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Abstract

Background: Trigeminal-mediated headshaking (TMHS) in horses is a form of neuro-

pathic pain of undetermined cause that often results in euthanasia. The role of micro-

biota in TMHS has not been investigated in diseased horses.

Objective: To investigate if gastrointestinal microbiota in the cecum is different in

horses with TMHS compared to a control population, during a summer season with

clinical manifestations of disease.

Animals:Ten castrated horses: fivewith TMHSand five neurologically normal controls.

Methods: All horses were sourced from our institution and kept under the same hus-

bandry and dietary conditions. All horses were fed orchard grass hay for 30 days

and then were euthanized due to chronic untreatable conditions including TMHS and

orthopedic disease (control group). Caecal samples for microbiota analysis were col-

lected within 20 min after euthanasia. Sequencing was performed using an Illumina

MiSeq platform and themicrobiomewas analyzed.

Results: The caecal microbiota of horses with TMHS was similar to control horses

in terms of diversity but differed significantly with Methanocorpusculum spp. having

higher abundance in horses with TMHS.

Conclusions and clinical importance:Methanocorpusculum spp. was more abundant in

the cecumof horseswith TMHS. However, its role in disease is unknown. Furthermore,

it could also represent an incidental finding due to our small population size.
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1 INTRODUCTION

Trigeminal-mediated headshaking (TMHS) in horses is a form of

neuropathic pain that compromises performance and quality of life,

often resulting in euthanasia (Pickles et al., 2014; Ross et al., 2018).

This disorder commonly manifests as sudden violent vertical shakes,

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any

medium, provided the original work is properly cited and is not used for commercial purposes.

© 2022 The Authors. Veterinary Medicine and Science published by JohnWiley & Sons Ltd.

snorting, rubbing of the nose and anxious facial expression (grimace,

nostril flare, wide-eye, ears pulled back) suggesting pain (Lane & Mair,

1987; Madigan & Bell, 1998). A variety of treatments with different

mechanisms of action and variable results have been used in attempts

to alleviate pain in suspected cases (Madigan & Bell, 2001; Pickles

et al., 2014). Treatment has included antidepressants, anticonvulsants,
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channel blockers, antihistamines, corticosteroids, dietary manage-

ment, facial physical devices, neurectomy or compression of the

infraorbital nerve and percutaneous infraorbital nerve electrostim-

ulation (Madigan & Bell, 2001; Mills et al., 2002; Pickles et al., 2014;

Roberts et al., 2020). The trigeminal complex is responsible for facial

sensation and consists of central (brainstem with relay to the cerebral

cortex and first spinal cord segments) and peripheral (trigeminal

ganglia and nerve with its multiple branches) parts (Aleman et al.,

2013). Through somatosensory and sensory nerve conduction studies

of the trigeminal complex, it was reported for the first time that the

infraorbital nerve has a low threshold for activation in horses with

TMHS compared to normal horses (≤10 mA vs. >10 mA, respectively)

(Aleman et al., 2013, 2014). Based on these studies and the lack

of histological abnormalities of the trigeminal complex, TMHS was

determined to be a functional disorder of likely multifactorial etiology

(Aleman et al., 2013, 2014). Because the disorder usually affects young

adult geldings (75% of cases) in a seasonal fashion with 59%–68% of

cases occurring in the spring and summer months, with some horses

triggered or worsened with natural sunlight; hormonal, dietary and

environmental factors are suspected to play a role (Madigan & Bell,

2001; Madigan et al., 1995; Mills & Geering, 1997; Ross et al., 2018).

Recent studies have shown that supplementation of magnesium and

boron can alter the frequency and severity of headshaking (Sheldon

et al., 2019). The microbiota within the gastrointestinal tract of the

horse can vary depending on diet and season of the year (Salem et al.,

2018). The role of microbiota in health and disease has been docu-

mented in human and veterinary medicine (Leclere & Costa, 2019;

Wang et al., 2017). Since TMHS appears to be amultifactorial disorder,

the role of microbiota needs investigation. Therefore, the purpose

of the study was to investigate the microbiota from the cecum from

horseswith TMHSand amatched control populationmaintained under

similar environmental and dietary conditions during a seasonwith clin-

ical manifestations of disease. We hypothesize that horses with TMHS

have a different caecal microbiota profile than unaffected horses.

2 MATERIALS AND METHODS

2.1 Animals

A total of 10 geldings donated to our institution for chronic non-

treatable medical conditions requiring euthanasia were enrolled for

the study (recurrent seasonal headshaking n = 5, chronic orthopedic

lameness noticed at the trot in circles n = 5). All horses underwent

a physical and neurological examination. Healthy control horses had

no history of headshaking and were screened for signs of headshaking

during the study. Age in the control group ranged from 4 to 21 years

old (mean 12.2 years, SD 7.8, median 9) of Thoroughbred (n = 3) and

Warmblood (n = 2) breeds. These horses received no medication and

were euthanized during the spring and summermonths.

A clinical diagnosis of TMHSwasmandatory in the affected group. A

diagnostic workup consisting of oral, ophthalmic and otoscopic exami-

nations, complete blood count (CBC), serum biochemistry, skull radio-

graphs and upper airway endoscopy including guttural pouches was

performed to exclude other causes of headshaking. None of these

horses had apparent cervical or nuchal pain based on palpation, exten-

sion and flexionof theneck.A full bodynecropsy further supported sta-

tus as TMHS or control. The TMHS group consisted of geldings, ages

12 to 19 years old (mean 14.4 years, SD 1.9, median 15) of Quarter

Horse breed. Headshaking was observed during the study while rest-

ing or eating in the stall, at a walk, and exacerbated by light exercise

(trot in a circle for 2 min). These horses were euthanized during the

summer.

2.2 Experimental design

Horses were housed in covered box stalls bedded with wood shavings,

had free access to water, and a diet consisting of orchard grass hay fed

for a minimum of 30 days to allow environmental and dietary adap-

tation (Leclere & Costa, 2019). At the end of this period, horses were

euthanized after sedation with xylazine hydrochloride at 0.25 mg/kg

IV. Euthanasia consisted of a solution (Euthasol, Virbac AH, Inc., Fort

Worth, TX) of pentobarbital sodium (390mg/ml) and phenytoin sodium

(50 mg/ml) IV at a dosage of 77–109 mg/kg (body weight ranged

from 498 to 591 kg) for a total volume of 100 ml. The study was

approved by an institutional animal care and use committee blinded for

review.

2.3 Sample collection and DNA extraction

All samples were collected within 30 min of euthanasia. A 20 cm skin

incision at the mid aspect of the right side of the abdomen was made

to access the cecum using new rectal clean gloves for the collection of

caecal contents. A total of 60–100 g of caecal material was collected,

placed in sterile plastic containers on ice within 2 min of collection.

Samples were transported and placed in a −80◦C freezer within 1 h of

collection.

Total nucleic acid was extracted from the faecal samples using

a QIAcube HT a semi-automated nucleic acid workstation (Qiagen,

Valencia, CA) according to the manufacturer’s instructions for the

QIAamp 96DNAQIAcubeHTKit (Qiagen, Valencia, CA).

2.4 High throughput shotgun sequencing

One microgram of each of the DNA samples was incubated with

50 units RNase If (New England Biolabs, Ipswich, MA) for 15 min

at 37◦C to remove RNA contamination, before shearing the sam-

ples on an E220 Focused Ultrasonicator (Covaris, Woburn, MA). The

sheared DNA samples were size-selected with a double-sided solid

phase reversible immobilization (SPRI)-protocol with KapaPure beads

(Kapa Biosystems-Roche, Basel, Switzerland) using bead-to-sample

ratios of 0.6× and 0.76×. The size-selected DNA samples were con-

verted to barcode-indexed shotgun sequencing libraries using the
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Kapa Hyper Library Preparation Kit (Kapa Biosystems-Roche). The

libraries were polymerase chain reaction (PCR) amplified, cleanedwith

a SPRI-protocol, and analyzed via micro-capillary gel electrophoresis

on a LabChip GX system (PerkinElmer, Waltham, MA). The sequenc-

ing libraries were quantified by fluorometry on a Qubit instrument

(LifeTechnologies, Carlsbad, CA), and pooled at equimolar ratios. The

pool was quantified with a Kapa Library Quant kit (Kapa Biosystems-

Roche) on a QuantStudio five real-time PCR system (Applied Biosys-

tems, Foster City, CA) and shotgun sequenced on an Illumina Novaseq

6000 (Illumina, San Diego, CA) run with paired-end 150 bp reads.

2.5 Data analysis

Raw sequencing reads were cleaned with BBDUK 37.68 with the fol-

lowing parameters; qtrim = rl trimq = 10 minlength = 80 (Bush-

nell, 2020). Taxonomy was assigned to the cleaned reads using Kaiju

1.7.3 with the following parameters (-a greedy -e 5 -E 0.05) using

the National Research database from National Center for Biotech-

nology Information (Menzel et al., 2016). This information was pro-

cessed using Kaiju reports at each taxonomic rank with a minimum

report threshold of 0.5%. The reportswere summarized using the com-

bine_kaiju_reports.pl script (default parameters). The resulting matrix

was imported into R 3.6.2, along with the sample metadata (Pinheiro

et al., 2019). The raw counts were transformed into relative abun-

dances to generate a Bray-Curtis distance matrix ordinated to gener-

ate aPCoAplot using phyloseq1.30.0 (Mcmurdie&Holmes, 2013). The

DESeq2 (1.26.0) package was used to identify significantly overrepre-

sented taxa using theWald testwith a Benjamini–Hochberg correction

for a parametric variable on a non-normalized count matrix to which

pseudo-counts were added (Love et al., 2014).

For most analyses, the data were normalized as follows. The read

counts for each taxon in each sample were divided by the sum of the

read counts for that sample. This was repeated at each taxonomic level

of interest.

3 RESULTS

Both groups of horses were further confirmed as control or TMHS

upon post-mortemevaluation. For TMHShorses, other causes of head-

shaking were ruled out. From the caecal samples, a total of 12.5 bil-

lion raw reads were sequenced, with an average of 401 million reads

per sample. After quality trimming with BBDUK, a total of 12.3 bil-

lion cleaned reads were left for analysis (average 39 million reads per

sample). The relative abundance of the 10 most common phyla and

genera present in caecal samples from both groups of horses are pre-

sented in Figure 1. Beta diversity was examined via principal coordi-

nate analysis (PCoA) of bacterial genus relative abundance (for con-

trols vs. headshakers) and is shown in Figure 2. The genusMethanocor-

pusculum was significantly increased in the caecal content of horses

with TMHS as compared to that of control horses (P value= 3.17E-20,

Table 1).

F IGURE 1 Overall normalized and pooled relative abundance of
caecal contents in horses with TMHS and controls. HSK=
Headshakers. Shown are only the top 10 taxa (ranked by abundance of
each genus across all horses) that were identified to the genus level

F IGURE 2 Principal coordinate analysis (PCoA plot) of bacterial
levels at the genus by horses. C, Control; HSK, Headshaker

4 DISCUSSION

This study evaluated the caecal microbiota in horses with TMHS and

control horses. The caecal microbiota was similar between the two

groups except for Methanocorpusculum spp. which was significantly

higher in horses with TMHS. Methanocorpusculum has been shown

to be the main inhabitant of the equine cecum and found to be part

of the highest two archaeal clades in the faecal microbiota in horses

(Fernandes et al., 2014; Murru et al., 2018). Methanocorpusculum

reduces carbon dioxide to methane using hydrogen (Morvan et al.,

1996). It is thought that the methane production by monogastrics

is less than that of ruminants (Murru et al., 2018). Furthermore,

there are lower counts of methanogenic archaea in the equine cecum
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TABLE 1 Normalized pooled genus abundance data in horses
from caecal samples. Controls and headshakers (HSK)

Genus Controls HSK

Unclassified* 60.83% 63.36%

Cannot be assigned to a genus 12.58% 11.72%

Genus< 0.5% of all reads 7.97% 7.63%

Prevotella 6.48% 5.62%

Bacteroides 3.19% 2.64%

Clostridium 1.51% 1.19%

Ruminococcus 1.07% 1.00%

Fibrobacter 0.96% 1.21%

Treponema 0.71% 0.68%

Eubacterium 0.59% 0.58%

Butyrivibrio 0.55% 0.50%

Desulfovibrio 0.50% 0.63%

Roseburia 0.42% 0.38%

Faecalibacterium 0.40% 0.39%

Alistipes 0.37% 0.22%

Parabacteroides 0.31% 0.25%

Lachnoclostridium 0.28% 0.23%

Blautia 0.25% 0.21%

Lactobacillus 0.22% 0.27%

Paraprevotella 0.15% 0.15%

Alloprevotella 0.12% 0.16%

Phascolarctobacterium 0.10% 0.03%

Oscillibacter 0.09% 0.09%

Streptococcus 0.06% 0.12%

Butyricicoccus 0.05% 0.02%

Porphyromonas 0.05% 0.00%

Coprococcus 0.05% 0.05%

Akkermansia 0.04% 0.00%

Pseudobutyrivibrio 0.04% 0.08%

Campylobacter 0.04% 0.20%

Viruses 0.03% 0.02%

Bacillus 0.00% 0.03%

Coprobacillus 0.00% 0.02%

Dermatophilus 0.00% 0.07%

Enterococcus 0.00% 0.10%

Lysinibacillus 0.00% 0.00%

Methanobrevibacter 0.00% 0.00%

Methanocorpusculum 0.00% 0.09%

Mycoplasma 0.00% 0.00%

Paenibacillus 0.00% 0.00%

Paludibacter 0.00% 0.00%

Staphylococcus 0.00% 0.05%

when compared to rumen samples from various ruminant species

(Morvan et al., 1996). A cause and effect or contribution of higher

concentrations of Methanocorpusculum to TMHS in horses was not

investigated here. Although possible differences were noted in caecal

samples between groups in Phascolarctobacterium, Streptococcus and

Campylobacter; and Roseburia, Oscillibacter, Bacillus, Coprobacillus and

Lysinibacillus, respectively; these were not statistically significant.

The microbiota varies greatly among the different anatomic com-

partments of the gastrointestinal tract with less variation between

adjacent compartments and largest diversity in the distal gut (Costa

et al., 2015). In our study, the 10 most common genera from the

cecum in both groups of horseswerePrevotella, Bacteroides, Clostridium,

Fibrobacter, Ruminococcus, Treponema, Eubacterium, Butyrivibrio, Alistipes

and Desulfovibrio. Similar to other reports, Bacteroides and Firmicutes

were the most dominant caecal phyla (Costa et al., 2015; Arnold et al.,

2020). The control caecal group had relative abundance of pooled

phyla greater than 1% with Bacteroides at 11.8%, Firmicutes at 11.8%

and Proteobacteria at 1.5%. The TMHS caecal group had relative abun-

dance of pooled phyla greater than 1% with Bacteroides at 9.8%, Fir-

micutes at 9.9%, Proteobacteria at 1.6% and Fibrobacter at 1%. The top

three phyla being Bacteroides, Firmicutes and Proteobacteria were simi-

lar to another study, however in that study, the relative abundance of

these three phyla were in higher percentages than was found in our

group of horses (Warzecha et al., 2017).

The intestinal microbiota plays an important role in health and dis-

ease (Wang et al., 2017). Some of the essential roles of the micro-

biota include extraction of energy from food, alteration of appetite sig-

nalling, provision of a physical barrier for pathogens and development

of intestinal mucosa and immune system of the host (Macpherson &

Harris, 2004; Rakoff-Nahoum & Medzhitov, 2008). The role of micro-

biota in health and disease, and its alteration following drug adminis-

tration has been investigated in horses (Arnold et al., 2020; Leclere &

Costa, 2019; Stewart et al., 2018, 2019; Tyma et al., 2019; Schoster

et al., 2019). Bacterial composition is influenced by diet, environment,

season, oxygen tension, physiological role and inflammation (Leclere

& Costa, 2019; Salem et al., 2018). Inter-breed diversity and temporal

dynamics of the faecal microbiota were investigated in a cohort of 189

healthy young horses of six breeds under similar conditions at two time

points 8 months apart (Massacci et al., 2020). The authors concluded

that despite an apparent microbial diversity and composition, breed

exerted limited effects in microbiota (Massacci et al., 2020). Although

there is no reported breed predisposition in horses with TMHS; Thor-

oughbreds,QuarterHorses andWarmbloods are themost represented

breeds (Madigan & Bell, 1998, 2001). In our study, all horses with

TMHS were of Quarter Horse breed; and controls were of thorough-

bred and warmblood breeds. It is unknown if breed played a role in the

results of this study.

Microbiota adaptation to dietary and environmental modification

occurs in healthy horses (Costa et al., 2015; Fernandes et al., 2014;

Leclere & Costa, 2019; Salem et al., 2018). Similar adaptations were

not observed in horses with asthma which raises a possible role of the
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microbiota as a potential modulator of the allergic response (Leclere

& Costa, 2019). Similar findings in germ-free mice and infants with

dysbiosis that developed asthma support the observations made by

LeClere and Costa (Frati et al., 2018; Leclere & Costa, 2019; Lynch &

Boushey, 2016; Martinez & Guerra, 2018; Pisi et al., 2017). Asthma

can be influenced by environmental factors such as presence of aller-

gens due to husbandry practices or seasonal factors (Bond et al., 2018).

Horses with seasonal TMHSmanifest signs during spring, summer and

early fall months (Madigan & Bell, 2001). This seasonal similarity to

asthma in horses warranted investigation of microbiota in horses with

TMHS (Bond et al., 2018). The higher number of Methanocorpusculum

in caecal samples from horses with TMHS does not prove cause and

effect, and might be incidental due to the small sample size. Seasonal

dietary changes can occur as the result of soil conditions, forage com-

position and harvest management on which forage from winter crop

to spring crop are different and coincide with the onset or exacerba-

tion of headshaking (Sheldon et al., 2018). Dietary components influ-

ence changes in blood pH and ionized electrolytes such as calcium and

magnesium which are essential for the modulation of nerve transmis-

sion (Sheldon et al., 2018). Whether microbiota adaptation to dietary

changes and season of the year occurs in horses with TMHS is uncer-

tain.

The contribution of microbiota in neurologic disease and pain in

humans is well documented (Guo et al., 2019; Quigley, 2017). Gut

microbiota influence chronic, visceral, inflammatory and neuropathic

pain, headache and tolerance to opidoids (Guo et al., 2019; Holzer &

Farzi, 2014). Various microbiota regulatory mechanisms such as mod-

ulation of dorsal root ganglia and neuroinflammation of the periph-

eral and central nervous systems have been described (Guo et al.,

2019). Neuropathic pain is associated with dysesthesia (abnormal sen-

sation) or allodynia (nonpainful stimuli-evoked pain) (Von Hehn et al.,

2012). Presumably, horses with TMHS have both based on somatosen-

sory studies (Aleman et al., 2013, 2014). Horses with acutely induced-

laminitis resulted in microbiota alteration compared to healthy horses

(Moreau et al., 2014; Tuniyazi et al., 2021). This effect was not investi-

gated in our horses with orthopedic disease.

The main limitations of our study were the small number of animals

and lack of investigation of microbiota composition of the various GI

anatomical compartments. Although faecal samples would have been

easier to collect; these were not collected due to being reported as

remarkably similar despite variables such as individual history, breed

or age (Kauter et al., 2019). The effect of breed was not investi-

gated here and remained unknown if Quarter Horses might havemore

Methanocorpusculum in the cecum than other breeds and not as the

result of TMHS. The source of control horses depended on the avail-

ability of horses being euthanized during the same season of TMHS;

resulting in variability of breed, age and presenting lameness. Also, the

effect of lameness in the caecal microbiota expression ofMethanocor-

pusculumwasnot investigated.Another limitation is that control horses

were not all fed in the same month as horses with TMHS (spring

and summer vs. summer, respectively) due availability. However, major

environmental differences were not noted due to our institution geo-

graphical location. Housing, management and dietary conditions were

the same. Lastly, differences in microbiota adaptation throughout the

seasons of the year was not investigated. Caution must also be consid-

eredwhencomparing studies onmicrobiota sincedifferentmethodolo-

gies could have been used generating different results.

In conclusion, horses with TMHS had a significantly higher con-

centration of Methanocorpusculum spp. in caecal samples during the

season of clinical manifestations compared to control horses. How-

ever, caution must be practiced in the interpretation of this find-

ing due to the small sample size, and variability of breed and

age in the control group. Therefore, the role of Methanocorpuscu-

lum in disease is unknown. Understanding the role of microbiota in

TMHS throughout the seasons of the year might result in dietary

and environmental modification in attempts to prevent clinical man-

ifestations of disease, improve quality of life and avoid possible

euthanasia.
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