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2Department of Statistics, University of California Davis, Davis, CA, 95616

3Advanced Baby Imaging Lab, Brown University School of Engineering, Providence, RI, 02912

Abstract

The maturation of the myelinated white matter throughout childhood is a critical developmental 

process that underlies emerging connectivity and brain function. In response to genetic influences 

and neuronal activities, myelination helps establish the mature neural networks that support 

cognitive and behavioral skills. The emergence and refinement of brain networks, traditionally 

investigated using functional imaging data, can also be interrogated using longitudinal structural 

imaging data. However, few studies of structural network development throughout infancy and 

early childhood have been presented, likely owing to the sparse and irregular nature of most 

longitudinal neuroimaging data, which complicates dynamic analysis. Here, we overcome this 

limitation and investigate through concurrent correlation the co-development of white matter 

myelination and volume, and structural network development of white matter myelination between 

brain regions as a function of age, using statistically well-supported methods. We show that the 

concurrent correlation of white matter myelination and volume is overall positive and reaches a 

peak at 580 days. Brain regions are found to differ in overall magnitudes and patterns of time-

varying association throughout early childhood. We introduce time-dynamic developmental 

networks based on temporal similarity of association patterns in the levels of myelination across 

brain regions. These networks reflect groups of brain regions that share similar patterns of 

evolving intra-regional connectivity, as evidenced by levels of myelination, are biologically 

interpretable and provide novel visualizations of brain development. Comparing the constructed 

networks between different maternal education groups, we found that children with higher and 

lower maternal education differ significantly in the overall magnitude of the time-dynamic 

correlations.
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INTRODUCTION

The maturation of the myelinated white matter is an important neurodevelopmental process 

that underlies brain connectivity and messaging across the brain’s eloquent neural regions 

and systems. From classic histological studies, e.g., Yakovlev and Lecours (1967), the 

elaboration of the myelin sheath around neuronal axons follows a well described spatio-

temporal pattern, advancing from deep brain to superficial regions in a posterior-to-anterior 

arc. Comparisons of this pattern with cognitive and behavioral milestones (Casey et al., 

2000; Johnson, 2001;Durston and Casey, 2006) reveal strong overlap between myelination 

and functional development, further highlighted in more recent neuroimaging studies (van 

der Knaap et al., 1991; Nagy et al., 2004; Zatorre et al., 2012; O’Muircheartaigh et al., 2014; 

Chevalier et al., 2015; Deoni et al., 2016).

In general, however, studies exploring the relationship(s) between structural maturation and 

evolving cognitive and/or behavioral skills have been cross-sectional, making it difficult to 

appreciate how these relationships evolve across the brain with age. Understanding of this 

time-dynamic association is of significant scientific interest, not only for investigating 

general neurodevelopment, but also with respect to understanding and characterizing 

sensitive windows of development (Hensch and Bilimoria, 2012) with important 

implications for interventional timing and approach (Maríin, 2016). Using data acquired 

longitudinally, prior studies have linked patterns of development to later childhood outcomes 

(Shaw et al., 2006; 2009; Wolff et al., 2012; Deoni et al., 2016). However, this approach also 

fails to elucidate how these structure-function/outcome relationships evolve and change with 

child age. More recently, Dean et al. (2015) has used a moving bin correlation approach in 

order to investigate the time-dynamic association between white matter development in 

infants and toddlers and cognitive ability measures obtained from the Mullen Scales of Early 

Learning (MSEL) (Mullen, 1995). In this study, we explore the use of concurrent correlation 

to investigate the maturation of white matter structures as well as the co-development of 

white matter myelin water fraction (MWF) and white matter volume, where the concurrent 

correlation was estimated by kernel smoothing.

A secondary outcome of investigating brain-behavior relationships is the illumination of the 

underlying brain networks and systems. Typically investigated using functional 

neuroimaging, the identification of neural systems that underlie differing cognitive and 

behavioral skills is an important goal in neuroscience research. Resting-state functional 

imaging, or functional connectivity imaging (Smith et al., 2013), allows the delineation of 

brain networks based on shared temporal signal profiles with the assumption that discrete 

voxels with similar temporal profiles are in some way connected or part of the same 

underlying network (Bullmore and Sporns, 2009; Wang et al., 2010). Comparison of the 

brain’s connections, or connectivity matrix, between healthy and diseased populations can 

provide invaluable insight into pathology-induced disruption (Fair et al., 2012; Fornito et al., 

2012), and analysis across the population can inform on associations between connectivity 

and cognitive metrics. Characterizing connectivity across infancy and childhood also allows 

investigation into the brain’s functional organization and how networks emerge and are 

refined with age (Fair et al., 2007; Supekar et al., 2010; Uddin et al., 2010).
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A similar approach (i.e., voxels with similar temporal functional signal profiles are part of 

the same network) may also be applied to structural imaging data, though over a longer time 

span (i.e., weeks, months, or years) (O’Muircheartaigh et al., 2014). Here, the assumption is 

that regions with similar developmental profiles are part of the same network. Previously, 

our group has used independent component analysis (ICA) (Beckmann, 2012) to identify 

spatially contiguous regions with similar temporal developmental profiles of myelination, 

and then related those structural profiles to developing cognitive abilities (O’Muircheartaigh 

et al., 2014). While informative, evaluating a single temporal correlation value across the 

entire developmental window limits our ability to investigate the time-dynamics of evolving 

structural networks. In this study, therefore, we use concurrent correlation to investigate the 

simultaneous and coincident maturation of white matter regions to: 1. Determine whether 

this methodology provides biologically meaningful measures for the concurrent 

development of pairs of brain regions; and 2. Construct networks that are not age-dependent 

but inform about (a) the total level of co-development, and (b) the dynamics of co-

development, where these networks will reflect the dynamics across all ages through infancy 

and early childhood.

We hypothesized that structural maturation should mirror functional changes (Fair et al., 

2007), with networks becoming more specialized and segregated with age.

Building on this methodological framework, we then sought to investigate differences in 

network structure and evolution in children stratified by socioeconomic status, for which 

maternal education level served as a stable and prominent proxy (Bornstein et. al. 2003), 

while we also evaluated the effect of SES as measured by the Hollingshead 4-Factor Index 

(HI) (Hollingshead 1975). Results from our analysis revealed significant differences in the 

overall magnitude of the time-dynamic correlation amongst identified white matter networks 

for different maternal education levels.

This work provides the foundation for a potentially important new way of investigating brain 

development that, though applied here to structural myelin water imaging data, could be 

readily applied to other longitudinal functional, diffusion, or structural imaging data.

METHODS

Subjects

Data from 222 children (127 males) between 65 days and 1489 days of age (approximately 2 

to 48 months) were included in this analysis. General demographic information is provided 

in Table 1. A total of 445 longitudinal MRI measurements were made at irregular time 

points for these children, ranging from one to six measurements per child (median = 2 

measurements) at 6 to 24- month intervals (median = 15.5 months) as shown in Fig. 1.

Children were recruited from the local Providence, Rhode Island and surrounding areas with 

a focus on neurotypical development. Children with known risk factors for abnormal brain 

or cognitive development were excluded, including in utero exposure to alcohol, cigarette 

smoke, or other illicit substances; premature birth before 37 weeks gestation; neurological 

trauma; or family history of major psychiatric or learning disorder, including maternal 
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depression requiring medication. Specific inclusion criteria included: 1. Healthy singleton 

birth between 37 and 42 weeks gestation; 2. Uncomplicated pregnancy and delivery; 3. 

APGAR scores > 8; 4. No reported abnormalities on fetal ultrasound; 5. No reported 

neurological history in the child; 6. No reported psychiatric or learning disability history in 

the child or first-degree relatives.

MRI Protocol & Analysis

In general, children under 4 years of age were imaged during natural and non-sedated sleep. 

Older children who were able to tolerate awake scanning were imaged while watching a 

favorite movie. All imaging was performed on a 3-Tesla Siemens Tim Trio scanner equipped 

with a 12-channel head RF array. To minimize subject motion, children were swaddled in an 

infant or pediatric MedVac vacuum immobilization bag (CFI Medical Solutions, USA) and 

foam cushions were placed around their head. Scanner noise was reduced by limiting the 

peak gradient amplitudes and slew-rates to 25 mT/m/s. A noise-insulating insert (Quiet 

Barrier HD Composite, UltraBarrier, USA) was also fitted to the inside of the scanner bore. 

MiniMuff pediatric ear covers and electrodynamic headphones (MR Confon, Germany) 

were used for all children. A pediatric pulse-oximetry system and infrared camera were used 

to continuously monitor the infants and children during scanning (Dean et al., 2014a).

To assess brain development, myelin water fraction (MWF) imaging via mcDESPOT (Deoni 

et al., 2008) was used to characterize myelination. Through the acquisition of multiple 

variable flip angle T1-weighted spoiled gradient and T1/T2-weighted fully-balanced images, 

mcDESPOT decomposes the measured MRI signal into contributions from 3 water pools or 

relaxation species: water trapped within the lipid bilayers of the myelin sheath; intra and 

extracellular water; and a non-exchange free water component attributable to cerebral spinal 

fluid (CSF). The MWF is the relative volume fraction of the myelin-associated water and is 

generally between 0 and 25% for healthy white matter (MacKay et al, 2009). Validation of 

the MWF as a reliable biomarker of myelin content has been previously provided by MRI-

histology correlations (Wood et al. 2016), as well as from in vivo studies of known white 

matter disorders, such as multiple sclerosis (Kolind et al. 2012).

Age-specific and acoustically muffled imaging protocols (Deoni et al., 2012), comprising 8 

T1-weighted spoiled gradient echo images (SPGR or spoiled FLASH) and 16 balanced 

T1/T2-weighted steady-state free precession (bSSFP or TrueFISP) images, were used to 

acquire quantitative (q)T1, qT2, and MWF data in each child. Two inversion-prepared (IR)-

SPGR images were additionally acquired for correction of radio-frequency (B1) 

inhomogeneities and bSSFP images were acquired with two phase cycling patterns (180° 

and 0°) for correction of main magnetic field (B0) inhomogeneities (Deoni, 2011). Total 

imaging times ranged from 15 minutes to 24 minutes depending on child age and head size.

Following acquisition, data were visually assessed for motion artefacts (e.g., blurring and 

ghosting) by the same research team member (SCLD) and standard mcDESPOT processing 

was performed. This includes linear co-registration of the child’s SPGR, IR-SPGR, and 

bSSFP images to account for subtle head movement (Jenkinson et al., 2002), non-

parenchyma voxel removal (Smith, 2002), and correction of flip angle errors and off-

resonance inhomogeneities using DESPOT1-HIFI and DESPOT2-FM (Deoni, 2011). The 
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multi-angle SPGR and bSSFP data were subsequently fit to 1- and 3-pool tissue models to 

estimate single-component qT1 and qT2, and multi component volume fractions and 

relaxation times for intra/extra-axonal water, non-exchanging free water, and the myelin-

associated water (MWF) (Deoni et al., 2013b). These quantitative images (‘maps’) were then 

non-linearly aligned to a common analysis space in the approximate Montreal Neurological 

Institute (MNI) space using a previously described multi-step approach that first aligns the 

subject’s high flip angle T1 weighted SPGR image to an age-specific template and then 

applies the calculated transformation matrix to the quantitative maps.

Using standardized structural (Brett, 1999) and tractography (Mori et al., 2008) atlases, 

regional masks were developed corresponding to bilateral cerebellar white matter, cingulum, 

corona radiata, internal capsule; frontal, occipital, parietal, and temporal lobes; and the genu, 

splenium, and body of the corpus callosum. Mean MWF values were obtained from each of 

these regions for each child.

We also quantified total white matter, gray matter, and brain volume using an atlas-based 

approach. Due to the lack of gray/white matter contrast, it is difficult to accurately delineate 

white matter in children under ~9 months of age using either qT1 or T1 weighted imaging 

data (Raschle et al., 2012). To address this, we first applied FMRIB’s Fast Automated 

Segmentation Tool (FAST) (Zhang et al., 2001) to a large (n=93) set of T1 weighted images 

from children 2-4 years of age. Calculated white and gray matter masks were then non-

linearly registered to our common analysis space using the same transformation approach as 

described above. Aligned masks were then averaged and thresholded to create population 

masks, which were then transformed back to all participants by applying the inverse 

transformation matrix for each individual. White and gray matter volumes were then 

calculated for each child by summing the result of this transformation multiplied by the 

voxel volume.

Functional Correlation

To investigate the co-development of two longitudinal processes, for example the 

myelination of two different white matter regions, we calculated the time-dynamic 

functional or concurrent correlation between the processes. Let X(t) and Y(t), t ∈ T denote 

two longitudinal white matter developmental processes on which we make occasional 

measurements, where T denotes the period of interest. Our goal is to obtain the concurrent 

cross-correlation of the concurrent processes (see for example Ramsay and Silverman, 2005) 

evaluated at time t, given by

corr(X(t), Y(t)) = cov(X(t), Y(t))
var(X(t))var(Y(t)) . [1]

Since only sparse and irregular observations are available, this correlation cannot be 

estimated cross-sectionally, as each cross-sectional time slice contains only few data (see 

Fig. 1). We instead applied local kernel smoothing (Müller, 1987; Fan and Gijbels, 1995), 

with appropriate bandwidth choice for estimating the covariance and variances, which are 

then plugged into equation [1] for estimating the functional correlation; see Zhou and Wang, 
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2016, where also theoretical justifications such as consistency results are provided. 

Technical details about these smoothing methods are included in the Appendix. The 

implementation FCCor of the estimation procedure for the pairwise functional correlations is 

available in the R package fdapace (Dai et al, 2018), which can be accessed on CRAN.

We applied functional correlation to investigate the association of concurrent myelination 

processes in two separate tasks: Task 1. The whole brain white matter MWF and white 

matter volume; and Task 2. Pairwise MWF in the 23 white matter regions: Body, genu, and 

splenium of the corpus callosum; bilateral frontal, parietal, occipital, temporal, and 

cerebellar white matter; bilateral internal capsule, corona radiata, cingulum, and superior 

longitudinal fasciculus. We limited our consideration to the period when denser 

measurements are available and thus more stable estimates can be obtained, which is 150 to 

1000 days for Task 1, and 150 to 750 days for Task 2. Task 1 was performed to better 

understand how myelination drives early brain volume growth, as myelin accounts for a 

sizeable volume fraction of mature white matter (O’Brien and Sampson, 1965), and altered 

myelination is a hypothesized substrate in the early brain overgrowth observed in autism 

(Dementieva et al., 2005; Lewis et al., 2013). Task 2 was performed to investigate how 

regions evolve with age and to determine if anatomically plausible networks can be 

identified.

Functional Principal Component Analysis (FPCA)

For Task 2, after obtaining the correlation functions we carried out an FPCA on the pairwise 

correlation functions between different white matter structures. Let Ck(t) denote the 

correlation function between a pair of the 23 regions, for k = 1,... ,253, since there are 
23
2 = 253 distinct pairs. Correlation functions Ck(t) are square integrable random functions 

and as such have Karhunen-Loève expansions (Grenander, 1950; Müller, 2005; Ramsay and 

Silverman, 2005; Wang et al., 2016)

Ck(t) = μC(t) + Σ j = 1
∞ ξ jk ϕ j(t), [2]

where μC(t) = E(Ck(t)) is the mean function, the φj(t) are the orthonormal eigenfunctions of 

the auto-covariance operator, and the ξjk are the functional principal components (FPCs) 

with variance λj, for j = 1,2,.... The eigenfunctions φj(t) can be interpreted as the dominant 

modes of variation (Castro et al., 1986; Jones and Rice, 1992; Wang et al., 2016) in Ck(t), 
and the FPCs are the corresponding Fourier coefficients of the centered process Ck(t) − 

μC(t). By using the eigenfunctions φj as basis functions, FPCA leads to the truncated 

representation Ck
J(t) = μC(t) + ∑ j = 1

J ξ jk ϕ j(t) for some J < ∞, which is the most 

parsimonious representation of the processes Ck(t) in the sense that it explains the highest 

fraction of total variation among all such representations with J components. Further details 

can be found in the Appendix. In practice FPCA needs to be performed based on the sample 

of estimated correlation functions Ck, which then leads to the empirical FPCA
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Ck(t) = μ
C

(t) + Σ j = 1
J ξ jk ϕ j(t), [3]

where μ
C

, ξ jk, and ϕ j are the empirical estimates of μC, ξjk, and φj, respectively.

Comparing Development in Groups with Differing Maternal Education Levels

As a preliminary and pilot application of the developed methodology, we examined network 

development in children stratified by their social demographic and economic environment 

(SES). SES has previously and consistently been linked with changes in brain structure and 

function (Hackman and Farah, 2009; Gao et al., 2015; Hair et al., 2015; Noble et al., 2015), 

as well as child cognitive abilities and academic performance (Noble et al. 2004; Sirin, 

2005). We chose to use only the maternal education level as a measure reflective of overall 

SES, which can include numerous factors including educational attainment, family income, 

housing neighborhood, and social status. Maternal education has been shown to be a 

relatively stable measure of SES, unlike occupational status (Bornstein et al. 2003), and is 

not attenuated by single or stay-at-home mothers. Maternal education was measured for each 

family using the Hollingshead scale (Hollingshead, 1975), with maternal education 

quantized on a 7-level scale, with 3 = partial high school; 4 = high school graduate; 5 = 

partial college; 6 = college or university graduate; and 7 = professional degree. Based on 

maximum achieved maternal education level, children were stratified into either a higher 

level (>= 6) or lower level (<= 4) group. We compared the dynamic developmental patterns 

of MWF pairwise correlations between the higher and lower group children by comparing 

the projection scores of the pairwise correlation functions. The concurrent correlation 

between the 23 white matter regions were estimated separately for each group only between 

150 days and 750 days, because there were fewer observations for the low group between 

750 and 1000 days (see Fig. 1).

After obtaining the estimates Ck
hi and Ck

lo of the kth correlation function for the higher and 

the lower education group, respectively, where k = 1, ...,253, we projected the centered 

correlation functions Ck
g − μ

C
 onto ϕ j, for g = hi, lo, j = 1,2, and obtained projection scores 

x jk
g = 〈Ck

g − μ
C

, ϕ j〉 = ∫ (Ck
g(t) − μ

C
(t)) ϕ j(t) dt. Visualization and comparison of the higher and 

lower education groups were then based on these projection scores, {x jk
hi}

k = 1
253

 and {x jk
lo}

k = 1
253

, 

where we visualized the concurrent myelination between regions as defined by the 

projection scores by constructing connectivity networks, separately for the first two modes 

of connectivity j = 1,2.

To determine whether there were differences in the co-myelination patterns between children 

in the higher and lower education groups we used a permutation test. To test whether the 

distributions of projection scores differed significantly between the two groups, we 

employed the L2 Wasserstein distance W2(μ, ν) between two probability measures μ and ν 

Dai et al. Page 7

Brain Struct Funct. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



as test statistic, defined by W2(μ, v) = [infγ∫ x − y 2dγ(x, y)]
1
2 , where ∥ · ∥ is the Euclidean 

norm, and the infimum is taken over all joint measures γ with marginals μ and ν. For 

distributions on the real line as considered here, it is well known that the L2 Wasserstein 

distance can be written as W2(μ, v) = [∫ 0
1(F−1(s) − G−1(s))2ds]1 2

, where F and G are the 

cumulative distribution functions of μ and ν, respectively (Hoeffding, 1940). The p-value of 

the test was determined from 10,000 permutation samples.

RESULTS

Correlation between White Matter Myelination and White Matter Volume

Since myelin represents a significant fraction of total white matter volume, we hypothesized 

that measures of myelination and white matter volume throughout childhood would be 

strongly correlated. The longitudinal mean trajectories of white matter myelination and 

white matter volume, and their concurrent correlation function are shown in Fig. 2. 

Pointwise significance at the 0.05 level as determined by 10,000 bootstrap samples is 

indicated in red and adjusted significance in asterisks, where the (conservative) Bonferroni 

adjustment was performed for multiple testing at 200, 400, 600, 800, and 1000 days. The 

correlations were found to be overall above zero, increasing until 580 days to around 0.2, 

and then slightly declining. The correlations between white matter myelination and volume 

were significantly different from zero at 400 and 600 days after multiple adjustment; 

unadjusted pointwise significance was observed between 290 days and 780 days. Bootstrap 

confidence intervals became wider towards 1000 days, as fewer observations were available 

at older ages. These results suggest that while being an important contributor, myelination is 

not the sole or perhaps even primary driver of early white matter volume growth.

Pairwise Correlation Functions Between White Matter Regions

The pairwise correlation function estimates Ck = corr(X j(t), Xl(t)) for the (j, l)th subregion are 

shown in Fig. 3. For better visualization, we show the correlation functions for all pairs j = 

1, ...,23 and l = 1, ...,23, although corr X j(t), Xl(t) = corr Xl(t), X j(t) . Each panel of Fig. 3 

displays the correlation functions between one white matter region and all other regions, 

where line type denotes left/right hemisphere or genu/body/splenu corpus callosum, and 

color denotes brain region.

FPCA on Pairwise Correlations

Applying FPCA on the pairwise correlations Ck, in Fig. 4, we highlight the first two 

eigenfunctions (left panel) and the first two modes of variation (middle and right panels). 

The eigenfunctions have natural interpretations and serve as the directions on which we then 

project the correlation functions to obtain projection scores, which are the functional 

principal components. The first eigenfunction corresponds to the overall strength of 

correlation/codevelopment, and explains 93.5% of total variation, while the second 

eigenfunction corresponds to the contrast of correlations earlier and later in the early life 

period that we studied and accounts for 5.2% of total variation. The second and third plots 
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illustrate the modes of variation by displaying the mean function (red solid) plus or minus 1 

or 2 standard deviations times the eigenfunctions. A more detailed explanation for the modes 

of variation is included in the Appendix.

Connectivity Networks

It is of interest to investigate the connectivity network between white matter regions, where 

the connection is defined by the overall correlation in myelination or the increase/decrease 

of correlation over time. We separated the observations according to the jth projection scores 

for j = 1,2, i.e., the first and second functional principal components, into five bins, where 

the four cut points are defined −1.5 λ j, −0.5 λ j, 0.5 λ j, and 1.5 λ j; here λ j is the estimated 

variance of the jth FPC ξjk as in equation [2]. In the first panels in the first and third rows of 

Fig. 5 we show the modes of variation μC(t) + x̄ϕj(t) where x̄ is the mean of the jth FPCs in 

each of the five bins. The remaining panels in Fig. 5 visualize the network of correlation 

functions with a Circos plot (Zhang, Meltzer, and Davis 2013). A pair of regions is marked 

as connected in each plot if the FPC ξ jk of the correlation function falls within the 

corresponding bin for j = 1,2.

Comparing Correlation Functions and Networks in Groups with Differing Maternal 
Education/SES

The pairwise correlation functions for the higher and lower maternal education groups were 

estimated separately and are shown in Fig. 6 and Fig. 7, respectively. It appears the lower 

education group had smaller overall correlations, especially in bilateral cerebellum, and the 

correlations tended to decrease with age, in contrast to the higher education group where the 

correlations overall were relatively stable with age between 350 days and 750 days. For an 

additional analysis using the HI (Holloingshead 1975) we refer to the Supplement.

The differences between the pairwise correlation functions in the high and the low groups 

are shown Fig. 8. These results suggest that the correlations across hemispheres (dashed 

curves in the 1st and 2nd rows and solid curves in the 3rd and 4th rows) are higher in the 

later time period for the higher education group than the lower education group. This 

corresponds to slower decrease in correlation in these areas roughly after 400 days of age. 

The differences were largest for the bilateral occipital and temporal lobe, cerebellum, optic 

radiation, and corona radiata; and left superior longitudinal fasciculus. In the higher 

education group, the overall correlations for the genu, body, and splenu corpus callosum 

with the left hemisphere were stronger as compared to the lower education group, but those 

with the right hemisphere were weaker.

The projection scores for all the correlation functions estimated within each education group 

are displayed in Fig. 9, where we use color to encode the value of the first and second 

projection scores. Among other things, Fig. 9 demonstrates that the overall correlation 

tended to be higher between white matter regions within the same hemisphere than between 

hemispheres.
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The kernel density estimates (Silverman, 1986) of the first and second projections were 

shown in Fig. S1. The higher and lower education groups had significantly different first 

projections (p =0.02).

To compare the overall magnitude and time-dynamic connectivity networks for the higher 

and the lower groups, Fig. S2 and Fig. S3 present the modes of variation and the networks of 

correlation functions. Differences can be seen in the time-dynamic networks (Fig. S3) 

between the higher and the lower education groups, especially in the networks of fast 

increasing correlations (red) and of fast decreasing correlations (blue).

DISCUSSION

The time-dynamic correlation between whole brain white matter myelination and volume as 

in the third panel of Fig. 2 reveals that their co-development increases beginning 150 days 

after birth, peaks at 580 days with a correlation equal to 0.2, and then decreases after 580 

days. White matter MWF and white matter volume processes reflect myelin development at 

the population level, and this is demonstrated in Fig. 2, left and middle panels, where the 

mean development trajectories for both processes follow a similar pattern. While the mean 

trajectories are well aligned, the observed correlation between white matter MWF and white 

matter volume processes was found to be relatively small with a value of 0.2. So while the 

mean trajectories are quite similar, the deviations from the means are not strongly correlated, 

pointing to substantial variability between individuals. This could be due to additional 

drivers of white matter volume as discussed below.

To gain additional insights into age-dependent pattern changes, mean white matter and 

MWF growth patterns are instructive (Fig. 2, left and middle). In general, white matter 

volume increases logarithmically with age, whilst MWF follows a modified sigmoidal 

function (Dean et al., 2014b). There is a relatively stronger correlation between white matter 

volume and MWF during the period where they are both rapidly developing; poor 

correlation in early infancy (birth to 4 months) when volume is increasing but myelination 

has yet to begin in earnest; and poor correlation in later childhood / early adolescence when 

white matter volume continues to increase but myelination has plateaued. As total white 

matter volume is related not only to myelination, but also axonal density and axonal 

diameter, it is likely that changes in axonal density and diameter are the primary drivers of 

volume change in later childhood, a finding which has been noted previously based on 

diffusion imaging data (Paus, 2010). These additional contributions to white matter volume 

might explain the relatively low correlations with MWF.

The pairwise functional correlations between different white matter regions, shown in Figs. 

3, 6, and 7 reveals that different white matter structures have distinct connectivity profiles 

with other regions. Bilateral cerebellum shows less overall co-development with other 

regions; most pairs of regions have decreasing co-myelination, with the cerebellum being a 

notable exception where the co-myelination with most other regions increases between 150 

and 300 days. A reduction in correlation with age between differing sets of regions could 

reflect ongoing specialization and segregation of neural systems in-line with developing 

cognitive and behavioral functions.
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From past studies exploring functional connectivity changes throughout early childhood, 

there has been a noted pattern of segregation and integration of networks with age. Globally, 

this is evidenced by a reduction in overall intra-hemisphere, and increased inter-hemisphere, 

connectivity (Fair et al., 2007; Gao et al., 2015). Our structural co-variance/connectivity 

measures support this and provide new insight into associated changes in the underlying 

brain structure. For example, sets of regions that show increasing correlation with age (Fig. 

5) include: 1. Corpus callosum, cerebellum, internal capsule, and parietal regions; and 2. 

The frontal and temporal lobes. In contrast, regions showing decreasing correlation with age 

include: 1. Temporal lobes and the cingulum; and 2. Corpus callosum and cerebellum and 

temporal lobes. These results are consistent with prior functional connectivity network 

changes from childhood to adult (Vogel et al. 2013), and also align with known brain regions 

associated with specific skills and abilities that are maturing across the investigated age 

range. Corpus callosum, cerebellum, internal capsule, and parietal regions, for example, 

comprise parts of the motor network and, thus, would be expected to have increasing 

connectivity as fine and gross motor skills improve; Frontal and temporal regions are central 

to systems involved with language, emotion, and executive functions, which also see 

substantial improvements across this age range.

Although the cerebellum is involved in varied functional processing, it is predominately 

associated with motion and spatial processing. The temporal lobe is primary involved in 

auditory functioning and language processing. Thus, it is not surprising that the development 

of the cerebellum and the temporal lobes are not significantly correlated. While the 

cingulum does connect the regions within the frontal and temporal lobes, it is primarily 

involved in executive functioning, including attention and working memory skills. These 

again are divergent processes from the auditory processing of the temporal lobe.

Comparing children from the lower and higher maternal education groups, children from the 

lower group appeared to have more pairs of white matter regions with declining co-

myelination and higher variance in the correlations than the higher education group. Regions 

in the same hemisphere had overall higher levels of co-development than those in different 

hemispheres, probably due to anatomic proximity.

The eigenfunctions obtained from the FPCA have natural interpretations and serve as the 

directions on which we project the correlation functions to obtain projection scores. The first 

eigenfunction corresponds to the overall magnitude of correlation/co-development, and the 

second eigenfunction corresponds to the contrast of the correlation between earlier and later 

days of the investigated period. These two major modes of variation can be characterized as 

size and dynamics, as evidenced from the modes of variation in Fig. S2 and Fig. S3 (left 

upper panel), so that the observed correlation functions are composed of these two 

components, characterizing the correlation function for each pair of regions by its size and 

dynamics. Subsequent analysis concerning the magnitude or time-dynamics of co-

development can then be performed based on the projection scores.

The FPCA method had stable performance when applied to the pairwise correlation 

functions, since the correlations have bounded values with no outliers. The results produced 

by our FPCA as compared to a robust PCA via projection pursuit algorithm (Croux and 
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Ruiz-Gazen, 2005, see also Bali et al., 2011) were highly similar, where the latter targets 

directions that maximize median absolute deviation (MAD). The first eigenfunctions and the 

projection scores (not reported here) were almost identical, while the second eigenfunctions 

and scores also exhibited a high degree of similarity. The downstream analysis including the 

construction of networks then also gave similar results.

The permutation test for the first and second projection scores shows that the distribution of 

the first projection scores is significantly different between the higher and the lower 

education groups, but the difference in the second projection scores is not found to be 

significant. Fig. S1 indicates the higher education group tended to have higher overall 

connectivity and slower decline in connectivity than the low group, perhaps reflecting a 

more mature and connected brain.

The reason for the insignificant results despite the apparent large difference in the second 

projections is possibly the small sample size for the lower education group (n = 40) and thus 

large variation in the second projections. The second projection corresponds to the decrease/

increase in the correlation functions over time, which is harder to quantify than the first 

projection, which corresponds to overall magnitude.

Maternal education has been shown to be the component most associated with the full HI 

(Bornstein et al. 2003) and to be associated with brain network connectivity (Gao et al. 

2015). Although the full HI is available to us, as pointed out by a reviewer, it may suffer 

from the instability and inaccuracy in the occupational scale. We therefore chose to measure 

SES by the maternal education scale only, which is also in line with our previous work 

(Deoni et al. 2013a). Additional analysis with SES levels defined by the full HI is included 

in the Supplementary Materials, which produced similar results to those defining SES levels 

by maternal education only, but the first projection scores were no longer significantly 

different in the higher and lower groups This indicates maternal education may indeed be a 

better measure of SES than as quantified by HI in the context of brain network development.

CONCLUSION

This work introduces an important methodological framework for investigating concurrent 

correlations in sparse and irregularly sampled structural imaging data. Using this framework, 

we investigated the development of structural brain networks throughout childhood based on 

white matter myelination, though similar analyses could equally be applied to other imaging 

metrics, including relaxation times and diffusion characteristics. Results are in line with past 

functional neuroimaging studies, with increasing correlation in associated regions as 

networks consolidate, and decreasing correlation in dissociated regions. The primary 

methodological innovations are illustrated with this preliminary investigation, where we 

demonstrate differential patterns of development in children born to mothers with higher and 

lower education levels. Lower maternal education level was found to be associated with a 

less mature and less connected developing brain.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX

Estimation of Correlation Functions

The functional correlation corr(X(t), Y(t)) is estimated by the plug in estimator

corr(X(t), Y(t)) = cov(X(t), Y(t))
var(X(t))var(Y(t)) . [A1]

We propose to estimate cov(X(t), Y(t)), var(X(t)), and var(Y(t)) separately by kernel local 

linear smoothing the pooled centered observations, which is detailed as follows. Assume we 

make observations (tij, Xi,j, Yi,j) at each time tij for subject i = 1,...., n and visit j = 1,... , ni 

where Xij = X(tij), Yij = Y(tij), n is the number of subjects and ni is the number of 

measurements per subject.

We first estimate μx(t) ≔ E(X(t)) and μY(t) ≔ E(Y(t)) by kernel local linear smoothing. We 

define the local linear kernel smoother for μX(t) as μX(t) = β0 by smoothing the pooled 

observation { ti j, Xi j }
i = 1
n

j = 1
ni , where

(β0, β1) = arg min
β0, β1

Σi = 1
n Σ j = 1

ni K(
ti j − t

h ) Xi j − β0 − β1(t − ti j)
2, [A2]

h > 0 is the bandwidth, and K(·) is a kernel function. The mean function μY(t) of Y(t) can be 

estimated similarly by smoothing { ti j, Y i j }
i = 1
n

j = 1
ni . Next we obtain the centered 

observations

Xi j = Xi j − μX(ti j), and

Y i j = Yi j − μY(ti j),

for i = 1, ..., n and j = 1,......, ni. Finally, cov X(t), Y(t)  (resp. var X(t)  and var(Y(t))) is 

obtained by smoothing {(ti j, Xi jY i j)}i = 1
n

j = 1
ni  (resp. {(ti j, Xi j

2)}i = 1
n

j = 1
ni  and 

{(ti j, Y i j
2)}i = 1

n
j = 1
ni ) as in [A2]. For all kernel local smoothing we used Gaussian kernel for 

K(·) with bandwidth h equal to 150 days.

Note that one can write var(X(t)) = E(X2(t)) − μX(t)2 and thus construct another plug-in 

estimate var Y(t)  from E X(t)2 − μX(t)2 by smoothing {(ti j, Xi j
2 )}i = 1

n
j = 1
ni  for E X(t)2  and 
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{ti j, Xi j}i = 1
n

j = 1
ni  for μX(t). This alternative procedure is known to have larger bias than the 

proposed procedure (see for example Fan and Yao, 1998, Zhang and Wang, 2016) and thus 

is not used here. An alternative approach is Frechet regression (Petersen et al 2018).

Modes of variation

The modes of variation for functional data was discussed by Castro et al. (1986) and Jones 

and Rice (1992). Given a random function X(t), we target to summarize its important 

variability using a few basis functions. Denoting XC(t) = X(t) − μ(t) as the centered process, 

our goal is to approximate XC(t) by XJ
C(t) = ∑ j = 1

J ξ j ψ j(t) using a few basis functions, where 

{ψ j(t)} j = 1
J  is an orthonormal basis of L2 and the ξj are the jth Fourier coefficients of XC 

projected onto ψj. Using a suitably defined notion of total variation for functional data, the 

best J-dimensional approximation XJ
C(t) to XC(t) in terms of total variation explained is given 

by the orthonormal basis that solves

min
ψ1, …, ψJ

ψ j = 1,

ψ j, ψl = 0 for 1 ≤ j ≠ l ≤ J

E ∫ (XC(t) − ∑
j = 1

J
ξ jψ j(t))

2dt . [A3]

An explicit solution to [A3] is given by the eigenfunctions of G(s, t) = cov(X(s), X(t)). 
Covariance function G has spectral decomposition

G(s, t) = ∑
j = 1

∞
λ j ϕ j(s)ϕ j(t),

where the λ1 ≥ λ2 ≥ ··· ≥ 0 are the eigenvalues and the φj(t) are the corresponding 

orthonormal eigenfunction. It is then well known the first J eigenfunctions φ1;,...... φj of the 

covariance operator G is a solution to [A3], corresponding to the principal modes of 

variation, and the eigenvalue λj associated with φj quantifies how much variation is 

explained by the jth eigenfunction. The fraction of total variation explained by the jth 

eigenfunction is λj ∑j = 1
∞ λj.
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Fig. 1. 
Left: Visit times for all subjects. Right: Visit times for subjects with higher or lower 

maternal education. Each row corresponds to a subject, where black dots denote visits
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Fig. 2. 
Longitudinal measurements of white matter volume and MWF (left and middle) with overall 

mean functions (blue), and the concurrent correlation between them throughout early 

childhood (right). For the last correlation plot, the solid line corresponds to the functional 

correlation estimate and the light gray band denotes 95% pointwise bootstrap confidence 

intervals; pointwise significance at 0.05 level is indicated by red line segment and 

adjustment significance by asterisks
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Fig. 3. 
Pairwise functional correlations between different white matter structures for all children. 

Each panel shows the 23 functional correlations each constructed pairwise between one 

region (indicated in the panel title) and one of the 23 regions (indicated by color and line 

type), including the region itself, where the correlation is constant at 1 for all ages
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Fig. 4. 
Eigenfunctions (left) and the first (middle) and second (right) modes of variation for 

pairwise correlation functions. In the middle and the right panels we show the estimates of 

μ(t) + k λ jϕ j(t) for k = −2 (solid), −1 (dashed), 0 (red), 1 (dotted), and 2 (dash-dotted). The 

first mode of variation explains 93.5% of total variation for the pairwise correlation 

functions and corresponds to the overall magnitude. The second mode of variation 

accounting for 5.2% of total variation and corresponds to the increase/decrease in correlation 

over time.
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Fig. 5. 
The overall magnitude (the first and the second rows) and time-dynamic (the third and the 

fourth rows) concurrent myelination network for all children. The averages of the correlation 

functions within each of the five bins (defined in the text) are shown in the first figures of the 

top and the third rows. The subsequent figures display overall (resp. time-dynamic) 

concurrent myelination between brain regions, where for each bin we marked as connected a 

pair of regions if the first (resp. second) projection of the corresponding correlation falls 

within that bin
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Fig. 6. 
Pairwise functional correlations between different white matter structures for children with 

higher maternal education
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Fig. 7. 
Pairwise functional correlations between different white matter structures for children with 

lower maternal education
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Fig. 8. 
Differences between the pairwise functional correlations in the higher and lower education 

groups
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Fig. 9. 
The first and second projection scores by maternal education (upper: first projection; lower: 

second projection; left: higher education; right: lower education). Each dot corresponds to a 

pair of brain regions, while color stands for the values of the projections
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Table 1

Children demographics by maternal education levels (higher, ≥ college or university graduate; median, partial 

college; lower, ≤ high school graduate)

Education Higher Medium Lower

Participants (n) 129 53 40

Number of visits 2.2 ± 1.2 1.7 ± 0.94 1.9 ± 0.96

Female:male 54:75 21:32 20:20

Gestational age (days) 275 ± 9 276 ± 9 278 ± 8

Birth weight (kg) 3.4 ± 0.5 3.4 ± 0.4 3.2 ± 0.5

Feeding method Mixed:bottle:breast 44:22:58 20:13:17 9:23:7
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