
UC Davis
UC Davis Previously Published Works

Title
A Bacterial β1–3-Galactosyltransferase Enables Multigram-Scale Synthesis of Human Milk 
Lacto‑N‑tetraose (LNT) and Its Fucosides

Permalink
https://escholarship.org/uc/item/40f0v502

Journal
ACS Catalysis, 9(12)

ISSN
2155-5435

Authors
McArthur, John B
Yu, Hai
Chen, Xi

Publication Date
2019-12-06

DOI
10.1021/acscatal.9b03990
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/40f0v502
https://escholarship.org
http://www.cdlib.org/


A Bacterial β1–3-Galactosyltransferase Enables Multigram-Scale 
Synthesis of Human Milk Lacto-N-tetraose (LNT) and Its 
Fucosides

John B. McArthur†, Hai Yu†, Xi Chen*

Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, 
United States

Abstract

β1–3-Linked galactosides such as Galβ1‒3GlcNAcβOR are common carbohydrate motifs found 

in human milk oligosaccharides (HMOSs), glycolipids, and glycoproteins. Efficient and scalable 

enzymatic syntheses of these structures have proven challenging due to the lack of access to a 

highly active β1‒3-galactosyltransferase (β3GalT) in large amounts. Previously reported E. coli 
β3GalT (EcWbgO) has been identified as a limiting factor for producing a β1–3-galactose-

terminated human milk oligosaccharide lacto-N-tetraose (LNT) by fermentation. Here we report 

the identification of an EcWbgO homolog from C. violaceum (Cvβ3GalT) which showed a high 

efficiency in catalyzing the formation of LNT from lacto-N-triose (LNT II). With the highly active 

Cvβ3GalT, multigram-scale (>10 gram) synthesis of LNT from lactose was achieved using a 

sequential one-pot multienzyme (OPME) glycosylation process. The access to Cvβ3GalT enabled 

enzymatic synthesis of several fucosylated HMOSs with or without further sialylation including 

LNFP II, S-LNF II, LNDFH I, LNFP V, and DiFuc-LNT. Among these, LNFP V and DiFuc-LNT 

would not be accessible by enzymatic synthesis if an active β3GalT were not available.
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β1–3-Linked galactosides such as Galβ3GlcNAcβOR are common carbohydrate motifs 

found in human milk oligosaccharides (HMOSs), glycolipids, and glycoproteins.1–3 Galβ1‒
3GlcNAc-containing blood group epitopes Lewis b and sialyl Lewis a are tumor associated 

carbohydrate antigens (TACAs), and their upregulation on cancer cells is associated with 

poor cancer prognosis.4 Galβ3GlcNAcβOR, which is called the Type 1 glycan structure, is 

also an important motif in HMOSs, a group of more than 100 oligosaccharides naturally 

presented in human milk at a concentration ranging from 5 to 15 g L−1.5–6 These 

compounds are non-digestible for human infants but have been found to contribute to the 

immediate and long-term benefits of breastfeeding, such as protecting breast-fed infants 

against infections and necrotizing enterocolitis,7–8 improving their intelligence, and 

reducing rates of childhood obesity, diabetes, leukemia, and suddent infant death syndrome.9 

HMOSs display prebiotic properties which enrich beneficial bacteria such as B. infantis in 

the gut,10 serve as host-cell receptor decoys to disrupt pathogen adhesion,11–12 modulate 

intestinal surface glycan expression,13 affect cell growth and differentiation,14 and provide 

nutrients for the development of the brain and cognition of infants.1, 5

HMOSs consist of galactoside core structures with or without fucosylation and/or 

sialylation.1 Among the 20 HMOS core structures that have been identified, 11 contain at 

least one type 1 glycan-terminated branch.1 Lacto-N-tetraose (LNT, Galβ3GlcNAcβ3Lac) is 

the simplest type 1 glycan HMOS with a disaccharide unit Galβ3GlcNAc β1–3-linked to 

lactose (Lac, Galβ4Glc), the conserved reducing end disaccharide moiety in all HMOSs.15 

LNT (1) and its fucosylated derivatives lacto-N-fucopentaose I (LNFP I, 8), LNFP II (2), 

lacto-N-difucosylhexaose I (LNDFH I, 4), and LNDFH II (7) (Figure 1) are among the most 

abundant HMOSs.12, 16 While the type 1 glycan structures predominate in human milk, they 

are less abundant and sometimes are completely absent in the milk of other mammals.16–17 

Investigating the biological functions of individual type 1 glycan-containing HMOSs and 

their potential applications as prebiotics and antimicrobials requires access to sufficient 

amounts of structurally defined compounds.

McArthur et al. Page 2

ACS Catal. Author manuscript; available in PMC 2021 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Chemical synthesis of these compounds21 involves multiple protection and deprotection 

processes. Though promising, efforts for enzymatic synthesis of β1–3-linked galactoside 

motifs have met limited success. B. infantis D-galactosyl-β1‒3-N-acetyl-D-hexosamine 

phosphorylase (BiGalHexNAcP) catalyzes the formation of β1–3-galactosyl linkages to 

short GlcNAc or GalNAc-terminated acceptor substrates efficiently22 but longer 

oligosaccharides such as lacto-N-triose (LNT II) were not suitable acceptor substrates.22–23 

Synthesis of LNT from LNT II with three equivalents of ortho-nitrophenyl-β-galactoside 

(GalβoNP) by Bacillus circulans β1‒3-galactosidase (BcBgaC)-catalyzed 

transglycosylation resulted in only 20% yield.24 Its glycosynthase mutant E233G generated 

products with the desired Galβ3GlcNAc linkage in higher (59–86%) isolated yields using 

chemically synthesized α-galactopyranosyl fluoride as the donor substrate.25 Recently an 

endoglycosynthase strategy was explored using an oxazoline derivative of Galβ1‒3GlcNAc 

as the donor substrate for Bifidobacterium bifidum JCM 1254 β-D-hexosaminidase mutants 

to form LNT, achieving around 30% yield with two of the designed mutants.26

Efficient strategies for LNT production would be glycosyltransferase-mediated 

glycosylation using sequential one-pot multienzyme (OPME) reactions and fermentation,27 

both with in situ production of UDP-sugar donors. E. coli β1‒3-galactosyltransferase 

(EcWbgO) was found to be active in catalyzing the formation of LNT from lacto-N-triose 

(LNT II).28 Metabolic engineering of E. coli to produce LNT by fermentation resulted in the 

production of 0.219 g L−1 LNT using 1% glucose as the carbon source,29 while the use of 

1% galactose as the carbon source yielded 0.810 g L−1 LNT.30 In each case, EcWbgO was 

rate limiting, and its acceptor substrate LNT II (the intermediate for the formation of the 

desired LNT) was accumulated as the major product. The high KM value (3.4 mM) of 

EcWbgO toward UDP-Gal was believed to hinder its activity.28 Similarly, a strain of E. coli 
metabolically engineered to produce fucosylated LNT analogs accumulated LNT II 

intermediate and its α1‒3-fucoside, suggesting insufficient EcWbgO activity.31 Expression 

of EcWbgO as an N-terminal His6-tagged or a C-terminal His6-tagged fusion protein failed 

to produce detectable soluble proteins, but adding an N-terminal glutathione S-transferase 

(GST)-tag yielded 1.6 mg of purified fusion protein per liter culture.28 Cleavage of the GST 

tag was inefficient and the resulting EcWbgO was inactive. Recently, the expression of 

EcWbgO with a C-terminal 245-amino acid sequence of S. hyicus lipase pre-propeptide at a 

level of 54.5 mg per liter was described.32 It has been used for synthesizing linear long-

chain LNT using UDP-Gal33–34 but has not been applied in multigram-scale of LNT with in 
situ generation of UDP-Gal by either OPME synthesis or fermentation. We aimed to identify 

a new β1‒3-galactosyltransferase with a high expression level and improved activity.

To search for an efficient β1‒3-galactosyltransferase for LNT synthesis, we expected that a 

suitable candidate could be obtained from homologs of EcWbgO. Clustal Omega multiple 

sequence alignment35 analysis of the BLAST36 results for EcWbgO homologs led to the 

selection of four candidates (Figure S1) including Chromobacterium violaceum 
(Cvβ3GalT), Pectobacterium parmentieri (Ppβ3GalT), Salmonella enterica (Sevβ3GalT), 

and Yersia intermedia (Yiβ3GalT). Synthetic genes with codon optimization for E. coli 
expression were cloned into pET-22b(+) vector for expressing C-His6-tagged fusion 

proteins. Of these four EcWbgO homologs, only Cvβ3GalT was expressed as a soluble 

protein in E. coli (Figure S2) and was therefore selected for additional characterization.
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Cvβ3GalT was active in a broad pH range with optimal activities in the pH range of 6.5–9.5 

(Figure S3). This broad pH tolerance is ideal for OPME reaction systems which involve 

numerous enzymes. Its activity was abolished in the presence of ethylenediaminetetraacetic 

acid (EDTA) or CaCl2 and enhanced by MgCl2 and MnCl2 (Figure S4). Similar to the 

conditions for EcWbgO,28 MnCl2 resulted in a higher enzymatic activity for Cvβ3GalT than 

MgCl2. Product was detected without the addition of a metal ion, and in the presence of 

LiCl, NaCl, or dithiothreitol (DTT), suggesting that Cvβ3GalT bond MgCl2 or MnCl2 

tightly enough that the metal was not completely washed away during Ni2+-column 

purification.

Apparent kinetic constants for Cvβ3GalT (Table 1) were determined using LNT II-

βProNHFmoc as the acceptor and UDP-Gal as the donor. The catalytic efficiency of 

Cvβ3GalT with LNT II-βProNHFmoc as the acceptor was about 23-fold greater than that of 

EcWbgO with LNT II as the acceptor,28 which was mainly contributed by a 116-fold higher 

turnover rate of Cvβ3GalT. Furthermore, the binding affinity of EcWbgO toward its 

acceptor substrate LNT II is 62-fold greater than toward its donor substrate UDP-Gal,28 

which disfavors catalysis as glycosyltransferases follow an ordered sequential Bi-Bi 

mechanism in which the enzyme binds the nucleotide sugar before the acceptor for an 

effective catalytic process.37 The property of EcWbgO with a higher affinity toward its 

acceptor substrate than its donor substrate may explain why EcWbgO performed poorly 

during metabolic engineering efforts to produce LNT. In contrast, Cvβ3GalT displayed a 

preference for binding UDP-Gal (Km = 0.23 ± 0.06 mM) over LNT II-βProNHFmoc (Km = 

0.74 ± 0.07 mM).

With Cvβ3GalT in hand as an excellent glycosyltransferase, preparative and large-scale 

syntheses of LNT from commercially available and inexpensive lactose were carried out 

using a sequential OPME glycosylation process.

As shown in Scheme 1, trisaccharide GlcNAcβ3Galβ4Glc (LNT II) was initially synthesized 

in a 1.5-gram scale from lactose and N-acetylglucosamine (GlcNAc) using an OPME N-

acetylglucosamine (GlcNAc)-activation and transfer system (OPME 1) containing 

Bifidobacterium longum strain ATCC55813 N-acetylhexosamine-1-kinase (BLNahK),38 

Pasteurella multocida N-acetylglucosamine uridylyltransferase (PmGlmU),39 Pasteurella 
multocida inorganic pyrophosphatase (PmPpA),40 and Neisseria meningitidis β1–3-N-

acetylglucosaminyltransferase (NmLgtA).41 An excellent 97% yield for purified LNT-II was 

achieved. LNT (Galβ3GlcNAcβ3Galβ4Glc) was then synthesized from LNT II and 

galactose in a 130-mg preparative scale with an excellent 99% yield using an OPME 

galactose (Gal)-activation and transfer system (OPME 2) containing Streptococcus 
pneumoniae TIGR4 galactokinase (SpGalK),42 Bifidobacterium longum UDP-sugar 

pyrophosphorylase (BLUSP),43 PmPpA, and Cvβ3GalT.

The efficiency of the sequential OPME process was further demonstrated in a multigram-

scale synthesis of LNT. Trisaccharide LNT II was produced from 10 grams of lactose, 

GlcNAc (1.15 equiv.), and ATP and UTP (1.28 equiv. each) using the OPME GlcNAc-

activation and transfer system. When the reaction reached completion as indicated by the 

complete consumption of lactose, the reaction mixture was concentrated and applied directly 
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without purification to the subsequent OPME Cvβ3GalT-containing galactosylation reaction 

with additional amounts of Gal (1.20 equiv.), ATP and UTP (1.30 equiv. each). A total 

consumption of LNT II intermediate was observed. A portion (1/12.5) of the reaction 

mixture was subjected to purification by a Dowex 1 × 8–200 (formate form) anion exchange 

column and a Bio-Gel P-2 gel filtration column to produce pure LNT. A yield of 99.3% was 

determined for the synthesis of LNT from Lac with two OPME systems carried out in 

sequence. The sequential OPME process without the purification of LNT II intermediate is a 

highly effective approach to obtain large quantities of LNT in high yields.

In addition to LNT, the synthesis of fucosylated and/or sialylated HMOSs containing LNT 

core including LNFP II (2), S-LNF II (3), and LNDFH I (4) (Scheme 2) was explored.

Lacto-N-fucopentaose II (LNFP II, 2) Galβ3(Fucα4)GlcNAcβ3Galβ4Glc is a 

pentasaccharide containing a fucose α1–4-linked to the GlcNAc unit in LNT (1). The 

concentration of LNFP II in human milk was reported to be in the range of 0.14–1.25 g 

L-1.44 LNFP II was shown to protect human intestinal epithelial cells from E. histolytica-

induced cytotoxicity by blocking the binding of the bacterium.45 As shown in Scheme 2, 

LNFP II (2) was synthesized from LNT using an OPME fucosylation system (OPME 3a) 

containing a bifunctional Bacteroides fragilis L-fucokinase/GDP-fucose pyrophosphorylase 

(BfFKP),46 PmPpA, and Helicobacter pylori UA948 α1–3/4-fucosyltransferase (Hp3/4FT).
18 When 1.1 equivalents of fucose (Fuc) was used, Hp3/4FT catalyzed the transfer of fucose 

selectively to the GlcNAc (instead of Glc) residue in LNT to form LNFP II (2) in 81% yield. 

As we reported previously,18 adding more than two equivalents of Fuc in the reaction system 

produced difucosylated LNDFH II Galβ3(Fucα4)GlcNAcβ3Galβ4(Fucα3)Glc (7), a 

hexasaccharide found in human milk at a concentration in the range 0.05 to 0.27 g 

L-1.44, 47–48 The preference of Hp3/4FT towards fucosylation of GlcNAc-containing 

disaccharide Galβ3GlcNAcβ motif to the Glc-containing disaccharide Galβ4Glc (Lac) motif 

in LNT is similar to what was observed previously18 for its preference in the 

Galβ4GlcNAcβ motif to the Galβ4Glc (Lac) motif in lacto-N-neotetraose (LNnT), a type 2 

glycan also found in HMOSs. Sialylfucosyllacto-N-tetraose (S-LNF II, 3) 

Neu5Acα3Galβ3(Fucα3)GlcNAcβ3Galβ4Glc was subsequently synthesized from LNFP II 

(2) using an OPME α2–3-sialylation system (OPME 4) containing Neisseria meningitidis 
CMP-sialic acid synthetase (NmCSS)49 and Pasteurella multocida α2–3-sialyltransferase 1 

M144D mutant (PmST1 M144D).50

Lacto-N-difuco-hexaose I (LNDFH I, 4) Fucα2Galβ3(Fucα4)GlcNAcβ3Galβ4Glc, which 

has both α1–2- and α1–4-linked fucose residues (Scheme 2), has been found in human milk 

at a concentration of 0.32–1.40 g L-1.44, 47, 51 It presents a terminal Lewis b structure that 

can bind to H. pylori and has been a candidate for developing potential therapeutics against 

H. pylori infection.11, 52 Attempts to fucosylate LNFP II (2) using an OPME fucosylation 

system (OPME 3b) containing Thermosynechococcus elongates α1–2-fucosyltransferase 

(Te2FT)19 or Escherichia coli O126 α1–2-fucosyltransferase (EcWbgL)53–54 were not 

successful, indicating that LNFP II (2) was not a suitable acceptor substrate for Te2FT or 

EcWbgL. Instead, LNDFH I (4) was successfully synthesized by altering the fucosylation 

sequence of LNT. First, LNT (1) was α1–2-fucosylated at the terminal galactose (Gal) 

residue using the Te2FT-containing OPME system (OPME 3b) to produce LNFP I 

McArthur et al. Page 5

ACS Catal. Author manuscript; available in PMC 2021 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fucα2Galβ3GlcNAcβ3Galβ4Glc (8)19 with an excellent 91% yield. Subsequently, LNFP I 

was modified with an α1–4-linked fucose at the GlcNAc residue by the Hp3/4FT-containing 

OPME system (OPME 3a) in excellent (92%) yield. This demonstrated that LNFP I (8) was 

a suitable acceptor substrate for Hp3/4FT and the GlcNAc was the preferred fucosylation 

site of Hp3/4FT over the Glc in LNFP I (8).

Lacto-N-fucopentaose V (LNFP V, 5) Galβ3GlcNAcβ3Galβ4(Fucα3)Glc (Scheme 3) is 

another important HMOS. It is a pentasaccharide containing an α1–3-linked fucose at the 

reducing end glucose (Glc) of LNT. LNFP V, along with other fucosylated HMOSs, was 

shown to provide protection for infants of secretor mothers from necrotizing enterocolitis 

(NEC) and sepsis.55 Direct fucosylation of LNT to obtain LNFP V (5) would be challenging 

due to the lack of a FucT to selectively add Fuc to the Glc of LNT (1). Hence, an alternative 

approach was carried out. As shown in Scheme 3, LNT II was fucosylated by the Hp3/4FT-

containing OPME fucosylation system (OPME 3a) to produce Fuc-LNT II 

GlcNAcβ3Galβ4(Fucα3)Glc (10) in an excellent 98% yield. The tetrasaccharide was an 

excellent acceptor for Cvβ3GalT, and LNFP V (5) was synthesized readily in 98% yield 

using the Cvβ3GalT-containing OPME galactosylation system (OPME 2). LNFP V (5) was 

found not a suitable acceptor substrate of Te2FT, but a well-tolerated substrate for EcWbgL. 

Therefore, fucosylation of LNFP V (5) with a Fuc α1–2-linked to the terminal Gal was 

achieved by EcWbgL-containing OPME system (OPME 3b) for the formation of 

difucosylated LNT (DiFuc-LNT, 6) Fucα2Galβ3GlcNAcβ3Galβ4(Fucα3)Glc in 99% yield.

In conclusion, the newly discovered Cvβ3GalT is a highly efficient catalyst for the synthesis 

of LNT (1) and LNT-containing fucosylated and/or sialylated HMOSs. LNT (1) was 

synthesized in a multigram (>10 grams) scale from inexpensive starting materials (lactose, 

GlcNAc, Gal, ATP, and UTP) using a highly efficient sequential OPME process and without 

purification of the trisaccharide intermediate LNT II. By designing the order of 

glycosylation, fucosylated LNT HMOSs with different fucosylation linkages and with 

fucosylation at different sites were successfully synthesized in high yields. These included 

monofucosylated HMOSs including LNFP II (2), its sialylated form S-LNF II (3), and LNFP 

V (5) as well as difucosylated HMOSs such as LNDFH I (4) and its derivative DiFuc-LNT 

(6). As the Galβ1‒3GlcNAc linkage is common in HMOSs and other human glycans such 

as sialyl Lewis a and Lewis b, Cvβ3GalT represents a valuable addition to the synthetic 

glycobiology toolbox. OPME systems are proven again as powerful approaches for 

synthesizing complex oligosaccharides.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Structures of HMOSs that are synthesized in this work (1–6) and three LNT-containing 

HMOSs synthesized previously (7–9).1, 18–20
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Scheme 1. 
Preparative-scale sequential one-pot multienzyme (OPME) synthesis of LNT (1).
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Scheme 2. 
Preparative-scale one-pot multienzyme (OPME) synthesis of LNT-containing fucosides (2–

4, and 8) from LNT (1).
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Scheme 3. 
Preparative-scale sequential OPME synthesis of LNT-containing fucosides (5 and 6) from 

GlcNAcβ3Galβ4Glc (LNT II).
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Table 1.

Kinetic Constants for Cvβ3GalT and EcWbgO.

Enzyme Substrate kcat (min−1) Km (mM) kcat/Km (min−1 mM−1)

Cvβ3GalT LNT II-βProNHFmoc (2.9±0.1) × 102 0.74±0.07 3.9 × 102

UDP-Gal 79±4 0.23±0.06 3.4 × 102

GlcNAc 2.55 0.32 7.89

EcWbgO
a LNT II 2.50 5.5 × 10−2 16.7

UDP-Gal 13.90 3.4 4.09

a
Reported previously28.
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