UC Irvine
UC Irvine Previously Published Works

Title

Surrogate SDOF models for probabilistic performance assessment of multistory buildings:
Methodology and application for steel special moment frames

Permalink
https://escholarship.org/uc/item/40d416m3
Authors

Vaseghiamiri, Shaghayegh
Mahsuli, Mojtaba
Ghannad, Mohammad Ali

Publication Date
2020-06-01

DOI
10.1016/j.engstruct.2020.110276

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/40d416m3
https://escholarship.org/uc/item/40d416m3#author
https://escholarship.org
http://www.cdlib.org/

Engineering Structures 212 (2020) 110276

Contents lists available at ScienceDirect

ENGINEERING
STRUCTURES

Engineering Structures

journal homepage: www.elsevier.com/locate/engstruct

Surrogate SDOF models for probabilistic performance assessment of R
multistory buildings: Methodology and application for steel special moment &&=
frames

Shaghayegh Vaseghiamiri”, Mojtaba Mahsuli’, Mohammad Ali Ghannad”, Farzin Zareian"™"

2 Center for Infrastructure Sustainability and Resilience Research, Department of Civil Engineering, Sharif University of Technology, Tehran, Iran
Y Department of Civil and Environmental Engineering, University of California — Irvine, Irvine, USA

ARTICLE INFO ABSTRACT

This paper proposes a methodology for generating surrogate single-degree-of-freedom (SDOF) models that can
be utilized to estimate the probability distribution of the roof drift ratio of multistory buildings at various ground
motion intensity measures. The use of an SDOF model as a surrogate for multistory buildings can significantly
alleviate the high computational cost for probabilistic seismic demand assessment considering both model un-
certainty and record-to-record variability. The surrogate SDOF model generated herein explicitly accounts for
model uncertainties and can be used as an alternative to the nonlinear dynamic analysis of detailed building
structures. Applications for such surrogate models include regional risk and resilience analyses and compre-
hensive parametric studies. To showcase the proposed methodology, an SDOF surrogate model for steel special
moment frame (SMF) buildings is developed using the suggested surrogate SDOF model generating metho-
dology. The properties of the surrogate model representing a multi-degree-of-freedom (MDOF) structure are
computed using a probabilistic function of the fundamental period of the structure developed using Bayesian
linear regression. To validate the surrogate model for SMFs, the response statistics produced using detailed
multistory SMF models are compared with those of the corresponding surrogate SDOF models. The results show
that the proposed surrogate SDOF model captures the probability distribution of the roof drift ratio of SMFs up to
collapse with acceptable accuracy while reducing the runtime by at least one order of magnitude.
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1. Introduction epistemic and aleatory uncertainties. Accordingly, alternative methods

have been developed [1,3-5] to alleviate this computational cost.

Estimating the response statistics of building structures is one of the
most important and computationally-intensive steps of regional risk
and resilience analyses. It is computationally intensive given the large
number of buildings that are used in such analysis. Moreover, the ac-
curacy of the response predictions directly affects the accuracy of the
resulting risk/resilience estimates as errors will propagate through the
downstream consequence and recovery models. Both the issues of
computational cost and error are exacerbated given the high non-
linearity of the behavior of structures under scenarios of severe earth-
quakes [1,2] that are of particular importance in risk and resilience
analyses. For instance, such analyses need to model the collapse of
structures as it markedly impacts the social and economic con-
sequences, e.g., casualties and repair costs. This requires a reliable as-
sessment of the nonlinear response of the building structures from
linear elastic range through collapse with a comprehensive treatment of

* Corresponding author.

Among the widely used alternatives to the nonlinear dynamic analysis
of detailed building models are the ‘displacement coefficient method’
[6] adopted by ASCE/SEI 41 [7] and the ‘capacity spectrum method’
[8] adopted by FEMA-NIBS loss estimation methodology and im-
plemented in HAZUS [9]. More recently, a novel variation of the ca-
pacity spectrum method is also developed by Rossetto et al. [10], which
uses inelastic spectra of real ground motion records. Both methods rely
on spectral analysis of an equivalent single-degree-of-freedom (SDOF)
system as a surrogate for multi-degree-of-freedom (MDOF) buildings to
produce an estimate of the roof drift. Another alternative in the lit-
erature is the regression equations that directly compute the responses
given the spectral acceleration and observable building characteristics,
such as height [11,12]. The present paper proposes a novel approach to
develop a surrogate SDOF model with a multi-linear back-bone curve
that captures the response statistics of a detailed MDOF model of the
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Fig. 1. Illustration of the four-step procedure.

building. Bayesian linear regression is employed to develop probabil-
istic models for computing the parameters of the backbone curve. The
proposed surrogate model is shown to significantly reduce the com-
putational cost of the probabilistic response analysis while exhibiting
reasonable accuracy.

Analysis of building structures using SDOF models was first studied
using bilinear spring models with negative post-elastic stiffness re-
presenting P-A effects [13,14]. Through the development of advanced
hysteretic models, this seismic performance characteristic was assessed
by incorporating strength and stiffness deterioration (monotonic and
cyclic alike) in the hysteretic response of SDOF systems [15,16]. The
effect of SDOF model parameters on the collapse capacity was ex-
tensively studied by [17]. The effect of cyclic and in-cycle degradation
on the seismic response of different lateral systems was studied by
FEMA P-440a [18] using SDOF models. These SDOF models were de-
fined with a hysteretic model based on information available in the
literature [19-23]. In these studies, record-to-record (RTR) variability
was considered without incorporation of model uncertainty. However,
studies on the combined effect of model uncertainty and RTR variability
on the collapse capacity of building structures indicate that in-
corporating model uncertainty can significantly alter the estimates of
the collapse capacity [24]. For example, Gokkaya et al. [2] showed that
incorporating model uncertainty can shift the median and dispersion of
collapse fragility curves up to 20% and 70%, respectively. Villar-Vega
et al. [25] used sets of SDOF systems to develop fragility models for
residential areas in South America by assuming the same level of un-
certainty in all SDOF models. The use of simplified equivalent SDOF
models in vulnerability assessment of buildings has also been addressed
by GEM (Global Earthquake Model) [26]. Abthai et al. [27] proposed a
relationship between the strength demands of MDOF systems with that
of equivalent SDOF models with an elastic-perfectly-plastic nonlinear
behavior considering prevailing uncertainties. Recently, several sim-
plified procedures are proposed for incorporating model uncertainty in
the collapse assessment of MDOF buildings [4,28,29,5], which mainly

use pushover-based simplification to predict the collapse capacity.

In the research presented herein, a methodology is proposed for
generating surrogate SDOF models that can mimic the response of
MDOF systems up to the collapse state in a probabilistic context. This
methodology is then used to generate surrogate models for steel special
moment frame (SMF) structures. The probabilistic characterization of
the backbone curve of the surrogate model is given for a practical range
of SMF building heights. To develop the latter, pushover analyses are
conducted on a set of multistory SMF building models generated ac-
cording to model uncertainty in their basic component parameters. The
pushover analysis is performed in accordance with the fundamental
mode of vibration of buildings. Hence, there is an inherent assumption
in the surrogate SDOF model that the dynamic response of the structure
is mostly governed by the fundamental mode of vibration. However, it
should be noted that SDOF models are generally advised in the litera-
ture for estimating drift ratios [30] and the effect of higher modes is
more pronounced in other structural responses such as the base shear.
In order to account for the uncertainty in design specifications, different
SMF building archetypes are designed according to target seismic de-
sign codes. In fact, model uncertainty is taken into account by con-
sidering randomness in the properties of elements of the designed
buildings. The distribution of the input parameters of the surrogate
models is estimated by idealizing force-displacement relationship ob-
tained from pushover analysis of the MDOF building models. The
properties of the surrogate model are provided as a probabilistic func-
tion of the fundamental period of MDOF structures, developed using
Bayesian linear regression [31]. Once the proposed probabilistic sur-
rogate model is developed for a lateral load resisting system, no further
nonlinear analyses at the level of MDOF structure is needed and users
can solely rely on the surrogate model for seismic performance as-
sessment. This technique is in contrast with the probabilistic equivalent
SDOF model proposed by Kosi¢ et al. [5], where a single pushover
analysis is needed for each representative MDOF system considered in
the probabilistic assessment of the collapse capacity.
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The proposed methodology is limited to predicting the roof drift
demand of building structures while ongoing research by the authors
addresses other important responses, such as interstory drift and floor
acceleration. In addition, the methodology presented herein is aimed at
the regional analysis of a portfolio of buildings, and not at detailed risk
analysis of a single building structure; it serves as an alternative to si-
milar approximate methods, e.g., displacement coefficient method and
capacity response spectrum. The proposed models can also be employed
in studies that entail comprehensive parametric analysis of building
structures, such as [24,32,33] among others.

2. Methodology

A four-step procedure is suggested — schematically illustrated in
Fig. 1 - to develop probabilistic surrogate SDOF models that represent a
slew of MDOF models in which prevailing sources of model uncertainty
are incorporated. In the first step, denoted as Step 1, multiple arche-
types are designed based on the suggested conventional/relevant
seismic codes. These archetypes may cover a wide range of practical
designs representing buildings with a specific lateral load resisting
system (e.g., SMFs). Index i is assigned to each archetype, i.e., i € {1, 2
..., N} where N is the number of designed archetypes. Step 2 consists of
conducting pushover analyses on MDOF models representing the ar-
chetypes designed in Step 1; for each archetype, M number of MDOF
models, i.e., M realizations, are generated. Index j is assigned to each
realization, i.e., j € {1, 2 ..., M}. These realizations statistically re-
present the uncertainty in the component models of each archetype
building. Altogether N X M models are generated and for each model, a
pushover analysis using a load pattern consistent with the fundamental
modal shape of the model is conducted. In Step 3, the force-displace-
ment relationship of a surrogate SDOF model for each of the MDOF
models in Step 2 is created using the results of the associated pushover
analysis. In Step 4, the parameters of the force-displacement relation-
ship of the N x M surrogate SDOF models generated in Step 3 are used
to develop Bayesian regression models. These equations probabil-
istically describe surrogate model parameters as functions of building
height. They can be used to generate random surrogate model reali-
zations for probabilistic assessment of the collapse capacity of any
building the design of which falls into the constraints used to generate
the archetypes suggested in Step 1.

Implementation of Step 3 requires a defined procedure for the de-
velopment of the force-displacement relationship for a surrogate SDOF
model from the pushover curve of its corresponding MDOF model. This
procedure is shown in Fig. 2 where the pushover curve associated with

Force-displacement curve (MDOF domain)
Force-displacement curve (SDOF domain)
Idealized force-displacement curve (SDOF domain) - - ----

Roof displacement (MDOF domain)

A

Balanced areas

Balanced areas

Base shear (MDOF domain)

I' x Base shear (SDOF domain)

I" x Roof displacement (SDOF domain)

Fig. 2. Force-deformation idealization of the surrogate SDOF model.
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an MDOF and its surrogate SDOF model are illustrated. The pushover
curve of the MDOF system relates the base shear of the structure to its
roof displacement, shown with gray curve and axes. The force-dis-
placement curve of the surrogate SDOF model, shown with dash curve
and black axes, is generated by transforming the axes of the MDOF
pushover curve using a factor denoted as I —see Eq. (1) — where my is
the mass of k™ story, @y is k™ component of the fundamental mode
shape normalized at the roof height, and N; is the number of stories.

The transformed force-displacement curve is then idealized with a
multilinear backbone curve; see the solid black curve in Fig. 2. The
point on the idealized curve denoted by pair (D., F.) represents the
instance where maximum strength is achieved. The yield point (Dy, F,)
is then obtained by applying two rules: i) balance among the areas
confined between the idealized and the transformed force-displacement
curves from zero to maximum strength, ii) the idealized and the
transformed force-displacement curves sharing the same point at the
strength level that equals to 60% of F,. The ultimate deformation, D,,, is
calculated by balancing the areas confined between the idealized and
the transformed curves from maximum strength up to 20% drop in the
maximum strength of the idealized force-displacement curve. Assuming
that the dynamic response of the structure is mostly controlled by its
fundamental mode of vibration, the period of the surrogate system is
determined using Eq. (2), where m* is the equivalent mass of the first
mode of vibration of the MDOF system and is calculated according to
Eq. (3).

Ny
r— Ekil M@y
- =N 5
Dieer M} (1
[T
T=2r ‘I\m Dy
VB 2
N
= e (3)

Parameters such as overstrength factor, Q, ductility capacity, u,
maximum strength ratio, A", pre-capping deformation ratio, A, post-
capping deformation ratio, Ap", stiffness hardening ratio, a,, and stiff-
ness degrading ratio, @, can be determined from the suggested idea-
lized backbone curve according to Eq. (4). Other parameters of the
surrogate SDOF model, i.e., mass, m, and damping coefficient, &, are
determined to represent the dynamic characteristics of the fundamental
mode of vibration of the MDOF model. To clarify, m can be set arbi-
trarily so long as the period of the structure is set. In addition, ¢ is set at
the value of 0.03 so that it best describes the fundamental damping
ratio of special steel moment frame buildings [34].

o= — B oD e B DD g DD
misa,Designg Dy -F; Dy Dy
L
kl) k(] (4)
Where
F, FE. —F, F. — F,
k() = J; ks = J Y 3 kpc = ‘ “ s Fu = OSE
Dy D, — Dy D, — D, (5)

The hysteretic rule for the surrogate model should represent what is
generally observed in the response of the MDOF structure to seismic
excitation. In this study — and based on the available literature on the
behavior of steel moment frames — we suggest using a peak-oriented
hysteresis model [17]. Additionally, four cyclic deterioration modes are
considered in this model, i.e., deterioration of the basic strength, post-
capping strength, unloading stiffness, and reloading stiffness. Rates of
cyclic deterioration are controlled by the rule that assumes the hys-
teretic energy-dissipation capacity is known and is independent of the
loading history [35]. Based on this rule, the hysteretic energy-dissipa-
tion capacity of a system is defined as in Eq. (6), where E, is the
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Table 1
Design input variables.

Fixed Design Parameters

Seismicity Diaxs Ss = 1.5, 51 = 0.6
Soil type D

Occupancy Office

Material ST52

Diaphragm Rigid

Seismic framing system Perimeter SMF
Design procedure Response spectrum analysis
Live load (N/m?) 2400

Partitions (N/m?) 720

Exterior walls (N/m?) 1200
Height of the first story 45m
Height of other stories 3.5m

Variable Design Parameters

Ratio of gravity to seismic tributary area, Agraviry
/Aseismic

Number of stories, N

Span to height ratio, s/h

Dead load (N/m?), L,

0.167, 0.125, 0.100

3,6,9, 12 and 15
20,15
4309, 5267

hysteretic energy-dissipation capacity, F,D,, is twice the elastic energy
at yielding, and vy is an adjustment factor whose suggested value is
between 25 and 100 [17]. In this study, the proposed procedure is
applied to steel SMF buildings. The details are described in the fol-
lowing sections.

E, = yED, (6)

3. Building archetypes

Sixty steel SMF buildings are designed in accordance with modern
seismic design codes [36-38]. The buildings are different in height,
geometry, and gravity loading to reflect the practical range of design
parameters. Table 1 shows the design variables for the building ar-
chetypes and their assigned values. The archetypes include buildings
with 3, 6, 9, 12, and 15 stories; the first story height of each building is
4.5 m and all other stories are 3.5 m in height. Span to height ratio, s/h,
gravity load, Lp, and the ratio of gravity to seismic tributary area,
Agravity/Aseismic, Vary as suggested in Table 1. Different combinations of
these three parameters (two values for s/h, two values for Lp, and three
values for Agravity/Aseismic) lead to 12 configurations for each building
height. Plan views of the archetypes are shown in Fig. 3. In this figure,
seismic frames are depicted with bold lines while gravity frames are
shown in dash lines. Plan-1, Plan-2, and Plan-3 are associated with
Agravity/Aseismic 0f 0.167, 0.125 and 0.1, respectively, in the east-west
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direction. A naming scheme with a format as N-a-b-c is introduced to
define the archetypes. In this format, N; shows the number of stories. a
takes values of 1 and 2; 1 for s/h = 2 and 2 for s/h = 1.5. Similarly, b
takes values of 1 and 2 for L, = 4309 N/m? and L, = 5267 N/m?
respectively. Finally, ¢ takes values of 1, 2, and 3, for Plan-1, Plan-2,
and Plan-3, respectively.

Two-dimensional analytical models of MDOF structures are devel-
oped in Open System for Earthquake Engineering Simulation Platform
(OpenSees) [39]. Partial resistance of gravity frames in the lateral be-
havior of the structure is also considered in the analytical models [40].
The nonlinear behavior of the structural systems is modeled using
concentrated plasticity models. In this approach, beam-column ele-
ments are idealized with an elastic element and two plastic hinges at
both ends. The panel zone is modeled as a rectangle composed of
multiple rigid elements connected with hinges; a rotational spring at
the upper right corner is added to capture the shear behavior of the
panel zone [41]. It should be noted that all analytical models have some
limitations. Referring to the models used in this study, real-time var-
iations of axial-moment interaction and plastic hinge length are dis-
regarded and the effect of axial force on moment capacity of column
elements is approximately considered by reducing the moment capacity
of column elements. The concept of structural idealization is illustrated
in Fig. 4 for Plan-1. Due to symmetry in the plan of the structure, one
seismic frame with half of the gravity frames, i.e., one out of two
gravity frames in Plan-1, are considered in the analytical model.

Modified Ibarra-Medina-Krawinkler (IMK) hysteretic model [42] is
used to capture the cyclic deterioration of plastic hinges. Fig. 5 shows
the moment-rotation relationships of plastic hinges for SMF and gravity
frames. The shape of the backbone curve for SMF elements is defined by
six parameters; see Fig. 5(a): yield moment, M,, ratio of peak to yield
moment, M./M,, residual moment, M,, effective initial stiffness which is
controlled by the modulus of elasticity, E;, plastic rotation capacity, 8,
and post-capping rotation capacity, 8,.. The values for these parameters
are determined based on the suggestion of [43] for monotonic behavior.
Additionally, deterioration parameter, A, which defines the energy
dissipation capacity for cyclic stiffness and strength deterioration is
determined based on [44]. Beam-column connections in gravity frames
are designed as conventional single-plate shear connections by con-
sidering a 30 mm gap between the beam end and the column face. A
typical moment-rotation relationship for a plastic hinge in the gravity
frames is shown in Fig. 5(b). AISC 341 [37] prohibits the placement of
shear studs in protected zones. Therefore, beam-slab composite action
at beam ends is arrested and moment-rotation relationship for beams
are similar in positive and negative directions. For the panel zone
spring, the tri-linear hysteretic behavior proposed by [45] is used.

oo — i

P bbb

T e e o o B

: S0 A O P O O I A
é Plan-1 Plan-2 Plan-3

East-west

Fig. 3. Plan view.
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4. Parameter uncertainties

The seven parameters defining the backbone curve of plastic hinges
are considered as random variables. The statistical characteristics of
these variables are obtained from test data for beam and column
components [24,43]. In addition to hinge model parameters, modulus
of elasticity and gravity loads are also treated as random variables.
Dead load, Lp, is assumed to be normally distributed with a bias factor,
i.e., ratio of mean to nominal value, of 1.05 and a coefficient of var-
iation (CoV) of 0.1; live load, L;, has a Gamma distribution with a bias
factor of 1.00 and CoV of 0.25 [46,47]. Table 2 shows the CoV of all
random variables.

In addition to the variability of each modeling parameter, the cor-
relation between parameters is also taken into account in the un-
certainty analysis. In this study, rotation and deterioration parameters
within an element, i.e., intra-element, are assumed to be correlated; the
correlation coefficients of these parameters are determined based on
test data [48]. Moreover, a perfect correlation is assumed among si-
milar parameters of different beam elements, i.e., inter-element. A si-
milar assumption is made for parameters associated with column ele-
ments. This assumption is plausible as these elements are built by the
same contractor and are likely to share similar behavior [2,50]. Table 3
shows the correlation coefficients among the parameters used in the

Moment
>

(a)
M, |----_
M, :
| I
: 0, 1 Ope
| |
I I 1
I 1 [N K%
I 1 1 >
gy 0, 0, 0, Chord rotation

Table 2

Coefficient of variations of random variables.
Steel modulus of elasticity E, 0.05
Dead load Lp 0.10
Live load L; 0.25
Plastic rotation of beam Oy 0.30
Post-capping rotation of beam Ot 0.30
Plastic rotation of columns 0, 0.39
Post-capping rotation of columns Opec 0.14
Residual strength of beams M., 0.00
Residual strength of columns M, 0.27
Cyclic deterioration of beams Ap 0.36
Cyclic deterioration of columns A, 0.36
Yield moment of beams M, 0.10
Yield moment of columns My, 0.10
Peak moment of beams M, 0.10
Peak moment of columns M, 0.10

pic

modeling of MDOF systems in this study.

The Monte Carlo sampling method is employed to propagate the
uncertainty in order to study the effect of model uncertainty on the
global nonlinear behavior of SMF buildings. For this purpose, 5040
random realizations for each building height, i.e., 420 realizations
times 12 building archetypes, are generated. This number of random

Moment
>

(b)

>

o 0 0 Chord rotation

y c u

Fig. 5. Moment-rotation relationship for plastic hinges of (a) moment frame, and (b) gravity frame.
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Table 3
Correlation coefficients between random variables.
Op.i Ope,i Ai
0,,i 1 0.69 0.44
Opc.i 0.69 1 0.67
A 0.44 0.67 1

realizations is a minimum that leads to a standard error not larger than
2% in the estimation of the notable correlation coefficients between the
parameters of the surrogate model, i.e., those that exceed 0.5 [49].
Pushover analysis is then conducted on a total number of 25,200
sampled models using a lateral load pattern proportional to the fun-
damental mode of vibration.

Fig. 6(a) and (b) show the results of pushover analyses of two ar-
chetypes, a 6-story building (6-1-1-1) and a 12-story building (12-1-1-
1), respectively. The ordinates are normalized by the first mode
equivalent mass of the structures, m*. In these graphs, gray curves show
the force-displacement relationships of the randomly generated frames.
The black solid and dash lines show the median and the 16th and 84th
percentiles of the results, respectively. The median of all pushover
analyses for all archetypes are displayed in Fig. 6(c). This figure shows
that the ductility capacity as well as the maximum normalized strength
decrease when increasing the number of stories. The decrease in the
ductility capacity stems from the significant P-A effect in taller build-
ings. As expected, taller buildings require lower design base shears, as
shown in Fig. 6(c). More details on the distribution of pushover curves
are presented in the next section.

5. Model inference

Force-displacement curves obtained from probabilistic pushover
analyses are idealized to form the backbone curve of surrogate SDOF
models. For each randomly sampled MDOF structure, one surrogate
SDOF model is developed. Statistical analysis of parameters of surro-
gate SDOF models will guide the generation of closed-form equations to
probabilistically describe the parameters of the surrogate SDOF model
as functions of building height.

Recalling from previous sections, eight parameters are introduced in
the multilinear backbone curve of the surrogate model shown in Fig. 2:
Ty, Q, 4, AF5, Ap5, Ap", a; and a.. We aim at selecting a subset of these
parameters that uniquely define the backbone curve with no re-
dundancy. To this aim, two parameters in set-1= {u A, Ap°, a;} and a

Engineering Structures 212 (2020) 110276

single parameter in set-2= {Ap", a.} are needed as a minimum, in ad-
dition to T, and €, to define the backbone curve of a surrogate model.
Among the parameters in set-1, y and Ap° carry similar information;
therefore, only one can be selected in the final set. We employ CoVs and
correlations of the parameters as qualification indices to select the final
set of defining parameters of the surrogate model. Fig. 7 shows the CoVs
of parameters in set-1 and set-2. According to these figures, it is con-
cluded that u A", and Ap" are the most stable parameters.

Correlations between all parameters of the equivalent model for
buildings with 6 and 12 stories are presented in Table 4. The cells of the
table are color-coded based on the value of the correlation coefficients
such that a darker color indicates a higher correlation. It is observed
that from set-1, u and A;° have the lowest correlations compared with
the other two parameters in this set. On the other hand, no obvious
difference can be seen between the correlations of Ap" and other
parameters compared to a.. The same conclusion can be made from the
parameter correlations for other buildings. Considering both CoVs and
correlations, Ty, €2, u Ag" and Ap" are selected as the final set of input
parameters for defining surrogate models. The statistical information of
these parameters is presented in the following.

Fig. 8 shows the variation of surrogate model parameters for the
considered range of SMF archetypes with the number of stories. For
each parameter, boxplots correspond to the variation of each parameter
in the range of 16th to 84th percentile. The solid black lines indicate the
median of the fitted lognormal distribution from the 5040 data points.
The dash lines indicate the range between the minimum and the
maximum.

The far-left graph in Fig. 8 shows the variation of the fundamental
period, T, with the number of stories, N;. The observed relationship
between T; and the building height, H = 3.5(N; — 1) + 4.5, can be
defined according to the following equation:

T, = 0.187H"75 (7)

This equation is plausible as it generates natural periods close to
what is reported by Zareian et al. (2010) for an independent set of SMF
archetypes. Fig. 8 shows that i and A" decrease as the structure height
increases. This observation corroborates illustrations in Fig. 6(c) in
which the nonlinear deformation capacity of the structure decreases by
increasing the number of stories because of larger P-A effects. Another
observation from Fig. 8 is that the overstrength factor, €2, generally
decreases as the building height increases. This observation is also
corroborated in [51,52]. However, the change in Q from 3-story to 6-
story buildings does not follow this expected trend. To explain this

50" percentile (Median) 0.40

16" and 84" percentiles - - -

=

(98]

=]
T

Normalized
base-shear [g]

Normalized base-shear [g]
(=]
(3=
=]

—=— 3-Story
(© —w— (-Story
mesnmasas 9-Story
----- 12-Story |
15-Story

L

0.20
(b)
= 28015
Sy coois L 0.10
=] % \\ ‘|
Z 2005 o
0 o 0
0 0.025 0.05 0.075 0.1 0
Roof drift ratio

0.10
Roof drift ratio

0.15 0.2

Fig. 6. Results of the probabilistic pushover analyses for (a) 6-story (6-1-1-1), (b) 12-story (12-1-1-1), and (c) median of all archetypes shown in the domain of the

surrogate model.
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Fig. 7. Coefficients of variation of the surrogate model parameters.
Table 4
Coefficients of correlation between backbone parameters of the surrogate model.
6-Story 12-Story
nooQ A woAy A a o T Q Ay wooAy Ay e o
7 e 08 04 03 -00 03 01 —-0.0 1.0 08 04 06 04 06 06 04
Q B 068 050 0.1 05 0.1 0.2 1.00. 04 06 03 06 —06 —03
i 1.0 03 -00 03 03 0.1 1.0 -03 0.1 -03 06 —00
u 107 0.1 7710° =0.7 0.1 1.00 04 1.0 -08 —0.5
i Sym. Lo -0.1 —-0.0 =0.9 Sym. iy 0.5 —0.5 509
i 1.0 0.7 0.1 1.0 0.8 —05
s 1.0° 0.0 1.0 0.5
e 1.0 1.0

contradiction, it should be noted that two different drift limits are
suggested for 3- and 6-story buildings. In ASCE 7-16 [38], a larger drift
is allowed for buildings shorter than 5-story compared with taller ones,
which can cause a smaller overstrength factor in a 3-story building
compared to a 6-story building. As a final observation, we conclude that
A7 is not dependent on the number of stories; therefore, it is considered
as a constant for all building heights.

The probabilistic characterizations of surrogate model parameters
are summarized in Table 5. In this table, medians and logarithmic
standard deviations, 0y, and correlation coefficients of the joint log-
normal distributions of these parameters are provided. It has been
shown that the lognormal distribution is a good representative of the
distribution of structural modeling parameters [48]. Because Af is al-
most constant for the entire range of the considered number of stories,
the correlation of A" with other parameters is disregarded. With the
information presented in Table 5, the probabilistic surrogate model is
determined given the number of stories. For number of stories other
than the values reported in this study, one can find the medians of the
model parameters by interpolation. However, determining the corre-
lation coefficients and CoVs are not straightforward. To remedy, a
prediction of the surrogate model parameters are given here in a

Bayesian linear regression framework [53-55]. In particular, Q, u, and
Ap" are regressed against the fundamental period, T;. For this purpose,
the dataset consisting of 25,200 realizations of Ty, Q, y and Ap" re-
sulting from the idealization of pushover curves presented previously is
employed. Multiple functional forms that included various transfor-
mations of the design parameters Lp, s/h and Agravity /Aseismic, including
linear and logarithmic, are examined. The examined functional forms
are reduced through a stepwise model reduction [53], in which at every
step, the regressor with the largest coefficients of variation is deemed
inconclusive and eliminated from the model. Among all functional
forms, the ones that best described the data and passed the statistical
diagnostics test are as follows:

Inp =6y + 014nT} + g (8)
lnﬁﬁ = 90‘2 =+ QlyzlnT] + & (9)
InQ =655 + 8137 + & where Q = Q-S, pesign (10)

In these equations, 6;; and ¢; are model parameters and model er-
rors, respectively. Bayesian linear regression yields the probability
distribution of the model parameters and the model error [31] and
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Fig. 8. Surrogate model parameters.
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Table 5
Properties of the joint lognormal distribution of the surrogate model parameters.
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Coefficients of correlation

Median Ol T )7 lDu Q
3-Story 1.22 0.06 1.0 -0.2 0.1 -0.8
6-Story 1.78 0.06 1.0 -0.3 0.0 —0.8
T 9-Story 245 0.06 1.0 -0.5 0.1 —0.8
12-Story 3.15 0.06 1.0 —0.6 -04 —0.8
15-Story 3.82 0.06 1.0 —0.3 -0.5 —0.8
H
lD“
12-Story 2.29 0.13 1.0
A5Story 196 | 0.13 Lo
iy All 1.16 0.04 —
Table 6 Table 7

Second-moment statistics of the Bayesian regression models before the elim-
ination of high correlations.

Second-moment statistics of the Bayesian regression models after the elimina-
tion of high correlations.

Mean CoV (%) Correlation coefficients Mean CoV (%)
u Ap* Q' n Apt @ O,; 01, u Ap* Q’ L5 n Ap* Q L5
B0, 218 211 —093 0.16 0.24 0.15 1.00 — 6, -0.97 —-0.95 —1.00 0.75 0.40 0.59 0.15 0.11
0y -097 -095 -1.00 040 0.59 0.14 -0.89 1.00 O 0.25 0.37 0.10 0.07 0.44 0.44 0.44 0.44
O 0.25 0.37 0.10 0.44 0.44 0.44 R-Factor 0.84 0.73 0.97 0.95
R-Factor 0.84 0.73 0.97

hence, results in a probabilistic model for the backbone parameters. In
particular, 6;; have a joint t-distribution and &; are normally distributed
with zero means and standard deviations ¢,;. The second-moment sta-
tistics of model parameters and model errors are provided in Table 6.
From this table, it is observed that in each model, the intercept, 8y, ;, and
the slope, 0, ;, are highly correlated. A high correlation between 6, ; and
6, ; indicates that these two explanatory parameters describe the same
uncertainty and therefore, can be combined [53]. In other words, 6y ;
can be replaced by its conditional mean given 6, ;, as follows:

_ Teo,1 ]
el),i = P”leg!‘ + PGU,J,QU U_su (81|r - #81‘1) (1])

Replacing Eq. (11) in Egs. (8)-(10) leads to the following final
model for predicting the backbone parameters:

Inu = +1.404 + 8, ,(InT; — 0.80) + g (12)
lndp = +1.346 + 6, ,(InT; — 0.80) + &, 13)
InQ = —1.817 + 6, ;(InT; — 0.88) + & where Q = Q-S, pesien (14)

A second round of Bayesian linear regression is performed with
these reformulated functional forms, i.e., Eqgs. (12)-(14). The second-
moment statistics of the model parameters and model errors are shown
in Table 7. The model successfully passes all the diagnostic tests of
Bayesian linear regression. In particular, the model shows no sign of
non-normality and heteroscedasticity of residuals. In addition, the CoV
of the model parameters is very small, which indicates that the re-
gressors are conclusive for this model [53]. With the proposed model,
one can build the probabilistic surrogate model knowing the

fundamental period of the system. If the fundamental period is not
known, an approximation of T; can be determined using building
height and the relationship given in Eq. (7).

Following the same procedure, the fundamental period of the
structure can also be formulated in the Bayesian linear regression fra-
mework. To do so, T; is regressed against the total height of the
structure, H. Eq (15) shows the resultant regression model that de-
scribes T; as a function of H. The second-moment statistics of the model
parameters and model errors is shown in Table 7

InT, = 4+0.704 + &, 4(InH — 3.18) + ¢4 (15)

6. Validation

The validity of the proposed surrogate model in predicting the
nonlinear response of SMF buildings is examined. The validation is
assessed with two approaches. For this purpose, two 6- and 12-story
building archetypes (6-1-2-1 and 12-1-2-1) are used, which has the
following configurations; s/h = 2, L, = 5267 N/m?, and Plan 1. In the
first approach, the collapse capacity of MDOF models is compared to
that of surrogate models. To this end, incremental dynamic analyses
(IDA) are conducted on two MDOF frames of 6 and 12 stories, and their
surrogate models. IDA involves nonlinear time-history analysis of the
structure with a set of ground motions increasingly scaled until collapse
occurs [15]. In this assessment, the FEMA P-695 [56] set of 44 far-field
ground motion records are utilized. Fig. 9 shows the pushover and the
idealized backbone curve of the mean MDOF models for the two
buildings in the domain of the surrogate models. The collapse capacity
of the mean SDOF models are determined for three levels of cyclic
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Fig. 9. Pushover results and the idealized backbone curves for (a) 6-Story (6-1-2-1) and (b) 12-Story (12-1-2-1) building in the domain of the surrogate model.
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Fig. 11. Collapse capacity fragility curves for (a) 6-Story (6-1-2-1) and (b) 12-Story (12-1-2-1) buildings.

deterioration, as follows: slow, denoted by y = 100; medium, denoted
by y = 50; and rapid, denoted by y = 25 [17].

Fig. 10 compares the IDA results for the two MDOF frames and their
surrogate models with medium cyclic deterioration, i.e., y = 50. The
first validation approach features surrogate models that are obtained
directly from the pushover analysis of the associated MDOF frames,
ignoring the uncertainty in the model parameters, to calibrate the level
of cyclic deterioration for the surrogate model. For comparison, IDA
analyses are also conducted in which the backbones are obtained from
the median values shown in Rows 2, 4, 7, 9, 12, 14, 17, 19, and 21 of
Table 5 for 6- and 12-story buildings. The results are reported with blue

curves in Fig. 10. As seen, the use of the parameters suggested in
Table 5 generates IDA curves that reasonably agree with those obtained
from the direct pushover analysis of the MDOF frame. The ordinate in
the plots of this figure represents the ratio of the spectral acceleration of
the scaled ground motions to the spectral acceleration at the level of
maximum considered earthquake, Sy, for the seismic design category
Dyhax in accordance with ASCE 7-16 [38], and the abscissa represents
the roof drift ratio (RDR). In addition to the individual IDA curves for
the MDOF frame shown by thin gray lines, the 16th, 50th, and 84th
RDR percentiles are shown by thick gray and black lines for the MDOF
and the surrogate systems, respectively. The percentiles are calculated



S. Vaseghiamiri, et al.

by ranking the drift data at multiple levels of normalized intensity
measure, Sy(T;)/Syr- As illustrated in Fig. 10(a), given for instance at S,
(T1)/Swmr of 1.5, 16% of the records produce approximately drift ratios
less than 0.032, 50% of the records drift ratios less than 0.05, and 84%
of the records drift ratios less than 0.087. Comparison among the IDA
percentiles of the MDOF and the surrogate systems indicate that the
surrogate model closely mimics the roof drift ratios of the MDOF frames
for the range of linear response to the collapse of the test structures.

Fig. 11(a) and (b) respectively show the cumulative density func-
tions (CDF) of the collapse capacity obtained using MDOF frames,
shown by solid lines, and the surrogate models with backbone curves
obtained directly from the pushover curve of MDOF frames with three
levels of cyclic deterioration for the 6- and 12-story buildings, shown by
dash lines. Here, collapse capacity is defined as the scaled spectral ac-
celeration at the fundamental period, S, (T;), normalized by Sy at
which IDA curve flattens to 10% of its initial slope, or roof drift exceeds
10%, whichever occurs first. It is observed from Fig. 11 that the sur-
rogate model with medium cyclic deterioration is the one among three
that best predicts the collapse capacity of the MDOF frame.

In the second validation approach, it is examined whether the
probabilistic surrogate model can predict the roof drifts of MDOF
frames considering both the RTR variability and the uncertainties in the
structural model. For this purpose, buildings with same configurations
as the ones used in the previous approach (archetypes 6-1-2-1 and 12-1-
2-1) are utilized. For the uncertainty analysis, the Latin hypercube
sampling method is utilized to generate ensembles of random MDOF
and surrogate models. Using probabilistic characteristics of model
parameters for MDOF and surrogate models provided in Tables 2, 3,
and 5, 132 realizations are generated for MDOF and surrogate models
for each of the 6- and 12-story buildings. In particular, parameters of
surrogate models are generated according to the joint lognormal dis-
tribution with the statistics depicted in Table 5 for the 6- and 12-story
buildings. Based on the results shown in Fig. 11, medium cyclic dete-
rioration is considered for all surrogate models. The sampled model
realizations are each matched randomly with one of the 44 ground
motions of FEMA P-695, i.e., each ground motion is used three times.
The procedure is repeated for several values of S, (T,), which represent
multiple levels of seismic hazard. Shown in Fig. 12 are the resulting
probability distributions of RDR for MDOF and surrogate systems at
different hazard levels. In this figure, the probability density function
(PDF) of RDR is shown in light and dark gray for MDOF and surrogate
systems, respectively. The median RDR and the 16th and 84th per-
centiles are also displayed in Fig. 12 by solid and dash curves, respec-
tively. The probability distributions and their statistics are obtained
through a maximum likelihood analysis. In this analysis, a likelihood
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function is established by left-censoring the data points at RDR = 10%
in accordance with [2]. That is, the likelihood function is the product of
the PDF for the data points with RDR less than 10% and the com-
plementary CDF of the data points with RDR larger than 10%. As such,
the exact values of RDRs larger than 10% are not utilized when esti-
mating the parameters of the distribution. To emphasize that the data
points with RDR beyond 10% are left-censored, the corresponding area
in Fig. 12(a) is colored with gray. As seen, not only the median, but also
the 16th and 84th RDR percentiles obtained by the proposed surrogate
model closely follow those of the MDOF frame. In addition, the distance
between the 16th and the 84th percentiles is slightly wider for the
proposed surrogate model compared to that of the MDOF frame. This
indicates that the predictions of the proposed surrogate model are as-
sociated with more uncertainty, which is also reflected in the wider PDF
of RDR obtained by this model. Hence, the proposed surrogate model
correctly captures the additional uncertainties that are introduced in
the prediction due to simplifying a detailed MDOF model into a sur-
rogate SDOF model. Moreover, comparing the running time of the
surrogate model with the MDOF frame shows a 95% reduction in the
computational cost which corroborates the efficiency of the surrogate
model. This amount of reduction in runtime is a rough estimate. As an
example, on average, a nonlinear time history analysis of a 6-story
MDOF moment frame model with average nonlinearity would take
about 30 min while the same analysis using the proposed surrogate
model takes about one minute. The proposed surrogate model has an-
other advantage over the existing simplified models that estimate the
building response, e.g., the capacity spectrum method and the under-
lying capacity curves proposed by FEMA-NIBS [9] in HAZUS. The latter
approach relies on “average” capacity curves for a building type. For
instance, FEMA-NIBS offers an average capacity curve for mid-rise steel
moment frames. However, that curve actually belongs to a 5-story
building, and it is hence assumed that all buildings that qualify as mid-
rise steel moment frames follow the capacity curve of a 5-story frame.
To remedy, one could produce a large library of fragility curves for
various building heights and other parameters. In contrast, the pro-
posed surrogate model can be utilized for a continuous range of para-
meters because intermediate cases can be regressed. In the final model
that is proposed in this study, one building-to-building variability is
explicitly considered in the surrogate model, and that is the building
height. As mentioned before, the initial regression model included other
regressors, i.e., various transformations of A avity/Aseismic» $/h, and Lp,
that were deemed inconclusive through a model reduction process.
Hence, these regressors were eventually discarded from the model and
the resulting uncertainty was accounted for in the standard deviation of
the model. The intention here is to illustrate the process and exercise it
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Fig. 12. Comparison of the 16th, 50th, and 84th percentile of roof drift ratios for MDOF and surrogate systems for (a) 6-Story (6-1-2-1) and (b) 12-Story (12-1-2-1)
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for regular-in-plan and regular-in-height steel moment-resisting frames.
Future research will address other parameters, such as material prop-
erties and irregularities.

7. Numerical example 1

The application of the suggested probabilistic surrogate model is
explained in a low-rise building. For this purpose, a 4-story SMF
building studied by Kazantzi et al. [57] is investigated. The building is
designed for Los Angeles area and has a two-bay moment frame in the
north-south direction. The first story of the building has a height of
4.6 m, and other stories are 3.7 m each. The fundamental period of the
structure is calculated using Eq. (15), as follows:

T, = et0704+075(n(46+3:37)-318) = 1 47 (16)

Using Egs. (12)-(14) and the calculated fundamental period,
median values of u, Ap", and Q’ are estimated as 6.07, 5.70, and 0.27,
respectively. The median value for Az is equal to 1.16 according to
Table 5. By considering a unit mass for the surrogate model, other
parameters of the system are computed, see Egs. (17)-(19). In these
equations, W is the weight of the surrogate model. IDA is performed
using the same methodology as in [57], which employs an efficient
incremental record-wise Latin hypercube sampling [58]. In this
method, each model realization is paired with a single ground motion
that is also randomly selected from a set of records. A sample of 320
realizations of the surrogate model is produced by randomly generating
the parameters and the error term of the proposed Bayesian linear re-
gression models that were previously presented in Table 7. A set of 60
ground motions were used in IDA. These are records on firm soil sites
from events with a moment magnitude in the range of 6.5-6.7 and a
distance to the fault rupture in the range of 13.3-31.7 km [59].

, E_027TW
F = Supesin@ W = Q-W = 027W, F, = =% = =
e a.Design Y A;:' 1.16 a7
2
ko = (2‘7] W15
) g 1
B Fy _ _ _ _ Au —
Dy_k70—0-13 m, D = uDy = 0.75 m, Dy = D + A = 1.46 m
(19

Fig. 13 compares the IDA curves of the MDOF frame as reported in
[571 with the results of the proposed surrogate model. In this figure,
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Fig. 13. Comparison of the IDA curves obtained by the proposed surrogate
model and the MDOF frame in [57].
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black dash and solid lines represent the results from the IDA analysis of
the original MDOF frame, while the gray lines show the results from
IDA analysis of the surrogate model. In order to calculate the drift ratio
of the surrogate systems, the displacement response of the model is
divided by the effective modal height, H = 0.7H. As observed in
Fig. 13, the proposed surrogate model well predicts the behavior of the
MDOF frame even though the data used to create the proposed model
comes from MDOF frames with a different design than the one adopted
here from [57] for comparison. In addition, the proposed surrogate
model reduced the computational cost substantially, as was shown in
the previous section.

8. Numerical example 2

In this section, the proposed methodology is applied to a mid-rise
building (i.e., 12-story) in which higher modes of vibration have a more
pronounced effect on the seismic response. The structure was originally
designed as a part of a NIST research project [52]. As the surrogate
model represents SMF buildings designed according to the latest revi-
sions of design codes, i.e., [36-38], the building is redesigned here to
address the changes in the design codes. The plan configuration is
shown in Fig. 14. In this figure, the bold lines indicate the moment
frames that carry lateral forces. The height of the first story is 4.57 m,
and the height of all other stories is 3.96 m. The gravity load consists of
a uniformly distributed dead load of 4309 N/m? over each story, a
cladding load of 1200 N/m? as a perimeter load, a live load of 960 N/
m? on the roof, and a live load of 2400 N/m? on all other stories. Other
design assumptions are in accordance with Table 1, which was pre-
sented previously. According to [38], the response modification factor,
R, and the deflection amplification factor, Cg4, are considered to be 8 and
5.5, respectively. The code-based period, T.oqe, calculated according to
Section 12.8.2 of [38], is 2.25 s, which results in a seismic response
coefficient, C;, of 0.044. The member sizes for the redesigned moment
frame in the east-west direction are summarized in Table 8. The ana-
lytical model for the redesigned building comprises moment frames and
gravity frames in the east-west direction. The components of the system
are modeled as previously described for the considered archetype
buildings. The fundamental period of the analytical model is 3.18 s.
Using Egs. (12)-(15), the median values for the parameters of the
surrogate model are calculated as follows (in accordance with Tables 7
and 5):

Tj = et0704+075(In(4.57+11x396)-3.18) — 3 4 (20)
"= 21.4()4—0.97(.[”1"1—(].8) = 2.68 (21)
/115! = pl.346-095(InTi—0.8) — 7 55 (22)
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Fig. 14. Plan configuration of the 12-story building [52]
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Table 8
Member sizes for the moment frame in east-west direction.

Story  Elevation (m)  Beam size Exterior column size  Interior column size
12 48.13 24 x 84 24 x 94 24 x 131
11 44.17 24 x 84 24 X 94 24 x 131
10 40.21 27 X 94 24 X 94 24 x 162
9 36.25 27 x 94 24 x 131 24 x 162
8 32.29 27 x 114 24 x 131 24 x 207
7 28.33 27 x 114 24 x 146 24 x 207
6 24.37 27 x 114 24 x 146 24 x 207
5 20.41 30 x 116 24 x 192 24 x 229
4 16.45 30 x 116 24 x 192 24 x 229
3 12.49 30 x 116 24 x 250 24 x 229
2 8.53 30 x 116 24 x 250 24 x 229
1 4.57 30 x 116 24 x 306 24 x 229

Q = -1 817-(nTi-088) — 115 (23)

AF =116 (24)

A sample of 44 realizations of surrogate model is produced by
randomly generating the model parameters and the model error terms
of the proposed Bayesian linear regression models that were previously
presented in Table 7. For comparison, Fig. 15 shows the pushover curve
of the analytical model along with cloud of randomly generated back-
bone curves of the surrogate model. The curves are plotted in the do-
main of surrogate model and the ordinate is normalized with the first
mode equivalent mass of the structure, m*.

The IDA analysis is conducted on the analytical model of the MDOF
moment frame structure and the surrogate model considering both RTR
variability and model uncertainty. For the IDA analysis, the 44 far-field
record set of FEMA P-695 [56] is utilized, each randomly matched with
the 44 randomly generated MDOF frames and surrogate models. Fig. 16
shows a summary of the IDA analyses. In this figure, light gray curves
show the individual IDA curves for the MDOF structure. In addition, the
16th, 50th, and 84th percentiles of roof drift ratio are shown by thick
gray and black lines for the MDOF and surrogate systems, respectively.
The percentiles are calculated as described earlier. The drift ratio of the
surrogate model is the ratio of the maximum displacement response of
the model to the first modal height of the building. The reasonable
agreement between the IDA results for MDOF and surrogate system
suggests that the surrogate model estimates the roof drift ratios of taller
buildings with an acceptable level of accuracy.
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Fig. 15. Force-displacement relationship of the 12-story building and the cloud
of randomly generated surrogate models shown in the domain of surrogate
models.
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Fig. 16. Comparison of the IDA curves obtained by the proposed surrogate
model and the 12-story MDOF frame.

9. Conclusion

This paper puts forward a novel methodology to develop a prob-
abilistic surrogate SDOF model with multilinear backbone curve as a
representative for MDOF systems. The proposed surrogate model proves
to be an efficient substitution for the MDOF structure for probabilistic
prediction of the roof drift ratio of the structure from the linearly elastic
range through collapse. The proposed approach significantly alleviates
the computational burden of large-scale seismic risk and resilience
analyses and comprehensive parametric studies while exhibiting rea-
sonable accuracy. To showcase the proposed methodology, 60 distinct
SMF buildings, representing a practical range of design parameters and
various numbers of stories, are designed. These buildings are then
subjected to probabilistic pushover analyses to produce 25,200 reali-
zations of pushover curves. An idealization method is introduced and
employed to transform each pushover curve into one realization of the
multilinear backbone curve of the surrogate model. Next, the resulting
25,200 backbone realizations are used to create Bayesian linear re-
gression equations that predict the key parameters of the backbone
curves given the fundamental period of the MDOF structure. The re-
gression is naturally valid within the bounds of their underlying da-
taset, here, for plan-symmetric structures with periods in the range of
1 ~ 5 s. The proposed model is validated by comparing the response
statistics of detailed MDOF models and those of the corresponding
surrogate models. The comparison shows that the proposed surrogate
model can closely mimic the nonlinear behavior of the MDOF structures
up to collapse. In addition, the IDA curves of an MDOF frame from the
literature are compared against those obtained from the proposed
model. The comparison proves that the proposed model well captures
the behavior of the MDOF frame even though the studied structure is
not from the test structures used to develop the surrogate model. The
proposed methodology can be extended to other construction classes.
Special attention to detail should be dedicated when applying the
suggested methodology to other construction classes. For example,
idealization of backbone curves for the surrogate model of, say, re-
inforced concrete shear wall structures, may require a deviation from
what is used herein for steel moment frame structures. The hysteretic
and damping model that best describes the general nonlinear behavior
of the system would be another critical issue.
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