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ABSTRACT OF THE DISSERTATION

Some Results for the Ambient Obstruction Flow

By

Christopher Lopez

Doctor of Philosophy in Mathematics

University of California, Irvine, 2017

Professor Jeffrey Streets, Chair

We establish several results for the ambient obstruction flow (AOF), a parabolic flow of Rie-

mannian metrics introduced by Bahuaud-Helliwell which is based on the Fefferman-Graham

ambient obstruction tensor. The flow may be regarded as a higher order analogue of Ricci

flow, and the critical metrics for this flow may be regarded as generalizations of Einstein

metrics. First, we obtain local L2 smoothing estimates for the curvature tensor along AOF

and use them to prove pointwise smoothing estimates for the curvature tensor. We use the

pointwise smoothing estimates to show that the curvature must blow up for a finite time

singular solution to AOF. We also use the pointwise smoothing estimates to prove a com-

pactness theorem for a sequence of solutions to AOF with bounded C0 curvature norm and

injectivity radius bounded from below at one point. The compactness theorem allows us to

obtain a singularity model from a finite time singular solution to AOF and to characterize

the behavior at infinity of a nonsingular solution to AOF. Our final result is a rigidity the-

orem, which states that under suitable conditions a metric that is critical for AOF and has

small scale-invariant integral energy has vanishing Riemann curvature tensor.

vi



Chapter 1

Introduction

1.1 Introduction

The uniformization theorem ensures that for a compact two dimensional Riemannian man-

ifold (M, g), there is a metric g̃ conformal to g for which (M, g̃) has constant sectional

curvature equal to K. Moreover, the sign of K can be determined via the Gauss-Bonnet

theorem. In higher dimensions, curvature functionals have been used with great success to

define and locate optimal metrics in higher dimensions; see [32]. One conformally invariant

curvature functional for a 4-dimensional Riemannian manifold (M, g) is given by

F4
W (g) =

∫
M
|Wg|2 dVg,

where Wijkl is the Weyl tensor. The negative gradient of F4
W is the Bach tensor Bij defined

as

Bij = −∇k∇lWkijl − 1
2R

klWkijl.
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The study of critical metrics for F4
W , ie. Bach-flat metrics, has been fruitful. The class

of Bach-flat metrics contains, as shown in [5], familiar metrics such as locally conformally

Einstein metrics and scalar flat (anti) self-dual metrics.

Another conformally invariant functional for a 4-dimensional Riemannian manifold (M, g)

is given by

F4
Q(g) =

∫
M
Q(g) dVg,

where Q(g) is a scalar quantity introduced by Branson in [7] called the Q curvature. Via the

Chern-Gauss-Bonnet theorem, this functional is related to F4
W by F4

Q = 8π2χ(M)− 1
4F

4
W .

The Bach tensor is also the gradient of F4
Q. Unlike the Weyl tensor, the Q curvature is not

pointwise conformally covariant.

One can generalize the Q curvature to a scalar quantity defined on n dimensional Riemannian

manifolds (M, g), where n is even. Consider the functionals defined for n even by

FnQ(g) =

∫
M
Q(g) dVg.

These functionals are conformally invariant. The gradient of FnQ is a symmetric 2-tensor O,

introduced by Fefferman and Graham in [18], called the ambient obstruction tensor. This

tensor arises in physics: for example, Anderson and Chruściel use O in [1] to construct global

solutions of the vacuum Einstein equation in even dimensions. In dimension 4, O is just the

Bach tensor. The ambient obstruction tensor is conformally covariant in n dimensions.

This is in contrast to the n dimensional generalization of the Bach tensor, which is only

conformally covariant in dimension 4. This fact follows from a result in Graham-Hirachi

[21] stating that in even dimensions 6 and greater, the only conformally covariant tensors

essentially are W and O. Extending the 4-dimensional case, Fefferman and Graham showed

in [19] that O vanishes for Einstein metrics for all even dimensions. However, there also
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exist non conformally Einstein metrics for which O = 0, as shown by Gover and Leitner in

[20]. The conformal covariance of O and the fact that obstruction flat metrics generalize

conformally Einstein metrics suggest that studying the critical points of FnQ via its gradient

flow may aid in the study of optimal metrics on M . Our main goal is to establish fundamental

results for this gradient flow.

1.2 Main Results

1.2.1 Fundamental Results

We will continue the study of a variant of the gradient flow of FnQ, that was introduced by

Bahuaud and Helliwell in [3], establishing fundamental results. This flow, which we will refer

to as the ambient obstruction flow (AOF), is defined for a family of metrics g(t) on a

smooth manifold M by


∂tg = (−1)

n
2O +

(−1)
n
2

2(n−1)(n−2)
(∆

n
2−1R)g

g(0) = h.

(1.1)

The conformal term involving the scalar curvature was added in order to counteract the

invariance of O under the action of the conformal group on the space of metrics on M .

In the papers [3, 4] they proved the short time existence and uniqueness, respectively, of

solutions to AOF given by (1.1) when M is compact. Mantegazza and Martinazzi provided

an existence proof for parabolic quasilinear PDE on compact manifolds in [35]. Kotschwar

has given in [30] an alternate uniqueness proof via a classical energy argument without using

the DeTurck trick.
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Gradient flows have been studied extensively since Hamilton in [23, 25, 24] and Perelman in

[37, 38, 39] (expositions are given in [9, 29, 36]) used the Ricci flow to study the geometry

of 3-manifolds. In the past fifteen years, these have begun to include higher order flows.

Mantegazza studied a family of higher order mean curvature flows in [34], Kuwert-Schätzle

studied the gradient flow of the Willmore functional in [31], Streets studied the gradient

flow of
∫
M |Rm|2 in [42], Chen-He studied the Calabi flow in [11, 12], and Kişisel-Sarıoğlu-

Tekin studied the Cotton flow in [28]. Bour studied the gradient flows of certain quadratic

curvature functionals in [6], including some variants of
∫
M |W |

2.

Our first result gives pointwise smoothing estimates for the C0 norms of the derivatives

of the curvature. Since the AOF PDE (1.1) is of order n, the maximum principle cannot

be used to obtain these estimates. Instead, we first use interpolation inequalities derived

by Kuwert and Schätzle in [31] in order to derive local integral Bernstein-Bando-Shi-type

smoothing estimates. Then, we use a blowup argument adapted from Streets [44] in order

to convert the integral smoothing estimates to pointwise smoothing estimates, as stated in

the following theorem. During the proof, we use the local integral smoothing estimates to

take a local subsequential limit of renormalized metrics.

Theorem 1.2.1. Let m ≥ 0 and n ≥ 4. There exists a constant C = C(m,n) so that if

(Mn, g(t)) is a complete solution to AOF on [0, T ] satisfying

max

(
1, sup
M×[0,T ]

|Rm|

)
≤ K,

then for all t ∈ (0, T ],

sup
M
|∇mRm|g(t) ≤ C

(
K + t−

2
n

)1+m
2
.
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We obtain from the pointwise smoothing estimates two additional theorems. The first theo-

rem gives an obstruction to the long time existence of the flow. Since the pointwise smoothing

estimates do not require that the Sobolev constant be bounded on [0, T ), we rule out that

the manifold collapses with bounded curvature.

Theorem 1.2.2. Let g(t) be a solution to the AOF on a compact manifold M that exists on

a maximal time interval [0, T ) with 0 < T ≤ ∞. If T <∞, then we must have

lim sup
t↑T

‖Rm‖
C0(g(t))

=∞.

The second theorem allows us to extract convergent subsequences from a sequence of solu-

tions to AOF with uniform C0 curvature bound and uniform injectivity radius lower bound.

We prove this in section 4 by using the Cheeger-Gromov compactness theorem to obtain

subsequential convergence of solutions at one time. Then, after extending estimates on the

covariant derivatives of the metrics from one time to the entire time interval, we obtain

subsequential convergence over the entire time interval.

Theorem 1.2.3. Let {(Mn
k , gk(t), Ok)}k∈N be a sequence of complete pointed solutions to

AOF for t ∈ (α, ω), with t0 ∈ (α, ω), such that

1. |Rm(gk)|gk ≤ C0 on Mk × (α, ω) for some constant C0 <∞ independent of k

2. injgk(t0)(Ok) ≥ ι0 for some constant ι0 > 0.

Then there exists a subsequence {jk}k∈N such that {(Mjk
, gjk(t), Ojk)}k∈N converges in the

sense of families of pointed Riemannian manifolds to a complete pointed solution to AOF

(Mn
∞, g∞(t), O∞) defined for t ∈ (α, ω) as k →∞.

We use this compactness theorem to prove two corollaries. For a compact Riemannian

manifold (M, g), let CS(M, g) denote the L2 Sobolev constant of (M, g), defined as the
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smallest constant CS such that

‖f‖2
L

2n
n−2

≤ CS
(
‖∇f‖2

L2 + V −
2
n‖f‖2

L2

)
,

where V = vol(M, g), for all f ∈ C1(M). The following result states that if the Sobolev

constant and the integral of Q-curvature are bounded along the flow, there exists a sequence

of renormalized solutions to AOF that converge to a singularity model.

Theorem 1.2.4. Let (Mn, g(t)), n ≥ 4, be a compact solution to AOF that exists on a

maximal time interval [0, T ) with T <∞. Suppose that sup{CS(M, g(t)) : t ∈ [0, T )} <∞.

Let {(xi, ti)}i∈N ⊂ M × [0, T ) be a sequence of points satisfying ti → T , |Rm(xi, ti)| =

sup{|Rm(x, t)| : (x, t) ∈ M × [0, ti]}, and λi → ∞, where λi = |Rm(xi, ti)|. Then the

sequence of pointed solutions to AOF given by {(M, gi(t), xi)}i∈N, with

gi(t) = λig(ti + λ
−n2
i t), t ∈ [−λ

n
2
i ti, 0]

subsequentially converges in the sense of families of pointed Riemannian manifolds to a

nonflat, noncompact complete pointed solution (M∞, g∞(t), x∞) to AOF defined for t ∈

(−∞, 0]. Moreover, if n = 4 or

sup
t∈[0,T )

∫
M
Q(g(t)) dVg(t) <∞,

then O(g∞(t)) ≡ 0 for all t ∈ (−∞, 0].

The next result states that if a nonsingular solution to AOF does not collapse at time

∞ and the integral of Q-curvature is bounded along the flow, there exists a sequence of

times ti → ∞ for which g(ti) converges to an obstruction flat metric. We note that in

cases (2) and (3), the boundedness of the integral of the Q curvature along the flow implies

that g∞(t) is obstruction flat. However, this does not imply that ∂tg∞ = 0. Rather,
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∂tg∞ = (−1)n/2C(n)(∆
n
2−1R)g∞, i.e. the metric is still flowing by the conformal term of

AOF within the conformal class of g∞(0).

Theorem 1.2.5. Let (M, g(t)) be a compact solution to AOF on [0,∞) such that

sup
t∈[0,∞)

‖Rm‖
C0(g(t))

<∞.

Then exactly one of the following is true:

1. M collapses when t =∞, i.e.

lim
t→∞

inf
x∈M

injg(t)(x) = 0.

2. There exists a sequence {(xi, ti)}i∈N ⊂ M × [0,∞) such that the sequence of pointed

solutions to AOF given by {(M, gi(t), xi)}i∈N, with

gi(t) = g(ti + t), t ∈ [−ti,∞)

subsequentially converges in the sense of pointed Riemannian manifolds to a complete

noncompact finite volume pointed solution (M∞, g∞(t), x∞) to AOF defined for t ∈

(−∞,∞). If n = 4 or

sup
t∈[0,∞)

∫
M
Q(g(t)) dVg(t) <∞,

then g∞(t) is obstruction flat for all t ∈ (−∞,∞).

3. There exists a sequence {(xi, ti)}i∈N ⊂ M × [0,∞) such that the sequence of pointed

solutions to AOF given by {(M, gi(t), xi)}i∈N, with

gi(t) = g(ti + t), t ∈ [−ti,∞)

7



subsequentially converges in the sense of pointed Riemannian manifolds to a compact

pointed solution (M∞, g∞(t), x∞) to AOF defined for t ∈ (−∞,∞), where M∞ is

diffeomorphic to M . If n = 4 or

sup
t∈[0,∞)

∫
M
Q(g(t)) dVg(t) <∞,

then g∞(t) is obstruction flat for all t ∈ (−∞,∞) and there exists a family of metrics

ĝ∞(t) conformal to g∞(t) for all t ∈ (−∞,∞), with ĝ∞(t) = ĝ∞(0) for all t ∈

(−∞,∞), such that ĝ∞(0) is obstruction flat and has constant scalar curvature.

1.2.2 Rigidity Result

We can gain further insight into noncompact singularity models for AOF by studying the

rigidity of such spaces. The rigidity of obstruction - flat metrics has been studied in the past

twenty years, especially in dimension four, in which the ambient obstruction tensor and the

Bach tensor coincide. Let (M, g) be a Riemannian manifold. The Bach tensor in dimension

n ≥ 4 is given by

Bij = 1
n−3∇

k∇lWkijl + 1
n−2R

klWkijl.

We note that, in all dimensions greater than 3, the Bach tensor is (derivative) order 4 in g,

whereas the ambient obstruction tensor is, in dimension n, order n in g. Let Y = Y[g] denote

the Yamabe constant of the conformal class [g]:

Y[g] = inf
u∈C∞0 (M)

u6=0

∫
M (|∇u|2 + n−2

4(n−1)
Ru2) dV( ∫

M u
2n
n−2 dV

)n−2
n

.
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Here, all geometric objects are with respect to the conformal representative g. Kim proved

in [27] that if (M, g) is a noncompact complete Bach - flat Riemannian 4-manifold with (the

scalar curvature) R = 0 and Y > 0, then there exists ε0 > 0 such that if ‖Rm‖22 < ε0, then

Rm = 0.

Let R̊m denote the traceless curvature tensor:

(R̊m)ijkl = Rijkl − R
12(gikgjl − gilgjk).

Streets proved in [43] a similar result labeled Theorem 3, replacing Rm with R̊m and the

Yamabe constant with the Sobolev constant, as follows. If (M, g) is a noncompact, complete

4-manifold that is critical for the L2 flow, and satisfies R = 0 and CS <∞, then there exists

ε0 > 0 such that if ‖R̊m‖22 < ε0, then Rm = 0.

Chu generalized in [16] the result of Kim given above by showing that if (M, g) is a noncom-

pact complete Bach - flat Riemannian 4-manifold with R ≥ 0 and Y > 0, then there exists

ε0 > 0 such that if ‖R̊m‖22 < ε0, then (M, g) has constant sectional curvature. Chu and Feng

generalized further to n-dimensional Riemannian manifolds:

Theorem 1.2.6 (Chu and Feng [17], Theorem 1.1). Let (Mn, g) (n ≥ 4) be an n-dimensional

complete noncompact Bach - flat Riemannian manifold with constant scalar curvature and

positive Yamabe constant. Assume that
∫
Mn |R̊m|2 dVg is finite when n ≥ 5 and one of

(i)-(iii) holds:

(i) The scalar curvature R > 0.

(ii) The scalar curvature R = 0.

(iii) The scalar curvature R < 0 and n > 9.

9



Then there exists a small number c1 such that if
∫
Mn |R̊m|n/2 dVg < c1, then (Mn, g) is a

space of constant curvature.

Streets used the rigidity results proved in [43] to rule out bubbles (curvature is concentrated

in a small ball) along the L2 flow in the proof of his convergence result, therein labeled

Theorem 1. This theorem states that 4-manifolds with positive Yamabe constant and small

traceless curvature tensor L2 energy converge under the L2 flow to a spherical space form.

We believe that our rigidity results may be similarly useful in a proof of a sphere theorem

for AOF.

The next theorem states that if noncompact singularity models possess sufficiently small

energy, they are actually flat. Let (Mn, g) be a complete noncompact Riemannian manifold,

where n is even and n ≥ 4. Denote the open geodesic ball of radius ρ about x ∈ M by

B(x, ρ, g). Also let S(ρ) = ∂B(x, ρ) and A(a, b) = B(x, b) \ B(x, a). Define ‖ · ‖p for

1 ≤ p ≤ ∞ by ‖ · ‖p = ‖ · ‖Lp(M,g).

Definition 1.2.7. The L2 Sobolev constant of a noncompact Riemannian manifold (M, g)

is the smallest CS such that ‖f‖22n
n−2
≤ CS‖∇f‖22 for all f ∈ C1

c (M).

Definition 1.2.8. We say that (M, g) possesses a volume growth upper bound if there

exist x0 ∈M and CV > 0 such that volB(x0, ρ, g) < CV · ρn for all ρ > 0.

Definition 1.2.9. Fix x0 ∈M . If x, y ∈M , let dg(x, y) denote the distance between x and

y with respect to the metric g. Define ρ by ρ(x) = dg(x0, x) for x ∈M . We say that (M, g)

has quadratic curvature decay if there exists CQ > 0 such that |Rm| ≤ CQ · ρ−2 on M .

Theorem 1.2.10. Let (Mn, g) be a complete noncompact Riemannian manifold. Suppose

that n is even and n ≥ 6. Assume that

1. (M, g) is obstruction-flat and has constant scalar curvature.

2. The L2 Sobolev constant CS of (M, g) is bounded.

10



3. (M, g) possesses a volume growth upper bound.

4. There exists K > 0 such that ‖Rm‖∞ ≤ K.

5. (M, g) has quadratic curvature decay.

Then there exists ε0 = ε0(n,CS) > 0 such that if ‖Rm‖n
2
< ε0, then (M, g) is flat.

In dimension 4, we can omit the volume growth upper bound, the L∞ bound on Rm, and

the quadratic curvature decay on Rm to obtain the following stronger result:

Theorem 1.2.11. Let (M4, g) be a complete noncompact Riemannian 4 - manifold. Assume

that

1. (M, g) is obstruction-flat and has constant scalar curvature.

2. The L2 Sobolev constant CS of (M, g) is bounded.

Then there exists ε0 = ε0(CS) > 0 such that if ‖Rm‖2 < ε0, then (M, g) is flat.

By assumption, we can choose x0 ∈M for which there exists CV > 0 such that volB(x0, ρ) <

CV · ρn for all ρ. We also assume that at the same point x0, there exists CQ > 0 such that

|Rm| ≤ CQ · ρ−2 on M . We define a cutoff function ϕ for each R > 0 by

(a) ϕ ≡ 1 on B(x0, R)

(b) ϕ ≡ 0 on M \B(x0, 2R)

(c) ‖∇ϕ‖∞ < Λρ−1 for all ρ > 0, where Λ > 0 is independent of ρ.

We prove our rigidity results via a Liouville theorem type argument, using integral estimates,

in a manner similar to the method of proof in Streets [43]. First, we estimate ‖∇
n
2−1Rm‖22

11



by 〈∆
n
2−1Rc,Rc〉 and lower order terms. This estimate allows us to apply the fact that M

is obstruction-flat and has constant scalar curvature to replace 〈∆
n
2−1Rc,Rc〉 with a sum of

lower order terms in Rm. The various lower order terms can be estimated via interpolation

for R� 1 by

C1ε0

∫
M
ϕ2s|∇

n
2−1Rm|2 + C2ε0R

−2, (1.2)

where C1 = C1(n, s, CS) and C2 = C2(n,Λ, CQ, CV ).

We explain the dependence of C1, C2 on the constants CS ,Λ, CV , CQ. We employ interpola-

tion results that we derived from a Sobolev inequality and interpolation results (dependent

on Λ) from Kuwert and Schätzle [31]. A bound on the Sobolev constant is needed to gen-

eralize the Sobolev inequality from Rn to complete noncompact manifolds. Since we only

assumed a bound on ‖Rm‖n/2, we used our volume growth upper bound to control ‖Rm‖α

for α < n
2 . We used these two types of estimates in the derivation of our interpolation results.

We also needed to estimate via interpolation terms in Rm containing derivatives of orders

at most n − 4. While the Sobolev constant bound and volume growth upper bound were

sufficient to estimate terms of derivative order at most n
2 − 1, we were not able to estimate

in this fashion terms with orders between n
2 − 1 and n − 4. Instead, we integrate by parts,

which eventually yields a sum of integrals whose integrands are of order at most n
2 − 1. This

process generates several error terms containing ∇ϕ. The quadratic curvature decay bound

induces pointwise decay bounds for all derivatives of Rm, which suffice to control these error

terms.

We choose ε0 small enough in inequality (1.2) to allow us to bound ‖∇
n
2−1Rm‖22 by C2ε0R

−2;

ε0 only depends on n and CS (we choose s sufficiently large so that the exponent of ϕ remains

nonnegative throughout the proof). Our bound on ‖∇
n
2−1Rm‖22 by C2ε0R

−2 implies that we

can bound ‖Rm‖2n by C2ε0R
−2 as well. We estimate ‖Rm‖2n by ‖∇

n
2−1Rm‖22 and C2ε0R

−2

12



via a Sobolev inequality. Then, our previous estimate of ‖∇
n
2−1Rm‖22 by C2ε0R

−2 allows

us to bound ‖Rm‖2n by C2ε0R
−2. Letting R →∞, we conclude that ‖Rm‖2n = 0 and M is

flat.

1.3 Background

1.3.1 Q Curvature

Here we recall a description of Q curvature given by Chang et al. in [10]. The Q curvature

was introduced in four dimensions by Riegert in [41] and Branson-Ørsted in [8] and in

even dimensions by Branson in [7]. It is a scalar quantity defined on an even dimensional

Riemannian manifold (Mn, g). If n = 2, we define Q to be Q = −1
2R = −K, where K is

the Gaussian curvature of M . The Gauss-Bonnet theorem gives
∫
QdV = −2πχ(M). The

Q curvature of a metric g̃ = e2fg is given by e2f Q̃ = Q + Pf , where the Paneitz operator

P introduced by Graham-Jenne-Mason-Sparling in [22] is given by Pf = ∆f . If n = 4, we

define Q to be

Q = −1
6∆R− 1

2R
abRab + 1

6R
2.

The Chern-Gauss-Bonnet theorem gives

∫
QdV = 8π2χ(M)− 1

4

∫
|W |2 dV.

In particular, if M is conformally flat, then
∫
QdV = 8π2χ(M). The Q curvature of a metric

g̃ = e2fg is given by e4f Q̃ = Q+ Pf , where the Paneitz operator P is given by

Pf = ∇a[∇a∇b + 2Rab − 2
3Rg

ab]∇bf.

13



In general when n is even, we are only able to write down the highest order terms of Q and

P:

Q = − 1
2(n−1)

∆
n
2−1R + lots, Pf = ∆

n
2 f + lots.

Nonetheless, Q still has nice conformal properties. Under a conformal change of metric

g̃ = e2fg, we have enf Q̃ = Q+Pf . The integral of Q is conformally invariant. In particular,

if M is locally conformally flat, we have an analogue of the Gauss-Bonnet theorem:

∫
QdV = (−1)

n
2 (n2 − 1)! 2n−1π

n
2χ(M).

1.3.2 Ambient Obstruction Tensor

Fefferman and Graham proposed in [18] a method to determine the conformal invariants

of a manifold from the pseudo-Riemannian invariants of an ambient space it is embedded

into. They introduced the ambient obstruction tensor O as an obstruction to such an

embedding. They subsequently provided a detailed description of the properties of O in

their monograph [19].

We define several tensors that we will use to express O. The Schouten tensor A, Cotton

tensor C, and Bach tensor B are defined as

Aij = 1
n−2

(
Rij − 1

2(n−1)
Rgij

)
, Cijk = ∇kAij −∇jAik, Bij = ∇kCijk − AklWkijl.

We obtain via the identity ∇l∇kWkijl = (3− n)∇kCijk that

Bij = 1
3−n∇

l∇kWkijl + 1
2−nR

klWkijl.

14



We define the notation Pmk (A) for a tensor A by

Pmk (A) =
∑

i1+···+ik=m

∇i1A ∗ · · · ∗ ∇ikA.

The following result describes O. The form of the lower order terms is implied by the proofs.

Theorem 1.3.1 (Fefferman-Graham [19], Theorem 3.8; Graham-Hirachi [21], Theorem 2.1).

Let n ≥ 4 be even. The obstruction tensor Oij of g is independent of the choice of ambient

metric g̃ and has the following properties:

1. O is a natural tensor invariant of the metric g; ie. in local coordinates the components

of O are given by universal polynomials in the components of g, g−1, and the curvature

tensor of g and its covariant derivatives, and can be written just in terms of the Ricci

curvature and its covariant derivatives. The expression for Oij takes the form

Oij = ∆
n
2−2(∆Aij −∇j∇iAkk) +

n/2∑
j=2

P
n−2j
j (Rm)

=
1

3− n
∆
n
2−2∇l∇kWkijl +

n/2∑
j=2

P
n−2j
j (Rm),

where ∆ = ∇i∇i and lots denotes quadratic and higher terms in curvature involving

fewer derivatives.

2. One has Oii = 0 and ∇jOij = 0.

3. Oij is conformally invariant of weight 2− n; ie. if 0 < Ω ∈ C∞(M) and ĝij = Ω2gij,

then Ôij = Ω2−nOij.

4. If gij is conformal to an Einstein metric then Oij = 0.

C.R. Graham and K. Hirachi express the gradient of Q in terms of O:

15



Theorem 1.3.2 ([21], Theorem 1.1). If g(t) is a 1-parameter family of metrics on a compact

manifold M of even dimension n ≥ 4 and h = ∂t|t=0 g(t), then

∂

∂t

∣∣∣∣
t=0

∫
M
Q(g(t)) dVg(t) = (−1)

n
2
n− 2

2

∫
M

〈
O(g(0)), h

〉
dVg(0).

Define the adjusted ambient obstruction tensor Ô to be

Ô = (−1)
n
2O +

(−1)
n
2

2(n− 1)(n− 2)
(∆

n
2−1R)g. (1.3)

We rewrite Ô in terms of the Ricci and scalar curvatures.

Proposition 1.3.3. If (M, g) is a Riemannian manifold, then

O = ∆
n
2−1A− 1

2(n− 1)
∆
n
2−2∇2R +

n/2∑
j=2

P
n−2j
j (Rm) (1.4)

Ô =
(−1)

n
2

n− 2
∆
n
2−1Rc +

(−1)
n
2−1

2(n− 1)
∆
n
2−2∇2R +

n/2∑
j=2

P
n−2j
j (Rm).

Proof. First, we re-express O:

Ak
k = 1

n−2

[
gjkRkj − 1

2(n−1)
Rgjkgkj

]
= 1

n−2

[
R− n

2(n−1)
R
]

= 1
2(n−1)

R

and

Oij = ∆
n
2−2(∆Aij −∇j∇iAkk) +

n/2∑
j=2

P
n−2j
j (Rm)
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= ∆
n
2−1Aij −

1

2(n− 1)
∆
n
2−2∇j∇iR +

n/2∑
j=2

P
n−2j
j (Rm).

Next, we re-express Ô using (1.4):

Ô = (−1)
n
2O +

(−1)
n
2

2(n− 1)(n− 2)
(∆

n
2−1R)g

= (−1)
n
2 ∆

n
2−1A +

(−1)
n
2−1

2(n− 1)
∆
n
2−2∇2R +

n/2∑
j=2

P
n−2j
j (Rm)

+
(−1)

n
2

2(n− 1)(n− 2)
(∆

n
2−1R)g

=
(−1)

n
2

n− 2
∆
n
2−1Rc +

(−1)
n
2−1

2(n− 1)(n− 2)
(∆

n
2−1R)g +

(−1)
n
2−1

2(n− 1)
∆
n
2−2∇2R

+
(−1)

n
2

2(n− 1)(n− 2)
(∆

n
2−1R)g +

n/2∑
j=2

P
n−2j
j (Rm)

=
(−1)

n
2

n− 2
∆
n
2−1Rc +

(−1)
n
2−1

2(n− 1)
∆
n
2−2∇2R +

n/2∑
j=2

P
n−2j
j (Rm).
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Chapter 2

Short Time Existence and Uniqueness

2.1 Preliminaries

We collect some facts about Riemannian manifolds that will be used to derive the evolution

equations.

Lemma 2.1.1. (Hamilton [23], Lemma 7.2) On any Riemannian manifold, the following

identity holds:

∆Rjklm = ∇j∇mRlk −∇j∇lRmk +∇k∇lRmj −∇k∇mRlj + Rm∗2.

We prove a proposition that allows us to move k covariant derivatives past l Laplacians.

Proposition 2.1.2. If A is a tensor on a Riemannian manifold and k, l ≥ 1, then

∇k∆lA = ∆l∇kA+
2l+k−2∑
i=0

∇2l+k−2−iRm ∗ ∇iA.

18



Proof. First we claim that ∇∆lA = ∆l∇A+
∑2l−1
i=0 ∇

2l−1−iRm ∗ ∇iA. For any tensor A,

∇∆A = ∇i∇j∇jA

= ∇j∇i∇jA+ Rm ∗ ∇A

= ∇j∇j∇iA+∇Rm ∗ A+ Rm ∗ ∇A

= ∆∇A+∇Rm ∗ A+ Rm ∗ ∇A.

Suppose the claim is true for l − 1. Then

∇2
2l−3∑
i=0

∇2l−3−iRm ∗ ∇iA) = ∇
2l−3∑
i=0

(∇2l−2−iRm ∗ ∇iA+∇2l−3−iRm ∗ ∇i+1A)

= ∇

2l−3∑
i=0

∇2l−2−iRm ∗ ∇iA+ Rm ∗ ∇2l−2A


=

2l−3∑
i=0

(∇2l−1−iRm ∗ ∇iA+∇2l−2−iRm ∗ ∇i+1A)

+∇Rm ∗ ∇2l−2A+ Rm ∗ ∇2l−1A

=
2l−3∑
i=0

∇2l−1−iRm ∗ ∇iA+∇Rm ∗ ∇2l−2A+ Rm ∗ ∇2l−1A

=
2l−1∑
i=0

∇2l−1−iRm ∗ ∇iA.

Next,

∇∆lA = ∇∆∆l−1A

= ∆∇∆l−1A+∇Rm ∗ ∇2l−2A+ Rm ∗ ∇2l−1A

= ∆

∆l−1∇A+
2l−3∑
i=0

∇2l−3−iRm ∗ ∇iA

+∇Rm ∗ ∇2l−2A+ Rm ∗ ∇2l−1A

= ∆l∇A+
2l−1∑
i=0

∇2l−1−iRm ∗ ∇iA+∇Rm ∗ ∇2l−2A+ Rm ∗ ∇2l−1A
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= ∆l∇A+
2l−1∑
i=0

∇2l−1−iRm ∗ ∇iA.

We have proved the claim. Assume the proposition holds for k − 1. Then

∇
2l+k−3∑
i=0

∇2l+k−3−iRm ∗ ∇iA =
2l+k−3∑
i=0

∇2l+k−2−iRm ∗ ∇iA+ Rm ∗ ∇2l+k−2A

=
2l+k−2∑
i=0

∇2l+k−2−iRm ∗ ∇iA.

Lastly,

∇k∆lA = ∇∇k−1∆lA

= ∇

∆l∇k−1A+
2l+k−3∑
i=0

∇2l+k−3−iRm ∗ ∇iA


= ∆l∇∇k−1A+

2l−1∑
i=0

∇2l−1−iRm ∗ ∇i∇k−1A+∇
2l+k−3∑
i=0

∇2l+k−3−iRm ∗ ∇iA

= ∆l∇kA+
2l−1∑
i=0

∇2l−1−iRm ∗ ∇i+k−1A+
2l+k−2∑
i=0

∇2l+k−2−iRm ∗ ∇iA

= ∆l∇kA+
2l+k−2∑
i=0

∇2l+k−2−iRm ∗ ∇iA.

We prove a proposition that allows us to move k covariant derivatives past l covariant

derivatives.

Lemma 2.1.3. Let l ≥ 1. Then, for any tensor A,

∇∇lA = ∇l∇A+
l−1∑
i=0

∇l−i−1Rm ∗ ∇iA.
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Proof. The lemma is true for l = 1 since

∇p∇qA = ∇q∇pA+ Rm ∗ A.

Assume that the lemma is true for all integers at most l−1. The inductive hypothesis yields

∇p∇lA = ∇p∇q∇l−1A

= ∇q∇p∇l−1A+ Rm ∗ ∇l−1A

= Rm ∗ ∇l−1A+∇q

∇l−1∇pA+
l−2∑
i=0

∇l−2−iRm ∗ ∇iA


= Rm ∗ ∇l−1A+∇l∇pA+

l−2∑
i=0

(∇l−1−iRm ∗ ∇iA+∇l−2−iRm +∇i+1A)

= ∇l∇pA+ Rm ∗ ∇l−1A+
l−2∑
i=0

∇l−1−iRm ∗ ∇iA+
l−1∑
i=1

∇l−1−iRm ∗ ∇iA

= ∇l∇pA+
l−1∑
i=0

∇l−1−iRm ∗ ∇iA.

We have obtained the desired equation.

Proposition 2.1.4. Let k, l ≥ 1. Then, for any tensor A,

∇k∇lA = ∇l∇kA+
k+l−2∑
i=0

∇k+l−2−iRm ∗ ∇iA.

Proof. We apply the inductive hypothesis:

∇k∇lA = ∇(∇k−1∇lA)

= ∇

∇l∇k−1A+
k+l−3∑
i=0

∇k+l−3−iRm ∗ ∇iA


= ∇(∇l∇k−1A) +∇

k+l−3∑
i=0

∇k+l−3−iRm ∗ ∇iA

 .
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We expand the two terms on the right side of the last equality. Using Lemma 2.1.3, we

expand the first term:

∇(∇l∇k−1A) = ∇∇l(∇k−1A)

= ∇l∇∇k−1A+
l−1∑
i=0

∇l−1−iRm ∗ ∇i+k−1A

= ∇l∇kA+
k+l−2∑
i=k−1

∇k+l−2−iRm ∗ ∇iA.

We expand the second term:

∇

k+l−3∑
i=0

∇k+l−3−iRm ∗ ∇iA

 =
k+l−3∑
i=0

(∇k+l−2−iRm ∗ ∇iA+∇k+l−3−iRm ∗ ∇i+1A)

=
k+l−3∑
i=0

∇k+l−2−iRm ∗ ∇iA

+
k+l−2∑
i=1

∇k+l−2−iRm ∗ ∇iA

=
k+l−2∑
i=0

∇k+l−2−iRm ∗ ∇iA.

Finally,

∇k∇lA = ∇(∇l∇k−1A) +∇

k+l−3∑
i=0

∇k+l−3−iRm ∗ ∇iA


= ∇l∇kA+

k+l−2∑
i=k−1

∇k+l−2−iRm ∗ ∇iA+
k+l−2∑
i=0

∇k+l−2−iRm ∗ ∇iA

= ∇l∇kA+
k+l−2∑
i=0

∇k+l−2−iRm ∗ ∇iA.

We have obtained the desired equation.
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Proposition 2.1.5. Let M be a manifold and g(t) be a one-parameter family of metrics on

M . If A is a tensor on M and k ≥ 1, then

∂t∇kA = ∇k∂tA+
k−1∑
j=0

∇j(∇∂tg ∗ ∇k−1−jA).

Proof. First

∂t∇A= ∂i∂tA
k1···ks
j1···jr

−
r∑

m=1

[
∂tΓ

l
ijm

A
k1···ks
j1···jm−1ljm+1···jr

+ Γlijm∂tA
k1···ks
j1···jm−1ljm+1···jr

]
+

s∑
p=1

[
∂tΓ

kp
iq A

k1···kp−1qkp+1···ks
j1···jr

+ Γ
kp
iq ∂tA

k1···kp−1qkp+1···ks
j1···jr

]
= ∇∂tA+ ∂tΓ ∗ A

= ∇∂tA+∇∂tg ∗ A,

so the proposition is true when k = 1. Assume the proposition holds for k − 1. Then

∂t∇kA = ∂t∇∇k−1A

= ∇∂t∇k−1A+∇∂tg ∗ ∇k−1A

= ∇k∂tA+∇∂tg ∗ ∇k−1A+∇
k−2∑
j=0

∇j(∇∂tg ∗ ∇k−2−jA)

= ∇k∂tA+∇∂tg ∗ ∇k−1A+∇
k−2∑
j=0

j∑
i=0

∇i+1∂tg ∗ ∇k−2−iA

= ∇k∂tA+∇∂tg ∗ ∇k−1A+
k−2∑
j=0

j∑
i=0

(∇i+2∂tg ∗ ∇k−2−iA

+∇i+1∂tg ∗ ∇k−1−iA)

= ∇k∂tA+
k−2∑
j=0

j∑
i=0

∇i+1∂tg ∗ ∇k−1−iA+∇∂tg ∗ ∇k−1A
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+
k−2∑
j=0

∇j+2∂tg ∗ ∇k−2−jA

= ∇k∂tA+
k−2∑
j=0

j∑
i=0

∇i+1∂tg ∗ ∇k−1−iA+∇∂tg ∗ ∇k−1A

+
k−1∑
j=1

∇j+1∂tg ∗ ∇k−1−jA

= ∇k∂tA+
k−2∑
j=0

j∑
i=0

∇i+1∂tg ∗ ∇k−1−iA+
k−1∑
j=0

∇j+1∂tg ∗ ∇k−1−jA

= ∇k∂tA+
k−2∑
j=0

∇j(∇∂tg ∗ ∇k−1−jA) +∇k−1(∇∂tg ∗ A)

= ∇k∂tA+
k−1∑
j=0

∇j(∇∂tg ∗ ∇k−1−jA).

2.2 Evolution Equations

We derive the equations for ∂t∇kRm for every k ≥ 0.

Proposition 2.2.1. If (M, g(t)) is a solution to AOF, then

∂tRm =
(−1)

n
2 +1

2(n− 2)
∆
n
2 Rm +

n/2+1∑
j=2

P
n−2j+2
j (Rm).

Proof. Let ĝ(t) be a one-parameter family of metrics on M and h = ∂tĝ. The evolution of

Rm is given by ([23], Theorem 7.1)

∂tRijkl = 1
2 [∇i∇khjl +∇j∇lhik −∇i∇lhjk −∇j∇khil] + Rm ∗ h.
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If h = ∆
n
2−1Rc then, using Proposition 2.1.2 in the second line and Lemma 2.1.1 in the

third line,

∂tRijkl = 1
2 [∇i∇k∆

n
2−1Rjl +∇j∇l∆

n
2−1Rik −∇i∇l∆

n
2−1Rjk −∇j∇k∆

n
2−1Ril]

+ Rm ∗∆
n
2−1Rc

= 1
2∆

n
2−1[∇i∇kRjl +∇j∇lRik −∇i∇lRjk −∇j∇kRil]

+
n−2∑
i=0

∇n−2−iRm ∗ ∇iRc + Pn−2
2 (Rm)

= 1
2∆

n
2−1[−∆Rijkl + Rm∗2] + Pn−2

2 (Rm)

= −1
2∆

n
2Rijkl + Pn−2

2 (Rm).

If h = ∆
n
2−2∇2R then, using Proposition 2.1.2 in the second and fourth lines,

∂tRijkl = 1
2 [∇i∇k∆

n
2−2∇j∇lR +∇j∇l∆

n
2−2∇i∇kR−∇i∇l∆

n
2−2∇j∇kR

−∇j∇k∆
n
2−2∇i∇lR] + Rm ∗∆

n
2−2∇2R

= 1
2∆

n
2−2[∇i∇k∇j∇lR +∇j∇l∇i∇kR−∇i∇l∇j∇kR−∇j∇k∇i∇lR]

+
n−2∑
i=0

∇n−2−iRm ∗ ∇i∇2R + Pn−2
2 (Rm)

= 1
2∆

n
2−2[∇i∇k∇j∇lR +∇j∇l∇i∇kR−∇i∇l∇j∇kR−∇j∇k∇i∇lR]

+ Pn−2
2 (Rm)

= 1
2∆

n
2−2[∇i∇k∇j∇lR +∇j∇l∇i∇kR−∇i∇k∇j∇lR−∇j∇l∇i∇kR

+∇Rm ∗ ∇R + Rm ∗ ∇2R] + Pn−2
2 (Rm)

= Pn−2
2 (Rm).
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If h =
∑n/2
j=2 P

n−2j
j (Rm), then

∂tRm = ∇2
n/2∑
j=2

P
n−2j
j (Rm) + Rm ∗

n/2∑
j=2

P
n−2j
j (Rm)

=

n/2∑
j=2

P
n−2j+2
j (Rm) +

n/2∑
j=2

P
n−2j
j+1 (Rm).

Combining these results, we conclude that if h = Ô then

∂tRm =
(−1)

n
2 +1

2(n− 2)
∆
n
2 Rm + Pn−2

2 (Rm) + Pn−2
2 (Rm)

+

n/2∑
j=2

P
n−2j+2
j (Rm) +

n/2∑
j=2

P
n−2j
j+1 (Rm)

=
(−1)

n
2 +1

2(n− 2)
∆
n
2 Rm +

n/2+1∑
j=2

P
n−2j+2
j (Rm).

Proposition 2.2.2. If (M, g(t)) is a solution to AOF, then

∂t∇kRm =
(−1)

n
2 +1

2(n− 2)
∆
n
2∇kRm +

n/2+1∑
l=2

Pn−2l+k+2
l (Rm).

Proof. We compute:

k−1∑
j=0

∇j(∇∂tg ∗ ∇k−1−jRm) =
k−1∑
j=0

∇j
n/2∑
l=2

Pn−2l+1
l (Rm) ∗ ∇k−1−jRm


=
k−1∑
j=0

∇j
n/2∑
l=2

P
n−2l+k−j
l+1 (Rm)

=
k−1∑
j=0

n/2∑
l=2

Pn−2l+k
l+1 (Rm)
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=

n/2∑
l=2

Pn−2l+k
l+1 (Rm)

=

n/2+1∑
l=3

Pn−2l+k+2
l (Rm).

Then, using Proposition 2.1.5 in the first line, Proposition 2.2.1 in the second line, and

Proposition 2.1.2 in the third line, we get

∂t∇kRm = ∇k∂tRm +
k−1∑
j=0

∇j(∇∂tg ∗ ∇k−1−jRm)

=
(−1)

n
2 +1

2(n− 2)
∇k∆

n
2Rijkl +∇k

n/2+1∑
j=2

P
n−2j+2
j (Rm)

+

n/2+1∑
l=3

Pn−2l+k+2
l (Rm)

=
(−1)

n
2 +1

2(n− 2)
∆
n
2∇kRijkl + Pn+k−2

2 (Rm) +

n/2+1∑
j=2

P
n−2j+k+2
j (Rm)

+

n/2+1∑
l=3

Pn−2l+k+2
l (Rm)

=
(−1)

n
2 +1

2(n− 2)
∆
n
2∇kRijkl +

n/2+1∑
l=2

Pn−2l+k+2
l (Rm).

2.3 Short Time Existence and Uniqueness

The ambient obstruction flow is a quasilinear flow of order n in the metric g. E. Bahuaud

and D. Helliwell have shown the following existence and uniqueness result for AOF:
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Theorem 2.3.1 ([3] Theorem C, [4] Theorem C). Let h be a smooth metric on a compact

manifold M of even dimension n ≥ 4. Then there is a unique smooth short time solution to

the following flow:


∂tg = Ô = (−1)

n
2O +

(−1)
n
2

2(n−1)(n−2)
(∆

n
2−1R)g

g(0) = h,

(2.1)

where O is the ambient obstruction tensor on M and R is the scalar curvature of M .

We briefly illustrate that applying the DeTurck trick to the system (2.1) results in a strongly

parabolic system. Due to the diffeomorphism invariance of M , the system (2.1) is not

strongly parabolic. We define the following vector fields:

V k = gij(Γkij − Γ(h)kij)

X =
(−1)

n
2−1

2(n− 2)
∆
n
2−1V

Y =
(−1)

n
2

4(n− 1)
(∇∆

n
2−2R)]

W = X + Y.

We show that the following system is strongly parabolic:


∂tg = Ô + LW g

g(0) = h.

(2.2)

We show this by computing the principal symbol σ of the linearization of Ô + LW g at h.

We know from Proposition 1.3.3 that

Ô =
(−1)

n
2

n− 2
∆
n
2−1Rc +

(−1)
n
2−1

2(n− 1)
∆
n
2−2∇2R +

n/2∑
j=2

P
n−2j
j (Rm).
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We then rewrite the system (2.2) as follows:

∂tg =
(−1)

n
2

n− 2
∆
n
2−1Rc + LXg +

(−1)
n
2−1

2(n− 1)
∆
n
2−2∇2R + LY g +

n/2∑
j=2

P
n−2j
j (Rm). (2.3)

Let ζ ∈ T ∗M . The principal symbol of the first two terms of (2.3) is given by

σ

[
D

(
(−1)n/2

n−2 ∆n/2−1Rc + LXg
)]

(ζ)(h)

=
(−1)n/2−1

2(n−2)
σ[D(∆n/2−1)](ζ) · σ[D(−2Rc + LV g)](ζ)(h)

=
(−1)n/2−1

2(n−2)
|ζ|nh.

We used the fact that the Ricci-DeTurck flow is strongly parabolic (Chow-Knopf [14], The-

orem 3.13). The highest order terms of the next two terms of (2.3) cancel each other out,

and the remaining terms are of lower order. Therefore the principal symbol of the system

(2.2) is
(−1)n/2−1

2(n−2)
|ζ|nh, implying that this system is strongly parabolic.

We show that we can pull back the short time solution of (2.2) to give a solution of (2.1)

that exists for t ∈ [0, ε). It follows from the parabolicity shown above that there exists ε > 0

for which the solution to (2.2) exists for t ∈ [0, ε) via parabolic PDE theory. Next, there

exists a family ϕt : M →M of diffeomorphisms satisfying


∂ϕt
∂t = −W (ϕt, t)

ϕ0 = idM .

for t ∈ [0, ε). The existence of the ϕt follows from the existence and uniqueness theorem for

nonautonomous ODE on manifolds, and the uniform ε follows from bounds on W that result

from the compactness of M . We now show that ϕ∗t ∂tg satisfies (2.1):

∂t(ϕ
∗
t g) = ∂s|s=0(ϕ∗s+tg(s+ t))
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= lim
s→0

ϕ∗s+tg(s+ t)− ϕ∗t g(t)

s

= lim
s→0

ϕ∗s+tg(s+ t)− ϕ∗s+tg(t)

s
+ lim
s→0

ϕ∗s+tg(t)− ϕ∗t g(t)

s

= ϕ∗t ∂tg + ∂s|s=0(ϕ∗t+sg(t))

= ϕ∗t [(−1)
n
2O(g) +

(−1)
n
2

2(n−1)(n−2)
[∆

n
2−1R(g(t))]g(t) + LW g(t)]

+ ∂s|s=0[(ϕ−1
t ◦ ϕt+s)

∗ϕ∗t g(t)]

= (−1)
n
2O(ϕ∗t g(t)) +

(−1)
n
2

2(n−1)(n−2)
[∆

n
2−1R(ϕ∗t g(t))]ϕ∗t g(t) + ϕ∗t (LW g(t))

− L
[(ϕ−1

t )∗W (t)]
(ϕ∗t g(t))

= (−1)
n
2O(ϕ∗t g(t)) +

(−1)
n
2

2(n−1)(n−2)
[∆

n
2−1R(ϕ∗t g(t))]ϕ∗t g(t).

Since ϕ∗0g(0) = g(0) = h, ϕ∗t g(t) satisfies (2.1). Therefore these diffeomorphisms pull back

the short time solution of (2.2) to give a solution of (2.1) that exists for t ∈ [0, ε).
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Chapter 3

Smoothing Estimates and Long Time

Existence

3.1 Local Integral Estimates

In this section, let (Mn, g) be a Riemannian manifold that is a solution to the AOF on a

time interval [0, T ). We give local L2 estimates for ∇kRm for all k ∈ N. We need to use local

L2 estimates since we can only convert L2 estimates to pointwise estimates locally. These

local pointwise estimates are used in the proof of the pointwise smoothing estimates given in

Theorem 1.2.1. Specify the Laplace operator by ∆ = −∇∗∇. Let ϕ ∈ C∞c (M) be a cutoff

function with constants Λ,Λ1 > 0 such that

sup
t∈[0,T )

|∇ϕ| ≤ Λ1, max
0≤i≤n2

sup
t∈[0,T )

|∇iϕ| ≤ Λ.

Lemma 3.1.1. Suppose M,ϕ satisfy the above hypotheses. Let A be any tensor and p ≥

1, q ≥ 2. Then
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∫
M
ϕp〈∆qA,A〉 = (−1)q

∫
[ϕ>0]

q∑
i=0

P
q−i
p (ϕ) ∗ ∇iA ∗ ∇qA

+

∫
M

2q−2∑
i=0

ϕp∇2q−2−iRm ∗ ∇iA ∗ A.

Proof. We first claim that if q ≥ 2, then

∆qA = (−1)q(∇∗)q∇qA+

2q−2∑
i=0

∇2q−2−iRm ∗ ∇iA.

If q = 2, we get, using Proposition 2.1.2, that

∆2A = −∇∗∇∆A

= −∇∗∆∇A+∇∗[∇Rm ∗ A+ Rm ∗ ∇A]

= (∇∗)2∇2A+∇2Rm ∗ A+∇Rm ∗ ∇A+ Rm ∗ ∇2A,

which agrees with the claim. Suppose the claim is true for every integer less than q. First,

∆qA = −∇∗∇∆q−1A

= −∇∗
∆q−1∇A+

2q−3∑
i=0

∇2q−3−iRm ∗ ∇iA


= −∇∗∆q−1∇A+

2q−3∑
i=0

[
∇2q−2−iRm ∗ ∇iA+∇2q−3−iRm ∗ ∇i+1A

]

= −∇∗∆q−1∇A+

2q−3∑
i=0

∇2q−2−iRm ∗ ∇iA+

2q−2∑
i=1

∇2q−2−iRm ∗ ∇iA

= −∇∗∆q−1∇A+

2q−2∑
i=0

∇2q−2−iRm ∗ ∇iA.

32



Applying the last equation above and then the inductive hypothesis,

∆qA = −∇∗∆q−1∇A+

2q−2∑
i=0

∇2q−2−iRm ∗ ∇iA

= −∇∗
(−1)q−1(∇∗)q−1∇q−1∇A+

2q−4∑
i=0

∇2q−4−iRm ∗ ∇i∇A


+

2q−2∑
i=0

∇2q−2−iRm ∗ ∇iA

= (−1)q(∇∗)q∇qA+

2q−4∑
i=0

∇2q−3−iRm ∗ ∇i+1A+

2q−4∑
i=0

∇2q−4−iRm ∗ ∇i+2A

+

2q−2∑
i=0

∇2q−2−iRm ∗ ∇iA

= (−1)q(∇∗)q∇qA+

2q−3∑
i=1

∇2q−2−iRm ∗ ∇iA+

2q−2∑
i=2

∇2q−2−iRm ∗ ∇iA

+

2q−2∑
i=0

∇2q−2−iRm ∗ ∇iA

= (−1)q(∇∗)q∇qA+

2q−2∑
i=0

∇2q−2−iRm ∗ ∇iA.

This proves the claim. We compute

(−1)q+1
∫
M
∇qA ∗ ∇q(ϕpA) = (−1)q+1

∫
M
∇qA ∗

q∑
i=0

∇q−i(ϕp) ∗ ∇iA

= (−1)q+1
∫

[ϕ>0]

q∑
i=0

∑
|α|=q−i

∇iA ∗ ∇qA ∗
p∏
j=1

∇αjϕj

= (−1)q+1
∫

[ϕ>0]

q∑
i=0

P
q−i
p (ϕ) ∗ ∇iA ∗ ∇qA.
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Finally, applying the claim,

∫
M
ϕp〈∆qA,A〉 =

∫
M
ϕp

〈
(−1)q(∇∗)q∇qA+

2q−2∑
i=0

∇2q−2−iRm ∗ ∇iA,A

〉

= (−1)q
∫
M
∇qA ∗ ∇q(ϕpA) +

∫
M

2q−2∑
i=0

ϕp∇2q−2−iRm ∗ ∇iA ∗ A

= (−1)q
∫

[ϕ>0]

q∑
i=0

P
q−i
p (ϕ) ∗ ∇iA ∗ ∇qA

+

∫
M

2q−2∑
i=0

ϕp∇2q−2−iRm ∗ ∇iA ∗ A.

Proposition 3.1.2. Suppose M,ϕ satisfy the above hypotheses. If p ≥ 1, k ≥ 0, then

∂

∂t

∫
M
ϕp|∇kRm|2 = − 1

n− 2

∫
M

ϕp|∇
n
2 +kRm|2 +

∫
M

ϕp

n
2 +k−1∑
l=k

P 2l
n
2 +k−l+2

(Rm)

+

∫
[ϕ>0]

n
2−1∑
i=0

P
n
2−i
p (ϕ) ∗ ∇k+iRm ∗ ∇k+n

2 Rm. (3.1)

Proof. First, we have

∂

∂t

∫
M
ϕp|∇kRm|2 dVg = 2

∫
M
ϕp
〈
∂

∂t
∇kRm,∇kRm

〉
dVg

+

∫
M
ϕp|∇kRm|2∂g

∂t
dVg.

We can expand the first integral by substituting Proposition 2.2.2, which states that for our

flow,

∂

∂t
∇kRm =

(−1)
n
2 +1

2(n− 2)
∆
n
2∇kRm +

n
2 +1∑
i=2

Pn−2i+k+2
i (Rm).
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Applying Lemma 3.1.1 to the first term of ∂
∂t∇

kRm gives that

(−1)
n
2 +1

n−2

∫
M

ϕp〈∆
n
2∇kRm,∇kRm〉 =

(−1)n+1

n−2

∫
[ϕ>0]

n
2∑
i=0

[P
n
2−i
p (ϕ) ∗ ∇k+iRm

∗ ∇k+n
2 Rm]

+

∫
M

n−2∑
i=0

ϕp∇n−2−iRm ∗ ∇k+iRm ∗ ∇kRm

= − 1
n−2

∫
M

ϕp|∇
n
2 +kRm|2

+

∫
[ϕ>0]

n
2−1∑
i=0

P
n
2−i
p (ϕ) ∗ ∇k+iRm ∗ ∇k+n

2 Rm

+

∫
M

ϕpPn+2k−2
3 (Rm).

Substituting the second term of ∂
∂t∇

kRm into the inner product gives that

∫
M

ϕp

〈
∇kRm,

n
2 +1∑
i=2

Pn−2i+k+2
i (Rm)

〉
=

∫
M

ϕp

n
2 +2∑
i=3

Pn−2i+2k+4
i (Rm)

=

∫
M

ϕp

n
2 +k−1∑
l=k

P 2l
n
2 +k−l+2

(Rm).

Since

∂g

∂t
= ∆

n
2−1Rc + ∆

n
2−2∇2R +

n
2∑
i=2

Pn−2i
i (Rm)

= ∇n−2Rm +∇n−4+2Rm +

n
2∑
i=2

Pn−2i
i (Rm)

=

n
2∑
i=1

Pn−2i
i (Rm),
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we have

∫
M
ϕp|∇kRm|2∂g

∂t
=

∫
M
ϕp(∇kRm)∗2

n
2∑
i=1

Pn−2i
i (Rm)

=

∫
M
ϕp

n
2∑
i=1

Pn−2i+2k
i+2 (Rm)

=

∫
M
ϕp

n
2 +2∑
i=3

Pn−2i+2k+4
i (Rm)

=

∫
M
ϕp

n
2 +k−1∑
l=k

P 2l
n
2 +k−l+2

(Rm).

Combining all of these results yields

∂

∂t

∫
M

ϕp|∇kRm|2 = − 1

n− 2

∫
M

ϕp|∇
n
2 +kRm|2

+

∫
[ϕ>0]

n
2−1∑
i=0

P
n
2−i
p (ϕ) ∗ ∇k+iRm ∗ ∇k+n

2 Rm

+

∫
M

ϕpPn+2k−2
3 (Rm) +

∫
M

ϕp

n
2 +k−1∑
l=k

P 2l
n
2 +k−l+2

(Rm)

+

∫
M

ϕp

n
2 +k−1∑
l=k

P 2l
n
2 +k−l+2

(Rm)

= − 1

n− 2

∫
M

ϕp|∇
n
2 +kRm|2

+

∫
[ϕ>0]

n
2−1∑
i=0

P
n
2−i
p (ϕ) ∗ ∇k+iRm ∗ ∇k+n

2 Rm

+

∫
M

ϕp

n
2 +k−1∑
l=k

P 2l
n
2 +k−l+2

(Rm).
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We estimate the last two terms of (3.1). First, we recall two corollaries from the paper [31]

of E. Kuwert and R. Schätzle.

Proposition 3.1.3 ([31], Corollary 5.2). Suppose M,ϕ satisfy the above hypotheses. Let A

be a tensor. If 2 ≤ p <∞ and s ≥ p, then for every ε > 0,

(∫
M
|∇A|pϕs

)1
p
≤ ε

(∫
M
|∇2A|pϕs+p

)1
p

+
c

ε

(∫
[ϕ>0]

|A|pϕs−p
)1
p

,

where c = c(n, p, s,Λ1).

Proposition 3.1.4 ([31], Corollary 5.5). Suppose M,ϕ satisfy the above hypotheses. Let A

be a tensor. Let 0 ≤ i1, . . . , ir ≤ k, i1 + · · ·+ ir = 2k, and s ≥ 2k. Then

∣∣∣∣∫
M
ϕs∇i1A ∗ · · · ∗ ∇irA

∣∣∣∣ ≤ c‖A‖r−2
∞

(∫
M
ϕs|∇kA|2 dV + ‖A‖22,[ϕ>0]

)
,

where c = c(k, n, r, s,Λ1).

We estimate the last term of (3.1).

Lemma 3.1.5. Suppose M,ϕ satisfy the above hypotheses. If l ≥ 1, q ≥ 0, then for every

ε > 0,

∫
M
ϕ2l+q|∇lRm|2 ≤ ε

∫
M
ϕ2l+q+2|∇l+1Rm|2 +

C

εl

∫
[ϕ>0]

ϕq|Rm|2. (3.2)

where C = C(n, l,Λ1, q).

Proof. We prove the inequality (3.2) by induction on l. If l = 1, the inequality (3.2) follows

immediately from Proposition 3.1.3. Assume that l ≥ 2 and (3.2) is true for all integers at
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most l. Then, applying Proposition 3.1.3 in the first line and the inductive hypothesis in the

second line,

∫
M
ϕ2l+2+q|∇l+1Rm|2 ≤ ε

2

∫
M
ϕ2l+4+q|∇l+2Rm|2 +

C

ε

∫
M
ϕ2l+q|∇lRm|2

≤ ε

2

∫
M
ϕ2l+4+q|∇l+2Rm|2 +

C

ε

ε

2C

∫
M
ϕ2l+q+2|∇l+1Rm|2

+
C

ε

C

εl

∫
[ϕ>0]

ϕq|Rm|2

=
ε

2

∫
M
ϕ2l+4+q|∇l+2Rm|2 +

1

2

∫
M
ϕ2l+q+2|∇l+1Rm|2

+
C

εl+1

∫
[ϕ>0]

ϕq|Rm|2.

Collecting terms, we see that (3.2) is also true for l + 1.

Lemma 3.1.6. Suppose M,ϕ satisfy the above hypotheses. If q ≥ 0 and 0 ≤ l ≤ q, then for

every ε > 0,

∫
M
ϕ2l+r|∇lRm|2 ≤ εq−l

∫
M
ϕ2q+r|∇qRm|2 + Cε−l

∫
[ϕ>0]

ϕr|Rm|2.

where C = C(n, l,Λ1, r).

Proof. Let m = q − l. The desired inequality is equivalent to

∫
M
ϕ2q−2m+r|∇q−mRm|2 ≤ εm

∫
M
ϕ2q+r|∇qRm|2 + Cεm−q

∫
[ϕ>0]

ϕr|Rm|2. (3.3)

We prove this inequality by induction on m. If m = 0 the inequality is true:

∫
M
ϕ2q+r|∇qRm|2 ≤

∫
M
ϕ2q+r|∇qRm|2 + Cε−q

∫
[ϕ>0]

ϕr|Rm|2.
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Assume the inequality (3.3) is true for every integer less than m. Then

∫
M
ϕ2q−2m+r|∇q−mRm|2 ≤ ε

∫
M
ϕ2q−2m+r+2|∇q−m+1Rm|2

+ Cεm−q
∫

[ϕ>0]
ϕr|Rm|2

≤ εεm−1
∫
M
ϕ2q+r|∇qRm|2 + εCεm−q−1

∫
[ϕ>0]

ϕr|Rm|2

+ Cεm−q
∫

[ϕ>0]
ϕr|Rm|2

= εm
∫
M
ϕ2q+r|∇qRm|2 + Cεm−q

∫
[ϕ>0]

ϕr|Rm|2.

We applied Lemma 3.1.5 in the first line and the inductive hypothesis in the second line.

Lemma 3.1.7. Suppose M,ϕ satisfy the above hypotheses. Let 0 ≤ i ≤ n
2−1 and p ≥ n+2k.

Then for every δ > 0,

∫
M
P
n
2−i
p (ϕ) ∗ ∇i+kRm ∗ ∇

n
2 +kRm ≤ Cδ

∫
M
ϕp|∇

n
2 +kRm|2

+ Cδ
−n−2i−4k

n−2i

∫
[ϕ>0]

ϕp−n−2k|Rm|2,

where C = C(n, k, p,Λ, i).

Proof. We apply the Cauchy-Schwarz inequality:

∫
M
P
n
2−i
p (ϕ) ∗ ∇i+kRm ∗ ∇

n
2 +kRm ≤ C(Λ)

∫
M
|ϕp−(n2−i) ∗ ∇i+kRm ∗ ∇

n
2 +kRm|

≤ Cεβ
∫
M
ϕp|∇

n
2 +kRm|2

+ Cε−β
∫

[ϕ>0]
ϕp−n+2i|∇i+kRm|2.
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The second term can be estimated using Lemma 3.1.6:

∫
[ϕ>0]

ϕp−n+2i|∇i+kRm|2 =

∫
[ϕ>0]

ϕ2(i+k)+(p−n−2k)|∇i+kRm|2

≤ ε
n
2−i

∫
M
|∇

n
2 +kRm|2 + Cε−i−k

∫
[ϕ>0]

ϕp−n−2k|Rm|2.

If β = n
2 − i− β, then β = n−2i

4 . If we set δ = ε
n−2i

4 , then ε = δ
4

n−2i and

ε−β−i−k = δ
4

n−2i

(
2i−n

4 −i−k
)

= δ
−n−2i−4k

n−2i .

Therefore

∫
M
P
n
2−i
p (ϕ) ∗ ∇i+kRm ∗ ∇

n
2 +kRm ≤ Cεβ

∫
M
ϕp|∇

n
2 +kRm|2

+ Cε−β+n
2−i

∫
M
|∇

n
2 +kRm|2

+ Cε−β−i−k
∫

[ϕ>0]
ϕp−n−2k|Rm|2

≤ Cδ

∫
M
ϕp|∇

n
2 +kRm|2

+ Cδ
−n−2i−4k

n−2i

∫
[ϕ>0]

ϕp−n−2k|Rm|2.

We estimate the penultimate term of (3.1).

Lemma 3.1.8. Suppose M,ϕ satisfy the above hypotheses. Let K = max{1, ‖Rm‖∞}. If

p ≥ n+ 2k and k ≤ l ≤ n
2 + k − l, then for every δ satisfying 0 < δ ≤ 1,

∫
M
ϕpP 2l

n
2 +k−l+2

(Rm) ≤ Cδ

∫
M
ϕp+n+2k−2l|∇

n
2 +kRm|2

+ CK
n
2 +kδ

2l
2l−n−2k ‖Rm‖22,[ϕ>0],
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where C = C(n, k, p,Λ1, l).

Proof. Since p ≥ n+ 2k ≥ n+ 2k − 2 = 2(n2 + k − 1), Proposition 3.1.4 implies

∫
M
ϕpP 2l

n
2 +k−l+2

(Rm) ≤ C‖Rm‖
n
2 +k−l
∞

(∫
M
ϕp|∇lRm|2 + ‖Rm‖22,[ϕ>0]

)

Let ε = K−1δ
2

n+2k−2l . We have p− 2l ≥ n+ 2k − (n+ 2k − 1) = 1. Via Lemma 3.1.6,

C‖Rm‖
n
2 +k−l
∞

∫
M
ϕp|∇lRm|2 ≤ CK

n
2 +k−lε

n
2 +k−l

∫
M
ϕn+2k+p−2l|∇

n
2 +kRm|2

+ CK
n
2 +k−lε−l

∫
[ϕ>0]

ϕp−2l|Rm|2

= Cδ

∫
M
ϕn+2k+p−2l|∇

n
2 +kRm|2

+ CK
n
2 +kδ

2l
2l−n−2k

∫
[ϕ>0]

ϕp−2l|Rm|2.

Since k ≤ l ≤ n
2 + k − l and 0 < δ ≤ 1, we get δ

2l
2l−n−2k ≥ δ−

2k
n ≥ 1 and K

n
2 +k−l ≤ K

n
2 .

Therefore

∫
M
ϕpP 2l

n
2 +k−l+2

(Rm) ≤ Cδ

∫
M
ϕn+2k+p−2l|∇

n
2 +kRm|2

+ CK
n
2 +kδ

2l
2l−n−2k

∫
[ϕ>0]

ϕp−2l|Rm|2

+K
n
2 +k−l‖Rm‖22,[ϕ>0]

≤ Cδ

∫
M
ϕp+n+2k−2l|∇

n
2 +kRm|2

+ CK
n
2 +kδ

2l
2l−n−2k ‖Rm‖22,[ϕ>0].
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Proposition 3.1.9. Suppose M,ϕ satisfy the above hypotheses. Let

K = max{1, ‖Rm‖∞}.

If p ≥ n+ 2k, then for every δ satisfying 0 < δ ≤ 1,

∂t‖ϕ
p
2∇kRm‖22 ≤ − 1

2(n−2)
‖ϕ

p
2∇

n
2 +kRm‖22 + CK

n
2 +k‖Rm‖22,[ϕ>0]

where C = C(n, k, p,Λ).

Proof. Applying the estimates from Lemmas 3.1.8 and 3.1.7 to the equation (3.1) in Propo-

sition 3.1.2, we obtain

∂t‖ϕ
p
2∇kRm‖22 ≤ − 1

n−2‖ϕ
p
2∇

n
2 +kRm‖22

+

n
2 +k−1∑
l=k

[
C1δ‖ϕ

p
2+n

2 +k−l∇
n
2 +kRm|22 + C1K

n
2 +kδ

2l
2l−n−2k ‖Rm‖22,[ϕ>0]

]

+

n
2−1∑
i=0

[
C2δ‖ϕ

p
2∇

n
2 +kRm‖22 + C2δ

−n−2i−4k
n−2i ‖ϕ

p
2−

n
2−kRm‖22,[ϕ>0]

]
,

where C1 = C1(n, k, p,Λ, l) and C2 = C2(n, k, p,Λ1, i). From the inequalities

1− n− 2k ≤ 1− 2n+ 4k

n− 2i
≤ −n+ 4k

n
,

2− n− 2k

2
≤ 1 +

n+ 2k

2l − n− 2k
≤ −2k

n

we conclude

max

(
{δ

2l
2l−n−2k : k ≤ l ≤ n

2 + k − 1} ∪ {δ
−n−2i−4k

n−2i : 0 ≤ i ≤ n
2 − 1}

)
= δ1−n−2k.
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Therefore

∂t‖ϕ
p
2∇kRm‖22 ≤ − 1

n−2‖ϕ
p
2∇

n
2 +kRm‖22 + C̃δ‖ϕ

p
2∇

n
2 +kRm‖22

+ C̃K
n
2 +kδ1−n−2k‖Rm‖22,[ϕ>0]

≤ − 1
2(n−2)

‖ϕ
p
2∇

n
2 +kRm‖22 + CK

n
2 +k‖Rm‖22,[ϕ>0],

where

C̃ ≡

n
2 +k−1∑
l=k

C1 +

n
2−1∑
i=0

C2, δ ≡ min{ 1
2(n−2)

C̃−1, 1}.

Proposition 3.1.10. Suppose M,ϕ satisfy the above hypotheses. Suppose

max{‖Rm‖∞, 1} ≤ K

for all t ∈ [0, αK−
n
2 ]. Then

‖ϕ
n
2 (m+1)∇

n
2mRm‖2 ≤ Ct−

m
2 sup

t∈[0,αK
−n2 ]

‖Rm‖
L2(t),[ϕ>0]

,

where C = C(m,n, α,Λ), for all t ∈ (0, αK−
n
2 ].

Proof. Let βk for 0 ≤ k ≤ m denote constants given by βk = (2n− 4)m−km!/k!. Define

G(t) ≡ tm‖ϕ
n
2 (m+1)∇

n
2mRm‖22 +

m−1∑
k=0

βkt
k‖ϕ

n
2 (k+1)∇

n
2 kRm‖22,[ϕ>0].
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Using Proposition 3.1.9,

dG

dt
≤ mtm−1‖ϕ

n
2 (m+1)∇

n
2mRm‖22

+ tm
(
− 1

2(n−2)
‖ϕ

n
2 (m+1)∇

n
2 (m+1)Rm‖22 + Cn

2m
K
n
2 (m+1)‖Rm‖22,[ϕ>0]

)
+
m−1∑
k=1

βkkt
k−1‖ϕ

n
2 (k+1)∇

n
2 kRm‖22

+
m−1∑
k=0

βkt
k
(
− 1

2(n−2)
‖ϕ

n
2 (k+1)∇

n
2 (k+1)Rm‖22 + Cn

2 k
K
n
2 (k+1)‖Rm‖22,[ϕ>0]

)
≤ mtm−1‖ϕ

n
2m∇

n
2mRm‖22 + tm

(
Cn

2m
K
n
2 (m+1)‖Rm‖22,[ϕ>0]

)
+
m−2∑
k=0

βk+1(k + 1)tk‖ϕ
n
2 (k+1)∇

n
2 (k+1)Rm‖22

+
m−1∑
k=0

βkt
k
(
− 1

2(n−2)
‖ϕ

n
2 (k+1)∇

n
2 (k+1)Rm‖22 + Cn

2 k
K
n
2 (k+1)‖Rm‖22,[ϕ>0]

)
.

Choose t0 ∈ [0, αK−
n
2 ] such that

‖Rm‖
L2(t0),[ϕ>0]

= sup

t∈[0,αK
−n2 ]

‖Rm‖
L2(t),[ϕ>0]

.

Our choice of the constants βk yields

dG

dt
≤ αmK−

n
2mCn

2m
K
n
2 (m+1)‖Rm‖22,[ϕ>0]

+
m−1∑
k=0

βkα
kK−

n
2 kCn

2 k
K
n
2 (k+1)‖Rm‖22,[ϕ>0]

=
m∑
k=0

βkCn
2 k
αkK

n
2 ‖Rm‖22,[ϕ>0]

= CK
n
2 ‖Rm‖2

L2(t0),[ϕ>0]
.
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Therefore

tm‖ϕ
n
2 (m+1)∇

n
2mRm‖22 ≤ G ≤ β0‖Rm‖2

L2(0),[ϕ>0]
+ CK

n
2 ‖Rm‖2

L2(t0),[ϕ>0]
t

≤ (β0 + αC)‖Rm‖2
L2(t0),[ϕ>0]

= C‖Rm‖2
L2(t0),[ϕ>0]

,

proving the proposition.

Proposition 3.1.11. Let (Mn, g(t)) be a solution to the AOF for t ∈ [0, T ). Let ϕ ∈ C∞c (M)

be a cutoff function such that

max
0≤i≤n2

sup
t∈[0,T )

‖∇iϕ‖
C0(M,g(t))

≤ Λ.

Suppose max{‖Rm‖
C0(M,g(t))

, 1} ≤ K for all t ∈ [0, αK−
n
2 ]. Then, for every l ≥ 0 and all

t ∈ (0, αK−
n
2 ],

‖ϕl+
n
2∇lRm‖

L2(M,g(t))
≤ C(1 + t−d2l/ne/2) sup

t∈[0,αK
−n2 ]

‖Rm‖
L2(supp(ϕ),g(t))

,

where C = C(l, n, α,Λ).

Proof. Let l = n
2m+ r, 1 ≤ r ≤ n

2 . Then, applying Lemma 3.1.6 and Proposition 3.1.10, we

get

∫
M
ϕn(m+1)+2r|∇

n
2m+rRm|2 ≤

∫
M
ϕn(m+2)|∇

n
2 (m+1)Rm|2 + C ′

∫
[ϕ>0]

ϕn|Rm|2

≤ t−(m+1)CΘ2 + C ′Θ2

‖ϕl+
n
2∇lRm‖

L2(t)
≤ Θ(Ct−

m+1
2 + C ′),
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where

Θ = sup

t∈[0,αK
−n2 ]

‖Rm‖
L2(t),[ϕ>0]

.

3.2 Pointwise Smoothing Estimates

Let (M, g(t)) be a solution to AOF and let ϕ be a cutoff function on M . We give estimates

of |∇iϕ|g(t) for 1 ≤ i ≤ n
2 that depend on spacetime derivatives of the metric and |∇iϕ|g(0)

for 0 ≤ i ≤ n
2 . We then give a proof of the pointwise smoothing estimates given in Theorem

1.2.1.

Lemma 3.2.1. Let M be a manifold and g(t) be a one-parameter family of metrics on M .

For a function ϕ ∈ Ci(M) and i ≥ 2,

∂t∇iϕ =
i−1∑
j=1

∇i−j∂tg ∗ ∇jϕ.

Proof. Apply Proposition 2.1.5 with k = i− 1 and A = ∇ϕ.

Proposition 3.2.2. Let M be a manifold and g(t) be a one-parameter family of metrics on

M . For a function ϕ ∈ Ci(M) and i ≥ 1,

∂t|∇iϕ|2g(t) =
i∑

j=1

∇i−j∂tg ∗ ∇jϕ ∗ ∇iϕ.
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Proof. We compute, using the preceding Lemma 3.2.1 in the second line:

∂t|∇iϕ|2g(t) = ∂tg ∗ ∇iϕ∗2 + ∂t∇iϕ ∗ ∇iϕ

= ∂tg ∗ ∇iϕ∗2 +
i−1∑
j=1

∇i−j∂tg ∗ ∇jϕ ∗ ∇iϕ

=
i∑

j=1

∇i−j∂tg ∗ ∇jϕ ∗ ∇iϕ.

Proposition 3.2.3. Let M be a Riemannian manifold with a one-parameter family of

metrics {g(t)}t∈[0,T ] and ϕ ∈ C∞c (M). Fix i ≥ 1. Suppose that, for each j satisfying

0 ≤ j ≤ i − 1, there exists Kj > 0 such that |∇j∂tg(x, t)|g(t) ≤ Kj on suppϕ × [0, T ] and,

for each j satisfying 1 ≤ j ≤ i, there exists C ′j > 0 such that |∇jϕ|g(0) ≤ C ′j on suppϕ.

Then there exists a constant Ci such that, for every t ∈ [0, T ],

|∇iϕ|2g(t) ≤ Ci = Ci(K0, . . . , Ki−1, C
′
1, . . . , C

′
i, T ).

Proof. Let i = 1. Then Proposition 3.2.2 gives

∂t|∇ϕ|2g(t) = ∂tg ∗ ∇ϕ∗2 ≤ CK0|∇ϕ|2g(t).

Solving the differential inequality, we get

|∇ϕ|2g(t) ≤ |∇ϕ|
2
g(0)e

CK0T ≡ C2
1

which proves the proposition for i = 1.
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Fix i ≥ 2 and suppose that the proposition is true for every j satisfying 1 ≤ j ≤ i− 1. Let

f(t) = |∇iϕ|2
g(t)

. Then, via Proposition 3.2.2,

df

dt
≤

i∑
j=1

∇i−j∂tg ∗ ∇jϕ ∗ ∇iϕ

≤
i−1∑
j=1

|∇i−j∂tg||∇jϕ||∇iϕ|+ |∂tg||∇iϕ|2

≤
i−1∑
j=1

CKi−jCjf
1
2 + CK0f

≤ C̃(K0, . . . , Ki−1, C1, . . . , Ci−1)(1 + f)

= C̃(K0, . . . , Ki−1, C
′
1, . . . , C

′
i−1, T )(1 + f).

Solving the differential inequality, we get

1 + f(t) ≤ (1 + f(0))eC̃T

|∇iϕ|2g(t) ≤ (1 + |∇iϕ|2g(0))e
C̃T

≤ (1 + (C ′i)
2)eC̃T ≡ C2

i .

Proposition 3.2.4. Let (Mn, g(t)) solve AOF on [0, T ], where n ≥ 4. Fix r > 0. Suppose

there exist x ∈M , r > 0, and K > 0 such that

max

[
1, sup

[0,T ]
‖Rm‖

C0(Bg(T )(x,2r),g(t))

]
+

3n/2−3∑
j=1

sup
[0,T ]
‖∇jRm‖

2
j+2

C0(Bg(T )(x,2r),g(t))
< K.

(3.4)

48



Then for all l ≥ 0 and t ∈ (0, T ],

‖∇lRm‖
L2(Bg(T )(x,r),g(t))

≤ C(1 + t−d2l/ne/2) sup
t∈[0,T ]

‖Rm‖
L2(Bg(T )(x,2r),g(t))

, (3.5)

where C = C(n, l,K, T, r).

Proof. Let ϕ be a cutoff function that is equal to 1 on Bg(T )(x, r) and supported on

Bg(T )(x, 2r). The inequality (3.4) provides C0 bounds for the first n2−1 covariant derivatives

of Rm, so that

max
0≤j≤n2

‖∇jϕ‖
C0(M,g(T ))

≤ C ′(n,K, r). (3.6)

The inequality (3.6) provides bounds for the first n
2 covariant derivatives of ϕ at time T ,

and the inequality (3.4) induces bounds on the first n
2 − 1 covariant derivatives of Ô. We

therefore are able to, for each t ∈ [0, T ] and j satisfying 0 ≤ j ≤ n
2 , to obtain via Proposition

3.2.3 bounds given by

‖∇jϕ‖
C0(M,g(t))

≤ C̃j(n,K, r, T ).

Therefore, via Proposition 3.1.11,

‖∇lRm‖
L2(Bg(T )(x,r),g(t))

≤ ‖ϕl+
n
2∇lRm‖

L2(M,g(t))

≤ C(1 + t−d2l/ne/2) sup
t∈[0,T ]

‖Rm‖
L2(supp(ϕ),g(t))

= C(1 + t−d2l/ne/2) sup
t∈[0,T ]

‖Rm‖
L2(Bg(T )(x,2r),g(t))

where C = C(n, l,K, T, r).

We are now able to prove the pointwise smoothing estimates given in Theorem 1.2.1.
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Proof of Theorem 1.2.1. We adapt the proof of Theorem 1.3 in Streets [44]. We will show

that if this inequality fails, we can construct a blowup limit that is flat and has nonzero

curvature. Consider the function given by

fm(x, t, g) =
m∑
j=1

|∇jRm(g(x, t))|
2
j+2
g(t)

.

It suffices to show that

fm(x, t, g) ≤ C

(
K +

1

t
2
n

)
(3.7)

since for every l satisfying 1 ≤ l ≤ m,

|∇lRm(g(x, t))|
2
l+2
g(t)
≤

m∑
j=1

|∇jRm(g(x, t))|
2
j+2
g(t)

= fm(x, t, g) ≤ C

(
K +

1

t
2
n

)

and

|∇lRm(g(x, t))|g(t) ≤ C

(
K +

1

t
2
n

) l+2
2

≤ C

(
K +

1

t
2
n

)m+2
2

.

Suppose that the inequality (3.7) fails. It suffices to take m ≥ 3n
2 − 3. Without loss of

generality, for each i ∈ N there exists a solution to AOF (Mn
i , gi(t)) and (xi, ti) ∈Mi×(0, T ]

such that

i <
fm(xi, ti, gi)

K + t
− 2
n

i

= sup
Mi×(0,T ]

fm(x, t, gi)

K + t−
2
n

<∞.

and define a new sequence of blown up metrics by

g̃i(t) = λigi(ti + λ
−n2
i t),
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where λi = fm(xi, ti, gi). We will show in the proof of Theorem 1.2.4 that these metrics also

solve AOF. These metrics, which are defined for t ∈ [−λ
n
2
i ti, 0], are eventually defined on

[−1, 0] since as i→∞,

t
2
n
i λi =

fm(xi, ti, gi)

t
− 2
n

i

≥ fm(xi, ti, gi)

K + t
− 2
n

i

→∞.

Replace the sequence of AOF solutions {(Mi, g̃i(t))}i∈N with the tail subsequence for which

λ
n
2
i ti > 1. The curvatures of these manifolds converge to 0 since as i→∞,

|Rm(g̃i)|g̃i ≤
K

λi
=

K

fm(xi, ti, gi)
≤

K + t
− 2
n

i

fm(xi, ti, gi)
→ 0. (3.8)

Furthermore, there is a uniform Cm estimate on the curvature given by

fm(x, t, g̃i) =
fm(x, ti + tλ

−n2
i , gi)

λi

=
fm(x, ti + tλ

−n2
i , gi)

fm(xi, ti, gi)

≤
K + (ti + tλ

−n2
i )−

2
n

K + t
− 2
n

i

≤
K + t

− 2
n

i (1 + t
2)−

2
n

K + t
− 2
n

i

≤ 2
2
n (3.9)

for all i ∈ N and (x, t) ∈Mi × [−1, 0].

Let B(0, 1) be the open Euclidean ball in Rn centered at 0 with radius 1, ϕi : B(0, 1)→Mi

be given by expxi with respect to gi(0) for each i ∈ N, and hi(t) ≡ ϕ∗i gi(t). The uniform

C0 bound on Rm(g̃i(t)) given by (3.9) induces a uniform bound on (ϕi)∗ (see Petersen [40])
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which permits the uniform Cm estimate (3.9) on Rm(g̃i(t)) to lift to a uniform Cm estimate

on Rm(hi(t)). Furthermore, hi(t) solves AOF for all i since ϕi does not depend on t.

Since m ≥ 3n
2 − 3, we have uniform C0 bounds on ∇jÔ(h(t)) for 0 ≤ j ≤ n

2 − 1. Via

Proposition 3.2.4, we obtain uniform bounds on the L2(Bhi(0)(0,
1
2))-norms of all covariant

derivatives of Rm(hi(0)). Since the metrics hi(0) are uniformly equivalent to the Euclidean

metric, the Sobolev constant ofBhi(0)(0,
1
2) is uniformly bounded for all i. Via the Kondrakov

compactness theorem, we thus obtain uniform bounds on the C0(Bhi(0)(0,
1
2))-norms of

all covariant derivatives of Rm(hi(0)). The Taylor expansion for hi in terms of geodesic

coordinates about 0 with curvature coefficients can then be used to obtain uniform bounds

on the C0(Bhi(0)(0,
1
2))-norms of all partial derivatives of hi(0). Finally, by the Arzelà-

Ascoli theorem, after taking a subsequence, still named {hi(0)}i∈N, we get hi(0) → h∞ in

C∞(B(0, 1
2)) for some Riemannian metric h∞. We have already shown with inequality (3.8)

that (B(0, 1
2), h∞) is flat. However, for all i ∈ N,

fm(xi, 0, g̃i) =
m∑
j=1

|∇j
g̃i

Rm(g̃i)(xi, 0)|
2

2+j
g̃i(0)

=
m∑
j=1

(
λ
−j+2

2
i |∇jRm(xi, ti)|g(ti)

) 2
2+j

=
m∑
j=1

λ−1
i |∇

jRm(xi, ti)|
2

2+j
g(ti)

= λ−1
i λi = 1.

Also, fm(0, 0, hi) = 1 for all i since (ϕi)∗ is the identity map at 0 = ϕ−1
i (xi). Therefore

fm(0, 0, h∞) = 1. This is a contradiction, thereby proving the inequality (3.7).
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3.3 Long Time Existence

In this section, we prove that if a solution (M, g(t)) to the AOF only exists for a finite time

T , then ‖Rm‖
C0(g(t))

becomes unbounded along a sequence {(xn, tn)}∞n=1 ⊂M× [0, T ) with

tn ↑ T . We will prove this theorem by showing that if actually

sup
t∈[0,T )

‖Rm‖
C0(g(t))

= K <∞, (3.10)

then the solution g(t) exists past the time T . In order to show this, we show that (3.10) and

the pointwise smoothing estimates on |∇kRm|g(t) induce bounds on |∇̄kg(t)|ḡ with respect to

some fixed background metric ḡ and connection ∇̄. We also show that (3.10) implies uniform

convergence of g(t) to some continuous metric g(T ). The bounds on |∇̄kg(t)|ḡ imply that

g(T ) is smooth, so that we can extend the solution g(t) past the time T via the short time

existence Theorem 2.3.1.

We first show that if (3.10) holds, the metrics g(t) converge uniformly as t ↑ T to a continuous

metric g(T ) equivalent to each g(t). The following lemma is from Chow-Knopf [14]:

Lemma 3.3.1. Let M be a closed manifold. For 0 ≤ t < T ≤ ∞, let g(t) be a one-parameter

family of metrics on M depending smoothly on both space and time. If there exists a constant

C <∞ such that

∫ T

0

∣∣∣∣ ∂∂tg(x, t)

∣∣∣∣
g(t)

dt ≤ C

for all x ∈M , then

e−Cg(x, 0) ≤ g(x, t) ≤ eCg(x, 0)
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for all x ∈ M and t ∈ [0, T ). Furthermore, as t ↑ T , the metrics g(t) converge uniformly to

a continuous metric g(T ) such that for all x ∈M ,

e−Cg(x, 0) ≤ g(x, T ) ≤ eCg(x, 0).

Lemma 3.3.2. Let M be a compact manifold and let (M, g(t)) be a solution to AOF on

[0, T ) such that

sup
t∈[0,T )

‖Rm‖
C0(g(t))

= K <∞.

Then g(t) converges uniformly as t ↑ T to a continuous metric g(T ) that is uniformly equiv-

alent to g(t) for every t ∈ [0, T ].

Proof. Since Proposition 1.3.3 states that

∂g

∂t
=

(−1)
n
2

n− 2
∆
n
2−1Rc +

(−1)
n
2−1

2(n− 1)
∆
n
2−2∇2R +

n/2∑
j=2

P
n−2j
j (Rm),

in order to apply the preceding Lemma 3.3.1 it suffices to show that |∇kRm|g(t) is bounded

on M × [0, T ) for all k satisfying 0 ≤ k ≤ n− 2. Using the smoothing estimate provided in

Theorem 1.2.1, we get

max
0≤k≤n−2

sup
M×[0,T )

|∇kRm|g(t) ≤ max
0≤k≤n−2

sup

M×[0,T2 ]

|∇kRm|g(t) + C
(
K̃ + (T2 )−

2
n
)n

2 ,

where C = C(n) and K̃ = max{K, 1}.

So ∂g
∂t is bounded on M × [0, T ) and the metrics g(t) converge uniformly as t ↑ T to a

continuous metric g(T ) uniformly equivalent to each g(t).

54



Since M is a compact manifold, we can obtain bounds on |∇̄kg(t)|ḡ by taking the maximum

of bounds taken on finitely many coordinate patches. On such a coordinate patch, we can

assume that the fixed metric is just the Euclidean one. Thus we will only need to bound the

partial derivatives of g and Ô.

Lemma 3.3.3. Let M be a compact manifold and let (M, g(t)) be a solution to AOF on

[0, T ). Let U be a coordinate patch on M . Fix m ≥ 0. Suppose that for 0 ≤ i ≤ m+ n− 1,

there exist constants Ci such that |∇i
g(t)

Rm(g(t))|g(t) < Ci on M × [0, T ). Then for all

(x, t) ∈ U × [0, T ),

|∂mg(x, t)|g(t) < C̃1(g(0), C0, . . . , Cm+n−1)

|∂mÔ(x, t)|g(t) < C̃2(g(0), C0, . . . , Cm+n−1).

Proof. We prove this by induction. First we bound ∂g. We have

∂t∂g = ∂∂tg = (∇+ Γ) ∗ ∂tg = ∇Ô + Γ ∗ Ô.

From the definition of Ô, we obtain the bound |∇Ô| < C(C0, . . . , Cn−1). Then, since

∂tΓ = ∇∂tg = ∇Ô, Γ can be bounded in terms of the initial metric and∇Ô after integrating.

So ∂Ô = ∂t∂g is uniformly bounded by C(g(0), C0, . . . , Cn−1), and so is ∂g after integrating.

Assume that m ≥ 2 and

|∂ig| < C(g(0), C0, . . . , Ci+n−1) for 0 ≤ i ≤ m− 1,

|∂iÔ| < C(g(0), C0, . . . , Ci+n−1) for 0 ≤ i ≤ m− 1,

|∂iΓ| < C(g(0), C0, . . . , Ci+n−1) for 0 ≤ i ≤ m− 2.

We wish to bound ∂mg. It suffices to bound ∂mÔ since ∂t∂
mg = ∂m∂tg = ∂mÔ. We define

Pmk (Γ) to be a polynomial in Γ, . . . , ∂k−1Γ where each term contains m partial derivatives
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of g:

Pmk (Γ) =
∑

l+i1+···+il=m
1≤l≤k

∂i1Γ ∗ · · · ∗ ∂ilΓ.

We can express ∂mÔ as

∂mÔ = ∇mÔ +
m−1∑
i=0

∂iÔ ∗ Pm−ii (Γ). (3.11)

We prove equation (3.11) by induction. First, the equation holds when m = 1: ∂Ô =

(∇+ Γ) ∗ Ô = ∇Ô + Γ ∗ Ô. Assume the equation (3.11) holds for 0 ≤ i ≤ m. Then

∇m+1Ô = (∂ + Γ)∇mÔ

= ∂m+1Ô + ∂mÔ ∗ Γ +
m−1∑
i=0

[
∂i+1Ô ∗ Pm−ii (Γ) + ∂iÔ ∗ Pm+1−i

i+1 (Γ)
]

= ∂m+1Ô + ∂mÔ ∗ Γ +
m∑
i=1

∂iÔ ∗ Pm+1−i
i (Γ) +

m−1∑
i=0

∂iÔ ∗ Pm+1−i
i+1 (Γ)

= ∂m+1Ô +
m∑
i=0

∂iÔ ∗ Pm+1−i
i+1 (Γ).

From the equation (3.11), we see that in order to bound ∂mÔ, we only need to bound ∂m−1Γ.

We have

|∂t∂m−1Γ| = |∂m−1∂tΓ|

= |∂m−1(g−1 ∗ ∇Ô)|

=
m−1∑
i=0

|∂i∇Ô ∗ ∂m−1−ig|

≤ C(g(0), C0, . . . , Cm+n−2)
m−1∑
i=0

|∂i∇Ô|. (3.12)
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We bound ∂i∇Ô via the equation

∂i∇Ô = ∇i+1Ô +
i∑

j=1

∇jÔ ∗ Pi−j+1
i−j+1(Γ). (3.13)

In order to verify this via induction, we have that for i = 1, ∂∇Ô = ∇2Ô + Γ ∗ ∇Ô. If

equation (3.13) holds for the ith partial derivative,

∂i+1∇Ô = (∇+ Γ)∇i+1Ô + ∂
i∑

j=1

∇jÔ ∗ Pi−j+1
i−j+1(Γ)

= ∇i+2Ô +∇i+1Ô ∗ Γ +
i∑

j=1

(∇+ Γ)∇jÔ ∗ Pi−j+1
i−j+1(Γ) +

i∑
j=1

∇jÔ ∗ Pi−j+2
i−j+1(Γ)

= ∇i+2Ô +∇i+1Ô ∗ Γ +
i+1∑
j=2

∇jÔ ∗ Pi−j+2
i−j+2(Γ) +

i∑
j=1

∇jÔ ∗ Pi−j+2
i−j+2(Γ)

+
i∑

j=1

∇jÔ ∗ Pi−j+2
i−j+1(Γ)

= ∇i+2Ô +
i+1∑
j=1

∇jÔ ∗ Pi−j+2
i−j+2(Γ).

If 0 ≤ i ≤ m − 1, then the highest partial derivative of Γ that appears in equation (3.13)

is of order at most m − 2, so ∂i∇Ô is bounded in terms of covariant derivatives of Ô and

previously bounded partial derivatives of Γ. Therefore, via equation (3.12), ∂m−1Γ and ∂mÔ

are bounded.

Proof of Theorem 1.2.2. Suppose that equation (3.10) holds. By Lemma 3.3.2, the metrics

g(t) converge uniformly to a continuous metric g(T ) as t ↑ T . We show that g(T ) is C∞ on

M . It suffices to show for each k ∈ N that g(T ) is Ck on any coordinate patch since we can

take a maximum over finitely many of them to show that g(T ) is Ck on M . We have

g(t) = g(0) +

∫ t

0
Ô(τ) dτ.
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Taking limits as t ↑ T , we get

g(T ) = g(0) +

∫ T

0
Ô(τ) dτ.

This permits us to take the kth partial derivative:

∂kg(T ) = ∂kg(0) +

∫ T

0
∂kÔ(τ) dτ.

The bounds on ∂kg and ∂kÔ from Lemma 3.3.3 therefore imply a bound on ∂kg(T ). So

g(T ) is C∞ on M . Furthermore, since

|∂kg(T )− ∂kg(t)| ≤
∫ T

t
|∂kÔ(τ)| dτ ≤ Ck(T − t),

the metrics g(t) converge in C∞ to g(T ). So g(t) is a C∞ solution to AOF on [0, T ]. Then

the short time existence Theorem 2.3.1 applied to g(t) with initial metric g(T ) allows us to

extend g(t) past T . This contradicts the assumption that T was the maximal time for the

solution (M, g(t)).
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Chapter 4

Compactness and Convergence

4.1 Compactness

In this section, we give compactness results for AOF similar to Hamilton’s compactness

theorem for solutions of the Ricci flow. We first prove a proposition that states that for

a sequence of metrics, uniform bounds on the spacetime derivatives of curvature and the

derivatives of the metric at one time extend to uniform bounds on the spacetime derivatives

of the metric. This is used to prove the compactness Theorem 1.2.3 for a sequence of

complete pointed solutions of AOF. We then give the proofs of Theorem 1.2.4, which allows

us to obtain a singularity model from a singular solution, and Theorem 1.2.5, which describes

the behavior at time ∞ of a nonsingular solution.

The type of convergence of manifolds we will consider is pointed C∞ Cheeger-Gromov con-

vergence.

Definition 4.1.1 (C∞ Cheeger-Gromov convergence ([13] Definition 3.5)). A sequence

{(Mn
k , gk, Ok)}k∈N of complete pointed Riemannian manifolds converges (in the Cheeger-

Gromov topology) to a complete pointed Riemannian manifold (Mn
∞, g∞, O∞) if there exist
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1. an exhaustion {Uk}k∈N of M∞ by open sets with O∞ ∈ Uk,

2. a sequence of diffeomorphisms Φk : Uk → Vk := Φk(Uk) ⊂ Mk with Φk(O∞) = Ok,

such that
(
Uk,Φ

∗
k

[
gk|Vk

])
converges in C∞ to (M∞, g∞) uniformly on compact sets

in M∞.

The following compactness result of Hamilton allows us to extract a convergent subsequence

of manifolds at a fixed time.

Theorem 4.1.2 (Cheeger-Gromov compactness theorem ([25] Theorem 2.3)). Let

{(Mn
k , gk, Ok)}k∈N be a sequence of complete pointed Riemannian manifolds that satisfy

|∇pkRmk|k ≤ Cp on Mk

for all p ≥ 0 and k where Cp <∞ is a sequence of constants independent of k and

injgk
(Ok) ≥ ι0

for some constant ι0 > 0. Then there exists a subsequence {jk}k∈N such that

{Mjk
, gjk , Ojk)}k∈N converges to a complete pointed Riemannian manifold

(Mn
∞, g∞, O∞)

as k →∞.

The following proposition allows us to extend bounds on the derivatives of a sequence of

metrics at one time to bounds that are uniform over an interval.

Proposition 4.1.3. Let (M, g) be a Riemannian manifold and L be a compact subset of M .

Let {gi}i∈N be a collection of Riemannian metrics that are solutions of AOF on neighborhoods

containing L× [β, ψ]. Let t0 ∈ [β, ψ] and fix k ≥ n− 2. Let unmarked objects such as ∇ and
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| · | be taken with respect to g, and let objects such as ∇k and | · |k be taken with respect to

gk. Suppose that:

1. The metrics gi(t0) are uniformly equivalent to g for every i ∈ N: for some B0 > 0,

B−1
0 g ≤ gi(t0) ≤ B0g.

2. For each 1 ≤ p ≤ k, there exists a uniform bound Cp on L independent of i such that

|∇pgi(t0)| ≤ Cp.

3. For each 0 ≤ p + q ≤ k + n − 2, there exists a uniform bound C ′p,q on L × [β, ψ]

independent of i such that |∂qt∇
p
gi

Rm(gi)|gi ≤ C ′p,q.

Then:

1. The metrics gk(t) are uniformly equivalent to g for every i ∈ N and t ∈ [β, ϕ]: for

some B = B(t, t0) > 0, B−1g ≤ gi(t) ≤ Bg.

2. For every p, q satisfying 0 ≤ p + q ≤ k, there is a uniform bound C̃p,q on L × [β, ψ]

independent of i such that |∂qt∇
pgi(t)| ≤ C̃p,q.

Proof. We adapt the proof of Lemma 3.11 in Chow et. al. [13]. The uniform equivalence

of the gk and g on L× [β, ϕ] follow from the given bounds for |∇pgiRm(gi)|gi on L× [β, ψ].

Define the bounds Cj for j satisfying 0 ≤ j ≤ j − n+ 2 by

|∇jkÔk| ≤
n−2+j∑
p=j

apCC
′
p,0 ≡ Cj .

Suppose that (p, q) = (1, 0). Hamilton showed in Theorem 7.1 of [23] that ∂tΓ = g−1 ∗∇∂tg.

Then

|∂t(Γk − Γ)|k ≤ C|∇kÔk|k ≤ CC1.
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It follows that

|∇gk(t)| ≤ B(t, t0)3/2|∇gk(t)|k

≤ B(ψ, β)3/22|Γk(t)− Γ|k

≤ B(ψ, β)3/2(CC1|ψ − β|+ 3B
3/2
0 C1) ≡ C̃1,0.

Next, we prove the lemma for p satisfying p ≤ k when q = 0. We will show that for p ≥ 1,

|∇p∂tgk| ≤ C ′′p |∇pgk|+ C ′′′p , |∇pgk| ≤ C̃p,0. (4.1)

If p = 1, then

|∇∂tgk(t)| ≤ B(t, t0)3/2|(∇−∇k)∂tgk +∇k∂tgk|k

≤ B(t, t0)3/2C|Γ− Γk|k|∂tgk|k + |∇k∂tgk|k

≤ B(t, t0)3/2C|∇gk|C0 + C1

and we have already shown that |∇gk| ≤ C̃1,0.

Let N ≥ 2 and assume that (4.1) is true for 0 ≤ p ≤ N − 1. The telescoping identity

∇NA−∇Nk A =
N∑
i=1

∇N−i(∇−∇k)∇i−1
k A

results in the following inequality:

|∇N∂tgk| ≤ |∇N−1(∇−∇k)∂tgk|+
N∑
i=2

|∇N−i(∇−∇k)∇i−1
k ∂tgk|+ |∇Nk ∂tgk|. (4.2)
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Using the induction hypothesis and the given estimates for |∇pgiRm(gi)|gi , we estimate the

terms of the preceding inequality (4.2). Collecting terms yields

|∇N∂tgk| ≤ C ′′N |∇
Ngk|+ C ′′′N .

Applying the preceding inequality, we get

∂t|∇Ngk|2 = 2〈∂t∇Ngk,∇Ngk〉

≤ |∂t∇Ngk|2 + |∇Ngk|2

≤ (1 + 2(C ′′N )2)|∇Ngk|2 + 2(C ′′′N )2.

After solving an ODE, we obtain

|∇Ngk|2(t) ≤ e
(1+2(C′′N )2)(ψ−t0)

[
CN +

2(C ′′′N )2

1 + 2(C ′′N )2

(
1− e(1+2(C′′N )2)(t0−β))] ≡ C̃2

N,0.

This completes the inductive proof of (4.1) and the proof of the proposition when q = 0.

Since ∂
q
t∇

pgk = ∇p∂qt gk, a similar procedure may be used to prove the proposition when

q > 0.

We are now able to prove the compactness Theorem 1.2.3 for solutions of the AOF via a

modification of the proof given by Hamilton in [25] of the compactness theorem for Ricci

flow. We need the following lemma.

Proposition 4.1.4. (Chow et al. [13] Corollary 3.15) Let (Mn, g) be a Riemannian manifold

and let L ⊂ Mn be compact. Furthermore, let p be a nonnegative integer. If {gk}k∈N is a

sequence of Riemannian metrics on L such that

sup
0≤|α|≤p+1

sup
x∈L
|∇αgk| ≤ C <∞
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and if there exists δ > 0 such that gk(V, V ) ≥ δg(V, V ) for all V ∈ TM ,then there exists a

subsequence {gk} and a Riemannian metric g∞ on L such that gk converges in Cp to g∞ as

k →∞.

Proof of Theorem 1.2.3. Since we are given a uniform bound on |Rm(gk)|gk , the pointwise

smoothing estimates given by Theorem 1.2.1 furnish uniform bounds on

‖∇m
gk(t0)

Rm(gk(t0))‖
C0(gk(t0))

for all m ∈ N. Therefore, since the (Mk, gk) are complete, the

Cheeger-Gromov compactness Theorem 4.1.2 yields a subsequence of {(Mk, gk(t), Ok)}k∈N,

also called {(Mk, gk(t), Ok)}k∈N, for which {(Mk, gk(t0), Ok)}k∈N converges to a complete

pointed Riemannian manifold

(Mn
∞, h, O∞).

Fix a compact subset L of M∞ and a closed interval [β, ψ], with t0 ∈ (β, ψ) of (α, ω). Since

{(Mk, gk(t0), Ok)}k∈N converges to (M∞, h, O∞), by definition there exists an exhaustion

{Uk}k∈N of M∞ by open sets with O∞ ∈ Uk and a sequence of diffeomorphisms Φk : Uk →

Vk ≡ Φk(Uk) ⊂ Mk with Φk(O∞) = Ok, such that if hk ≡ Φ∗k

[
gk(t0)|Vk

]
, then (Uk, hk)

converges in C∞ to (M∞, h) on compact sets in M∞. Since the Uk exhaust M∞, L ⊂ Uk

for some k. So the metrics hk are uniformly equivalent to h on L. We also obtain from the

C∞ convergence that for each p ≥ 1, there exists a Cp independent of x ∈ L and k such

that |∇phhk|h ≤ Cp.

Let Gk(t) ≡ Φ∗k

[
gk(t)|Vk

]
; then hk = Gk(t0). From the pointwise smoothing estimates given

by Theorem 1.2.1, for each p we obtain a bound C ′p,0 uniform on L× [β, ψ] independent of k

such that |∇pGkRm(Gk)|Gk ≤ C ′p,0 on L× [β, ψ]. Using the expression of ∂t∇pGkRm(Gk) in

terms of covariant derivatives of Rm(Gk) given by Proposition 2.2.2, for each (p, q) we obtain

a bound C ′p,q uniform on L × [β, ψ] independent of k such that |∂qt∇
p
Gk

Rm(Gk)|Gk ≤ C ′p,q

on L × [β, ψ]. We then conclude via Proposition 4.1.3 that the metrics Gk are uniformly
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equivalent to h on L× [β, ψ] and that for every p, q ≥ 0, there is a constant C̃p,q independent

of k such that |∂qt∇
p
hGk|h ≤ C̃p,q on L× [β, ψ].

The uniform equivalence of the Gk to h and the uniform bounds |∂qt∇
p
hGk|h ≤ C̃p,q allow

us to apply an Arzelà-Ascoli type Proposition 4.1.4 to the metrics Gk(t) + dt2 on L× [β, ψ]

and obtain a subsequence that converges in C∞(L× [β, ψ], h+ dt2) to a metric g∞(t) + dt2

such that g∞(0) = h; we relabel the convergent subsequence as {Gk(t) + dt2}k∈N. It follows

that g∞(t) + dt2 is uniformly equivalent to G1(t) + dt2 on L × [β, ψ]. Then g∞(t) + dt2 is

uniformly equivalent to h + dt2 on L × [β, ψ] since G1(t) + dt2 is uniformly equivalent to

h+ dt2 on L× [β, ψ]. Since (M,h) is complete, (M × (α, ω), h+ dt2) is also complete. The

uniform equivalence of g∞(t) + dt2 to h + dt2 on compact subsets of M × (α, ω) and the

Hopf-Rinow theorem imply that (M∞ × (α, ω), g∞(t) + dt2) is complete.

Since (M∞×(α, ω), g∞(t)+dt2) is complete, compact sets are equivalent to closed, bounded

ones. A compact set in M∞× (α, ω) is contained in the compact set that is the product of a

closed geodesic ball in M∞ and a closed interval in (α, ω). So the metrics Gk(t) + dt2 subse-

quentially converge in C∞(M∞ × (α, ω), h+ dt2). Let {Gk(t) + dt2}k∈N be the convergent

subsequence. Then {(Mk, gk(t), Ok)}k∈N converges to (M∞, g∞(t), O∞). It follows that for

each p, q, ∂
q
t∇

p
g∞Gk → ∂

q
t∇

p
g∞g∞ and Ô(Gk) → Ô(g∞) in C(M∞ × (α, ω), g∞(t) + dt2).

Therefore (M∞, g∞, O∞) is a complete pointed solution to AOF for t ∈ (α, ω).

4.2 Convergence to Singularity Models

As our first corollary of the compactness theorem 1.2.3, we show that under suitable condi-

tions, we can obtain a singularity model for the ambient obstruction flow.
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Proof of Theorem 1.2.4. We first show that the gi are also solutions to AOF by showing that

if g̃ = λg and g satisfies AOF, given up to constants by

∂tg = ∆
n
2−1Rc + ∆

n
2−2∇2R +

n/2∑
j=2

P
n−2j
j (Rm),

then g̃ satisfies

∂tg̃ = ∆̃
n
2−1R̃c + ∆̃

n
2−2∇̃2R̃ +

n/2∑
j=2

P
n−2j
j (R̃m). (4.3)

We evaluate the first term of the right side of (4.3):

∆̃
n
2−1R̃c =

(
λ−1g−1∇2

)n
2−1

Rc = λ1−n2 ∆
n
2−1Rc.

Similarly, the second term is equal to λ1−n2 ∆
n
2−1Rc. The remaining terms are contractions

of terms of the form

∇̃i1R̃m⊗ · · · ⊗ ∇̃ij R̃m

with 2 ≤ j ≤ n
2 and i1 + · · ·+ ij = n− 2j. In order to contract on all but two indices of the

above term, we need to contract 1
2(i1 + · · ·+ ij + 3j − j − 2) = n

2 − 1 pairs of indices. This

implies that P
n−2j
j (R̃m) = λ1−n2Pn−2j

j (Rm). The left side of (4.3) is equal to λ1−n2 ∂tg. So

g̃ satisfies (4.3).

We have |Rm(gi)|gi ≤ 1 on M × [−λn/2i ti, 0] for each i since the definition of the λi implies

|Rm(gi)|2gi = λ−2
i |Rm|2 ≤ λ−2

i λ2
i ≤ 1.

Let k ∈ N. There exists ik such that if i ≥ ik, then λ
n/2
i ti > k. Then {gi}i≥ik is a sequence

of complete pointed solutions to AOF on (−k, 0]. Since the Sobolev constant is scaling
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invariant, the uniform bound of CS(M, g) on [0, T ) implies a uniform bound independent

of i of CS(M, gi) on [0, T ). We conclude from Lemma 3.2 of Hebey [26] that there exists

a uniform lower bound independent of i for infx∈M vol(Bgi(x, 1)). This and the bound

|Rm(gi)|gi ≤ 1 on M × [−λn/2i ti, 0] for all i give a uniform lower bound independent of i for

injgi(0)(xi) via the Cheeger-Gromov-Taylor theorem.

The proof of the compactness theorem 1.2.3 is unchanged if we replace (α, ω) with (−k, 0].

Thus, by theorem 1.2.3, we obtain subsequential convergence of

{(M, gi(t), xi)}i≥ik

to a complete pointed solution (M∞, g∞(t), x∞) to AOF for t ∈ (−k, 0]. By taking a

further diagonal subsequence over the k, we get that {(M, gi(t), xi)}i≥1 subsequentially

converges to a complete pointed solution (M∞, g∞(t), x∞) to AOF for t ∈ (−∞, 0]. The

limit (M∞, g∞(t)) is not flat since

|Rm(g∞(0))(x∞)|g∞(0) = 1

by the definition of the gi(t).

We show that M∞ is noncompact. Lemma 3.9 of Chow-Knopf [14] states that for a one

parameter family of Riemannian manifolds (M, g(t)), the volume element evolves by ∂tdVg =

1
2g
ij∂tgij . Applying the fact that O is traceless and the divergence theorem,

∂

∂t
vol(M, g(t)) =

1

2

∫
M
gij

∂gij
∂t

dVg(t)

=
1

2

∫
M

[(−1)
n
2 gijOij + C(n)(∆

n
2−1R)gijgij ] dVg(t)

= C(n)

∫
M

∆
n
2−1RdVg(t)

= 0.
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Therefore the volume of (M, g(t)) is preserved along the flow. Since λi →∞,

vol(M∞, g∞(t)) = lim
i→∞

vol(M, gi(t)) = lim
i→∞

λ
n/2
i vol(M, g(ti + λ

n
2
i t)) =∞

for all t ∈ (−∞, 0]. So the volume of (M, g∞(t)) is infinite for all t ∈ (−∞, 0]. The uniform

volume lower bound for the (M, gi) passes in the limit to a uniform volume lower bound for

(M, g∞). Therefore M∞ is noncompact by Lemma 8.1 of Bour [6].

Next, we show that the integral of the Q-curvature is nondecreasing along the flow on M .

Along the flow, the derivative of
∫
M Q is given by

∂

∂t

∫
M
Q = (−1)

n
2
n− 2

2

∫
M
〈O, ∂tg〉

= (−1)
n
2
n− 2

2

∫
M

(−1)
n
2 |O|2 + C(n)

∫
M
〈O, (∆

n
2−1R)g〉

=
n− 2

2

∫
M
|O|2,

where the third line holds since O is traceless. So the integral of the Q-curvature does not

decrease along the flow.

Suppose that

sup
t∈[0,T )

∫
M
Q(g(t)) dVg(t) <∞.

This is always true when n = 4 since the Chern-Gauss-Bonnet theorem gives that for all

t ∈ [0, T ),

∫
M
Q = 8π2χ(M)− 1

4

∫
M
|W |2 ≤ 8π2χ(M).
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So if the integral of the Q curvature is bounded along the flow,

∫ T

0

∫
M
|O|2 =

∫ T

0

∂

∂t

∫
M
Q

= lim
t↑T

∫
M
Q(g(t))−

∫
M
Q(g(0))

<∞.

Let {(M, gi(t), xi)}i≥1 be the convergent subsequence previously found in the proof. Fix

k ∈ N. Since ti → T and λi →∞, we can choose a subsequence of times {tij}j∈N as follows:

i1 = inf
{
i : ti ≥ T

2 , λi ≥
(2k
T

) 2
n
}
, ij = inf

{
i : ti ≥ 1

2(T + tij−1
), λi ≥

( 2k
T−tij−1

) 2
n
}

for j ≥ 2. We relabel {tij}j∈N as{ti}i∈N. Then

∞∑
i=1

∫ ti

ti−kλ
−n2
i

∫
M
|O|2 <

∫ T

0

∫
M
|O|2 <∞,

implying that, using the scaling law O(λg) = λ
2−n

2 O(g),

0 = lim
i→∞

∫ ti

ti−kλ
−n2
i

∫
M
|O(g)|2g dVg dt

= lim
i→∞

∫ 0

−k

∫
M
λni |O(gi)|2giλ

−n2
i λ

−n2
i dVgi dt

= lim
i→∞

∫ 0

−k

∫
M
|O(gi)|2gi dVgi dt.

Since O(gi) → O(g∞) in C∞ on compact subsets, this implies that O(g∞) ≡ 0 on [−k, 0].

So for each k ∈ N, there exists a sequence of pointed solutions to AOF that converge to an

obstruction flat pointed solution to AOF on [−k, 0]. By taking a further diagonal subsequence

over the k, we obtain a sequence of pointed solutions to AOF that converge to an obstruction

flat complete pointed solution to AOF on (−∞, 0].
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Finally, we provide a corollary of the compactness theorem 1.2.3 characterizing limits of

nonsingular solutions to AOF.

Proof of Theorem 1.2.5. Suppose M does not collapse at ∞. Then there exists a sequence

{(xi, ti)}i∈N ⊂ M × [0,∞) such that infi injg(ti)
(xi) > 0. Let gi(t) = g(t + ti) for t ∈

[−ti,∞). Let k ∈ N. Then there exists ik ∈ N such that ti > k for all i ≥ ik. Since

supt∈[0,∞) ‖Rm‖∞ < ∞ and infi injgi(0)(xi) > 0, we apply Theorem 1.2.3 to obtain subse-

quential convergence in the sense of families of pointed Riemannian manifolds of

{(M, gi(t), xi)}i≥ik to a complete pointed solution (M∞, g∞(t), x∞) to AOF on (−k,∞).

By taking a further diagonal subsequence over the k, we get that {(M, gi(t), xi)}i≥1 subse-

quentially converges to a complete pointed solution (M∞, g∞(t), x∞) to AOF on (−∞,∞).

If M∞ is compact, then by the definition of convergence of complete pointed Riemannian

manifolds, M∞ is diffeomorphic to M . Just as in the proof of Theorem 1.2.4, the volume of

(M, g(t)) is preserved along the flow. So for all t ∈ (−∞,∞),

vol(M∞, g∞(t)) = lim
i→∞

vol(M, gi(t)) = lim
i→∞

vol(M, g(ti + t)) <∞.

Suppose that

sup
t∈[0,∞)

∫
M
Q(g(t)) dVg(t) <∞.

This is always true when n = 4 by the Chern-Gauss-Bonnet theorem. Using the same

argument as in the proof of Theorem 1.2.4, we obtain

∫ ∞
0

∫
M
|O|2 <∞.
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Let {(M, gi(t), xi)}i≥1 be the convergent subsequence previously found in the proof. Since

ti →∞, we can choose a subsequence of times {tij}j∈N as follows:

i1 = inf{i : ti ≥ k}, ij = inf{i : ti ≥ tij−1
+ 2k}

for j ≥ 2. We relabel {tij}j∈N as{ti}i∈N. Then

∞∑
i=1

∫ ti+k

ti−k

∫
M
|O|2 <

∫ ∞
0

∫
M
|O|2 <∞

implies that

0 = lim
i→∞

∫ ti+k

ti−k

∫
M
|O(g)|2g dVg dt = lim

i→∞

∫ k

−k

∫
M
|O(gi)|2gi dVgi dt.

Since O(gi) → O(g∞) in C∞ on compact subsets, this implies that O(g∞) ≡ 0 on [−k, k].

So for each k ∈ N, there exists a sequence of pointed solutions to AOF that converge to an

obstruction flat pointed solution to AOF on [−k, k]. By taking a further diagonal subsequence

over the k, we obtain a sequence of pointed solutions to AOF that converge to an obstruction

flat complete pointed solution to AOF on (−∞,∞). Since g∞ solves the conformal flow

∂tg∞ = (−1)n/2C(n)(∆
n
2−1R)g, we see that g∞(t) is in the conformal class of g∞(0) for

all t ∈ (−∞,∞). If M∞ is compact, we can solve the Yamabe problem for (M∞, [g∞(0)]);

the Yamabe problem was solved by Aubin, Trudinger, and Schoen (see [2, 33]). Due to the

conformal covariance of O, we obtain a obstruction flat, constant scalar curvature complete

pointed solution (M∞, ĝ∞(t)) to AOF with ĝ∞(t) = ĝ∞(0) for all t ∈ (−∞,∞).
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Chapter 5

Rigidity in Dimension Four and

Initial Sobolev Estimate

5.1 Proof of Theorem 1.2.11

The arguments in the proof of the gap theorem for 4-manifolds given by Theorem 1.2.11

are a special case of the arguments used for n-manifolds with n ≥ 6, and do not require

the machinery we develop in subsequent sections. In particular, we need neither a volume

growth upper bound nor a quadratic curvature decay bound. Therefore, we will present the

proof of Theorem 1.2.11 in this section. All manifolds in this section are 4-dimensional.

Proposition 5.1.1. Suppose M,ϕ satisfy the above hypotheses. Suppose s ≥ 1. For every

δ > 0, there exists C such that

∫
M
ϕ2s−1∇ϕ ∗ ∇Rm ∗ Rm ≤ δ

∫
M
ϕ2s|∇Rm|2 + CΛ2ε20δ

−1R−2.
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In particular, there exists C such that

∫
M
ϕ2s−1∇ϕ ∗ ∇Rm ∗ Rm ≤ ε0

∫
M
ϕ2s|∇Rm|2 + CΛ2ε0R

−2.

Proof. The Cauchy-Schwarz inequality gives

∫
M
ϕ2s−1∇ϕ ∗ ∇Rm ∗ Rm ≤ δ

∫
M
ϕ2s|∇Rm|2 +

CΛ2

δR2

∫
M
ϕ2s−2|Rm|2.

Set δ = ε0 to obtain the second inequality.

Proposition 5.1.2. Suppose M,ϕ satisfy the above hypotheses. Suppose s ≥ 1. Then there

exists C such that

(∫
M
ϕ4s|Rm|4

)1
2 ≤ CCS

∫
M
ϕ2s|∇Rm|2 + CCSΛ2ε20R

−2.

Proof. We estimate:

∥∥ϕs|Rm|
∥∥2

4 ≤ CS
∥∥∇[ϕs|Rm|]

∥∥2
2

≤ CCS
∥∥ϕs∇|Rm|

∥∥2
2 + CCS

∥∥ϕs−1|Rm|∇ϕ‖22

≤ CCS

∫
M
ϕ2s|∇Rm|2 + CCS

∫
M
ϕ2s−2|Rm|2|∇ϕ|2

≤ CCS

∫
M
ϕ2s|∇Rm|2 + CCSΛ2ε20R

−2.

We used the Sobolev inequality in the first line and the Kato inequality in the third line.

Proposition 5.1.3. Suppose M,ϕ satisfy the above hypotheses. Suppose s ≥ 1. Then there

exists C such that

∫
M
ϕ2sRm∗3 ≤ CCSε0

∫
M
ϕ2s|∇Rm|2 + CCSΛ2ε30R

−2.
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Proof. We apply Hölder’s inequality, followed by Proposition 5.1.2:

∫
M
ϕ2sRm∗3 ≤ C

(∫
M
|Rm|2

)1/2(∫
M
ϕ4s|Rm|4

)1/2

≤ Cε0

(
CCS

∫
M
ϕ2s|∇Rm|2 + CCSΛ2ε20R

−2
)

= CCSε0

∫
M
ϕ2s|∇Rm|2 + CCSΛ2ε30R

−2.

Our choice of the exponent of ϕ was sufficiently large to apply Proposition 5.1.2 since s ≥

1.

Proposition 5.1.4. Suppose M,ϕ satisfy the above hypotheses. Suppose s ≥ 1. Then there

exist C1 = C1(CS) and C2 = C2(CS ,Λ) such that

−
∫
M
ϕ2s〈∆Rm,Rm〉 ≤ 2

∫
M
ϕ2s|∇Rc|2 + C1ε0

∫
M
ϕ2s|∇Rm|2 + C2ε0R

−2.

Proof. Let I denote

I = −
∫
M
ϕ2s〈∆Rm,Rm〉.

First,

I = −
∫
M
ϕ2sgjagkbglcgmdRadcb(∇j∇mRlk −∇j∇lRmk +∇k∇lRmj −∇k∇mRlj)

+

∫
M
ϕ2sRm∗3

= −2

∫
M
ϕ2sgjagkbglcgmdRadcb(∇j∇mRlk −∇j∇lRmk) +

∫
M
ϕ2sRm∗3

= −2

∫
M
ϕ2sgjagkbglcgmdRadcb∇j∇mRlk + 2

∫
M
ϕ2sgjagkbglcgmdRadcb∇j∇lRmk

+

∫
M
ϕ2sRm∗3

= 2I1 + 2I2 +

∫
M
ϕ2sRm∗3. (5.1)
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The first line follows from an identity for ∆Rm. Then

I1 =

∫
M
ϕ2sgkbglcgmd∇mRlkgja∇jRadcb +

∫
M
ϕ2s−1∇ϕ ∗ ∇Rm ∗ Rm

≤
∫
M
ϕ2sgkbglcgmd∇mRlkgja∇jRadcb + ε0

∫
M
ϕ2s|∇Rm|2 + CΛ2ε0R

−2

=

∫
M
ϕ2sgkbglcgmd∇mRlkgja(−1)(∇cRadbj +∇bRadjc) + ε0

∫
M
ϕ2s|∇Rm|2

+ CΛ2ε0R
−2

= −
∫
M
ϕ2sgkbglcgmd∇mRlk(∇cRdb −∇bRdc) + ε0

∫
M
ϕ2s|∇Rm|2 + Cε0Λ2R−2

=

∫
M
ϕ2sgkbglcRlkg

md(∇m∇cRdb −∇m∇bRdc) +

∫
M
ϕ2s−1∇ϕ ∗ ∇Rm ∗ Rm

+ ε0

∫
M
ϕ2s|∇Rm|2 + CΛ2ε0R

−2

≤
∫
M
ϕ2sgkbglcRlkg

md(∇m∇cRdb −∇m∇bRdc) + 2ε0

∫
M
ϕ2s|∇Rm|2 + CΛ2ε0R

−2

=

∫
M
ϕ2sgkbglcRlk(∇c∇dRdb −∇b∇dRdc) +

∫
M
ϕ2sRm∗3 + 2ε0

∫
M
ϕ2s|∇Rm|2

+ CΛ2ε0R
−2

=

∫
M
ϕ2sRm∗3 + 2ε0

∫
M
ϕ2s|∇Rm|2 + CΛ2ε0R

−2

≤ C1ε0

∫
M
ϕ2s|∇Rm|2 + C2ε0R

−2,

where C1 = C1(CS) and C2 = C2(CS ,Λ). We estimated the gradient term in the second

and sixth lines via Proposition 5.1.1. The first line follows from integration by parts. The

third line follows from a Bianchi identity. The fifth line follows from integration by parts.

We obtained the seventh line by commuting derivatives. The eighth line follows from the

assumption that (M, g) has constant scalar curvature and a Bianchi identity. The ninth line

follows from Proposition 5.1.3.

Similarly,

I2 ≤
∫
M
ϕ2sgkbglcgmd∇lRmk(∇cRdb −∇bRdc) + C1ε0

∫
M
ϕ2s|∇Rm|2 + C2ε

2
0R
−2
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=

∫
M
ϕ2s|∇Rc|2 +

∫
M
ϕ2s〈∇ div Rc,Rc〉+

∫
M
ϕ2sRm∗3 + C1ε0

∫
M
ϕ2s|∇Rm|2

+ C2ε
2
0R
−2

≤
∫
M
ϕ2s|∇Rc|2 + C1ε0

∫
M
ϕ2s|∇Rm|2 + C2ε0R

−2,

where C1 = C1(CS) and C2 = C2(CS ,Λ). The second line follows from integration by parts

and commuting derivatives. The third line follows from the assumption that (M, g) has

constant scalar curvature and a Bianchi identity as well as Proposition 5.1.3.

We complete the proof of the proposition by applying the estimates for I1 and I2 and applying

Proposition 5.1.3 to the initial estimate for I given by the inequality (5.1).

Proposition 5.1.5. Suppose M,ϕ satisfy the above hypotheses. Suppose s ≥ 1. Then there

exist ε0 = ε0(CS) and C2 = C2(CS ,Λ) such that, for all R > 0,

∫
M
ϕ2s|∇Rm|2 ≤ C2ε0R

−2.

Proof. We apply the previous estimates obtained in this section to obtain that there exist

C1 = C1(CS) and C2 = C2(CS ,Λ) such that

∫
M
ϕ2s|∇Rm|2 = −

∫
M
ϕ2s〈∆Rm,Rm〉+

∫
M
ϕ2s−1∇ϕ ∗ ∇Rm ∗ Rm

≤ −
∫
M
ϕ2s〈∆Rm,Rm〉+ ε0

∫
M
ϕ2s|∇Rm|2 + Cε0R

−2

≤ 2

∫
M
ϕ2s|∇Rc|2 + C1ε0

∫
M
ϕ2s|∇Rm|2 + C2ε0R

−2

= −2

∫
M
ϕ2s〈∆Rc,Rc〉+

∫
M
ϕ2s−1∇ϕ ∗ ∇Rm ∗ Rm

+ C1ε0

∫
M
ϕ2s|∇Rm|2 + C2ε0R

−2

≤ −2

∫
M
ϕ2s〈∆Rc,Rc〉+ C1ε0

∫
M
ϕ2s|∇Rm|2 + C2ε0R

−2

≤
∫
M
ϕ2sRm∗3 + C1ε0

∫
M
ϕ2s|∇Rm|2 + C2ε0R

−2
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≤ C1ε0

∫
M
ϕ2s|∇Rm|2 + C2ε0R

−2.

We obtain the first and fourth lines by integrating by parts, and the second and fifth lines

via Proposition 5.1.1. We obtain the third line via Proposition 5.1.4. We obtain the seventh

line via Proposition 5.1.3. We justify the sixth line as follows. Since we have assumed that

(M, g) is obstruction - flat and has constant scalar curvature, we have, with n = 4,

0 = O =
(−1)n/2

n−2 ∆
n
2−1Rc +

n/2∑
j=2

P
n−2j
j (Rm) = 1

2∆Rc + Rm∗2.

So the sixth line follows from substituting ∆Rc = Rm∗2.

Now, since C1 = C1(CS), we can choose ε0 = ε0(CS) so that C1ε0 = 1. Using this choice of

ε0, the previous estimate yields

2

∫
M
ϕ2s|∇Rm|2 ≤ C1ε0

∫
M
ϕ2s|∇Rm|2 + C2ε0R

−2

≤
∫
M
ϕ2s|∇Rm|2 + C2ε0R

−2∫
M
ϕ2s|∇Rm|2 ≤ C2ε0R

−2

as desired.

We are now able to complete the proof of Theorem 1.2.11.

Proof of Theorem 1.2.11. We apply the Sobolev inequality given by Proposition 5.1.2 with

s = 1, followed by the energy estimate given by Proposition 5.1.5, to obtain that there exists

ε0 = ε0(CS) for which

‖ϕRm‖24 ≤ C1‖ϕ∇Rm‖22 + C2ε
2
0R
−2 ≤ C2ε0R

−2,
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where C1 = C1(CS) and C2 = C2(CS ,Λ). Letting R → ∞, we get ‖ϕRm‖24 = 0, which

implies that (M, g) is flat.

5.2 Initial Sobolev Estimate

We prove the following.

Proposition 5.2.1. Suppose M,ϕ satisfy the above hypotheses. For p ≥ 1 and 1 ≤ k ≤ n−1,

there exist C1 = C(n, k, p, CS) and C2 = C(n, k, p, CS ,Λ, CV ) such that

‖ϕpRm‖2n ≤ C1‖ϕp∇kRm‖2 n
k+1

+ C2ε
2
0R
−2.

In order to control lower order terms arising from repeated applications of the Sobolev

inequality, we use the following estimate.

Proposition 5.2.2. Suppose M,ϕ satisfy the above hypotheses. Assume that 2 ≤ α ≤ n
2

and s ≥ αl. For l ≥ 0 and δ > 0, there exists C = C(n, α, s, l,Λ, CV ) such that

1

Rβ

∫
M
ϕs|∇lRm|α ≤ δ

Rβ−γ

∫
M
ϕs+α|∇l+1Rm|α +

C

δl
εα0R

n−2α−β−lγ .

Lemma 5.2.3. Suppose M,ϕ satisfy the above hypotheses. Then for 0 ≤ α ≤ n
2 , there exists

C = C(n, α, CV ) such that

∫
[ϕ>0]

|Rm|α ≤ Cεα0R
n−2α.
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Proof. Using Hölder’s inequality in the first line and the volume growth upper bound in the

second line, we get (per its definition, ϕ is nonzero on B(x, 2R))

∫
[ϕ>0]

|Rm|α ≤

(∫
[ϕ>0]

|Rm|
n
2

)2α
n
(∫

[ϕ>0]
1

)n−2α
n

≤ Cεα0R
n(n−2α)

n

= Cεα0R
n−2α.

Proof of Proposition 5.2.2. We prove this by induction on l. If l = 0 then, by Lemma 5.2.3,

there exists C = C(n, α, CV ) such that

1

Rβ

∫
M
ϕs|Rm|α ≤ Cεα0R

n−2α−β

≤ δ

Rβ−γ

∫
M
ϕs+α|∇Rm|α + Cεα0R

n−2α−β .

We assume the proposition is true for all integers at most l, where l ≥ 0, and show that the

proposition holds for l + 1. In particular, this means we assume that s ≥ α(l + 1). Then,

using Proposition 3.1.3 in the first line and setting ε = δRγ ,

1

Rβ

∫
M
ϕs|∇l+1Rm|α ≤ ε

Rβ

∫
M
ϕs+α|∇l+2Rm|α +

C

εRβ

∫
[ϕ>0]

ϕs−α|∇lRm|α

≤ δ

Rβ−γ

∫
M
ϕs+α|∇l+2Rm|α +

C

δRβ+γ

∫
[ϕ>0]

ϕs−α|∇lRm|α,

where C = C(n, α, s,Λ). Note that s ≥ α(l + 1) implies s − α ≥ αl, which is required to

apply the inductive hypothesis to estimate the second term on the right hand side. We use

the inductive hypothesis, replacing δ with δ/(2C), β with β+γ, and s with s−α, to estimate
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the second term on the right hand side:

C

δRβ+γ

∫
[ϕ>0]

ϕs−α|∇lRm|α ≤ C

δ

[ δ

2CRβ+γ−γ

∫
M
ϕs−α+α|∇l+1Rm|α

+
C

δl
εα0R

n−2α−(β+γ)−lγ
]

=
1

2
Rβ
∫
M
ϕs|∇l+1Rm|α +

C

δl+1
εα0R

n−2α−β−(l+1)γ ,

where C = C(n, α, s, l,Λ, CV ). Collecting terms, we conclude that the proposition is true

for l + 1 as well.

Proposition 5.2.4. Suppose M,ϕ satisfy the above hypotheses. For 0 ≤ q ≤ n−2, p ≥ q+1,

and 1 ≤ k ≤ n− q − 1, there exist C1 = C1(n, k, p, q, CS) and C2 = C2(n, k, p, q, CS ,Λ, CV )

such that

‖ϕp∇qRm‖ n
q+1
≤ C1‖ϕp∇q+kRm‖ n

q+k+1
+ C2ε0R

−1.

Proof. We prove this by induction on k. Suppose k = 1. Then the proposition states

‖ϕp∇qRm‖ n
q+1
≤ C‖ϕp∇q+1Rm‖ n

q+2
+ Cε0R

−1. (5.2)

Using the Sobolev inequality in the first line and the Kato inequality in the third line,

‖ϕp∇qRm‖ n
q+1
≤ CS

∥∥∇[ϕp|∇qRm|
]∥∥ n
q+2

≤ C‖ϕp∇|∇qRm|‖ n
q+2

+ C‖ϕp−1|∇qRm|∇ϕ‖ n
q+2

≤ C‖ϕp∇q+1Rm‖ n
q+2

+ C‖ϕp−1|∇qRm|∇ϕ‖ n
q+2

, (5.3)

where C = C(n, p, q, CS). We estimate the second term of the right side of the inequality

(5.3). Using Proposition 5.2.2 with α = β = γ = n
q+2 , s = n

q+2(p − 1), l = q, and

80



δ = Λ−n/(q+2), we get

∫
M
ϕ

n
q+2(p−1)|∇ϕ|

n
q+2 |∇qRm|

n
q+2 ≤ CΛ

n
q+2

R
n
q+2

∫
M
ϕ

n
q+2(p−1)|∇qRm|

n
q+2

≤ C1

∫
M
ϕ

n
q+2p|∇q+1Rm|

n
q+2 + C2ε

n
q+2
0 R

− n
q+2

‖ϕp−1|∇qRm|∇ϕ‖ n
q+2
≤ C1‖ϕp∇q+1Rm‖ n

q+2
+ C2ε0R

−1

with C1 = C1(n, p, q) and C2 = C2(n, p, q,Λ, CV ). Our choice of the exponent of ϕ was

sufficiently large to apply the proposition since p ≥ q + 1 implies

n

q + 2
(p− 1) ≥ n

q + 2
· q.

Applying the above estimate to (5.3) and collecting terms, we conclude that the proposition

is true for k = 1.

Suppose the proposition is true for all integers at most k, where k ≥ 1. Using the inductive

hypothesis in the first line and the inequality (5.2) in the second line,

‖ϕp∇qRm‖ n
q+1
≤ C1‖ϕp∇q+kRm‖ n

q+k+1
+ C2ε0R

−1

≤ C1‖ϕp∇q+k+1Rm‖ n
q+k+2

+ C2ε0R
−1.

Thus the proposition is true for k + 1 as well.

Proof of Proposition 5.2.1. Apply Proposition 5.2.4 with q = 0.
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Chapter 6

Estimates for Certain Lower Order

Terms

Applying Proposition 5.2.1 with 1 ≤ k ≤ n− 1, we obtain

(∫
M
ϕns|Rm|n

) 2
n
≤
(∫

M
ϕ
ns
k+1 |∇kRm|

n
k+1

)2k+2
n

+ Cε20R
−2

where C = C(n, s, CS ,Λ, CV ). It follows that if ‖∇kRm‖∞ = 0 for some k satisfying

1 ≤ k ≤ n− 1, then ‖Rm‖∞=0 as well. From now on, we assume that

‖∇n−1Rm‖∞ > 0.

In particular, when k = n
2 − 1, we obtain

(∫
M
ϕns|Rm|n

) 2
n
≤
∫
M
ϕ2s|∇

n
2−1Rm|2 + Cε20R

−2
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where C = C(n, s, CS ,Λ, CV ). We wish to obtain an analogous estimate with Rm replaced

by Rc. To facilitate this, in this section we obtain estimates for several lower order terms.

First, we obtain estimates for

∫
M
ϕ2s∇

n
2−1Rm ∗ ∇kRm ∗ ∇

n
2−3−kRm

for 0 ≤ k ≤ n
2 − 3 and

∫
M
ϕ2s∇

n
2−2Rm ∗ ∇kRm ∗ ∇

n
2−2−kRm

for 0 ≤ k ≤ n
2 −2. We then obtain estimates for gradient terms that arise when we integrate

by parts.

6.1 The Cutoff = 1 Case

As an illustrative special case, we begin by deriving estimates for the case where ϕ ≡ 1. We

will use the following proposition.

Proposition 6.1.1 ([31], Lemma 5.1). Suppose M,ϕ satisfy the above hypotheses. Let A be a

tensor on M . Let 1
p + 1

q = 1
r , 1 ≤ p, q, r ≤ ∞ and α+β = 1, α, β ≥ 0. For s ≥ max{αq, βp}

and −1
p ≤ t ≤ 1

q there exists C = C(n, r) such that

(∫
M
ϕs|∇A|2r

)1
r
≤ C

(∫
[ϕ>0]

ϕs(1−tq)|A|q
)1
q (∫

M
ϕs(1+tp)|∇2A|p

)1
p

+ CΛsR−1

(∫
[ϕ>0]

ϕs−αq|A|q
)1
q (∫

M
ϕs−βp|∇A|p

)1
p
.

We note that if y ∈ A(R, 2R), then R < ρ(y) < 2R, so that |∇ϕ| < Λρ−1 < ΛR−1.
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Lemma 6.1.2. Suppose M satisfies the above hypotheses. Let A be a tensor on M . Then

(∫
M
|∇kA|2r

)1
r
≤ C

(∫
M
|A|q

) 2
(k+1)q

(∫
M
|∇k+1A|p

) 2k
(k+1)p

,

where 1
r = 2

(k+1)q
+ 2k

(k+1)p
, 1 ≤ p, q, r ≤ ∞, k ≥ 1, and C = C(n, p, q, r, k).

Proof. When k = 1 the lemma reduces to Proposition 6.1.1 with ϕ ≡ 1:

(∫
M
|∇A|2r

)1
r
≤ C

(∫
M
|A|q

)1
q
(∫

M
|∇2A|p

)1
p
, (6.1)

where 1
r = 1

p + 1
q . Assume the lemma is true for all integers at most k − 1. Applying

inequality (6.1) and the inductive hypothesis, we obtain

(∫
M
|∇kA|2r

)1
r
≤ C

(∫
M
|∇k−1A|2u

) 1
2u
(∫

M
|∇k+1A|p

)1
p

≤ C

(∫
M
|A|q

) 1
kq
(∫

M
|∇kA|2r

)k−1
2kr

(∫
M
|∇k+1A|p

)1
p
,

with

1

r
=

1

2u
+

1

p
,

1

u
=

2

kq
+
k − 1

kr
.

We solve for 1
r :

1

r
=

1

kq
+
k − 1

2kr
+

1

p

k + 1

2kr
=

1

kq
+

1

p

1

r
=

2

(k + 1)q
+

2k

(k + 1)p
.
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Since

1

r
− k − 1

2kr
=
k + 1

2kr
,

1

r
=
k + 1

2kr
· 2k

k + 1
,

we obtain

(∫
M
|∇kA|2r

)k+1
2kr
≤ C

(∫
M
|A|q

) 1
kq
(∫

M
|∇k+1A|p

)1
p

(∫
M
|∇kA|2r

)1
r
≤ C

(∫
M
|A|q

) 2
(k+1)q

(∫
M
|∇k+1A|p

) 2k
(k+1)p

.

Proposition 6.1.3. Suppose M satisfies the above hypotheses. Let A be a tensor on M .

Then

(∫
M
|∇kA|2r

)1
r
≤ C

(∫
M
|A|q

) 2j
(k+j)q

(∫
M
|∇k+jA|p

) 2k
(k+j)p

,

where 1
r = 2j

(k+j)q
+ 2k

(k+j)p
, 1 ≤ p, q, r ≤ ∞, j, k ≥ 1, and C = C(n, p, q, r, j, k).

Proof. We prove the proposition by induction on j. When j = 1 the proposition reduces to

the preceding Lemma 6.1.2. Assume the proposition is true for all integers at most j − 1.

We have

j − 1

k + j − 1
+

k

(k + j − 1)(k + j)
=

j

k + j
.

Applying the inductive hypothesis in the first line and the preceding Lemma 6.1.2 in the

second line, we obtain

(∫
M
|∇kA|2r

)1
r
≤ C

(∫
M
|A|q

) 2(j−1)
(k+j−1)q

(∫
M
|∇k+j−1A|2v

) k
(k+j−1)v
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≤ C

(∫
M
|A|q

) 2(j−1)
(k+j−1)q

×

(∫
M
|A|q

) 2
(k+j)q

(∫
M
|∇k+jA|p

)2(k+j−1)
(k+j)p


k

k+j−1

= C

(∫
M
|A|q

) 2(j−1)
(k+j−1)q

(∫
M
|A|q

) 2k
(k+j−1)(k+j)q

×
(∫

M
|∇k+jA|p

) 2k
(k+j)p

= C

(∫
M
|A|q

) 2j
(k+j)q

(∫
M
|∇k+jA|p

) 2k
(k+j)p

,

where 1
r =

2(j−1)
(k+j−1)q

+ k
(k+j−1)v

, 1
v = 2

(k+j)q
+

2(k+j−1)
(k+j)p

. We compute 1
r :

1

r
=

2(j − 1)

(k + j − 1)q
+

2k

(k + j − 1)(k + j)q
+

2k

(k + j)p

=
2j

(k + j)q
+

2k

(k + j)p
.

Proposition 6.1.4. Suppose M satisfies the above hypotheses. Then for i satisfying 0 ≤

i ≤ n
2 − 2,

∫
M
∇
n
2−2Rm ∗ ∇

n
2−2−iRm ∗ ∇iRm ≤ Cε0

∫
M
|∇

n
2−1Rm|2,

where C = C(n, i, CS).

Proof. Define r1, r2 by

1

r1
=

2(n2 − 2− i)
(n2 − 2)n2

+
2i

(n2 − 2) 2n
n−2

,
1

r2
=

2i

(n2 − 2)n2
+

2(n2 − 2− i)
(n2 − 2) 2n

n−2

.
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Proposition 6.1.3 gives

(∫
M
|∇iRm|2r1

) 1
r1 ≤ C

(∫
M
|Rm|

n
2

)2(n/2−2−i)
(n/2−2)n/2

×
(∫

M
|∇

n
2−2Rm|

2n
n−2

) 2i
(n/2−2)[2n/(n−2)]

(∫
M
|∇

n
2−2−iRm|2r2

) 1
r2 ≤ C

(∫
M
|Rm|

n
2

) 2i
(n/2−2)n/2

×
(∫

M
|∇

n
2−2Rm|

2n
n−2

) 2(n/2−2−i)
(n/2−2)[2n/(n−2)]

,

where C = C(n, i). Define p, q by

1

q
=

n

n+ 2
· 1

r1
,

1

p
=

n

n+ 2
· 1

r2
.

Then

1

p
+

1

q
=

n

n+ 2

[
1

r2
+

1

r1

]
=

n

n+ 2

[
2(n2 − 2)

(n2 − 2)n2
+

2(n2 − 2)

(n2 − 2) 2n
n−2

]

= 1.

Since

1

2

[
2(n2 − 2− i)

(n2 − 2)n2
+

2i

(n2 − 2)n2

]
=

2

n

1

2

[
2i

(n2 − 2) 2n
n−2

+
2(n2 − 2− i)
(n2 − 2) 2n

n−2

]
=
n− 2

2n
,

we have

(∫
M
|∇

n
2−2−iRm|

2np
n+2

)n+2
2np

(∫
M
|∇iRm|

2nq
n+2

)n+2
2nq
≤
(∫

M
|∇

n
2−2−iRm|2r2

) 1
2r2
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×
(∫

M
|∇iRm|2r1

) 1
2r1

≤ C

(∫
M
|Rm|

n
2

) 2
n

×
(∫

M
|∇

n
2−2Rm|

2n
n−2

)n−2
2n

.

(6.2)

Let I denote

I =

∫
M
∇
n
2−2Rm ∗ ∇

n
2−2−iRm ∗ ∇iRm.

Applying Hölder’s inequality in the first and second lines, inequality (6.2) in the third line,

and the Sobolev inequality in the fifth line,

I ≤ C

(∫
M
|∇

n
2−2Rm|

2n
n−2

)n−2
2n
(∫

M
|∇

n
2−2−iRm ∗ ∇iRm|

2n
n+2

)n+2
2n

≤ C

(∫
M
|∇

n
2−2Rm|

2n
n−2

)n−2
2n
(∫

M
|∇

n
2−2−iRm|

2np
n+2

)n+2
2np

(∫
M
|∇iRm|

2nq
n+2

)n+2
2nq

≤ C

(∫
M
|∇

n
2−2Rm|

2n
n−2

)n−2
2n
(∫

M
|Rm|

n
2

) 2
n
(∫

M
|∇

n
2−2Rm|

2n
n−2

)n−2
2n

= Cε0‖∇
n
2−2Rm‖22n

n−2

≤ Cε0‖∇
n
2−1Rm‖22,

where C = C(n, i, CS).
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6.2 General Case

We generalize the argument from the previous subsection. We will be able to avoid many

error terms since we have assumed that ‖∇n−1Rm‖∞ > 0.

A small modification of the proof of Proposition 6.1.1 gives

Proposition 6.2.1. Suppose M,ϕ satisfy the above hypotheses. Let A be a tensor on M .

Let 1
p + 1

q = 1
r , 1 ≤ p, q, r ≤ ∞ and α + β = 1, α, β ≥ 0. For s ≥ max{αq, βp} and

−1
p ≤ t ≤ 1

q there exists C = C(n, r) such that

(∫
M
ϕs|∇A|2r

)1
r
≤ C

(∫
[ϕ>0]

ϕs(1−tq)|A|q
)1
q (∫

M
ϕs(1+tp)|∇2A|p

)1
p

+ CΛsR−1

(∫
[ϕ>0]

ϕs(1−tq)−αq|A|q
)1
q (∫

M
ϕs(1+tp)−βp|∇A|p

)1
p
.

Lemma 6.2.2. Suppose M,ϕ satisfy the above hypotheses. In addition, suppose that n ≥ 8,

1 ≤ p, q, r ≤ ∞, 1
r = 1

p + 1
q , n

4 < p ≤ n
2 , −1

p ≤ t ≤ 1
q , s ≥ max{p, 2p

1+tp}. Then there exists

R0 independent of ε0 such that for all R ≥ R0,

(∫
M
ϕs|∇Rm|2r

)1
r
≤ C(1 + s)

(∫
[ϕ>0]

ϕs(1−tq)|Rm|q
)1
q (∫

M
ϕs(1+tp)|∇2Rm|p

)1
p
,

where C = C(n, r).

Proof. We can apply Proposition 5.2.2 since n ≥ 8 and 2 ≤ p ≤ n
2 , taking δ = Λ−1, to show

that there exists R0 such that for all R ≥ R0,

R−p
∫
M
ϕs(1+tp)−p|∇Rm|p ≤ Λ−1

∫
M
ϕs(1+tp)|∇2Rm|p + C1ε0R

n−4p

≤ Λ−1
∫
M
ϕs(1+tp)|∇2Rm|p,
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where C1 = C1(n, r, s,Λ, CV ). We justify the second inequality as follows. The term

C1ε0R
n−4p → 0 as R → ∞ since n − 4p < 0. Therefore, since we assume ‖∇2Rm‖∞ > 0,

there exists R0 independent of ε0 such that C1ε0R
n−4p is absorbed by the integral term for

all R ≥ R0. Applying Proposition 6.2.1, we obtain that there exist C = C(n, r) and R0 such

that for all R ≥ R0,

(∫
M
ϕs|∇Rm|2r

)1
r
≤ C

(∫
[ϕ>0]

ϕs(1−tq)|Rm|q
)1
q (∫

M
ϕs(1+tp)|∇2Rm|p

)1
p

+ CΛR−1s

(∫
[ϕ>0]

ϕs(1−tq)|Rm|q
)1
q (∫

M
ϕs(1+tp)−p|∇Rm|p

)1
p

≤ C(1 + ΛΛ−1s)

(∫
[ϕ>0]

ϕs(1−tq)|Rm|q
)1
q

×
(∫

M
ϕs(1+tp)|∇2Rm|p

)1
p

= C(1 + s)

(∫
[ϕ>0]

ϕs(1−tq)|Rm|q
)1
q (∫

M
ϕs(1+tp)|∇2Rm|p

)1
p
.

For the rest of this paper, when there is a radius R0 for which an inequality holds for all

R ≥ R0, the radius R0 will be assumed to be independent of ε0.

Proposition 6.2.3. Suppose M,ϕ satisfy the above hypotheses. Suppose that n ≥ 8, 1 ≤

k ≤ n
2 − 3, n

2(k+2)
< rk ≤ n

4 , and s ≥ 4krk
k+1 . Let q1 = n

2 , tk = 1
kq1

. Define pk by

1

rk
=

2

(k + 1)q1
+

2k

(k + 1)pk
. (6.3)

Then there exists R0 such that for all R ≥ R0,

(∫
M
ϕs|∇kRm|2rk

) 1
rk ≤ Cε

2
k+1
0

(∫
M
ϕs(1+tkpk)|∇k+1Rm|pk

) 2k
(k+1)pk ,
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where C = C(n, k, rk, s).

Proof. We will use induction on k. If k = 1, the proposition reduces to Lemma 6.2.2. For a

fixed k satisfying 2 ≤ k ≤ n
2 − 3, assume that the proposition is true for all integers at most

k − 1. We verify the hypotheses of Proposition 5.2.2. First, we obtain from equation (6.3)

and the inequalities n
2(k+2)

< rk ≤ n
4 the following:

1

pk
=
k + 1

2krk
− 1

kq1
1

pk
≥ k + 1

2k
· 4

n
− 2

kn
=

2

n

1

pk
<
k + 1

2k
· 2(k + 2)

n
− 2

kn
=
k + 3

n
.

Also, n
k+3 ≥ 2 since k ≤ n

2 − 3. Therefore

2 ≤ n

k + 3
< pk ≤

n

2
. (6.4)

Finally, since s ≥ 4krk
k+1 and 1

pk
= k+1

2krk
− 1

kq1
,

2pk
1 + tkpk

=
2

1
pk

+ tk
=

4krk
k + 1

,

implying s ≥ 2pk
1+tkpk

and s(1 + tkpk)− pk ≥ pk. Therefore, we can apply Proposition 5.2.2,

taking δ = Λ−1, to conclude that there exists R0 such that, for all R ≥ R0,

R−pk
∫
M
ϕs(1+tkpk)−pk |∇kRm|pk ≤ Λ−1

∫
M
ϕs(1+tkpk)|∇k+1Rm|pk

+ C1ε
pk
0 Rn−(k+3)pk

≤ Λ−1
∫
M
ϕs(1+tkpk)|∇k+1Rm|pk , (6.5)
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where C1 = C1(n, k, rk, s,Λ, CV ). We justify the second inequality as follows. The term

C1ε0R
n−(k+3)pk → 0 as R → ∞ since n

k+3 < pk. Therefore, since k + 1 ≤ n
2 − 2 and we

assume ‖∇n−1Rm‖∞ > 0, there exists R0 such that C1ε0R
n−(k+3)pk is absorbed by the

integral term for all R ≥ R0.

We verify the hypotheses of Proposition 6.2.1. Define qk by

1

qk
=

2

kq1
+
k − 1

krk
. (6.6)

This implies

1

2qk
≥ 1

kq1
= tk.

From equation (6.6) and the inequalities n
2(k+2)

< rk ≤ n
4 , we obtain

1

qk
<

4

kn
+
k − 1

k
· 2(k + 2)

n
=

2(k + 1)

n

1

qk
≥ 4

kn
+
k − 1

k
· 4

n
=

4

n
,

so that n
2(k+1)

< qk ≤ n
4 . We required that rk >

n
2(k+2)

. So 2qk, rk ≥ 1. From (6.4), we

have pk ≥ 1. From pk ≤ n
2 in (6.4) and tk = 2

kn we get
2pk

1+tkpk
≥ pk. So s ≥ pk since

s ≥ 2pk
1+tkpk

. From equations (6.3) and (6.6), we obtain

1

rk
=

1

2qk
+

1

pk
. (6.7)

Let I denote

I =

∫
M
ϕs|∇kRm|2rk .
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We apply Proposition 6.2.1 and inequality (6.5) to obtain that there exists R0 such that, for

all R ≥ R0,

I
1
rk ≤ C

(∫
[ϕ>0]

ϕs(1−2tkqk)|∇k−1Rm|2qk
) 1

2qk

×
(∫

M
ϕs(1+tkpk)|∇k+1Rm|pk

) 1
pk

+ CΛR−1s

(∫
[ϕ>0]

ϕs(1−2tkqk)|∇k−1Rm|2qk
) 1

2qk

×
(∫

M
ϕs(1+tkpk)−qk |∇kRm|pk

) 1
pk

≤ C(1 + ΛΛ−1s)

(∫
[ϕ>0]

ϕs(1−2tkqk)|∇k−1Rm|2qk
) 1

2qk

×
(∫

M
ϕs(1+tkpk)|∇k+1Rm|pk

) 1
pk

≤ C(1 + s)

(∫
[ϕ>0]

ϕs(1−2tkqk)|∇k−1Rm|2qk
) 1

2qk

×
(∫

M
ϕs(1+tkpk)|∇k+1Rm|pk

) 1
pk
, (6.8)

where C = C(n, rk). We wish to apply the inductive hypothesis to the integral containing

∇k−1Rm. We have shown that n
2(k+1)

< qk ≤ n
4 . Using equation (6.6), tk = 1

kq1
, and

s ≥ 4krk
k+1 , we obtain that there exists R0 such that, for all R ≥ R0,

tk =
1

2qk
− k − 1

2rk

s(1− 2tkqk) ≥ 4krk
k + 1

· (k − 1)qk
rk

=
4k(k − 1)qk

k + 1

≥ 4(k − 1)qk
k

,
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since k ≥ 2. We obtain from equation (6.6)

1− 2tkqk =
(k − 1)q1

2rk + (k − 1)q1

1 + 2tk−1rk =
(k − 1)q1 + 2rk

(k − 1)q1

(1− 2tkqk)(1 + 2tk−1rk) = 1. (6.9)

As a result, we can apply the inductive hypothesis to inequality (6.8) with rk−1 = qk and

pk−1 = 2rk: there exists R0 such that, for all R ≥ R0,

I
1
rk ≤ Cε

1
k
0

(∫
M
ϕs(1−2tkqk)(1+2tk−1rk)|∇kRm|2rk

) k−1
2krk

×
(∫

M
ϕs(1+tkpk)|∇k+1Rm|pk

) 1
pk

= Cε
1
k
0

(∫
M
ϕs|∇kRm|2rk

) k−1
2krk

(∫
M
ϕs(1+tkpk)|∇k+1Rm|pk

) 1
pk

I
k+1
2krk ≤ Cε

1
k
0

(∫
M
ϕs(1+tkpk)|∇k+1Rm|pk

) 1
pk

I
1
rk ≤ Cε

2
k+1
0

(∫
M
ϕs(1+tkpk)|∇k+1Rm|pk

) 2k
(k+1)pk ,

where C = C(n, k, rk, s). In the second line, we apply equation (6.9). We have obtained the

desired inequality.

Proposition 6.2.4. Let M,ϕ satisfy the above hypotheses. Suppose that n ≥ 8 and the

following hold:

(a) k ≥ 1, j ≥ 1, 2 ≤ k + j ≤ n
2 − 2

(b) n
2(k+2)

< rk ≤ n
4 , s ≥ 4jkrk

k+1 .
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Let q1 = n
2 . For each i ≥ 1, let ti = 1

iq1
. Define pk+j−1 by

1

rk
=

2j

(k + j)q1
+

2k

(k + j)pk+j−1
(6.10)

and define vi for i ≥ k by

1

rk
=

2(i+ 1− k)

(i+ 1)q1
+

k

(i+ 1)vi
. (6.11)

Then there exists R0 such that for all R ≥ R0,

(∫
M
ϕs|∇kRm|2rk

) 1
rk ≤ C

(∫
M
|Rm|q1

) 2j
(k+j)q1

×
(∫

M
ϕ
sEk+j−1|∇k+jRm|pk+j−1

) 2k
(k+j)pk+j−1 ,

where Ek = 1 + tkpk,

Ek+j−1 = (1 + tk+j−1pk+j−1)

k+j−2∏
i=k

(1 + 2tivi) if j ≥ 2,

and C = C(n, j, k, rk, s).

Proof. We use induction on j. If j = 1, the proposition reduces to Proposition 6.2.3. For

a fixed j ≥ 2, assume the proposition is true for all integers at most j − 1. We prepare to

apply Proposition 6.2.3. We show that n
2(k+j+1)

< vk+j−2 ≤ n
4 . From equation (6.11), we

obtain

1

rk
=

2(j − 1)

(k + j − 1)q1
+

k

(k + j − 1)vk+j−2

1

vk+j−2
=
k + j − 1

krk
− 2(j − 1)

kq1
. (6.12)
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Since n
2(k+2)

< rk ≤ n
4 ,

1

vk+j−2
<
k + j − 1

k
· 2(k + 2)

n
− 4(j − 1)

kn

=
2(k + j − 1)

n
1

vk+j−2
≥ k + j − 1

k
· 4

n
− 4(j − 1)

kn

=
4

n
.

Therefore n
2(k+j+1)

< vk+j−2 ≤ n
4 .

Next, we show that

s(1 + 2tk+j−2vk+j−2) ≥
4(k + j − 1)vk+j−2

k + j
. (6.13)

First, we obtain from equation (6.12)

1

vk+j−2
=
k + j − 1

krk
−

2(j − 1)(k + j − 2)2tk+j−2

k

2tk+j−2 =
k + j − 1

(j − 1)(k + j − 2)rk
− k

(j − 1)(k + j − 2)vk+j−2
.

This yields

1 + 2tk+j−2vk+j−2 = 1 + vk+j−2

(
k + j − 1

(j − 1)(k + j − 2)rk
− k

(j − 1)(k + j − 2)vk+j−2

)

= 1 +
(k + j − 1)vk+j−2

(j − 1)(k + j − 2)rk
− k

(j − 1)(k + j − 2)

≥ 1 +
(k + j − 1)vk+j−2

(j − 1)(k + j − 2)rk
− 1

=
(k + j − 1)vk+j−2

(j − 1)(k + j − 2)rk
.
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Since s ≥ 4jkrk
k+1 ,

s(1 + 2tk+j−2vk+j−2) ≥ 4jkrk
k + 1

·
(k + j − 1)vk+j−2

(j − 1)(k + j − 2)rk

=
jk(k + j)

(k + 1)(j − 1)(k + j − 2)
·

4(k + j − 1)vk+j−2

k + j
.

We will have proved inequality (6.13) if we show that

jk(k + j)

(k + 1)(j − 1)(k + j − 2)
≥ 1. (6.14)

We have

jk(k + j)− (j − 1)(k + 1)(k + j − 2) = k2 + (2j − 1)k − (j − 2)(j − 1).

We estimate the value of the larger root k0 of the above quadratic in k:

k0 = 1
2

(
− (2j − 1) +

√
(2j − 1)2 + 4(j − 2)(j − 1)

)
≤ 1

2

(
− (2j − 1) +

√
(2j − 4)2

)
= 1

2(−(2j − 1) + 2j − 4)

= −3
2 .

So k2 + (2j − 1)k − (j − 2)(j − 1) ≥ 0 for all j, k since we require that k ≥ 1. This implies

that inequality (6.14) is true. Therefore inequality (6.13) holds.

Finally, we obtain from equations (6.12) and (6.10)

1

vk+j−2
=
k + j − 1

k

(
2j

(k + j)q1
+

2k

(k + j)pk+j−1

)
− 2(j − 1)

kq1

=
2

(k + j)q1
+

2(k + j − 1)

(k + j)pk+j−1
.
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We are ready to apply Proposition 6.2.3. Define

I =

(∫
M
ϕs|∇kRm|2rk

) 1
rk

and V by V (k−1) = 1, V (l) =
∏l
i=k(1+2tivi) for l ≥ k. Then there exist C = C(n, j, k, rk, s)

and R0 such that for all R ≥ R0,

I ≤ Cε

2(j−1)
k+j−1
0

(∫
M
ϕ
sV (k+j−3)(1+2tk+j−2vk+j−2)|∇k+j−1Rm|2vk+j−2

) k
(k+j−1)vk+j−2

≤ Cε

2(j−1)
k+j−1
0

×

[
Cε

2
k+j
0

(∫
M
ϕ
sV (k+j−2)(1+tk+j−1pk+j−1)

· |∇k+jRm|pk+j−1
) 2(k+j−1)

(k+j)pk+j−1


k

k+j−1

= Cε

2(j−1)
k+j−1
0 ε

2k
(k+j−1)(k+j)
0

×
(∫

M
ϕ
sV (k+j−2)(1+tk+j−1pk+j−1)|∇k+jRm|pk+j−1

) 2k
(k+j)pk+j−1

= Cε

2j
k+j
0

(∫
M
ϕ
sV (k+j−2)(1+tk+j−1pk+j−1)|∇k+jRm|pk+j−1

) 2k
(k+j)pk+j−1 .

We used the inductive hypothesis in the first line and Proposition 6.2.3 in the second line.

We have obtained the desired inequality.

6.3 Estimates for Certain Integrals

We apply Proposition 6.2.4 to estimate the integrals from the beginning of the section.
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Lemma 6.3.1. Let M,ϕ satisfy the above hypotheses, with n ≥ 6, and let k satisfy 0 ≤ k ≤
n
2 − 3. Suppose s ≥ 1

4n
2. Then there exist C = C(n, k, s, CS) and R0 such that, for all

R ≥ R0,

∫
M
ϕ2s|∇kRm|2|∇

n
2−3−kRm|2 ≤ Cε20

∫
M
ϕ2s|∇

n
2−1Rm|2.

Proof. If k = 0 or k = n
2 − 3, then the Hölder inequality and Proposition 5.2.4 imply that

there exist C = C(n, s, CS) and R0 such that for all R ≥ R0,

∫
M
ϕ2s|Rm|2|∇

n
2−3Rm|2 ≤ C

(∫
M
|Rm|

n
2

) 4
n
(∫

M
ϕ

2ns
n−4 |∇

n
2−3Rm|

2n
n−4

)n−4
n

≤ Cε20

∫
M
ϕ2s|∇

n
2−1Rm|2.

The exponent of ϕ was sufficiently large to apply Proposition 5.2.4 since, if s ≥ 1
4n

2, then

2ns

n− 4
≥ n3

2(n− 4)
≥ n(n− 4)2

2(n− 4)
=
n(n− 4)

2

≥ n− 4

2
=
n

2
− 3 + 1.

Suppose 1 ≤ k ≤ n
2 − 4. In this case, n ≥ 10. The Hölder inequality gives

∫
M
ϕ2s|∇kRm|2|∇

n
2−3−kRm|2

≤
(∫

M
ϕαkps|∇kRm|2p

)1
p
(∫

M
ϕβkqs|∇

n
2−3−kRm|2q

)1
q
,

where

αk =
4k

n− 6
, βk =

2(n− 6− 2k)

n− 6
.
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For 1 ≤ k ≤ n
2 − 4, define rk by

rk =
n(n− 6)

4(n− 6) + 2(n− 8)k
=

n(n− 6)

2(k + 2)n− 8(2k + 3)
.

Set p = rk and q = rn/2−3−k. Then 1
p + 1

q = 1. Using equation (6.10), we calculate that

pn/2−4 = 2n
n−4 . Using equation (6.11), we calculate that

1 + 2tivi =
i+ 1

i
· (i+ 2)n− 4(2i+ 3)

(i+ 3)n− 4(2i+ 5)
.

This enables us to compute the following telescoping product:

l∏
i=k

(1 + 2tivi) =
l + 1

k
· (k + 2)n− 4(2k + 3)

(l + 3)n− 4(2l + 5)
.

We estimate the integral containing ∇kRm. First, if 1 ≤ k ≤ n
2 − 5 then

n/2−5∏
i=k

(1 + 2tivi) =
n− 8

k
· (k + 2)n− 4(2k + 3)

n2 − 12n+ 40
.

Applying Proposition 6.2.4, we obtain that there exists R0 such that for all R ≥ R0,

(∫
M
ϕαkrks|∇kRm|2rk

) 1
rk ≤ Cε

2(n/2−3−k)
n/2−3

0

(∫
M
ϕsEk |∇

n
2−3Rm|

2n
n−4

) 2k
(n2−3) 2n

n−4 ,

(6.15)

where C = C(n, k, s),

En/2−4 = αn/2−4rn/2−4(1 + tn/2−4pn/2−4) =
2n

n− 4
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and for 1 ≤ k ≤ n
2 − 5,

Ek = αkrk(1 + tn/2−4pn/2−4)

n/2−5∏
i=k

(1 + 2tivi) =
2n

n− 4
.

We show that the exponent of ϕ was sufficiently large to apply Proposition 6.2.4. Since

1 ≤ k ≤ n
2 − 4,

(n− 6)(n2 − 3− k)

k + 1
≤

(n− 6)(n2 − 4)

2
=

(n− 6)(n− 8)

4
≤ n2

4
.

So, the exponent of ϕ was sufficiently large to apply Proposition 6.2.4 since, if s ≥ 1
4n

2,

αkrks =
4krks

n− 6

≥ 4krk
n− 6

·
(n− 6)(n2 − 3− k)

k + 1

=
4(n2 − 3− k)krk

k + 1
.

We estimate the integral containing ∇
n
2−3−kRm. First,

rn/2−3−k =
n(n− 6)

4n− 24 + (n− 8)(n− 6− 2k)
=

n(n− 6)

n2 − 2(k + 5)n+ 8(2k + 3)
.

For 2 ≤ k ≤ n
2 − 4,

n/2−5∏
i=n/2−3−k

(1 + 2tivi) =
n− 8

n− 6− 2k
· n

2 − 2(k + 5)n+ 8(2k + 3)

n2 − 12n+ 40
.

Applying Proposition 6.2.4, we obtain that there exists R0 such that for all R ≥ R0,

(∫
M
ϕ
βkrn/2−3−ks|∇

n
2−3−kRm|2rn/2−3−k

) 1
rn/2−3−k
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≤ Cε

2k
n/2−3
0

(∫
M
ϕsFk |∇

n
2−3Rm|

2n
n−4

) 2(n2−3−k)

(n2−3) 2n
n−4 , (6.16)

where C = C(n, k, s),

F1 = β1rn/2−4(1 + tn/2−4pn/2−4) =
2n

n− 4

and for 2 ≤ k ≤ n
2 − 4,

Fk = βkrn/2−3−k(1 + tn/2−4pn/2−4)

n/2−5∏
i=n/2−3−k

(1 + 2tivi) =
2n

n− 4
.

We show that the exponent of ϕ was sufficiently large to apply Proposition 6.2.4. Since

1 ≤ k ≤ n
2 − 4,

(n− 6)k
n
2 − 3− k + 1

≤
(n− 6)(n2 − 4)
n
2 − 2− (n2 − 4)

≤
n(n2 )

2
=
n2

4
.

So, the exponent of ϕ was sufficiently large to apply Proposition 6.2.4 since, if s ≥ 1
4n

2,

βkrn
2−3−ks =

4(n2 − 3− k)rn
2−3−ks

n− 6

≥
4(n2 − 3− k)rn

2−3−k

n− 6
· (n− 6)k
n
2 − 3− k + 1

=
4k(n2 − 3− k)rn

2−3−k
n
2 − 3− k + 1

.

Let I denote

I =

∫
M
ϕ2s|∇kRm|2|∇

n
2−3−kRm|2.
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Therefore there exist C = C(n, k, s, CS) and R0 such that for all R ≥ R0,

I ≤
(∫

M
ϕαkps|∇kRm|2p

)1
p
(∫

M
ϕβkqs|∇

n
2−3−kRm|2q

)1
q

=

(∫
M
ϕsαkrk |∇kRm|2rk

) 1
rk
(∫

M
ϕ
sβkrn/2−3−k |∇

n
2−3−kRm|2rn/2−3−k

) 1
rn/2−3−k

≤ Cε20

(∫
M
ϕ

2ns
n−4 |∇

n
2−3Rm|

2n
n−4

)n−4
n

≤ Cε20

∫
M
ϕ2s|∇

n
2−1Rm|2.

We obtained the third line by combining inequalities (6.15) and (6.16). We obtained the

fourth line by applying Proposition 5.2.4.

Proposition 6.3.2. Let M,ϕ satisfy the above hypotheses, with n ≥ 6, and let k satisfy

0 ≤ k ≤ n
2 − 3. Suppose s ≥ 1

4n
2. Then there exist C = C(n, k, s, CS) and R0 such that, for

all R ≥ R0,

∫
M
ϕ2s∇

n
2−1Rm ∗ ∇kRm ∗ ∇

n
2−3−kRm ≤ Cε0

∫
M
ϕ2s|∇

n
2−1Rm|2.

Proof. Applying the Hölder inequality and Lemma 6.3.1 , we obtain

∫
M
ϕ2s∇

n
2−1Rm ∗ ∇kRm ∗ ∇

n
2−3−kRm ≤ C

(∫
M
ϕ2s|∇

n
2−1Rm|2

)1
2

×
(∫

M
ϕ2s|∇kRm|2|∇

n
2−3−kRm|2

)1
2

≤ C

(∫
M
ϕ2s|∇

n
2−1Rm|2

)1
2

× Cε0
(∫

M
ϕ2s|∇

n
2−1Rm|2

)1
2

= Cε0

∫
M
ϕ2s|∇

n
2−1Rm|2.
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Proposition 6.3.3. Let M,ϕ satisfy the above hypotheses, with n ≥ 4, and let k satisfy

0 ≤ k ≤ n
2 − 2. Suppose that s ≥ 1

4n
2. Then there exist C = C(n, k, s, CS) and R0 such

that, for all R ≥ R0,

∫
M
ϕ2s∇

n
2−2Rm ∗ ∇kRm ∗ ∇

n
2−2−kRm ≤ Cε0

∫
M
ϕ2s|∇

n
2−1Rm|2.

Proof. We combine the proofs of Lemma 6.3.1 and Proposition 6.3.2. If k = 0 or k = n
2 − 2,

then the Hölder inequality and Proposition 5.2.4 give that there exist C = C(n, s, CS) and

R0 such that, for all R ≥ R0,

∫
M
ϕ2s∇

n
2−2Rm ∗ Rm ∗ ∇

n
2−2Rm ≤ C

(∫
M
|Rm|

n
2

) 2
n

×
(∫

M
ϕ

2ns
n−2 |∇

n
2−2Rm|

2n
n−2

)n−2
n

≤ Cε0

∫
M
ϕ2s|∇

n
2−1Rm|2.

The exponent of ϕ was sufficiently large to apply Proposition 5.2.4 since, if s ≥ 1
4n

2, then

2ns

n− 2
≥ n3

2(n− 2)
≥ n(n− 2)2

2(n− 2)
=
n(n− 2)

2

≥ n− 2

2
=
n

2
− 2 + 1.

Suppose 1 ≤ k ≤ n
2 − 3. In this case, n ≥ 8. First, let I1 denote

I1 =

(∫
M
ϕ

2ns
n+2 |∇kRm|

2n
n+2 |∇

n
2−2−kRm|

2n
n+2

)n+2
2n

.
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We obtain an interpolation estimate for I1 by arguing as in the proof of Lemma 6.3.1. Define

αk, βk by

αk =
4k

n− 4
, βk =

2(n− 2k − 4)

n− 4
.

Define rk by

rk =
n(n− 4)

4(n− 4) + 2(n− 6)k
=

n(n− 4)

2(k + 2)n− 4(3k + 4)
.

Let p =
(n+2

n

)
rk, q =

(n+2
n

)
rn/2−2−k, so that 1

p + 1
q = 1. Applying the Hölder inequality

and imitating the application of Proposition 6.2.4 in the proof of Lemma 6.3.1, we obtain

that there exist C = C(n, k, s, CS) and R0 such that, for all R ≥ R0,

I1 ≤
(∫

M
ϕ
αknps
n+2 |∇kRm|

2np
n+2

)n+2
2np

(∫
M
ϕ
βknqs
n+2 |∇

n
2−2−kRm|

2nq
n+2

)n+2
2nq

=

(∫
M
ϕsαkrk |∇kRm|2rk

) 1
2rk

×
(∫

M
ϕ
sβkrn/2−2−k |∇

n
2−2−kRm|2rn/2−2−k

) 1
2rn/2−2−k

≤ Cε0

(∫
M
ϕ

2ns
n−2 |∇

n
2−2Rm|

2n
n−2

)n−2
2n

.

Let I2 denote

I2 =

∫
M
ϕ2s∇

n
2−2Rm ∗ ∇kRm ∗ ∇

n
2−2−kRm.

Therefore

I2 ≤ C

(∫
M
ϕ

2ns
n−2 |∇

n
2−2Rm|

2n
n−2

)n−2
2n
(∫

M
ϕ
αknps
n+2 |∇kRm|

2np
n+2

)n+2
2np
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×

(∫
M
ϕ
βknqs
n+2 |∇

n
2−2−kRm|

2nq
n+2

)n+2
2nq

= C

(∫
M
ϕ

2ns
n−2 |∇

n
2−2Rm|

2n
n−2

)n−2
2n

I1

≤ Cε0

(∫
M
ϕ

2ns
n−2 |∇

n
2−2Rm|

2n
n−2

)n−2
n

≤ Cε0

∫
M
ϕ2s|∇

n
2−1Rm|2.

We obtained the first line by applying the Hölder inequality. We obtained the third line

by applying the above bound on I1. We obtained the fourth line by applying Proposition

5.2.4.

6.4 Estimates for Gradient Terms

In this subsection, we obtain estimates for lower order terms containing the 1-form ∇ϕ,

which we refer to as a gradient.

Let (M, g) be a complete obstruction-flat constant scalar curvature Riemannian manifold.

We recall the following definitions from section 1.2.2. Fix x0 ∈ M . If x, y ∈ M , let dg(x, y)

denote the distance between x and y with respect to the metric h. Define ρ by ρ(x) =

dg(x0, x) for x ∈M . The manifold M has quadratic curvature decay if there exists CQ > 0

such that |Rm| ≤ CQ · ρ−2 on M . We prove the following proposition.

Proposition 6.4.1. Suppose that there exists K ≥ 1 such that ‖Rm‖∞ ≤ K. Suppose that

M has quadratic curvature decay. Then for all j ≥ 1, there exists C = C(n, j, CQ) such that

|∇jRm| ≤ Cρ−(j+2).
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Proof. We use a blowup argument to prove the proposition by contradiction. Let m ≥ 3n
2 −3.

For a point x ∈M and metric h on M , define fm(x, h) as

fm(x, h) =
m∑
j=1

|∇jRm(h)|
2
j+2
h .

Let x0 be the point at which the cutoff function is centered. We have assumed that quadratic

curvature decay holds with respect to x0.

Suppose that the conclusion is false. Then there exists a sequence {yi}i∈N such that

ρ(yi)
2fm(yi, g) > i, lim

i→∞
ρ(yi) =∞.

In particular, lim supρ(x)→∞ fm(x, g)ρ(x)2 =∞. We are then able to apply Theorem 8.44 in

[15], with fm replacing the scalar curvature R. This theorem provides a sequence of points

(xi)
∞
i=1, a sequence of radii (ri)

∞
i=1, and a sequence (εi)

∞
i=1 such that

(a) the balls B(xi, ri, g) are disjoint

(b) limi→∞ ρi/ri =∞

(c) sup{fm(x, g) : x ∈ B(xi, ri, g)} ≤ (1 + εi)fm(xi, g),

where ρi = ρ(xi). We can obtain more precise information from the proof of Theorem 8.44

in [15]. Let Ai and δi be as in the proof we are referencing. The proof sets εi = (1−δi)−3−1.

If we set Ai = ρ4
i and δi = ρ−1

i , we obtain from the proof that

fm(xi, g)r2
i = (1− δi)Aiδ2

i = (1− ρi)ρ4
i ρ
−2
i = (1− ρi)ρ2

i

1 + εi = (1− δi)−3 =
ρ3
i

(ρi − 1)3
≤

ρ3
i

(ρi/2)3
= 8.
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Define a sequence of metrics gi by gi = λig, where λi = fm(xi, g). We show that

lim
i→∞

|Rm(gi)|gi = 0

on M . We have

1

fm(xi, g)
=

r2
i

r2
i fm(xi, g)

≤
r2
i

(1− ρ−1
i )ρ2

i

=
r2
i

(ρi − 1)ρi

≤ ri
ρi
· ri
ρi/2

.

Since ‖Rm(g)‖∞ ≤ K and (b) from above states that limi→∞ ρi/ri =∞, we get

|Rm(gi)|gi ≤
K

λi
≤ ri
ρi
· ri
ρi/2

→ 0

as i→∞. We also have a uniform Cm estimate for Rm(gi) given by

fm(x, gi) ≤
fm(x, g)

λi
=

fm(x, g)

fm(xi, g)

≤ (1 + εi)fm(xi, g)

fm(xi, g)

≤ 8,

for each i ∈ N and x ∈ B(xi, ri, g).

Let ge denote the Euclidean metric on Rn. Define exponential maps for all i by

ϕi : B(0, 1, ge)→M, v 7→ expxi(v).

For all i, let hi = ϕ∗i gi. Since g is obstruction-flat and scalar-flat, we know that (M, g) is

a stationary point for AOF. Arguing as in the blowup argument that comprises the proof
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of the pointwise smoothing estimates for AOF, we are able to extract a subsequential limit

metric h∞ on B(0, 1/2, ge). Since

fm(0, hi) = fm(0, gi) = λ−1
i λi = 1

for all i, we get that fm(0, h∞) = 1 as well. We have already shown that limi→∞ |Rm(gi)|gi =

0 on M , which implies that fm(0, h∞) = 0. This is a contradiction, from which the propo-

sition follows.

We use the estimates in Proposition 6.4.1 to prove the following proposition, which allows

us to estimate lower order terms that arise when we integrate by parts.

Proposition 6.4.2. Let (M, g), ϕ satisfy the above hypotheses. Suppose that s ≥ 1
2 . Let dV

denote the volume form of g. Then, for j ≥ −1, there exists C = C(n, j,Λ, CQ, CV ) such

that for all R > 0,

∫
M
ϕ2s−1∇ϕ ∗ Pn−2j−1

j+1 (Rm) dV ≤ CR−2.

Proof. Let I denote

I =

∫
M
ϕ2s−1∇ϕ ∗ Pn−2j−1

j+1 (Rm) dV.

Let x0 be the point at which the cutoff function is centered. We have assumed that the volume

growth upper bound assumption holds for balls centered at x0. We have also assumed that

quadratic curvature decay holds with respect to x0. Let dS(ρ) denote the volume form of

S(ρ), recalling that S(ρ) = ∂B(x0, ρ) and A(a, b) = B(x0, b) \B(x0, a). Then

I =

∫
A(R,2R)

ϕ2s−1∇ϕ ∗ Pn−2j−1
j+1 (Rm) dV

≤ ΛC(CQ)

∫ 2R

R

[ ∫
S(ρ)

ρ−1ρ−(n−2j−1)ρ−2(j+1) dS(ρ)
]
dρ
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= C

∫ 2R

R
ρ−(n+2)

[ ∫
S(ρ)

dS(ρ)
]
dρ

≤ CR−(n+2)
∫ 2R

R

[ ∫
S(ρ)

dS(ρ)
]
dρ

≤ CR−(n+2) · CV Rn

= CR−2.

We obtained the second line by applying Proposition 6.4.1 and our decay bound for ϕ. We

obtained the penultimate line by applying the volume growth upper bound.
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Chapter 7

Elliptic Estimates and Rigidity in

Even Dimensions

7.1 Estimate of Full Riemann Tensor by Ricci Tensor

In this section, let n be even and let n ≥ 6. Applying Proposition 5.2.1 with q = n
2 − 1, we

obtain for R� 1

(∫
M
ϕns|Rm|n

) 2
n
≤ C

∫
M
ϕ2s|∇

n
2−1Rm|2,

where C = C(n, s,Λ, CS). We wish to obtain L2 estimates of ∇
n
2−1Rm by ∇

n
2−3∆Rm and,

subsequently, ∇
n
2−1Rc for R� 1.

Proposition 7.1.1. Let M,ϕ satisfy the above hypotheses. Suppose s ≥ 1
4n

2. There exist

C1 = C1(n, s, CS), C2 = C2(n,Λ, CQ, CV ), and R0 such that, for all R ≥ R0,

∫
M
ϕ2s|∇

n
2−1Rm|2 ≤

∫
M
ϕ2s|∇

n
2−3∆Rm|2 + C1ε0

∫
M
ϕ2s|∇

n
2−1Rm|2 + C2R

−2.
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Proof. Let I denote

I =

∫
M
ϕ2s|∇

n
2−1Rm|2.

We estimate I:

I = −
∫
M
〈ϕ2s∆∇

n
2−2Rm,∇

n
2−2Rm〉+

∫
M
ϕ2s−1∇ϕ ∗ ∇

n
2−1Rm ∗ ∇

n
2−2Rm

≤ −
∫
M
〈ϕ2s∆∇

n
2−2Rm,∇

n
2−2Rm〉+ C2R

−2

= −
∫
M
〈ϕ2s∇

n
2−2∆Rm,∇

n
2−2Rm〉+

n/2−2∑
k=0

∫
M
ϕ2s∇

n
2−2Rm ∗ ∇

n
2−2−kRm ∗ ∇kRm

+ C2R
−2

≤ −
∫
M
〈ϕ2s∇

n
2−2∆Rm,∇

n
2−2Rm〉+ C1ε0I + C2R

−2

=

∫
M
〈ϕ2s∇

n
2−3∆Rm,∆∇

n
2−3Rm〉+

∫
M
ϕ2s−1∇ϕ ∗ ∇

n
2−1Rm ∗ ∇

n
2−2Rm

+ C1ε0I + C2R
−2

≤
∫
M
〈ϕ2s∇

n
2−3∆Rm,∆∇

n
2−3Rm〉+ C1ε0I + C2R

−2

=

∫
M
〈ϕ2s∇

n
2−3∆Rm,∇

n
2−3∆Rm〉+

n/2−3∑
k=0

∫
M
ϕ2s∇

n
2−1Rm ∗ ∇

n
2−3−kRm ∗ ∇kRm

+ C1ε0I + C2R
−2

≤
∫
M
〈ϕ2s∇

n
2−3∆Rm,∇

n
2−3∆Rm〉+ C1ε0I + C2R

−2.

We obtained the first and fifth lines via integration by parts. We obtained the second and

sixth lines by applying Lemma 6.4.2. We obtained the third and seventh lines by commuting

derivatives via Proposition 2.1.2. We obtained the fourth and eighth lines by applying

Propositions 6.3.3 and 6.3.2, respectively.
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Proposition 7.1.2. Let M,ϕ satisfy the above hypotheses. Suppose s ≥ 1
4n

2. There exist

C1 = C1(n, s, CS), C2 = C2(n,Λ, CQ, CV ), and R0 such that, for all R ≥ R0,

∫
M
ϕ2s|∇

n
2−1Rm|2 ≤

∫
M
ϕ2s|∇

n
2−1Rc|2 + C1ε0

∫
M
ϕ2s|∇

n
2−1Rm|2 + C2R

−2.

Proof. Let I1 denote

I1 =

∫
M
ϕ2s|∇

n
2−1Rm|2.

Then there exist C1 = C1(n, s, CS), C2 = C2(n,Λ, CQ, CV ), and R0 such that, for all

R ≥ R0,

I1 ≤
∫
M
ϕ2s|∇

n
2−3∆Rm|2 + Cε0I1 + CR−2

=

∫
M
ϕ2s
∣∣∇n

2−3[∇j∇mRlk −∇j∇lRmk +∇k∇lRmj −∇k∇mRlj + Rm∗2
]∣∣2

+ C1ε0I1 + C2R
−2. (7.1)

We obtained the first line by applying Proposition 7.1.1. We obtained the second line by

applying a result of Hamilton.

We will derive estimates for the integrals that arise from expanding the expression

∇
n
2−3[∇j∇mRlk −∇j∇lRmk +∇k∇lRmj −∇k∇mRlj + Rm∗2

]
contained in the above estimate of I1. First, we estimate the terms whose integrals are of

the form (∇
n
2−3∇2Rc)∗2. We estimate the diagonal terms:

∫
M
ϕ2s〈∇

n
2−3∇j∇mRlk,∇

n
2−3∇j∇mRlk〉 =

∫
M
ϕ2s|∇

n
2−1Rc|2.
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We estimate the off-diagonal terms. Let I2 denote

I2 =

∫
M
ϕ2s〈∇

n
2−3∇j∇mRlk,∇

n
2−3∇j∇lRmk〉.

Then there exist C1 = C1(n, s, CS), C2 = C2(n,Λ, CQ, CV ), and R0 such that, for all

R ≥ R0,

I2 =

∫
M
ϕ2s〈∇

n
2−3∇j∇mRlk,∇l∇

n
2−3∇jRmk〉

+

n/2−3∑
i=0

∫
M
ϕ2s∇

n
2−1Rm ∗ ∇

n
2−3−iRm ∗ ∇iRm

≤
∫
M
ϕ2s〈∇

n
2−3∇j∇mRlk,∇l∇

n
2−3∇jRmk〉+ C1ε0I1

= −
∫
M
ϕ2s〈∇l∇

n
2−3∇j∇mRlk,∇

n
2−3∇jRmk〉

+

∫
M
ϕ2s−1∇ϕ ∗ ∇

n
2−1Rm ∗ ∇

n
2−2Rm + C1ε0I1

≤ −
∫
M
ϕ2s〈∇

n
2−3∇j∇m∇lRlk,∇

n
2−3∇jRmk〉

+

n/2−2∑
i=0

∫
M
ϕ2s∇

n
2−2Rm ∗ ∇

n
2−2−iRm ∗ ∇iRm + C1ε0I1 + C2R

−2

≤ C1ε0I1 + C2R
−2.

We obtained the first line by commuting derivatives via Proposition 2.1.4. We obtained the

second line by applying Proposition 6.3.2. We obtained the third line via integration by

parts. We obtained the fourth line by applying Proposition 6.4.2 and commuting derivatives

via Proposition 2.1.4. The first term in the fourth line vanishes due to a Bianchi identity and

the assumption that (M, g) has constant scalar curvature. We estimated the second term in

the fourth line using Proposition 6.3.3.
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Next, we estimate terms of the form (∇
n
2−3(Rm∗2))∗2. Let I3 denote

I3 = intMϕ2s∇iRm ∗ ∇
n
2−3−iRm ∗ ∇jRm ∗ ∇

n
2−3−jRm.

We estimate using the Hölder inequality and Lemma 6.3.1. There exist C1 = C1(n, s, CS)

and R0 such that, for all R ≥ R0,

I3 ≤ C1

(∫
M
ϕ2s|∇iRm|2|∇

n
2−3−iRm|2

)1
2
(∫

M
ϕ2s|∇jRm|2|∇

n
2−3−jRm|2

)1
2

≤ C1ε
2
0I1.

Finally, we use Proposition 6.3.2 to estimate terms of the form ∇
n
2−3∇2Rc ∗∇

n
2−3(Rm∗2).

Let I4 denote

I4 =

∫
M
ϕ2s∇

n
2−3∇j∇mRlk ∗ ∇iRm ∗ ∇

n
2−3−iRm.

There exist C1 = C1(n, s, CS) and R0 such that, for all R ≥ R0,

I4 =

∫
M
ϕ2s∇

n
2−1Rm ∗ ∇iRm ∗ ∇

n
2−3−iRm ≤ C1ε0I1.

We collect the preceding estimates in order to conclude that there exist C1 = C1(n, s, CS),

C2 = C2(n,Λ, CQ, CV ), and R0 such that, for all R ≥ R0,

∫
M
ϕ2s
∣∣∇n

2−3[∇j∇mRlk −∇j∇lRmk +∇k∇lRmj −∇k∇mRlj + Rm∗2
]∣∣2

≤
∫
M
ϕ2s|∇

n
2−1Rc|2 + C1ε0I1 + C2R

−2.

The desired inequality now follows from the inequality (7.1).
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7.2 General Interpolation Estimates

In this section, let n be even and let n ≥ 6. We prove an interpolation inequality and use

it to provide energy estimates for various lower order terms. This will enable us to use the

fact that (M, g) is obstruction-flat to complete the proof of the main theorem.

The following proposition provides estimates for terms of the form

Rm∗l0 ∗ (∇Rm)∗l1 ∗ · · · ∗ (∇
n
2−2Rm)

∗ln/2−2

containing j factors that possess n− 2j derivatives in total.

Proposition 7.2.1. Let (M,ϕ) satisfy the above hypotheses. Suppose that

(a) n is even, n ≥ 4, s ≥ n2, 2 ≤ j ≤ n
2 , l0 ≥ −1, lk ≥ 0 for 1 ≤ k ≤ n

2 − 2

(b)
∑n/2−2
k=0 lk = j,

∑n/2−2
k=1 klk = n− 2j.

Let α = max{k : lk > 0}. Then there exist C = C(n, j, α, s, CS) and R0 such that for all

R ≥ R0,

∫
M
ϕ2s|Rm|l0+1

n/2−2∏
k=1

|∇kRm|lk ≤ C

(∫
M
|Rm|

n
2

) 2
n (j−1)(∫

M
ϕ2s|∇

n
2−1Rm|2

)
.

(7.2)

Proof. We apply Hölder’s inequality, followed by the interpolation inequality given by Propo-

sition 6.2.4. Let

m =


n− 2j − α, αlα >

1
2(n− 2j)

1
2(n− 2j), αlα ≤ 1

2(n− 2j).
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Define c, v, w by the following equations:

c−1∑
k=1

klk < m ≤
c∑

k=1

klk,
c−1∑
k=1

klk + cv = m, v + w = lc.

We also define αk for 1 ≤ k ≤ c and βk for c ≤ k ≤ n
2 − 3 as follows:

1

αk
=
m− k
mn/2

+
k

mn/(m+ 1)
=

(k + 2)m− k
nm

1

βk
=

(k + 2)(n− 2j −m)− k
n(n− 2j −m)

.

We note that

1 =
2

n
(l0 + 1) +

c−1∑
k=1

lk
αk

+
v

αc
+
w

βc
+

n/2−2∑
k=c+1

lk
βk

(7.3)

and

j − 1 = 1 + l0 +
c−1∑
k=1

(m− k)lk
m

+
(m− c)v

m

+
(n− 2j −m− c)w

n− 2j −m
+

n/2−2∑
k=c+1

(n− 2j −m− k)lk
n− 2j −m

. (7.4)

Define I by

I =

∫
M
ϕ2s|Rm|l0+1

n/2−2∏
k=1

|∇kRm|lk .

Then there exist C = C(n, j, α, s, CS) and R0 such that for all R ≥ R0,

I =

(∫
M
|Rm|l0+1

)[c−1∏
k=1

ϕ
klks
m |∇kRm|lk

](
ϕ
clv
m |∇cRm|v

)
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×
(

[ϕ
cw

n−2j−m |∇cRm|w
)n/2−2∏

k=c+1

ϕ
klks

n−2j−m |∇kRm|lk


≤
(∫

M
|Rm|

n
2

) 2
n (l0+1)

c−1∏
k=1

(∫
M
ϕ
kαks
m |∇kRm|αk

) lk
αk

(∫
M
ϕ
cαcs
m |∇cRm|αc

) v
αc

×

(∫
M
ϕ

cβcs
n−2j−m |∇cRm|βc

) w
βc

n/2−2∏
k=c+1

(∫
M
ϕ

kβks
n−2j−m |∇kRm|βk

) lk
βk


≤ C

(∫
M
|Rm|

n
2

) 2
n (j−1)

c−1∏
k=1

(∫
M
ϕ

ns
m+1 |∇mRm|

n
m+1

)k(m+1)lk
mn


×
(∫

M
ϕ

ns
m+1 |∇mRm|

n
m+1

)c(m+1)v
mn

×
(∫

M
ϕ

ns
n−2j−m+1 |∇n−2j−mRm|

n
n−2j−m+1

)c(n−2j−m+1)w
(n−2j−m)n

×

n/2−2∏
k=c+1

(∫
M
ϕ

ns
n−2j−m+1 |∇n−2j−mRm|

n
n−2j−m+1

)k(n−2j−m+1)lk
(n−2j−m)n


= C

(∫
M
|Rm|

n
2

) 2
n (j−1)(∫

M
ϕ

ns
m+1 |∇mRm|

n
m+1

)m+1
n

×
(∫

M
ϕ

ns
n−2j−m+1 |∇n−2j−mRm|

n
n−2j−m+1

)n−2j−m+1
n

≤ C

(∫
M
|Rm|

n
2

) 2
n (j−1)(∫

M
ϕ2s|∇

n
2−1Rm|2

)1
2
(∫

M
ϕ2s|∇

n
2−1Rm|2

)1
2

≤ C

(∫
M
|Rm|

n
2

) 2
n (j−1)(∫

M
ϕ2s|∇

n
2−1Rm|2

)
.

We obtained the second line via Hölder’s inequality and equation (7.3). The definition of m

and equation (7.4) allow us to apply the interpolation inequality Proposition 6.2.4, which

yields the third line. We obtained the fifth line via the Sobolev inequality Proposition 5.2.4.
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It follows from the inequalities

0 ≤ m ≤ n− 2j ≤ n− 4, s ≥ n2,

and from our definitions of αk for 1 ≤ k ≤ c and βk for c ≤ k ≤ n
2 − 3, that the exponents

of the cutoff function ϕ are sufficiently large to allow the application of Propositions 6.2.4

and 5.2.4.

In the proof of the following proposition, we integrate by parts to reduce the orders of the

various terms to less than n
2 − 1 so that we can apply the interpolation estimate from the

previous proposition. Since we only integrate by parts when the order of the terms is at

least n
2 − 1, we avoid obtaining, after integrating by parts, terms (Rm)1+l0

∏n−4
k=1(∇kRm)lk

of the same type, i.e. the sequences (lk)n−4
k=1 are equal for both of the terms (AB denotes

A ∗B).

Proposition 7.2.2. Let n ≥ 8 and 2 ≤ j ≤ n
2 . Suppose s ≥ n2. Then there exist C1 =

C1(n, j, s, CS), C2 = C2(n, j,Λ, CQ, CV ), and R0 such that for all R ≥ R0,

∫
M
ϕ2sRm ∗ Pn−2j

j (Rm) ≤ C1ε0

∫
M
ϕ2s|∇

n
2−1Rm|2 + C2R

−2.

Proof. Let A ∈ Rm ∗ Pn−2j
j (Rm). Then A can be expressed as

A = (Rm)1+l0

d(A)∏
k=1

(∇kRm)lk

(AB denotes A ∗B), where d = d(A) = max{k : lk > 0} and

d(A)∑
k=0

lk = j,

d(A)∑
j=0

klk = n− 2j.
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Let I denote

I =

∫
M
ϕ2sA.

Suppose that d(A) ≤ n
2 − 2. Then Proposition 7.2.1 provides the desired estimate: there

exist C = C(n, j, d, s, CS) and R0 such that for all R ≥ R0,

I ≤ Cε
j−1
0

∫
M
ϕ2s|∇

n
2−1Rm|2.

It follows that, for all A such that d(A) ≤ n
2 − 2, there exists a uniform C1 = C1(n, j, s, CS)

and R0 such that for all R ≥ R0,

I ≤ Cε0

∫
M
ϕ2s|∇

n
2−1Rm|2.

We estimate the terms A ∈ Rm∗Pn−2j
j (Rm) for which d(A) ≥ n

2 −2 by induction. We have

already estimated the terms A ∈ Rm ∗ Pn−2j
j (Rm) for which d(A) ≤ n

2 − 2. Now suppose

that d(A) > n
2 − 2 and that we have already estimated the terms B ∈ Rm ∗ Pn−2j

j (Rm) for

which d(B) < d(A). We have d(A) ≥ n
2 − 1 and

n− 4 ≥ n− 2j =

d(A)∑
i=0

ili.

Since d = d(A) = max{k : lk > 0}, the above equation implies that ld = 1 and ld−1 = 0.

We integrate by parts:

I =

∫
M
ϕ2s−1∇ϕ(Rm)1+l0

d−2∏
k=1

(∇kRm)lk

+
∑

1≤i≤d−2
li>0

∫
M

[
ϕ2s(∇iRm)−1+li(∇i+1Rm)1+li+1(Rm)

∏
0≤k≤d−2
k 6=i, i+1

(∇kRm)lk

]
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+

∫
M
ϕ2s(Rm)l0(∇Rm)1+l1

∏
2≤k≤d−2

(∇kRm)lk . (7.5)

The fact that ld−1 = 0 ensures that none of the terms on the right hand side of the above

equation (7.5) matches the integral on the left hand side of the equation. We estimate

the term on the right hand side containing ∇ϕ via Proposition 6.4.2: there exists C2 =

C2(n, j,Λ, CQ, CV ) such that

∫
M
ϕ2s−1∇ϕ(Rm)1+l0

d−2∏
k=1

(∇kRm)lk ≤ CR−2.

The remaining terms on the right hand side are integrals containing integrands B ∈ Rm ∗

P
n−2j
j (Rm) for which d(B) ≤ d−1. As a result, these terms have already been estimated via

the induction hypothesis. Collecting terms, we obtain that there exist C1 = C1(n, j, s, CS),

C2 = C2(n, j,Λ, CQ, CV ), and R0 such that for all R ≥ R0,

I ≤ C1ε0

∫
M
ϕ2s|∇

n
2−1Rm|2 + C2R

−2.

Collecting the estimates for all A ∈ Rm ∗ Pn−2j
j (Rm) yields the desired estimate.

7.3 Conclusion of the Proof of Theorem 1.2.10

In this section, let n be even and let n ≥ 6. We use the assumptions that (M, g) is obstruction

- flat and has constant scalar curvature to obtain estimates that allow us to complete the

proof of Theorem 1.2.10.
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Proposition 7.3.1. Let M,ϕ satisfy the above hypotheses. Suppose s ≥ n2. There exist

C1 = C1(n, s, CS), C2 = C2(n,Λ, CQ, CV ), and R0 such that for all R ≥ R0,

∫
M
ϕ2s|∇

n
2−1Rc|2 ≤

∫
M
ϕ2s〈(−1)

n
2−1∆

n
2−1Rc,Rc〉+C1ε0

∫
M
ϕ2s|∇

n
2−1Rm|2+C2R

−2.

Proof. Let I denote

I =

∫
M
ϕ2s〈(−1)i∇

n
2−1−i∆iRc,∇

n
2−1−iRc〉.

We show that, for all i satisfying 0 ≤ i ≤ n
2 − 1, there exist C1 = C1(n, s, CS), C2 =

C2(n,Λ, CQ, CV ), and R0 such that for all R ≥ R0,

∫
M
ϕ2s|∇

n
2−1Rc|2 ≤ I + C1ε0

∫
M
ϕ2s|∇

n
2−1Rm|2 + C2R

−2. (7.6)

We prove this by induction on i. Suppose this estimate holds for all nonnegative inte-

gers at most i, where i satisfies 0 ≤ i ≤ n
2 − 1. There exist C1 = C1(n, s, CS), C2 =

C2(n,Λ, CQ, CV ), and R0 such that for all R ≥ R0,

I = (−1)i+1
∫
M
ϕ2s〈∆∇

n
2−i−2∆iRc,∇

n
2−i−2Rc〉

+

∫
M
ϕ2s−1∇ϕ ∗ ∇

n
2 +i−1Rm ∗ ∇

n
2−i−2Rm

≤ (−1)i+1
∫
M
ϕ2s〈∆∇

n
2−i−2∆iRc,∇

n
2−i−2Rc〉+ C2R

−2

= (−1)i+1
∫
M
ϕ2s〈∇

n
2−i−2∆i+1Rc,∇

n
2−i−2Rc〉

+

n/2−i−2∑
j=0

∫
M
ϕ2s∇

n
2−i−2Rm ∗ ∇

n
2−i−2−jRm ∗ ∇j+2iRm + C2R

−2

≤
∫
M
ϕ2s〈(−1)i+1∇

n
2−i−2∆i+1Rc,∇

n
2−i−2Rc〉+ C1ε0

∫
M
ϕ2s|∇

n
2−1Rm|2 + C2R

−2.

122



We obtained the first line via integration by parts. We obtained the second line via Propo-

sition 6.4.2. We obtained the third line by commuting derivatives via Proposition 2.1.2. We

obtained the fourth line via Proposition 7.2.2, since each lower order term is of the form

Pn−4
3 (Rm). Therefore, there exist C1 = C1(n, s, CS), C2 = C2(n,Λ, CQ, CV ), and R0 such

that for all R ≥ R0,

∫
M
ϕ2s|∇

n
2−1Rc|2 ≤ I + C1ε0

∫
M
ϕ2s|∇

n
2−1Rm|2 + C2R

−2

≤
∫
M
ϕ2s〈(−1)i+1∇

n
2−i−2∆i+1Rc,∇

n
2−i−2Rc〉

+ C1ε0

∫
M
ϕ2s|∇

n
2−1Rm|2 + C2R

−2,

so that inequality (7.6) also holds for i + 1. We conclude inequality (7.6) holds for all i

satisfying 0 ≤ i ≤ n
2 − 1.

We obtain the desired inequality by setting i = n
2 − 1 in inequality (7.6).

Proposition 7.3.2. Let M,ϕ satisfy the above hypotheses. Suppose s ≥ n2. There exist

C1 = C1(n, s, CS), C2 = C2(n,Λ, CQ, CV ), and R0 such that for all R ≥ R0,

∫
M
ϕ2s〈(−1)

n
2−1∆

n
2−1Rc,Rc〉 ≤ C1ε0

∫
M
ϕ2s|∇

n
2−1Rm|2 + C2R

−2.

Proof. Let I denote

I =

∫
M
ϕ2s〈(−1)

n
2−1∆

n
2−1Rc,Rc〉.

Since we have assumed that (M, g) is obstruction - flat and has constant scalar curvature,

we have

0 = O =
(−1)n/2

n−2 ∆
n
2−1Rc +

n/2∑
j=2

P
n−2j
j (Rm).
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We use this equation to express ∆
n
2−1Rc as a sum of lower order terms. If n ≥ 8, then

we can apply Proposition 7.2.2 to obtain that, for each j satisfying 2 ≤ j ≤ n
2 , there exist

C1 = C1(n, j, s, CS), C2 = C2(n, j,Λ, CQ, CV ), and R0 such that for all R ≥ R0,

∫
M
ϕ2sRm ∗ Pn−2j

j (Rm) ≤ C1ε0

∫
M
ϕ2s|∇

n
2−1Rm|2 + C2R

−2.

Summing over the j yields that there exist C1 = C1(n, s, CS), C2 = C2(n,Λ, CQ, CV ), and

R0 such that for all R ≥ R0,

I =

n/2∑
j=2

∫
M
ϕ2sRm ∗ Pn−2j

j (Rm) ≤ C1ε0

∫
M
ϕ2s|∇

n
2−1Rm|2 + C2R

−2.

We give a separate argument for n = 6. We have

I =

n/2∑
j=2

∫
M
ϕ2sRm ∗ Pn−2j

j (Rm) =

∫
M
ϕ2s[∇2Rm ∗ Rm∗2 +∇Rm∗2 ∗ Rm + Rm∗4].

Since

∇2Rm ∗ Rm∗2 = ∇
n
2−1Rm ∗ ∇kRm ∗ ∇

n
2−3−kRm

when n = 6, k = 0 and

∇Rm∗2 ∗ Rm = ∇
n
2−2Rm ∗ ∇kRm ∗ ∇

n
2−2−kRm

when n = 6, k = 1, we can apply Propositions 6.3.2 and 6.3.3, respectively, to obtain that

there exist C = C(s, CS) and R0 such that for all R ≥ R0,

∫
M
ϕ2s[∇2Rm ∗ Rm∗2 +∇Rm∗2 ∗ Rm] ≤ Cε0

∫
M
ϕ2s|∇

n
2−1Rm|2 + CR−2. (7.7)
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We estimate the remaining term by applying the Hölder inequality and Proposition 5.2.4:

there exist C = C(s, CS) and R0 such that for all R ≥ R0,

∫
M
ϕ2sRm∗4 ≤ C

∫
M

(ϕ2s|Rm|2)|Rm|2

≤ C
(∫

M
ϕ6s|Rm|6

)1
3
(∫

M
|Rm|3

)2
3

= Cε20‖ϕ
sRm‖26

≤ Cε20

∫
M
ϕ2s|∇2Rm|2. (7.8)

Combining the estimates (7.7) and (7.8) implies that there exist C = C(s, CS) and R0 such

that for all R ≥ R0,

I =

n/2∑
j=2

∫
M
ϕ2sRm ∗ Pn−2j

j (Rm)

=

∫
M
ϕ2s[∇2Rm ∗ Rm∗2 +∇Rm∗2 ∗ Rm + Rm∗4]

≤ Cε0

∫
M
ϕ2s|∇

n
2−1Rm|2.

So, we have obtained the desired inequality for n ≥ 6.

Proposition 7.3.3. Let M,ϕ satisfy the above hypotheses. Suppose s ≥ n2. There exist

C1 = C1(n, s, CS), C2 = C2(n,Λ, CQ, CV ), and R0 such that for all R ≥ R0,

∫
M
ϕ2s|∇

n
2−1Rc|2 ≤ C1ε0

∫
M
ϕ2s|∇

n
2−1Rm|2 + C2R

−2.

Proof. We apply Propositions 7.3.1 and 7.3.2:

∫
M
ϕ2s|∇

n
2−1Rc|2 ≤

∫
M
ϕ2s〈(−1)

n
2−1∆

n
2−1Rc,Rc〉+ Cε0

∫
M
ϕ2s|∇

n
2−1Rm|2 + CR−2

≤ Cε0

∫
M
ϕ2s|∇

n
2−1Rm|2 + CR−2.
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We are now able to complete the proof of Theorem 1.2.10.

Proof of Theorem 1.2.10. Let s = n2. Propositions 7.1.2 and 7.3.3 imply that there exist

C1 = C1(n,CS), C2 = C2(n,Λ, CQ, CV ), and R0 such that for all R ≥ R0,

∫
M
ϕ2s|∇

n
2−1Rm|2 ≤

∫
M
ϕ2s|∇

n
2−1Rc|2 + C1ε0

∫
M
ϕ2s|∇

n
2−1Rm|2 + C2R

−2

≤ C1ε0

∫
M
ϕ2s|∇

n
2−1Rm|2 + C2R

−2.

If we let ε0 = 1
2C1

we obtain

∫
M
ϕ2s|∇

n
2−1Rm|2 ≤ C2R

−2.

Applying the above inequality and Proposition 5.2.1 yields

(∫
M
ϕns|Rm|n

) 2
n
≤ C1

∫
M
ϕ2s|∇

n
2−1Rm|2 ≤ C2R

−2.

Letting R → ∞, we conclude that Rm = 0, so that (M, g) is flat. We note that, since

C1 = C1(n,CS), we have shown that we can choose ε0 to depend only on n and CS .
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