likely many other beneficial roles for these ROS-producing 

proteins in this system. Indeed, the in vivo effects observed in the Nox2 knockout mice 

could also be influenced by a lack of Nox2 in other cell types within brain. In a broader 

sense, our findings show that controlled ROS production and signaling can be used as a 

strategy for maintaining proliferation of essential cell populations in the body. Finally, these 

results suggest caution when applying antioxidant therapeutics in a non-specific fashion, as 

ROS production can be a necessary component for the fitness of a given system.

Methods

6-Carboxyfluorescein monotriflate (2)

6-Carboxyfluorescein (512 mg, 1.36 mmol) was added to a vial and dissolved in 15 mL of 

2:1 acetonitrile/DMF. Diisopropylethylamine (2.2 mL, 13.3 mmol) was then added and the 

reaction stirred for 10 min. N-Phenyl bis(trifluoromethanesulfonamide) (487 mg, 1.36 

mmol) was then added and the reaction was stirred overnight at room temperature. The 

reaction mixture was then dried under reduced pressure. Purification by column 

chromatography (19:1 dichloromethane/methanol) afforded compound 2 as a yellow oil 

(412 mg, 60% yield). 1H NMR (CDCl3/10% CD3OD, 400 MHz): δ 8.26 (1H, d, J = 8.0 Hz), 

8.02 (1H, d, J = 8.2 Hz), 7.77 (1H, s), 7.19 (1H, d, J = 2.4 Hz), 6.90 (1H, dd, J = 2.4, 8.8 

Hz), 6.82 (1H, d, J = 8.8 Hz), 6.76 (1H, d, J = 2.4 Hz), 6.59 (1H, dd, J = 2.4, 8.8 Hz), 6.54 

(1H, d, J = 8.8Hz). 13C NMR (CDCl3/10% CD3OD, 100 MHz): δ 168.6, 159.8, 152.5, 

152.1, 151.8, 150.0, 138.4, 131.5, 130.0, 129.1, 128.9, 125.3, 125.1, 119.2, 116.5, 113.4, 

110.5, 108.5, 103.0, 82.5. 19F NMR (CDCl3/10% CD3OD, 376.5 MHz): δ -71.97. HR-

FABMS: calculated for [M+] 509.0149, found 509.0158.

PF6/PF6-AM (3/4)

Compound 2 (412 mg, 0.81 mmol), Pd(OAc)2 (55 mg, 0.081 mmol), Bis(pinacolato)diboron 

(308 mg, 1.22 mmol), Cyclohexyl JohnPhos (114 mg, 0.32 mmol), diisopropylethylamine 

(594 mg, 4.63 mmol), and 5 mL of dioxane were added to a vial in an inert atmosphere 

glove box and the reaction was stirred overnight at room temperature. The vial was then 

brought out of the glove box and the contents were evaporated to dryness. Purification by 

column chromatography (19:1 dichloromethane/methanol) furnished PF6 as a yellow solid 

(317 mg, 80% yield). 1H NMR (CDCl3/5% CD3OD, 400 MHz): δ 8.26 (1H, d, J = 8.0 Hz), 

8.06 (1H, d, J = 8.0 Hz), 7.78 (1H, s), 7.71 (1H, s), 7.39 (1H, d, J = 8.0 Hz), 6.72-6.76 (2H, 

m), 6.58 (1H, d, J = 8.8 Hz), 6.53 (1H, dd, J = 2.4, 8.8 Hz), 1.32 (12H, s). 13C NMR 

(CDCl3/10% CD3OD, 100 MHz): δ 169.1, 167.5, 159.1, 153.5, 152.3, 150.7, 136.9, 131.3, 

129.7, 129.2, 129.0, 127.1, 125.5, 125.1, 123.6, 120.7, 112.6, 109.2, 103.1, 20.7. HR-
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FABMS: calculated for [M+] 487.1559, found 487.1567. PF6 (40 mg, 0.08 mmol), 

bromomethyl acetate (51 mg, 0.33 mmol), diisopropylethylamine (32 mg, 0.25 mmol), and 1 

mL of DMF added to a vial and stirred at room temperature overnight. The reaction mixture 

was then extracted into dichloromethane, washed three times with water, washed once with 

brine, dried over magnesium sulfate, and dried under reduced pressure. Purification by 

column chromatography (7:3 ethyl acetate/hexanes) delivered PF6-AM as a white solid (11 

mg, 22% yield). 1H NMR ((CD3)2O, 500 MHz): δ 7.99-8.06 (1H, m), 7.81 (1H, t, J = 6.0 

Hz), 7.72-7.79 (1H, m), 7.66 (1H, s), 7.43-7.50 (1H, m), 7.26-7.31 (1H, m), 6.97-7.10 (1H, 

m), 6.87-6.95 (1H, m), 6.81-6.88 (1H, m), 5.30-6.00 (4H, m), 2.01-2.11 (6H, m), 1.34 (12H, 

m). HR-FABMS: calculated for [M+] 631.1981, found 631.1979.

Cell Culture

AHPs were cultured on tissue culture polystyrene coated with poly-ornithine and 5 μg/mL of 

laminin (Invitrogen) and grown in Dulbecco's modified Eagle medium (DMEM)/F-12 (1:1) 

high-glucose medium (Invitrogen) containing N-2 supplement (Invitrogen) and 20 ng/mL 

recombinant human FGF-2 (Peprotech). For FGF starvation, AHPs were washed once with 

(DMEM)/F-12 (1:1) high-glucose medium, and then placed in (DMEM)/F-12 (1:1) high-

glucose medium without FGF for 12-16 hours.

AHP Fluorescence Imaging Experiments

Confocal fluorescence imaging studies on AHPS were performed with a Zeiss LSM510 

NLO Axiovert 200 laser scanning inverted microscope and a 40× oil-immersion objective 

lens. Excitation of PF6-AM-loaded AHPs at 488 nm was carried out with an Ar laser and 

emission was collected using a 500-550 nm filter set. AHPs were incubated with 5 μM PF6-

AM in DMEM/F12 + N-2 for 30 minutes at 37 °C. The cells were then washed with fresh 

DMEM/F12 + N-2 twice. The cells were then incubated in DMEM/F12 + N-2 either with or 

without 20 ng/mL FGF-2 for 30 minutes, then imaged. For the DPI inhibited cells, 5 μM 

DPI was included in the DMEM/F12 + N-2 media for all incubations. Image analysis was 

performed in ImageJ (Wayne Rasband, NIH) with at least 10 cells counted per field in 4 

separate fields for each condition.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Spectroscopic characterization and cell culture validation of PF6-AM
(a) Fluorescence turn-on response of 5 μM PF6 at 0, 5, 15, 30, 45, and 60 minutes after the 

addition of 100 μM H2O2. (b) Fluorescence responses of 5 μM PF6 to various reactive 

oxygen species (ROS). Bars represent relative responses at 0, 5, 15, 30, 45, and 60 min after 

addition of each ROS. Data shown are for 10 mM O2
- (with 10 μM Catalase), 200 μM NO, 

and 100 μM for all other ROS. (c) HeLa cells were loaded with either 5 μM PG1 or 5 μM 

PF6-AM for 15 minutes, then washed twice with DPBS and imaged at 0, 10, 30 and 60 

minutes post dye washing. (d) Quantification of the experiment as conducted in (c). (e) 
HeLa cells were loaded with 5 μM PF6-AM for 15 minutes, stimulated with either water 

carrier or 10 μM H2O2 for 30 minutes, and imaged. (f) Quantification of the experiment as 

conducted in (e). Statistical analyses were performed with a two-tailed Student's t-test and 

error bars are ± s.e.m. 50 μm scale bars are shown.
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Figure 2. Application of PF6 to demonstrate that adult hippocampal stem/progenitor cells 
(AHPs) produce H2O2 upon FGF-2 stimulation
(a) After FGF-2 starvation, AHPs were loaded with 5 μM PF6-AM for 30 minutes, 

stimulated with 20 ng/mL FGF-2 or media for 30 minutes, and then imaged. For DPI 

treatment, cells were preincubated in media containing 5 μM DPI before FGF-2 stimulation. 

(b) AHPs were transfected with either Catalase or control vector and treated as in (a). (c) 
AHPs were transfected with either Nox2-shRNA or control vector and treated as in (a). 

Brightfield images are shown for each representative image with a 50 μm scale bar.
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Figure 3. Cellular redox status affects AHP growth signaling
(a) After FGF-2 starvation, AHPs were stimulated with vehicle control (buffer), 20 ng/mL 

FGF-2, 300, 500, or 1000 μM H2O2 for 30 min. (b) AHPs transfected with either Catalase or 

a control vector. After FGF-2 starvation, AHPs were stimulated with 20 ng/mL and lysed at 

the given time points. (c) After FGF-2 starvation, AHPs were incubated with NAC, DPI, or 

vehicle control (DMSO) for 40 minutes, then stimulated with 20 ng/mL FGF-2 and lysed at 

the given time points. (d) Nox2 mRNA detection in AHPs measured by RT-PCR. (e) Nox2 

expression of AHP whole cell extracts transfected with either Nox2 shRNA or an empty 

vector as measured by western blot analysis using either a mouse monoclonal (m) or a rabbit 

polyclonal (r) Nox2 antibody, followed by stripping and reprobing for actin as a loading 

control. An arrow shows the band in the Nox2 monoclonal antibody blot that matches the 

band in the Nox2 polyclonal blot, which corresponds to the molecular weight of Nox2. (f) 
AHPs transfected with either Nox2 shRNA or the empty vector. (g) AHPs transfected with 

either Nox2 shRNA or Nox3 shRNA. After 12 hour FGF-2 starvation, AHPs were 

stimulated with 20 ng/mL and lysed at the given time points. phospho-Akt, phospho-ERK, 

or mouse monoclonal Nox2 were measured by western blot analysis of whole cell extracts, 

and blots were stripped and reprobed for total protein or actin as loading controls.
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Figure 4. Nox2 is essential for normal proliferation of AHPs in vitro and in vivo
(a) 5-day growth assay of AHPs grown in the presence of FGF and varying concentrations 

of DPI (n = 4). (b) 5-day growth assay of AHPs transfected with either Nox2 shRNA or the 

empty vector and grown in the presence of FGF (n = 3). (c) 5-day growth assay of AHPs 

transfected with either Nox2 shRNA or Nox3 shRNA and grown in the presence of FGF (n 

= 3). (d) Dentate gyrus of a CL57BL/6J mouse after 7 days of BrdU injections. (e) Dentate 

gyrus of a Nox2-/- mouse after 7 days of BrdU injections with 100 μm scale bar. (f) 
Example of a cluster of BrdU/Sox2 positive AHPs in a CL57BL/6J control after seven days 
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of BrdU injections. (g) Example of a single BrdU/Sox2 positive cell in a Nox2-/- mouse 

after 7 days of BrdU injections with 20 μm scale bar. Sections stained for BrdU (blue), 

NeuN (red) and Sox2 (green). (h) Quantification of BrdU/Sox2 positive cells in either 

control or Nox2-/- mice after 7 days of BrdU injections (n = 5). (i) Example of newborn 

neurons in a CL57BL/6J control mouse 28 days after 7 days of BrdU injections. (j) Example 

of a newborn neuron in a Nox2-/- mouse 28 days after 7 days of BrdU injections with 20 μm 

scale bar. (k) Quantification of BrdU/NeuN positive cells in either control or Nox2-/- mice 

28 days after 7 days of BrdU injections (n = 4). For all panels data were normalized to 

controls and statistical analyses were performed with a two-tailed Student's t-test. *P ≤ 0.05, 

**P ≤ 0.005 and error bars are ± s.e.m.
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Figure 5. Model for the role of Nox2 in FGF-2 redox signaling in AHPs
The mitogen FGF-2 induces the production of H2O2 in AHPs, which can be blocked by 

either the general flavin inhibitor DPI, the antioxidant NAC, the expression of Catalase or 

genetic manipulation of Nox2. Nox2-generated H2O2 oxidizes and deactivates PTEN, which 

enhances signaling through Akt and manifest phenotypes in growth rates of AHPs in vitro 

and in vivo.
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Scheme 1. Design and synthesis of Peroxyfluor-6 Acetoxymethyl Ester, PF6-AM
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