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ABSTRACT OF THE DISSERTATION

Scene Understanding for Autonomous Robotic Systems
Inferring Physical Interaction

Application to Assistive Robotics & Precision Agriculture

by

Amel Dechemi

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, September 2023

Dr. Konstantinos Karydis, Chairperson

In the context of computer vision and artificial intelligence, scene understand-

ing is a complex task that involves a combination of image analysis, pattern recognition,

context modeling, and often relies on advanced machine learning techniques. Scene un-

derstanding has applications in various fields, including autonomous navigation, robotics,

surveillance, augmented reality, and more, where a deeper understanding of visual scenes

is crucial for making informed decisions and interacting effectively with the environment.

This dissertation aims to contribute to two applications: assistive robotics and precision

agriculture. The first part of the dissertation focuses on the emerging research area of infant

action recognition, specifically targeting the task of reaching—a significant developmental

milestone. Existing action recognition models primarily cater to adults, leaving a gap in

pediatric applications. To bridge this gap, BabyNet, a lightweight network, is introduced.

It employs annotated bounding boxes to capture spatial and temporal relationships, accu-

rately detecting reaching onset, offset, and complete actions. However, challenges emerge

viii



due to the dataset’s limited perspectives and the reliance on the detector network’s per-

formance. To overcome these limitations, E-BabyNet is proposed. It employs LSTM and

Bidirectional LSTM layers to assess reaching actions and deliver precise onset and offset

keyframes, handling transitions between actions. The second part focuses on the automation

of leaf sampling for phenotyping known to provide highly accurate and timely information

to growers. The first step in such automated procedure is identifying and localizing a leaf.

For this purpose, we present a novel approach for leaf detection and localization using 3D

point cloud with the ability to adapt to various designs. The preliminary results highlight

successful indoor and outdoor leaf detection and localization. To better assess our ap-

proach, an actuation-perception framework was integrated with two distinct end-effectors,

electrical- and pneumatic-based. Both end-effectors underwent evaluation within an indoor

environment. Based on the obtained results, further experiments were conducted in the

field, exclusively employing the pneumatic end-effector.
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Chapter 1

Introduction

The human visual system stands out for its remarkable ability to swiftly and

accurately interpret the intricate visual world that surrounds us [48]. This incredible feat

is commonly referred to as “visual recognition”. In recent years, the field of computer

vision has witnessed notable advancements, particularly in tasks involving the classification

and precise identification of individual objects or object categories present within images.

Furthermore, there has been an expansion of diverse complex tasks stemming from scene

understanding, which has contributed to its broader scope. Key tasks include:

• Object Detection and Recognition involves identifying and localizing multiple

objects within an image or video frame. This task goes beyond just labeling objects;

it also provides information about where they are located in the image. Various algo-

rithms, including convolutional neural networks (CNNs) and region-based approaches

such as Faster R-CNN [55], YOLO (You Only Look Once) [128], and SSD (Single

Shot MultiBox Detector) [101], are used to accomplish object detection.
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• Semantic Segmentation aims to label each pixel in an image with a class label,

thereby creating a pixel-wise segmentation map that highlights the different objects or

regions in the scene. Fully convolutional neural networks (FCNs) [104], U-Net [130],

and DeepLab [26] are popular architectures for semantic segmentation.

• Object Tracking involves following the movement of objects across consecutive

frames in a video. It is crucial for maintaining the identity of objects as they move,

allowing for analysis of their trajectories and interactions. Tracking algorithms use

methods such as correlation filters [100], Kalman filters [94], and more advanced tech-

niques such as Siamese networks [13] for tracking.

• Pose Estimation involves the task of determining the 3D positions and orientations

of objects or entities within a scene. This process is crucial to comprehend the spatial

relationships between objects and their relative poses. When it comes to human

interactions and activities, the scene is analyzed to estimate the posture of the body

and the positions of its joints.

• Spatial Relationships comprise understanding how objects are located in relation

to each other and their surroundings, in terms of distance, direction, orientation, and

proximity, and thus help in recognizing patterns and structures within a scene.

• Contextual Understanding involves considering the broader context of a scene to

interpret objects accurately, and so analyzing the relationships, interactions, and asso-

ciations between objects, as well as understanding how the scene’s overall environment

impacts the interpretation of individual elements.
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• Action Recognition considers the task of identifying and categorizing the actions

or activities taking place within a visual scene, often involving human or object move-

ments. It aims to understand the dynamic aspects of a scene by analyzing the changes

and interactions occurring over time. Widely adopted algorithms includes bidirec-

tional Long Short-Term Memory (Bi-LSTM), 3D CNN [63], 3D Residual Networks

(3D ResNet) [62], and Temporal Segment Networks (TSN) [163].

• Scene Understanding in 3D extends scene understanding into three dimensions

by incorporating depth information. This can be obtained from depth sensors such

as LiDAR or stereo cameras. It allows for a more accurate understanding of object

positions in 3D space and can help address challenges such as object occlusion.

In the context of scene understanding, these tasks often complement each other to

provide a comprehensive interpretation of a scene. Therefore, scene understanding plays a

pivotal role in enhancing the capabilities of autonomous robotic systems, enabling them to

make well-informed decisions and interact seamlessly with their surroundings. By compre-

hending the visual context of their environment, these robotic systems can analyze complex

scenes, identify objects, assess spatial relationships, and recognize dynamic actions. Addi-

tionally, scene understanding equips these systems with the ability to interact with objects

and humans intelligently, leading to safer and more efficient interactions–whether it is in in-

dustrial settings [45], agricultural operations [164], or healthcare [173]. In this dissertation,

we present scene understanding approaches to aid robotic systems in inferring appropri-

ate interactions within their surroundings, focusing on two principal applications: assistive

robotics and precision agriculture.
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Regarding the assistive robotics application, the approach encompasses object

detection and recognition, spatial relationships, and action recognition. We de-

velop a lightweight data-driven framework for video-based infant reaching action recogni-

tion to implement in closing action-perception loops of wearable robotic exoskeletons [84]

for upper extremity pediatric rehabilitation. Furthermore, we extended our approach to

address broader challenges and achieve more refined results. On the other hand, the preci-

sion agriculture-oriented approach involves object detection and recognition, spatial

relationships, and pose estimation in 3D. The contribution lies in the development

of an adaptive visual perception approach capable of accurately detecting and estimating

the poses of leaves on tree crops, with the specific goal of aiding robotic plant phenotyp-

ing endeavors. To validate the effectiveness of our approach, we integrate and evaluate an

actuation-perception framework utilizing two newly designed end-effectors, electrical- and

pneumatic-based, within indoor settings. Building upon the outcomes from the indoor ex-

periments, we further extend our experimentation to real-world field conditions, employing

the pneumatic-based end-effector.

1.1 Related Works

1.1.1 Scene Understanding for Assistive Robotics

Scene understanding empowers assistive robotic systems to interpret and interact

effectively with their environment. Through advanced computer vision techniques like ob-

ject recognition and activity inference, they can recognize objects, comprehend gestures,

and navigate complex spaces. Human action recognition stands as a crucial aspect of de-

4



veloping assistive robotics paradigm, enabling them to comprehend human activities and

tailor their responses accordingly.

State-of-the-art video-based human action recognition algorithms have been steadily

shifting from the use of Support Vector Machines or Hidden Markov models (e.g., [59,137])

to the use of deep learning networks, primarily due to the accessibility, adaptability, accu-

racy and decrease in time execution the latter can offer (e.g., [40, 49, 144,162]). One of the

first significant attempts [144] used two separated convolutional neural networks (CNNs)

trained to extract features from a sampled RGB video frame paired with the surrounding

stack of optical flow images. As optical flow is computationally expensive and has a bur-

densome optimization process, most follow-on works used a CNN to learn the optical flow

prediction [46,72], thus reducing the number of parameters as only one network is needed.

Other methods explored the advantages of LSTM structures [40] to incorporate motion by

updating the pooling of the features across time [35,53].

Despite some remarkable results achieved by RGB-video-based methods to date,

some key challenges remain. These include, for example, background clutter, illumina-

tion disparity, pose/viewpoint variation, to name a few. One way to improve recognition

performance under these challenges is via skeleton data representations that do not con-

tain color information. Early relevant works did not use information regarding internal

dependencies between body joints [50, 99, 158, 176]; more recent works apply graph convo-

lutional networks to extract features by building a skeleton graph composed of vertices and

edges to represent joints and links, respectively [151, 174, 175]. These approaches rely on

datasets that contain mostly motion actions performed by adults [23, 31, 58, 90, 142, 145].
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However, the transition to the realm of young children and infants introduces a distinct set

of challenges. Identifying human motor actions that emerge early in life (e.g., spontaneous

movements of arms and legs, kicking, crawling, etc.) is an emerging vision-based action

recognition research direction [24,42,122]. The ability to automate the process of detecting,

recognizing, and classifying actions performed by young children and infants from visual

data can prove useful in many pediatric applications. Examples include monitoring for

safety [57, 119, 150], studying infants’ interaction with caregivers [83], identifying markers

for diagnosis of neuromotor disorders [24, 42, 64, 146, 167], and closing action-perception

loops for smart environments and automated assistive devices [41, 85, 106, 154], as well as

autonomous wearable robots for pediatric rehabilitation [84] whereby vision-based action

recognition can help guide autonomous reasoning regarding the amount of passive/active

feedback to provide to the user.

The challenge is the inherent movement variability within and across young hu-

mans as a natural result of learning and growth [51]. Infants’ bodies have distinct propor-

tions and can attain distinct poses compared to those of adults [140]. For example, the

kinematic properties of infant reaching (the motor action of interest in this work) changes

over time as infants learn how to adapt to environmental, task, and biomechanical con-

straints [89]. In fact it may take years for children to achieve smooth and straight reaching

trajectories similar to those seen in adults [12, 136]. Therefore, existing skeletal models or

learning-based pose estimation methods often used in adult action recognition may not be

the best fit for pediatric action recognition [41,150].
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Still, an interesting shift toward pediatric rehabilitation paradigms that involve

assistive robots is observed. The NAOTherapist [124] allows for non-contact upper-limb

rehabilitation autonomously, by utilizing a social robot that performs a set of prescribed

arm-poses for a child to imitate. Movements here are captured by a Kinect depth camera,

stored as 3D skeletons and then compared with entries from a knowledge base. Other

applications use multiple cameras to alleviate issues such as occlusion that is more likely to

happen in infant rehabilitation sessions [41,85,122,154]. Nevertheless, the number and type

of infant motor actions that have been utilized in action recognition research still remains

limited. Under these circumstances, developing algorithms that accurately and reliably

recognize motor actions performed by infants is a challenging process.

1.1.2 Scene Understanding for Precision Agriculture

Precision agriculture refers to the application of advanced technologies to optimize,

customize farming practices, and enables growers to make informed decisions that enhance

resource efficiency, reduce waste, minimize environmental impact, and ultimately improve

crop yields and quality. It involves using data, information technology, and specialized tools

to make informed and precise decisions about farming practices.

In the realm of precision agriculture, scene understanding emerges as an impactful

tool that unlock insights from visual data in fields for various tasks. Tasks within pre-

cision agriculture can be categorized based on the level of physical interaction required

with the crops. For tasks like monitoring and inspection [20, 25, 116], or spraying [110],

the combination of a precise field map and accurate robot positioning proves sufficient.

These tasks rely on accurate data collection and application without the need for direct
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physical contact with the crops. In contrast, interactive tasks such as pruning [16,81,105],

harvesting [112, 171, 172], or sampling [2, 5, 19, 120] demand an additional layer of preci-

sion–specifically, an accurate pose estimation. This information is crucial to enable robots

to approach the crops effectively and retrieve samples from it successfully. There is a notable

emphasis on developing non-destructive techniques across the field of agriculture. These

methods prioritize obtaining valuable information without causing damage or altering the

integrity of the plant or tree. For instance, non-destructive techniques are increasingly em-

ployed for crop assessment, allowing researchers and growers to gather insights about plant

health, growth, and quality without harming the crops [61,96,132,165]. These methods span

from remote sensing and hyperspectral imaging to ultrasound and infrared thermography.

Consequently, there is a growing interest in developing semantic and instance segmentation

for agricultural applications.

Still, while remote sensing techniques provide valuable data on external features

and certain internal characteristics, they fall short in directly detecting intricate internal pro-

cesses. These traits include nutrient concentrations, metabolic activities, gene expressions,

cellular changes, and identifies hidden toxicities and deficiencies with symptoms that cannot

be observed solely through remote sensing. Moreover, remote sensing lacks the resolution

to capture microscopic structures, and genetic variations within plants. In contrast, physi-

cal sampling and follow-on analysis of plant specimens (e.g., leaves, shoots, etc.) can offer

reliable data regarding the internal state of the plant (e.g., leaf tissue analysis [98,135,177]).

The effectiveness of automating such physical sampling procedures relies heavily

on the visual perception system’s ability to provide precise and accurate information about
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the target crop and relevant environmental context [80]. Most approaches have focused on

fruit/vegetable targets by harnessing distinct colors and/or shapes [5,27,52,118,125]. Iden-

tifying a leaf and its stem on a tree is a more challenging problem with classical methods

since the process is more likely to be affected by occluded and overlapped leaves as com-

pared to segmenting fruits out of a canopy [5]. This presents similar yet unique challenges

compared to fruit (and broader canopy) identification.

1.2 Objectives & Contributions

1.2.1 Infant Action Recognition

Approaches tailored to and validated with adults might not be the most suitable

for implementation in the context of recognizing infant actions, owing to various factors.

These include differences related to body properties and kinematic patterns [15]. Further,

infants need exposure to complex (unconstrained) and variable environments to learn [86],

as well as immediate rewards and constant motivation to perform motor tasks in these

environments [44]. Consequently, training and assessment approaches should be applied in

such environmental contexts [93]. Our contributions are in line with this approach through

the analysis of infant reaching actions in unconstrained environments.

First, we develop, in two phases, a new annotated dataset that includes diverse

reaches performed while in a sitting posture by different infants in unconstrained environ-

ments (e.g., in home settings). Next, we introduce our approach, BabyNet, that uses the

spatial and temporal connection of annotated bounding boxes to interpret onset and off-

set of reaching, and to detect a complete reaching motion. We evaluate the efficiency of
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our proposed approach and compare its performance against other learning-based network

structures in terms of capability of capturing temporal inter-dependencies and accuracy of

detection of reaching onset and offset. Building upon the obtained outcomes, we extended

the structure to enhance the action recognition by including bimanual reaching detection

and reducing false detection, resulting in the development of E-BabyNet. The structure con-

sists of two main layers based on two LSTM and a Bidirectional LSTM (BiLSTM) model,

respectively. The first layer provides a pre-evaluation of the reaching action for each hand

by providing onset and offset keyframes. Then, the biLSTM model merges the previous

outputs to deliver a final outcome of the reaching actions detection for each frame includ-

ing the reaching hand. We evaluate our approach against four other lightweight structures

using a fully annotated dataset comprising 375 infant reaching actions performed in sitting

positions by different subjects [38].

1.2.2 Object Detection & Pose Estimation for Robotic Plant Phenotyping

Physical sampling of leaf specimens is a critical component to help assess the

plant’s overall health and attributes that remote sensing might omit. The contribution

aims to enable spatio-temporally dense sampling of leaves to support plant phenotyping

research using mobile agricultural robots. For this purpose, we introduce an approach for

detecting and localizing candidate leaves using 3D point cloud data from a depth camera.

The detection and pose estimation are validated through indoor experiments with a real

avocado tree. Subsequently, the visual perception approach is integrated into two separate

end-effectors demonstrating promising outcomes in indoor settings. The results demonstrate

that the pneumatic-based end-effector can handle more clustered areas than electrical-based
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one. The latter encounter challenges in producing consistent results. Following this, we

expand our experimentation to encompass outdoor field conditions across diverse scenarios

employing the pneumatic-based end-effector. The assessment encompass both static random

sampling and planned sampling tasks The overall experimental testing demonstrates that

our proposed approach can enable our mobile manipulator and custom end-effector systems

to successfully detect, localize, and cut leaves. Moreover, it demonstrates the capability to

adapt to the unique designs provided by each respective end-effector.

1.3 Dissertation Layout

The remainder of this dissertation is as follows: Chapter 2 focuses on infant ac-

tion recognition within the field of assistive robotics. In this context, two novel action

recognition approaches—namely, BabyNet and E-BabyNet—are introduced along with a

newly developed dataset. Chapter 3 introduces an object detection and pose esti-

mation approach for plant phenotyping. The visual perception strategy is constructed

and integrated with two newly designed end-effectors. Lastly, Chapter 4 summarizes the

dissertation while outlining forthcoming potential works.
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Chapter 2

Infant Reaching Action

Recognition in The Wild for

Assistive Robotics

In this chapter, we present two novel approaches for infant action recognition with

the objective of providing a light-weight (based on the number of trainable parameters)

structure of comparable efficiency with (significantly) larger ones. For this purpose, we

introduce BabyNet, a new network structure built upon a long short-term memory (LSTM)

module to model different stages of reaching action through a spatial-temporal interpreta-

tion. The results shows that the structure can challenge the performance of significantly

larger structures by 66.27% average testing accuracy and is able to detect reaching action

with a precision and recall scores of 0.66 and 0.49, respectively. Despite the performance,

BabyNet is challenged by the lack of viewpoint of the training dataset and the transition
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between the reaching and no reaching stages. In addition, if a reaching action is confirmed,

the reaching hand is not specified which can be essential information for assessing the infant

motion and/or closing the action-perception loop in an upper extremity pediatric wearable

robotic device.

With the aim of addressing these limitations, we propose E-BabyNet, a new two-

layered learning structure able to assess separately right-handed and left-handed reaching

action, as well as to handle bimanual reaching. In addition, we integrate a Bidirectional

LSTM (biLSTM) structure, which allows for better identification of the transition between

the no-reaching and the reaching phases. Results illustrate the effectiveness of our approach

and ability to provide reliable reaching action detection and offer onset and offset keyframes

with a precision of average of one frame. Moreover, the biLSTM layer handles the transition

between reaching actions and reduced false detections.

To assess our approaches, a novel dataset focusing on infant reaching was devel-

oped in two phases. During theBabyNet ’s development phase, a collection of 193 reaching

instances executed by 21 infants was gathered from 20 videos. In order to enhance the

generalizability of reaching actions, we expanded the dataset to encompass 375 instances

of reaching, involving 40 different subjects, thereby enabling the testing of our enhanced

structure E-BabyNet. Annotations and bounding boxes that describe reaching properties

(e.g., reaching onset/offset, object touched, etc.) are also included.

The chapter is structured as follows: Section 2.1 discusses related works, while

Section 2.2 presents the developed dataset. In Section 2.3, we delve into the details of

BabyNet, including its structure, implementation, and the results and discussion. Next,
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Section 2.4 covers E-BabyNet, following the same structure as for BabyNet. Lastly, we

conclude the chapter with Section 2.5.

2.1 Related Works

The ability to employ machine vision and artificial intelligence to identify, com-

prehend and anticipate various human activities is critical in order to develop effective and

interactive human-computer interfaces [166], and healthcare systems [8, 36, 54]. Such an

ability falls within the realm of developing vision-based human action recognition algo-

rithms (e.g., [23,31,58,90,142,145,149,178]), often using different sensing modalities. Most

existing works have considered the development of action recognition algorithms based on

datasets that contain (young) adult motions (e.g., [30, 75, 99, 159]) considering the large

possible actions and application domains afforded by such populations.

We focus on the emerging research thrust of infant action recognition, mainly

toward pediatric applications. Some examples include identification of early signs of neu-

romotor disorders [3, 134] and assessment of the performance of behavioral and physical

therapy through smart environments and assistive wearable robotic devices [85, 122]. Un-

like datasets containing (young) adult activity, datasets containing infant motions are sparse

due to regulations protecting children’s privacy being stricter as infants have no control over

the release of the data, which in turn has hindered the development of action recognition

methods for this population.

There has been a keen effort in the research community to address the current

shortage of infant activity datasets [22, 37, 67, 71, 122]. Such datasets contain information
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retrieved as RGB images, depth images, or 2D/3D skeletons through one or multiple cam-

eras, and were collected following either passive or interactive paradigms to elicit infant

motion. Motivated by an observed decrease in the accuracy of pose estimation approaches

trained on adult data, Sciortino et al. [141] developed a dataset collected using publicly

available videos of 104 children in natural environments and manually annotated 22 body

keypoints. Another significant dataset is the Moving INfants In RGB-D (MINI-RGBD)

based on the Skinned Multi-Infant Linear body model (SMIL) [67]. The authors used real-

istic shapes and textures to produce RGB and depth images for 2D and 3D joint positions by

mapping real infants’ movements to the SMIL model. Recently, the InfAct (Infant Action)

dataset was introduced in [71]. The dataset contains 200 video clips of infant activities and

400 images of infant postures. It also includes structured action and transition segmentation

labels.

The specific action of interest in this work is reaching. Research has shown that

main developmental milestones are gradually achieved during the first two years of an

infant’s life [4, 88]. Reaching is among the most significant milestones since the ability of

infants to explore and interact with their environment directly impacts their motor, social,

perceptual, and cognitive development [4,14,102,103,169]. In this context, automating the

identification of such motion is essential and requires approaches able to accurately and

consistently recognize the infant’s movements. As it pertains to reaching tasks, specifically,

datasets from (young) adults are inappropriate to be used for infant action recognition

algorithm development. This is due to the intricacy and the variation of an infant’s reaching

motion which evolves uniquely for each infant and could be shaped by the location, the size,
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and the shape of the object [12,86,87,97]. Besides, the straightness and smoothness of infant

reaching dramatically increase throughout the first two years whilst speed and jerk decrease;

these can server as key indicators to determine attainment of full level of control [44,152,160].

However, experienced reachers tend to have much less variable and consistent reaching

actions, thereby fundamentally differing from reaching actions of developing humans [12].

This work has a twofold aim. First, to develop a new dataset focusing on infant

reaching. Second, to develop a machine learning algorithm for infant reaching action recog-

nition. The dataset is constructed based on diverse online-shared videos that demonstrate

reaching actions of both typically-developing infants as well as infants with arm mobil-

ity challenges (all between 6–12 months of age). Annotations and bounding boxes that

describe reaching properties (e.g., reaching onset/offset, object touched, etc.) are also in-

cluded. Next, two new network structures aimed at infant reaching action recognition were

developed. The first network, BabyNet, is built upon a long short-term memory (LSTM)

module to model different stages of reaching action through a spatial-temporal interpre-

tation. Our motivation is to provide a light-weight (based on the number of trainable

parameters) structure of comparable efficiency with larger ones. The second structure,

E-BabyNet, is a two-layered learning structure able to assess separately right-handed and

left-handed reaching action, while effectively handling bimanual reaching which was difficult

to detect by the previous network.
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2.2 Dataset of Infant Action Recognition

The dataset is based on videos collected from the YouTubeTM online video-sharing

platform 1 using search terms such as ‘infant’, ‘reaching’, ‘grabbing’, and ‘sitting’. Videos

were included in the dataset if they displayed awake and behaving infants: (1) up to 12

months of age, (2) placed in a sitting position, (3) reaching for objects (regardless of shape

and/or position), (4) performing at least one reaching action during which the camera

remained stationary or moved slightly, and (5) performing at least one reaching action

during which both hand and object were visible. Both typically-developing infants and

infants with arm mobility challenges were considered. The majority of videos were recorded

in natural (unconstrained) environments (e.g., family’s home, clinic). The clothes of infants,

presented objects, and the background varied from video to video. Figure 2.1 shows some

illustrative samples.

Figure 2.1: Samples frames from the infant reaching dataset employed in this work.

1Video handling procedures were according to YouTube’s statement on fair use of videos for research

purposes.
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To obtain the reaches, we performed a manual annotation process. For this reason,

we defined the reaching action by two phases: Onset (RN) and Offset (RF). The onset is

defined as the first frame in which movement of the infant’s hand (left, right, or both)

toward an object presented to the infant is initiated. Associated with RN is the Onset

Keyframe (KRN ). Similarly, the offset is defined as the first frame in which the infant’s

hand(s) make contact with the object; we also define the Offset Keyframe (KRF ). Examples

of onset and offset keyframes are shown in Figure 2.2. Note that in our definition the offset

can be triggered either by the full hand grasping the object or as an intentional contact by

parts of the hand such as the fingers or the palm.

Figure 2.2: Samples annotated Reaching Onset (left panels) and Offset (right panels) frames.
Panels (a)-(b): left-handed reach, panels (c)-(d): right-handed reach, Panels (e)-(f): bimanual
reach.
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Identification and collection of appropriate videos took place in two phases. In the

first phase, a total of 193 reaches performed by 21 distinct subjects were collected through

20 videos (Table 2.1). Out of the 21 subjects, five subjects had a medical diagnosis (four

with Down syndrome and one with congenital anomaly; information was provided in the

video description). In most cases, the video description was detailing the age and gender of

the subject; in a few exceptions that this information was omitted (entries marked with an

* in the tables), our research team empirically estimated these characteristics. 607 images

were randomly sampled out of total of 2,984 frames and annotated. For each frame, we

created bounding boxes of the infant, their left hand, their right hand, and the objects

involved in the reaching action. Annotation of the selected 607 frames resulted in a total

of 3,194 bounding boxes.

During the second phase, we expanded the dataset, acquiring a total of 375 reach-

ing instances performed by 40 distinct infants, all within the age range of up to 12 months.

(see Table 2.2). Among all the subjects, seven were reported in the videos’ description as

neuro-divergent with five diagnosed with Down syndrome, one with congenital anomaly,

and one with autism spectrum disorder.

The distributions of reaching actions are shown in Figure 2.3 and Figure 2.5. For

the left hand, 59.24% of the reaching actions are within a range of 3 to 15 frames. Note

that 34.41% of the left-hand reaches last only between 3 to 7 frames. Longer reaches for the

left hand case are considerably fewer. Indeed, reaches lasting between 31 to 48 frames and

49 to 63 frames comprise only 6.37% and 1.27% of the total number of left-hand reaches,

respectively. Similarly, the right-handed reaching actions have about the same percentage

19



Table 2.1: Subjects and Annotated Reaches per Subject During BabyNet ’s Development

Subject Age Gender # Reaches Total
ID [months] [M / F] LH RH Total Frames

T01 6-8 F 5 3 8 205

T02 8-10 M 8 4 12 217

T03 11-12∗ M 2 8 10 55

T04 6-12 F 3 5 8 222

T05 10-12 M∗ 3 1 4 94

T06 10-12 M∗ 0 2 2 63

T07 6-7∗ M 2 3 5 154

T08 <12∗ M 4 5 9 285

T09 6 F 3 6 9 165

T10 6 F 3 3 6 57

T11 6-8 M 2 1 3 41

T12 8 F 16 33 49 475

T13 10 F 5 9 14 84

T14 6 F 1 1 2 55

T15 9 M 20 20 40 497

T16 7 F 2 1 3 60

D01 6-9 F 1 - 1 23

D02 10 M - 1 1 31

D03 <12∗ M 4 1 5 57

D04 9-12 M 1 - 1 12

D05 <12∗ M 1 - 1 7

Total – – 86 107 193 2843

of actions in the range of 3 to 15 frames as in the left hand case. Further, the number

of left- and right-hand reaches is roughly the same for actions within the range of 3 to 7

frames, and for actions within the range of 8 to 15 frames. Actions with a length exceeding

30 frames represent up to 10% of the total number of right-hand reaches.
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Figure 2.3: Distribution of duration of reaching actions performed by left and right hand.

Figure 2.4: Distribution of reaching actions duration performed by neurotypical and neurodivergent
infants.
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Figure 2.4 depicts the reaches in terms of a neurotypical/neurodivergent subject

split. It is worth noting that there was a total of 26 reaches from neurodivergent subjects,

and out of these, 63.64% had a duration in the range of 3 to 7 frames. In contrast, 68.66%

of the reaches performed by neurotypical subjects lasted for 8 to 15 frames.

Besides reaching annotations, we also developed bounding box annotations for

every image extracted from the reaching actions. We manually annotated the left hand

(LH) and the right hand (RH) of the subject as well as the presented objects (OBJ) for

Figure 2.5: Comparative number of reaches between left and right hands.
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each image throughout the duration of every reaching action. A total of 5865 images were

annotated resulting in 16337 bounding boxes. These were employed to train, test, and

assess the efficacy of our proposed action recognition approach as discussed next. In order

to extrapolate the reaching action using the annotated dataset, we extract the distance

between the center of the LH and RH bounding boxes with the object (OBJ) to be reached,

and compute their intersection of union (IOU).

2.3 Approach I: BabyNet

2.3.1 Proposed Method

Let B = {bFi } and H = {hFL , hFR} denote the objects and the left and right hand

detected in a sequence of frames F , respectively. Each detection is associated with a

bounding box with its center defined by x and y coordinates (in pixels); Cbi , ChL
and

ChR
denote the object, the left hand and the right hand bounding boxes, respectively.

Let also Dbi := {Hbi ,Wbi} denote the bounding box dimensions for objects. Likewise, let

DhL
:= {HhL

,WhL
} and DhR

:= {HhR
,WhR

} denote the bounding box dimensions for the

left hand and for right hand, respectively. These are defined at each frame Fj . At ini-

tialization, both keyframes, KRN and KRF , are set as the first frame of F . The obtained

bounding box detections are used to correlate spatio-temporal patterns between H and O,

and undergo two separate processes for the Reaching Onset phase (RN) and the Reaching

Offset phase (RF) as shown in Figure 2.6
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2.3.1.1 The Reaching Onset Phase

First, we compute the distance dij between each hand {hFL , hFR} and the object bFi

in the current frame Fj . Next, we evaluate dij − dij−1 as follows: if dij − dij−1 < 0, the onset

is confirmed and FRN is kept as the onset keyframe KRN ; however, if dij − dij−1 ≥ 0 and

continues increasing for four consecutive frames, the current onset is invalidated and the

Figure 2.6: Qualitative illustration of our approach through an actual reaching action. (a) Onset:
the movement of the right hand (cyan) is initiated to reach the object (magenta). During the (b)-(d)
reach and (e) offset: the distance between the right hand and the object (dark blue) decreases as the
intersection of union (orange) increases until the IOU value stabilizes (which indicates a successful
reaching action). The distance between the left hand (red) and the object (magenta) does not
decrease significantly and hence the respective IOU remains null which confirms that no reaching
action is performed by the left hand.
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onset keyframe KRN is updated as Fj . This is a practical way we can use to help prevent

false detections considering the fact that the shortest reaching motion lasts for three frames.

2.3.1.2 The Reaching Offset Phase

To confirm the contact of the hand with the object, the Intersection of Union

(IOU) is estimated between each hand {hFL , hFR} and the object bFi . The computed IOU is

compared against a threshold value determined (a hyperparameter of our approach). This

threshold can be estimated empirically via the data analysis process. The keyframe KRF is

updated as the current frame Fj as long as the IOU is less than the threshold and, thus no

offset is confirmed. Otherwise, if contact is detected, the keyframe KRF is definitively set

as the current frame Fj , and a new reaching action is initiated.

2.3.1.3 Core Structure of BabyNet

The proposed BabyNet uses the LSTM structure to learn the relation between

the bounding boxes through the input consisting of the distances and intersection of union

(IOU). The output is the scores for onset (RN), offset (RF), reach (R) and no reach (NoR)

are used to update identified keyframes. The reach (R) is the label used for all frames

between the onset RN and offset RF frames. Similarly, the no reach (NoR) is the label for

all frames before the onset and after the offset. The flow chart of our proposed algorithm

for infant reaching action recognition BabyNet is depicted in Figure 2.7.
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Figure 2.7: The underlying process followed by the BabyNet structure.

2.3.2 Implementation & Experiments

We considered four baseline network structures to serve as the basis to evaluate

our proposed structure’s performance.

• Multi-Layer Perceptron (MLP). We trained a four-layer network with two inputs

and four outputs.

• ResNet. Starting with a pretrained ResNet-50 model [66], the last Bottleneck block

in the fourth layer of the network was retrained along with the fully connected layer

in an effort to examine if overfitting can be avoided.

• ResNet+LSTM. An LSTM block was integrated after the average pooling layer of

the final residual block of the aforementioned ResNet-50 model in an effort to examine

if temporal correlation features of reaching actions can be captured.

• LSTM with Optflow (O-LSTM). A single-layer LSTM with 50% dropout was

trained to leverage the information provided by the optical flow images.

All models except for O-LSTM use RGB images of size 224x224 directly as inputs

and were evaluated on our dataset and were trained with learning rate 0.001 using Adam

optimizer and cross entropy loss. Both ResNet and ResNet+LSTM model were evaluated
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with the data augmentation (D.A.) by altering randomly the images through techniques

including shift, scale and rotation. The O-LSTM uses optical flow images obtained with

the Farneback method [47] and trained with a learning rate of 0.0001 using Adam optimizer

and cross entropy loss and inputs of a flattened image of size 1x12,288 (from a reduced-size

64x64 RGB source image) to reduce the training time.

BabyNet has two inputs and four outputs (RN, RF, NoR, R). Preliminary testing

showed that selecting two inputs can improve temporal correlation predictions without

overfitting. BabyNet was trained with learning rate 0.001 using Adam optimizer and cross

entropy loss. In initial testing we used a small dataset of 63 reaches with a 60% training,

15% validation, and 25% testing split. While BabyNet (and MLP) can perform well with

small datasets (as desired), larger structures (ResNet variants and O-LSTM) were found to

overfit the dataset. To resolve this issue, we tested larger networks with a portion of the

dataset comprising 193 reaches while testing BabyNet and MLP at 63 reaches.

2.3.3 Experimental Results

Comparison results, including classification accuracy (range: [0− 100%]) and pre-

cision/recall scores (range: [0 − 1]), are shown in Table 2.3. Including the precision/recall

scores of both no reaches (NoR) and reaches (R) serves a dual purpose: (1) to examine the

trade-off between different methods; and (2) to help attain a more clear distinction in terms

of the structures’ capability to correctly differentiate between no reaches and reaches.

We first compared the performance of the family of ResNet and ResNet+LSTM

structures. The ResNet structure with data augmentation achieves the best performance

with an average testing accuracy of 58.16%. With reference to Table 2.3, we can observe that
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the models with data augmentation give nearly the same results as with those without data

augmentation (cf. 58.16% to 53.43% in ResNet and 54.42% to 54.21% in ResNet+LSTM).

To properly gauge the effect of data augmentation on accuracy, we compared the trade-off

between precision and recall of the two networks. The ResNet model with data augmen-

tation has higher precision along with the ResNet+LSTM model with data augmentation.

However, the recall score is slightly different as the ResNet structure with data augmentation

achieved 0.62 for no reaches (NoR) and 0.52 for reaches (R) which indicates that the number

of false negatives is lower for the no reaches (NoR) cases. In contrast, the ResNet+LSTM

with data augmentation had a recall of 0.51 for no reaches and 0.60 for reaches, thus leading

to a lower number of false negatives for the case of reaches (Table 2.3).

Table 2.3: Comparative Results of the Performance of the Network Structures Considered

Model Avg. Training

Accuracy [%]

Avg. Validation

Accuracy [%]

Avg. Testing

Accuracy [%]

Precision

NoR / R

Recall

NoR / R

ResNet 98.30 50.61 53.43 0.65 / 0.40 0.55 / 0.51

ResNet+DA 94.59 53.65 58.16 0.68 / 0.45 0.62 / 0.52

ResNet+LSTM 98.61 50.59 54.21 0.65 / 0.41 0.57 / 0.49

ResNet+LSTM+DA 94.31 54.53 54.42 0.68 / 0.42 0.51 / 0.60

O-LSTM 75.44 81.16 63.71 0.59 / 0.82 0.92 / 0.35

MLP 47.66 46.13 51.8 0.55 / 0.67 0.78 / 0.42

BabyNet (Ours) 44.45 38.93 66.27 0.57 / 0.66 0.72 / 0.49
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Results demonstrate that the proposed BabyNet outperforms all structures in

terms of average testing accuracy while using the second smallest number of parameters and

the small dataset of 63 reaches and in spite of featuring lower average training/validation

accuracy. The observed lower validation accuracy can be explained by the fact that more

challenging reaches were included in the validation set which, nevertheless, did not impact

the ability of BabyNet to learn pertinent features. The observed lower training accuracy can

be associated with the reduced training dataset size, whereby training accuracy would keep

improving with more data. Still, BabyNet can perform well (in terms of testing accuracy)

despite sub-optimal training.

Table 2.4: Comparative of the Trainable & Total Parameters of the Network Structures Considered

Model Parameters (Trainable)/(Total)

ResNet 4,468,739 / 23,514,179

ResNet+Data Augm. 4,468,739 / 23,514,179

ResNet+LSTM 9,186,819 / 28,232,259

ResNet+LSTM+Data Augm. 9,186,819 / 28,232,259

O-LSTM 117,460,994 / 117,460,994

MLP 144 / 144

BabyNet (Ours) 1,204 / 1,204

The MLP structure is the smallest one (also uses 63 reaches), but it has the

worst average testing accuracy (see Table 2.3). Furthermore, both networks predicted

the same number of frames incorrectly during the reach phase but the MLP predicted 20
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frames incorrectly during the no reach action whereas BabyNet only predicted six frames

incorrectly. In term of keyframes, BabyNet only had a delay of one frame while predicting

the reach whilst the MLP had a delay of four frames. In contrast, the MLP was not able to

learn the motion of the reaching action, and had difficulties to discern the transition from

a reach to a no reach.

2.3.4 Discussion

Evaluation results demonstrated that our proposed BabyNet is small yet powerful,

and can challenge the performance of significantly larger structures by achieving 66.27%

average testing accuracy (the highest one) on our dataset (See Table 2.4. The family of

Resnet-based structures, despite their solid performance during training and validation,

were found to provide results with increased false positives rates. On the other hand, the

O-LSTM (that has the second best average testing accuracy and comparable to BabyNet ’s)

could not balance between no reaches (NoR) and reaches (R)—recall rates of 0.92 and 0.35,

respectively. Yet, it remains an approach worth of further investigation in future work due

to the ability of optical flow images to better differentiate subtle motion patterns compared

to RGB images (see Figure 2.8).

Compared to the MLP (which is of comparable size to BabyNet), our BabyNet

performed much better (approximately 27% improved performance) with almost the same

precision/recall scores. However, it provides onset and offset keyframes at precision of one

frame while the MLP had a delay of 4 frames.

31



Figure 2.8: RGB (top panels) and equivalent optical flow images (bottom panels) spaced two
frames apart (from left to right). Optical flow images can capture more clearly subtle changes, but
at a (significant) pre-processing computational cost compared to plain RGB image inputs.

As this stage, BabyNet can be challenged by the lack of viewpoint variation in the

dataset. Thus, extending the dataset introduced herein could generalize more challenging

reaching action. The current framework lacks the capability to detect the reaching hand,

an important information if the approach is to be integrated as an assessment tool or to

facilitate the closure of the action-perception loop in forthcoming wearable devices. In

this context, we introduce E-BabyNet as an extended framework building upon our initial

reaching action recognition approach, BabyNet.

2.4 Approach II: E-BabyNet

2.4.1 Proposed Method

The proposed learning structure comprises two layers. The first layer is based on

two LSTM models and aims at assimilating the correspondence between the hands’ and
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the object’s bounding boxes using the distances and IOU. Each model assesses the reaching

action for each hand by providing an output constituted of four scores: Onset (RN), Offset

(RF), Reach (R), and No Reach (NoR) as described in Section 2.3.1. All frames that are

between the Onset and the Offset are marked as Reach (R), whereas the frames before the

Onset and after the offset are labeled as No Reach (NoR).

The two models are merged in the second layer through a Bidirectional LSTM

(biLSTM). The latter processes the input in a forward and a backward direction. Thus,

it considers past and future information critical when transitioning from a Reach (R) to

a No Reach (NoR). The final output includes the four states RN, RF, R, and NoR along

with Left (Lh) and Right (Rh) corresponding to the reaching hand. For example, a reach

performed by a right hand will produce an output [Rh ↑, Lh ↓, RN ↑, RF ↓, R ↑, NoR ↓]

during the onset phase and [Rh ↑, Lh ↓, RN ↓, RF ↑, R ↑, NoR ↓] during the offset phase,

where the ↑ / ↓ arrows denote comparatively increased/decreased values.

Figure 2.9: Flowchart of our approach E-BabyNet.
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2.4.2 Implementation & Experiments

To evaluate our approach we considered a split of the dataset as follows: 70%

training, 15% validation, and 15% testing using 266 reaches out of the total of 375. We

also considered a final assessment using the remaining 109 reaches. All training, validation,

and testing were performed on a workstation featuring an Intel Core i7 Processor (16 x

2.30GHz) and 16 GB DDR4 RAM, and an NVIDIA GeForce RTX 3050 GPU.

Based on previous results [37] that demonstrated the efficacy of comparatively

smaller networks, the baselines in this work include only lightweight structures. These are

• Multi-Layer Perceptron (MLP),

• Gated Recurrent Unit (GRU),

• Bidirectional LSTM (BiLSTM), and

• BabyNet.

For each model, except for the E-BabyNet, the two inputs consist of the distances

and the IOU of the detected hands’ and objects’ bounding boxes while the outputs are the

scores (RN, RF, R, NoR) and the final keyframes KRN and KRF . As for the E-BabyNet,

the inputs are processed separately for each hand (LH, RH) as shown in Figure 2.9 thereby

also providing separate keyframes KRN and KRF . The final output constitutes of the scores

(Rh, Lh, RN, RF, R, NoR).
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2.4.3 Experimental Results

We present our experimental results during two phases: first, the implementation

phase which includes a comparison of performance of the baselines structures with our

approach E-BabyNet and a study of the effect of hyperparameters on the proposed approach,

and next the evaluation phase of our method alone. In the implementation phase, we

provide classification accuracy for training, validation and testing for each tested structure.

In both phases, we evaluated the precision, recall and area under the receiver operating

characteristic (ROC) curve (AUC) to gauge the performance of our approach. All networks

were trained with learning rate 0.001 using Adam optimizer and cross-entropy loss with 30

hidden layers.

2.4.3.1 Implementation Phase

Comparison Against Baselines: Table 2.5 summarizes our findings for the first study

that compares our method’s performance against baselines. We observe that the MLP, GRU,

BabyNet and BiLSTM baseline structures yielded the same performance with a significant

difference in average accuracy for the MLP and a slightly lower recall score. With a testing

accuracy of 60.3%, the recall scores were 0.61 for the MLP and nearly 0.70 for the rest of the

structures. In contrast, our E-BabyNet offered high performance with a testing accuracy

of 95.5% and recall and precision scores up to 0.96. The AUC confirms these findings as

E-BabyNet has a score of 0.97.

Despite the similar performance in terms of precision and recall, predictions of

keyframes were found to be quite distinct for the MLP compared to the other structures.
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For all the correct reaching actions, the MLP had a difference within a range of five to eight

frames in its keyframes. Moreover, it was unsuccessful at detecting comparatively shorter

reaches (range of 3 to 7) compared to the three other baseline structures. E-BabyNet had

a delay in a range of one to four frames but was able to yield fewer false positives.

Table 2.5: Performance of the E-BabyNet and Comparative Results Against Baselines

Model Parameters Avg. Training

Acc. [%]

Avg. Validation

Acc. [%]

Avg. Testing

Acc. [%]

Precision Recall AUC

MLP 183 64.7 59.1 60.3 0.66 0.61 0.80

GRU 3153 72.6 72.3 85.6 0.68 0.70 0.82

BiLSTM 8103 76.3 77.7 85.5 0.71 0.69 0.81

BabyNet 3960 71.8 72.1 89.5 0.70 0.69 0.82

E-BabyNet 8249 95.4 97 95.5 0.96 0.97 0.97

Table 2.6: Hyperparameters Effect on the Performance of the E-BabyNet

Batch

Batch Hidden

Layer

Avg. Training

Acc. [%]

Avg. Validation

Acc. [%]

Avg. Testing

Acc. [%]

Precision Recall AUC

16 30 89.4 83.7 94.7 0.82 0.82 0.87

32 30 73.7 74.9 95.2 0.88 0.95 0.96

64 30 96.2 97.5 97.3 0.98 0.97 0.98

full 30 95.4 97 95.5 0.96 0.97 0.97

Hidden Layer

Batch Hidden

Layer

Avg. Training

Acc. [%]

Avg. Validation

Acc. [%]

Avg. Testing

Acc. [%]

Precision Recall AUC

full 15 61.5 61.0 57.6 0.82 0.82 0.87

full 20 72.6 72.3 85.6 0.68 0.70 0.82

full 30 95.4 97 95.5 0.96 0.97 0.97

full 100 99.9 100 100 1.0 1.0 1.0
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Effect of Hyperparameters in E-BabyNet: Table 2.6 shows the results obtained dur-

ing assessment of the effect that various key hyperparameters have on the performance of

E-BabyNet. The key hyperparameters study includes varying hidden layer and batch val-

ues. During batch size evaluation, the structure maintained a good performance with lower

accuracy and recall of 0.82. The full and 64 batch sizes performed best with high recall

and precision scores; however, the full batch size needed over eight times less time to train,

providing a better trade-off between performance and time execution. We observed that

the hidden layer had an effect on the performance since the structure was overfitting with

a hidden layer of 100 after 12 epochs. Based on these results, we infer that the structure

with 30 hidden layers and full batch size is the most suitable for our application.

2.4.3.2 Evaluation Phase

We evaluated the performance of the E-BabyNet on a previously unseen set of

109 reaches. In this study, the first layer models for the left hand and the right hand were

evaluated independently on the previously unseen dataset; the latter consists of 58.72%

reaching actions lasting between 3 to 15 frames and 35.78% lasting between 16 to 30 frames.

Results are shown in Table 2.7. The precision and recall score were at 0.73 and

0.82, respectively. The reported keyframes had an average precision of three frames. The

left hand model affected the performance of the overall structure with precision 0.69 and

recall 0.89. We observed that 72% and 79% of reaching actions lasting between 3 to 7 and 8

to 15 frames were correctly recognized, respectively. In the case of challenging or confusing

cases, the E-BabyNet is more prone to predict a false negative than a false positive. Lastly,
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out of the six reaching actions with frames number greater than 31, four were correctly

detected with a precision of four frames.

Table 2.7: Performance of the E-BabyNet During Evaluation Phase

Model Precision Recall AUC

Left 0.69 0.89 0.86

Right 0.75 0.91 0.92

E-BabyNet 0.73 0.82 0.85

2.4.4 Discussion

Based on the obtained results we conclude that the E-BabyNet can outperform

all baseline structures. Our structure also offered high performance in the final evaluation

phase. The integration of the second layer, consisting of the biLSTM, is a key factor leading

to high performance. Discontinued reaching actions were predicted regardless of the number

of frames with partial information, e.g., the hands could be obstructed by the infant’s body

or another object in the scene during the reaching actions (Figure 2.10). Predictions of

keyframes were also highly accurate, with some delays observed only in reaching actions

that also included a final grasp of the object.

Results also suggest that the baseline structures provided low scores for precision

which can lead to high false positives. Considering the purpose of the approach is to be

implemented as a tool for the assessment of infants’ actions, it is critical to prevent false

positives to avoid inaccurate decision making mainly for pediatric applications. To this

end, E-BabyNet is able to provide reliable action recognition, and when uncertainty is too

high, it will render a false negative detection. Furthermore, while the baseline models

underperformed in the case of short reaching actions, the E-BabyNet can recognize short
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reaching actions as well as long ones. These findings demonstrate the efficiency of our

approach and its ability to serve as an infant reaching action recognition tool.

Figure 2.10: Examples of occlusion of the infant’s hand during reaching actions. The top panels
(a, b, and c) show the object obstructed by the infant’s hand. The bottom panels (d, e, and f) show
a hand obstructed by an object.

Figure 2.11: A reaching action with overlapping hand (orange) and object (cyan). (a) Onset
phase, (b)-(d) during reaching action, and (e) Offset phase.

Despite these positive findings, the evaluation phase highlighted lingering chal-

lenges that can be further addressed. The front view reaching actions were the most chal-

lenging for the E-BabyNet as the bounding boxes of the hand and the object overlap at

an early stage as shown in Figure 2.11. This effect was noticeable on the low score of the

left model since left reaching actions were largely captured from the front and rear cameras

view. In this case, the IOU is set at a high value during the onset phase and thus infers

either a shorter reach or a no reach. As previously noted, the reaching action trajectories
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are not straight and smooth until a particular stage of the infant’s life, which can lead to

cases where the distance between the hand and the object increases significantly throughout

the reach action. This impacts the detection of the reaching if it occurs for more than three

frames. Figure 2.12 illustrates two such sample trajectories. We also observed that several

grasping actions were reported by the network as featuring a reduced number of frames

compared to the correct one, owing to the fact that the infants’ hand contacted the target

object first prior to grasping it. This can be associated to the fact that our dataset includes

training offsets with both touching and grasping which can lead to a few frames difference

in the offset although the detection remains correct.

Figure 2.12: Examples of reaching action trajectories; top panels: 6 months old infant, and bottom
panels: 7 months old infant. Panels (a) and (c) correspond to onset phases, while panels (b) and
(d) show frames at the offset phase along with the complete trajectories followed by the hand.

2.5 Conclusions

In this chapter, we presented two novel light-weight networks called BabyNet and

E-BabyNet aimed at infant reaching action recognition. BabyNet was tested using a newly
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developed dataset containing 193 annotated reaches collected through 20 videos (available

on the web via video-sharing platforms) from 21 different infants in this phase. The structure

was found able to model short-range and long-range motion correlation of different key

phases of a reaching action: its onset and offset. Overall, the performance provides a more

accurate prediction compared to the one obtained from smaller-sized structures and is able

to be competitive with larger structures as shown in Table 2.3. Additionally, BabyNet

employs only a fragment of parameters to achieve these results as shown in Table 2.4.

Still, two key factors limiting the performance of our method include a lack of

viewpoint variation in the dataset and the method’s reliance on the detector network’s

effectiveness. Regarding the latter, missing detection of the hands and/or the object could

compromise the whole reaching action recognition. In addition, BabyNet can indicate that a

reaching is occurring without specifying the reaching hand which could be a key information

for closing the action-perception loop in an upper extremity pediatric wearable robotic

device. To address those limitations, we extended the structure to E-BabyNet, a two-

layered learning structure able to assess separately right-handed and left-handed reaching

action as well as to handle bimanual reaching which was previously difficult to detect. In

addition, we integrated a Bidirectional LSTM (biLSTM) structure, which allows for better

identification of the transition between the no-reaching and the reaching phases. Further,

we augmented the reaching dataset to include more examples featuring bimanual reaching

and viewpoint variations. The final dataset is constituted of 375 reaches performed by 40

different infants up to 12 months of age with bounding box annotations available. The

annotations includes four classes: Infant, Left Hand, Right Hand, and Object.
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Developing the infant reaching action recognition approach came with many chal-

lenges. A main challenge was the different field of view from the cameras across the videos.

The camera angles at which the videos were recorded have a large influence on the perceived

distance of the hand movement as it may quantify the infants range of motion. Another

challenge is related to the variability of reaching actions that is seen in this population

compared to adults. This can be attributed to the selected age where infants develop the

reaching skill and the wide age range to include all levels of reachers (new vs. experienced).

This work also enables interesting future direction of research. First, the rich infant

motion variability during development, for both typically-developing and neurodivergent

subjects could be better harnessed by further extending of the reaching action dataset. To

address challenging camera views, fusion with the infant’s 2D skeleton data may improve the

result of the first layer of the E-BabyNet structure, and thus increase the overall reaching

action recognition efficiency. Furthermore, an online learning scheme could expand the scope

of the structure and its capability to detect complex reaching actions, while a prediction

model might aid in reducing the effect of hands’ and objects’ occlusions during reaching

actions. In addition, the precision of the keyframes detection could be enhanced by an

explicit definition of grasping and touching objects. Finally, we seek to implement and

assess the performance of infant action recognition approach in closing action-perception

loops of wearable robotic for upper extremity pediatric rehabilitation [84,113,114].

In the upcoming chapter, we will introduce another application of scene under-

standing focusing on precision agriculture.
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Chapter 3

Leaf Detection and Pose

Estimation in Support of Robotic

Plant Phenotyping

Precision agriculture is an increasingly adopted farming practice that utilizes net-

works of ground and remote sensors to help improve use of agronomic inputs (e.g., water,

fertilizers, pesticides) [180]. Current robots in precision agriculture predominantly focus on

automated fruit and/or vegetable harvesting, along with utilizing remote sensing techniques

for crop health monitoring. Comparatively less work has been performed with respect to

collecting physical leaf samples in the field and retaining them for further analysis.

Though effective and critical, physical sampling techniques requires tedious and

strenuous data collection procedures, henceforth limiting the number of samples gathered

in practice. In turn, this undersampling can lead erroneous estimation of a crop’s health
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as only a handful of plants per are measured, and assessments are generalized to the entire

plot [1]. Further, it is often the case that, depending on the crop, samples must be collected

during a given time of the day to minimize measurement variations, which can further

reduce spatio-temporal sampling frequency [1]. These challenges apply to leaf sampling

too, which is the focus of this work. Enabling robotic leaf sampling for future use into

phenotypic analysis processes can help improve measurement coverage and frequency while

reducing human fatigue, risk of bodily injury, and labor costs. Besides remote sensing,

an increasing number of works has begun addressing interactions with crops. Such works

consider primarily robotic harvesting, including in row crops (such as corn and soybean) and

in tree crops (such as citrus and avocado). For example, autonomous robots are deployed

to pick sweet peppers, apples, citrus, and tomatoes by wrapping the fruit and twisting it

off the stem with either a soft gripper [28, 68, 95], rigid gripper [32–34, 108, 109, 117, 155],

or vacuum [10, 139, 179]. Some robots can pick strawberries, cucumbers, citrus, and sweet

peppers by cutting the stem [7,9, 65,126,156,157].

Robotics research within the precision agriculture domain has largely focused on

remote sensing via either ground or aerial robots (e.g., [82, 96, 127]). Leaf sampling is

important in agriculture since remote sensing and monitoring typically provides field-level

information without sufficient resolution to accurately diagnose problems. Compared to

existing robotic leaf sampling methods [2, 5, 115, 120] and harvesting systems that cut the

stem of a fruit/vegetable [7, 9, 65, 126, 156, 157], we are interested in performing clean cuts

at leaves’ stems and retaining leaves for further analysis. For this purpose, it is crucial to

incorporate a visual perception component (to identify and localize a leaf) and an actuation
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component (to move the end-effector toward the leaf, and then cut it). Collecting a leaf

sample from a tree presents unique challenges in perception and actuation, different from

robotic harvesting systems.

This chapter introduces a perception module for robotic means to aid in au-

tonomously select, cut, and retrieve a leaf sample for future robotic leaf analysis. The

developed perception algorithm is designed to identify and localize potential leaves and can

be seamlessly incorporated into various perception-actuation framework. To support this

claim, we combined our approach with two novel end-effector onto a six degree of freedom

robotic arm to automate the leaf retrieval process. Results demonstrate the perception-

actuation frameworks can successfully identify, localize, cut, and retrieve leaves.

The chapter’s layout is as follows: in Section 3.1, we explore related works, while

Section 3.2 outlines the development of the perception module using inputs from both

2D and 3D sources. Subsequently, Section 3.3 centers on the initial implementations and

experiments related to leaf detection and pose estimation. The integration of our approach

into a perception-actuation framework, accompanied by indoor and outdoor experiments

and result discussions, is presented in Section 3.4. Lastly, Section 3.5 concludes the chapter.

3.1 Related Works

Visual perception can be used to monitor crop growth [133, 182], help prevent

disease through early detection [6,77], assist with quality control [74,148], and help automate

harvesting [18, 131]. The majority of systems are designed with a focus on tasks related

to harvesting fruits and vegetables [7, 9, 11, 18, 92, 156, 157, 170], with only a handful of
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exceptions [2, 5, 115, 120]. Mueller-Sim et al. demonstrated a robotic platform for rapid

phenotyping that brought the laboratory to the field with the capability of manipulating

leaves for in-situ measurement [2, 115]. Orol et al. developed a tele-operated aerial robot

for cutting and collecting leaves from trees [120]. Ahlin et al. presented an algorithm for

selecting and grasping tree leaves using a robotic arm [5]. The latter work demonstrates

a high level of control using monoscopic depth analysis (MDA) and image based visual

servoing, but focuses on grasping and pulling the leaf instead of cleanly cutting the stem

of the leaf. Furthermore, these techniques have rarely been employed online on onboard

computers as part of a robotic manipulation system to identify, localize and physically cut

the leaf.

Simultaneously, non-destructive techniques methods are progressively being uti-

lized, offering researchers and growers the means to acquire information regarding plant

health, growth, and quality without causing damage to the crops. In this context, several

works have been proposed for leaf segmentation, with a majority of them focusing on 2D

image data due to its widespread availability and the early development of image segmenta-

tion methods. Kulikov [91] introduces an instance segmentation technique for leaf detection,

employing images of solitary plants captured in the laboratory. His approach employs a

two-step methodology, initially defining target embeddings, which are subsequently learned

by a CNN. This enables a clustering approach during inference to recover individual in-

stances. Weyler et al. [168] introduce a deep learning approach that predicts offset vectors

directing to leaf and plant centers, followed by clustering to isolate individual leaves and

plants. Guo et al. [60] directly predict leaf masks, bypassing the clustering post-processing
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step. In contrast, our work centers on point clouds, as we aim to capture the 3D structure

of plant leaves. Recent research has witnessed a surge in deep learning methods applied

to process 3D data, utilizing techniques like voxel grids [29], multi-view image rendering

[147], and convolutions on point clouds [153]. Similar to image-based methods, some of

these approaches rely on offset vector estimation followed by point clustering [76,161].

While the aforementioned works address segmentation within contexts such as

autonomous driving and indoor settings, this dissertation focuses on agricultural field data,

which presents distinct challenges, particularly stemming from scene deformability caused

by meteorological factors. An inherent challenge in agricultural point cloud segmentation

is the lack of publicly available datasets for instance segmentation. To address this, Schunk

et al. [138] provide a dataset with tracked leaf instances over time, but it involves high-

precision laboratory scanning, which is impractical for the field. In contrast, the approach

in [107] operates directly on UAV-acquired point clouds in densely planted agricultural

plots, encompassing a diverse range of leaf shapes influenced by real-world field conditions

such as wind, heat, and lighting variations.

Still, these works are not culminating in tasks that encompass direct interaction

with plants or crops, which is the main focus of this work. Enabling such tasks necessitates

the implementation of pose estimation techniques. In order to successfully complete manip-

ulation tasks such as physical leaves sampling, the 3D position of an object is insufficient.

Thus, obtaining at least an estimate of the 6D pose (position and orientation) is critical.

Traditional 6D pose estimation approaches usually perform local keypoint detection and

feature matching, and then a RANSAC-based PnP algorithm on the established 3D-to-2D
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correspondences to estimate the pose of an object [17, 111]. Still, they typically fail to

perform with heavily occluded and poorly textured objects. On the other hand, learning-

based methods use a deep neural network (DNN) to obtain the correspondences between

3D objects points and their 2D image projections [69,70,123]. Use of synthetic data gener-

ators [56,183] can relieve in part the challenge of acquiring large labeled datasets; however,

it requires realistic models that take into account the variations of the detected object e.g.,

shape, size, orientation or curvature which can be hard to develop.

3.2 Visual Perception for Leaf Detection & Pose Estimation

The development of the visual perception framework has progressed through vari-

ous stages, ranging from the use of different cameras to the adoption of diverse approaches.

This section details the different steps taken to develop our approach.

3.2.1 2D Object Detection and 3D Pose Estimation

In its early stages, the work centered on exploring the ZED mini camera alongside

classical computer vision techniques leading to valuable insights.

The flow diagram of our initial visual perception algorithm is shown in Figure 3.1.

The leaf detection approach is divided into two steps. First, both the left and right RGB and

depth images are acquired from the ZED Mini stereo camera with a resolution of 1080 x 1920

and converted respectively to the HSV and YUV color spaces. The HSV conversion is set

to highlight the green component in the RGB images as the YUV provides a better reading

of the depth image through its Y component. We perform two-tiered segmentation, first
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based on the HSV threshold to extract all tree leaves and then based on depth information

to obtain leaves on the foreground. A dilation operation is applied on the obtained masked

image to smooth the edges of the leaves.

Figure 3.1: Flow diagram of the developed visual perception algorithm in initial development
phase.

Next, the edges of the detected region are provided through a Canny edge detector

[21] and processed with an opening morphological operation. From there, we perform a first

classification process to extract the leaf contours information and retain only closed edges

with high intensity and a maximum area for detecting bounding boxes. The output of the

first classification is fed into a second classification, which is based on height/width ratio

and orientation of the bounding boxes to provide the robot only with the accessible leaves.

The parameters were selected through multiple trials and provide better performance than

adaptive thresholding techniques such as Otsu’s method [121].
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Figure 3.2: Key instances and operations of the proposed 2D leaf detection algorithm. (a) Original
RGB left image, (b) Threshold segmentation, (c) Depth segmentation, (d) Canny edge detection,
(e) Contour detection, (f) Output bounding boxes and annotated keypoints.

Figure 3.2 depicts an example of a sequence of outputs from the various key dif-

ferent stages of our proposed detection algorithm. The final output includes the annotated

stem, tip and leaf centroid, which are then used for leaf localization.

Figure 3.3: Estimated keypoints of a leaf candidate and detected bounding box.

To localize the leaf, we provide the estimated pixel coordinates from three parts of

leaf candidates (stem, tip, and centroid keypoints) for left and right images within the left

camera frame as shown in Figure 3.3. We estimate the 3D position directly from the 3D
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Figure 3.4: Panels (a) and (c): Examples of detecting bounding boxes twice. Panels ((b) and (d)
Respective outputs to remove excess bounding boxed following our merging process.

point cloud provided by the ZED API. After the transformation from the pixel space to the

spatial domain within the camera’s reference frame, the leaf coordinates are transformed

into the world coordinate frame. This reference frame transformation uses the known 6D-

pose of the camera on the robot’s end-effector to determine the position of the leaf within

the world frame for retrieval.

In some trials bounding boxes were detected twice, as shown in Figure 3.4. These

overlapping boxes can be explained by the reflection of the light on the leaves leading to

the detection of double edges by the Canny detector. To rectify this, we applied a merging

process that checks the distances between the detected centroids and based on the ratio

between the related bounding boxes selects the most appropriate one.

At this stage, the successful picks were infrequent and retrieval often failed due

to: 1) poor leaf centroid localization, 2) unreachable offset pose, or 3) leaf tip/end-effector

misalignment. Consequently, one critical aspect to be addressed is the identification of

the 6D-pose of the leaf which can improve the accuracy of the offset pose and remove the
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necessity of assuming a fixed angle of attack to approach the leaf. An issue arising from the

fixed angle of attack assumption is the possibility of leaves being pushed by the chamber’s

bottom side. In addition, leaf curling can lead to misalignment between the leaf’s center vein

“midrib”) and the end-effector’s direction of motion, which in turn may lead to sub-optimal

stem cut or even pushing the leaf away from the cutting chamber.

3.2.2 3D Object Detection and 6D Pose Estimation

To perform any interaction, an accurate localization of the leaf is necessary. Though

a 3D pose can be used, it is not sufficient to successfully accomplish the robotic task; thus,

obtaining at least an estimate of the 6D pose is essential. For this purpose, we propose

a leaf detection and localization algorithm using 3D point cloud and processed through

the Open3D library. Our perception approach is outlined in Figure 3.5. The detection

phase seeks to obtain the 3D bounding box of leaves candidates from point cloud captured

from the depth camera. First, we remove outliers considered as noise resulting from sensor

measurement inaccuracies and segment out the background at a specific distance threshold

from the camera frame. Then, downsampling is applied to optimize the performance of the

upcoming step. Next, we group the remaining point cloud segments into clusters using the

Density Based Spatial Clustering of Applications with Noise (DBSCAN) approach [43]. It

relies on two parameters, the minimum distance between two points to be considered as

neighbors (eps) and the number of minimum points to form a cluster (MinPoints).

Each resulting cluster is considered a potential leaf and described by a 3D bounding

box defined by center C = [cx, cy, cz]T , dimensions D = [h,w, d], and orientation R(θ,Φ, α).
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Figure 3.5: Flowchart of the proposed perception module. The point cloud data is processed to
segment leaves and deposit leaf candidates into a queue.

Then, filtering is applied on the clusters using geometric features of the bounding box:

number of points, volume, leaf ratio. Finally, the pose of the center of each bounding box

is returned as the 6D pose of a potential leaf.

3.3 Preliminary Implementation & Experiments

In the next section, we detail the experiments carried out to validate our approach’s

effectiveness. This includes separate offline tests for both detection and localization, which

were conducted.

3.3.1 Leaf Detection

For the detection step, ROSbags were collected both in indoor and outdoor set-

tings. Indoors (lab with constant light conditions), we used the Kinova arm with the

camera placed at different distances (0.2 − 0.3 m) from a potted tree. Outdoors (local or-

chard with varying light conditions), we collected data manually. We considered a wide

range (0.5− 1.6 m) of distances from trees; an example is shown in Figure 3.6.a. A total of
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Figure 3.6: Key steps in our proposed leaf detection and localization process. The sample here
corresponds to an outdoor point cloud: (a) corresponding RGB image of the tree, (b) raw point
cloud, (c) distance filtered ROI, (d) downsampled point cloud, (e) segmented clusters, and (f)
detected candidate leaves without 6D pose bounding boxes.

25 point clouds were collected (10 indoor and 15 outdoor). and tested offline with different

combinations for eps and MinPoints parameters, to determine optimal values for later use.

Table 3.1 shows the outcome of our experiments on the 10 indoor point clouds and

15 outdoor point clouds. We attain an average of 80.0% of detection with a maximum of

90% for indoor dataset, and an average of 79.8% with a maximum 85% for outdoor. Further,

we observed that the distance between the camera and the tree impacts the optimal values
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for the point cloud processing. The greater the distance from the camera, the higher eps

while MinPoints decreases.

Table 3.1: Leaf Point Cloud Detection

Point Clouds Total # Leaves Average Detection Percentage

Indoor 10 20 16 80.0%

Outdoor 15 99 79 79.8%

3.3.2 Leaf 6D Pose Estimation

To validate the localization phase, we compare several 6D poses obtained via our

proposed approach against ground truth data obtained from a VICON motion capture

camera system. Retroreflective markers were placed around the center of leaves, as shown

in Figure 3.7, to estimate their pose.

Figure 3.7: We used motion capture to establish a ground truth for determining the leaf 6D pose.
Markers were placed on a target leaf (left) with origin at the base of our 6-DOF robot (right). (A
real avocado tree was used.)
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Table 3.2 summarizes the results obtained for 12 random leaves positions. Our

approach provides an estimation with mean error of 8.28 mm, 14.38 mm, and 15.54 mm

along x-axis, y-axis, and z-axis, respectively,for avocado leaves of width ranging between

24 − 86 mm and length ranging between 54 − 150 mm. Based on the average leaf size

(48×91 mm), estimation errors represent nearly 15% of the width and 17% of the length. We

evaluated the orientation by calculating the Euclidean distance between the two provided

values using the definition in [73]. We obtained a mean error of 5.3deg. We observe that

the obtained 6D pose may drift from the physical center of the leaf mainly on the y-axis

and z-axis due to human-induced error and the non-rigid nature of the leaf which impacts

marker placement.

Table 3.2: Leaf 6D Pose Error

Error ∆x (mm) ∆y (mm) ∆z (mm) Orientation (deg)

Mean 8.28 14.38 15.54 5.3

Std dev 7.46 5.46 6.69 15.5

The proposed approach provides an initial 6D pose along useful information of

potential leaves using a processed 3D point cloud and obtained up to 80% of detection and

a mean error less than 16 mm and 5.3 deg. Both detection and localization steps were

performed without the need of collection of large data including 3D models, and training

process. Furthermore, all tests were run using without any additional GPU acceleration.
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3.4 Perception-Actuation Framework Integration

In order to better assess our pipeline for detecting and localizing leaves, we incor-

porated it into an actuation-perception framework designed for robotic phenotyping. Our

experiments took place indoors using two distinct end-effectors, electrical and pneumatic,

using an actual avocado tree [19, 39]. Following the validation of the outcomes, we pro-

ceeded to evaluate the pneumatic-based robotic system by conducting multiple real-world

experiments in the Agricultural Experimental Station (AES) at the University of California,

Riverside.

Figure 3.8: The electrical (left) and pneumatic (right) custom-built end-effectors.

3.4.1 Indoor Experiments

Two custom-built leaf-cutting end-effectors were developed and integrated inde-

pendently. They were retrofitted on a mobile manipulation base platform (Kinova Gen-2

six degree of freedom [6-DOF] robot arm mounted on a Clearpath Robotics Husky wheeled

robot). For perception, we utilize point cloud data from a depth camera (Intel RealSense

D435i) for the leaf detection and localization algorithm developed (see Appendix A). The

point cloud data is processed using Open3D [181] running on an Intel i7-10710U CPU,

without any additional GPU acceleration.
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We proceed with a detailed overview of the results achieved from the evaluation

of these two distinct systems with a real potted avocado tree indoors. For every trial, the

mobile manipulator and end-effector system was positioned at random poses near the base

of the tree so that the end-effector was at distances ranging between 0.2 − 0.3 m from the

edge of the tree canopy. An experimental trial consisted of collecting a point cloud, storing

the identified and localized potential leaves in a queue, and then sending the queued leaves

to the arm for a retrieval attempt. Each trial concluded once the queue was depleted and

the tree was repositioned for the next trial.

For each retrieval attempt, leaf candidates and viable leaves are determined. Leaf

candidates are leaves that have a pose within the arm’s workspace. Viable leaves are

leaf candidates that have a retrieval path within the arm’s workspace. For testing our point

cloud detection, we are interested in monitoring both successful captures and successful

cuts of the leaf. A successful capture occurs when the end-effector is placed around a

viable leaf while a successful cut occurs when the enclosed leaf is removed from the tree.

A clean cut occurs when the leaf is severed cleanly at the stem.

3.4.1.1 Electrical-based Robotic Leaf Retrieval System

Figure 3.9 highlights the integration of our contribution with the actuation module

in a leaf-cutting system. The perception module processes point cloud data to segment

leaves and deposit leaf candidates into a queue. Candidate leaves are then passed to the

robot arm controller to actuate the end-effector using ROS velocity controller. These leaves

act as the objective for the robotic arm to relocate and orient the end effector along a viable

leaf, positioned at a distance away from the leaf’s center known as the offset. This offset
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corresponds to the leaf’s length. Upon reaching this offset point, the arm proceeds to move

linearly towards the leaf in order to grasp it. Upon successfully enclosing the leaf, the end

effector performs a cut. Subsequently, the arm returns to its initial position. If the cutting

process is unsuccessful, the arm controller requests the next leaf in the queue.

Figure 3.9: The overall integration of perception and actuation modules.

The developed stem-cutting end-effector utilizes two 4-bar linkages to actuate a

set of sliding gates, one of which contains a razor blade to remove the leaf from the tree

(Figure 3.10). The gates also help retain the leaf within the end-effector’s chamber after

removal from the tree. These 4-bar mechanisms are connected via a gear train to achieve

synchronized motion. A low-cost, high-torque R/C servo (FEETECH FT5335M) drives

the gear train while being amenable to position control. An Arduino Due microcontroller

controls the servo motor and receives serial commands from a ROS control node. A breakout

board connected to the Arduino contains a ”safe/armed” switch along with LED indicators

to reduce the risk of accidental injury. Finally, the RealSense D435i camera was positioned

59



adjacent to the opening of the end-effector, set at a 45◦ angle. This also serves to provide

more depth when looking for potential candidates.

Figure 3.10: The electrical-based end-effector. The servo motor (red) actuates a double four-
bar mechanism (yellow) that closes a set of gates (blue) with a razor blade to cut and capture a
leaf. An Intel RealSense camera D435i is mounted on the top of the end-effector for perception. A
microcontroller is mounted on the arm for controlling the motor. This end-effector can be mounted
to a robotic arm using an adaptor plate (green). (Figure best viewed in color.)

Figure 3.11 outlines the overall process of a trial. Out of 46 trials, 63 potential

leaves were detected by the point cloud. (Note that each point cloud in the trial could

produce a variable amount of leaves, hence a higher number of potential leaves than trials.)

After filtering the potential leaves to remove the leaves outside of the work space, 39 viable

leaves remained. Out of these leaves, 27 were captured successfully (69.2%) while 21 of the

27 captured leaves were cut (77.8%).

Our system was able to remove a total of 21 leaves from the tree. However, not

all leaves were clean cuts on the stem; four were classified as clean cuts for use in stem

water potential analysis. The majority of the leaves were severed at the top of the leaf

and not at the stem (Figure 3.12). Our system produced seven near-misses where the leaf
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Figure 3.11: Overall leaf retrieval process. During the perception phase, (a) the point cloud is
processed to determine a potential leaf. If a viable leaf is detected, (b) the arm will move to an offset
position. (c) The arm will then perform a linear motion to capture the leaf. Once in position, (d)
the arm will cut the leaf and (e) the leaf will fall into the enclosed chamber. (f) After completing
the cut, the arm will return to the home position.

was cut within an average of 9.58 mm from the stem (std dev: 6.1 mm). The remaining

10 leaves were severed closer to the middle of the leaf, largely due to collisions with the

branches. Similar branch interference also lead to four out of the six missed cuts from the

captured leaf. These two problems could be solved through a refined end-effector design,

more robust path planning to account for branches, and implementing visual servoing for

continuous stem alignment as the end-effector approaches a viable leaf.

Table 3.3 summarizes retrieval results while Table 3.4 highlights the process times.

The mean point cloud processing (perception) time was 5.6 sec and the mean cutting (ac-

tuation) time was 10.6 sec. The mean total retrieval time was 16.2 sec. The variation in

processing time results from its dependence on multiple factors, notably the size of the point

cloud, the spatial separation between the robot and the leaves, and the duration required

for planning processing.
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Table 3.3: Leaf Retrieval Numbers & Rates of the Electrical-based Retrieval System

Stage Number Rate

Potential Leaves 63 N/A
Candidate Leaves 51 81.0%
Viable Leaves 39 76.5%
Successful Captures 27 69.2%
Successful Cuts 21 77.8%

Clean Cuts 4 19.0%
Near Misses 7 30.0%

Table 3.4: Leaf Retrieval Performance Time (Seconds) of the Electrical-based Retrieval System

Metric Perception Part Actuation Part Overall Retrieval

Min 0.5 4.6 6.1
Max 11.0 61.7 62.5
Mean 5.6 10.6 16.2
Median 7.7 8.1 15.3
Std dev 3.9 10.4 10.2

Figure 3.12: Sample leaves cut from our avocado tree during automated indoor tests. (a) The
four leaves represent clean cuts suitable for stem water potential analysis. (b) The system also cut
seven leaves that were classified as near-misses, which removed the leaf without the stem. (c) The
remaining leaves were cut closer to the center, due to interference between the end-effector and the
branches. (d) In two cases, collateral damage occurred when a second leaf was removed along with
the target leaf. These instances were classified as a single successful cut, but not a clean cut since
the two leaves would need to be separated for stem water potential analysis.
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3.4.1.2 Pneumatic-based Robotic Leaf Retrieval System

To address the limitations of the previous system, we propose a framework that

comprises three core components: actuation, perception, and communication. The new

end-effector’s design is shown in Figure 3.13. The dimensions of the opening and internal

cavity of the end-effector were selected based on the average avocado leaf, allowing for one

leaf to be captured while pushing other neighboring leaves aside.

Figure 3.13: The pneumatic-based end-effector and its components. The end-effector body (blue)
is mounted to the arm via the adaptor plate (green). The cutter (red) is mounted on linear rails
and its actuated via the piston (grey) that is connected to tension strings (yellow) and pulleys (light
grey). An Intel RealSense camera D435i (cyan) is mounted on the end-effector for perception. The
suction tube connector (orange) is located at the back of the end-effector with direct access to the
internal cavity. (Figure best viewed in color.)

To give a mechanical advantage to the leaf picking process, the opening of the

end-effector can produce an inflow of air that guides and aligns the leaf toward the end-

effector as it approaches the leaf, and so enhances the leaf picking algorithm’s tolerance

when dealing with misaligned leaf position and orientation. In addition, the RealSense
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D435i camera was mounted near the opening of the end-effector at a 45◦ angle to allow for

a clear view of leaves as they are retrieved.

The main body of the end-effector was manufactured with resin using stereo-

lithography, which increased the permissible complexity of the design compared to other

manufacturing methods and allowed us to take full advantage of precision additive manu-

facturing while using a rigid, lightweight, and non-porous material. This resulted in a stable

end-effector that will not crack or break during field experiments.

Figure 3.14: Effect of the air suction mechanism on a leaf. The end-effector secures the tip of
the leaf, allowing it to be captured even if the end-effector is misaligned or some misplacement is
caused, e.g., by wind.

The cutter was designed to be compact and of low profile, with the ability to

actuate with enough force and velocity to slice through the stem cleanly. This design is

based on a pneumatic system. The latter consists of an air compressor, an air tank, and

a solenoid. These are placed on the chassis of the robot while only guiding a single tube

along the robotic arm, as shown in Figure 3.15.

To avoid exceeding the pressure rating of the pneumatic hardware, a pressure

switch is connected in series with the load line of the compressor such that the switch opens
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Figure 3.15: Electrical and Pneumatic Hardware. The detailed schematics of the pneumatic hard-
ware (Left) and the hardware system mounted on the chassis of our mobile robot Husky (Clearpath).

above 120 psi. To actuate the cutting mechanism, a piston is linked to a pulley system;

one of the sliders is equipped with a razor while the other one features a cavity to securely

enclose the blade when the cutter closes. After a completed cut, the slider and piston

position are reset using a set of springs connected to the pulley that retract the slider once

the piston pressure is released.

The pneumatic subsystem is operated by a finite state machine through a micro-

controller. The state machine may reject requests if it determines that the request would

result in an invalid or dangerous state. Additionally, any state in this state machine may

be immediately coerced into a safety “stop” state by a software signal, or by failing any of

the safety checks that are routinely performed such as charge level.

A communication module facilitates the operation of the device and consists of a

finite state machine that communicates with the various subsystems onboard. It is respon-

sible for communicating with the perception module to initiate the point cloud capture,

maintaining the queue of leaves that are to be harvested, and ensuring that the system is

ready to perform cutting when the end-effector is in position.
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Figure 3.16: Our full system framework integrates actuation, communication, and perception
module. The dashed arrows represent information flow.

When the system is initialized, a request is sent to the perception module to

capture a point cloud and expects to receive back the poses and the dimensions of the

leaves identified by the perception module. Then, the pose and dimension of the first leaf

are sent as messages to the actuation system. These are interpreted into a leaf tip position

and a stem position in the actuation module. Once the actuation system has operated

the end-effector to move and capture the target leaf, the communication module confirms

that the pneumatic subsystem is ready to actuate the razor. If this is the case, the motion

sequence is activated. Once completed, the pose and dimensions of the next leaf in the

queue are sent to the actuation module. If it is determined that the leaf queue has been
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exhausted, a request for a new point cloud is sent. An overview of the complete system is

provided in Figure 3.16.

With a few exceptions contributing to improved algorithmic efficiency, the per-

ception approach employed herein adheres to the same paradigm as the one presented in

Section 3.2.2. In sum, the point cloud is acquired with a background segmentation of 0.75 m

from the camera frame and fully processed with no downsampling. We incorporated a color

filtering operation aimed at excluding discolored leaves that may not qualify as suitable can-

didates for subsequent leaf analysis. Then, we apply the DBSCAN clustering algorithm and

extract bounding boxes from the clustered point cloud and apply spatial filtering. Finally,

we sort the potential leaves from closest to furthest based on their distance from the camera.

As a result, more clusters are detected, and thus more leaf candidates are generated.

We conducted 42 trials with random position and orientation of the end-effector

at a distance range of 0.2−0.4 m. A total of 78 candidate leaves were obtained, 36 of which

were viable. Of the 36 leaves, 27 were captured effectively (75%) whereas 25 out of 27 were

removed (92.6%). With a 92% success rate, we acquired 23 clean cut stems with a minimum

length of 5 mm as shown in Figure 3.17. Table 3.5 summarizes the retrieval results.

The processing times for leaf detection are 1.43 sec and 16.43 sec, respectively, and

are explained by the process of the complete point clouds obtained, the size of which varies

with the end-effector position. Furthermore, the motion planning has a minimum of 4.3 sec

and a maximum of 25.84 sec, which corresponds to the variation in distance between the

end-effector and the detected leaves.
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Table 3.5: Leaf Retrieval Numbers & Rates of the Pneumatic-based Retrieval System

Stage Number Rate

Potential Leaves 132 N/A
Candidate Leaves 78 59.1%
Viable Leaves 36 46.1%
Successful Captures 27 75%
Successful Cuts 25 92.6%

Clean Cuts 23 92%
Near Misses 2 8%

Table 3.6: Leaf Retrieval Performance Time (Seconds) of pneumatic-based Retrieval System

Metric Perception Actuation Full Retrieval

Min 1.43 25.33 37.00
Max 16.43 57.46 64.56

Mean 6.27 35.68 44.72
Median 6.18 34.83 44.20
Std dev 3.11 7.31 5.55

Figure 3.17: Leaves retrieved from the avocado tree during automated indoor tests.
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3.4.2 Field Experiments

Based on the promising results obtained by the pneumatic-based framework, fur-

ther field experiments were conducted at the Agricultural Experimental Station (AES) field

at the University of California, Riverside.

First, 21 trials were performed with random location and orientation of the end-

effector at a distance range of 0.2 − 0.5 m. From a total of 90 candidate leaves, 21 proved

to be viable. Out of the 21 leaves, 16 were efficiently enclosed (76.2%), while 10 were

cut (62.6%). We acquired 6 neatly cut stems with a minimum stem length of 5 mm (see

Table 3.7). The air suction system helped secure the capture of the leaf as we encountered

some instances of wind during experiments. In terms of time performance, the mean time

processing for the perception module is 9.27 sec and for the actuation module it is 37.34 sec,

with an overall time processing of 46.61 sec as shown in Table 3.8.

The final step toward enabling autonomous leaf retrieval comprises the integration

of waypoint navigation during deployment in real-world field experiments. To assess the

robustness of our framework, consider a list of sentinel tree locations. This information

is used to create desired waypoints that serve as the locations the robot should visit and

attempt to sample leaves from the corresponding sentinel trees. Then, we integrate the leaf

extraction steps outlined in Figure 3.16 for every encountered tree. When the leaf extraction

process terminates for each sentinel tree, the robot proceeds to the next sampling area. This

procedure continues until all designated sentinel trees have been visited, at which point the

robot returns to its base.
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Table 3.7: Leaf Retrieval Numbers & Rates

Stage Number Rate

Potential Leaves 193 N/A
Candidate Leaves 90 46.6%
Viable Leaves 21 23.33%
Successful Captures 16 76.2%
Successful Cuts 10 62.5%

Clean Cuts 6 60%
Near Misses 4 40%

Table 3.8: Leaf Retrieval Performance Time (Seconds)

Metric Perception Actuation Full Retrieval

Min 4.29 27.57 38.70
Max 25.87 45.80 57.48

Mean 9.72 37.34 48.52
Median 9.10 36.33 48.93
Std dev 4.52 4.72 4.10

Field experiments were conducted in an avocado tree field at the Agricultural

Experimental Station (AES; 33◦ 58′ 3.2592′′ N, 117◦20′ 7.0296′′W ) at the University of

California, Riverside (see Figure 3.18. We use satellite imagery to construct an outline of

the geometry of the field, including tree positions. Without loss of generality, we consider

a case of sampling from three sentinel trees. Selected sentinel trees and the underlying

Gaussian Processes (GP) reconstruction are shown in Figure 3.19. The computed path for

the robot to follow as per the planning algorithm in [143] is also highlighted in the figure.

The satellite-based map is described in the World Geodetic System 1984 (WGS-

84), but to be usable by the robot, it needs to be linked with the mobile robot’s local

map which is in turn used for robot navigation. We use the Universal Transverse Mercator

(UTM) projection to express the satellite-based sampling points into desired waypoints in
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the robot’s local coordinate system. The mobile robot base (Clearpath Husky) can obtain

odometry information from its wheel encoders, orientation, linear velocity and angular

acceleration measurements from its embedded inertial measurement unit (IMU) module,

and positioning data captured by its onboard Global Navigation Satellite System (GNSS)

receiver. This information is used onboard in real-time by the navsat transform node1

from the built-in ROS navigation stack, to broadcast the pose (i.e. position and orientation)

of the mobile robot base in the UTM local coordinate system. The robot’s pose is updated

in the local frame while moving by using fused information from the three onboard sensory

modules. The movement actions in the local frame are handled by the move base2 ROS

Figure 3.18: The agricultural robot used in this work for robotic assessment of our actuation-
perception framework.

1 http://docs.ros.org/en/jade/api/robot_localization/html/navsat_transform_node.html

2 http://wiki.ros.org/move_base
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Figure 3.19: Gaussian Processes (GP) reconstruction of the avocado field with three sentinel trees
considered during field experiments.

package, which generates velocity commands for the mobile platform in order to acquire the

desired pose in the local frame. For additional safety, our developed system allows a human

operator/supervisor to trigger when the robot switches between navigation and leaf-picking

modes, as well as to skip a sampling location and move to the next one. The robot arm

is rigidly affixed to the mobile base; coordinate transforms between the mobile base and

each arm link frame as well the end-effector frame are all readily computed via closed-form

forward kinematics expressions.

In our experiments, the mobile robot starts from a known position on the map.

The robot arm is initialized turned toward the right-hand side of the mobile base, so that

the camera mounted on the end-effector has an unobtrusive view to the tree canopies from

the right-hand side of the robot as the latter moves forward.3

The first desired pose is transmitted to the platform, which in turn moves toward

the target tree at the desired position using the generated trajectory. As the first goal pose is

3 This configuration helps distribute the load to the mobile base as evenly as possible given other

embedded parts, and minimizes occlusions to an embedded LiDAR sensor that is currently used to collect

data during operation to create the visualizations shown in Figure 3.20).
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reached, the mobile platform stops and the leaf retrieval process subsequently initiates. The

perception module processes the collected point cloud and returns the center and dimensions

of each candidate leaf with respect to the camera frame. The tip and stem positions are

then estimated with respect to the end-effector’s frame, and the manipulation planning

procedure outlined in Figure 3.16 is executed. Figure 3.20(a) illustrates an instance of the

mobile robot when sampling at the third desired location. Three candidates leaves have

been successfully detected, and the process can then proceed to the actuation procedure.

Figure 3.20(b) depicts the path followed by the robot in the field experiment until reaching

the third sentinel tree. The complete field experiment can be viewed in the supplemental

video at https://youtu.be/xu4zrTe_S-U.

Figure 3.20: (a) Visualization (in ROS RViz) of the mobile robot at the third sentinel tree location.
Each depicted coordinate system represents the corresponding state at the captured moment. Three
leaf candidates, namely leaf {0, 1, 2} tip, have been detected. Given these candidates, the actuation
module will decide to reach the closest one and attempt to cut and retain. (b) Visualization of the
followed path in the avocado experimental field. The captured moment shows the robot in the third
leaf sampling position, while at the leaf detection procedure. Red arrows illustrate the odometry
poses along its path from the starting position.
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3.4.3 Discussion of Collective Findings

The evaluation of the complete integrated framework for leaf-cutting demonstrates

that the perception module can effectively adjust to various actuation modules, which may

include robot arms and/or end-effectors.

The electrical-based actuation-perception system can capture 69.2% of viable leaves

and cut 77.8% of those captured leaves. These results offered a promising initial step toward

automated leaf sampling, nonetheless, they have revealed a few limitations that justify con-

sideration. During the leaf-cutting experiments, we observed that some successful cuts were

not accurate enough to be used for stem/leaf analysis (i.e. leaving long-enough stem length

or damaging the leaf blade). One main issue was that the front face of the end-effector may

push other interconnected leaves and/or branches away, hence the linear approach may not

always suffice. In addition, high motion velocity can at times lead to misalignment with the

enclosure and in turn to a failed capture and cut. Improving the alignment of the leaves

can have the potential to significantly enhance the cutting process.

In order to tackle these limitations, we implemented the perception module with an

optimized leaf-cutting end-effector that integrates minimal design with pneumatic suction

to improve leaf cutting rates. In addition, we incorporated a color filtering technique to

effectively exclude leaves that do not meet the criteria for being suitable candidates. The

overall system was tested in indoor and outdoor settings.

In total, 43 leaves were successfully captured with an overall rate of 81.4% of

successful cut with a mean time of 46.38 sec. 29 clean cuts were performed and only 6

near misses were encountered with an increase of 63.8% of clean cuts compared to the prior
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framework. Furthermore, no missed cuts were encountered. These findings demonstrate

the efficiency of the perception module in providing reliable position and orientation of the

leaves but also dimensions that were critical to place the end-effector at the right position

during the different phases of extraction. In few cases, leaves that are highly curved towards

the midrib reduced the surface area of the detected leaf, which affects the location of the

end-effector at the tip and may make the air suction less effective.

The proposed pneumatic-based end-effector design is able to capture leaves in

dense areas of the tree with little interference from branches and other leaves. Furthermore,

the air suction system assisted the capture process by securing the tip of the leaf within

the end-effector regardless of misalignment due to partial detection, which proved to be

practical during our field experiments as we observed the effect of wind on the position

of the leaves. Despite its effectiveness, the overall system performance was impacted by

various other factors. We observed instances where the planner fails at providing a feasible

path for leaves in the workspace. This can be linked to the original position of the arm

prior the process initiates, thus leading to limits angle joint during operation. Additionally,

the planning time is in a range of 18.58 sec - 46.88 sec and motion time is in a range of

5.59 sec - 20.06 sec, showing the impact of the planning time on the overall actuation time

as shown in Table 3.9.

Table 3.9: Actuation Performance Time (Seconds)

Metric Planning Motion Overall Actuation

Min 18.58 5.59 27.57
Max 46.88 20.06 57.46
Mean 32.81 8.81 37.93
Median 31.88 8.23 37.71
Std dev 2.51 6.41 5.65
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3.5 Conclusion

In this chapter, we introduced an adaptive perception module applied to different

hardware designs to support robotic leaf phenotyping. We discussed the stages of devel-

opment of the visual perception approach and highlighted the design of two distinct end-

effectors, resulting in complete actuation-perception frameworks. The perception module

demonstrated reliable detection and accurate 6D pose estimations leading to a solid perfor-

mance from the presented frameworks. In controlled indoor settings, the pneumatic-based

framework yields a 63.9% increase in cleans cuts compared to the electrical-based counter-

part. Subsequently, field experiments were conducted to evaluate the performance under

varying conditions such as lighting and wind. These experiments confirmed the effectiveness

of our developed approach conducting experiments while the robot remains stationary and

then guiding it through specific navigational positions. In the next chapter, we summarize

the contributions of this dissertation and highlight potential future works.
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Chapter 4

Summary & Directions for Future

Works

To conclude this dissertation, we provide a concise overview of the main contribu-

tions from each chapter. Additionally, we highlight potential avenues for future research.

4.1 Infant action Recognition

Existing human action recognition algorithms are predominantly geared towards

adult-oriented applications, rendering them less adaptable for pediatric scenarios. This

trend is also observed in the predominant usage of datasets and methodologies that are

tailored to adult movements, often failing to capture the distinctive characteristics of child

behaviors and motions. Consequently, a limitation exists in the capacity of these algorithms

to effectively analyze and comprehend the intricate actions of children. The presented

work, in Chapter 2, is aimed at addressing and bridging this existing gap, by specifically

considering the task of reaching which is an important developmental milestone.
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First, we introduced BabyNet, a light-weight network structure to recognize infant

reaching action from off-body stationary cameras. For this purpose, we developed an anno-

tated dataset that includes diverse reaches performed while in a sitting posture by different

infants in unconstrained environments (e.g., in home settings, etc.). Our approach uses

the spatial and temporal connection of annotated bounding boxes to interpret onset and

offset of reaching, and to detect a complete reaching action. We evaluated the efficiency of

our proposed approach and compare its performance against other learning-based network

structures in terms of capability of capturing temporal inter-dependencies and accuracy of

detection of reaching onset and offset. Results indicate that our BabyNet can attain solid

performance compared to other larger networks by achieving, and can hence serve as a light-

weight data-driven framework for video-based infant reaching action recognition. However,

the structure faced challenges due to the absence of diverse viewpoints in the dataset and

the dependence on the detector network’s performance. In cases where the hands or the

object were not detected, the efficacy of the structure could be compromised. Moreover,

the structure could not specify the hand performing the action.

To tackle certain aspects of these constraints, we developed E-BabyNet consisting

of two main layers based on two LSTM and a Bidirectional LSTM (BiLSTM) model, re-

spectively. The first layer provides a pre-evaluation of the reaching action for each hand

by providing onset and offset keyframe based on BabyNet. Then, the BiLSTM model

merges the previous outputs to deliver a final outcome of the reaching actions detection

for each frame including the reaching hand. We evaluated our approach against four other

lightweight structures using an extended and fully annotated dataset comprising 375 infant
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reaching actions performed in sitting positions by different subjects. Results illustrate the

effectiveness of our approach and ability to provide reliable reaching action detection and

offer onset and offset keyframes with a precision of one frame. Moreover, the biLSTM layer

handles the transition between reaching actions and reduced false detections.

This work also enables interesting future direction of research. The rich infant

motion variability during development, for both typically-developing and neurodivergent

subjects could be better harnessed by further extending of the reaching action dataset and

include a broader range of neurodivergent subjects. To address challenging camera views,

fusion with the infant’s 2D skeleton data may improve the result of the first layer of the

E-BabyNet structure, and thus increase the overall reaching action recognition efficiency.

Furthermore, an online learning scheme could expand the scope of the structure and its

capability to detect complex reaching actions, while a prediction model might aid in reducing

the effect of hands’ and objects’ occlusions during reaching actions. Also, the precision of the

keyframes detection could be enhanced by an explicit definition of grasping and touching.

These initiatives gear toward implementing and evaluating our methods in an on-

going project to develop a wearable robotic device for pediatric upper extremity assistance,

as described in [84, 113, 114]. Moreover, we harness the potential of both approaches as

lightweight, data-driven machine-vision-assisted framework for the identification of early

signs of neuromotor disorders that manifest themselves in delays with respect to typical

developmental reaching milestones [129].

79



4.2 Object Detection and Pose Estimation for Robotic Plant

Phenotyping

Contemporary robots in precision agriculture focus primarily on automated har-

vesting or remote sensing to monitor crop health. Comparatively less work has been per-

formed with respect to collecting physical leaf samples in the field and retaining them for

further analysis. While this technique offers benefits, the process of collecting, assessing,

and interpreting measurements requires significant human labor and often leads to infre-

quent sampling. However, automated sampling can provide highly accurate and timely

information. As a first step in such automated in-situ leaf collection, the process involve

identifying and cutting a leaf from a tree. This retrieval process requires new methods for

perception and actuation.

In chapter 3, we presented a technique for detecting and localizing candidate leaves

using 3D point cloud from a depth camera. This technique was tested on both indoor

and outdoor point clouds from avocado trees. We then employed two custom-built end-

effectors, electrical- and pneumatic-based integrated onto a 6-DOF robotic arm to validate

the proposed detection and localization technique by retrieving leaves from an avocado tree.

Indoor experimental testing with a real avocado tree showed that our perception

module can enable our mobile manipulator and custom end-effector system to efficiently

detect, localize, and cut leaves by successfully detecting an average of 80.0% of leaves

indoors and 79.8% outdoors, and localizing them with less than 17% error along the leaf’s

length or width. The electrical-based actuation and perception framework for leaf-cutting

achieved a capture rate of 69.2% for viable leaves, along with a cutting rate of 77.8% for
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those captured leaves. While the end-effector demonstrates efficient leaf-cutting capabilities,

its size becomes problematic when dealing with leaves clusters. This scenario highlighted

the necessity for further design optimization to effectively tackle these challenges.

For this purpose, we introduced a pneumatic-based actuation module. Experimen-

tal indoor testing reveals that the overall framework is able to successfully captured 75%

of viable leaves and successfully cut 92.6% of them. The new design enabled the capture

of leaves in dense areas of the tree with little interference from branches and other leaves.

Furthermore, the air suction system assisted the capture process by securing the tip of the

leaf regardless of misalignment due to partial detection, which proved to be practical during

our field experiments as we observed the effect of wind on the position of the leaves.

For future directions of research, we aim to extend the perception module to include

visual feedback during capture; this could help handle various crop trees and thus various

stem lengths, mainly in outdoor field testing. Furthermore, integrating an exploration

strategy for detecting region of interest can lead to an optimized leaf sampling procedure.

An automatic recovery procedure of the leaves is necessary as the air suction area was

obstructed after three successful cut. In addition, incorporating a task planning strategy

such as Next-Best-Action Planning (NBA-P) [79] or other online exploration techniques

such as [78] would be highly advantageous for our robotic system. This would not only

optimize the execution of additional tasks such as mapping and inspection but also enhance

the overall efficiency of the system.
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[50] B. Fernando, E. Gavves, M. José Oramas, A. Ghodrati, and T. Tuytelaars. Modeling
video evolution for action recognition. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 5378–5387, 2015.

[51] Linda Fetters. Perspective on variability in the development of human action. Physical
therapy, 90(12):1860–7, 12 2010.

[52] Longsheng Fu, Fangfang Gao, Jingzhu Wu, Rui Li, Manoj Karkee, and Qin Zhang.
Application of consumer rgb-d cameras for fruit detection and localization in field: A
critical review. Computers and Electronics in Agriculture, 177:105687, 2020.

[53] Hongwei Ge, Zehang Yan, Wenhao Yu, and Liang Sun. An attention mechanism
based convolutional lstm network for video action recognition. Multimedia Tools and
Applications, 78(14):20533–20556, 2019.

[54] Ahmed Ghali, Andrew S. Cunningham, and Tony P. Pridmore. Object and event
recognition for stroke rehabilitation. In Visual Communications and Image Processing,
volume 5150, pages 980 – 989. International Society for Optics and Photonics, 2003.

[55] Ross Girshick. Fast r-cnn. In IEEE/CVF International Conference on Computer
Vision (ICCV), pages 1440–1448, 2015.

[56] Mario Valerio Giuffrida, Hanno Scharr, and Sotirios A. Tsaftaris. Arigan: Synthetic
arabidopsis plants using generative adversarial network. IEEE/CVF International
Conference on Computer Vision Workshops (ICCVW), pages 2064–2071, 2017.

86



[57] Jun Goto, Takuya Kidokoro, Tomohiro Ogura, and Satoshi Suzuki. Activity recogni-
tion system for watching over infant children. In IEEE International Symposium on
Robot and Human Interactive Communication (RO-MAN), pages 473–477, 2013.

[58] Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzynska,
Susanne Westphal, Heuna Kim, Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz
Mueller-Freitag, Florian Hoppe, Christian Thurau, Ingo Bax, and Roland Memisevic.
The “something something” video database for learning and evaluating visual common
sense. In IEEE/CVF International Conference on Computer Vision, pages 5842–5850,
2017.

[59] Junxia Gu, Xiaoqing Ding, Shengjin Wang, and Youshou Wu. Action and gait recog-
nition from recovered 3-d human joints. IEEE Trans. on Systems, Man, and Cyber-
netics, Part B (Cybernetics), 40(4):1021–1033, 2010.

[60] Ruohao Guo, Liao Qu, Dantong Niu, Zhenbo Li, and Jun Yue. Leafmask: Towards
greater accuracy on leaf segmentation. In IEEE/CVF International Conference on
Computer Vision (ICCV), pages 1249–1258, 2021.

[61] Abdul Hafeez, Mohammed Aslam Husain, S.P. Singh, Anurag Chauhan,
Mohd. Tauseef Khan, Navneet Kumar, Abhishek Chauhan, and S.K. Soni. Imple-
mentation of drone technology for farm monitoring & pesticide spraying: A review.
Information Processing in Agriculture, 2022.

[62] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Learning spatio-temporal fea-
tures with 3d residual networks for action recognition. In IEEE International Con-
ference on Computer Vision Workshops (ICCVW), pages 3154–3160, 2017.

[63] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Can spatiotemporal 3d cnns
retrace the history of 2d cnns and imagenet? In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 6546–6555, 2018.

[64] Jordan Hashemi, Mariano Tepper, Thiago Vallin Spina, Amy Esler, Vassilios Morellas,
Nikolaos Papanikolopoulos, Helen Egger, Geraldine Dawson, and Guillermo Sapiro.
Computer vision tools for low-cost and noninvasive measurement of autism-related
behaviors in infants. Autism Research and Treatment, 2014, 2014.

[65] Shigehiko Hayashi, Kenta Shigematsu, Satoshi Yamamoto, Ken Kobayashi, Yasushi
Kohno, Junzo Kamata, and Mitsutaka Kurita. Evaluation of a strawberry-harvesting
robot in a field test. Biosystems Engineering, 105(2):160–171, 2010.

[66] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
770–778, 2016.

[67] Nikolas Hesse, Christoph Bodensteiner, Michael Arens, Ulrich G. Hofmann, Raphael
Weinberger, and A. Sebastian Schroeder. Computer vision for medical infant motion
analysis: State of the art and RGB-D data set. In European Conference on Computer
Vision Workshops (ECCVW), pages 32–49, 2018.

87



[68] Cameron J Hohimer, Heng Wang, Santosh Bhusal, John Miller, Changki Mo, and
Manoj Karkee. Design and field evaluation of a robotic apple harvesting system with
a 3d-printed soft-robotic end-effector. Transactions of the ASABE, 62(2):405–414,
2019.

[69] Yinlin Hu, P. Fua, Wei Wang, and Mathieu Salzmann. Single-stage 6d object pose
estimation. IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2927–2936, 2020.

[70] Yinlin Hu, Joachim Hugonot, Pascal V. Fua, and Mathieu Salzmann. Segmentation-
driven 6d object pose estimation. IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3380–3389, 2019.

[71] Xiaofei Huang, Lingfei Luan, Elaheh Hatamimajoumerd, Michael Wan, Poo-
ria Daneshvar Kakhaki, Rita Obeid, and Sarah Ostadabbas. Posture-based infant
action recognition in the wild with very limited data. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, pages 4911–4920, 2023.

[72] Tak-Wai Hui, Xiaoou Tang, and Chen Change Loy. Liteflownet: A lightweight con-
volutional neural network for optical flow estimation. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 8981–8989, 2018.

[73] Du Q. Huynh. Metrics for 3d rotations: Comparison and analysis. Journal of Math-
ematical Imaging and Vision, 35:155–164, 2009.

[74] Gerhard Jahns, Henrik Møller Nielsen, and Wolfgang Paul. Measuring image analysis
attributes and modelling fuzzy consumer aspects for tomato quality grading. Com-
puters and Electronics in Agriculture, 31(1):17–29, 2001.
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Vidal. A detection-based approach to multiview action classification in infants. In
International Conference on Pattern Recognition, pages 6112–6119, 2021.

[123] Kiru Park, Timothy Patten, and Markus Vincze. Pix2pose: Pixel-wise coordinate
regression of objects for 6d pose estimation. IEEE/CVF International Conference on
Computer Vision (ICCV), pages 7667–7676, 2019.
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Appendix A

Camera Selection & Placement

Evaluation

Several cameras were considered as the sensing modality for the proposed end-

effector (Table A.1). Although the ZED and ZED2 have solid performance, they were

excluded because of their wide baselines which do not fit our intended eye-on-hand config-

uration. We evaluated the performance of the three other cameras in different conditions

including indoor and outdoor environments. The obtained results show that the Realsense

(RS) D435i has the best performance, especially outdoors where it is able to provide a viable

depth image at close ranges. Furthermore, we were able to obtain high-quality point clouds

at depth ranges lower than those provided in manufacturer specifications (0.1 m). Sample

images collected using the RS D435i are shown in Fig. A.1.

Two eye-on-hand configurations were considered, one looking straight ahead and

one looking downward at a 45◦ angle. While the former case can lead to longer look-ahead

distances, the latter one was ultimately selected. This configuration balances between pro-
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Table A.1: Candidate Cameras Specifications

Camera
Baseline Depth Range

Field of View[mm] [m]

ZED 120 0.3 – 25 90◦ x 60◦ x 100◦

ZED2 120 0.3 – 20 110◦ x 70◦ x 120◦

ZED mini 63 0.1 – 15 90◦ x 60◦ x 100◦

RS D435i 50 0.2 – 3 87◦ x 58◦ x 95◦

RS D455 95 0.4 – 6 87◦ x 58◦ x 95◦

viding useful depth information about the tree (needed for obstacle avoidance and navigation

around tree branches) and allowing for leaf detection and localization (needed for aligning

the end-effector with the leaf to cut it).

Figure A.1: Sample RGB and depth images collected from RS D435i in an outdoor environment
at (a)–(b) 15 cm, (c)–(d) 20 cm, and (e)–(f) 25 cm.
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