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Abstract  21 

 22 

The dynamical structure of ecological communities results from interactions among taxa that change with 23 

shifts in species composition in space and time. However, our ability to study the interplay of ecological 24 

and evolutionary processes on community assembly remains relatively unexplored due to the difficulty of 25 

measuring community structure over long temporal scales. Here, we made use of a geological 26 

chronosequence across the Hawaiian Islands, representing 50 years to 4.15 million years of ecosystem 27 
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development, to sample 11 communities of arthropods and their associated plant taxa using semi-28 

quantitative DNA metabarcoding. We then examined how ecological communities changed with 29 

community age by calculating quantitative network statistics for bipartite networks of arthropod-plant 30 

associations. The average number of interactions per species (linkage density), ratio of plant to arthropod 31 

species (vulnerability), and uniformity of energy flow (interaction evenness) increased significantly in 32 

concert with community age. The index of specialization H2’ has a curvilinear relationship with community 33 

age. Our analyses suggest that younger communities are characterized by fewer but stronger 34 

interactions, while biotic associations become more even and diverse as communities mature. These 35 

shifts in structure became especially prominent on East Maui (~0.5 my) and older volcanos, after enough 36 

time had elapsed for adaptation and specialization to act on populations in situ. Such natural progression 37 

of specialization during community assembly is likely impeded by the rapid infiltration of non-native 38 

species, with special risk to younger or more recently disturbed communities that are composed of fewer 39 

specialized relationships. 40 

 41 
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 43 

Introduction 44 

 45 

Biodiversity is organized into complex ecological networks of interacting species that change through time 46 

in response to ecological and evolutionary processes. Understanding these changes is important for 47 

predicting the impacts of global change on higher multispecies organization (Dell et al., 2019; Smith-48 

Ramesh et al., 2017; Staniczenko et al., 2017). A suite of analytical tools (Delmas et al., 2019) exist to 49 

quantify changing community structure in response to a variety of perturbations (Aizen et al., 2008; Fricke 50 

et al., 2017; Vacher et al., 2010). A major challenge remaining is to understand the configuration of 51 

ecological networks in a predictive context over long spatiotemporal scales (Poisot et al., 2015; 52 

Trøjelsgaard & Olesen, 2016; Yeakel et al., 2014). Consequently the effect of community assembly 53 

processes on the structure of interaction networks describing ecological communities remains poorly 54 

understood (Ponisio et al., 2019; Rominger et al., 2016).   55 

Early research on community assembly often ignored ecological interactions due to their complexity. 56 

Notably, neutral models for community assembly are even agnostic to organismal identity (Hubbell, 2001; 57 

Rosindell et al., 2011). As species identity and interactions began to be incorporated into models, the 58 

initial ‘assembly rules’ of Diamond (1975) highlighted 'forbidden species combinations' and nonrandom 59 

patterns of co-occurrence. A growing recent theme focuses on the effect of abiotic and biotic filters on a 60 

regional species pool (Münkemüller et al., 2020) with varying temporal and spatial filters dictating network 61 

structure (Peralta et al., 2019). However, much of this work ignores the role of evolution in shaping 62 

interactions through time. The extent of adaptation, and possible speciation, in shaping interactions as 63 

communities assemble, depends on the isolation of the community from the source pool (Gillespie et al., 64 

2020; Rosindell & Phillimore, 2011). At the extreme, evolution will have shaped interactions among every 65 

member of a community and the effects of filtering from a regional species pool might thus appear 66 

relatively weak (Ponisio et al., 2019). While most communities will include the role of both ecological 67 

filtering and evolutionary adaptation, our ability to thread complex ecological questions of network 68 

structure into an evolutionary framework has presented a major obstacle.  69 

 70 
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Recognizing this impediment, recent work has examined avenues to approach the problem. In particular, 71 

models of trait evolution on phylogenies provide a means to understand how eco-evolutionary feedbacks 72 

shape interactions as communities assemble (Segar et al., 2020). Likewise, based on theory showing 73 

how change across short time scales affects longer-term evolutionary dynamics, clade-level phylogenetic 74 

comparative approaches can be applied to community data to understand the dynamics of network 75 

structure (Weber et al., 2017). Both these approaches focus on the lineages that make up communities, 76 

asking how interacting sets of lineages affect each other. However, another approach is to focus explicitly 77 

on the community rather than individual lineages, connecting large-scale understanding of community 78 

interactions at a given time period in a spatially variable environment with the understanding of how the 79 

integrated structure of biodiversity changes through time. Such an approach attempts to address a major 80 

gap in the field by bridging macroecology and macroevolution (McGill et al., 2019) and hence showing 81 

how network structure changes across scales of space and time within a whole-community context 82 

(Weber et al., 2017).  83 

 84 

While theory indicates a clear role for biotic interactions leading to individual and community 85 

specialization over long-term community development, empirical evaluation has been challenging. One 86 

difficulty is in obtaining measures of community composition and interactions at relevant spatial scales, 87 

and another obstacle is the vast timeframe over which evolutionary phenomena occur. With their short 88 

generation times that are amenable to laboratory studies, microbial systems provide exceptional cases 89 

that document community assembly over evolutionary time scales (Boon et al., 2014; Koskella et al., 90 

2017; Koskella & Brockhurst, 2014; Venturelli et al., 2018). In particular, studies of the plant phyllosphere 91 

showed a more prominent role of nonneutral selection over time and an increase in the strength of biotic 92 

interactions and community cohesion (Morella et al., 2020). However, to infer the role of interactions in 93 

community assembly of longer-lived macroorganisms requires very particular systems. Here, we make 94 

use of two sets of circumstances that, together, provide an extraordinary opportunity to assess the nexus 95 

of ecological and evolutionary community assembly in the context of interaction networks.  96 

 97 
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First, we use the system provided by the Hawaiian Islands. Islands in general provide discrete 98 

communities that can be used for natural experiments in interaction dynamics (Brodie, 2017; Castro-Urgal 99 

& Traveset, 2014; Olesen et al., 2002). In particular, oceanic archipelagos formed in situ over millions of 100 

years offer the opportunity to study species interactions over evolutionary timescales (Hembry et al., 101 

2018; Ponisio et al., 2019; Rominger et al., 2016; Trøjelsgaard et al., 2013). Moreover, the geological 102 

series of islands in the Hawaiian archipelago represents a chronosequence (Vitousek, 2002; Walker et 103 

al., 2010); each substrate age represents communities of different ages, ranging from ~ 50 years to ~ 5 104 

Myr (Shaw & Gillespie, 2016). Notably, the native montane forest of Hawaii is dominated by just two 105 

canopy tree species (Metrosideros polymorpha and Acacia koa), making it relatively simple ecologically 106 

and hence more amenable to capturing and characterizing whole communities. 107 

  108 

Second, we make use of the emerging field of DNA metabarcoding (Krehenwinkel, Wolf, et al., 2017; Yu 109 

et al., 2012), which makes a comprehensive analysis of taxonomic composition possible, offering the 110 

opportunity to simultaneously assess thousands of species rapidly, offering enormous potential for 111 

reconstructing complex ecological networks (Clare, 2014; Hrček & Godfray, 2015; Vacher et al., 2016). 112 

Relative sequence abundances offer a proxy for interaction strength (Lim et al., 2021), providing greater 113 

reliability for co-occurrence studies to measure biotic associations (Bálint et al., 2018; Mata et al., 2021). 114 

Combining high-throughput sequencing with theoretical approaches, such as statistical modeling (Faust & 115 

Raes, 2012; Newman & Girvan, 2004) and machine learning (Bohan et al., 2011), shows considerable 116 

promise in helping to close the gap on the historical impediments for comprehensive quantification of 117 

interactions in ecological communities. 118 

 119 

Here we use semi-quantitative DNA metabarcoding to build networks of arthropod-plant associations at 120 

11 sites across the Hawaiian chronosequence, using the substrate age at a site as measure of 121 

community age, and then use those networks to test a range of expectations on how ecological and 122 

evolutionary processes shape community structure over long timescales (e.g., Table 1). We expect 123 

network size - both the number of nodes and number of links - will increase with community age, but 124 

disproportionately, as younger communities gain taxa through colonization only and older communities 125 
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assemble through colonization and evolutionary processes. This allows tests of the following hypotheses 126 

for evolutionary assembly of networks (Figure 1): (H1) Starting from bare lava, early successional 127 

communities offer low resource diversity yet are necessarily composed of assemblages from nearby 128 

species pools. Therefore, younger communities will have a high proportion of generalists – a subset of 129 

the nearby species pool most likely to persist without particular interaction partners – but greater 130 

interaction frequency on fewer interaction pathways because of resource heterogeneity. (H2) The set of 131 

biotic interactions that a given taxon will experience will decrease with community age, and the evenness 132 

of the interactions among resources will increase, resulting in greater network specialization (Ponisio et 133 

al., 2019; Rominger et al., 2016). One ideal component of this study is the large temporal span of time for 134 

community assembly. We can assume that younger communities will gain taxa only through colonization 135 

given that they are not established long enough for in situ speciation to take place. Of course, older 136 

communities will assemble through colonization and evolutionary processes. We cannot tease apart the 137 

effects of both processes at the oldest sites, but we can compare the youngest to oldest sites and their 138 

related ecological networks for signatures of assembly after evolutionary processes have taken effect. 139 

With an increasing number of taxa that have evolved together in a community it follows there will also be 140 

an increase in the specialization of the interactions among these species that may be detectible at the 141 

network architecture level.  142 

Materials and Methods 143 

Site selection methods 144 

The Hawaiian Islands are formed as the Pacific plate moves northwestward across a stationary volcanic 145 

hotspot, therefore the archipelago represents a chronosequence of geological age from the youngest 146 

island (Hawaii, ~0–0.5 Myr), to the oldest high island of Kauai (~5 Myr), (Clague, 1996). Discrete 147 

volcanoes within islands present additional contrasts in geological age, and the underlying substrate age 148 

has been mapped in fine detail (Wolfe & Morris, 1996). Metrosideros polymorpha (Myrtaceae) is the 149 

dominant canopy tree in these forests across islands, with patches of sub-dominant Acacia koa 150 

(Fabaceae) and numerous associated understory trees, shrubs, herbs, and ferns (Gagne & Cuddihy, 151 

1990).  152 
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 153 

We selected 14 sites of varying geologic age, ranging from 50 to 4.15 x 106 years old, across four islands 154 

of the archipelago: Hawaii, Maui, Molokai, Kauai (SI Figure 1, SI Table 1). To control for climatic 155 

differences and disturbance across sites, sites were constrained to ranges of elevation (1000-1300 m) 156 

and precipitation (average annual precipitation 2500-3000 mm) and within accessible protected forest 157 

lands (Gap Analysis Project | U.S. Geological Survey, 2019; Giambelluca et al., 2013). 158 

 159 

For each potential site, spatial polygons were created based on the intersections of these layers and 160 

initial field reconnaissance to confirm remotely sensed data and feasibility of access. Within these 161 

potential site polygons, airborne high-resolution laser scanning from the Global Airborne Observatory 162 

(GAO; formerly named Carnegie Airborne Observatory; Asner et al. (2012)) was used to generate forest 163 

canopy height profiles using a physical model described in Asner et al. (2008).  The ground digital 164 

elevation model was also generated using the method of Asner et al. (2007).  The data were collected at 165 

4 laser shots per square meter, processed to height profiles at 5 m resolution and then averaged at a grid 166 

cell spacing of 30 m (SI Figure 2 and SI Table 2). 167 

 168 

20 randomized candidate plots were generated for each site, with the intention of ultimately selecting six, 169 

15 m-radius plots. These 20 randomized candidate plots were constrained to be a minimum distance of 170 

200 m from all other plots and to be within the top 40% quantile of LiDAR-estimated canopy heights. 171 

Candidate plot generation was achieved with custom scripts in the R programming language (R Core 172 

Development Team, 2019) using a simple rejection sampling algorithm: random sets of spatial locations 173 

are generated within pixels of sufficient canopy height until a set of locations is found which meet the 174 

requirement of being 200 m distant. The minimum distance of 200 m was a constraint to maximize 175 

independence among sampling areas while capturing more spatial heterogeneity within sites. 176 

 177 

At each site, each of the 20 candidate plots were ground-truthed to confirm the plot was dominated by 178 

native vegetation and minimally impacted by human use and/or invasive vertebrates. This ground-truthing 179 

process eliminated a variable number of the initial 20 candidate plots. If fewer than six final plots 180 
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remained after ground-truthing, another set of candidate plots were generated and ground-truthed to find 181 

a final set of six plots. If more than six plots remained after ground-truthing, the final six plots were 182 

selected by randomly selecting from the ground-truthed plots. 183 

 184 

Collection protocol 185 

We collected arthropods using vegetation beating at six 15 m radius plots per site during May 2015 186 

through January 2016, with plots sampled randomly to avoid seasonality effects on arthropod 187 

composition. To ensure equal sampling effort across sites, sampling was limited to a total of 420 seconds 188 

in each plot. If after all arthropod collection processing steps (described below) the total vegetation 189 

beating time for a plot was not within one standard deviation of 420 seconds sampling effort then that plot 190 

was dropped from further analyses, resulting in a total of 50 plots from 11 sites (SI Table 1). As we were 191 

interested in characterizing plant-arthropod associations, we sampled plant genera in each plot 192 

proportional to their relative abundance. Percentage cover of each understory plant genus was estimated 193 

visually. Where plants could not be identified to the genus-level, we grouped them into morphotaxa and 194 

sampled them accordingly. Vegetation beating was performed by placing 1 m x 1 m white beating sheets 195 

under individual plants and gently agitating the foliage using a one meter length pvc pole for timed second 196 

intervals. Arthropods dislodged by the agitation which drop onto the beating sheet are aspirated into a vial 197 

containing 95% ethanol. Each plant associated arthropod community sample was transferred to one or 198 

more 2 ml vials containing fresh 95% ethanol, labeled, and transported to the lab where it was stored at -199 

20 °C.  200 

 201 

Specimen sorting and DNA extraction 202 

 203 

To reduce bias due to differently sized individuals contributing disproportionate amounts of DNA (Elbrecht 204 

& Leese, 2015) specimens were sorted following procedures described in Lim et al. (2021). Each plant 205 

beating sample was sorted in petri dishes on 1 mm graph paper under a stereoscope into four size 206 

categories (0-2 mm, 2-4 mm, 4-7 mm, 7 mm and up) based on the body size distribution found in a 207 

common Hawaiian ecosystem. Individuals in each size category were counted and placed with fresh 208 
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ethanol into a single well in a 96-well plate.  Thus, all individuals from a particular plant genus at a 209 

particular plot have their DNA extracted together and are prepared together using a dual-indexing 210 

strategy described below into NGS amplicon libraries for sequencing. The Collembola had considerably 211 

higher abundance than the remaining arthropods in the small size categories, therefore Collembola were 212 

separated into 1.5 ml Eppendorf tubes and processed for DNA extraction and sequencing parallel to the 213 

remaining arthropod community samples. 214 

 215 

Specimens from public and private collections were also used to generate a DNA barcode reference 216 

library for 57 species. We used whole bodies of species from private collections where available because 217 

these were easiest to generate sequences from preserved material (86% barcode generation success). 218 

Genomic DNA extraction of size sorted arthropod-plant community samples was performed in 600 µl 219 

volumes using the Tissue protocol described in the Qiagen Puregene kit modified for automation (Lim et 220 

al., 2021). DNA was eluted in 50 ul DNA Hydration Solution.  221 

 222 

Sequence analysis 223 

Each size sorted sample and a PCR negative for each 96 well plate (containing no template DNA) was 224 

amplified with a primer combination (ArF1/ Fol-degen-rev) (Gibson et al., 2014; Yu et al., 2012) that 225 

targets a 418 bp fragment in the barcode region of the Cytochrome Oxidase I (COI) gene. This primer 226 

pair has been suggested as the most appropriate for capturing arthropod diversity in DNA metabarcoding 227 

studies (Elbrecht & Leese, 2015) and has been shown to reliably amplify the Hawaiian arthropod 228 

community (de Kerdrel et al., 2020). PCRs were run in 10 μl volumes using the Qiagen Multiplex PCR kit 229 

at an annealing temperature of 46 °C, with 1 μl of DNA and 0.5 μl of each 10 μM primer. A first round of 230 

PCR consisted of 32 cycles using tailed primers; each primer additionally had a unique 6 bp inline 231 

barcode so that multiple plates of the same primer can be pooled together. PCR products were cleaned 232 

of residual primer using a 1x ratio of SPRI beads (Sera-Mag™) and pooled together based on band 233 

intensity (i.e., DNA concentration) on an agarose gel relative to a DNA ladder (NEB) and using the Gel 234 

Doc XR System with the Quantity One software (Bio-Rad). A second indexing PCR of 6 cycles was 235 

performed with the pooled amplicons to introduce dual indexes and Illumina® TruSeq sequencing 236 
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adapters to 5′-tails of the locus-specific PCR primers (Lange et al., 2014), with a final 5'-3' layout as 237 

Illumina adapter, 6 bp inline barcode, PCR primer as described in de Kerdrel et al. (2020). The indexed 238 

products were cleaned again with SPRI beads, quantified by electrophoresis, and then pooled in equal 239 

amounts into a single tube. The samples were then sequenced on an Illumina® MiSeq using V3 (600 240 

cycles) chemistry according to the manufacturer’s protocol (Illumina, San Diego, USA). We aimed for a 241 

total of 30,000 reads per sample. Each PCR negative was sequenced with each plate of specimen 242 

libraries regardless of the absence of detectable PCR product on a gel. 243 

 244 

We generated 2276 metabarcode libraries with each library representing the total arthropods collected for 245 

each plant genus for each plot (a sampling event), sorted into one of four size categories (a sequencing 246 

pool). Sequences were demultiplexed on Illumina® BaseSpace by sample well based on the two 8-bp 247 

indexes with no mismatches allowed. We merged paired reads using PEAR (Zhang et al., 2014) with a 248 

minimum overlap of 50 bp and a minimum quality of Q20. Merged reads were quality filtered (≥90% of 249 

bases ≥Q30) and transformed into fasta files using the FastX Toolkit (Gordon & Hannon, 2010). The 250 

resulting fasta files were demultiplexed by PCR primer and 6 bp inline barcode combination, using the 251 

forward and reverse primer sequences as indices with the grep command in UNIX, and the primer 252 

sequences were then trimmed using the UNIX stream editor. 253 

 254 

Rarefaction and pseudogene removal 255 

We rarefied each sample using a custom unix command that drew from the total reads of the 256 

metabarcoding analysis a number of reads that was equivalent to the numerical abundance of individual 257 

arthropods counted into each well of the 96-well plate, repeating the draw of sequences 100 X with 258 

replacement. The process of rarifying by repeated random draw based on the expected individual 259 

specimen abundance should correct the disproportionate abundance of sequences that accumulate for 260 

larger specimens compared to smaller specimens, due to the amplification bias that is inherently caused 261 

by differential starting tissue amounts (Lim et al., 2021). 262 

 263 
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We generated zero-radius OTUs (zOTUs), from the rarefied raw reads with the unoise3 command (Edgar, 264 

2016) following the recommended protocols in the USEARCH v11 pipeline (Edgar, 2010). Specifically, 265 

the quality trimmed reads were dereplicated and clustered into zOTUs using the unoise3 command in 266 

USEARCH. Chimera were removed de novo in USEARCH. The resulting zOTUs were compared against 267 

the NCBI Genbank database and our custom-made DNA reference library for Hawaiian taxa using 268 

BLASTn with a maximum of 10 target sequences. All non-arthropod zOTUs were removed after which 269 

5,046 zOTUs remained. We aligned these 5046 zOTUs using default settings in Clustal Omega (Sievers 270 

et al., 2011). To remove putative pseudogenes from the zOTU dataset we ran metaMATE with default 271 

specifications and the example specifications file to detail how per-zOTU read frequencies should be 272 

assessed (Andujar et al., 2021). Using the output of metaMATE we applied the least stringent Numt 273 

removal strategy so that we could retain as many putatively true zOTUs as possible (Graham et al., 274 

2021), this reduced the number of zOTUs from 5046 to 4330.  275 

 276 

Taxonomic matching and abundance estimates 277 

About a quarter of the zOTUs (n = 901) were matched to the Blast or voucher DNA reference library with 278 

less than 85 percent similarity. To validate the taxonomic identification for each zOTU at higher taxonomic 279 

levels (e.g. order, family) we compared the top 10 blast and reference library hits with phylogenetic 280 

clustering from a ML tree. A ML tree with bootstop autoMRE bootstrap support was generated by running 281 

RAxML-HPC v.8 on XSEDE on the Cipres science gateway (Miller et al., 2010) under the GTR model with 282 

a gamma distribution plus invariant sites. For 28 zOTUs taxonomic order could not be determined via 283 

sequence similarity to databases or phylogenetic clustering and were thus removed from downstream 284 

analysis. Taxonomic assignment was considered trustworthy if the percent similarity of the metabarcoding 285 

sequence to the NCBI GenBank or DNA reference voucher was: between 88-94% for family, between 286 

94%-98% for genus and greater than 98% percent similarity for species, while matches below 88% 287 

similarity were made only to order. These threshold values were arbitrarily chosen based on previous 288 

investigations using mock communities or photo voucher integrative taxonomy of select taxa from the 289 

same high-elevation wet forest communities of Hawaiian arthropods and amplified using the same COI 290 

marker (Krehenwinkel et al. 2017, de Kerdrel et al. 2020).  291 
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 292 

To create a table with OTU abundances for community analyses we mapped a query set of raw reads to 293 

the filtered and taxonomically identified search database of zOTUs in USEARCH v11 (Edgar, 2010) using 294 

the otutab command with the default 97% percent similarity mapping threshold. After OTU mapping and 295 

read removal based on the PCR negative control sequencing pool the number of unique sequences was 296 

reduced by 133 zOTUs to 4197 OTUs. 297 

 298 

In order to use relative sequence abundance of arthropod OTUs as an approximation of arthropod-plant 299 

associations, we adopted a semi-quantitative processing pipeline (Lim et al., 2021) to ameliorate 300 

differences in sampling effort, body size of specimens, and genomic procedures. To review, (1) for each 301 

site (community) there was six plots, (2) within each plot each plant taxon was sampled by seconds of 302 

time corresponding to its relative abundance in the plot, (3) we sorted bulk arthropod samples by size and 303 

counted the individuals, (4) sequences were generated using a DNA region with demonstrated success 304 

for Hawaiian arthropod taxa (de Kerdrel et al., 2020) and false reads (pseudogenes) were removed 305 

(Graham et al., 2021), (5) we randomly sampled the sequencing reads based on the count of individuals 306 

in each size class, and finally, (6) sequence reads were summed across size classes and plots (Figure 307 

1b). 308 

 309 

Calculation of quantitative ecological network metrics 310 

 311 

Using bipartite networks of arthropod-plant associations at each community age, we tested our 312 

hypotheses by calculating quantitative (weighted) and qualitative (binary) network metrics (Table 2) 313 

expected to occur in the transition from younger communities to older communities (Table 1). Data 314 

processing and statistical analyses were performed in R version 4.0.2. To distinguish between taxa that 315 

have colonized the archipelago historically or more recently, we characterized the probable native and 316 

non-native composition for each aged community based solely on sequence characteristics as outlined in 317 

Andersen et al. (2019). The approach considers both the evolutionary distances between species and the 318 

genetic diversity within species. Sequence characteristics of OTUs show a higher amount of neutral (or 319 
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otherwise) sequence variation among endemic taxa, as they have evolved from a common ancestor on 320 

the islands, when compared to non-native taxa that evolved elsewhere and have no close relatives. The 321 

approach was implemented into a machine learning strategy using random forests in sklearn and 322 

packaged with multiple utilities and a graphical user interface in NIClassify 323 

(https://github.com/tokebe/niclassify). By annotating the nativeness status for sequences which are 324 

identifiable to species level (98% or above match to databases), NIClassify can accurately assign status 325 

for the remaining sequences. As part of the NIClassify classifications an output of accuracy is obtained by 326 

withholding species with known statuses during the training, and then comparing the results for those 327 

samples based on the classifications. These samples are randomly selected by the program, so biases in 328 

regards to well- versus under-sampled taxa are not expected to influence the training.  329 

We aggregated the sequence abundance for each arthropod OTU according to its association with a 330 

particular plant genus within a site. For example, we found the sum of the sequence abundances for OTU 331 

‘X’, a Hemiptera from genus Nesodyne, that was associated with (i.e., collected on) plants in the genus 332 

Coprosma. We configured the arthropod-plant abundance data as a matrix with arthropods as columns 333 

and plants as rows; there were 11 matrices, one for each site of different substrate age. As such, we 334 

measure the strength of an interaction as the sequence abundance of the arthropod that was collected on 335 

a particular plant species, as it is an aggregated assessment of the arthropod-plant association across 336 

multiple plants and multiple plots within a site.  We also graphed quantitative and qualitative metrics for 337 

matrices of arthropod-plant interactions at each plot within a site. However, we constrain our discussion to 338 

the aggregated network data because our confidence in the network statistics increases with the size of 339 

the networks. This was a particular issue for some plots at the youngest and most depauperate sites, 340 

where < 4 plant species were sampled within the plot radius and networks would be small. 341 

We plotted the ecological network matrix for each community age using the ‘plotweb’ command in the R 342 

package bipartite. For each network, lower bars represent plant abundance based on sampling time and 343 

upper bars represent arthropod abundance based on OTU frequency. For visual simplicity, we grouped 344 

upper bars by arthropod order. As described above, link width represents relative read abundance of 345 

https://github.com/tokebe/niclassify
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arthropod OTUs collected on each plant taxon (Alberdi et al., 2019); in other words, link width 346 

corresponds to the relative frequency of each association.  347 

The information contained in ecological networks can be summarized in various ways. Qualitative 348 

properties used to describe networks, which treat all interactions as equal irrespective of their magnitude 349 

or frequency, tend to be highly sensitive to variation in sampling effort (Goldwasser & Roughgarden, 350 

1997; Martinez et al., 1999). Quantitative metrics that weight each taxon by the total amount of its 351 

incoming and outgoing biomass flows (Bersier et al., 2002) are more robust to sampling differences 352 

(Banašek-Richter et al., 2004). Using the ‘networklevel’ commands in the R package bipartite (Dormann 353 

et al., 2008) we calculated six quantitative indices for our bipartite networks of arthropods and associated 354 

plants: (1) linkage density, (2) connectance, (3) generality, (4) vulnerability, (5) interaction evenness, and 355 

(6) the index of specialization H2’ (Table 2), that we reasoned would be associated with network 356 

specialization (Table 1). We converted each matrix to a binary presence-absence matrix and calculated 357 

the qualitative equivalent of: (1) linkage density, (2) connectance, (3) generality, and (4) vulnerability. We 358 

additionally calculated the ratio of resource species to consumers for the qualitative matrices, which is the 359 

ratio of plant genera to arthropod OTUs. These metrics represent the most fundamental biological and 360 

ecological properties of a community. We reasoned that the simplest metrics are a reasonable starting 361 

point given the limited understanding of how evolution shapes network structure, which would be 362 

necessary to justify the application of more involved network metrics. Further, these metrics have values 363 

that are interpretable with respect to their effect on specialization over time. 364 

Tests of network metric significance and correlation between network properties 365 

 We used null models (Vázquez & Aizen, 2006) to test the statistical significance of empirical 366 

network metric values for the weighted data. For each weighted empirical network, we generated 1000 367 

synthetic networks so that the total number of interactions and the identity of interaction partners is 368 

maintained while the weight associated with each interaction is shuffled (Staniczenko et al., 2013). With 369 

this simple quantitative null model, the distribution of interaction weights is conserved, along with the 370 

pattern of binary interactions, but not the identities of which interaction partners are associated with which 371 

weights. In terms of biological reasoning, the null model assumes that the identities of any two species 372 
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involved in a non-forbidden interaction are unimportant for explaining network metrics. We calculated p-373 

values and z-scores for each combination of empirical network and metric by comparing the observed 374 

metric value calculated from the empirical network to the distribution of metric values calculated from 375 

synthetic matrices generated by the null model, i.e., the p-value quantifies how unlikely the observed, 376 

empirical metric value is to have been generated by the null model.  377 

To compare the effect of community assembly on network size, arthropod diversity, and network metrics, 378 

we regressed the dependent variables by mean substrate age for each collection site. The untransformed 379 

substrate age data departed significantly from normality, so comparisons were performed using 380 

regressions on natural log-transformed substrate age data (Cowie, 1995; Gruner, 2007). We tested the 381 

significance of the correlation between network size and community age, each network metric and 382 

community age, and each network metric and network size, using Spearman's correlation tests. 383 

Additionally, we fit a second-degree polynomial equation for the curvilinear relationship between the index 384 

of specialization H2’ and community age. 385 

Results 386 

Composition of communities 387 

Sites were selected using climatic and lidar data to restrict abiotic and biotic variation between sites so 388 

the effect of community age on ecological network structure could best be explored (SI Table 1 and SI 389 

Table 2). There was some variation in forest structure as would be expected with sites during primary 390 

succession (e.g., forest height and density changes) (SI Figure 2). Our ecological networks document 34 391 

plant genera and 3517 arthropod OTUs, distributed across six classes: Entognatha, Crustacea 392 

(Amphipods and Isopods), Insecta, Arachnida, Chilopoda, and Diplopoda. The arthropod-plant 393 

associations in our networks represent many kinds of trophic and non-trophic biotic interactions that 394 

capture functional differences among species of the understory of the Hawaiian native forest. The 395 

barcode reference library increased taxonomic assignment from low taxonomic resolution to genus or 396 

species for 401 OTUs. Confident assignment was accomplished for a percentage of OTUs at each 397 

taxonomic level: Order 99.9%, Family 67.3%, Genus 38.1% and Species 24.9% (SI Table 3).  398 

 399 
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There were 2747 OTUs classified as native and 770 classified as non-native using NIClassify. The overall 400 

accuracy for our dataset predictions of nativeness using NIClassify was 99.9%. Of the native OTUs, 401 

Hemiptera were the dominant order (652 OTUs), followed by Araneae (467 OTUs), Diptera (327 OTUs), 402 

and Coleoptera (266 OTUs). We found a highly significant (SI Table 4) increase in network size with 403 

community age for both nodes and links, with a disproportionate increase in the number of links 404 

(interactions) after several hundred years of community development (Figure 2a). The number of native 405 

arthropod species increases dramatically over both ecological and evolutionary time while the number of 406 

non-native arthropod species remains relatively steady (Figure 2b). The abundance of native and non-407 

native arthropods peaks in the middle-aged communities but the proportion of non-native taxon 408 

abundance is highest in younger communities (Figure 2c). Plant diversity increased with community age 409 

(Figure 2d).  410 

 411 

Arthropod-plant association networks 412 

 413 

Arthropod OTU richness, plant diversity and number of interactions increased with the geologic age of the 414 

site. Bipartite networks of younger communities contain linkage widths between the few dominant taxa 415 

(e.g., Hemiptera and Metrosideros) while older communities contain smaller linkage widths representative 416 

of the many more associations distributed among the greater diversity of both higher and lower level taxa 417 

(Figure 3, SI Figure 3). 418 

 419 

For the null model analyses of the weighted matrices, some observed network metric values were not 420 

significantly different (p<0.05) from metric values produced from the synthetic matrices (SI Table 5, SI 421 

Figure 6).   422 

 423 

Results of the Spearman’s correlation tests show linkage density (average number of interactions per 424 

species), network vulnerability (a measure of the ratio of plant generic richness to arthropod OTU 425 

richness) and interaction evenness (a measure of the uniformity of energy flows along different pathways) 426 

increased significantly with community age (Figure 4, Table 3). Generality (a measure of the ratio of 427 
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arthropod OTU richness to plant generic richness) and the index of specialization H2’ both increased with 428 

community age but were not significantly positively correlated. The index of specialization H2’ has a 429 

curvilinear relationship with community age, first decreasing then increasing. A second-degree polynomial 430 

provides the best approximation of the relationship between the H2’ and community age (F = 6.85, R2 = 431 

0.5392, p < 0.05). By beat sampling and sequencing all plant-associated arthropods, our sampling of 432 

arthropod taxa is at finer taxonomic resolution than plants. As a result, generality (links/arthropods) is very 433 

close arithmetically to linkage density (links/arthropods + plants) in our dataset because the number of 434 

arthropod OTUs is many times greater than the number of plant genera for all communities. Connectance 435 

(proportion of realized interactions) was not significantly correlated with increasing community age, but 436 

instead is highest at the youngest site, and relatively constant for the remainder of sites.  437 

 438 

For the qualitative metrics calculated from the binary matrices, linkage density (links/species), 439 

connectance links/(arthropods*plants), and generality (links/arthropods) were significantly correlated with 440 

community age, while vulnerability (links/plants) and the ratio of resource species to consumers 441 

(plants/arthropods) was not (SI Figure 4, SI Table 4). The results from plot level analysis are consistent 442 

with the site level data and the variance among plots at the same sites is minimal (SI Figure 7). These 443 

results help corroborate the trend of increasing specialization over time. 444 

 445 

For the regressions of network metrics against network size, with the exception of generality, quantitative 446 

network metrics were not significantly correlated with network size (SI Figure 5A, SI Table 4). By contrast, 447 

qualitative metrics were significantly correlated with network size with the exception of the ratio of 448 

resource species to consumers, and vulnerability (SI Figure 5B, SI Table 4). 449 

 450 

Discussion 451 

Using a dataset of biotic associations during the course of community assembly here we present strong 452 

evidence of increasing specialization within arthropod communities through evolutionary time. Our DNA 453 

metabarcoding data have allowed us to collect a large sample of the arthropods from the understory of 454 

Hawaiian forests, representing a broad swath of trophic and non-trophic arthropod-plant associations. As 455 
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expected, the qualitative metrics were strongly biased by network size (Banašek-Richter et al., 2004; 456 

Goldwasser & Roughgarden, 1997) and showed higher linkage density, generality, vulnerability, 457 

interaction evenness, and lower connectance in older communities, because the diversity of plants and 458 

arthropods was higher in these communities (SI Figure 4, SI Table 4). Our null model analysis helped to 459 

demonstrate that the distribution of link weights was itself an important feature of the observed network 460 

structure (i.e., not which species they are between). We present clear signatures of change in 461 

quantitative, weighted network metrics with community age (Figure 4, Table 3) that resulted from 462 

changing community composition and ecological dynamics.  463 

  464 

Ecological processes dominate younger communities  465 

  466 

Theory suggests that the composition of the youngest communities is shaped through colonization from a 467 

regional species pool. This expectation is supported by our results, with the younger communities having 468 

significantly lower linkage density, vulnerability, and interaction evenness (Figure 4). These results 469 

indicate that species in younger communities are interacting with greater frequency along less uniform 470 

interaction pathways, compared to species assemblages at older sites. However, notably the very 471 

youngest site, the 1973 lava flow, is an outlier. At the 1973 lava flow, linkage density is high (LD = 24.2), 472 

likely reflecting strong environmental filtering and an opportunistic community of generalist species 473 

(Bufford et al., 2020; Kortsch et al., 2015) suited for survival during primary succession. At other young 474 

sites, linkage density is low, from < 10 (Tree Planting Rd.) whereas it peaks and levels off at Maui (LD = 475 

38.6) and Kauai (LD = 38.9), respectively. Thus, linkage density was low at young sites with low resource 476 

diversity while the diversity of interactions increased over evolutionary time in step with increasing 477 

community complexity. 478 

 479 

Interaction evenness was low, as expected, on the youngest sites, again with the exception of the 1973 480 

flow. As a measure of the uniformity of energy flows along different pathways, we expected interaction 481 

evenness to be low in young communities because some interaction partners would dominate the 482 

associations in the network. For example, a large proportion of interactions on the youngest sites (< 300 483 



19 
 

years old) belong to the associations of Hemiptera and Collembola species with early successional plant 484 

species, Metrosideros polymorpha and Dicranopteris linearis (Figure 3, SI Figure 3). Low interaction 485 

evenness has also been demonstrated among bees and wasps and their associated natural enemies 486 

(e.g. parasitoids) under conditions of intensive management (Staniczenko et al., 2017; Tylianakis et al., 487 

2007). The early successional communities in Hawaii are ecologically similar to highly modified sites, due 488 

to the recent disturbance from lava and the paucity of resource diversity. We suggest that the higher 489 

interaction evenness at the 1973 lava flow is due to the extremely limited resources (plants) on the 490 

sparsely vegetated lava substrate. At this site colonists may be joined by a relatively large representation 491 

of transient arthropods, which may be less host-specific and appear randomly associated with the 492 

available plants, increasing interaction evenness. Connectance also peaked in the youngest community 493 

(1973 lava flow) likely due to the greater representation of generalists within this network (Kortsch et al., 494 

2015; Ponisio et al., 2019).  495 

 496 

The network metric values are less consistent among the youngest sites compared to the older sites 497 

(Figure 4). This is likely due to the relatively rapid changes in community composition in early primary 498 

succession (Atkinson, 1970; Roderick et al., 2012) compared to older established sites. An alternative 499 

explanation is that change in the composition of the understory plants (Figure 3 and SI Figure 3) and 500 

canopy structure (SI Figure 2 and SI Table 2) results in the network metric variation at the youngest sites. 501 

The higher variation among network values at the youngest sites may also point to the different rates of 502 

specialization and adaptation among different lineages of arthropods. Among functional groups of beetles 503 

(e.g., xylophages, fungivores, predators), community composition and network specialization changed 504 

differently during early succession (Wende et al., 2017).  505 

 506 

Specialization increases through evolutionary time 507 

  508 

For a given taxon on average, the number of biotic interactions it is involved in decreases with community 509 

age, resulting in greater network specialization. This is reflected in the increased linkage density with 510 

community age, as early colonizing species gave way to a greater diversity of associations (Figure 4). 511 
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However, weighted connectance stabilized at around the same level for the remainder of the communities 512 

after the 1973 lava flow. This may be explained by the ‘constant connectance’ hypothesis (Martinez, 513 

1992) that posits that species are linked to a fixed fraction of species in a network, independent of the 514 

number of species in a community. A similar pattern of constant connectance and community age was 515 

found in arthropods recolonizing defaunated mangrove islands (Piechnik et al., 2008). For the Hawaiian 516 

Islands, several factors likely produce constant connectance over long-term community development. 517 

First, resource availability limits specialists at early stages; e.g., Escape Road (~ 300 yrs) is dominated by 518 

a single species of fern. Next, over evolutionary time, the Hawaiian fauna is characterized by a 519 

remarkably high rate of lineage diversification (Gillespie, 2016; Gillespie et al., 2020; Zimmerman, 1970) 520 

that has added novel species and associations. Finally, at more recent timescales (after human arrival) 521 

immigration of non-natives has been sufficiently high so as to add generalist taxa across all stages of 522 

community development (Figure 2b).  523 

 524 

A previous study which used an island chronosequence to examine how pollinator interactions change 525 

through extended time (Trøjelsgaard et al 2013) also found connectance was poorly explained by age. 526 

However, contrary to our results, the Canary Islands study showed hump-shaped relationships of 527 

interaction richness and specialization with island age. One reason for the different results is that we used 528 

a natural log scale for the skewness of island age. For the Hawaiian islands, values for linkage density, 529 

vulnerability, interaction evenness, and index of specialization H2’ were especially high on the volcano of 530 

East Maui. The islands of Maui Nui are also where richness peaks for many native arthropod lineages 531 

(Gillespie & Baldwin, 2009; Gruner, 2007). However, unlike the Canary Island pollinators, our values of 532 

linkage density were highest on the oldest island, and values for interaction evenness, vulnerability, and 533 

index of specialization H2’ were nearly as high, indicating that the overall changes in network structure 534 

were more linear than hump-shaped. An alternative explanation for the difference in the results is that the 535 

older islands of the Canary archipelago have environments that are very different from the younger 536 

islands. Although the Canary Island study focused on communities that were characterized by the plant 537 

species Euphorbia balsamifera, the abiotic environment changes significantly across their 538 

chronosequence, with the older islands much lower and drier (Juan et al., 2000). Thus, the finding of a 539 
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hump-shaped relationship in the Canary Islands is associated with the combined effects of time, island 540 

geomorphological transitions, and associated change in climate regimes. In contrast, the current study in 541 

the Hawaiian Islands aimed to standardize environments (elevation, precipitation, and forest cover, with 542 

sampling from standardized plots across the islands). Therefore, any confounding environmental 543 

differences were minimized and changes in network properties should largely reflect the influence of 544 

community age. 545 

 546 

Vulnerability and generality both show positive correlations with community age (Figure 4, Table 3), thus 547 

the average number of arthropods per plant species (vulnerability) and the average number of plant 548 

species per arthropod (generality) are increasing over time. This is consistent with our expectation that 549 

specialization increases resource overlap when a reduction in antagonistic interactions leads to some 550 

level of resource redundancy and an increase in diversity of beneficial interactions leads to greater 551 

resource complementarity (Table 1). In other words, over evolutionary time, if two species are in direct 552 

competition for resources, they can evolve traits that allow them to coexist.  One result of trait matching 553 

between interaction partners is decreasing niche breadth (i.e., decreasing diversity of resources used). 554 

Thus, our results are consistent with decreasing niche breadth with island age found previously from 555 

literature for herbivores (Ponisio et al., 2019).  Moreover, although the rate of specialization and 556 

adaptation, such as occurs through trait matching and decreasing niche breadth, can vary among 557 

functional groups in a community, our data show that community specialization is happening at the 558 

network level, averaging over the high variation in rates of specialization. 559 

 560 

The network-level specialization index H2' is largely unaffected by network size, network architecture or 561 

total number of interactions for a fixed matrix size (Blüthgen et al. 2006), making it an ideal metric 562 

compare between different networks for understanding specialization over time. We find that the index of 563 

specialization increases over time but is better fit by a second-degree polynomial equation. In early stage 564 

communities from 50 to 575 years the index of specialization is decreasing. This drop in specialization in 565 

the first several hundred years, is followed by an increase over the next tens of thousands of years. For 566 

random associations H2’ is usually close to zero. On Maui it reaches a value of 0.6 then levels out to 0.5 567 
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on Molokai and Kauai. This pattern is consistent with other metrics in our analysis suggesting that very 568 

young communities are organized by assembly rules making them appear specialized. After ecological 569 

sorting and the impact of in situ evolution in later stage communities we see organization at a secondary, 570 

evolutionary stage of development. 571 

 572 

Resilience of communities increases through time  573 

  574 

While communities sampled from the youngest sites are composed primarily of native species from the 575 

regional pool (Figure 2b), younger communities have proportionally higher abundances of non-native 576 

species infiltrating the system (Figure 2c). Thus, it appears that young communities are more invasible, 577 

which is consistent with previous studies showing that communities composed of endemic generalist taxa 578 

are more vulnerable to infiltration by non-natives (Olesen et al., 2002). By increasing connectance and 579 

lowering network specialization, higher numbers of alien species may in turn facilitate increasing numbers 580 

and impacts of invasions (Simberloff, 2006; Simberloff & Von Holle, 1999). 581 

  582 

However, this result runs counter to work suggesting higher-connectance food webs tend to host fewer 583 

invaders and exert stronger biotic resistance compared to low-connectance webs (Smith-Ramesh et al., 584 

2017). Further, community resistance to invasion is known to increase with native species diversity 585 

(Gallien & Carboni, 2017) and network complexity (Wei et al., 2015). Considering the results from our 586 

study within the context of this previous work, older communities, which are characterized by low 587 

connectance and high specialization, may be more resistant to invasion; however, individual taxa may be 588 

more susceptible to extinction. From an individual species level, because all species are linked together 589 

either directly or indirectly (Montoya et al., 2006), individual species with high specialization and low 590 

connectance are susceptible to extinction because of secondary extinctions occurring when specialized 591 

consumers lose their only prey (Dunne et al., 2002; Staniczenko et al., 2010). From a network level, as 592 

communities age, several species may be associated with the same resource (resource redundancy) or 593 

utilize a single resource more effectively (resource complementarity), minimizing variability in the 594 



23 
 

functioning of an ecosystem, for example when some consumer species decline in number (Peralta et al., 595 

2014).  596 

 597 

Although ecological processes, such as interspecific interactions or disturbance, are often attributed to 598 

the geographical differences in exotic species richness (Lockwood et al., 2013) an alternative explanation 599 

for the apparent reduced biotic resistance to invasion of younger communities may be that they 600 

experience increased propagule pressure (Lockwood et al., 2005). The younger sites on Kilauea volcano 601 

are accessed more frequently by tourists compared to the older sites, which require greater on foot 602 

distances to reach or special access permits. Furthermore, while our study directly assesses arthropod-603 

plant associations, it only indirectly measures the effect of higher trophic associations. Differential top-604 

down pressure (e.g., predator turnover) during community assembly likely also changes biotic resistance 605 

to invasion, for example, generalist insectivorous birds reduced infiltration of an invasive species of spider 606 

at the 133 years old Tree Planting Rd. community (Gruner, 2005). 607 

 608 

Conclusions and outlook 609 

 610 

Our study uses whole-community DNA metabarcoding data to assess the biotic associations of 611 

thousands of arthropod OTUs on plants across a geological chronosequence. By including relative 612 

abundance data, we achieve a signature of interaction strength (Popovic et al., 2019) not captured for co-613 

occurrences with presence-absence observations (Blanchet et al., 2020). Although DNA metabarcoding 614 

can be used for observation of trophic interactions (Alberdi et al., 2019; Krehenwinkel, Kennedy, et al., 615 

2017), our analysis instead includes all biotic associations between arthropod-plant communities, 616 

including those that can be difficult to detect (e.g. involving cryptic species, new non-natives, endangered 617 

species, juveniles). Thus, we are able to include complex community interactions including substrates 618 

chosen for acoustic signaling (Mullet et al., 2017), predator avoidance (Lindstedt et al., 2019; Stachowicz 619 

& Hay, 1999) and gregarious plant-feeding insects (Hunter, 2000) that are often overlooked in traditional 620 

network studies. Compared to the limitations of small, unweighted early food web studies (Cohen et al., 621 
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1993; Hall & Raffaelli, 1991) DNA metabarcoding offers exciting avenues forward for capturing 622 

community complexity. 623 

 624 

This research revealed a strong association between the network structure of ecological communities and 625 

community development over evolutionary time. Quantitative network metrics demonstrate that younger 626 

communities are composed of more generalist species that interact with greater frequency along fewer 627 

interaction pathways, with individual and network specialization increasing with community age. Our data 628 

highlight the utility of DNA metabarcoding for understanding longstanding questions of ecology and 629 

evolutionary biology that remain time consuming (e.g., keying out morphological species) or impossible 630 

(e.g., identification of juveniles) to assess with traditional methods. From a conservation perspective, our 631 

results indicate that habitat disturbance erodes a complex web of biotic associations, far greater than the 632 

sum of the community metrics of richness and abundance, that have evolved in situ over thousands to 633 

millions of years. 634 
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Tables and Figures  971 

Table 1: Some expectations for network structure in response to ecological and evolutionary 972 
factors influencing community assembly through time. Specialization should change at the network 973 
level to depict the changes at the taxon level of more evolved associations. Since the associations of 974 
each species are becoming more specialized there is an expectation that an individual taxon will have 975 
fewer interactions and the makeup of the whole community will have more interactions overall.  [1] 976 
(Bufford et al., 2020) [2] (Vázquez et al., 2007) [3] (Tylianakis et al., 2007) [4] (Peralta et al., 2014) [5] 977 
(Coux et al., 2016) [6] (Ponisio et al., 2019) [7] (Segar et al., 2020) [8] (Chamberlain et al., 2014) [9] 978 
(Blüthgen et al. 2006) [10] (Dunne & Williams, 2009)  979 
 980 

Process R
ic

hn
es

s?
 

Sp
ec

ia
liz

at
io

n?
 

e.g., metric change Expected change in metric through extended period of community 
assembly 

Immigration ↑ - Connectance 

Connectance should increase in response to immigration when 
generalist colonists take advantage of weak resource defenses, 
increasing the number of associations that form out of all possible 
associations [1] 

Environmental 
filtering ↓ ↑ Linkage Density 

Linkage density should be higher in novel (young or recently disturbed) 
networks due to generalists with a greater number of interactions per 
species [1]  

Increasing 
abundance ↑↓ - Interaction Evenness 

Interaction evenness should decrease with dynamics in taxon 
abundance because skewed frequency distributions (i.e., a few species 
with many links and many species with few links) are largely driven by 
species abundance [2]  

Antagonistic 
interactions ↑↓ ↑ Vulnerability 

Vulnerability is high in highly modified systems [3] because the average 
number of consumers per resource is high. Thus, we expect 
vulnerability to be high in the very youngest community forming on bare 
lava and go down. However, we expect vulnerability will increase over 
long temporal scales with reduced competition, predation, parasitism, 
etc. leading to some level of resource redundancy, for example several 
species feed on the same resource. 

Beneficial 
interactions ↑ ↑ Generality 

Generality should increase with increasing pollination, frugivory, 
camouflage, etc. because species can share the same resources in 
different locations or times resulting in resource complementarity. [4] 

Increasing 
niches ↑ ↑ Generality, Vulnerability 

The narrowing of interactions to a subset of resources increases 
specialization. [5] As niches proliferate the fraction of species 
associations per interaction partner will go down, e.g., niche breadth of 
herbivores decreased with island age. [6] 

Trait 
diversification ↑ ↑ Linkage Density, H2' 

Evolution and network structure are linked [7]. For example, traits with a 
phylogenetic signal (such as flower symmetry and pollinator size) can 
accurately predict interaction partners. [8] If species traits diversify 
together (co-evolve) then more one-to-one relationships will result in 
lower linkage density and higher specialization (H2'). 

Speciation ↑ ↑ Interaction Evenness 
Where food webs are dominated by a single link interaction evenness is 
lowest. [3] With the addition of species through in situ speciation, the 
number of links will increase with greater interaction evenness. 

Extinction ↓ ↓ Connectance 

A specialist species may go extinct from the loss of an essential 
resource. Species interaction networks composed of many specialist 
species should have low connectance, and primary extinctions are 
expected to propagate quickly. [9] 

 981 

  982 
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Table 2. Binary and Weighted network summary statistics. Metrics calculated from binary (i.e. 983 
unweighted, presence-absence) matrices are easily interpretable but sensitive to sampling differences 984 
(Banašek-Richter et al., 2004). Quantitative versions based on information theory are more conservative 985 
when comparing differences among sites. Each metric incorporates the diversity of individuals comprising 986 
the resource (HN, the diversity of inflows) and of that going to the consumers (HP, the diversity of outflows) 987 
for each species k. The quantitive metrics are then based on the reciprocals of these Shannon Entropy 988 
values (nN,k, and np,k, respectively). The notation q is applied to the quantitive version of that metric. All 989 
equations and notations reference [1] (Bersier et al., 2002) [2] (Tylianakis et al., 2007) [3] (Blüthgen et al. 990 
2006). 991 
 992 

Summary statistic 
  Equation or 

notation Description 

Number of nodes B S = R+C 
Total number of species (S) or 'nodes' is equal to the number of prey 
or resource species (R; lower-level) plus the number of consumer 
species (C; upper-level) 

Number of links B L Total number of interactions or 'links' 
Ratio resource: 
consumers B R/C [1] Average number of resource species per consumer species 

Diversity of inflows W HN,k, (5) [1] Shannon entropy of weights for a given consumer sp. 

Diversity of outflows W HP,k, (6) [1]  Shannon entropy of weights for a given resource sp. 

Log-reciprocal of (5) W nN,k, (7) [1]  Effective number of resource spp. for a given consumer sp. 

Log-reciprocal of (6) W np,k, (8) [1] Effective number of consumer spp. for a given resource sp. 

Link density B LD = L/S [1] Average number of interactions per species 
  W LDq, (14) [1]      weighted version 

Connectance B Conn = L/(RxC) 
[1] Proportion of realized links 

 
W Connq = LDq/S 

[1]     weighted version 

Generality B G = L/C [1] Average number of resource sp. per consumer sp. 
  W Gq, (25) [1]      weighted version 

Vulnerability B V = L/R [1] Average number of consumer sp. per resource sp.  
W Vq, (27) [1]     weighted version 

Interaction evenness W I.E. [2] Shannon entropy of interaction weights 

Index of specialization  
W H2' [3] Ranges between 0 and 1.0 for extreme generalization and 

specialization, respectively 
 993 

 994 
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Table 3. Spearman’s correlation tests for network metrics and community age. 995 
Spearman’s correlation tests were used to determine the significance of the relationship between each 996 
quantitative network metric value and ln substrate age (community age). Graphs of regressions in Figure 997 
4.  998 

  S 
p-
value 

Spearman's 
rho 

Quantitative (weighted) x community age    
linkage density 76 0.033 0.65 
weighted connectance 154 0.371 0.30 
generality 124 0.183 0.44 
vulnerability 80 0.040 0.64 
interaction evenness 70 0.025 0.68 
index of specialization H2' 134 0.237 0.39 

 999 

  1000 
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 1001 
 1002 
Figure 1. Study overview.  A) Study aims. As communities assemble over time species will be added 1003 
through ecological and evolutionary processes. Network size will increase over time. There will be a trend 1004 
towards greater specialization as relationships among species are modified through ecological fitting and 1005 
evolutionary adaptation over extended time, young to old sites (top panel). Recently introduced species 1006 
(i.e., non-natives) evolved elsewhere and have not adapted in place to biotic and abiotic factors, thus 1007 
limiting their specialization within communities at all stages of development (bottom panel). B) Study 1008 
design. Within multiple 15 m radius plots at 11 communities from ages 50 y to 4.15 Myr plant species 1009 
were sampled for associated arthropods by vegetation beating according to their relative abundance. 1010 
Each sample of plant-associated arthropods was size sorted, counted, and placed into a well of a 96-well 1011 
plate, such that well ‘A1’ contained sample 1, size category 0-2 mm, and well ‘A2’ contained sample 1, 1012 
size category 2-4mm, and so on. DNA extraction and PCR amplification with dual-indexing was used to 1013 
prepare the size-sorted samples into amplicon libraries which were sequenced on an Illumina Miseq® for 1014 
the cytochrome oxidase I locus. Ecological networks were constructed from the arthropod-plant 1015 
associations for each community age.  1016 
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1017 

 1018 
Figure 2. Effect of community assembly over evolutionary time on network size and diversity of 1019 
native and non-native taxa. A) The number of nodes (arthropod and plant richness) and the number of 1020 
links (arthropod-plant associations) significantly increase in concert with community age. Spearman’s 1021 
correlation test values SI Table 4. B) Native arthropod richness increases, while non-native richness does 1022 
not increase, with community age. C) Abundance of native and non-native arthropod species peaks at 1023 
middle-aged communities but the abundance of non-native taxa is proportionately higher in the youngest 1024 
communities. D) Native plant richness increases with community age. 1025 
  1026 

A. 

B. 
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 1027 

Kilauea: 1973 lava flow 50 yo  

Kohala: Kohala 365,000 yo 

Kauai: Kokee 4.15 myo  

Molokai: Kamakou 1.4 myo 

Maui: Waikamoi 545,000 yo 

Mauna Loa: Olaa 7,500 yo  
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Figure 3. Quantitative arthropod–plant networks along a gradient of increasing community 1028 
assembly (top to bottom). For each network, lower bars represent plant abundance based on sampling 1029 
time and upper bars represent arthropod abundance based on OTU frequency. Each network is plotted in 1030 
order of the most abundant taxa from left to right so that the turnover in arthropod-plant association can 1031 
be seen for each community. Linkage width indicates the frequency of each association as measured 1032 
using arthropod read abundance. As a summary, the networks show interaction data pooled across all 1033 
plots for each community age with OTUs pooled by arthropod order, but analyses were performed at the 1034 
OTU per plant genus level. The bipartite graphs from each of the 11 sampled sites are in SI Figure 3. 1035 
Arthropod and plant id codes are given in SI Table 3.  1036 
  1037 
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 1038 

 1039 
Figure 4. The effect of community age on quantitative ecological network metrics.  1040 
Statistical measures of network architecture indicating changes in arthropod-plant associations in concert 1041 
with community age. Each network was weighted with the read abundance of the arthropod OTU 1042 
associated with the plant genus it was collected from, across all plots for a community age. Three metrics 1043 
show significant relationships with community assembly, increasing over time: linkage density, 1044 
vulnerability, interaction evenness. Spearman’s correlation test values Table 3. Results of the null model 1045 
analysis for the quantitative ecological networks metrics are presented in SI Figure 6 and SI Table 5. A 1046 
graph of the results when analyzed for each of the sampled plots within a community age site is 1047 
presented in SI Figure 7. 1048 
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SI Figure 1. Map of sampling sites. 14 sites of varying geologic age were selected, ranging 
from 50 to 4.15 x 106 years old, across four islands of the archipelago: Hawaii, Maui, Molokai, 
Kauai. To control for climatic differences and disturbance across sites, sites were constrained to 
ranges of elevation (1000-1300 m) and precipitation (average annual precipitation 2500-3000 
mm) and within accessible protected forest lands. See SI Table 2 for substrate age and other site 
characteristics. 
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SI Figure 2. Histograms of height profiles from lidar flyover data. Each of the potential sites 
for the study was assessed for site suitability including these lidar data to evaluate the forest 
structure. Grain size for lidar was 20 m for all sites except Kauai for which it was 8 m grain size. 
We used 40% quantile for site comparison because the tails of the distribution of heights was 
long for some sites, and it would have been difficult to find sites with overlapping height profiles 
with a more restrictive choice.  
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SI Figure 3. Additional bipartite network plots. For each network, lower bars represent plant 
abundance based on sampling time and upper bars represent arthropod abundance based on OTU 
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frequency. Each network is plotted in order of the most abundant taxa from left to right so that 
the turnover in arthropod-plant association can be seen for each community. Linkage width 
indicates the frequency of each association as measured using arthropod read abundance. As a 
summary, the networks show interaction data pooled across all plots for each community age 
with OTUs pooled by arthropod order. However, analyses were performed at the OTU per plant 
genus level. Arthropod and plant id codes are given in Supplementary Table 1. 
  



 
 

6 
 

 

 

 
 

SI Figure 4. The effect of community age on qualitative ecological network metrics. 
Statistical measures of network architecture were performed using qualitative measures on 
presence-absence matrices. Three metrics show significant relationships with community age, 
increasing linkage density and generality and decreasing connectance. Spearman rho and p-
values in SI Table 4.  
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SI Figure 5. The effect of network size on ecological network metrics.  Each quantitative and 
qualitative metrics was regressed against the number of nodes (representing network size). A) 
Quantitative metrics were not significantly correlated with network size with the exception of 
generality. B) Qualitative metrics were significantly correlated with network size, with the 
exception of the ratio of resource:consumers. Spearman rho and p-values in SI Table 4.  
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SI Figure 6. Null model analysis for weighted networks. A. Graphs of all 1000 null matrices 
metric values (gray) and observed values (color) by community age. B. Z-scores from null model 
analysis of weighted metrics are plotted by community age. There are no null values or z-score 
for interaction evenness because the null model we used wasn’t appropriate given that interaction 
evenness is based on the empirical distribution of weights, regardless of which species those 
weights are between. 
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SI Figure 7. Plot level. A. Quantitative and B. Qualitative metrics shown for matrices of 
arthropod-plant interactions at each plot within a site. In the main text, one network was created 
per site because our confidence in the network statistics increases with the size of the networks. 
This was a particular issue for some plots at the youngest and most depauperate sites, where < 4 
plant species were sampled within the plot radius and networks would be small. The results from 
plot level analysis are consistent with the site level data. The variance among plots at the same 
sites is minimal. These results help corroborate the trend of increasing specialization over time.  
 
  

B. 
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SI Table 1. Site information. Information for the sampling plots within each age community. 
Six plots were sampled in fourteen sites across the island. Plots with greater or less than 1 
standard deviation of sample beating time were dropped from analysis. This left a total of 11 
sites and 50 plots (highlighted). 
 

Island Site Plot Elev 
m 

AAP 
m Lat Long Flow 

age min 
Flow 
age 
max 

Flow 
age 
mean 

Hawaii flow1973 flow1973_079 975 2661 19.37 -155.21 42 42 42 

Hawaii flow1973 flow1973_109 975 2613 19.37 -155.22 42 42 42 

Hawaii flow1973 flow1973_084 975 2756 19.37 -155.21 42 42 42 

Hawaii flow1973 flow1973_081 975 2661 19.37 -155.22 42 42 42 

Hawaii flow1973 flow1973_107 975 2570 19.37 -155.22 42 42 42 

Hawaii flow1973 flow1973_110 975 2657 19.37 -155.21 42 42 42 

Hawaii treePlanting treePlanting_01 1209 4515 19.66 -155.28 133 133 133 

Hawaii treePlanting treePlanting_03 1204 4495 19.66 -155.28 133 133 133 

Hawaii treePlanting treePlanting_04 1196 4719 19.66 -155.28 133 133 133 

Hawaii treePlanting treePlanting_05 1198 4700 19.66 -155.28 133 133 133 

Hawaii treePlanting treePlanting_02 1198 4515 19.66 -155.28 133 133 133 

Hawaii treePlanting treePlanting_06 1192 4700 19.66 -155.28 133 133 133 

Hawaii escape escape_02 997 2658 19.38 -155.22 200 400 300 

Hawaii escape escape_04 1012 2565 19.37 -155.22 200 400 300 

Hawaii escape escape_06 1007 2610 19.37 -155.22 200 400 300 

Hawaii escape escape_87 1004 2748 19.38 -155.22 200 400 300 

Hawaii escape escape_90 1013 2647 19.38 -155.22 200 400 300 

Hawaii escape escape_89 1003 2748 19.38 -155.21 200 400 300 

Hawaii kaiholenaYng kaiholenaYng_02 966 2888 19.18 -155.58 200 750 475 

Hawaii kaiholenaYng kaiholenaYng_08 1003 2947 19.19 -155.59 200 750 475 

Hawaii kaiholenaYng kaiholenaYng_09 1045 2937 19.19 -155.59 200 750 475 

Hawaii kaiholenaYng kaiholenaYng_04 1012 2909 19.19 -155.59 200 750 475 

Hawaii kaiholenaYng kaiholenaYng_10 1029 2932 19.19 -155.59 200 750 475 

Hawaii kaiholenaYng kaiholenaYng_11 1045 2926 19.19 -155.59 200 750 475 

Hawaii thurston thurston_01 1177 2610 19.41 -155.24 400 750 575 

Hawaii thurston thurston_04 1181 2880 19.41 -155.24 400 750 575 

Hawaii thurston thurston_05 1189 2838 19.41 -155.24 400 750 575 

Hawaii thurston thurston_06 1195 2709 19.42 -155.24 400 750 575 

Hawaii thurston thurston_08 1195 2797 19.42 -155.24 400 750 575 

Hawaii thurston thurston_12 1189 2850 19.42 -155.24 400 750 575 

Hawaii olaa olaa_01 1170 3011 19.45 -155.25 5000 10000 7500 

Hawaii olaa olaa_03 1169 3071 19.45 -155.25 5000 10000 7500 

Hawaii olaa olaa_06 1177 2957 19.45 -155.25 5000 10000 7500 

Hawaii olaa olaa_12 1183 2908 19.46 -155.25 5000 10000 7500 
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Hawaii olaa olaa_02 1163 3022 19.45 -155.25 5000 10000 7500 

Hawaii olaa olaa_10 1183 2915 19.45 -155.25 5000 10000 7500 

Hawaii hippnet hippnet_05 1131 3538 19.93 -155.28 4000 14000 9000 

Hawaii hippnet hippnet_06 1152 3506 19.93 -155.29 4000 14000 9000 

Hawaii hippnet hippnet_08 1126 3654 19.93 -155.28 4000 14000 9000 

Hawaii hippnet hippnet_09 1212 3318 19.93 -155.29 4000 14000 9000 

Hawaii hippnet hippnet_11 1231 3295 19.93 -155.29 4000 14000 9000 

Hawaii hippnet hippnet_13 1177 3479 19.93 -155.29 4000 14000 9000 

Hawaii alili alili_01 917 2460 19.23 -155.51 11000 30000 20500 

Hawaii alili alili_04 960 2573 19.23 -155.52 11000 30000 20500 

Hawaii alili alili_05 917 2504 19.23 -155.52 11000 30000 20500 

Hawaii alili alili_06 942 2541 19.23 -155.51 11000 30000 20500 

Hawaii alili alili_14 969 2597 19.23 -155.52 11000 30000 20500 

Hawaii alili alili_15 985 2583 19.23 -155.52 11000 30000 20500 

Hawaii laupLSAG laupLSAG_01 1102 3433 19.94 -155.3 14000 65000 39500 

Hawaii laupLSAG laupLSAG_04 1158 3235 19.94 -155.3 14000 65000 39500 

Hawaii laupLSAG laupLSAG_07 1155 3235 19.93 -155.3 14000 65000 39500 

Hawaii laupLSAG laupLSAG_10 1181 3291 19.93 -155.3 14000 65000 39500 

Hawaii laupLSAG laupLSAG_12 1251 3080 19.93 -155.3 14000 65000 39500 

Hawaii laupLSAG laupLSAG_15 1242 3112 19.93 -155.3 14000 65000 39500 

Hawaii kohalaYng kohalaYng_03 1285 2779 20.11 -155.74 120000 230000 175000 

Hawaii kohalaYng kohalaYng_04 1303 2863 20.11 -155.74 120000 230000 175000 

Hawaii kohalaYng kohalaYng_07 1274 3004 20.11 -155.74 120000 230000 175000 

Hawaii kohalaYng kohalaYng_08 1266 3177 20.11 -155.73 120000 230000 175000 

Hawaii kohalaYng kohalaYng_10 1305 2779 20.11 -155.74 120000 230000 175000 

Hawaii kohalaYng kohalaYng_20 1281 2918 20.11 -155.74 120000 230000 175000 

Hawaii kohalaOld kohalaOld_01 1294 3568 20.11 -155.72 230000 500000 365000 

Hawaii kohalaOld kohalaOld_03 1273 3704 20.11 -155.72 230000 500000 365000 

Hawaii kohalaOld kohalaOld_08 1313 3402 20.11 -155.73 230000 500000 365000 

Hawaii kohalaOld kohalaOld_05 1318 3501 20.11 -155.72 230000 500000 365000 

Hawaii kohalaOld kohalaOld_06 1309 3501 20.11 -155.72 230000 500000 365000 

Hawaii kohalaOld kohalaOld_07 1335 3419 20.1 -155.72 230000 500000 365000 

Maui waikamoi waikamoi_07 1591 2518 20.8 -156.25 140000 950000 545000 

Maui waikamoi waikamoi_16 1545 3040 20.8 -156.24 140000 950000 545000 

Maui waikamoi waikamoi_36 1564 2765 20.8 -156.25 140000 950000 545000 

Maui waikamoi waikamoi_06 1547 2834 20.8 -156.25 140000 950000 545000 

Maui waikamoi waikamoi_18 1552 3107 20.8 -156.24 140000 950000 545000 

Maui waikamoi waikamoi_32 1524 2598 20.8 -156.25 140000 950000 545000 

Molokai kamakou kamakou_07 1191 2718 21.11 -156.9 1300000 1500000 1400000 

Molokai kamakou kamakou_09 1223 3007 21.11 -156.9 1300000 1500000 1400000 

Molokai kamakou kamakou_17 1213 3007 21.11 -156.89 1300000 1500000 1400000 

Molokai kamakou kamakou_39 1182 2800 21.11 -156.89 1300000 1500000 1400000 
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Molokai kamakou kamakou_15 1245 3276 21.11 -156.89 1300000 1500000 1400000 

Molokai kamakou kamakou_41 1159 2532 21.11 -156.9 1300000 1500000 1400000 

Kauai kokee kokee_16 1116 2251 22.14 -159.62 4000000 4300000 4150000 

Kauai kokee kokee_21 1200 2860 22.15 -159.62 4000000 4300000 4150000 

Kauai kokee kokee_23 1210 2877 22.15 -159.61 4000000 4300000 4150000 

Kauai kokee kokee_11 1147 2487 22.14 -159.62 4000000 4300000 4150000 

Kauai kokee kokee_09 1172 2413 22.14 -159.62 4000000 4300000 4150000 

Kauai kokee kokee_22 1202 2724 22.15 -159.62 4000000 4300000 4150000 
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SI Table 2. Summary statistics from lidar data during site selection. Here we show the basic  
forest structure characteristics for each of the sites that was characterized as a possible area for  
arthropod community assessment, The highlighted sites were included for arthropod community 
 assessment using DNA metabarcoding. The sites with NA we did not have lidar data availability. 
Site MEAN MEDIAN MIN MAX SD Q40 Kurtosis KurtSE Skewness SkewSE 

HAVO_EscapeRd_1973 0.530168 0.563037 0.0099 1.364975 0.274771 0.631655 -0.61762 0.271608 0.044372 0.137784 

Tree Planting Road NA NA NA NA NA NA NA NA NA NA 

HAVO_EscapeRd_HighStature 7.21131 7.457712 1.78265 11.91813 1.905806 7.93115 -0.25263 0.14969 -0.42313 0.075164 

TNC_Kaiholena_Young 6.254615 5.85335 3.378 13.40897 1.664489 6.35712 1.333989 0.154296 1.105489 0.077498 

TNC_Kaiholena_Old 5.928797 5.7883 3.774975 11.6454 1.070454 5.99883 3.697232 0.180073 1.37507 0.090596 

HAVO_Thurston 12.37064 12.76153 4.408525 16.77472 2.261814 13.35568 -0.1841 0.141771 -0.61303 0.071156 

HAVO_Olaa_Old 7.830925 7.329275 4.076075 18.0546 2.272184 7.9105 0.922662 0.093658 1.041491 0.046906 

NAR_Laupahoehoe_HIPPNET 14.05824 13.8389 0.030125 25.2793 3.653928 14.90676 -0.47155 0.077027 0.153058 0.038557 

KauFR_Alili 11.86238 11.4214 2.585675 21.81295 3.492847 12.57993 -0.73541 0.118676 0.311218 0.059496 

HiloFR_Laupahoehoe_Old 13.94185 13.91757 4.52675 25.16357 3.045798 14.75297 -0.37097 0.096224 0.125453 0.048196 

NAR_Laupahoehoe_65-250K 12.23722 13.00572 0.1083 23.588 4.243211 13.84491 -0.04895 0.061824 -0.66387 0.030934 

HiloFR_Humuula 15.33543 15.18775 2.23905 27.6691 3.801326 16.22402 -0.40367 0.056136 0.17102 0.028085 

NAR_PuuMakaala_Young 5.951452 5.722412 0.14485 14.82202 2.678494 6.496805 -0.37364 0.091493 0.30729 0.045819 

NAR_PuuMakaala_Old 14.71206 15.72586 0 25.28247 5.365967 16.84449 1.253179 0.123676 -1.16721 0.062017 

NAR_PuuOumi_Young02 5.951452 5.722412 0.14485 14.82202 2.678494 6.496805 -0.37364 0.091493 0.30729 0.045819 

NAR_PuuOumi_Old 5.999913 6.243275 0.3082 10.97857 1.918523 6.687105 -0.25813 0.10721 -0.3717 0.053721 

Kamakou Molokai NA NA NA NA NA NA NA NA NA NA 

Waikamoi Maui NA NA NA NA NA NA NA NA NA NA 

Kauai_8m 5.248667 5.121489 0.010311 19.3347 3.227693 6.003569 -0.26206 0.036622 0.38 0.018316 
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SI Table 3. Taxonomic coverage. Taxonomic coverage of arthropod OTUs as determined by 
percent match to GenBank accessions and a 57 species reference collection. Taxonomy of plants 
as determined by morphological identification in the field. Plants that were unidentified were 
grouped by morphotaxa. The bipartite web id is the 5-letter code to match the bipartite plots in 
Figure 3 and SI Figure 3. 
 

Arthropod Order or Plant 
Genus/Morphotaxon otus species genus families 

bipartite 
web id 

arthropod molecular taxonomy      
Amphipoda 29  1 1 Amphi 
Araneae 539 58 9 8 Arane 
Blattodea 12 2 1  Blatt 
Coleoptera 421 18 4 12 Coleo 
Diptera 454 27 8 19 Dipte 
Entomobryomorpha 295 8 3 1 Entom 
Geophilomorpha 9    Geoph 
Hemiptera 774 37 11 9 Hemip 
Hymenoptera 98 12 3 5 Hymen 
Isopoda 59 2 2 1 Isopo 
Julida 4 3  1 Julid 
Lepidoptera 290 18 16 15 Lepid 
Lithobiomorpha 1    Litho 
Mesostigmata 9 1     Mesos 
Neuroptera 30 2 1 2 Neuro 
Orthoptera 197 4 2 2 Ortho 
Poduromorpha 7  1 1 Podur 
Polydesmida 1 1     Polyd 
Polyxenida 1    Polyx 
Pseudoscorpiones 4       Pseud 
Psocoptera 266 4 1  Psoco 
Sarcoptiformes 262 1 2   Sarco 
Spirobolida 1    Spiro 
Spirostreptida 4       Spiro 
Symphypleona 4 1 1  Symph 
Trombidiformes 14 1   1 Tromb 
 
plant morphological taxonomy      
Metrosideros         Metro 
Styphelia     Styph 
Vaccinium         Vacci 
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Swordfern     Sword 
Coprosma         Copro 
Dubautia     Dubau 
Dicranopteris         Dicra 
Groundfern     Groun 
Myrsine         Myrsi 
Pipturus     Piptu 
Ilex         Ilex 
Broussaisia     Brous 
BrownCibotium         Brown 
GreenCibotium     Green 
Sadleria         Sadle 
Cheirodendron     Cheir 
Psychotria         Psych 
Astelia     Astel 
Machaerina         Macha 
Melicope     Melic 
Perrottetia         Perro 
Cyrtandra     Cyrta 
Dryopteris         Dryop 
Freycinetia     Freyc 
Hedyotis         Hedyo 
Alyxia     Alyxi 
Rubus         Rubus 
Clermontia     Clerm 
Carex         Carex 
Kadua     Kadua 
Labordia         Labor 
Curlleaf     Curll 
whitemid         white 
blackvelvet         black 
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SI Table 4. Spearman’s correlation tests. Spearman’s correlation tests were used to determine 
significance for the: A) regression against log substrate age (community age) of qualitative 
network metric values calculated from binary matrices at each site. B) regression against number 
of nodes (community size) of quantitative network metric values calculated from weighted 
matrices at each site C) regression against number of nodes (community size) of qualitative 
network metric values calculated from binary matrices at each site and D) regression of size of 
network (number of nodes, number of links) by log flow age (community age).  

  S 
p-
value 

Spearman's 
rho 

Qualitative (binary) x community age    
linkage density 78 0.037 0.65 
connectance 404 0.003 -0.84 
generality 78 0.037 0.65 
vulnerability 188 0.670 0.15 
ratio prey:consumers 132 0.225 0.40 

    
Quantitative (weighted) x number of nodes   
linkage density 140 0.273 0.36 
weighted connectance 226 0.946 -0.03 
generality 68 0.023 0.69 
vulnerability 144 0.300 0.35 
interaction evenness 134 0.237 0.39 
index of specialization H2’ 218 0.989 0.01 

    
Qualitative (binary) x number of 
nodes    
linkage density 34 0.002 0.85 
connectance 396 0.005 -0.80 
generality 34 0.002 0.61 
vulnerability 86 0.051 0.61 
ratio prey:consumers 202 0.818 0.08 

    
number of nodes x log flow age 3741 0.000 0.74 
number of links x log flow age 3096 0.000 0.78 
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SI Table 5. p-value table weighted metrics null model analysis. The network metrics of 1000 
null matrices were compared to the network metrics of the empirical matrix. The null hypothesis 
is said to be true if the empirical values are within the null model distribution. This is a two tailed 
distribution. A "1" indicates that every null model value that we compared to our observed was 
greater than or equal to the observed value. A "0" indicates that no null model value that we 
compared to our observed was greater than or equal to the observed value. A value of greater 
than 0 and less than 1 is simply the number values that the null metric was greater than the 
empirical metric.  
 
 

site pval.Connectance pval.LD pval.Gen pval.Vul pval.H2 
flow1973 0.001 0.001 0 0.006 1 
treePlanting 0.518 0.518 0 0.553 1 
escape 0.283 0.283 0.002 0.293 1 
kaiholenaYng 0.571 0.571 0 0.96 1 
thurston 0.031 0.031 0 0.225 1 
olaa 0.492 0.492 0 0.645 1 
alili 0.596 0.596 0 0.749 1 
kohalaOld 0.653 0.653 0 0.825 1 
waikamoi 0 0 0 0 1 
kamakou 0.889 0.889 0 0.973 1 
kokee 0 0 0 0 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


	Graham_MEC-22-0320_R2-clean2.pdf
	Graham_MoleEcol_HI-networks_SI.pdf

