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Thermal Fracture Kinetics of Heterogeneous Semiflexible 
Polymers

Alexander Lorenzo1, Enrique M. De La Cruz2, Elena F. Koslover1,*

1Department of Physics, University of California, San Diego, San Diego, California 92093

2Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520

Abstract

The fracture and severing of polymer chains plays a critical role in the failure of fibrous materials 

and the regulated turnover of intracellular filaments. Using continuum wormlike chain models, we 

investigate the fracture of semiflexible polymers via thermal bending fluctuations, focusing on the 

role of filament flexibility and dynamics. Our results highlight a previously unappreciated 

consequence of mechanical heterogeneity in the filament, which enhances the rate of thermal 

fragmentation particularly in cases where constraints hinder the movement of the chain ends. 

Although generally applicable to semiflexible chains with regions of different bending stiffness, 

the model is motivated by a specific biophysical system: the enhanced severing of actin filaments 

at the boundary between stiff bare regions and mechanically softened regions that are coated with 

cofilin regulatory proteins. The results presented here point to a potential mechanism for 

disassembly of polymeric materials in general and cytoskeletal actin networks in particular by the 

introduction of locally softened chain regions, as occurs with cofilin binding.

Graphical Abstract

A kinetic model for fracture of heterogeneous semiflexible polymers, such as cofilin-coated actin 

filaments, shows that mechanical heterogeneity enhances fracture rates.
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1. INTRODUCTION

The fracture properties of polymeric solids pose a key constraint on the manufacture and 

design of a vast array of man-made materials for load-bearing or weather-resistant 

purposes[1, 2]. Furthermore, polymeric materials serve as some of the most important 

structural and information-bearing components in living organisms, and their rupture 

(whether through mechanical or environmental stress or through regulated turnover) has a 

crucial role to play in biological processes ranging from cell division[3], to 

tumorigenesis[4], to cell motility[5]. Theoretical and experimental explorations of failure 

mechanisms have established that the fracture of polymeric solids relies in large part on the 

scission of individual polymer filaments, with the dynamics and stress-dependence of 

fracture governed by the kinetics of molecular rupture[1, 6, 7]. At the molecular scale, 

fracture is inherently a thermal process, where the activation energy is lowered by the 

application of stress on individual bonds along the filament[7].

Fragmentation of a polymer filament is accelerated when externally applied stresses become 

locally concentrated in specific regions. This principle underlies, for instance, the 

fragmentation of DNA at discrete folding points under extensional flow[8], the rupture of 

microtubules through buckling during spindle reorganization[9] and traumatic axonal 

injury[10], and the severing of actin bundles by myosin-driven compression in motile 

cells[11, 12]. Local discontinuities in mechanical properties tend to concentrate externally 

applied stress, leading to preferential fracture of materials at these discontinuous regions[13, 

14].

In the case of thermally driven fracture, the effect of mechanical inhomogeneities in a 

filament is poorly understood. Prior theoretical work showed that thermal energy is equally 

partitioned among spatial degrees of freedom in general equilibrium one-dimensional 

systems[15]. However, fracture is inherently a transient, kinetic process. Understanding 

fracture rates requires moving beyond equilibrium distributions to consider the dynamics of 

thermal fluctuations in a polymer filament. Here we focus on the role of spatial 

heterogeneity of mechanical properties in accelerating thermally induced fracture of 

semiflexible chains.

The general problem of fracture rates in a thermalized, mechanically heterogeneous, 

polymer filament is motivated in part by a biological system: the cofilin-mediated severing 

of cytoskeletal actin filaments. Actin is a semiflexible polymer that forms bundles and 

networks responsible for maintaining cell-scale mechanical properties as well as driving 

processes such as lamellipodial motility, cytokinesis, and embryonic patterning[16, 17]. 

Much of the biological behavior of actin networks relies on the dynamic turnover of 

individual actin filaments, which is accelerated by the actin-binding protein cofilin. Cofilin 

assembles cooperatively along actin chains, locally decreasing their bending stiffness and 

resulting in mechanically heterogeneous partially decorated filaments[18-22]. Such 

filaments fragment, without additional energy input, preferentially at the boundary of 

cofilinated segments[21, 23, 24]. While missing bonds at these discontinuities may account 

for their increased fragility, particularly under stress[25], an additional contribution to 
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enhanced severing has been proposed that relies on the concentration of stress at the 

discontinuities between cofilinated and bare actin segments[14, 25].

Here, we explore the physical plausibility of enhanced fracture at a junction between soft 

and stiff regions, in a purely thermal system (ie: with zero average force applied to the chain 

ends). Our focus is first on the limit where the dynamics of the junction are very fast 

compared to the slow equilibration of the full chain configuration. In the case of slowly-

moving or constrained chain ends we show that mechanical heterogeneity can increase 

fracture rates by orders of magnitude. Furthermore, we show that even in the case of freely 

equilibrating chains, the separation in time-scales between local junction equilibration and 

whole chain rearrangement results in modest acceleration of fracture in heterogeneous as 

compared to homogeneously stiff chains.

2. MECHANICAL MODEL FOR HETEROGENEOUS FILAMENT

We consider the thermally driven fracture of a mechanically heterogeneous filament, by 

building upon the well-established continuum “worm-like chain” (WLC) model for 

semiflexible polymers[26, 27]. Prior work on the statistical mechanics of heterogeneous and 

kinked worm-like chains has established a framework for analytically calculating their 

distribution functions[28-30]. Here we focus on the simplest heterogeneous chain: a diblock 

copolymer consisting of two WLC of equal length L and bending persistence lengths ℓp,1 ≥ 

ℓp,2. The chains are grafted together at a point junction (Fig. 1a), whose bending energy is 

defined as

1
kbT Ejunc = κ(1 − ρ),

ρ = cos θ,
(1)

where kbT is the thermal energy and θ is the bending angle between chain tangents at the 

junction. The junction represents a short portion of the chain of length Δ, with Δ ≪ L. In our 

model, this junction is treated as a single point with stiffness κ = ℓp,1/Δ. In particular, we note 

that this junction represents the behavior of the last short segment of stiff chain just before 

the attachment of the softer chain.

The mechanics of the heterogeneous chain are fully defined by three dimensionless 

parameters: chain halflength N = L/(2ℓP,1), junction length Δ = Δ ∕ L = 1 ∕ (2κN), and 

heterogeneity h = ℓp,1/ℓp,2.

The overall partition function [Gtot(R , ρ)] for this model is computed from prior results 

derived for wormlike chains with end constraints[27, 30, 31]. We start with the partition 

function [G(R , u ; L, ℓp)] for a WLC chain of length L, persistence length ℓp, with one end at 

the origin, the other end at position R , and final end tangent u . After a Fourier transform 

from R  to k , this function is given by:
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G(k , u ; L, ℓp) = 1
4π ∑

l = 0

∞
G0, l 2ℓpk, L

2ℓp
Pl( u ⋅ k ), (2)

where Pl are Legendre polynomials and the Gl0, lf
m  coefficients refer to previously defined 

continued fraction terms[27]. For a heterogeneous wormlike chain with end-to-end vector R
and junction angle θ, the partition function is obtained from the convolution of two such 

propagators

Gtot(R , ρ; L, ℓp, 1, ℓp, 2) = ∫ dR jd u jdϕG(R j, u j; L, ℓp, 1)

× G(R − R j, Ω(θ, ϕ ) ⋅ uj; L, ℓp, 2)
(3)

where R j is junction position, u j is the incoming tangent to the junction, and Ω(ϕ, θ) is a 

rotation matrix that rotates the cannonical coordinate system by Euler angles (ϕ, θ, 0). The 

Fourier transform in space, together with an application of the spherical harmonic addition 

theorem[32], allows this convolution to be simplified to:

Gtot(k , ρ; N, 1, ℎ) = 1
2 ∑

ℓ = 0

∞
Pl(ρ)G0, l (k, N) G0, l

k
ℎ, ℎN , (4)

where we have nondimensionalized all length units by 2ℓp,1. Finally, the Fourier inversion is 

computed according to[31]

Gtot(R , ρ; N, 1, ℎ) =
1

(2π2)(2ℓp, 1)3∫0

∞
dkk sin(2kNr)

2Nr Gtot(k, ρ; N, 1, ℎ), (5)

where r = ∣R∣/(2L) is the normalized end separation of the joint chain. This propagator is 

normalized such that ∫ dR Gtot(R , ρ) = 1 for each value of ρ.

The free energy (F) of the chain is then defined as the log of the partition function, with an 

additional term for the bending of the junction angle. Namely,

1
kbT F (r, ρ) = κ(1 − ρ) − log r2Gtot(r, ρ) (6)

This free energy landscape is plotted in Fig. 1 for a homogeneous, stiff chain and a 

heterogeneous chain. The example filaments in Fig. 1a,c correspond to the lowest energy 

(zero-temperature) configurations for both the homogeneous and heterogeneous chains with 

end separation fixed at r = 0.6. These configurations are qualitatively similar to those 

previously observed for athermal models of bare and partially cofilinated actin[14, 25], with 

the most pronounced bending on the softer side of the chain, close to the junction. We note, 

however, that the minimal free energy associated with a given end distance (Fig. 1b,d) 

typically occurs at much steeper junction bending angles than the athermal configuration, 
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due to the entropic favorability of bending. Thus, the inclusion of thermal fluctuations in our 

model fundamentally alters the behavior of the chain, as compared to previous athermal 

models.

We focus on filament fracture at the junction point, assuming that fracture will occur when 

thermal fluctuations push the junction energy (Ejunc) above some predefined cutoff (E*). 

This model represents a fracture process where the junction itself must hop over a transition 

energy barrier, with the cosine of the bending angle ρ as the reaction coordinate. Chains with 

a more flexible junction (lower κ) must reach more extreme junction bending (ρ* = 1 – E*/

κ) than chains with a stiffer junction (higher κ). The model formulation is consistent with 

previous analyses of experimental data on fracture of short cofilin-decorated actin filaments 

that points to fracture occuring beyond a critical bending angle that increases with lower 

filament persistence length[21]. Critical energies of approximately 22kT have been 

estimated for the severing of bare actin filaments[21].

The overall rate of fracture is obtained from the mean first passage time (MFPT) to the 

critical value ρ*, as the system fluctuates thermally over the free energy landscape plotted in 

Fig. 1. The kinetics of fracture are thus determined by a free energy barrier incorporating 

both the junction bending energy and the configurational free energy of the worm-like 

chains. For a homogeneously stiff chain, surmounting this barrier along the minimum energy 

path requires bringing the ends of the chain closer together (Fig. 1b). For the heterogeneous 

chain, by contrast, the cutoff junction angle can be reached without substantial change in the 

end-to-end distance (Fig. 1d). The importance of this effect in determining the overall time 

to fracture depends on the dynamics of the end-to-end coordinate r compared to the 

dynamics of the junction angle.

3. DYNAMICS OVER FREE ENERGY LANDSCAPE

The free energy landscapes of Fig. 1, in and of themselves, define only the equilibrium 

distribution of the chain. Establishing the timescale for fracture requires consideration of the 

dynamics of a heterogeneous WLC through its configurational space. An exact analytical 

treatment of WLC dynamics would require resolving the movement of all its dynamic 

modes[33], which couple together in a complex way to determine the evolution of 

observable parameters such as chain end-to-end distance or a local bending angle. Instead, 

we simplify the dynamics of the system by treating it as an effective diffusion-limited kinetic 

process over a two-dimensional landscape. This approach relies on the approximation that 

intermediate chain modes relax rapidly compared to the overall reaction time for fracture, 

but that the longest mode (which sets the chain end-to-end distance) may relax more slowly 

than this time-scale. In fact, as seen below, fracture enhancement for a heterogeneous chain 

occurs only when chain end equilibration is slower than the fragmentation, either due to 

external constraints (eg: for cross-linked or entangled filaments) or for intermediate cutoff 

energies.

An analogous approach, mapping to a one-dimensional effective free energy landscape, has 

previously been employed by many groups in estimating the looping time of semiflexible 

chains[34-37]. Such models rely on the approximation that the intermediate degrees of 
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freedom in the chain equilibrate rapidly compared to the reaction time of interest, allowing 

the dynamical system to be approximated as diffusion to capture over an effective reaction 

coordinate. While the general validity of such an approach has recently been called into 

question[38], comparison of looping time between Brownian Dynamics simulations and 

effective kinetic models have been shown to have good agreement in the regime where the 

chain is short (N < 2) and not tightly bent (end-to-end distance greater 10% of the chain 

length), provided an appropriate dynamic prefactor is selected in the kinetic models[38]. In 

the current work, we use comparison with Brownian Dynamics simulations to directly 

validate the approximate kinetic model.

In our model, polymer fracture is defined by a transition in a rapidly-equilibrating degree of 

freedom: the bending angle of the junction. We thus rely on a separation of timescales 

between movement along the two dimensions of the free energy landscape. For each value of 

the chain end distance r, the kinetics of transition to the cutoff ρ* are approximated as being 

described by a single time scale – the mean first passage time τ(ρ*; r) along a horizontal 

slice of the landscape. Dynamics along the angular coordinate are defined by a variable 

friction coefficient that depends on the value of the junction angle,

ζ(ρ) = kBT
Dρ

(0)
5 − 3ρ

6(1 − ρ2) (7)

where Dρ
(0) =

kBT

μΔ3  and μ is the translational friction coefficient per unit length of the chain. 

This expression is derived from the dynamics of two connected rigid links (Appendix A). 

The prefactor Dρ
(0) captures the rapid dynamics of the short chain region represented by the 

junction and does not depend on the overall length of the chain (Supplemental Figure S1). 

We note that the numerical prefactor in the friction coefficient (Eq. 7) depends on mapping 

from the behavior of two rigid links to the dynamics of a point-like kink representing a short 

length of semiflexible chain. This prefactor is not directly determined by our theory, and we 

fit the appropriate length of links to establish this mapping (specifically, ℓlink = 2Δ) by 

matching the theory to Brownian dynamics simulations of semiflexible chains, as described 

below. This is the only fitting parameter in the model; a single value (shown in Eq. 7) is used 

for all subsequent results described.

It should be noted that the time to reach a cutoff junction angle for a fixed end-to-end 

distance cannot be obtained by mapping to Kramers’ classic transition rate theory[39] as this 

event does not constitute passage across a high transition barrier. In fact, as can be observed 

in Fig. 1a, when the end-to-end distance is fixed to intermediate values (eg: r = 0.5) then 

moving towards smaller junction angles actually entails a decrease in the free energy of the 

entire chain, while generating a high bending energy Ejunc at the junction itself. 

Consequently, we take a more generally applicable approach for calculating first passage 

times on a one-dimensional landscape[40].

Our calculations assume that the chain configuration starts at thermal equilibrium, and that 

those chains with a junction angle beyond the fracture cutoff (cos θ < ρ*) have a fracture 

time of zero. The mean first passage time over the free energy landscape with fixed r can be 
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computed from the Fokker-Planck equation[40-43], appropriately modified for spatially 

varying diffusivity[44] (Appendix B). Specifically, the fracture time for a fixed value of r is 

given by

τ(ρ∗, r) = 1
∫0

1e−F (r, ρ) ∕ kbTdρ
×

× ∫ρ∗
1
dρ∫ρ∗

ρ
dρ′∫ρ′

1
dρ″ζ(ρ′)

kbT e(F (r, ρ′) − F (r, ρ″) − F (ρ)) ∕ kbT .
(8)

Brownian dynamics simulations of a discretized WLC model (details in Appendix D) are 

used to validate our calculations of the mean first passage time for fixed values of the end 

distance, with the free energy landscape given by Eq. 6 and the friction coefficient in Eq. 7. 

As shown in Fig. 2a, the continuum chain theory accurately reproduces the kinetics of 

reaching a high junction angle in simulations.

The overall mean first passage time to fracture can be computed by considering a system 

that fluctuates over discrete states in the normalized end distance, with state i corresponding 

to ri = iδr, and the discretization set to δr = 0.01. The system is assumed to start in thermal 

equilibrium, with the probability of starting in state i set by a Boltzmann factor 

corresponding to the free energy of that state: Fi = −kBT log ∫ dρ exp[−F(ri,ρ)/kBT].

To calculate kinetics on a complex energy landscape, a well-established approach is to 

assume Markovian (memory-less) transitions between neighboring states with the transition 

rate depending on the energy difference between each pair of states. The appropriate 

transition rates can be extracted from a discretization of the Fokker-Plank equation[45, 46]. 

Specifically, transitions between states in our model occur with rate constants ki
( ± ), given by

ki
( ± ) =

kR
δr2 (Fi ± 1 − Fi)

exp(Fi ± 1 − Fi) − 1 . (9)

The dynamic prefactor is taken to be the time-scale for three-dimensional translational 

diffusion of a chain of length L over a length scale ΔR = 2Lδr, according to:

kR
δr2 = 6kBT

(μL)(2Lδr)2 . (10)

This approximate model for the dynamics of the chain ends allows for analytical calculation 

of a mean first passage time to an arbitrary value of the normalized end separation r. 
Specifically, the distribution of times to move from any starting state i to any final state j can 

be obtained by convolving together Poisson processes representing individual Markovian 

steps with rate constants given by Eq. 9. Summing over all possible paths from a given 

starting state to a specific end separation r then allows extraction of the mean first passage 

time (details in Appendix C). This approach can be applied to exploring the dynamic 

properties of any system described by an arbitrary network of states with memory-less 
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transitions between them[47, 48], and has been extensively employed for analyzing complex 

molecular transitions under the name of “Markov state models”[49] or “discrete path 

sampling”[50]. The resulting mean first passage times to a cutoff end-to-end distance are 

comparable to those found with Brownian dynamics simulations of chains that are initiated 

with configurations sampled from thermal equilibrium (Fig. 2b).

To put together both dimensions of the energy landscape, we treat fracture as a Poissonian 

process within each particular end-distance state, with average time given by τi = τ(ρ*, ri). 

The dynamics of fracture can then be thought of as transitions between discrete states (ri) on 

a one-dimensional landscape, with a different rate (1/τi) of reaching the final fractured state 

from each of these discrete r states. We compute the overall mean time to fracture for such a 

system using well-established methods for extracting low-order moments of transition times 

on a network of arbitrarily connected states[47, 48] (see Appendix C).

The use of a single timescale τi for the fracture transition at each end separation is a 

simplifying approximation that relies on the assumption of well-separated time-scales. 

Namely, we assume that the bending dynamics of the short junction region are very fast 

compared to motion of the chain ends, making it possible to treat each transition between ri 

states as memory-less. This approximate approach for representing the dynamics of the 

system is validated by comparison to Brownian dynamics simulations with unconstrained 

homogeneous chains (Appendix D; Supplemental Video 1). As shown in Fig. 2c, our model 

of dynamic fluctuations over a two-dimensional energy landscape with well-separated time 

scales can accurately represent the transition to fracture for simulated chains.

4. FRACTURE RATES FOR HETEROGENEOUS CHAINS

The overall time to fracture is dependent on the relative rate of motion in the end-to-end 

distance as compared to the rate of junction fluctuations (Fig. 3a). For the case of very rapid 

end equilibration (high kR ∕ Dρ
(0)), the chain would be expected to sample all end positions 

over a time-scale that is short compared to the fracture time. In this limit, the fracture 

dynamics are determined entirely by the stiffness and friction coefficient for the junction 

bending (ρ) and are independent of the mechanical properties of the rest of the chain.

The opposite regime holds when the dynamics of the end distance are much slower than 

those of the junction angle. In this case, the end distance remains constant at its starting 

value, and the mean time to fracture is the weighted average of the individual τi. Softer 

mechanics in one half of the chain make it more probable that a lower value of r will initially 

be selected from the equilibrium distribution. This lower r persists over time and allows the 

junction to more rapidly reach the cutoff angle.

Fig. 3b,c show the mean time to fracture for chains with different degrees of heterogeneity h 
in the case of fixed end-to-end distance (infinitely slow r dynamics). In this limit, a purely 

stiff chain will be slow to reach fracture at the junction because a higher overall chain 

deformation energy is required to bend the junction to the point of fracture. A purely soft 

chain will also be slow to reach fracture because the requisite junction angle θ* to achieve 

the same cutoff energy will be correspondingly larger[21]. Rapid fracture can be achieved by 
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a heterogeneous chain, where the junction stiffness and hence the cutoff angle are set by the 

stiff side of the chain, while the low persistence length of the soft side enables the junction 

to reach that cutoff angle without moving the chain ends or incurring a substantial cost in 

chain deformation energy. The enhancement due to chain heterogeneity can reach several 

orders of magnitude in cases where the junction must reach very steep bending angles in 

order to fracture (high N and Δ).

In the case where chain ends are unconstrained, the importance of chain heterogeneity 

depends on the relative time-scales of junction bending versus the longest equilibration time 

for the chain. Specifically, heterogeneity can enhance fracture when the time for the junction 

to reach the cutoff energy E* is lower than the full chain equilibration time. In this regime, 

the chain ends do not have the opportunity to sample the full configurational space, and the 

ability of a heterogeneous chain to reach the bending cutoff with less change in the end-to-

end distance leads to faster fracture (Fig. 4). This situation is analogous to the “diffusion-

controlled” regime identified for polymer looping[51], where a reaction occurs on a 

timescale smaller than the chain equilibration time. Because the time to fracture increases 

exponentially with E*, at high values of the cutoff energy the difference between 

heterogeneous and homogeneous chains disappears. For large E*, the entire chain has time 

to equilibrate before fracture occurs, putting it into the “meanfield” regime[51] where 

reaction rates are determined by the equilibrium distribution of the chain. By, contrast when 

E* becomes low, very little change in the end-to-end distance is necessary to reach the cutoff 

for fracture, as seen in the free energy landscape of Fig. 1b. In effect, sufficient junction 

bending can be attained by small amplitude fluctuations in higher order modes. Because our 

energy-landscape picture assumes that these higher order modes are equilibrated, the 

dependence on chain stiffness heterogeneity disappears when the cutoff angle is small. 

Consequently, a local maximum is observed in the ratio of fracture times for heterogeneous 

versus homogeneous chains with respect to the cutoff energy E* (Fig. 4). While our kinetic 

model makes the fundamental simplifying approximation of equilibrated higher-order 

modes, qualitatively similar behavior for stiff versus heterogeneous chains is observed in 

Brownian Dynamics simulations (Supplemental Fig. S4; Supplemental Video 2).

The dimensionless parameter describing the relative rates of junction dynamics versus 

whole-chain equilibration is kR ∕ Dρ
(0) = 3

2Δ3
. In order for heterogeneity to affect fracture 

rate, this parameter must be sufficiently small – allowing the junction to sample over many 

bending angles before the chain ends can equilibrate. Small values of Δ require a 

combination of short junction length-scale (corresponding to high junction modulus κ) 

and/or long chain lengths (high N). Decreasing Δ by increasing κ implies that the same 

junction cutoff energy corresponds to a less steep cutoff angle and a smaller time to fracture. 

Consequently, the value of E* at which the fracture time begins to compete with the 

equilibration time of the entire chain is increased, and the curves of τstiff/τhet shift to the 

right (Fig. 4a). In the limit of high κ, the fracture process is dominated by the junction 

bending and the mechanical properties of the rest of the chain cease to matter. Similarly, if 

we decrease Δ by lengthening the chain, the local maximum with respect to E* moves to the 

right (Fig. 4b), as higher cutoff energies can be reached in a timescale comparable to the full 

chain equilibration. The increased flexibility of the stiff side of the chain in this case 
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obviates the difference between the heterogeneous and homogeneous chains, an effect that 

may directly result from the approximation that intermediate chain modes are fully 

equilibrated. Due to the limitations of this approximation, the behavior of the fracture rate 

with chain length may not be well resolved in our model for longer chains (especially when 

the softer side of the chain exceeds hN ≫ 2). However the qualitative effect remains – 

heterogeneity in the chain mechanics increases the rate of fracture, up to approximately 

15%, in the regime when the full chain cannot equilibrate on time-scales comparable to the 

fracture time.

5. CONCLUDING REMARKS

Our calculations show that filament heterogeneity can substantially enhance the rate of 

thermal fracture in the case of restricted end-to-end dynamics of the filament. A modest 

enhancement is expected for the case of a chain with freely moving ends. We note that the 

model developed here differs from previous athermal models for fracture[14, 25] which 

indicated that a heterogeneous chain concentrates stresses at the junction when the chain is 

forced into a buckled configuration. The enhancement in thermally driven fracture occurs 

despite the fact that the initial configuration of the chain is allowed to sample from the 

equilibrium distribution. The contrast between the case of rapid and slow r equilibration 

(Fig. 3a) highlights the purely dynamic nature of this effect. Fracture enhancement arises 

from the separation in time-scales between fluctuations at the junction versus moving the 

ends of the entire polymer. The presence of a softer chain region allows a junction to reach 

steep bending angles without requiring large movements of the chain ends and without 

paying a large energetic cost for the chain deformation.

Our results thus highlight fracture as an inherently dynamic, non-equilibrium process. 

Despite the fact that the time-averaged distribution of junction angles obeys Boltzman 

statistics regardless of the mechanical properties of the rest of the chain, the time for that 

junction to first pass a cutoff angle depends on the time-scales associated with moving both 

the junction itself and the longer stretches of chain surrounding it. Thus, a difference 

between heterogeneous and homogeneous chains is observed even though the starting 

distribution of junction angles is taken from equilibrium, both in the case of free chain ends 

and in the situation where chain ends are fixed to highlight the limit of slow end 

equilibration.

A fundamental simplifying approximation in our model relies on the separation of time-

scales for the dynamics of different modes in a fluctuating filament. Namely, we treat the 

slowest mode, corresponding to the chain end-to-end distance, as an explicit coordinate for 

our analytic model. All higher-order modes are assumed to equilibrate rapidly, allowing the 

definition of a free energy landscape (Fig. 1). This approximation neglects the broad range 

of time-scales corresponding to the intermediate modes, which lead to subdiffusive Rouse 

dynamics for times shorter than the equilibration of the entire chain[52]. Past theoretical 

work on intramolecular reaction rates within long flexible polymer chains has shown that 

inclusion of the full range of dynamic modes is necessary in order to correctly predict the 

scaling of reaction times with chain size or capture radius[51, 53]. For instance, cyclization 

rates for such chains are not well-predicted by mapping to an effective harmonic potential 
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which describes the free energy of a Gaussian chain[54]. For semiflexible chains, mapping 

to an effective free energy landscape by integrating over all intermediate modes has been 

employed in a number of studies focusing on chain looping[34-37]. A recent overview[38] 

has shown that for these chains, as well, mapping to a one-dimensional landscape leads to 

incorrect behavior of the model in several asymptotic limits. However, for short, stiff chains 

with relatively large end-to-end distances, good agreement of the approximate landscape 

model with explicit Brownian Dynamics simulations can be achieved[38]. Here, we are 

working precisely in this regime, as evidenced by the agreement of our approximate model 

with simulations (Fig. 2). Thus, we do not make predictions of the fragmentation time 

scaling behavior, but rather focus on the important qualitative conclusion that mechanical 

heterogeneity in the chain can enhance fracture rates, even when the chain ends are 

unconstrained. Such enhancement relies on the time-scale of fragmentation being faster than 

the relaxation time of the full chain. These qualitative results are further supported by 

simulations of heterogeneous chains with free ends (Supplemental Fig. S4).

The model with restricted chain ends, where fracture enhancement is especially pronounced, 

is particularly relevant for the cofilin-mediated severing of actin filaments within a 

cytoskeletal network. In such networks cross-links and entanglements can effectively restrict 

the movement of certain positions along the chain, while allowing rapid equilibration of 

chain positions between the crosslink points. Our results indicate that in such situations 

introducing mechanical heterogeneity into the actin filaments by cofilin binding should 

substantially increase thermal severing rates.

It should be noted that, in addition to changing the flexibility of actin filaments, cofilin 

binding also alters the filament twist density. Recent experiments have shown that 

constraining filaments to prevent torsional equilibration enhances actin filament severing by 

cofilin [24, 55, 56]. The effect described here centers on severing due to bending 

fluctuations and may provide a parallel, unrelated mechanism for cofilin-driven fracture. 

Both twist-based and bending-based severing are expected to depend on the density and 

mechanics of cross-links in an actin network. By providing a feedback mechanism between 

network structure and actin severing dynamics, these physical effects may play an important 

role in regulating the self-assembly, turnover, and mechanoresponse of cytoskeletal 

structures.

In addition to helping unravel the mechanisms of actin severing by cofilin, the results 

presented here are generally applicable to the fracture of any semiflexible thermally 

fluctuating polymer. Enhanced rates of thermally-activated fracture in mechanically 

heterogeneous chains point towards general principles for controlling the stability of 

nanoscale systems, including polymer networks, nanotubules, and molecular threads, for a 

broad range of biological and industrial applications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Model schematic and energy landscapes. (a) Lowest energy (athermal) configuration of 

homogeneous chain with fixed R/(2L) = 0.6 and model parameters labeled. (b) Free energy 

landscape for homogeneous chain shown in (a), plotted as a function of junction bending 

and normalized end distance. White line markes the lowest energy path to steeper junction 

angles. (c) Lowest energy configuration for a heterogeneous chain with fixed R/(2L) = 0.6 

and ℓp,1/ℓp,2 = 10. Light blue segment corresponds to softer chain side. (d) Overall free 

energy landscape for the heterogeneous chain with h = 10.
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Figure 2. 
Comparison of approximate dynamics over free energy landscapes versus Brownian 

dynamics simulations, for homogeneous chains (h = 1). (a) MFPT to a cutoff junction 

energy E*, for fixed end distance. (b) MFPT to a cutoff value of the normalized end-to-end 

distance r. (c) MFPT to a junction energy E*, with free chain ends. In all cases, dashed black 

lines correspond to first passage times calculated from the free energy landscapes, solid lines 

correspond to Brownian dynamics simulations. All times are non-dimensionalized by Dρ
(0). 

Top panels show examples of start and end configurations, with junction color indicating 

energy at the junction.
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Figure 3. 
Chain heterogeneity enhances junction fracture rates when chain end dynamics are slow. (a) 

Ratio of MFPT to fracture for uniformly stiff (h = 1) and heterogeneous (h = 10) chains is 

plotted versus the relative rate of chain end dynamics compared to junction dynamics. (b-c) 

Time to fragmentation in the limit of infinitely slow chain end dynamics. Dimensionless 

MFPT is shown as a function of heterogeneity h for (b) chains with a fixed junction length Δ
= 0.1 and varying stiffness and (c) chains with a fixed stiffness (N = 0.25) but varying 

junction length. Chains are assumed to start from an equilibrium distribution.
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Figure 4. 
Enhancement in fracture rate for a heterogeneous vs homogeneous chain with free chain 

ends. The ratio of MFPT to fracture for a fully stiff chain (h = 1) vs a heterogeneous chain (h 
= 10) is plotted as a function of the cutoff energy. (a) Filaments with constant length N but 

varying junction size and stiffness. (b) Filaments with varying length but constant junction 

stiffness κ.
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