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Abstract
Traffic noise is a pervasive pollutant that affects wildlife at individual and group levels through mechanisms such as disrupting 
communication, affecting antipredator strategy, and/or changing how they use space within a habitat. Urbanization is expanding 
rapidly—few places remain untouched by anthropogenic noise disturbance—so understanding the implications of noise on wildlife 
behavior is paramount to conservation efforts. We asked whether traffic noise could change space use and social network metrics 
in flocks of captive birds. Specifically, we quantified the effects of playbacks of traffic noise on individual sociality (weighted 
degree, number of social partners weighted by the frequency of interactions with those social partners) and flock clustering (global 
clustering coefficient, connectivity of neighbors). In this study, we recorded social interactions and space use of flocks of captive 
zebra finches (Taeniopygia guttata) before, during, and after an experimental traffic noise introduction in two treatments: high- and 
lower-amplitude noise. Our results demonstrated that individual sociality and flock clustering increased in response to the noise 
introduction in both high-amplitude and low-amplitude treatments. Additionally, birds in the high-amplitude treatment spent more 
time in the room with active playback during noise playback whereas birds in the lower-amplitude treatment decreased time spent 
in the room closest to the high-amplitude treatment. Increased social behavior in response to traffic noise could influence disease 
transmission, social learning, and mating dynamics. We suggest future studies explore the mechanisms driving increased social 
behavior in traffic noise, such as perceived predation risk, vigilance, and cross-sensory interference.

Keywords  Noise pollution · Disturbance · Songbirds · Spatial behavior · Social behavior

Introduction

Urban areas create unprecedented pressures for the wildlife 
that dwell in them (Sih et al. 2016). Among those pres-
sures is noise pollution, which affects how animals com-
municate (Brumm and Slabbekoorn 2005), form pair bonds 
(Swaddle and Page 2007a), forage and protect themselves 
against predators (Wale et al. 2013; Jung et al. 2020; Sweet 
et al. 2022), and use space (McClure et al. 2013; Chen and 
Koprowski 2015; Jung et al. 2020; Liu et al. 2020). Given 
the known effects of noise on individual and group-driven 
behaviors (Bruintjes and Radford 2013), we suspect these 
effects of noise compound to change how individuals and 
groups interact with each other at the social network level 
(i.e., social behavior).

Some avian species alter their habitat use and spatial 
distribution along noise gradients, by choosing to settle in 
quieter areas (Injaian et al. 2018a; Gomes et al. 2021) or 
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decreasing abundance as noise levels increase (McClure 
et al. 2013; Chen and Koprowski 2015). When given the 
choice between a high-amplitude noise environment and 
a quieter, low-amplitude noise environment in captive set-
tings, previous work demonstrates that birds will either 
spend more time in the low-amplitude environment (Liu 
et al. 2020) or change their behavior in the high-amplitude 
noise environment (Kight and Swaddle 2015; Derryberry 
et al. 2017; Evans et al. 2018). Changes in avian behav-
ior in response to noise included altering the frequency or 
amplitude of songs, or even changing the timing of dawn 
chorus to avoid commuter traffic (Fuller et al. 2007; Kight 
and Swaddle 2015; Derryberry et al. 2016, 2020; Luther 
et al. 2016; Zwart et al. 2016). Traffic noise is a prevalent 
source of noise pollution in urban areas; however, there is 
spatial and temporal variation in the intensity of traffic noise 
(e.g., varying road traffic on highways vs backroads, times of 
rush-hour traffic). To date, many studies of noise pollution 
have compared extreme ends of an amplitude gradient (i.e., 
noise-added compared with no-noise added; cf. (McClure 
et al. 2013; Ware et al. 2015). However, given the spatial 
and temporal heterogeneity of traffic noise, it is important 
to understand how variation in noise intensity influences 
wildlife and their behavior. Such scenarios may better rep-
resent the variation in exposure to noise that urban-dwelling 
species experience.

For animals that remain in high-amplitude noise conditions, 
noise can mask acoustic signals and disrupt communication if 
there is a frequency and/or temporal overlap between the noise 
and the signals. Tactics to compensate for masking effects in noise 
include adjusting vocal frequency and/or vocal performance (rate 
of sounds being produced given their frequency bandwidth) and/
or amplitude to increase detection (Brumm 2004; McMullen et al. 
2014; Kight and Swaddle 2015; Luther et al. 2016 Derryberry 
et al. 2020) or vocalizing at different times of day (Fuller et al. 
2007; Cartwright et al. 2014). Physiologically, noise can alter 
baseline stress hormones and/or stress response in the individu-
als exposed to it, although the changes to glucocorticoid profiles 
appear to be species-dependent (Crino et al. 2013; Angelier et al. 
2016; Davies et al. 2017; Injaian et al. 2018b; Zollinger et al. 
2019). Additionally, noise creates cross-sensory interference and 
can affect visual and olfactory processing (Chan et al. 2010; Kunc 
et al. 2014; Morris-Drake et al. 2016; Halfwerk and Van Oers 
2020; Zhu et al. 2022).

Disruptions to normal social behavior can have wide 
implications for other processes, as social behavior can 
modulate territory defense (Nowicki et al. 1998), mating 
decisions (Poesel et al. 2006; Baldassarre et al. 2016), 
and how information spreads within groups (Urban et al. 
2011). Additionally, individuals within a population could 
respond to disturbance differently depending on their per-
sonality traits (e.g., explorer vs sedentary, aggression lev-
els) (Grunst et al. 2019; Harding et al. 2019). Changes to 

individuals can have group-level consequences for social 
networks, including affecting the connectivity among 
individuals in the network or the group’s ability to access 
resources (Balasubramaniam et al. 2021; Wiśniewska et al. 
2022). Changes to sensory information processing and 
communication could therefore influence social dynam-
ics independently of conspecific density and space use.

Our knowledge regarding the effects of disturbance on 
social networks is expanding, receiving more attention in 
recent years. For example, mixed-species groups of large 
herbivores increase social affinity in response to high 
rainfall levels (Meise et al. 2019), and simulation-based 
models reveal that social connectivity of elephant herds 
decreases in response to targeted poaching of larger, older 
individuals (Wiśniewska et al. 2022). In free-living social 
birds, the experimental introduction of traffic noise in an 
otherwise quiet area resulted in decreased social inter-
actions within and among cooperatively breeding groups 
(Hawkins et al. 2020).

In this study, our main goal was to investigate how noise 
could change characteristics of social behavior, including 
individual sociality and group-level social clustering in birds 
chronically exposed to elevated ambient noise levels—con-
ditions that urban-dwelling birds would experience. Since 
birds might disperse away from the source of noise, we also 
investigated how the spatial distribution of the birds changed 
across a noise gradient. We created an experimental sound 
gradient of traffic noise across aviaries in which the ampli-
tude of the noise varied from high noise (~ 80 dBA SPL) 
to lower noise (~ 70 dBA SPL) within a free-flight aviary 
(Fig. 1). Using flocks of captive-bred zebra finches (Taeni-
opygia guttata), we measured changes in individual social 
connectivity and whole-flock clustering before, during, and 
after introducing traffic noise. We also recorded how birds 
used the space across the sound gradient to determine if 
birds preferred using the quieter side of the aviary during 
the noise playback.

Zebra finches maintain their highly social flocking 
nature when housed in free-flight aviaries (Zann 1996). 
They quickly form pair bonds within the flock and are 
rarely without their social partner. Birds engage in flock 
activities such as feeding, watering, and allopreening (Zann 
1996). Zebra finches rely on auditory cues for individual 
recognition (Zann 1996), making their social system par-
ticularly vulnerable to changes in noise conditions. Previ-
ous work on this species has demonstrated that noise inhib-
its cognitive performance and social learning (Osbrink 
et al. 2021), changes vigilance behavior while foraging 
(Evans et al. 2018), and decreases pair bond preferences 
(Swaddle and Page 2007b), which suggests larger changes 
could be occurring at the social network level in response 
to noise disturbance.
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We hypothesized birds would change how they used avi-
ary space in response to noise and predicted that they would 
increase time spent in the quieter end of the noise gradi-
ent at higher densities than before the noise treatment. We 
therefore hypothesized increased densities of conspecifics 
would affect individual social connectivity and whole-flock 
clustering predicting an increase in both connectivity and 
clustering with the onset of noise.

Methods

We used a large colony of outbred, domesticated zebra 
finches that were housed in outdoor aviaries at William & 
Mary (Williamsburg, Virginia, USA, 37.3° N, 76.7° W). 
Zebra finches used in this study were raised in relatively 
noisy conditions, as their parents had been for at least eight 
generations, due to the incidental effects of having a captive 
breeding colony in indoor rooms with a relatively old air 
conditioning system and highly reflective concrete walls and 
floors. Typical noise levels in indoor breeding rooms were 
between 55 and 86 dBA SPL, which varies based on air con-
ditioner ventilation bouts and fluctuations in group vocaliza-
tion among the colony. All procedures used on animals were 
approved by the Institutional Animal Care and Use Commit-
tee at William & Mary (IACUC-2015-11-16-10733-jpswad).

We conducted a total of 11 trials between May and 
October 2017 in two large outdoor aviaries. Each aviary 

consisted of three conjoined rooms (3 × 3 × 6 m each, a col-
lective size of 9 × 3 × 6 m) among which birds could freely 
move (Fig. 1). Birds had ad libitum access to a nutritionally 
balanced diet of millet mix (Volkman Super Finch Blend), 
water, and cuttlefish bone. Feeders were placed in rooms 
1 and 3 of each aviary (Fig. 1). For each trial, one of the 
two aviaries received a high-amplitude treatment where 
either room 1 or 3 had a speaker play traffic noise, creat-
ing an amplitude gradient across the three rooms where 
the furthest room from the speaker was the quietest. This 
allowed the birds to reduce their noise exposure, but not 
entirely escape it, which is ecologically relevant to urban-
ized areas. The noise continued across our facilities to the 
second aviary at a lower amplitude, with the loudest of the 
three rooms ~ 20 dBA quieter than the loudest room in the 
high-noise treatment; this aviary served as our “lower” 
noise treatment. The lower noise treatment only had a small 
increase in sound pressure (1–2 dB SPL) during playback 
from the high-noise treatment, as the traffic sounds were 
quiet relative to the background noise of the facility. How-
ever, the representation of traffic sounds was palpable even 
at this distance and novel to the lower noise birds, as the 
aviary is not located near any roads.

We took sound pressure readings using an EXTECH 
General Purpose Sound Level Meter and stood at the feeder 
locations in rooms 1 and 3 (Fig. 1) on day 2 of each experi-
mental phase for each trial. The sound meter was calibrated 
with an EXTECH 407744 Sound Level Calibrator, which 

Fig. 1   Plan view of aviary. Thick gray bars indicate wooden perches. 
The three cages were connected by one long perch, and central walls 
were covered in noise-absorbing foam. A 1-m-long high perch and 
a 0.5-m-long low perch were placed in rooms 1 (R1) and 3 (R3). F 
indicates food and water station (0.5-m diameter tray), and S indicates 
speakers (speakers not drawn to scale). We had two identical aviaries 

with this set-up to serve as high-amplitude noise and low-amplitude 
noise treatments, we alternated treatments throughout trials. For the 
high-noise treatment, the two speakers in either R1 or R3 (alternat-
ing between trials) would play traffic noise and the two speakers in 
the opposite room would remain inactive, creating a sound gradient 
across this structure
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calibrates the meter with a 1 kHz sine wave at 94 dB SPL 
with an accuracy of ± 0.8 dB standard error. With no noise 
playing, peak amplitude of ambient noise pressure in the 
outdoor aviaries averaged 60.62 ± 0.52 standard error dBA 
SPL; this average was calculated by using all measurements 
from rooms 1 and 3 in both high- and lower-amplitude treat-
ments from the before and after phases when there was 
no noise playback (n = 85). In the high-amplitude aviary 
during traffic noise playback, peak amplitude in the room 
with noise playback averaged 80.09 dBA SPL ± 0.99 SE 
and 70.94 dBA SPL ± 2.94 SE in the room furthest from 
the playback speaker (n = 11). In the lower-amplitude avi-
ary during the traffic noise playback, peak amplitude aver-
aged 62.53 dBA SPL ± 0.75 SE in the room closest to the 
high-amplitude aviary and 61.96 dBA SPL ± 0.98 SE in the 
furthest room (n = 11).

We used a pseudo-randomized blocking procedure to 
determine the aviary and room that would receive sound 
treatment; thus, we used both aviaries for high noise and 
low noise equally and alternated which room (1 or 3) had 
noise for each trial. This was to account for any preexisting 
preferences for rooms or aviaries that the birds may have, 
independent of our experimental manipulation.

For each trial, we released 12 birds (six adult male, six 
adult female) marked with individual color bands into the 
high-amplitude aviary and a separate 12 birds in the lower-
amplitude aviary and gave them 72 h to habituate to the 
enclosure and establish their social groups with no noise 
playback. Of the 12 birds in each aviary, males and females 
were unfamiliar with each other, but birds could have been 
familiar with each other within the sexes, as individuals were 
previously housed with approximately 100 others in same-
sex free-flight conditions. All birds were wild-type colora-
tion (to the human eye) to control for any social preferences 
for unique colorations sometimes found in captivity (e.g., 
fawn, black-cheeked, white). Each bird was used only once 
and did not appear in subsequent trials. Hence, we used 264 
birds over the course of 11 trials (24 birds per trial).

Following the initial 72-h habituation period, each trial 
consisted of three additional 72-h experimental phases: (i) 
“before” which was the phase before the experimental noise 
manipulation, (ii) “noise” when the high-amplitude aviary 
received traffic noise playback (which slightly reached our 
lower-amplitude aviary), and (iii) “after” which was the 
time period immediately following the termination of the 
active playback in the noise phase (Table 3). During the 
noise phase, speakers directed towards the opposite wall of 
their placement played a looped audio recording of high-
way traffic noise that varied in maximum dBA SPL (~ 65–80 
dBA) depending on the number of cars and trucks passing 
on the highway throughout the recording (YouTube 2014) 
and played in either room 1 or 3 of the aviary depending 
on trial (Fig. 1). We had four speakers in each aviary set up 

(two in each of the far rooms) but only one amplifier set to 
a consistent volume that we moved between aviaries/rooms 
depending on which was getting the noise treatment in that 
trial to ensure consistency.

Observation periods took place at either 9:00 EST or 
12:00 EST and would last for roughly 2 h (1 h and 36 min 
of focal-follow time), with time in between as observ-
ers searched for the next focal-follow bird. We alternated 
which aviary had the morning (9 a.m.) or afternoon (12 
p.m.) observation daily, so at the end of the experiment, 
each aviary had an equal number of morning and afternoon 
observation periods. Speakers were turned on at the conclu-
sion of the 72-h before phase (~ 14:00 EST), played traffic 
noise continuously day and night, and then turned off at the 
conclusion of the 72-h noise phase.

We conducted 8-min focal-follows of each bird and 
defined interactions with an ethogram (Table 1) to collect 
behavioral data. Social interactions for the social network 
were defined by proximity (0.5 m horizontal distance). We 
chose this distance as our shortest perches were 0.5 m, as 
was the food/water tray available in rooms 1 and 3 of the 
aviary set-up (Fig. 1). Each data collection period consisted 
of focal-follows of every bird in a randomized order in both 
treatments (experimental and reference) daily through-
out a trial. During a focal-follow, one focal bird would be 
observed for 8 min, and only interactions with that focal 
bird were recorded. This process was repeated for each of 
the 12 birds in each data collection period. We had three 
different observers for data collection periods (only one 
observer was present at each data collection period), and 
these observers trained together on a pilot flock to deter-
mine whether observer bias existed. Using the pilot flock, 
the three observers that were present together focal-followed 
the same individuals at the same time to record interactions. 
Observers compared our recorded interactions, calculated 
social network metrics, and found minimal differences 
among our datasets. We confirmed no significant effect of 
observer using intraclass correlation coefficients. The three 
observers also rotated which flock they were observing every 
data collection period, so all three observed an equal number 
of high-noise or low-noise flocks across the two different 
aviaries and across experimental phases. Over the course 
of the study, 260 birds were observed for a total of 312 h of 
data collection (total birds had been 264, but four birds died 
early in their trials and were thus excluded from the data).

We constructed social networks using proximity data, 
and an interaction is defined as an individual within 0.5 m 
horizontally of other individuals (e.g., birds were on the 
same perch or using the same resource), but only with non-
aggressive sub-behaviors (shown in white, Table 1), as 
aggressive sub-behaviors (shown in gray, Table 1) tended 
to be the displacement of another individual to keep them 
away from their social group. The detailed non-aggressive 
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sub-behaviors described in our ethogram were for a different 
project; for our purposes, we were interested in the animals 
as a group, and so our intent was not to separate these sub-
behaviors when constructing our social network.

We then transformed interaction data into association 
matrices using the simple ratio index (SRI): x

x+ya+yb+yab
 where 

x is the total number of observations where “a” and “b” are 
associated, ya is the number of times the focal individual (a) 
was observed, yb is the number of times the interacting indi-
vidual (b) was observed, and yab is the total observations 
where the focal individual and interacting individual were 
each observed, but not together. An individual’s total num-
ber of observations (ya and yb) were calculated by including 
any appearance of the individual in a focal-follow recording 
(either as an interacting bird or during its own focal-follow) 
and summed once focal-follows were completed for all 12 
birds. The SRI value represents the strength of the relation-
ship between individuals (or the “edges” between the 
“nodes” in a social network), weighted by the frequency of 
interactions. All SRI values are from 0 to 1, 0 being the two 
individuals never interacted and 1 being that every time indi-
vidual “a” is observed, “b” is interacting with it. An indi-
vidual’s sociality can be measured using weighted degree, 
which is the sum of all SRI values associated with that indi-
vidual (or the sum of all edge values attached to the node in 
a social network). Thus, weighted degree accounts for both 

the total number of social partners that individual has and 
the frequency of interactions with those social partners.

At the group level, we measured global clustering coef-
ficient which measures how connected the overall social net-
work is by summing the number of closed triplets (a group 
of 3 birds all connected to each other) divided by the number 
of triplets of birds that are connected to each other in some 
way (either as a closed triangle or an open triplet with one or 
two edges) (Whitehead 2008). This generates a proportion 
between 0 and 1, where 0 is no three birds are all connected 
to each other, and 1 is every possible triplet in the network 
is closed. Weighted degree and global clustering coefficient 
are repeatable and consistent across time in other studies that 
lack an experimental intervention (Jacoby et al. 2014), mak-
ing them suitable candidate metrics to study the effects of 
noise disturbance on individual and group sociality, as any 
observed changes in these metrics could be attributed to our 
noise treatment. We calculated individual weighted degree 
and flock global clustering coefficient at the end of each 
experimental phase (72-h period; Before, Noise, and After).

To determine space use, we used a digital data collection 
sheet that logged time stamps for each entry. A time stamp 
was recorded at the start of the trial, and additional time 
stamps would record the exact time a bird switched rooms. 
These time stamps allowed us to determine the total number 
of seconds a focal bird spent in each of the three rooms in 
an aviary. We then calculated the relative proportion of time 

Table 1   Ethogram used for collecting behavioral and interaction data

Abbreviation Behavior Definition

F Feeding The bird is eating 

M Moving The bird moves between rooms.

W Water The bird is drinking water

B Cuttlebone The bird is using the cuttlebone

P Perched The bird is perched (sitting on perch or wall) 

G Preening The bird is grooming another bird

N Naptime The bird is sleeping

CS Courtship Male performs directed song and waltz or attempts to mount female 

S Sex The bird is mating

NS Nesting The bird is gathering supplies to add to nest or building nest 

K Peck The bird pecks at another bird

KB Pecked by The bird is pecked by another bird

D Displace The bird displaces another bird

DB Displaced by The bird is displaced by another bird

C Chase The bird engages in chasing another bird

CB Chased by The bird is chased by another bird

V Out of View The bird is somewhere out of view/observer lost sight of bird

O Other The bird is doing a behavior not listed 

Behaviors highlighted in gray were aggressive behaviors not factored into our analyses
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spent in each room for the focal bird for each phase (Before, 
Noise, After) by calculating the total seconds spent in each 
room and dividing this by 1440 s (total 24 min) because 
each individual had three 8-min focal-follow periods for 
each experimental phase. This resulted in a percentage value 
representative of the relative amount of time a bird spent 
in each room throughout the experiment. For our statistical 
analysis, we only included the proportion of time spent in 
the room that had the speakers playing in the Noise phase in 
the high-noise aviary. For the low-noise aviary, we did this 
same calculation for the room in closest physical proximity 
to the high-noise aviary.

Statistical analyses

We wrote a custom Python script to manipulate data which 
converted raw interaction data to a matrix of association 
indices. To process social network metrics, we used the 
“igraph” package in R (Csárdi and Nepusz 2006; R Core 
Team 2016). To analyze spatial use of the aviary with the 
onset of noise in our high-noise treatment, we calculated 
the difference in the proportion of time birds spent in the 
room with active playback from before to noise periods 
for the high-noise and low-noise treatments. For the lower 
noise treatment, we did this calculation for the room in 
closest proximity to the high-noise aviary. We used gen-
eralized linear mixed models (GLMMs) for each of our 
response variables, weighted degree (gamma model), GCC 
(Gaussian model), and space use (zero-inflated beta model) 
using the “lme4” package in R (Bates et al. 2015; R Core 
Team 2016). Our fixed effects were Treatment which had 
two levels (low noise and high noise), Phase, which had 
three levels (before, noise, after), and their interaction. 
Individual bird identity nested within trial was a random 
effect for all three models. For GCC, we used a logit trans-
formation to fit a normal distribution, as values were pro-
portions bound between 0 and 1. We obtained p-values for 
predictors using Wald tests.

Sampling bias

We recognize the risk of sampling bias when collecting 
social network data and did our best to mitigate poten-
tial risks. For example, an observer misidentifying an 
individual could generate a social network that fails to 
reveal the actual social structure, particularly with global 
metrics like global clustering coefficient (Davis et al. 
2018). Therefore, if an observer was unsure about the 
identity of an individual, they were trained to skip this 
social interaction rather than attempt to guess at the indi-
vidual’s identity, as missed interactions have less impact 
on overall network structure than misidentified interac-
tions (Davis et al. 2018). It is worth noting that local 

metrics, such as weighted degree used in this study, are 
more robust to observer error. All observers in this study 
trained on a pilot flock of birds to practice taking obser-
vations before the experiment began, and we feel confi-
dent in their ability to accurately re-sight color bands to 
record proximity interactions.

Results

Changes to individual sociality (weighted degree)

Sociality was significantly influenced by Treatment 
(p < 0.001), phase (p < 0.001), and their interaction (p < 0.001). 
The effect of Treatment (β1 = 0.19656 ± S.E. = 0.070) indicates 
that on average, weighted degree increased more in the high-
noise treatment compared to the low-noise treatment. The 
Noise phase increased weighted degree of birds compared 
to the Before phase (Noise, β2 = 0.12364 ± 0.058) meaning 
birds had on average more social partners and more interac-
tions with their social partners during Noise in both treat-
ments. Following the termination of the noise treatment in 
the After phase, weighted degree decreased to levels below, 
but not significantly different from, that of their original state 
in the Before phase (After, β3 =  − 0.10323 ± 0.053). These 
effects, as well as the interaction effects, are given in Table 2. 
These results reveal that birds experienced change in social-
ity directly related to the Noise phase of the experiment and 
returned to a similar social state as Before following the ter-
mination of noise in the After phase (Fig. 2).

Changes to flock (global clustering coefficient)

Global clustering coefficient (GCC), or overall connected-
ness of the network, was significantly influenced by Phase 
(F2,40, p = 0.013), but not by Treatment (F1,20, p = 0.054) or by 
their interaction (F2,40, p = 0.717). Individual factors on their 
own were not statistically significant, but the overall impact of 

Table 2   Results of gamma GLMM for weighted degree

Estimates are the coefficients for the LMM and their standard error, 
which gives the deviation from the intercept associated with factor levels

Mean weighted degree (gamma)

Estimate Std. error

Intercept 1.7441 0.067
Treatment, high noise 0.197 0.070
Noise 0.124 0.058
After  − 0.103 0.053
Treatment: Noise 0.236 0.090
Treatment: After  − 0.065 0.080
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Phase did demonstrate changes in clustering patterns associ-
ated with the onset of the Noise treatment (Table 3, Fig. 3).

Changes to space use

Our zero-inflated beta model results in two models, a con-
ditional model that predicts the actual non-zero value of the 

proportion of time spent in the room of interest and a zero-
inflation model that predicts the likelihood of observing a 
zero in a particular condition (Treatment and/or Phase). In 
biological context, a zero occurs when no individuals use the 
room of interest during the entire observation period. Our 
conditional model demonstrated that changes in space use 
for the room that received noise treatment were significantly 
influenced by the interaction of Treatment and Phase (F2,474, 
p = 0.001) (Table 4). Additionally, zero-values were more 
likely to occur in the After phase or when considering the 
interaction between Noise*Treatment and After*Treatment 
(Table 5). Post hoc paired Wilcoxon rank-sum tests reveal 
that the significant interaction results in the conditional 
model were driven by the change between Before and Noise 
and, interestingly, in opposite directions dependent on treat-
ment. Birds in the high-noise group increased their use of 
the room that received noise (p < 0.001), and birds in the 
low-noise treatment decreased their use of the room closest to 
the noise (p < 0.01) (Fig. 4). This differential response (posi-
tive response in high noise, negative response in low noise) 
led to our mixed model failing to detect the effect of Phase 
alone (F2,474, p = 0.956), as the mean difference was averaged 
between the two.

Fig. 2   Average weighted degree with corresponding ± one standard error bars of high-noise birds (n = 131) and low-noise birds (n = 129) 
throughout eleven trials (raw data)

Table 3   Results of LMM for GCC​

The Intercept term gives the grand mean across all factors, and 
Treatment and PhaseContrast can be interpreted using the sum-to-
one and sum-to-zero contrasts discussed in “Statistical analyses” in 
the “Methods.” Estimates are the coefficients for the LMM and their 
standard error, which gives the deviation from the intercept associ-
ated with factor levels

Mean global clustering coefficient (logit transformed to Gaussian)

Estimate Std. error

Intercept 1.850 0.235
Treatment, high noise 0.321 0.332
Noise 0.253 0.259
After  − 0.257 0.259
Treatment: Noise 0.269 0.367
Treatment: After 0.247 0.367
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Discussion

We found that individual sociality (weighted degree) and 
flock clustering (GCC) both increase with the onset of intro-
duced traffic noise, although the mechanism driving these 
social changes remains to be discovered. We also observed 
that removing the noise source led to the birds becoming 
less social (decrease in weighted degree) than in their pre-
disturbed state. Changes in social behavior occurred in both 
treatment groups (high and lower amplitude), revealing that 
even in low levels of traffic noise, birds adjusted their social 
behavior following some exposure to traffic noise sounds. 
However, the high-amplitude treatment birds experienced 
a more pronounced response in weighted degree compared 
to birds in the lower-amplitude groups. We recognize that 

a no-noise condition would have been ideal for this experi-
ment, but this was not feasible with our aviary resources, as 
the proximity of aviaries was such that we could not isolate 
the traffic noise sounds to the high-amplitude playback only. 
Therefore, we are not able to reject the possibility that the 
observed pattern is a result of the flock’s social progression 
over time; however, given the significantly steeper rate of 
change in the high-amplitude conditions (Figs. 2 and 3), we 
can conclude that the amplitude of traffic noise exposure 
playback affected social behavior.

Although we initially predicted that observed changes in 
social behavior would be driven by changes in space use, 
we observed conflicting results in changes in space use that 
were dependent on noise treatment. Unexpectedly, birds 
that received a high-amplitude treatment spent a higher 

Fig. 3   Average global clustering 
coefficient (logit transformed), 
with corresponding ± one stand-
ard error bars, of high-noise 
flocks (n = 11) and low-noise 
flocks (n = 11) throughout trials 
(raw data)

Table 4   Conditional model output for zero-inflated beta GLMM for 
space use

Estimates are the coefficients for the GLMM and their standard error, 
which gives the deviation from the intercept associated with factor levels

Mean % time in noise room (zero-inflated beta, conditional model)

Estimate Std. error

Intercept 0.609 0.250
Treatment, high noise  − 0.241 0.207
Noise  − 0.561 0.197
After  − 0.233 0.210
Treatment: Noise 0.953 0.265
Treatment: After 0.434 0.274

Table 5   Zero-inflated model output for zero-inflated beta GLMM for 
space use

Estimates are the coefficients for the GLMM and their standard error, 
which gives the deviation from the intercept associated with factor levels

Mean % time in noise room (zero-inflated beta, zero-inflation model)

Estimate Std. error

Intercept  − 0.679 0.474
Treatment, high noise  − 0.184 0.357
Noise 0.115 0.320
After 1.001 0.325
Treatment: Noise  − 1.180 0.476
Treatment: After  − 1.680 0.473
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proportion of time in the playback room during noise than 
before playback. Birds that received the lower-amplitude 
treatment decreased their use of the room in closest physi-
cal proximity to the high-noise treatment with the onset of 
noise, which was more in line with our initial predictions. 
Because our social responses (weighted degree and GCC) 
between treatment groups were positively correlated with 
experimental phase in both treatments, but we observed 
a divergent response dependent on treatment, we propose 
that changes in social behavior must be driven by alternative 
mechanisms.

In free-living conditions without space constraints, the 
densities of birds often decrease in areas with introduced 
experimental noise playback (Francis et al. 2009; McClure 
et al. 2013; Mahjoub et al. 2015; Swaddle et al. 2016; Gomes 
et al. 2021). However, this response is species-dependent 
with species such as house finches (Carpodacus mexicanus) 
and black-chinned hummingbirds (Archilochus alexandri) 
increasing densities in noise sites (possibly due to the dis-
persal of nest predators) (Francis et al. 2009) or not demon-
strating changes in their distributions in response to noise 
at all, as is the case with red-backed fairywrens (Hawkins 
et al. 2020). Our study was spatially constrained, with cap-
tive birds unable to fully escape noise playback.

In a similar captive study with domesticated zebra finches, 
birds spent less time in the highest amplitude space during 
acute playbacks of traffic noise (30 min) (Liu et al. 2020). 
The birds in our study were exposed to chronic traffic noise 
over 72 h, and the first measurement of changes in space 

use occurred after approximately 20-h habituation period to 
the onset of noise. As social interactions and relationships 
develop over longer time intervals, we therefore suggest that 
changes in space use are not the most likely mechanism for 
changes in social behavior in response to noise.

Despite the known interference of noise with communica-
tion regarding signal transmission, we observed increased 
social behavior in high-amplitude and lower-amplitude con-
ditions. Potential mechanisms for increased flock clustering 
and individual sociality could be increased perceived preda-
tion risk (Mahjoub et al. 2015) as noise decreases detection 
ability for low-frequency predator cues (Jung et al. 2020), 
and thus, increased flock density could serve as an antipreda-
tory strategy (Peacor and Lansing 2003; Owens et al. 2012). 
Indeed, increased vigilance behavior in experimental noise 
playback has been documented in mammals, birds, and 
fish (Voellmy et al. 2014; Meillere et al. 2015; Kern and 
Radford 2016). Free-living dwarf mongoose (Helogale par-
vula) and captive white-crowned sparrows (Zonotrichia leu-
cophrys) decreased feeding duration and increased vigilance 
decreased time spent foraging and increased time spent scan-
ning or vigilant (Ware et al. 2015; Kern and Radford 2016). 
Song sparrows (Melospiza melodia) increased vigilance or 
decreased foraging in playbacks of high noise from both nat-
ural (rivers) and anthropogenic (road) sources (Sweet et al. 
2022). Female house sparrows had shorter flushing distances 
when researchers approached nest boxes in areas with traffic 
noise playback (Meillere et al. 2015). Three-spined stickle-
backs reacted more quickly to a visual predator cue during 

Fig. 4   Changes in the average 
proportion of time spent in the 
room that received noise treat-
ment (high noise) or the room 
closest adjacent to the noise 
treatment (low noise) during 
the Noise phase throughout 
the trials for high-noise birds 
(n = 131) and low-noise birds 
(n = 129) with correspond-
ing ± one standard error bars 
(raw data)
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playback of boat noise (Voellmy et al. 2014). Across avian 
species, foraging and non-foraging group sizes decrease with 
relaxed predation risk (Beauchamp 2010), so our result of 
increased social connectivity in response to increased preda-
tion risk is consistent with this pattern.

Alternatively, or in addition to increased perceived preda-
tion risk, it is possible that the increased social response is 
acting as a social buffer to a stressor. Research on the effects 
of noise on glucocorticoid profiles of birds has yielded 
mixed results. For baseline corticosterone, house wrens 
from rural areas exposed to noise had elevated CORT and 
their urban counterparts did not, but captive zebra finches 
exposed to noise had lower CORT than their no-noise coun-
terparts (Davies et al. 2017; Zollinger et al. 2019). Nestling, 
but not adult, tree swallows (Tachycineta bicolor) exposed 
to noise in field conditions also had elevated baseline 
CORT, but nestling mountain white-crowned sparrows had 
depressed baseline CORT (Crino et al. 2013; Injaian et al. 
2018a). However, in nestling house sparrows, there was no 
apparent effect of exposed traffic noise to baseline CORT or 
stress response (Angelier et al. 2016). Although the impacts 
of noise exposure on the glucocorticoid profiles of birds 
remain subject to further investigation, one explanation for 
our observed increased social behavior could be social buff-
ering against changes to glucocorticoids. For example, in 
zebra finches, birds exposed to a mild stressor had reduced 
stress response if they were in the presence of a familiar 
conspecific (Emmerson and Spencer 2017). Additionally, 
we speculate that the observed increase of space use in the 
noise room for birds in the high-noise treatment could have 
been driven by a stress-freezing behavior (Korte et al. 2005; 
De Haas et al. 2012). We observed many of the birds in the 
high-noise treatment shifted to spending 100% of their time 
in the noise room with the onset of noise. We recommend 
further research on how social buffering can possibly medi-
ate the negative effects of noise and how stress response to 
noise can affect spatial decisions.

As noise is not limited to acoustic interference of com-
munication signals, cross-sensory interference could be 
another potential mechanism for changes in social behavior 
(Chan et al. 2010). For example, animals exhibit a damp-
ened response to visual cues in high-noise conditions, such 
as fewer cryptic prey located by great tits (Parus major) 
(Halfwerk and Van Oers 2020) and reduced response to 
attractive visual cues of male serrate-legged small treefrogs 
(Kurixalus odontotarsus) by females (Zhu et al. 2022). In 
high-noise environments, dwarf mongooses had delayed 
response to olfactory cues of predator feces (Morris-Drake 
et al. 2016). Social behavior is inherently a cross-sensory 
process (e.g., visual signals like baring teeth in primates, 
olfactory cues like scent marking in canids and felids, acous-
tic signals like duetting in songbirds), so there are many 

avenues in which noise could affect social interactions that 
are worth exploring in future studies.

Increased social behavior in urban-dwelling birds can 
have a variety of ecological implications for urban sed-
entary species. Both social network size and individual 
sociality affect disease transmission, as individuals with 
a high weighted degree have a disproportionate effect on 
the disease transmission throughout a population (Hamede 
et al. 2009; Rushmore et al. 2013). Thus, denser flocks of 
birds with more social constituents could alter the rate and 
prevalence of pathogen transmission. Urban-dwelling birds 
tend to have increased parasite loads compared to their rural 
counterparts, and increased social behavior potentially con-
tributes to this pattern (Giraudeau et al. 2014). Possible ben-
efits of increased social behavior include increased transmis-
sion of symbiotic microbes that change the gut microflora 
biodiversity in birds, increasing resistance to disease (Archie 
and Tung 2015; Levin et al. 2016). Additionally, denser 
group clustering can increase familiarity between conspecif-
ics, which can decrease individual aggressiveness (Geffroy 
et al. 2014).

The reduction in social behavior following disturbance in 
the After phase indicates a level of resistance to disturbance 
in domesticated zebra finches. While the resulting decreased 
levels of weighted degree surpassed their baseline levels in 
the Before phase, it would be relevant to extend the time-
line of observations to see if this would return to baseline 
after more time. Recovering from a disturbed social net-
work implies that remediation strategies for noise pollution 
could return birds to their natural social state, a phenomenon 
observed in bottlenose dolphin (Tursiops aduncus) social net-
works following the implementation of legislation limiting 
commercial fisheries in their habitat (Ansmann et al. 2012).

Due to the highly social nature of our study system—
zebra finches in the wild often live in a range of flock sizes, 
either smaller or larger than the one we have created here 
(Zann 1996; McCowan et al. 2015)—our results may not 
be generalizable to avian species that have different social 
systems (e.g., solitary birds). Indeed, previous research on a 
free-living population of red-backed fairywrens, a passerine 
that forms small familial groups, found that weighted degree 
decreased with the onset of experimental noise (Hawkins 
et al. 2020). Additionally, the challenges that free-living 
birds face, such as predation risk or access to resources, 
would likely result in selection pressures on populations that 
influence social dynamics that our captive population did 
not experience. Notably, previous research on the effects of 
early-life stress on social network position has demonstrated 
consistent results between zebra finches in captive studies 
and studies of wild populations (Brandl et al. 2019). Despite 
limitations inherent in a captive environment, we feel our 
results are relevant to interpreting the effects of noise on 
other highly social species that reside in urban areas in 
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which anthropogenic landscapes fragment habitat and vari-
able gradients of traffic noise are pervasive (e.g., great tits, 
rock doves (Columba livia), barnacle geese (Branta leucop-
sis), and gallahs (Eolophus roseicapilla)).

In conclusion, our study provides evidence that traffic 
noise alters individual sociality and flock clustering in a 
population chronically exposed to anthropogenic noise. We 
suggest that the observed changes are driven by factors other 
than noise-induced constraints on space use and propose 
hypotheses related to perceived predation risk, social buffer-
ing to stress, vigilance, and cross-sensory interference. The 
rebound of social behavior following the noise introduction 
suggests that remediation strategies for reducing noise pol-
lution in urban areas stand to benefit urban-dwelling species.
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