
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title

Walk-Preserving Transformation of Overlapped Sequence Graphs into Blunt Sequence Graphs 
with GetBlunted

Permalink

https://escholarship.org/uc/item/40f2p9z2

ISBN

978-3-030-80048-2

Authors

Eizenga, Jordan M
Lorig-Roach, Ryan
Meredith, Melissa M
et al.

Publication Date

2021

DOI

10.1007/978-3-030-80049-9_15

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/40f2p9z2
https://escholarship.org/uc/item/40f2p9z2#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Walk-preserving transformation of overlapped
sequence graphs into blunt sequence graphs with

GetBlunted

Jordan M. Eizenga∗[0000−0001−8345−8356], Ryan
Lorig-Roach∗[0000−0002−8183−9611], Melissa M. Meredith[0000−0001−5736−3193],

and Benedict Paten[0000−0001−8863−3539]

University of California Santa Cruz Genomics Institute
1156 High Street, Santa Cruz, CA 95064

bpaten@ucsc.edu

∗ Contributed equally

Abstract. Sequence graphs have emerged as an important tool in two
distinct areas of computational genomics: genome assembly and pange-
nomics. However, despite this shared basis, subtly different graph for-
malisms have hindered the flow of methodological advances from pange-
nomics into genome assembly. In genome assembly, edges typically in-
dicate overlaps between sequences, with the overlapping sequence ex-
pressed redundantly on both nodes. In pangenomics, edges indicate ad-
jacency between sequences with no overlap—often called blunt adjacen-
cies. Algorithms and software developed for blunt sequence graphs often
do not generalize to overlapped sequence graphs. This effectively silos
pangenomics methods that could otherwise benefit genome assembly. In
this paper, we attempt to dismantle this silo. We have developed an
algorithm that transforms an overlapped sequence graph into a blunt
sequence graph that preserves walks from the original graph. Moreover,
the algorithm accomplishes this while also eliminating most of the re-
dundant representation of sequence in the overlap graph. The algorithm
is available as a software tool, GetBlunted, which uses little enough time
and memory to virtually guarantee that it will not be a bottleneck in
any genome assembly pipeline.

Keywords: Genome assembly · Graph genome · Pangenomics.

1 Introduction

Genome assembly is the process of determining a sample’s full genome sequence
from the error-prone, fragmentary sequences produced by DNA sequencing tech-
nologies. Sequence graphs have a long history of use in this field [16, 20, 17]. In
these graphs, nodes are labeled with sequences derived from sequencing data,
and edges indicate overlaps between observed sequences, which may in turn in-
dicate adjacency in the sample’s genome (Fig. 1A). The sample genome then



2 J.M. Eizenga, et al.

corresponds to some walk through graph. There are several specific sequence
graph articulations in wide use, including de Bruijn graphs, overlap graphs, and
string graphs. They each present computational and informational trade-offs that
make them better suited to certain configurations of sequencing technologies and
genome complexity.

The common topological features of genome assembly graphs are driven pri-
marily by the repetitiveness of the underlying genomes. In many species, a large
fraction of the genome consists of repeats (for instance, more than 50% of the
human genome [11]). Because all copies of a repeat are highly similar to each
other, the corresponding nodes in the sequence graph frequently overlap each
other. In contrast, the unique regions of the genome have few erroneous over-
laps. These two factors tend to create graphs that consist of long non-branching
paths (corresponding to the unique regions), which meet in a densely tangled
core with a complicated topology (corresponding to the repeats).

Recently, sequence graphs have also emerged into prominence in the growing
field of pangenomics, which seeks to analyze the full genomes of many individuals
from the same species [4]. In pangenomics, sequence graphs are used to represent
genomic variation between individual haplotypes. Sequences in the graph furcate
and rejoin around sites of variation so that each individual genome corresponds to
a walk through the graph (Fig. 1B). The growth of pangenomics has fueled major
advances in both formal algorithms research [21, 12] and practical genomics tools
[10, 22].

Pangenome graphs have much simpler topologies than genome assembly
graphs. Having fuller knowledge of the constituent genomes makes it possible
to distinguish different copies of a repeat. Thus, pangenome graphs tend to be
mostly non-branching, much like the portions of assembly graphs that corre-
spond to unique sequences in the genome. Moreover, most of the branching in
pangenome graphs consists of localized bubble-like motifs. In contrast to assem-
bly graphs, pangenome graphs have few if any cycles.

CTGTA

GTACAGG

GTAAAGG

AGGCC

CTGTA AGGCC
A
C

A

B

Fig. 1. A: An overlapped sequence graph. B: A blunt sequence graph.



GetBlunted 3

Intuitively, the shared basis in sequence graphs should permit the advances in
pangenomics to spill over into genome assembly. However, such cross-pollination
is stymied by a small difference in the graph formalisms. The edges in assembly
graphs indicate sequence overlaps, which are necessary because of the uncertain
adjacencies in the underlying genome. In pangenome graphs, the underlying
genomes are known, and the edges are blunt in that they indicate direct adja-
cency with no overlap. Blunt sequence graphs can be trivially converted into
overlap graphs (with overlaps of length 0), but the reverse requires nontrivial
merging operations between the overlapping sequences. As a result, methods
have remained siloed within pangenomics despite potential uses in genome as-
sembly.

In this work, we present a method to transform an overlapped sequence graph
into a blunt sequence graph. We state the formal guarantees of our formulation
and discuss their computational complexity. We then present an algorithm and
compare its results to similar methods.

2 Problem statement

In transforming an overlapped sequence graph to a blunt one, we seek to provide
two guarantees:

1. All walks in the overlapped graph are preserved in the blunt graph.
2. Every walk in the blunt graph corresponds to some walk in the overlapped

graph.

These two properties prohibit the intuitive solution of transitively merging all
overlapped sequences. Doing so can result in walks that are not present in the
overlapped graph, because walks can transition between nodes that are not con-
nected by an edge via the transitively merged sequences (Fig. 2). Because over-
lapped sequences cannot be fully merged, it is necessary to retain multiple copies
of some sequences in the blunt graph. However, excessive duplication can create
problems for downstream analysis, for instance by increasing alignment uncer-
tainty. Thus, we add one further criterion to the above formulation:

3. Minimize the amount of duplicated sequence.

3 Notation

An overlapped sequence graph consists of a set of sequences S and a set of
overlaps O ⊂ (S×{+,−}×S×{+,−}). In this notation, the symbols + and −
indicate whether the overlap involves a prefix or suffix (collectively affix ) of the
sequence. This makes the overlapped graph a bidirected graph.

In a bidirected graph, a walk consists of a sequence of nodes s1s2 . . . sN ,
si ∈ S such that 1) each pair of subsequent nodes is connected by an overlap
and 2) if si−1 and si are connected by an overlap on si’s prefix, then si and si+1



4 J.M. Eizenga, et al.

GTC

TCATC

TGGATC

ATCCAG

TC
G

TGGA
ATC
CAG

A B

Fig. 2. A: An overlapped sequence graph, and B: the blunt sequence graph that results
from transitively merging its overlaps. The highlighted walk in the blunt graph does
not correspond to any walk in the original overlapped graph.

are a connected by an overlap on si’s suffix (or vice versa). In the case that a
walk traverses a node s ∈ S from suffix to prefix, we interpret the sequence as
its reverse complement, which is the sequence of the antiparallel strand of the
DNA molecule.

Finally, an adjacency component is a collection of affixes (in S × {+,−})
that can reach each other via a sequence of adjacent overlaps in O (Fig. 3). This
sequence need not form a valid bidirected walk.

ACATG

CAACA

TGACA

Fig. 3. An adjacency component in a larger sequence graph. Each of the indicated
affixes can reach the others by a sequence of overlaps.

4 Methods

To minimize the amount of duplicated sequence, overlapped sequences must be
merged. However, we have already mentioned that our criteria prohibit transi-
tively merging all overlaps. We must then minimize the total number of groups
within which overlaps are merged transitively, which coincides with the number
of times the sequences need to be duplicated.

Consider a group of overlaps that contains (s1, s2,+,−) and (t1, t2,+,−). For
merging to not introduce any walks that are not in the overlapped graph, the



GetBlunted 5

overlaps (s1, t2,+,−) and (t1, s2,+,−) must also be overlaps in O. Extending
this logic, the entire group of overlaps must be contained within a biclique sub-
graph of the adjacency component: two sets of affixes B1 and B2 such that every
affix in B1 is connected to every affix in B2 by an overlap. Thus, we can mini-
mize the number of duplicated sequences by minimizing the number of bicliques
needed to cover every overlap edge.

The problem of covering edges with the minimum number of bicliques is
known as biclique cover (Fig. 4), and it is known to be NP-hard [19]. However,
there are domain-specific features of overlapped sequence graphs that often make
it tractable to solve large portions of the graph optimally.

Fig. 4. A biclique cover of an adjacency component with three bicliques.

First, many adjacency components are bipartite. Consider the case that an
adjacency component is not bipartite, in which case there is cycle of overlaps
between affixes with odd parity. Each overlap indicates high sequence similarity,
so an odd cycle means that each sequence is similar to itself, reverse comple-
mented an odd number of times. Such sequences are called DNA palindromes,
and they do exist in nature. However, they comprise a small fraction of most
real genomes.

Second, most adjacency components are domino-free. This property refers to
the absence of a particular induced subgraph, the domino (Fig. 5). A sufficient
condition to prohibit dominoes is for overlapping to be a transitive property.
That is, whenever sequence s1 overlaps sequences t1 and t2, and sequence s2
overlaps t1, then s2 also overlaps t2. In reality, this is not always the case.
However, it is very often the case, since overlaps indicate sequence similarity,
and similarity is approximately transitive.

These features guided the design of the following algorithm. If an adjacency
component is bipartite and domino-free, we compute the biclique cover in poly-
nomial time with the algorithm of Amilhastre, Vilaren, and Janssen [1]. When
an adjacency component is bipartite but not domino-free, we instead use the
dual graph reduction algorithm of Ene, et al. [7], followed by their lattice-based
post-processing if the algorithm does not identify the optimal solution. Finally,
if an adjacency component is not bipartite, we first reduce it to the bipartite
case by computing an approximate solution to the maximum bipartite subgraph



6 J.M. Eizenga, et al.

Fig. 5. The domino graph. If either of the dotted edges are present, the induced sub-
graph is not a domino.

problem using the algorithm of Bylka, Idzik, and Tuza [3]. The maximum bi-
partite subgraph problem is equivalent to max cut, which is also NP-hard [13].
This process is repeated recursively on the edges that are not included in the
bipartite subgraph.

The amount of duplicated sequence is also affected by the manner in which
sequences are merged among the overlaps of a biclique. To minimize duplicated
sequence, we must maximize matches in the alignment between the overlapped
sequences. This is the multiple sequence alignment problem, which is NP-hard.
We use the partial order alignment algorithm to approximate the optimal mul-
tiple sequence alignment [14]. Partial order alignment also has the advantage
that the alignment is expressed as a blunt sequence graph, which can be directly
incorporated in the full blunt graph.

5 Implementation

We have implemented the algorithm described here as a genomics tool called
GetBlunted. GetBlunted takes as input a GFA file (a common interchange for-
mat for sequence graphs [15]) and outputs a GFA containing a blunt graph.
In addition, it provides a translation table from sequences in the output to se-
quences in the input, which can be used to translate analyses performed on the
blunt graph into analyses on the overlapped graph. The implementation is writ-
ten entirely in C++, and it use several auxiliary libraries: GFAKludge is used
for manipulating GFA files [5], libbdsg is used to represent sequence graphs [6],
and SPOA is used for partial order alignment [24].

6 Results

We compared the performance of GetBlunted to two other tools that trans-
form overlapped sequence graphs into blunt graphs: the gimbricate/seqwish [8,
9] pipeline and Stark [18]. These are, to our knowledge, the only other such tools
besides GetBlunted. However, they are not completely comparable. Neither tool
provides the guarantees that GetBlunted does for preserving the walk space of
the graph. In addition, Stark only works with de Bruijn graphs, a restricted



GetBlunted 7

subset of overlap graphs in which all overlaps are exact matches of a uniform
length.

We profiled speed and memory usage on three assembly graphs. The first
two are assembly graphs produced by the Shasta assembler [23] for the haploid
human cell line CHM13 and for human sample HG002. Both of these were built
using Oxford Nanopore reads1. The last graph is a de Bruijn graph of Pacific
Biosciences HiFi reads of an Escherichia coli strain (SRR10382245), which was
constructed using jumboDB [2].

All of the bluntifying tools were run on a single core of a c5.9xlarge AWS
instance with an Intel Xeon Scalable Processor. Memory usage and compute
time were measured with the Unix time tool. The results of the profiling are
presented in Table 1. GetBlunted is over 1000 times faster than and compara-
bly memory-intensive to the gimbricate/seqwish pipeline. For de Bruijn graphs,
Stark is faster than either tool, although this performance comes at the cost of
limited generality.

Assembly Bluntification Tool Run Time (min) RAM (GB)

HG002
Shasta

GetBlunted 0.35 9

gimbricate/seqwish 917.5 6

CHM13
Shasta

GetBlunted 0.38 4

gimbricate/seqwish 314.6 6

E. coli de
Bruijn

GetBlunted 8.36 26

gimbricate/seqwish 10.74 4

Stark 0.65 3

Table 1. Table of speed and memory usage of bluntifing tools run on a single core of
an AWS server.

7 Discussion

In this work, we described an algorithm and software tool, GetBlunted, which
transforms overlapped sequence graphs into blunt sequence graphs. This provides
a route for sequence graph methods developed for pangenomics to be applied to
sequence graphs in genome assembly. In both fields, walks through the sequence
graph are of primary importance. In genome assembly, some walk through the
graph corresponds to the sample genome. In pangenomics, the genomes used
to construct the pangenome each correspond to a walk through the graph. Get-
Blunted provides attractive guarantees that it faithfully preserves the walk space

1 Publicly available at https://s3-us-west-2.amazonaws.com/miten-
hg002/index.html?prefix=guppy 3.6.0/



8 J.M. Eizenga, et al.

of the input while also producing parsimonious output. Other comparable meth-
ods either do not provide these guarantees or only provide them in limited cases.
In addition, GetBlunted is (except in the case of de Bruijn graphs) faster than
alternatives that do not provide these guarantees, and it has resource require-
ments that are easily achievable in any computational environment that is used
for genome assembly. In the future, GetBlunted could serve as an step in genome
assembly pipelines to improve the quality of their overlap graphs. It could also
facilitate direct analyses of assembly graphs in metagenomics applications.

References

1. Amilhastre, J., Vilarem, M.C., Janssen, P.: Complexity of minimum biclique cover
and minimum biclique decomposition for bipartite domino-free graphs. Discrete
Applied Mathematics 86(2-3), 125–144 (1998)

2. Bankevich, A., Bzikadze, A., Kolmogorov, M., Pevzner, P.A.: As-
sembling Long Accurate Reads Using de Bruijn Graphs. bioRxiv p.
2020.12.10.420448 (Dec 2020). https://doi.org/10.1101/2020.12.10.420448,
https://www.biorxiv.org/content/10.1101/2020.12.10.420448v1, publisher: Cold
Spring Harbor Laboratory Section: New Results

3. Bylka, S., Idzik, A., Tuza, Z.: Maximum cuts: Improvements and local algorithmic
analogues of the Edwards-Erdos inequality. Discrete Mathematics 194(1-3), 39–58
(1999)

4. Computational Pan-Genomics Consortium: Computational pan-genomics: status,
promises and challenges. Briefings in Bioinformatics 19(1), 118–135 (2018)

5. Dawson, E.T., Durbin, R.: GFAKluge: A C++ library and command line utilities
for the graphical fragment assembly formats. Journal of Open Source Software
4(33) (2019)

6. Eizenga, J.M., Novak, A.M., Kobayashi, E., Villani, F., Cisar, C., Heumos, S.,
Hickey, G., Colonna, V., Paten, B., Garrison, E.: Efficient dynamic variation
graphs. Bioinformatics (2020)

7. Ene, A., Horne, W., Milosavljevic, N., Rao, P., Schreiber, R., Tarjan, R.E.: Fast
exact and heuristic methods for role minimization problems. In: Proceedings of the
13th ACM symposium on Access control models and technologies. pp. 1–10 (2008)

8. Garrison, E.: ekg/gimbricate. https://github.com/ekg/gimbricate (Oct 2020)

9. Garrison, E.: ekg/seqwish. https://github.com/ekg/seqwish (Feb 2021)

10. Garrison, E., Sirén, J., Novak, A.M., Hickey, G., Eizenga, J.M., Dawson, E.T.,
Jones, W., Garg, S., Markello, C., Lin, M.F., et al.: Variation graph toolkit im-
proves read mapping by representing genetic variation in the reference. Nature
Biotechnology 36(9), 875–879 (2018)

11. Haubold, B., Wiehe, T.: How repetitive are genomes? BMC bioinformatics 7(1),
1–10 (2006)

12. Jain, C., Zhang, H., Gao, Y., Aluru, S.: On the complexity of sequence to graph
alignment. bioRxiv (Jan 2019). https://doi.org/10.1101/522912

13. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Com-
puter Computations, pp. 85–103. Springer (1972)

14. Lee, C., Grasso, C., Sharlow, M.F.: Multiple sequence alignment using partial order
graphs. Bioinformatics 18(3), 452–464 (2002)



GetBlunted 9

15. Li, H., Jackman, S., Myers, E., Gonnella, G., Melsted, P., Turner, I., Heuer, M.L.,
Wilk, J., Minkin, I., Glusman, G., Shcherbin, E., Garrison, E., Dawson, E., Letcher,
B., Huang, S., Bolleman, J.: GFA specification. https://https://github.com/GFA-
spec/GFA-spec (2013)

16. Myers, E.W.: Toward simplifying and accurately formulating fragment assembly.
Journal of Computational Biology 2(2), 275–290 (1995)

17. Myers, E.W.: The fragment assembly string graph. Bioinformatics 21(suppl 2),
ii79–ii85 (2005)

18. Nikaein, H.: hnikaein/stark. https://github.com/hnikaein/stark (Jan 2021)
19. Orlin, J., et al.: Contentment in graph theory: covering graphs with cliques. In:

Indagationes Mathematicae (Proceedings). vol. 80, pp. 406–424. North-Holland
(1977)

20. Pevzner, P.A., Tang, H., Waterman, M.S.: An Eulerian path approach to DNA
fragment assembly. Proceedings of the National Academy of Sciences 98(17), 9748–
9753 (2001)

21. Rautiainen, M., Marschall, T.: Aligning sequences to general graphs in O(V+ mE)
time. bioRxiv p. 216127 (2017)

22. Rautiainen, M., Marschall, T.: GraphAligner: rapid and versatile sequence-to-
graph alignment. Genome Biology 21(1), 1–28 (2020)

23. Shafin, K., Pesout, T., Lorig-Roach, R., Haukness, M., Olsen, H.E., Bosworth,
C., Armstrong, J., Tigyi, K., Maurer, N., Koren, S., Sedlazeck, F.J., Marschall,
T., Mayes, S., Costa, V., Zook, J.M., Liu, K.J., Kilburn, D., Sorensen, M., Mun-
son, K.M., Vollger, M.R., Monlong, J., Garrison, E., Eichler, E.E., Salama, S.,
Haussler, D., Green, R.E., Akeson, M., Phillippy, A., Miga, K.H., Carnevali,
P., Jain, M., Paten, B.: Nanopore sequencing and the Shasta toolkit en-
able efficient de novo assembly of eleven human genomes. Nature Biotech-
nology 38(9), 1044–1053 (Sep 2020). https://doi.org/10.1038/s41587-020-0503-6,
https://www.nature.com/articles/s41587-020-0503-6, number: 9 Publisher: Nature
Publishing Group

24. Vaser, R., Sović, I., Nagarajan, N., Šikić, M.: Fast and accurate de novo genome
assembly from long uncorrected reads. Genome Research 27(5), 737–746 (2017)




