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Abstract

Integrative modeling computes a model based on varied types of input information, be it from 

experiments or prior models. Often, a type of input information will be best handled by a 

specific modeling software package. In such a case, we desire to integrate our integrative 

modeling software package, Integrative Modeling Platform (IMP), with software specialized to 

the computational demands of the modeling problem at hand. After several attempts, however, 

we have concluded that even in collaboration with the software’s developers, integration is 

either impractical or impossible. The reasons for the intractability of integration include software 

incompatibilities, differing modeling logic, the costs of collaboration, and academic incentives. 

In the integrative modeling software ecosystem, several large modeling packages exist with 

often redundant tools. We reason, therefore, that the other development groups have similarly 

concluded that the benefit of integration does not justify the cost. As a result, modelers are often 

restricted to the set of tools within a single software package. The inability to integrate tools 

from distinct software negatively impacts the quality of the models and the efficiency of the 

modeling. As the complexity of modeling problems grows, we seek to galvanize developers and 

modelers to consider the long-term benefit that software interoperability yields. In this article, 

we formulate a demonstrative set of software standards for implementing a model search using 
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tools from independent software packages and discuss our efforts to integrate the IMP and the 

crystallography suite Phenix within the Bayesian modeling framework.

Keywords

integrative modeling; structural modeling; integrative structural biology; software integration

Introduction

Introduction to integrative modeling

Integrative modeling combines information of different types into a model (Alber et 

al., 2007; Rout and Sali, 2019). When all available information is used, the accuracy, 

precision, and completeness of the model are maximized. An example of an integrative 

model is the double-helical structure of DNA, which could only be resolved through a 

joint consideration of a fiber X-ray diffraction pattern of the DNA, data about composition 

and stoichiometry of the component nucleotides, as well as theoretical information about 

physiochemical nucleotide complementarity (Watson and Crick, 1953). Modern integrative 

modeling of biomolecular structures similarly considers experimental data (e.g., an X-

ray diffraction pattern, a cryo-electron microscopy (cryo-EM) density map, and nuclear 

magnetic resonance (NMR) spectra) and prior information (e.g., a molecular mechanics 

force field, a statistical potential, and previously obtained structural models). As the 

complexity (e.g., size, resolution, heterogeneity, and dynamics) of biomolecular structural 

models grows, integration of diverse and often sparse experimental data will be critical for 

maximally exploiting experimental techniques and their complementarities (Figure 1) (Sali, 

2021).

Developing software modeling tools is challenging

Modeling is often only possible through computation using software tools. The development 

of software tools for modeling is challenging because it demands both domain knowledge 

and technical expertise. Domain knowledge encompasses both an understanding of the 

general concepts of the field and a thorough understanding of both the theory and practices 

of the leveraged experimental techniques. The technical prerequisites include the ability 

to formulate the theory into stable numerical algorithms and to develop software of 

sufficient quality. Moreover, software needs to incorporate new technical and scientific 

advancements. Fulfilling the above prerequisites is difficult when developing software for 

an individual experimental technique. The challenge is compounded in the development of 

integrative modeling software, where several sources of experimental information generally 

are combined. Nevertheless, there is a large number of independent and complex integrative 

modeling software packages (Adams et al., 2010; Das and Baker, 2008; Dimura et al., 2016; 

Dominguez et al., 2003; Hsieh et al., 2017; Hua et al., 2018; Hummer and Köfinger, 2015; 

Karakaş et al., 2012; Leaver-Fay et al., 2011; Russel et al., 2012; Schneidman-Duhovny et 

al., 2005; Schwieters et al., 2018; Serra et al., 2017; Trussart et al., 2015; van Zundert et al., 

2016), as reviewed (Sali, 2021).
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Collaborative development maximizes the efficiency and quality of modeling

Given the technical and scientific difficulty of developing software modeling tools, it 

is desirable to tackle integrative modeling as a collaborative development effort of 

multiple research groups and development teams. Such collaborative development has the 

benefits of better integration of domain expertise into modeling software. There is also a 

benefit in the distribution of development costs over multiple research groups. For these 

reasons, collaborative software development maximizes both the efficiency of the software 

development and the quality of the resulting models.

Integration of software tools is an efficient approach to collaborative development

One way to achieve collaborative development is by developing software that is designed to 

solve a modeling problem through integration with one or more additional modeling tools. 

Such integration can occur between tools within and across integrative modeling software 

packages. The ability to combine the tools from existing software packages can extend the 

set of methods that can be implemented with these tools. It is often better to approach an 

integrative modeling problem by mixing and matching existing tools rather than by building 

new ones because the developer benefits from prior work. For example, Rosetta (Leaver-Fay 

et al., 2011) integrates high-level tools within Rosetta through RosettaScripts (Fleishman et 

al., 2011) and lower-level Rosetta functionality with tools outside of Rosetta through the 

C++/Python layers, such as phenix.rosetta_refine (DiMaio et al., 2013).

Why is integration of software tools challenging?

There are numerous structural biology software packages, including tens of integrative 

modeling programs alone (Rout and Sali, 2019). While there is consensus that software 

interoperability is beneficial, little has been done to address the issue. It is often attractive 

to implement new tools within one’s own software ecosystem, even if similar tools already 

exist elsewhere. It is not unusual to see, for example, unique implementations of vector 

classes within modeling packages. Possible reasons include the difficulty of coordinating a 

large number of contributors, lack of support and motivation for rigorous development and 

maintenance standards for academic software, and the incentive for individual programmers 

and research groups to publish new software.

Opportunity for standardization

As the complexity of integrative modeling problems grows, they will be increasingly 

difficult to solve by relying on tools from a single software package. Integration can be done 

on an ad hoc basis, where specific tools are combined when needed. Such an integration 

is not efficient, however, as the pool of tools grows because any integration would incur 

additional development costs. An alternative is the adoption of software standards for tools 

developed by the integrative modeling community. Software standards offer guarantees on 

some aspect of the software’s implementation or function. Well-defined standards would 

benefit the integrative modeling field by ensuring that software tools are of sufficient quality 

and generality to be interoperable with other software tools that adhere to the standards. 

If a standard is adopted by the community, an integrative modeler may be able to readily 

mix-and-match software that has been produced from multiple development groups. Similar 

Hancock et al. Page 3

J Struct Biol. Author manuscript; available in PMC 2022 July 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to the PDB/mmCIF standards for archival, the nature and extent of the standards must be 

agreed upon by the integrative modeling development community.

Article overview

In this article, we develop a demonstrative software standard for integrating one or more 

independent tools in a model search. We begin by describing modeling as a 5-step search 

for a model that satisfies input information and distinguishing between informed and 

uninformed model searches. We then describe how the model search is achieved through 

basic function definitions. We illustrate the standards by integrating Phenix and Integrative 
Modeling Platform (IMP) for computing an atomic model from X-ray crystallography 

datasets and a molecular mechanics force field. Key to the integration is the factorization of 

the model posterior density into likelihoods and priors. We discuss our attempts to integrate 

IMP and Phenix tools as independent processes via file input/output and within a single 

process using both libraries’ application programming interface (API). We conclude by 

discussing how software integration may increase the quality and potential complexity of the 

model as well as the efficiency of the modeling.

Approach

Modeling as a search

A model is a depiction of a system or process that we would like to inform from input 

information, consisting of experimental data and prior information (Rout and Sali, 2019). 

A model can then be used to rationalize input information and make testable predictions. 

Modeling is the search for a set of models consistent with the input information. Ideally, 

we aim to find all models that satisfy the input information, reflecting the uncertainty of 

the input information. It is convenient to divide the search into the following three steps: 

(i) defining the model representation that specifies all degrees of freedom whose values are 

determined by modeling, (ii) defining a scoring function for ranking alternative models for 

their agreement with the input information, and (iii) generating a sample of good-scoring 

models. As an aside, these models can be optionally filtered based on the input information 

and should also be validated before interpretation (Rout and Sali, 2019).

Multistate model of Nup133 computed by a model search

For example, a model search is used to compute a multi-state model of the Nup133 

nucleoporin from small-angle x-ray scattering (SAXS), electron microscopy class averages, 

and cross-linking mass spectrometry (XL-MS) data (Kim et al., 2014). To reflect the 

structural heterogeneity of Nup133 in solution, the authors defined the model representation 

as an ensemble of fully atomic structures. The degrees of freedom, to be fit to the input 

information, include the number of models in the ensemble as well as the positions of 

atoms in each structure. Therefore, the objective of the model search is to find all Nup133 

ensembles that satisfy the input information. A sample of Nup133 ensembles was generated 

via molecular dynamics simulations (MD) such that sufficient coverage of the energy 

landscape was achieved. The scoring function then evaluated the consistency of any model 

ensemble with the SAXS profile, the EM class averages, and chemical cross-links by 

simulating data via physical principles and comparing it to the observed data. The model 
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search framework is a general description of modeling that can describe most modeling 

protocols.

Informed vs uninformed search

Generally, integrative modeling software either explicitly or implicitly implements tools for 

each step of the model search. The model search can be categorized as either uninformed 

or informed, relative to some input information. In the uninformed search, candidate 

models are systematically generated to explore the search space without consideration for 

a specified subset of input information (Grosan and Abraham, 2011). For example, the 

minimal ensemble approach to computing protein structure ensembles based on SAXS 

data generates an ensemble of structures without consideration of the experimental data 

(Köfinger et al., 2019). In the informed search, a specified subset of input information is 

used to bias the generation of solutions (Grosan and Abraham, 2011). For example, partial 

derivatives based on the SAXS data could be used to guide sampling.

It is easier to isolate software tools in an uninformed search because outputs of relevant 

modeling steps can be combined as an additional post-processing step. However, due to 

a large model space generally required to be searched when solving integrative modeling 

problems, we are interested in the integration of software tools that enable informed search, 

in addition to the uninformed search. Informed search demands the passage of information 

between the tools that implement representation, scoring, and sampling during the modeling 

procedure.

Demonstrative software standards (Figure 2)

While tools within a given software package generally pass information to each other, they 

have not been designed to do so across different software packages. Interoperability may 

sometimes be achieved by engineering connections between a particular set of software tools 

in an ad hoc fashion. However, to maximize generalizability, it is better if information is 

communicated in well-defined channels defined by a software standard. Here, we develop 

basic standards to illustrate how information passing could be accomplished between 

independent modeling tools.

To facilitate the integration of two modeling tools, they should share the minimal amount 

of information necessary. It is also desirable that the tools be limited in scope to maximize 

modularity. For example, if a tool implemented a specific modeling step (i.e., representation, 

scoring, sampling, and optionally filtering plus validation). Tools with a well-defined 

purpose that hide their implementation details help manage the technical complexity of 

an integrative modeling problem. In the example of the Nup133 model search, a distinct 

software tool could be used to implement the multi-state model representation, the molecular 

dynamics sampler, the SAXS scoring function, the XL-MS scoring function, and the EM 

scoring function. The tools must be able to communicate with one another, but at the same 

time, they should be encapsulated from each other’s technical complexity.

To design message passing, we first define the function of a model representation, 

scoring function, and sampling algorithm tool based on an informed search. The model 

representation manages the model state (the current value of the model parameters), which 
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we partition between structural, X, and nuisance parameters, σ. The model representation 

manages the model state at step i of the model search, X, σ i, as well as previously visited 

states, X, σ 0, …, X, σ i − 1. The scoring function computes the scores s, an assessment of 

the compatibility of X, σ i with input information, D. The scoring function also returns 

heuristics, h, as a function of D, which help inform the search process (eg, gradients for 

finding local minima in the search space), f X, σ i, D = s, h. A sampling tool updates the 

model state based on X, σ i, s, and h, g X, σ i, s, h = X, σ i + 1.

Based on the above definitions, the minimal informed search is implemented by the 

following 4 functions that facilitate communication between the model representation, the 

scoring function, and the sampling algorithm tools (Figure 2). First, the scoring function 

must be able to access the model state from the model representation (get_state). Second, 

the sampling algorithm must be able to access the current model parameters from the model 

representation (get_state). Third, the sampling algorithm must be able to also access the 

score and heuristic information from the scoring function (get_score). Finally, the sampling 

algorithm must be able to update the current model parameters (update_state).

Our demonstrative standard is sufficiently general to enable the mixing-and-matching of 

modeling tools. For example, when computing a model of Nup133, an integrative modeler 

wishes to score their model against multiple sources of input information (SAXS, XL-

MS, and EM) that are not easily handled by a single modeling tool. 3 distinct scoring 

tools may be drawn from different modeling packages specialized to the computational 

demands unique to each experimental datatype, Optimally, these scoring function tools 

operate independently on each information source to manage the complexity of the tool’s 

implementation. If all tools provide a uniform interface for returning the score and computed 

heuristics (get_score), they may be used interchangeably while remaining isolated from one 

another.

Illustrative modeling problem

We demonstrate the software standard by integrating IMP and Phenix to solve a specific 

problem in X-ray crystallography. Namely, we are interested in computing a model of a 

set of atomic protein structures (multi-state model), based on multiple diffraction datasets 

collected at different temperatures and physical principles. Such a multi-state model can be 

useful for mapping the dynamics and allostery of proteins (Fraser et al., 2011; Keedy et al., 

2015). Next, we describe the three necessary steps in modeling.

Input Information.—We are interested in informing our model by both structure factors 

from the X-ray crystallography experiments in addition to an empirical molecular mechanics 

force field. Satisfaction of the X-ray crystallography data restrains the overall model 

geometry while an empirical potential energy function restrains the stereochemistry and 

nonbonded interactions of local sets of atoms. Utilization of experimental X-ray diffraction 

datasets in conjunction with a force-field has been applied previously in computing X-ray 

models (Brunger et al., 1989; Burnley et al., 2011).
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Representation.—The multi-state model M is defined by Cartesian atomic coordinates for 

each of a small number of discrete structural states of a protein; the model also includes the 

relative weight of each state.

Bayesian scoring function.—In general, Bayes’ theorem states that the posterior model 

density, p M D, I , (the conditional probability density of model, M, given experimental 

measurements, D, and prior information, I) is proportional to the product of the data 

likelihood, p D M, I , (the probability of D given M and I) and prior distribution, p M I , 

(the probability of M given I):

p(M ∣ D, I) ∝ p(D ∣ M, I) × p(M ∣ I)

For our multi-temperature model where we have multiple diffraction datasets, Di, we assume 

that the likelihood is the product of independent likelihoods for each diffraction dataset. The 

posterior model density is:

p(M ∣ D, I) ∝ p Di ∣ M, I × p(M ∣ I)

where p Di M, I  is the likelihood for the diffraction data from the i-th experiment. In 

Bayesian modeling, the model is not a single model instance, rather the model is the 

posterior density over the entire model space spanned by the degrees of freedom defined by 

the model representation. The uncertainty of the model is the posterior model density spread. 

Bayesian modeling is conducive for integrative modeling because likelihoods and priors can 

be combined from diverse experimental datasets and prior information. As is often the case 

with probabilistic modeling, the score, s, is the negative logarithm of the model posterior 

density:

s = − logp(M ∣ D, I)
s = − logp(M ∣ I) − log p Di ∣ M, I

s = − logp(M ∣ I) − logp Di ∣ M, I

Though the scores can be weighed as pure probabilities, it is often useful to weigh the 

likelihood and priors so that the gradients have comparable magnitudes (Brunger et al., 

1989). The weights, w1, w2, may be optimized to a target function (eg, Phenix.refine) or 

empirically chosen:

s = − w1logp(M ∣ I) − w2 logp Di ∣ M, I

Sampling.—A sample can be generated from the model posterior via Molecular Dynamic 

simulation where atomic positions are updated based on a force computed from the 

potential energy surface. The stochastic Monte Carlo method, where parameter moves 

are accepted and rejected based on relative energy levels, is also useful for generating 

molecular ensembles. Furthermore, enhanced sampling variations of the Monte Carlo 
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method that leverage derivatives (e.g Hamiltonian Monte Carlo) are useful for improving 

sample convergence from complex posterior model densities.

To implement the representation, scoring, and sampling outlined above, we integrated 

software tools from the Phenix software suite and IMP modeling package using our 

demonstrative standard.

Phenix

Phenix (Python-based Hierarchical Environment for Integrated Xtallography) provides a 

suite of programs for manipulating experimental data, computing models, and validating 

structures from cryo-EM and X-ray/neutron/electron crystallography data. Phenix includes 

tools for the entire data processing and model generation workflow, including computing 

data quality indicators (phenix.xtriage), maximum likelihood estimation of phases from 

molecular replacement via a homologous structure (phenix.phaser (McCoy et al., 2007)), 

phase optimization (phenix.density_modification (Terwilliger et al., 2020)), model building 

(phenix.autobuild (Terwilliger et al., 2008)), refinement of the model to better fit both 

experimental and empirical restraints (phenix.refine (Afonine et al., 2012)), and finally 

model validation (access to MolProbity webserver (Williams et al., 2018)). Despite a large 

number of algorithms in Phenix, there would be great benefit from integration with IMP, 

for example by providing access to the flexible model representations, incorporation of 

non-crystallographic information, and enhanced sampling techniques in IMP.

IMP

Integrative Modeling Platform (IMP) is open-source software that contains a large number 

of libraries and programs for flexibly computing integrative models of biomolecular systems 

(integrativemodeling.org) (Russel et al., 2012). IMP supports a diverse set of model 

representations that can be flexibly coarse-grained to suit the problem. Restraints can be 

formulated to score models against various experimental data (eg, chemical cross-links 

identified by mass spectrometry, electron microscopy density maps, and small-angle X-ray 

scattering profiles) as well as prior models (eg, excluded volume, comparative models, 

molecular mechanics force fields, and statistical potentials). Models can be sampled or 

enumerated through numerical integration techniques, variations of the Monte Carlo method, 

as well as Molecular and Brownian Dynamics simulations. IMP’s relative strengths include 

a large variety of model representations, scoring functions based on different data, and 

sampling schemes, all of which can be mixed and matched relatively easily with each 

other to facilitate integrative structure modeling. Another distinction is an increasingly 

Bayesian perspective on uncertainties in input information, model representations, and 

scoring functions. In contrast, IMP does not include tools for X-ray crystallography. 

However, Phenix is a premier program for this task.

Integration of Phenix and IMP (Figure 3)

As IMP and Phenix use independent modeling frameworks, we were required to 

implement the standard functions by using and modifying software tools from both 

packages. Engineering the interfaces, therefore, required familiarity with the application 

and implementation of tools from both software ecosystems. For example, IMP and Phenix 
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employ their own model hierarchy to represent atomic structures. Yet for the model search, 

there must be a shared definition of the model representation. Efficiently managing and 

interconverting between the unique model hierarchies proved challenging. Such challenges 

of handling specific modeling packages further motivates the need for general standards to 

facilitate software interoperability without additional development effort.

The multi-state model representation is defined in IMP (IMP.Model). The sampler is also 

defined in IMP (IMP.MolecularDynamics). We implemented 2 scoring function tools, to 

evaluate the prior and likelihood respectively. The distinction between data likelihood and 

prior provides an opportunity for distributing an evaluation of the scoring function across 

both Phenix and IMP, taking advantage of the comparative strengths of each software 

package. The prior scoring function uses the IMP.atom library to evaluate stereochemical 

and non-bonded scores based on the CHARMM22 empirical force field. The likelihood 

scoring function uses Phenix’s maximum likelihood target function for a given set of 

experimentally observed structure factors. Evaluation of the crystallography likelihood 

includes several computationally demanding tasks such as the inference of distribution 

parameters and determination of the solvent region in the unit cell. Both the prior and 

likelihood scoring function tools were implemented with an identical interface to return the 

score and gradients, ensuring compatibility with IMP.Model and IMP.MolecularDynamics.

The model search could be implemented in two ways: in separate runtime environments via 
data integration or in the same runtime environment via library integration, as follows.

Data integration.—Our first attempt to integrate Phenix and IMP was by exchanging data 

between independent executions of custom scoring evaluation programs written separately 

from the Phenix (Computational Crystallography Toolbox (CCTBX)) and IMP libraries, 

respectively. The stochastic sampling algorithm proposes a move and saves the coordinates 

to a disk file in the PDB format, which is then read separately by the two evaluation 

programs. The Phenix program computes the likelihood while the IMP program computes 

the prior independently. The posterior is the product of these two terms. The advantage 

of this strategy is that the runtime environments are completely separated. However, the 

design presents a runtime challenge because all model data must be saved from the 

IMP address space to disk and then be read by the IMP and Phenix programs. As the 

structure factor calculations using Fast Fourier Transform (FFT) are extremely fast, the 

addition of the computational overhead presented a significant challenge to generating 

and scoring a sufficiently large sample. Phenix can compute 6224 structure factors for 

a ubiquitin molecule in ~0.015 seconds on a single computational core. Phenix can 

read and write a PDB file in ~0.08 seconds, while IMP is even slower. As millions of 

samples may be necessary to sufficiently sample the Bayesian posterior model density, 

this additional overhead makes the data integration expensive. For the informed search to 

be computationally feasible, the likelihood and prior evaluations must occur in the same 

runtime environment, which is achieved via library integration.

Library integration.—We also engineered evaluation of both the likelihood and prior with 

Phenix and IMP, respectively, within the same runtime environment. A single evaluation 

function accepts a model and computes both the likelihood and prior using Phenix and 
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IMP library calls, respectively. To integrate the scoring functionalities of Phenix and 

IMP, it was essential to develop a code for translating between the IMP and CCTBX 

hierarchical representations. As a result, the IMP sampling algorithm can make proposals 

based on IMP’s implementation of the model representation that is automatically reflected 

in CCTBX’s implementation representation and can be used natively with other CCTBX 

tools. Although the release of both IMP and Phenix’s underlying libraries (CCTBX) in 

conda-forge enables a consistent Python environment, we opted to build our integration 

in C++ for its performance advantages, followed by wrapping in Python for usability. We 

handled the technical integration of both IMP and Phenix shared dynamic (.so) libraries 

along with their dependencies through a custom compilation of IMP facilitated by CMake.

Conclusions

We were successful in incorporating IMP and Phenix functions, data structures, and 

numerical calculators in a model search. Rather than integrating IMP and Phenix tools 

in an ad hoc fashion, we organized them as proposed by our standard where the scoring 

function, sampling, and model representation tools communicate through defined channels. 

Importantly, the crystallographic likelihood and derivative calculator were completely 

independent of the molecular mechanics force field likelihood and derivative calculator. 

Using the model search implemented through the integration of IMP and Phenix, we 

generated a sample of the model posterior density from the structure of SARS-Cov main 

protease (PDB ID: 2H2Z) (Figure 4). Structures contained within the sample are drawn from 

the potential energy landscape formulated from the satisfaction of empirical stereochemical 

and non-bonded relationships as well as the observed X-ray data.

As introduced above, the first major advantage of integration is that little crystallography-

specific source code must be implemented in IMP. By leveraging the crystallographic 

functionality of Phenix, we do not have to implement a large number of crystallographic 

data structures and subroutines in IMP. CCTBX and IMP consist of 6210 (955,323 lines 

of code) and 3450 unique source files (327,966 lines of code), respectively, supported by 

multiple groups around the world. Direct integration of source has historically been the de 
facto approach to accommodating new data types in IMP. This integration saves significant 

development time and also prevents inflation of either codebase. We also benefit from the 

significant amount of previous Phenix development and will continue to benefit from future 

Phenix development. IMP also benefits from the Phenix authors’ expertise in computational 

crystallography, which includes significant runtime optimizations (e.g., testing whether FFT 

or direct summation is faster for a given crystal system).

Secondly, the standard is sufficiently general to enable substitution of other model 

representation, sampling algorithm, or scoring function tools. For example, the modularity 

is well suited for introducing additional scoring function tools as they simply need to parse 

the model representation and return the computed score plus heuristics. Using the Bayesian 

framework, new tools could be easily introduced for computing likelihoods from new forms 

of experimental data, for example nuclear magnetic resonance (NMR) restraints, or prior 

information, for example statistical potentials from the PDB.
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More complex sampling and scoring procedures may also be employed. The optimal 

strategy for sampling a model space is often unknown prior to modeling. Methods often rely 

on iterations of sampling procedures that may vary the sampling parameters (eg, temperature 

in simulated annealing) or the scoring functions (optimization of satisfaction of one source 

of input information over the other). Based on our framework, the model representation 

and scoring functions, are encapsulated from the details of the sampling procedure (in other 

words, g). New sampling procedures can easily be substituted so long as they can access the 

model representation to update the parameter state and accept scores and heuristics from the 

scoring function.

Discussion

Next, we discuss the implications of software integration for the field of integrative 

modeling. In integrative modeling, the goal is to build increasingly complex models 

based on increasingly varied sets of data (Sali, 2021). Key to any modeling is input 

information, which determines the type of model that can be computed; the choice of 

model representation is of course also informed by the questions asked of a model. In 

addition to model representation, a general description of modeling requires a Bayesian 

posterior model density that specifies the probability density of a model, given the input 

information, and a scheme for sampling this posterior density. Using Bayes’ theorem, the 

posterior can be factorized into data likelihoods, which depend on data, and priors, which 

depend on prior information. The evaluation of a posterior based on independent likelihoods 

and priors is simple in concept, but may be technically challenging; in other words, writing 

the code that implements the component likelihoods and priors may require a significant 

amount of effort and expertise that is difficult to duplicate by non-experts and wasteful 

to duplicate by experts. Thus, software integration can be seen as the major method for 

maximizing the quality and efficiency of modeling based on varied data and prior models. 

If the experts encoded their expertise in the code that can be easily mixed and matched, 

integrative modelers would in turn be able to rigorously combine likelihoods and priors for 

all the available input information to solve their integrative modeling problems efficiently. 

To illustrate this point in more detail, we discuss three specific examples of the posterior 

model density factorization next.

The first example is that used above (Approach), corresponding to computing an atomic 

multi-state model based on crystallography data and physical principles. Posterior model 

density is factorized into a data likelihood based on X-ray diffraction patterns and a prior 

based on a molecular mechanics force field. Consequently, input information is conveniently 

isolated in the software (IMP for prior models and Phenix for diffraction patterns) that is 

best suited to evaluate a model based on it. The separation of software manages the technical 

complexity of the prior and likelihood implementation.

The second example is computing a coarse-grained structural model of the hetero-

heptameric Nup84 complex based on a negative-stain electron microscopy map and residue-

specific cross-links as well as prior models of the subunits (Shi et al., 2014). Posterior model 

density is factorized into a data likelihood based on the map, a data likelihood based on the 

cross-links, a prior based on prior subunit models, and a prior based on excluded volume. 
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Although all the terms were evaluated in IMP in this case, it is conceivable that a more 

accurate encoding of a subset of input information is or will be available in another software 

package. In such a case, software integration would facilitate computing a higher quality 

model more efficiently.

The third example is computing a multi-scale model of glucose-stimulated secretion in 

human pancreatic beta-cells, based on 8 prior models of different aspects of different 

parts of the entire system (Raveh et al., 2021). These prior models are a coarse-grained 

spatiotemporal simulation of insulin vesicle trafficking, docking, and exocytosis; a 

molecular network model of glucose-stimulated insulin secretion signaling; a network model 

of insulin metabolism; a structural model of glucagon-like peptide-1 receptor activation; 

a linear model of a pancreatic cell population; and ordinary differential equations for 

systemic postprandial insulin response. When dealing with a complex multi-scale model, 

it is often not reasonable to assume independence of the input information. In this case, 

the prior models must be coupled by additional terms in the scoring function. In addition 

to the prior models, simple models of statistical coupling between the prior models are 

also defined. The prior models and the couplers are the priors in a posterior model density 

for a model of the entire system. Bayesian metamodeling estimates the posterior density 

via backpropagation. Thus, Bayesian metamodeling decomposes the problem of modeling 

a large, complex system into smaller, more tractable modeling problems. It is likely that 

more sophisticated and physically realistic coupling of prior models would be facilitated by 

software integration, where each type of prior model is evaluated in a separate specialized 

code developed by experts in the domain of that model.

Conclusions

In summary, software interoperability would greatly benefit the field of integrative modeling 

as the integration of software specialized for handling specific types of information supports 

more efficient building of higher quality and more complex models. We proposed a 

demonstrative standard that facilitates simple software integration by representing modeling 

as a model search with defined information passing. We then implemented the above 

standards to integrate Phenix and IMP. Finally, we discussed the ability of the Bayesian 

formulation to facilitate collaborative integrative modeling by mixing-and-matching priors 

and likelihoods. Ultimately, we suggest that the software development community in the 

field of integrative modeling consider the definition and adoption of de facto protocol 

standards for improving the interoperability of their software.
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Figure 1: Coverage of molecular weight by structural technique.
Histogram of the molecular weight of structures resolved by solution-state NMR 

spectroscopy, macromolecular X-ray crystallography, and electron microscopy (EM) 

deposited in the Protein Data Bank (PDB) (Berman et al., 2003). Each technique has a 

different coverage with respect to the molecular weight of the studied system. This variation 

illustrates one reason why it is desirable to integrate varied types of information as well as 

the software tools used to compute models from them.
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Figure 2. Class diagram for proposed standard for implementing a model search.
A model search may be implemented through the communication of software tools 

implementing a modeling step (representation, scoring, sampling). A box represents an 

independent tool and the arrows represent function calls.
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Figure 3. Workflow for integrating modeling software, exemplified by Phenix and IMP.
The sampler is implemented by IMP.MolecularDynamics. The model representation is 

implemented by IMP.Model. Two scoring tools are used: ForceFieldRestraint for computing 

the prior based on an empirical force field and XtalRestraint for computing the likelihood 

based on the observed diffraction data. IMP.MolecularDynamics calls to the model 

representation evaluate both restraints. The restraint then calls the functions to compute 

the score and gradients. For ForceFieldRestraint, calls were made to the IMP.atom library to 

return individual stereochemical and nonbonded scores which are combined to compute in 

the total prior and gradients. For XtalRestraint, calls were made to Phenix functions within 

the mmtbx and cctbx libraries. IMP.MolecularDynamics updates the model parameters 

based on Newton’s second law of motion where the force is derived from the sum of 

the returned gradients. The modularity of the design enables the substitution of alternative 

model representation and sampling tools (IMP.MonteCarlo). The isolation of Phenix 
and IMP scoring evaluations demonstrates how software integration is facilitated by the 

factorization of the Bayesian posterior model density into a data likelihood and a prior.
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Figure 4. Sample of SARS-CoV main protease posterior model density evaluated through 
integration of IMP and Phenix.
Sample of Histidine 246, Proline 241, Glutamic Acid 240, and Leucine 202 conformations 

from the SARS-Cov main protease model posterior density. The sample of 100 structures 

was generated via Molecular Dynamics sampling of the model posterior density. The 

posterior was evaluated as the product of the molecular mechanics prior and the X-ray 

likelihood, computed by IMP and Phenix libraries respectively. The model posterior density 

sample is overlaid by the all features (2Fo-Fc) map.
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