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RESEARCH ARTICLE Open Access

Interspecific analysis of diurnal gene
regulation in panicoid grasses identifies
known and novel regulatory motifs
Xianjun Lai1,2†, Claire Bendix3,4†, Lang Yan1,2, Yang Zhang1, James C. Schnable1* and Frank G. Harmon3,4*

Abstract

Background: The circadian clock drives endogenous 24-h rhythms that allow organisms to adapt and prepare
for predictable and repeated changes in their environment throughout the day-night (diurnal) cycle. Many
components of the circadian clock in Arabidopsis thaliana have been functionally characterized, but
comparatively little is known about circadian clocks in grass species including major crops like maize and
sorghum.

Results: Comparative research based on protein homology and diurnal gene expression patterns suggests the
function of some predicted clock components in grasses is conserved with their Arabidopsis counterparts,
while others have diverged in function. Our analysis of diurnal gene expression in three panicoid grasses
sorghum, maize, and foxtail millet revealed conserved and divergent evolution of expression for core circadian
clock genes and for the overall transcriptome. We find that several classes of core circadian clock genes in
these grasses differ in copy number compared to Arabidopsis, but mostly exhibit conservation of both protein
sequence and diurnal expression pattern with the notable exception of maize paralogous genes. We predict
conserved cis-regulatory motifs shared between maize, sorghum, and foxtail millet through identification of
diurnal co-expression clusters for a subset of 27,196 orthologous syntenic genes. In this analysis, a Cochran–
Mantel–Haenszel based method to control for background variation identified significant enrichment for both
expected and novel 6–8 nucleotide motifs in the promoter regions of genes with shared diurnal regulation
predicted to function in common physiological activities.

Conclusions: This study illustrates the divergence and conservation of circadian clocks and diurnal regulatory
networks across syntenic orthologous genes in panacoid grass species. Further, conserved local regulatory
sequences contribute to the architecture of these diurnal regulatory networks that produce conserved
patterns of diurnal gene expression.

Keywords: Circadian clock, Diurnal rhythms, Evening element, Poaceae grasses, Co-expression cluster,
Regulatory motifs, orthologous genes, syntenic genes
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Background
Genes exhibiting rhythmic patterns of expression under
day-night, or diurnal, conditions are widespread in
plants as in other domains of life. The expression pat-
terns of these cycling genes are shaped by both internal
signals from the circadian clock and external environ-
mental cues [1]. A fundamental role of biological
rhythms is to ensure that different physiological pro-
cesses occur at the most favorable time of day thereby
optimizing growth throughout the day-night cycle [2].
A primary mechanism driving biological rhythms is

transcriptional control [3]. Transcriptome-wide analysis
in diverse plant species reveals diurnal rhythmic expres-
sion for 25–60% of transcripts in leaves of maize, rice,
popular, and Brachypodium [4–6], 30% of transcripts in
conifer needles [7], and up to 89% of transcripts in
whole Arabidopsis thaliana seedlings [1]. The circadian
clock and direct responses to environmental cues to-
gether provide transcriptional signals to a highly inter-
connected regulatory network that shapes the temporal
behavior of key plant signaling and metabolic pathways.
Previous work identified conserved cis-elements up-
stream of diurnal rhythmic genes in Arabidopsis, poplar,
and rice [1], indicating conserved regulatory cis-elements
are critical to shaping diurnal rhythms. The regulatory
logic shaping rhythmic gene expression and how diurnal
transcriptional networks impose timing on biological
processes are not fully understood.
The circadian clock system allows organisms to antici-

pate daily changes in light and temperature, as well as sea-
sonal transitions associated with changes in daylength [8–
10]. The circadian clock is an endogenous and self-
sustaining mechanism generating approximately 24-h
rhythms in biological processes. The rhythms generated
by circadian clocks allow organisms to anticipate recurring
environmental changes. For example, movement of sun-
flower heads to face east before the sun rises [11]. Coord-
ination of internal physiological activities with external
environmental conditions mediated by the circadian clock
maximizes biomass and growth vigor [9, 12–14].
The circadian clock regulates metabolic pathways in-

volved in plant growth, development, and biotic stress
tolerance [15, 16]. Natural variants of the GIGANTEA
gene in Brassica rapa alter circadian clock period and
contribute to differences in cold and salt stress tolerance
[17]. Cultivated tomato accessions have slower circadian
clocks compared to wild tomato accessions [18]. This
change in circadian clock activity is associated with in-
creased plant height, earlier flowering, and reduced
chlorophyll content, which adapted cultivated tomato to
the longer summer days of higher latitudes. Early flower-
ing caused by disrupted circadian clock activity allows
cultivation of certain diploid wheat and barley cultivars
under the short growing seasons at high latitudes [19–

21]. Circadian clock activity in Arabidopsis and maize
hybrids plays an essential part in the origin of hybrid
vigor [13, 22]. Metabolic vigor in Arabidopsis hybrids
and allopolyploids partly results from temporal shifts in
circadian clock regulation of key metabolic genes [13].
Similarly, higher levels of carbon fixation and starch ac-
cumulation in maize hybrids are associated with an al-
tered phase of circadian gene expression [22].
Core circadian clock genes initially discovered in Ara-

bidopsis occur throughout the green plant lineage. The
complement of predicted circadian clock genes in B.
rapa is comparable to Arabidopsis, although gene copy
number varies between the two species, primarily as a
result of local gene duplication in B. rapa [17, 23]. Hom-
ologous circadian clock genes have been identified in
other eudicots including tomato [24], wild tobacco [25],
grapes [26] and multiple legumes [27, 28]. Monocots
such as maize [29], wheat [21], barley [20, 30], and rice
[5, 31, 32] also have homologs of Arabidopsis circadian
clock genes.
Domesticated and wild grass species in the Poaceae

family have adapted to diverse environments, but species
within this family exhibit significant syntenic conserva-
tion at the level of both genetic maps and genomic
organization [33–35]. While a minority of annotated
maize genes are conserved at syntenic locations relative
to other grass species of Poaceae, these syntenic con-
served genes account for the vast majority of genes with
known mutant phenotypes [36]. Several studies have
identified conservation of both diurnal gene expression
patterns and cis-regulatory elements implicated in the
regulation of these expression patterns across related
species [13, 22, 37, 38].
We examined the conservation and divergence of diur-

nal gene regulation among syntenic orthologs from the
panacoid grasses sorghum (Sorghum bicolor), maize (Zea
mays), and foxtail millet (Setaria italica) to identify cis-
regulatory elements with potentially conserved and di-
vergent functions in shaping diurnal gene expression.
Shared diurnal regulation patterns among syntenic
orthologs in related species indicates the subset of diur-
nal gene regulatory patterns experiencing the greatest
degree of functional constraint. Our expectation was
that conserved regulatory cis-elements responsible diur-
nal expression patterns will be found upstream of these
co-expressed genes. We first identified all genes experi-
encing diurnal regulation in each grass species with
transcriptome-wide evaluation of diurnal gene expres-
sion with RNA-seq of samples taken across a 3-day time
course. We next identified gene families for circadian
clock components based on homology to known Arabi-
dopsis circadian clock components and evaluated the ex-
pression behavior of these genes to determine conserved
features of circadian clock regulation between these
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three grasses. Finally, we identified highly credible con-
served upstream cis-motifs shared by maize, sorghum,
and foxtail millet employing a cluster-based method that
takes advantage of conservation information from mul-
tiple species. This analysis discovered several well-
known and novel DNA sequence motifs that were
enriched in upstream regions of genes involved in the
same metabolic pathways. We conclude that conserved
local regulatory sequences contribute to the architecture
of these diurnal regulatory networks that produce con-
served patterns of diurnal gene expression.

Results
Transcriptome-wide diurnal expression in sorghum, maize
and foxtail millet
To identify the subset of genes experiencing diurnal pat-
terns of regulation and to compare the characteristics of
diurnal regulatory patterns across orthologous genes, di-
urnal expression was characterized for sorghum, maize,
and foxtail millet, three closely related grass species.
Fully expanded third leaves from sorghum, maize, and
foxtail millet plants at the 3 leaf stage were sampled
every 3 hours over the course of 3 days (a total of 72 h)
(Figure S1). The resulting RNA-seq-based gene expres-
sion profiling datasets are summarized in Table S1. As
expected, a large proportion of genes in each of the
three species exhibited rhythmic expression. Curve fit
analysis to identify rhythmic gene expression patterns
showed 52% (16,752 rhythmic/32,446 total), 30% (17,532
rhythmic/59,074 total), and 43% (15,046 rhythmic/34,
680 total) of detected transcripts in sorghum, maize and
foxtail millet, respectively, had statistically significant di-
urnal rhythms (Tables S2-S4). For each gene with sig-
nificant evidence of rhythmic expression, the pattern of
expression was described using three variables: period
(the time required to complete 1 cycle), phase (the time
of peak expression), and amplitude (the difference be-
tween peak and trough of expression). The majority of
cycling genes exhibited a period of 24 h (75% sorghum,
86% maize, 77% foxtail millet; Tables S2, S3, S4), as
expected for diurnal regulation and consistent with the
light-dark environmental conditions experienced by the
plants. Within each 24-h period, the phase distribution
was continuous, meaning that at every time of day peak
expression occurred for many different genes (Tables S2,
S3, S4). In all three species, the most common phases
were between afternoon, corresponding to circadian
time (CT) 9 (9 h after dawn), and early morning (CT18)
(Figure S2). The collection of genes expressed in this 9 h
time interval represented 74.5% (sorghum), 71.2%
(maize), and 75.5% (foxtail millet) of all cycling genes.
The median amplitude for all rhythmic genes was 5.5
(sorghum), 4.9 (maize) and 5.5 (foxtail millet), but genes
with amplitudes < 5 made up 50% (sorghum), 54.5%

(maize), and 49.9% (foxtail millet) of the values (Figure
S3). Overall, the proportion of genes exhibiting diurnal
regulation and the distribution of phases for maize, sor-
ghum, and foxtail millet observed here are similar to the
nature and extent of diurnal regulation described for
other flowering plant species [4–6, 14, 29].

Conserved expression for predicted core circadian clock
genes
To test how consistently the core circadian clock behaves
across these three grasses, we focused on a set of genes en-
coding orthologs of Arabidopsis circadian clock compo-
nents. Putative orthologs were identified in maize using the
amino acid sequences of the Arabidopsis proteins (Tables
S5, S6) [9, 39, 40]. Shared synteny was used to establish
orthology to map homologous relationships over to the sor-
ghum and foxtail millet genomes and to identify pairs of
maize genes which are homeologous duplicates resulting
from the maize/Tripsacum whole genome duplication
(WGD) event (Table S7) [41]. We found these circadian
clock components have similar diurnal expression patterns
in maize, sorghum, and foxtail millet, but several orthologs
show advanced or delayed peak expression in maize (Figs. 1,
S7; Table 1). Analysis of five key circadian clock gene fam-
ilies is described below.

LHY/CCA1 and RVE genes
Arabidopsis CCA1 and LHY and their mutual grass
orthologs form a monophyletic clade within the larger
REVEILLE (RVE) protein family (Figure S4A). LHY/
CCA1 are Myb-like transcription factors that are central
components of all plant circadian clock models [39, 40].
Previous analysis of the CCA1 and LHY phylogeny in
eudicots identified that the duplication that produced
the CCA1 and LHY genes occurred in the Brassicaceae
lineage, after the eudicot/monocot split [23]. Hence, any
grass gene apparently orthologous to CCA1 shares an
equal orthologous relationship with LHY and vice versa.
Maize harbors two LHY-like (lyl) genes caused by the
maize/Tripsacum WGD event, while sorghum and
foxtail millet each have a single lyl gene that each are
co-orthologous to the maize gene pair according to a
phylogenetic tree of LYL protein family (Figure S5). The
sorghum (Sobic.007G047400), maize (GRMZM2G4
74769; GRMZM2G014902) and foxtail millet (Sei-
ta.6G055700) lyl genes displayed clear rhythmic expres-
sion patterns (Fig. 1a). The sorghum and foxtail millet
genes exhibited higher peak expression and greater amp-
litude than their two maize orthologs, but the two maize
gene copies were expressed at equivalent levels and
amplitude relative to each other (Table 1). Also, peak ex-
pression of the sorghum and foxtail millet lyl genes oc-
curred coincident with dawn, while the maize lyl peak
occurred 3 h later. The morning-phased expression of
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these lyl genes is similar to Arabidopsis LHY and CCA1
(Table 1).
At the protein level, all of the maize LHY-like and RVE-

like proteins share the same amino acid domains as their
Arabidopsis counterparts, including the signature Myb-
type DNA-binding domain (Tables S5, S6). The five other
subclades of syntenic orthologous genes in the RVE gene
family, RVE2-like (re2l), RVE6-like (re6l), and RVE7-like
(re7l), showed strong rhythmic expression across the three
species (Figure S7A-S7; Table 1). Genes of the re2l family
in all three species, including the single maize gene pro-
duced by genome fractionation (GRMZM2G145041), also
exhibited a peak in expression at dawn (Figure S7A; Table
1). This pattern is also consistent with re6l1 in maize
(GRMZM2G135052) and orthologs in sorghum
(Sobic.010G004300) and foxtail millet (Seita.4G004600)

(Figure S7B; Table 1). On the other hand, the orthologous
gene group with maize re6l2 (GRMZM2G170148) and
re6l3 (GRMZM2G057408) and their sorghum ortholog
(Sobic.010G223700) is not rhythmically expressed, while
the foxtail millet gene (Seita.4G266800) has rhythmic
expression with peak expression at dawn (Figure S7C;
Table 1). Maize re6l4 (GRMZM5G833032) and re6l5
(GRMZM2G118693) together with its sorghum
(Sobic.004G281800) and foxtail millet (Seita.1G272700)
orthologs show rhythmic expression with a dawn phase,
but maize re6l4 expression levels and amplitude are low
(Figure S7D; Table 1). The orthologous gene groups of
re7l genes were rhythmically expressed, but the first
group, representing maize homeologous genes re7l1
(GRMZM2G029850) and re7l2 (GRMZM2G170322), ex-
hibited dramatically lower gene expression than orthologs

Fig. 1 Diurnal expression patterns of orthologous central circadian clock genes from maize, sorghum and foxtail millet over a 72-h. Expression patterns of (a)
lhy-like (lyl), (b) toc1-like (t1l), (c, d) elf3-like (el3l), (e) fkf1-like (ffl) and (f) gigantea (gi) genes. lyl1 FPKM values are for gene model GRMZM2G474769, but the
complete lyl1 gene encompasses three annotated genes (Table S6). The two maize paralogous el3l1 and el3l2 are presented separately together the sorghum
and foxtail millet orthologs. Sorghum genes shown in by blue, foxtail millet genes in light blue, and maize genes in red. Maize paralogs are indicated by circle
and triangle symbols. White and black bars correspond to times of light and dark, respectively
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in sorghum (Sobic.004G279300) and foxtail millet (Sei-
ta.1G275400) (Figure S7E; Table 1). In the second ortho-
logous group of re7l genes, the phase of the foxtail millet
gene expression (Seita.7G212900) was shifted earlier in
the night, with a broader peak, while both maize re7l3
(GRMZM2G421256) and re7l4 (GRMZM2G181030)
showed a sharp peak in expression coincident with dawn,
and the sorghum peak (Sobic.006G192100) was intermedi-
ate between the two (Figure S7F; Table 1).

PSEUDO-RESPONSE REGULATOR (PRR) genes: TOC1, PRR3/
7/37/73, PRR9/5,95
The Arabidopsis PSEUDO-RESPONSE REGULATOR
(PRR) genes PRR9, PRR7, PRR5, and TIMING OF CAB
EXPRESSION 1 (TOC1) encode core circadian clock com-
ponents that repress transcription of CCA1/LHY through-
out the day [42]. The proteins in the PRR family fall into
three main clades named TOC1, PRR3/7/37/73, and
PRR9/5/95 (Figure S4B). PRR-like proteins in all three
species contain the same amino acid motifs as the

Arabidopsis PRRs (Tables S5, S6). Interestingly, sorghum
and foxtail millet have single copies of TOC1-like (t1l),
PRR73-like (p73l), PRR95-like (p95l) and PRR59-like
(p59l) genes while maize also has a single p73l gene but
two each of the t1l, p95l, and p95l genes (Table S6). All of
these maize genes arose from recent duplications (Table
S7). Diurnal gene expression for all three species exhibited
peak expression at midday for p73l and p95l genes (Figure
S7G, I), at late-afternoon for p59l genes (Figure S7H), and
at dusk for t1l genes (Fig. 1b), which is a pattern similar to
their Arabidopsis orthologs (Table 1).

Evening complex genes: ELF3, ELF4, and LUX
The evening complex is a trimeric protein complex that
contains EARLY FLOWERING 3 (ELF3), EARLY
FLOWERING 4 (ELF4), and the Myb-like transcription
factor LUX ARRHYTHMO (LUX). This protein com-
plex represses expression of day-phased genes [43]. The
maize genome has two ELF3-like (elfl) genes
(GRMZM2G045275, AC233870.1_FG003) encoding

Table 1 Diurnal expression characteristics of syntenic circadian clock and circadian clock-associated genes

CT Phasea, hours Amplitudea, FPKM

Name Atb Sb Zm1 Zm2 Si Sb Zm1 Zm2 Si

LYL1/LHYL2 23 0 1.5 0 0 218.1 33.8 31.9 385.7

RE2L 20 0 21 -c 22.5 52.6 18.8 – 65.0

RE6L1 ndd 21 21 – 21 8.4 1.3 – 4.8

RE6L2/RE6L3 nd nre nr nr 18 nr nr nr 3.7

RE6L4/RE6L5 nd 22.5 21 22.5 21 24.4 3.0 18.1 44.4

RE7L1/RE7L2 nd 19.5 18 14.7 19.5 1.9 2.3 0.8 1.8

RE7L3/RE7L4 nd 15 16.5 18 13.5 10.8 23.3 18.9 37.5

T1L1/T1L2 13 10.5 12 9 9 9.5 5.9 1.1 5.6

P59L1 8 – 7.5 – – – 2.2 – –

P59L2 8 8.3 – 9 7.5 14.3 – 3.4 10.2

P73L 7 6 – 4.5 4.5 74.3 – 45.3 66.9

P95L1/P95L2 5 6 6 7.5 6 21.0 16.0 2.5 45.2

GI2/1 8 9 7.5 9 7.5 120.4 13.0 103.1 135.2

EF3L1 14 21 20.3 – 19.5 10.8 6.8 – 11.0

EF3L2 16 16.5 15 – 13.5 27.9 12.1 – 16.2

EF4R1/2 11 9 7.5 nr 7.5 14.5 9.4 nr 35.9

EF4R3 11 nr nr – nr nr nr – nr

EF4R4 11 10.6 13.5 – 9.0 0.6 1.5 – 1.5

LXL 11 12 – 10.5 10.5 4.7 – 5.6 12.9

ZLL1/ZLL2 nr 16.5 nr 10.5 16.5 7.8 nr 1.7 4.8

ZLL3/ZLL4 nr 0 0 nr 15 10.3 4.5 nr 3.1

FFL1/FFL2 11 7.5 8.3 9 7.5 3.8 2.3 7.2 8.3
aValues are from JTK_Cycle analysis in Tables S2-S4 for sorghum (Sb), maize subgenome 1 (Zm1), maize subgenome 2 (Zm2), and foxtail millet (Si) genes
bPhase values for orthologous Arabidopsis (At) genes plants under light-dark photocycles and hot-cold temperature cycles (LDHC) from reference [37]
cNo syntenic gene
dNot determined
eExpression not rhythmic
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complete EF3L proteins (Table S6), although the do-
mains of ELF3 proteins do not represent conserved do-
mains of known function (Table S5). These elfl genes
appear to have arisen from gene duplication in the com-
mon monocot WGD event, as each of the maize elfl
genes is on unfractionated maize subgenome 1 and nei-
ther has a direct paralog on maize subgenome 2 (Tables
S6, S7). The ef3l genes in all three grasses had consist-
ently high amplitude rhythms, although the daily timing
of peaks was different amongst them (Fig. 1c, d; Table
1). Maize ef3l1 and its orthologs from sorghum
(Sobic.003G191700) and foxtail millet (Seita.5G204600)
reached peak expression around dawn (Fig. 1c). On the
other hand, maize ef3l2 and its orthologs from sorghum
(Sobic.009G257300) and foxtail millet (Seita.3G121000)
peaked early in the night, which is timing similar to Ara-
bidopsis ELF3 (Fig. 1d; Table 1).
Single LUX-like (lxl) genes occur in sorghum, maize and

foxtail millet (Tables S6, S7). The grass LXL proteins have
Myb-like DNA binding domains homologous to Arabi-
dopsis LUX, but are substantially shorter than Arabidopsis
LUX by 13, 33 and 22% for sorghum, maize, and foxtail
millet, respectively. Rhythmic expression of lxl in maize
(GRMZM2G067702) and foxtail millet (Seita.5G468100)
was at higher levels than sorghum lxl (Sobic.003G443600)
(Figure S7J), but all the genes had maximal expression at
dusk like Arabidopsis LUX (Table 1).
Arabidopsis ELF4 belongs to a family also containing

four ELF4-LIKE (EF4L) proteins [44]. ELF4 and EF4L1 are
members of one subclade (ELF4/EF4L1 clade), while
EF4L2, EF4L3, and EF4L4 belong to another (EF4L2/3/4)
(Figures S4C, S6). The nomenclature ELF4-RELATED
(EF4R) is used here for the monocot proteins to distin-
guish them from dicot ELF4L proteins. We find the ELF4/
EF4L1 subclade contains only proteins from dicots (Figure
S6A). Several grass EF4R proteins fall within a separate
subclade (Figures S4C; S6A), including two sorghum pro-
teins (Sobic.005G194200 and Sobic.002G193000) and
their two maize orthologs EF4R3 (GRMZM5G877647)
and EF4R4 (GRMZM2G025646), each encoded by genes
that have lost their paralogs (Table S7). A separate, poten-
tially monocot-specific, clade is basal to the others and
contains EF4R1 (GRMZM2G382774) and EF4R2 (GRM
ZM2G3593222), which are encoded by paralogous genes
(Tables S6, S7), together with proteins from sorghum
(Sobic.001G340700) and foxtail millet (Seita.2G195800)
(Figure S6B).
Of ef4r genes, ef4r1 from maize, sorghum, and foxtail

millet were the most highly expressed rhythmic genes
and these had peak expression late in the late day (Fig-
ure S7K; Table 1). By contrast, the expression level of
ef4r2, which is the paralog of maize ef4r1, was not suffi-
cient to detect rhythms (Figure S7K). Each of the ef4r3
orthologs from sorghum, maize, and foxtail millet was

expressed, but these did not have rhythmic expression
(Figure S7L; Table 1). Finally, the ef4r4 orthologs from
all three species had low expression levels characterized
by low amplitude rhythms (Figure S7M; Table 1).

ZTL, LKP2, and FKF1 genes
The three closely related genes ZEITLUPE (ZTL)/ADA-
GIO 1 (ADO1), LOV KELCH PROTEIN 2 (LKP2)/ADA-
GIO 2 (ADO2), and FLAVIN-BINDING, KELCH REPEAT,
F-Box 1 (FKF1)/ADAGIO 3 (ADO3) encode blue light
photoreceptors involved in ubiquitin-26S proteasome-
directed protein turnover [45]. ZTL primarily contributes
to clock function, while FKF1 and LKP2 are involved in
photoperiodic control of flowering time. The LKP2 gene
group is present only in the Brassicaceae lineage [23] and,
therefore, was not considered here.
Foxtail millet and sorghum each have two ZTL-like (zll)

genes and maize has four zll genes (Table S6). Maize zll1
(GRMZM2G115914) and zll2 (GRMZM2G113244) are para-
logs syntenic to individual sorghum (Sobic.010G243900) and
foxtail millet (Seita.4G249100) genes (Table S7). Similarly,
maize zll3 (GRMZM2G147800) and zll4 (GRMZM2
G166147) are paralogs syntenic to individual sorghum
(Sobic.004G042200) and foxtail millet (Seita.1G087300) genes
(Tables S6, S7). The expression behavior of these zll genes is
complex. Maize zll1 and zll4 appear not to be expressed (Fig-
ure S7N, O; Table 1). Intriguingly, maize zll2 has peak ex-
pression at dusk, while expression of its sorghum and foxtail
millet orthologs occurs 6 h later in the middle of the night.
Maize zll3 and its sorghum ortholog both achieve peak ex-
pression at dawn; in contrast, the phase of their foxtail millet
ortholog is 15 h later in the middle of the night period similar
to the second foxtail millet zll gene (Figure S7O).
Sorghum and foxtail millet have single FKF1-like (fflI) FFL

genes (Sobic.005G145300 and Seita.8G146900) and maize
has the two paralogous genes ffl1 (GRMZM2G106363) and
ffl2 (GRMZM2G107945) (Tables S6, S7). The ffl genes in sor-
ghum, maize and foxtail millet all reach peak expression in
the mid-afternoon. Amplitude was similar between maize
ffl1 and sorghum ffl, but the amplitudes of maize ffl2 and fox-
tail millet ffl were higher by nearly 2-fold (Fig. 1e; Table 1).

GI genes
The Arabidopsis GIGANTEA (GI) gene encodes a plant-
specific protein that interacts with ZTL/FKF1 proteins
to control their degradation by the ubiquitin-26S prote-
asome system [46, 47]. Maize has the paralogous gi1
(GRMZM2G107101) and gi2 (GRMZM5G844173) genes
on subgenome 1 and subgenome 1, respectively (Tables
S6, S7). By contrast, sorghum (Sobic.003G040900) and
foxtail millet (Seita.5G129500) each have a single gi
gene. As reported previously [48], maize gi1 expression
level and amplitude was higher than maize gi2, but both
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are expressed late in the day similar to the sorghum and
foxtail millet gi genes (Fig. 1f; Table 1).

Identification of interspecies co-expression based on K-
means clustering
Orthologous syntenic genes are sets of genes located in
genomic regions derived from the same ancestral genomic
region and in a collinear gene order across genomes.
These genes in sorghum, maize and foxtail millet are ex-
pected to have consistent behaviors under the same exter-
nal environment. Many of the predicted core circadian
clock genes described above showed diurnal expression
patterns that are expected based on the behavior of their
Arabidopsis orthologs (Table 1), although several had
shifted expression phases or the absence/presence of
rhythmicity. To investigate conserved temporal regulation
of gene expression transcriptome-wide for sorghum,
maize, and foxtail millet, we identified shared overall
expression patterns amongst syntenic genes using a K-
means clustering method. The expectation was that ortho-
logous syntenic genes derived from the same ancestral
genomic regions will preserve key regulatory features and,
as a consequence, retain comparable expression behavior
under equivalent conditions. Thus, syntenic genes from
sorghum, maize, and foxtail millet are expected to be
grouped together according to expression pattern at a
substantially higher frequency than chance. The existence
of such co-expression clusters implies coordinated regula-
tion for genes within the cluster.
For K-means clustering, an orthologous syntenic gene

subset consisting of 57,802 total genes from sorghum,
maize, and foxtail millet (Table S7) was extracted from a
pan-grass syntenic gene set [49] and was used to con-
struct a gene expression matrix based on the 72-h time
series RNA-seq datasets. To remove genes with low gene
expression reproducibility and to maximize the number
of syntenic genes analyzed, K-means clustering analysis
considered a subset of 27,196 total orthologous genes
(8616 sorghum genes, 8836 foxtail millet genes, and
9744 maize genes) that corresponded to syntenic gene
groups having a Pearson correlation higher than 0.7 and
a mean signed deviation (MSD) lower than 0.9 between
successive days.
To identify a reasonable number of K-means clusters

representing distinct gene expression patterns, we tested
a series of candidate cluster centers from 2 to 24 to dis-
cover the number of K-means centers that both clus-
tered the highest number of syntenic sorghum and
foxtail millet orthologs and minimized the false discov-
ery rate (FDR) (Figure S9). Based on the expectation that
orthologous genes could be grouped in the same cluster
by chance, we conducted a permutation test 100 times,
each time shuffling the assignment of genes to clusters
and calculated the average expectation values from all

permutations. In the case of random distribution, the
true positive ratio, or the percentage of orthologous
genes appearing together in a cluster, will be inversely
proportional to the number of clusters leading to a
higher FDR with fewer clusters. In our permutation ana-
lysis, we found that the true positive ratio fell substan-
tially between 2 and 15 centers but then plateaued when
the cluster number exceeded 15 (Figure S9). Taking this
result into consideration with the fact the dataset had 8
time points representing a full day-night cycle, we
grouped the orthologous genes into 16 clusters in which
two distinct expression patterns could be present for the
same time point (Table S8). A total of 2278 syntenic
gene pairs between sorghum and foxtail millet were
enriched in clusters, accounting for 37.2% of all the syn-
tenic gene groups. All clusters were composed of genes
with clear diurnal expression patterns (Fig. 2a). Notably,
the clusters had distinct median phases of expression, in-
dicating these clusters were potentially groups of co-
regulated genes, which may be related to specific bio-
logical processes with distinct diurnal rhythms.
Given the high genomic collinearity across these three

grasses species [33–35], the number of genes enriched in
the same clusters across species were expected to be
equivalent. A comparison of gene distributions for each
species demonstrated generally uniform gene compos-
ition in each cluster (Fig. 2b), except for six clusters with
a slightly greater number of maize genes (clusters 2, 4, 7,
9, 10, and 12). This bias is likely explained by the pres-
ence of duplicated maize paralogs, since these clusters in
total had a significant higher proportion of duplicated
maize paralogs than the total of the other clusters (t-test
p-value = 2.83e-5). The composition of these clusters is
in line with our hypothesis regarding conserved co-
regulation of genes and also demonstrates the utility of
K-means clustering in identification of co-expressed
genes between diverse species.

Characteristics of orthologous gene expression patterns
Orthologous syntenic sorghum, maize, and foxtail millet
genes were expected to group in the same clusters, an
indication of conserved transcriptional regulatory mech-
anisms. To determine whether orthologous syntenic
genes were enriched in clusters over non-syntenic genes,
we investigated the proportion of syntenic genes in the
clusters. Since the distribution of phases in clusters
spans several hours, the median phase in each cluster
was used to represent the center phase of the cluster.
The phases of the16 clusters were distributed across the
24-h diurnal period with a 1.5-h interval between two
temporally adjacent clusters (Fig. 2a). Pairwise compari-
sons were made between orthologous genes of two spe-
cies to detect conserved and divergent gene expression
patterns based on phase of gene expression (Figs. 3 and
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S10, S11). In total, 37.2% of orthologous genes appeared
in the same clusters, which indicated the conservation of
diurnal expression patterns for these genes. Even in
cases when syntenic genes that did not appear in the
same cluster, conserved expression patterns were appar-
ent by the clustering of syntenic genes in temporally
similar diurnal phases. Orthologous genes grouped in
different clusters were more likely to be in a cluster
representing a similar phase than expected based on our
null model of random distribution (Figs. 3, S10, S11).
The phase distribution for expression of clustered genes
was also highly conserved (Fig. 2a). Similar to the distri-
bution observed with curve fit analysis (Figure S2), clus-
ters with the greatest numbers of genes were those
representing genes with peak expression between

afternoon (CT9) and early morning (18 h after dawn),
which encompassed in total 73.4% of all genes in clus-
ters, while only 9.9% of genes fell into clusters represent-
ing genes expressed from the beginning of the day (CT0)
to the afternoon (CT6).

Diurnal co-regulation of genes related by function
GO enrichment analysis was performed to identify func-
tional enrichment of genes in the 16 co-expression clus-
ters (Table S9). A total of 1200 GO Cellular Process terms
were enriched for each species, of which ~ 200 s were sig-
nificant enriched (Bonferroni adjusted p-value < 0.05).
Clusters 8–12 represent genes with morning/daytime
phases (CT0–6) were enriched for GO terms of “photo-
synthesis light harvesting”, “heme binding”, “tetrapyrrole

Fig. 2 Diurnal co-expression clusters for orthologous syntenic sorghum, maize, and foxtail millet genes. a Normalized gene expression values
show the diurnal expression pattern in 16 clusters derived from K-means clustering. b Proportion of genes from maize (red), sorghum (dark blue),
and foxtail millet (light blue) in each of the 16 clusters. In (a), x-axis shows the time points and y-axis shows the 0–1 scaled FPKM values for each
gene. Yellow and blue areas represent light and dark periods, respectively. Heavy red line is the median expression pattern of genes in that
cluster and fine grey lines are individual genes. The total number of genes and median phase (in CT) of each cluster are show at the top of each
panel as: total gene number/median phase (in red text)
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binding”, and “generation of precursor metabolites and
energy”. This demonstrates coordinated regulation of
photosynthesis- and metabolism-related genes to ensure
these are expressed during the day when plants are
actively engaged in photosynthesis. Genes in cluster 14,
with phases near the boundary of day and night (CT9),
represented GO terms related to basic cellular functions,
including ribosome biosynthesis, protein translation,
macromolecule biosynthetic process, and nitrogen metab-
olism. Clusters 15 and 16, representing genes with evening
timing (CT10.5-CT12), were also enriched for genes re-
lated to protein synthesis including nitrogen compound
metabolism, ribosome synthesis, and RNA synthesis.
Nighttime and early morning (CT13.5–19.5) expressed
genes in clusters 1–5 were mainly related to a range of
metabolic process including nucleic acid, peptide, and or-
ganic cyclic compounds, as well as phosphorylation, and

oxidoreductase activity, which is likely associated with
degradation of dissolved sugars and starch throughout the
night [50]. GO terms related to chromatin binding and
regulation of RNA biosynthetic processes and gene ex-
pression were enriched in clusters 6 and 7 that represent
genes expressed just before dawn (CT21–22.5). The co-
expression of syntenic genes associated with specific cellu-
lar activities demonstrates conserved diurnal partitioning
of cellular activities in sorghum, maize, and foxtail millet.

Leveraging multi-species comparisons for increased
power to identify promoter motifs
Given the hypothesis that genes with common expres-
sion patterns are controlled by shared regulatory mecha-
nisms, the diurnal co-expression gene clusters identified
here offered an opportunity to identify promoter motifs
conserved between the sorghum, maize, and foxtail

Fig. 3 Phase distribution for orthologous genes with diurnal expression from sorghum and foxtail millet. Concentric circles represent different
features layered together from the outside to inside. The outer layer represents dawn (red), daytime (yellow), dusk (purple), and nighttime (blue)
and the corresponding CT for each part of the diurnal cycle. CT0 is equal to 9:00 AM. The second layer shows the relative temporal position of
the median gene expression for sorghum and foxtail millet orthologs in the 16 co-expression clusters, where each color represents one cluster.
The third layer shows the 24-h temporal distribution of peak expression for genes in that cluster along a line beginning and ending at CT12
(midnight). The inner most layer shows the cluster position of enriched syntenic genes shared between sorghum and foxtail millet based on the
null model. Each colored line represents at least 10 shared genes and line thickness is proportional to the number of shared genes
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millet genes. All permutations of 6–8 nucleotides were
regarded as putative motifs and we searched for motifs
shared between genes in each co-expression cluster in
likely promotor regions, corresponding to 1000 base
pairs upstream from the transcriptional start site. Ini-
tially, the Fisher’s exact test was applied to determine if
any motif was significant enriched in any cluster for each
species. A permutation-based FDR was calculated to
control the proportion of false positives. With this ap-
proach, only two 6 nucleotide motifs were found signifi-
cantly enriched in the same clusters across the three
species and no motifs of 7 or 8 nucleotides were found
(Table S10). One of these two motifs is ‘AATATC’ in
cluster 2 and it is the core sequence of the evening elem-
ent (EE) [8], which is the binding target of Arabidopsis
LHY and CCA1 [51]. The second enriched motif is
‘GGCCCA’ present in cluster 5, which represents early
morning-phased genes, and this sequence matches the
Arabidopsis UP1ATMSD motif previously discovered as-
sociated with protein synthesis-related genes [52, 53].
The limited number of motifs discovered by this Fisher’s
test method, indicated it was inefficient at identifying
motifs in a single species, as well as motifs shared
amongst species.
To improve motif discovery, we performed the

Cochran–Mantel–Haenszel (CMH) test. This test com-
bines separate 2 × 2 contingency tables for each species,
which controls for variation in the background abun-
dance of distinct sequence nucleotide motifs in the pro-
moters of orthologous genes in different species.
Analysis of syntenic gene clusters with this method iden-
tified a large number of motifs at p-values below the sig-
nificance level of FDR < 0.05, including the two motifs
identified using the Fisher’s exact test (Table S10).
A total of 65 motifs of 6 nucleotides were found

enriched in clusters using the CMH test, as well as 25
motifs of 7 nucleotides and 10 motifs of 8 nucleotides.
This result indicated that interspecific analysis using
CMH testing appears to increase the power of motif
identification over Fisher’s test and in our hands enabled
the discovery of a greater number of motifs and longer
motifs in more of the co-expression clusters. We applied
permutation testing to control the false positive rate
through shuffling gene order in the clusters within and
between species (Figure S12). The result was lower, sig-
nificant p-values with shuffling across species compared
to shuffling within species for both the CMH test and
Fisher’s exact test, suggesting shuffling gene orders
across species is more likely to strictly control FDR and
result in more statistically reliable motif identification.
This CMH analysis identified the CCA1-binding site
(CBS, AAAAATCT) and the full EE (AAATATCT) in
cluster 2 [51, 54]. Additional cis-elements discovered
were the morning element (ME, CCACAC) [55] in

clusters 1, 11, 12, and 16, as well as the telo-box (TBX,
AAACCCT) [56] and starch synthesis box (SBX, AAGC
CC) [57] in cluster 5. The SORLIP1 motif (GCCAC) [58,
59] was also identified in clusters 1, 11, 14, and 16. Iden-
tification of these cis-elements confirmed the power of
this motif identification approach. By combining clusters
from three species, we found co-expressed genes were
more likely to be regulated by conserved motifs, espe-
cially the genes with expression phase during the dawn
and dark.

Discussion
Evolution of circadian clock genes in grass species
Analysis of diurnal gene expression in the three panicoid
grasses sorghum, maize, and foxtail millet revealed con-
served and divergent evolution of expression for pre-
dicted core circadian clock genes. Putative oscillator
components these grasses consisted of paralogous gene
families in which these paralogs generally showed diur-
nal expression patterns comparable to their distant Ara-
bidopsis orthologs. In a few notable cases, multiple
copies of paralogous genes have distinct diurnal expres-
sion amplitude and phase patterns, such as paralogs gen-
erated by the local WGD in maize. We speculate that
multiple paralogous clock genes may have been retained
in maize because the individual genes evolved novel
roles that allow more accurate differentiation of input
signals or specialized regulation of output pathways.
Transcriptome studies have enabled the identification

of diurnal gene regulatory networks and circadian clock
regulation of key physiological processes [60]. We de-
tected comparable diurnal gene expression shared be-
tween sorghum, maize, and foxtail millet with a 72-h
time course under diurnal light-dark conditions. We
were able to test the hypothesis that syntenic ortholo-
gous genes share conserved diurnal expression patterns
within these grasses. As expected, the phase of expres-
sion for syntenic genes was broadly conserved, but sev-
eral orthologs had different phases. The potential
functional consequences, if any, of these phase differ-
ences remains to be determined. A large number of pre-
dicted core circadian clock genes, such as members of
the lyl, t1l, gi, and lxl families, showed matching robust
rhythms in all three grasses, which also matched the ex-
pression patterns of Arabidopsis homologs. This obser-
vation is consistent with the general conservation of
biological clock mechanism across plants. However, not
all of the predicted core circadian clock genes in these
grasses had expression patterns comparable to their Ara-
bidopsis ortholog. For example, zll2 and zll3 were
expressed at similar levels and show diurnal rhythms,
which is also the case for the sorghum and foxtail millet
zll orthologs (Figure S7N, O). By contrast, the Arabidop-
sis ZTL gene is not rhythmic [61]. The paralogs of the
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maize genes, zll1 and zll4, were not expressed, however.
Furthermore, the expression phases for the expressed
grass zll genes was different depending on the gene and
the species. Arabidopsis ZTL protein is active around
the transition from light-dark in the evening [47], but
only maize zll2 had peak expression around at this time
(Table 1). Phased nearly 6 h later were the foxtail millet
zll1 and zll3 genes, along with the sorghum zll1 gene.
The maize and sorghum zll3 genes were expressed even
later, with phases around dawn. An intriguing possibility
is the differences in expression amongst of these zll
genes represents functional divergence for the gene
products. We speculate the reason for significantly
different expression patterns of these foxtail millet
orthologs is related to its temperate origins, short life
cycle and/or comparatively early maturation [62, 63],
which are attributes different from sorghum and maize.
Previous work indicates that 98% of duplicate genes

between maize subgenomes either have divergent ex-
pression or have taken on different functions, or sub-
functionalized, in a tissue-specific manner [64]. Evidence
for both these outcomes is apparent in the diurnal ex-
pression behavior of paralogous maize circadian clock
genes. One consequence of gene duplication from the
maize WGD for circadian clock genes is primarily a dos-
age effect. The lyl, re7l, and p95l families are cases
where both of the duplicated maize genes have lower
amplitudes and expression levels compared to the sor-
ghum and foxtail millet orthologs (Figs. 1a, S7E, I), while
the t1l, ffl, gi, re6l, ef4r and zll families show one maize
copy has an amplitude similar to its orthologs and the
other has a much lower amplitude, is expressed at levels
too low to detect rhythmicity, or is not expressed at all
(Figs. 1b, e-f, S7B-D, K-M). This observation suggests
plants maintain gene product balance for economical
and efficient metabolism, consistent with the gene bal-
ance hypothesis [41]. In other cases, the phase of expres-
sion for paralogs resident on the two maize subgenomes
is significantly different. For example, the two maize elfl
genes are expressed 5 h apart, suggesting that the copies
could have experienced subfunctionalization.

Clustering of diurnally-regulated genes across species
Co-expression clustering, which is widely used to math-
ematically group genes according to the similarity of
gene expression patterns [65–68], can greatly enhance
our understanding of coordinately expressed genes and
their interactive relationships. Functional enrichment of
genes in co-expression clusters allows the identification
of the contribution of different genes with similar ex-
pression patterns to common biological processes [69].
We used a K-means clustering method to identify the
shared diurnal co-expression gene network of syntenic
orthologs in sorghum, maize, and foxtail millet.

Although almost equal numbers of orthologous genes
from the three species were clustered and the distribu-
tion of the gene phases in each cluster is conserved, only
37.2% of all the syntenic gene groups could be clustered
based on diurnal expression pattern. This result is con-
sistent with previous studies in Arabidopsis where diur-
nally expressed genes could be divided into two
categories according to potential gene function [69]. The
first category represents components of the central
clock, while the second category are those genes regu-
lated by the circadian clock. Co-expression clustering
provided evidence that diurnal regulation of genes in the
first category, such as LHY, CCA1, TOC1 and GI ortho-
logs, is mostly unaffected by species evolution or exter-
nal conditions while genes in the second category show
considerable divergence in diurnal expression patterns
across sorghum, maize, and foxtail millet. While this
study focused on conservation of expression patterns,
equally interesting would be investigation of genes with
non-conserved expression and regulation. Discovery of
these genes potentially could indicate evolutionary diver-
gence between the species and pinpoint adaptive
divergence.

Increased power for cis-element prediction by combined
analysis of syntenic orthologs from multiple species
The behavior of transcriptional regulatory networks is
shaped by the activity of conserved DNA sequence mo-
tifs in promoter regions. These cis-elements are respon-
sible for imparting spatially- and temporally-specific
gene expression patterns. Regulatory cis-elements have
been discovered with single gene-level approaches, like
deletion analysis [70], and at the transcriptome-level
with computational methods coupled with high-
throughput sequencing based on either position weight
matrix (PWM) [71, 72] or phylogenetic footprints [73,
74]. The most common approach is to identify motifs in
a single species and combine different approaches to in-
crease the reliability of predictions and to decrease the
FDR of the prediction [75]. Theoretically, the power of a
test could be improved by either increasing the number
of genes or the number of species under consideration.
Since the number of genes in a given species is fixed, we
chose to increase the number of species under consider-
ation. Correspondingly, we clustered syntenic ortholo-
gous genes from sorghum, maize, and foxtail millet and
identified motifs shared between species under the hy-
pothesis that syntenic orthologous genes with the same
expression pattern are likely controlled by the same
regulatory elements in each species. We found that Fish-
er’s exact testing-based methods have limited power to
identify motifs in a single species as this approach picked
out only two motifs shared between the three grass
species.
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To improve discovery of statistically significantly
enriched cis-elements, we adopted the CMH test and
this test identified a large number of enriched motifs.
This analysis found the CBS and the EE. Both the EE
and CBS are binding targets of Arabidopsis LHY and
CCA1 [51, 54] and contribute to timing of diurnal and
circadian gene expression [55, 76]. Additional cis-ele-
ments involved in timing of diurnal expression discov-
ered were the ME associated with morning expression
[55] and the midnight-associated TBX [56] and SBX
[57]. The roles of the EE, CBS, ME, TBX, and SBX in
temporal organization of diurnal expression modules are
conserved across Arabidopsis, rice, poplar, and papaya
[22, 77]. The SORLIP1 motif is enriched in light-
induced genes in Arabidopsis and rice [58, 59]. Discov-
ery of well-known motifs indicates the CMH approach
has the power to identify actual cis-elements, which sug-
gests the other conserved sites identified are authentic
but currently unknown motifs. These predictions remain
to be confirmed with functional tests.
Computational identification of cis-elements has the

shortcoming of a high false-positive rate. There were
several methods to control the FDR, such as retaining
the motifs conserved in combining multiple approaches,
choosing the motifs associated with at least two genes to
increase their likelihood to be actual functional cis-mo-
tifs, and detecting the higher appearance frequency of
the motifs acting as binding sites of an established tran-
scription factor [75]. Our analysis controlled the FDR in
three ways. The first method was utilizing the conserva-
tion of DNA sequences adjacent to orthologous genes
across species, given the assumption that genes with
similar expression patterns are likely to share common
regulatory mechanism. The identification of motifs asso-
ciated with genes having diurnal expression patterns was
based on sequence conservation of motifs shared among
sorghum, maize and foxtail millet. The second method
served as a negative control, which consisted of permu-
tation test based on shuffling the distribution of genes in
the clusters across species. The third was the use of K-
means clustering to identify syntenic orthologs with the
same expression pattern since the resultant clusters are
the output of shared gene regulatory networks repre-
senting conserved regulatory mechanisms. Based on this
analysis, we conclude that patterns of diurnal gene ex-
pression are highly conserved and the architecture of
these diurnal regulatory networks relies on conserved
local regulatory sequences.

Conclusions
The circadian clock drives endogenous 24-h rhythms
that allow organisms to adapt and prepare for predict-
able and repeated changes in their environment
throughout the diurnal cycle. Circadian clock

components in sorghum, maize, and foxtail millet con-
sist of syntenic orthologous gene families that generally
have diurnal expression patterns comparable to distant
Arabidopsis orthologs. Notably, most paralogs in maize
generated by the local WGD exhibit clear differences be-
tween each other in either expression amplitude and/or
phase. We predict each paralogous gene may have taken
on a separate role, potentially to allow more accurate
differentiation of input signals or for specialized regula-
tion of output pathways. Co-expression analysis identi-
fied well-known motifs and novel DNA sequence motifs
predicted to be regulatory cis-elements that shape diur-
nal expression patterns for genes involved in common
physiological activities. We conclude that patterns of di-
urnal gene expression are highly conserved and con-
served local regulatory sequences contribute to the
architecture of diurnal regulatory networks in pancoid
grasses.

Methods
Plant material and growth conditions
Plants for tissue sampling were grown from seeds of ref-
erence genotypes in Zea mays (genotype B73), Sorghum
bicolor (genotype BTx623) and Setaria italica (genotype
Yugu1). All of the seedlings were grown in parallel in a
common walk-in growth chamber at the Plant Gene Ex-
pression Center. Growth conditions were 12 h light and
12 h dark and daytime temperatures were between 26
and 28 °C and nighttime temperature was 22 °C. Light
was provided by cool white fluorescent bulbs with
440 μmol m− 1 s− 1 of photosynthetically active radiation
(PAR) at shelf level. Plants of each species were grown
to the 3 leaf stage, which is when the third leaf is fully
expanded and has a clear ligule and auricle. Representa-
tive plants are shown in Figure S1. Once plants reached
this developmental benchmark, entire third leaf blades
were collected from multiple plants (2 leaves for sor-
ghum and 4 leaves for maize and foxtail millet), pooled
and immediately frozen in liquid nitrogen. Samples were
taken every 3 hours from a new set of plants over 72 h
(8 time points per day, 24 total time points per species).
Total RNA was extracted with TRIzol reagent (Thermo
Fisher Scientific) according to the manufacturer’s recom-
mendations and RNA libraries were constructed as de-
scribed by Wang et al. [78]. Illumina HiSeq 2500
sequencing was conducted at the Illumina Sequencing
Genomics Resources Core Facility at Weill Cornell Med-
ical College. Quality control of the raw reads were con-
ducted using Cutadapt v1.10 [79] and reads were aligned
to corresponding genomes (sorghum: v3.1; foxtail millet;
v2.2; maize: 5b) using Gmap/Gsnap [80] and Samtools
[81]. Expression level for individual transcripts were
computed as FPKM, which were calculated using
Cufflinks v2.2.1 [82].
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Construction of protein phylogenetic trees for core
circadian genes
We combined literature curation and publicly available
databases to search for putative homologs of Arabidopsis
circadian clock genes in well-sequenced eudicot and
monocot species, including soybean, tomato, poplar,
Brassica rapa, banana, rice, Brachypodium distachyon,
foxtail millet, sorghum, maize, Amborella trichopoda
and Selaginella moellendorffii. We began with a protein
list of five known types of circadian clock genes from
Arabidopsis (https://www.arabidopsis.org) that was con-
structed based on the gene functions in the MaizeGDB
(https://maizegdb.org/), Phytozome (https://phytozome.
jgi.doe.gov/), and information in the literature (Table
S5). NCBI protein BLAST (BLASTp; https://blast.ncbi.
nlm.nih.gov/Blast.cgi) with default parameters was used
for alignment and the top BLASTp hits by coverage and
e-value were chosen. The protein sequences of other
plant species were obtained from UniProt (https://www.
uniprot.org/) after identifying the target protein in Mai-
zeGDB or Phytozome using the chromosomal location
provided by the GeneID listing. Protein sequences were
used for phylogenetic tree construction rather than nu-
cleotide sequences because of the long evolutionary dis-
tances between species. Sequence alignments were
performed using the MAFFT v7.450 [83] online tool
(https://mafft.cbrc.jp/alignment/server) in G-INS-1 (pro-
gressive method with an accurate guide tree) with an
Unalignlevel = 0.4, and maximum likelihood phylogen-
etic trees were built using RAxML-IV-HPC v8.2.12 [84]
on the CIPRES server [85] (https://embnet.vital-it.ch/
raxml-bb/). Homologs in multiple species analyzed were
named according to maize nomenclature rules, which
specify the maize genes in lower-case names and para-
logs are denoted with numbers (https://www.maizegdb.
org/nomenclature). Genes located on maize subgenomes
were numbered as 1 or 2 for subgenome maize1 and
subgenome maize2, respectively. We retained gene
names for published homologous genes. Previous work-
ing names of genes, as well as their maize subgenome
are listed in Table S6. Protein domains were identified
using the Prosite (https://prosite.expasy.org/) and Pfam
(https://pfam.xfam.org/).

Identification of rhythmic genes in time series gene
expression dataset
Genes with rhythmic expression were identified and
their phase, amplitude and period were estimated with
the non-parametric JTK_Cycle algorithm with default
settings [86]. JTK_Cycle identifies the optimal period
and phase to minimize the p-value representing the cor-
relation between an experimental time series and cosine
curve-derived models. The p-value is then Bonferroni-
adjusted for multiple testing. JTK_Cycle analysis was

done with the full 72-h time course for each gene having
detectable expression at one or more of the 24 time
points. This approach is the optimal experimental design
for identification of rhythmic gene expression patterns
according to comprehensive testing of published ap-
proaches for rhythmic gene discovery [87]. Rhythmic
genes were considered those with Bonferroni-adjusted
p-values ≤0.01, which corresponds to a false positive
rate of 2 and a false negative rate of 9 [86]. Phase
values (LAG in the JTK_Cycle output) were adjusted
to circadian time (CT) with the calculation: CT
phase = (JTK_Cycle LAG/estimated period) * 24. CT0
is equal to 9:00 AM.

K-means clustering and gene expression pattern
comparisons
The list of syntenic genes from sorghum, maize, and fox-
tail millet used has been publicly released online [49]
and was generated using QuotaAlign [88] followed by
ortholog assignment polishing as described in [89]
(Table S7). A total of 57,802 genes from 17,744 syntenic
orthologous groups in the three species were selected
based on the criterion of detectable expression at one or
more of the 24 time points. A gene expression matrix
was generated from this gene set. Genes with low ex-
pression reproducibility across the 72-h time course
were removed from the further analysis. Gene expres-
sion reproducibility was determined by calculating the
Pearson correlation coefficient between pairwise 21-h
temporal windows (time points 1–8, 9–16, 17–24)
within the three species groups and dispersion deter-
mined by MSD among these temporal windows (Figure
S8A). Since these two filter parameters had the potential
to reduce the number of remaining genes and we ex-
pected syntenic genes with similar expression patterns
to be appear in the same K-means cluster, we tested the
remaining total number of genes and the number of
paired syntenic genes in the same cluster for all the
combinations of Pearson correlation coefficients ranging
from 0.1 to 0.9, with step length by 0.1, and MSD ran-
ging from 0.1 to 0.9, with step length by 0.1 (Figure S8).
Based on this analysis, we retained gene groups having a
Pearson correlation between two windows higher than
0.7 and mean signed deviation (MSD) lower than 0.9,
resulting in 27,196 total orthologous genes for clustering
(8616 sorghum genes, 8836 foxtail millet genes, and
9744 maize genes).
Furthermore, it was possible that syntenic gene pairs

would cluster together by chance without sharing the
same expression pattern. To study the background dis-
tribution of syntenic gene pairs, we applied a permuta-
tion test that consisted of shuffling the assignment of
syntenic genes to clusters and calculating the percentage
of clustered syntenic gene pairs (Figure S9). In this
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permutation test, we checked only syntenic gene pairs
between sorghum and foxtail millet to avoid complica-
tions from maize genes arising from duplication during
the local WGD event in the maize lineage. K-means
clustering was performed for 2 to 24 centers to group
the syntenic genes based on their expression values
using Pearson correlation with 2000 iterations (Figure
S9). This permutation test indicated that 16 clusters was
the optimal number of K-means centers, since this value
produced clusters with the greatest number of sorghum-
foxtail millet syntenic gene pairs and the lowest false
positive cases.

Functional analysis of genes in co-expressed clusters
GOATOOLS v0.5.9 [90] was used to associate co-expressed
genes with Gene Ontology (GO) categories to identify func-
tional enrichment for genes in co-expression clusters. GO
enrichment analysis was performed on the genes of each spe-
cies in the 16 clusters using the Bonferroni correction to
control the significance (p-value: < 0.05), with the total num-
ber of genes equal to the complete syntenic gene set.

cis-element identification in sorghum, maize, and foxtail
millet
Random sequences of 6 to 8 nucleotides were used to
test for enrichment of motifs upstream of genes in co-
expression clusters. For motifs of each length, the 1 kilo-
base predicted promoter region upstream of the tran-
scription start site was scanned for all permutations of a
sequence for each species. Counting included the num-
ber of motifs discovered in each cluster and in all clus-
ters together. Fisher’s exact testing was applied to test
enrichment of each possible sequence for a single spe-
cies. The CMH test was employed to test the combined
multiple 2 × 2 tables of all three species and to calculate
a combined p-value. The p-value in the CMH test is ex-
pected to be more stringent than any one individual p-
value if a real connection existed across all three species.
The permutation test was run 100 times to provide an
adjusted p-value to test the significance. The motifs in
both tests with the false discover rate (FDR) p-value <
0.05 were considered high quality motif predictions and
these motifs were matched to known cis-element DNA
sequences through literature curation and the PLACE
database (https://www.dna.affrc.go.jp/PLACE) [91].
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