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§ Abstract

In the experimental and theoretical investigation of the properties of nanostructures,
the equations of continuum beam theory are being used to interpret the mechanical re-
sponse of nanotubes. In particular, Bernoulli-Euler beam bending theory is being utilized
to infer the Young’s Modulus. In this work, we examine the validity of such an approach
using a simple elastic sheet model and show that at the nanotube scale the assumptions
of continuum mechanics are no longer valid. Relations are derived for pure bending of
nanotubes that show the explicit dependence of the “material properties” on system size.
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§1. Introduction

Recently, experimental methods have allowed for the measurement of the structural
motion of nanometer scale objects [1-4]. In these works the notions of continuum mechanics
have been used to infer that carbon nanotubes possess super-high Young’s moduli. Other
theoretical work using direct atomic simulation [5] has also reached similar conclusions. In
[5], for instance, a comparison of bending stiffnesses was made between a Cygg single-wall
nanotube and an Iridium beam of “similar dimensions”. The bending stiffness of the carbon
nanotubes was determined from a simulation of the atomic structure using the Keating
potential; the bending stiffness of the Iridium beam was deduced using the continuum
Bernoulli-Euler theory of beam bending. This type of comparison or data interpretation,
however, must be done carefully since the continuum hypothesis is being pushed to its
limits — as has been previously acknowledged [4,5]. In this paper, we show by using a
highly idealized elastic sheet model for a nanotube that the observed super-high Young’s
moduli are direct consequences of the breakdown of the continuum hypothesis. Further it
is shown that the scale at which the continuum hypothesis breaks down is a function of
the mode of deformation utilized to determine the mechanical properties.

§2. Young’s Modulus

The Young’s Modulus, E, of a material is defined as the ratio of the normal stress,
o = F/A, to the normal strain, ¢ = A/L, in a 1-dimensional tension test; see Fig 2.1(a),
where F is the applied force, A is the cross-sectional area of the specimen, A is the specimen
elongation, and L is the specimen length. Thus,
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(2.1)
The definition relies on the continuum hypothesis and is designed such that E is truly
a material property. In other words, the definition of E is designed so that regardless
of specimen geometry, A or L, the value of the Young’s Modulus is invariant for a given
material. Note that other modes of deformation can be used to define the Young’s Modulus.
However, independent of deformation mode, E is the same constant for a given material.
For example, in a beam bent by a pure moment, with a large aspect ratio (greater than
approximately 10), the Young’s modulus can be defined by

ML

E = T (2.2)
where M is the moment applied to the beam, I is the area moment of inertia of the beam
cross-section, 6 is the rotation of the end section of the beam, and L is the length of the

beam; see Fig. 2.1(b).
In both definitions, one assumes that all the displacements (relative to the beam
length) and displacement gradients are small. Further the cross-sectional properties are
the properties of the cross-section when it is treated as a continuum; ie. one counts the
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space between atoms. The assumptions behind these definitions of Young’s modulus are
valid at the macroscopic scale where they are typically utilized in engineering applications.
The definitions, however, break down as definitions of a material property (something
intrinsic to the material) as the specimen sizes decrease to the atomic scale. The rate of
breakdown is dependent on the mode of deformation used to define E.
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L
©
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(b)
FIGURE 2.1. Geometry, motion, and load used to define
Young’s Modulus. (a) axial extension; (b) pure bending.

§3. Pure Bending

Consider a beam of length L under pure bending (no transverse shear). The beam is
made up of n tubular sheets of atoms that are spaced a distance s apart. The thickness
of each sheet is ¢ and the distance to the center of sheet j is denoted R;. Thus the inner
radius of the beam is Ry — t/2 and the outer radius is R,, + ¢/2. The mean radius of any
sheet can be expressed as R; = R; + (j — 1)(s + ¢); see Fig 3.1. Assume further that
L > 10R,, so that the Bernoulli-Euler kinematic assumption is valid; ie. the motion of the
material is dominated by the rotation of the beam cross-sections which remain planar and
orthogonal to the central axis of the beam. It is also assumed that all sheets have the same
end rotation. For the imposed loading, this gives a deflected beam whose central (neutral)
axis has constant curvature equal to §/L where 8 is the rotation of the cross-section at
the tip of the beam. Each individual sheet has a mono-layer of atoms which we assume
does not interact with neighboring sheets. For this problem, elongation dominates the
behavior; thus, the important material property of each sheet will be the axial stiffness
per unit angular distance. For simplicity we assume this property to be the same constant
E* for each sheet. Note that E* essentially depends on nature of the atomic bonding



4 S. Govindjee & J.L. Sackman

in an individual sheet which we assume to be the same over a reasonable range of sheet
curvatures.

FIGURE 3.1. Cross-sectional parameters for a multi-walled
nanotube.

Let us first examine a single sheet j. Under the action of bending, the end cross-
section of the sheet will rotate an amount §. Thus we find from elementary strength of
materials that the moment M; in sheet j is given as

0
— L% 3

where for simplicity we have assumed that ¢ << R; and ignored terms O(R?—l(t /20 1€

{2,3,4}.
, Thus, for a total applied moment M, sheet j will carry a moment of
R3
M; = =1=M. 3.2
ITYLE 42

Substituting Eq. (3.2) into Eq. (3.1) gives the “moment-curvature” relation

9

= (3.3)

M=E'rnt|> R
i=1

where /L is the curvature of the bent beam for our special load case. If we now apply
definition (2.2) with (3.3), we get an apparent Young's modulus of

n 3
*t”ZJ:l R;

=, (3.4)

E(n)=E
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where [ is the area moment of inertia of the gross section; ie. I = Z[(R, +1/2)* — (R} —
t/2)4].

The true Young’s modulus, denoted E, of the material is given from Eq. (3.4) in the
limit n — oo. As one could have initially guessed, this gives E = E*t/(s +1); ie. the sheet
stiffness averaged over the space allotted to an individual sheet in a continuum body. We
can define a non-dimensional measure of the departure from the continuum hypothesis as

B 404t/ S0 (Ry /)

E = = . 3.5

E (Rn/s~}—%15/5)4—(1’21/5—%t/s)4 (3:5)
If we consider the special case of t << s then we have that
_ 45" (Ri/s+ (5 —1))3

P~ > =1(R1/s+(j —1)) (3.6)

(Ri/s+ (n—1))* = (Ry/s)*

Remark 3.1.

It can easily be seen for this mode of deformation that an experiment on a nanotube
of only a few sheets of atoms will yield a much higher apparent value of the Young’s
modulus than the continuum value. Using Eq. (3.6) for example, we have with n = 2
and Ry/s = 2 that £ ~ 2.15. The issue of importance, however, is that the continuum
hypothesis is no longer valid, not that the modulus of the material doubles at small
scales. [

Remark 3.2.
The approach to the continuum limit in Eq. (3.5) is governed by the ratio of two 4th
order polynomials. In the special case where t << s and R; = 0 (a solid beam),
Eq. (3.6) gives (n/(n — 1))?; in particular we need n > 201 for the validity of the
continuum hypothesis, which we define here as the condition 0.99 < £ < 1.01. [J

Remark 3.3.
Cantilevered nanobeams acting under an end shear force will have a slightly different

expression for the apparent Young's modulus. However, for structures with a large
aspect ratio (length to diameter greater than 10) one will again recover Eq. (3.5). J

Remark 3.4.
The limits of integration that one chooses when defining I play a crucial role in the
break down of the continuum limit. From Eq. (3.4), we see that the controlling factor
on the validity of the continuum hypothesis rests on the convergence of the Riemann
sum in the numerator to the integral in the denominator. This is more easily seen by
rewriting this expression as

E(s +t) 3 R?

E(n) =
ff r3dr

, (3.7)
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where a and [ are the inner and outer radii of the nanobeam. The Riemann panel
area is thus seen to be s + ¢ and the sum involves n Riemann panels. The precise
definition of a and 3 clearly has a large influence on the computed value of E(n). To
be more faithful to the Riemann sum, one should define the gross section properties
using @« = Ry —t/2 —s/2 and § = R, +t/2 + s/2. The modification leads to a faster
convergence to the continuum limit. Thus in the processing of experimental data for
E(n), it is imperative to use a definition of I that leads to the fastest approach to
the limit in order to more accurately determine FE, the true Young’s modulus of the
material. For example if Ry/s = 2, n = 2, and t << s, then with the modified
definition of the area moment of inertia we have £ = 0.97; (compare to E ~ 2.15 from
above). [J

Remark 3.5.
In axial extension, if the cross-sectional area is defined to include a half inter-sheet
spacing added to the outer and inner radii, then £ = 1 independent of n. This occurs
because the important measure of the cross-section in extension is the cross-sectional
area and the Riemann sum of a constant (unity) is exact. [J

§4. Conclusions

1. In this report, we have derived approximate formulas for the determination of the
break down of the continuum hypothesis. In particular we have shown that for nanobeams
in bending, one needs more than 201 atomic layers for the validity of continuum notions
such as Young’s Modulus. Thus the interpretation of experimental data on nanostructures
through the reporting of apparent continuum properties can be somewhat misleading.

2. More accurate processing of experimental data can be effected by modifying the
definitions of the cross-sectional properties. Thus by increasing the outer boundaries of
a specimen by half of the inter-atomic sheet spacing the true Young’s modulus of the
material can be more closely determined.

3. Through a system identification process one could also take the collected data for
the product /E and determine the parameters E* and t.
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