
UNIVERSITY OF CALIFORNIA,
IRVINE

An Assortment of Sorts: Three Modern Variations on the Classic Sorting Problem

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

William Eric Devanny

Dissertation Committee:
Professor David Eppstein, Chair

Professor Michael T. Goodrich
Professor Sandy Irani

2017

Chapter 2 c© 2017 William Eric Devanny, Jeremy Fineman, Michael T. Goodrich, and Tsvi
Kopelowitz

Chapter 3 c© 2016 ACM
Chapter 4 c© 2017 William Eric Devanny, Michael T. Goodrich, and Kris Jetviroj

All other materials c© 2017 William Eric Devanny

DEDICATION

To my parents, Caroline and Earl, and to Mikaela for their support and willingness to listen
to my bad jokes.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF ALGORITHMS vii

ACKNOWLEDGMENTS viii

CURRICULUM VITAE ix

ABSTRACT OF THE DISSERTATION xii

1 Introduction 1
1.1 Results . 4

2 The Online House Numbering Problem: Min-Max Online List Labeling 7
2.1 Introduction . 7

2.1.1 Our Results . 10
2.1.2 Related Prior Work . 12

2.2 Preliminaries . 12
2.3 A Generic House Numbering Data Structure 14

2.3.1 Insertions . 16
2.3.2 Promotions . 18

2.4 Bounding the Height and Complexities . 24
2.4.1 Achieving 〈O(nε), log n+O(1/ε)〉 . 31

2.5 A
〈
O(log n), O(log2 n)

〉
house numbering data structure 31

2.6 Conclusion . 34

3 Parallel Equivalence Class Sorting 35
3.1 Introduction . 35

3.1.1 Related Prior Work . 38
3.1.2 Our Results . 39

3.2 Parallel Algorithms . 40
3.2.1 Algorithms Based on the Number of Groups 41
3.2.2 Algorithms Based on the Smallest Group Size 44

3.3 Lower Bounds . 48
3.4 Sorting Distributions . 53

iii

3.5 Experiments . 58
3.6 Conclusion . 59

4 Optimally Sorting Evolving Data 62
4.1 Introduction . 62

4.1.1 Related Prior Work for Evolving Data 63
4.1.2 Problem Formulation for Sorting Evolving Data 64
4.1.3 Our Contributions . 64

4.2 Preliminaries . 66
4.3 Sorting Evolving Data with Repeated Insertion Sort 69

4.3.1 Proof of Theorem 4.1 . 72
4.3.2 Improved Convergence Rate . 75

4.4 Proof of Lemma 4.5 . 76
4.4.1 Bounding the Number of Blocked and Stuck Inversions with Counters 79
4.4.2 Bounding the Counters with Balls and Bins 85

4.5 Conclusion . 88

Bibliography 89

iv

LIST OF FIGURES

Page

2.1 This tree illustrates how elements are labelled based on their representative’s
node’s file maintenance labels and the node labels of their parents. Empty leaf
nodes are omitted and we note that the root node is violating the Capacity
Property. 16

2.2 The blue median representative of the full file maintenance data structure is
promoted dividing the subtree into two parts. 19

2.3 The black representative’s subtree passed the threshold of the Balance Property
and the weighted median representative, shown in green, is promoted. The
subtrees of representatives less and greater than the median are copied and
possibly shifted if they need a new root representative. Empty subtrees are
omitted. 20

2.4 An insertion causes a cascade of overflowing buckets until a node is reached
which can contain the whole subtree. Only canonical elements are drawn. . . 32

3.1 A visualization of the parallel algorithm with a table on the right keeping track
of relevant numbers for each loop iteration. 42

3.2 We test if x and y are in the same equivalence class. If they are, their vertices
are contracted together. If they are not, an edge is added. 49

3.3 On the left we have a graph with an equitable 3-coloring and on the right we
have a graph with a weighted equitable 3-coloring. 49

3.4 Three cases of how the adversary works to mark vertices and swap colors. The
dashed line indicates the two elements being compared. Marked vertices are
denoted with stars. 51

3.5 The results of the experiments are plotted and best fit lines are placed when
we have a linear number of comparisons with high probability or in expectation. 61

4.1 Examples of l, l′, I, and σ over two steps of an algorithm. In the first step the
green and red elements are compared in l and the red and yellow elements are
swapped in l′. In the second step the red and yellow elements are compared
and swapped in l and the blue and yellow elements are swapped in l′. 67

v

4.2 On the left we have a representation of σ, a dot for each element x is drawn
at the coordinate (a, b) where x = l[a] = l′[b]. On the right the elements have
been moved to their position in σ̂ and the corresponding Cartesian tree is
superimposed. The active element of insertion sort at the current moment
is highlighted in red, the elements that haven’t been seen by the algorithm
are highlighted in green, the added elements are highlighted in pink, and the
minima path is highlighted in blue. 68

4.3 An example where swapping the red and blue elements in l′ creates multiple
blocked inversions between the red element and the black elements. 76

4.4 In this Cartesian tree, the green-blue pair is a blocked inversion and the
green-yellow pair is a stuck inversion. Both pairs of inversions blame the red
element. 77

4.5 Every degree-three vertex is paired up with a leaf in one of it’s subtrees. The
node −1 is always paired with node n+ 1. 80

4.6 When the red and blue element are randomly swapped in l′, they switch paired
elements and exchanging their Dec counters maintains the invariant. 83

vi

LIST OF ALGORITHMS

Page
1 Insert x into the house numbering data structure immediately after element a. 22
2 Promote an element x into a node u . 22
3 Process the violations in the tree . 23
4 Repeated insertion sort pseudocode . 66
5 Quicksort followed by repeated insertion sort pseudocode 75

vii

ACKNOWLEDGMENTS

I would like first and foremost like to thank Professor David Eppstein and Professor Michael
Goodrich for advising me during my graduate. I would also like to thank Professor Sandy
Irani for serving along with them on my dissertation and advancement committees. I would
like to thank Professor Michael Dillencourt and Professor Long Chen for also serving on my
advancement committee. All of the faculty in the UCI Center for Algorithms and Theory of
Computation have my gratitude for their mentorship during my studies.

The UCI Theory graduate students, past, present, and future, also have my appreciation for
their fellowship in our academic pursuits.

I would like to thank all of my coauthors: Michael Bannister, Ziv Bar-Joseph, Juan Besa, Jack
Cheng, Vida Dujomvić, David Eppstein, Jason Ernst, Anthony Gitter, Michael Goodrich,
Kris Jetviroj, Tsvi Kopelowitz, Marcel Schulz, Joe Simons, Bálint Tillman, Lowell Trott,
David Wood, and Shan Zhong.

I am grateful to the University of California, Irvine and the Donald Bren School of Information
and Computer Sciences for their funding support that enabled my research.

I would like to thank the NSF who supported me with an NSF Graduate Research Fellowship
under grant DGE-1321846. The NSF also supported work presented in this dissertation under
grants 1228639, 1526631, 1217322, 1618301, and 1616248. I would also like to thank the 3M
Corporation for a gift that supported work in this dissertation. I would like to thank David
Eppstein and Ian Munro for several helpful discussions concerning the topics of Chapter 3. I
would like to thank DARPA for supporting work reported on in Chapter 4 under agreement
no. AFRL FA8750-15-2-0092. The views expressed in this dissertation are those of myself and
my coauthors and do not reflect the official policy or position of the Department of Defense
or the U.S. Government.

I am very grateful ACM has granted me permission to include their copyrighted material in
Chapter 3. At the beginning of Chapter 3, I acknowledge their permission, and I provide a
full citation to the publication where it appeared.

viii

CURRICULUM VITAE

William Eric Devanny

EDUCATION

Doctor of Philosophy in Computer Science 2017
University of California, Irvine Irvine, California

Bachelor of Science in Computer Science 2012
Carnegie Mellon University Pittsburgh, Pennsylvania

TEACHING EXPERIENCE

Lecturer 2017
Pomona College Claremont, California

Teaching Assistant 2013–2015
University of California, Irvine Irvine, California

Teaching Assistant 2011
Carnegie Mellon University Pittsburgh, Pennsylvania

ix

PUBLICATIONS

The online house numbering problem: min-max online
list labeling

2017

William E. Devanny, Jeremy Fineman, Michael T. Goodrich, Tsvi Kopelowitz
European Symposium on Algorithms

Parallel equivalence class sorting: algorithms, lower
bounds, and distribution-based analysis

2016

William E. Devanny, Michael T. Goodrich, Kris Jetviroj
Symposium on Parallelism in Algorithms and Architectures

The computational hardness of dK-series 2016
Bálint Tillman, William E. Devanny, David Eppstein
NetSci

Scheduling autonomous vehicle platoons through an un-
regulated intersection

2016

Juan José Besa Vial, William E. Devanny, David Eppstein, Michael T. Goodrich
Workshop on Algorithmic Approaches for Transportation Modelling, Optimization and
Systems

Track layout is hard 2016
Michael J. Bannister, William E. Devanny, Vida Dujmović, David Eppstein, David R.
Wood
International Symposium on Graph Drawing

Windows into geometric events: Data structures for
time-windowed querying of temporal point sets

2014

Michael J. Bannister, William E. Devanny, Michael T. Goodrich, Joseph A. Simons,
Lowell Trott
Canadian Conference on Computational Geometry

ERGMs are hard 2014
Michael J. Bannister, William E. Devanny, David Eppstein
ArXiv

Small superpatterns for dominance drawing 2014
Michael J. Bannister, William E. Devanny, David Eppstein
Analytic Algorithmics and Combinatorics

The Galois complexity of graph drawing: Why numeri-
cal solutions are ubiquitous for force-directed, spectral,
and circle packing drawings

2014

Michael J. Bannister, William E. Devanny, David Eppstein, Michael T. Goodrich
International Symposium on Graph Drawing

x

Superpatterns and universal point sets 2013
Michael J. Bannister, Zhanpeng Chang, William E. Devanny, David Eppstein
International Symposium on Graph Drawing

DREM 2.0: Improved reconstruction of dynamic regu-
latory networks from time-series expression data

2012

Marcel H. Schulz, William E. Devanny, Anthony Gitter, Shan Zhong, Jason Ernst, Ziv
Bar-Joseph
BMC Systems Biology

xi

ABSTRACT OF THE DISSERTATION

An Assortment of Sorts: Three Modern Variations on the Classic Sorting Problem

By

William Eric Devanny

Doctor of Philosophy in Computer Science

University of California, Irvine, 2017

Professor David Eppstein, Chair

Sorting is one of the most well studied algorithmic problems in Computer Science. It is a

fundamental building block in many other algorithms. In this dissertation, we consider several

variants of the classical sorting problem all motivated by modern challenges or technologies.

We present algorithms to solve these problem variants and provide lower bounds when

possible.

The online list labelling problem attempts to maintain integer labels for a dynamic ordered

list. As new elements are inserted, old elements may need to be relabeled to make room

in the label space. Previous work has looked at minimizing the total number of relabels

that need to be performed. However we analyze the version of the problem where the goal

is to minimize the maximum number of times any one element is relabeled. We call this

the online house numbering problem. This problem is motivated by the modern solid-state

memories which have a limited write life. We provide two solutions to the house numbering

problem: one that comes within a logarithmic factor of the optimal label space size with

optimal maximum relabelings and one that has optimal label space size, but is a logarithmic

factor off of the optimal maximum relabelings.

Sorting can also mean to split a set of elements into groups of similar elements. Cryptographic

handshakes, where two parties securely identify if they belong to a privileged group, motivate

xii

studying this form of sorting that we call equivalence class sorting. Instead of sorting with a

< operator, our goal is to use an ≡ operator to group a set of elements into their equivalence

classes. We prove tight lower bounds that match the runtime of previously known algorithms

as well as provide algorithms for performing equivalence class sorting in several models of

parallel computation.

Classical sorting algorithms output the sorted order for a given input list. When the data is

continually changing or “evolving”, the output of a classical algorithm cannot be guaranteed

to be accurate. So we consider a new model for algorithms called the evolving data model.

In this model, every time a comparison is performed, two elements that are adjacent in the

underlying order are swapped. No algorithm can ever compute the exact correct order of the

elements in such an evolving list. Instead the goal is to, over time, converge to be as close to

the correct order as possible. We show that simply repeatedly running insertion sort achieves

the best possible O(n) inversions relative to the underlying order with exponentially high

probability.

xiii

Chapter 1

Introduction

Sorting predates the modern computer. In fact, an automated sorting machine was used to

count United States census data in 1880 [59]. Some of the earliest computer programmers

worked on writing sorting algorithms [64]. Since then sorting has become a foundational

topic of study. Knuth [59] makes the claim that “every important aspect of programming

arises somewhere in the context of sorting or searching!”

Formally given an input list of n elements l, the sorting problem is to output the list containing

the same set of elements permuted into an order respecting some < operator i.e., if i < j, then

in the output l[i] < l[j]. Ford and Johnson [41] introduced the comparison model in which

algorithms are permitted to compare list elements using the < operator and are assessed

based on the worst case or expected number of these comparisons that they perform. The

elements of the input list are often called keys and are contained in some larger set of possible

keys called a universe. Each key may carry some auxiliary information. For example in a

contact list, entries may be sorted by last name while also being associated with emails, phone

numbers, and other personal information. Oftentimes the keys to be sorted are integers where

1

the < operator is the natural numeric order or strings where the < operator is lexicographic

order such as in a dictionary.

As every academic who has had to return a stack of graded papers to students knows, sorting

is a useful subroutine to speed up future processing. In an unsorted list, looking up an

element may require O(n) time, but after sorting a list, one can use binary search to find an

element in O(log n) time [29]. Similarly, finding the element of a given rank in an unsorted

list may require O(n) steps, but in a sorted list it only takes O(1) time [29]. Aside from these

two relatively simple applications, sorting algorithms are used as black boxes in algorithms

in computational geometry [46], graph theory [63], and nearly every other computer science

subfield.

Over the course of an undergraduate computer science education, students learn several

classical sorting algorithms including bubble sort, selection sort, insertion sort, merge sort,

quicksort, and heapsort [29,44]. Although relatively simple, these sorting algorithms illustrate

important algorithmic design and analysis techniques such as loop invariants, recursion,

worst-case analysis, and the usage of basic data structures. The principles in these algorithms

will also be applied frequently in more advanced areas of study. In fact, Chapter 5.5 of

Knuth [59] describes sophisticated applications which apply the ideas used in each of these

classical sorting algorithms. Even bubble sort finds an application in two-tape sorting.

There is a well known comparison based sorting lower bound that Ω(n log n) comparisons

are required by any algorithm in the worst case. The classical sorting algorithms can be

divided into those that achieve the optimal Θ(n log n) run time (quicksort, merge sort, and

heapsort) and those that do not (bubble sort, selection sort, and insertion sort). However

interestingly in some cases “slower” algorithms may perform much better. When there are

o(n log n) inversions in the input list, insertion sort has an asymptotically better runtime

than the Θ(n log n) algorithms quicksort, merge sort, and heapsort.

2

Because the comparison based model ignores the availability of certain powerful computing

techniques as well as the difficulties that arise when sorting on real hardware, many variants

of the classical sorting problem have been studied.

External memory sorting When the data to be sorted is too large to fit into main

memory on a computer, the classical sorting algorithms can become infeasibly slow. Instead

new techniques are required to minimize the amount of reading from and writing to the

external memory. Agarwal [1] implemented a merge sort based algorithm to compare how

the run time was divided up between reading, writing, and non-i/o operations.

Integer Sorting Instead of exclusively using the < operator to interact with the input

elements, using other operations on the elements may be advantageous in certain contexts.

For example, when the list elements are integers in some polynomial range, radix sort uses

bit-level operations to achieve O(n logU
logn

) operations, where U is the size of the universe,

breaking the Ω(n log n) operation comparison sorting lower bound when U = poly(n). Fusion

trees were used by Fredman and Willard [42] to sort integers in O(n log n/ log log n) time

which is independent of U . Han and Thorup [48] improved this bound further and managed

to use just O(n
√

log n log n) time.

Parallel sorting As computers have become more sophisticated the prospect of using

multiple processors in parallel to solve problems has become viable. In this context, the goal

is to sort a list of numbers using some number p of processors with, depending on the exact

model, some form of shared access to memory. Shiloach and Vishkin [75] and Hirschberg [49]

both describe parallel algorithms to sort in O(k log n) rounds using n1+1/k processors which

all have complete access to the shared memory. Cole [26] gives a parallel merge sort using

only n processors and O(log n) time. The AKS sorting network [2] is also a parallel sorting

algorithm using n processors that also takes O(log n) time.

3

Online list labeling The online list labeling problem [15,32, 60] can be thought of as a

form of online sorting. Elements are assigned integer labels respecting the < operator. When

new elements arrive and are placed into the sorted order, they must receive a label between

the labels of their two neighbors. If there is no such label available, then the labels for

elements must be reallocated. Using a label space of [1, 2n] allows n elements to be inserted

without a single relabel being required. So online list labeling data structures optimize two

competing goals: minimize the number of relabelings and minimize the size of the label

space used. Several papers give solutions when the label space is constrained to be of size

O(n) [15, 18, 80, 81]. When the label space is polynomial in size, O(log n) relabels suffice [60]

and are required [23].

1.1 Results

In this dissertation, we consider three variants of the sorting problem and will provide

algorithms and lower bounds.

House numbering problem In Chapter 2, we analyze the house numbering problem

which is a modification of online list labeling. Some modern memories such as flash memory

only support a limited number of writes [19, 71,82]. Using naive online list labeling solutions

with these memories could lead to a particular memory cell being overwritten repeatedly.

Supposing the elements are stored in flash memory, we consider the slightly different problem

of minimizing the maximum number of times any single element is relabeled. The conventional

online list labeling data structures cannot be easily adapted to this goal.

We give two data structures for the house numbering problem. Our first guarantees no

element will be relabeled more than O(log2 n) times using an O(log n)-bit label space and

our second uses at most O(log n) relabels for any element with an O(log2 n)-bit label space.

4

Thus each solution is optimal in one parameter while being within a logarithmic factor of

optimal in the other parameter.

The first of our two data structures uses a tree on the label space and moves elements

throughout the tree always maintaining the correct relative order of elements. As an element

undergoes relabels it is moved higher up in the tree and is thus less likely to be moved in the

future. Interestingly there is no immediately obvious reason why the tree should not grow to

an unbounded height. Proving that the elements stay somewhat low in the tree and so only

use a small number of labels requires a particularly sophisticated potential argument.

Equivalence class sorting Jayapaul et al. [56] considered a slightly unconventional notion

of sorting where instead of using a < operator, they use an ≡ operator. Obviously the goal

cannot be to place the elements in order. So instead we attempt to group elements into

their equivalence classes and our goal is to minimize the number of equivalence tests we

need to perform. We call this the equivalence class sorting problem. This problem naturally

arises when several individuals wish to use cryptographic handshakes to identify themselves

as belonging to certain groups. Jayapaul et al. [56] showed that while in general beating

Ω(n2) equivalence tests is impossible, it is possible to equivalence class sort using O(n2/`)

equivalence tests, where ` is the size of the smallest equivalence class. They also showed that

even when ` is known, one cannot sort using fewer than Ω(n2/`2) equivalence tests.

In Chapter 3, we prove lower bounds for the equivalence class sorting problem and provide

some parallel algorithms. We prove that any algorithm must use at least Ω(n2/`) equivalence

tests implying the algorithm of Jayapaul et al. [56] is optimal. When k the number of

equivalence classes is constant with respect to n, we show that we can sort the input using

just a constant number of parallel rounds of equivalence tests. However when k is non-

constant, we are only able to sort in O(k + log log n) or O(k log n) tests depending on the

power of our parallel computation model. We also provide some experimental results on how

5

long it takes to sort when the elements are drawn from a few common discrete distributions.

Sorting evolving data Motivated by the idea that underlying data might change during

the execution of an algorithm, a new evolving data framework was introduced by Anagnos-

topoulos et al. [7]. Imagine that while processing a particularly long list of web pages several

pages are deleted and several new pages are created. The output of such a process could

be highly inaccurate. Instead if we use an algorithm that repeatedly resamples the input,

we can provide a guarantee on the accuracy of our output. While generally sorting can be

performed very quickly (so the data might not have changed very much), the foundational

nature of sorting means it is interesting to investigate how to sort evolving data.

In the evolving data model for sorting, the order underlying the input elements slowly changes

over time. Whenever the algorithm performs a comparison, an adjacent pair of elements in

the underlying order are swapped. Algorithms are judged based on the number of inversions

between the list they maintain and the underlying order. Anagnostopoulos et al. [7] were able

to show that in this model no algorithm can achieve fewer than Ω(n) inversions with high

probability and gave a quicksort based algorithm that achieves O(n log log n). In Chapter 4,

we show that simply repeating insertion sort forever guarantees the optimal O(n) inversions

with exponentially high probability.

If the random swaps in the underlying order and the work of insertion sort can be considered

separately it is relatively easy to see that this algorithm works well. However understanding

the interplay between the algorithm and the running swaps requires some care. We ultimately

show that after t steps of insertion sort, the number of inversions insertion cannot fix is

bounded by the sum of squares of t balls thrown uniformly at random into n bins. So if there

are a linear number of inversions, then with high probability a linear number of steps will be

performed and most of the steps will fix inversions.

6

Chapter 2

The Online House Numbering

Problem: Min-Max Online List

Labeling

2.1 Introduction

In this chapter we study a new version of the fundamental online monotonic list labeling

problem [15, 32,60] (OMLL), where the goal is to maintain labels for a dynamic ordered list

of at most n elements that, due to monotonicity requirements of appropriate applications,

must have (integer) labels that strictly increase in the direction of the ordering. When a new

element is inserted into the list, either between two existing elements or at an endpoint of

the list, we must assign a label to the new element that is consistent with the order of the

list. To avoid labels becoming too long, algorithms for list-labeling problems relabel elements

from time to time to maintain the ordering using relatively few bits for the labels. There are

several common variants of OMLL that differ in the number of bits allowed for each label.

7

For example, the special case of allowing log n+O(1) bits1 is known as the file-maintenance

problem [15,18,80,81] as the labels can be viewed as corresponding to addresses in a size-O(n)

array.

Solutions for OMLL are used as foundational building blocks in several areas of computer

science, ranging from cache-oblivious data structures [16,17,22] to distributed computing [36],

and they play a central role in deamortization [21, 32, 34]. As an illustration of the data

structure’s central role in the field, it is used as a black box in order-maintenance data

structures [32,60], which themselves are used as black boxes throughout computer science

(for examples see [5, 6, 27, 33,37,39,61]).

The focus of previous work solving the OMLL problem in the RAM model has been on

minimizing the worst-case or amortized number of relabels per update. For example, when

using O(log n) bits per label the worst-case number of relabels per update is known to be

O(log n) [60], which is tight [23]. A particular element, however, can be relabeled as many

as Ω(n) times during a sequence of n insertions using existing algorithms. This chapter

considers the goal of minimizing the maximum number of times an element in the list is

relabeled, while using only a small number of bits per label. We refer to this version of OMLL

as the online house numbering problem, since it captures the challenges that take place when

maintaining a strictly increasing numbering for a collection of houses representing their order

along a road. When a new house is built between any two existing houses (or at either end of

the row of houses), this new house needs to be assigned a house number. If no such integer

house number is available, however, then other houses need to be renumbered (or relabeled)

to make room for a number for the new house. Formally stated, the online house numbering

1Unless another base is indicated, all logarithms in this thesis are base 2.

8

problem is to maintain a labelling of an initially empty ordered list subject to n operations of

the form, insert(x, a): insert x immediately after a in the ordered list. Remarkably, existing

solutions for list labeling problems do not seem to lead to efficient solutions for the online

house numbering problem.

Solutions to the online house numbering problem address label-update complexity, which is

motivated from use of solid-state memories, like flash memory, that have an upper bound on

the number of erasures that can occur for any memory cell [19, 71,82]. For example, consider

a database stored in flash memory with an ordered set of large records, where each record

maintains a label respecting the order. Due to the use of memory with an erasure limit, the

number of times that the label is changed must be minimized, since each relabeling entails

rewriting that area in memory. A typical assumption in models for solid-state memories is

that the algorithm or data structures also have access to a sublinear amount of additional

scratch space for computational purposes (see Ben-Aroya and Toledo [14]), which is exempt

from the erasure limits. In the context of our online house numbering, this would mean that

each element in the data structure has a fixed record containing, e.g., the label and any other

auxiliary information that is updated whenever a label changes (for our solution, we also

store a counter as part of the record). Any additional components of the data structure must

be restricted to the o(n) scratch space.

There are two competing objectives that we consider in designing solutions for the online

house numbering problem. The first objective is to minimize, over all elements in the list, the

maximum number of times that the label of the element changes throughout the n insertions.

Notice that with large labels, a trivial solution in which no relabels are needed is obtainable by

assigning x the average of a and b, where b is the element succeeding x. This trivial solution

requires Ω(n) bits per label, and so if each word of memory contains Θ(log n) bits (which

is a standard assumption), each label requires Ω(n/ log n) words. A large number of words

directly impacts the efficiency of establishing the order of two elements, since comparing

9

their labels entails scanning that many words. Thus, the second objective is to minimize the

number of bits used in labels.

Since we are interested in minimizing two competing objectives, we express the complexities

of our data structures using a pair of functions. A data structure supporting n insertions

with g(n) maximum relabels and using h(n) bits per label is said to have complexity of

〈g(n), h(n)〉. Notice that h(n) ≥ dlog ne since n elements must be labeled. If one is interested

in h(n) = O(log n) (constant number of words per label), then the OMLL lower bounds of [23]

imply that g(n) = Ω(log n). Thus, if there existed a solution for online house numbering with

complexity 〈O(log n), O(log n)〉, it would be asymptotically optimal.

2.1.1 Our Results

In this chapter we describe two data structures that are close to the target bound of

〈O(log n), O(log n)〉, but each solution introduces an extra logarithmic factor in one of the

functions. In a third solution, we investigate the dependence on the leading constant of h(n)

and provide a solution with complexity 〈O(nε), log n+O(1/ε)〉. Our solutions, which can be

adapted to work with o(n) scratch space, establish the following results.

Theorem 2.1. There exists a house numbering data structure with complexity 〈O(log2 n), O(log n)〉.

Theorem 2.2. There exists a house numbering data structure with complexity 〈O(log n), O(log2 n)〉.

Theorem 2.3. For any positive constant ε, there exists a house numbering data structure

with complexity 〈O(nε), log n+O(1/ε)〉.

Proofs of Theorem 2.1 and Theorem 2.3 appear in Section 2.3. Theorem 2.2 is proved

in Section 2.5. Our solution complexities exhibit an interesting feature: the online house

numbering problem seems to exhibit a different tradeoff from OMLL, depending more strongly

on the label lengths.

10

Overview of Challenges and Techniques. The main idea of our approach is that once

a particular element has been relabeled many times, structural restrictions assure that this

element will not be relabeled much in the future. To achieve this goal, we employ a tree-like

structure similar to an (a, b)-tree (or B-tree) that stores at most O(γ) elements in nodes of

the tree, where γ ≥ 2 is a parameter controlling the tradeoff between the two objectives. (For

the purpose of this overview it is helpful to assume γ = 2.) Roughly speaking, the inorder

traversal of this tree corresponds to the order of elements in the list. The elements in a node

each have a local label, which is local to that node. The global label assigned to an element

corresponds to the concatenation of the local labels on the path from the root to the element

(with 0s padded at the end if the element is in an inner node). We require the local labels of

elements to respect the order of elements in each node, thereby guaranteeing that the global

labels respect the total order of the list. To simplify things when extending to non-constant

γ, we employ (classic) file-maintenance data structures within each node for maintaining the

local labels. Notice that changing the local label of an element also changes the global labels,

which must be stored explicitly, of all elements in that element’s subtree.

Our main strategy is to employ node splits to “promote” elements that have been relabeled

too many times to higher levels in the tree. Promoting an element e that is currently in node

u entails: splitting the elements of u around e into two new nodes, moving e into u’s parent,

and making the two new nodes children of u’s parent. The intuition behind the promotions is

that elements in higher nodes are less affected by insertions, and hence these elements need

not be relabeled as often.

There are three reasons to promote an element: (1) if the element has been relabeled too

many times since its last promotion, (2) if the node has too many elements, which would cause

the performance of the file-maintenance black box to degrade, or (3) if the node becomes

sufficiently imbalanced, according to a non-obvious weight-balance rule.

The key component of the analysis is ensuring that the height H of the data structure is

11

well bounded, i.e., that elements are never promoted too far. The height H not only places

an upper bound on the length of the labels, but in conjunction with the first trigger for

element promotion also directly implies a bound on the number of times each element can

be relabeled. We emphasize that the analysis bounding H leverages a potential argument

in an atypical and non-obvious way, which we view as a surprising component of our data

structure.

2.1.2 Related Prior Work

There is no prior work for the online house numbering problem, but it is closely related

to the classic file maintenance and online list labeling problems for which several authors

have shown how to achieve optimal polylogarithmic update times, in either worst-case or

amortized senses (e.g., see [15,18,23,32,54,60]).

Regarding algorithms in computational models that capture the challenges of solid-state

memory, Ben-Aroya and Toledo [14] provide competitive analyses for several such algorithms,

but they do not study OMLL problems as a specific topic of interest. See also the work of

Irani et al. [53]. Subsequent work on efficiently implementing specific data structures and

algorithms in such models includes methods for database algorithms [25] and hash tables [38].

2.2 Preliminaries

We prove Theorems 2.1, 2.2, and 2.3 using amortized analysis. Traditionally given a potential

function Φ mapping data structure states to real numbers, the amortized cost of an operation

x is cost(x) + Φ(Dafter)− Φ(Dbefore) where cost(x) is the actual cost of operation x, Dbefore

is the state of the data structure before x, and Dafter is the state of the data structure after

x [77]. When summing the amortized costs of a sequence of operations, the Φ(Dafter) and

12

Φ(Dbefore) terms telescope and cancel out. So the total cost of a sequence of N operations

is at most the actual cost of the operations plus the potential in the final data structure

state minus the starting potential. Our arguments do not use a potential function to analyze

time costs. Instead our potential function is designed so that we can bound the height of a

tree. First, we prove insertions will increase the potential of the tree by a small amount and

promotions will have no effect on the potential. Second, we show that a tall tree requires a

large amount of potential. Therefore for a given number of insertions, there is a maximal

height to the tree.

In our house numbering data structures, we make use of instances of file maintenance data

structures. The following lemma highlights the features that our algorithms leverage. Here, a

file-maintenance data structure corresponds to an array, where placing an element in the ith

slot in the array corresponds to assigning a label of i to the element.

Lemma 2.1. For any capacity η, there exists a file maintenance data structure with the

following properties:

• The data structure assigns to each element a slot in the range [1, 4η]. Slots are such

that a is before b if and only if in the total order a’s slot is before b’s slot.

• If the data structure has at most η elements then it can be split into two data structures

with each element being moved at most once.

• Starting from an empty data structure, or a data structure that is the output of a split,

as long as the number of elements in the structure does not exceed η, the amortized

number of elements that are moved to a new slot per insertion is O(log2 η).

Proof. A data structure by Itai et al. satisfies these conditions [54].

Using the notation of the statement of Lemma 2.1, a file maintenance data structure f is

characterized by a capacity (i.e., η), a slot range (i.e., [1, 4η]), and an amortized moving cost

13

cost(η) (i.e., O(log2 η)), which are all static. The capacity specifies how many elements can

be inserted while still maintaining the cost(η) bound. In addition, we define the usage of f ,

denoted usage(f), to be the number of elements currently inside f .

2.3 A Generic House Numbering Data Structure

We describe our data structure in terms of several variables, namely κ1, κ2, κ3, π1, and π2.

These will allow us to balance various overheads in the data structure and shall be fixed

in the analysis. Additionally, our house numbering data structure is parameterized by a

value γ ≥ 2, which controls a tradeoff between the label lengths and the number of relabels

performed. Setting γ to a constant attains the 〈O(log2 n), O(log n)〉 data structure. When

considering a data structure for flash memory, the data structure itself, in addition to the

actual list, should reside in scratch space.

The tree. Our house-numbering structure is a perfect rooted (4κ1γ + 1)-ary tree T . Each

internal node u in the tree maintains an instance fu of a κ1γ-capacity file-maintenance data

structure (à la Lemma 2.1) and the leaves of the tree are associated with space for a single

element. The leaves store the actual elements e in the tree, but leaves may be empty. Each

element e also maintains a relabel counter c(e).

The internal nodes store (conceptual) copies of elements, which we call representatives, that

have been promoted to a higher level in the tree. We refer to all the copies of a particular

element e as the representatives e. Representatives are analogous to duplicate keys in internal

nodes of a B+ tree, with each non-empty node containing exactly one representative that has

been promoted to the parent node.

Each file-maintenance data structure fu assigns slots in the range [1, 4κ1γ] to the represen-

14

tatives in node u. Equivalently, the file-maintenance structure specifies how to store the

representatives in a size-κ1γ array, starting from slot 1. We use the 0th slot in the array for

a special dummy representative d−u , which corresponds to the only representative in node u

that has also been promoted to the parent. (As such, d−u is a representative of the leftmost

left element in u’s subtree.) Note that since the slot storing the dummy representative is

not part of the file-maintenance structure fu, the dummy representative never moves from

slot 0. The i-th slot in fu corresponds to the i-th child of u in an inorder tree walk. For

representative r in fu let s(r) denote the slot in fu that is assigned to r.

Without yet worrying about precisely how elements are labelled, we state a property about

how they must appear in T . Naturally, the order property constrains the way we label

elements.

1. Order Property: An inorder traversal of T encounters the elements in their house

numbering order.

We use Tu to denote the subtree rooted at node u. Let v be the parent of u in T . Since u is

represented as a slot s in the slot range of fv, we will abuse notation and sometimes denote

Tu by Ts. A subtree is empty if it contains no elements.

The labels. The label for an element e, denoted `T (e), is based on the root-to-leaf path

down to the leaf node containing e. In particular, labels are base-(4κ1γ + 1) numbers with a

number of digits equal to the height of the tree. Consider the path u1, u2, . . . , uHT+1 down

to the leaf containing e, where u1 is the root, uHT+1 is the leaf containing e, and HT is the

height of T . For 1 ≤ i ≤ HT let si denote the slot of ui+1 in fui . Then e’s label is the

concatenation of digits s1, s2, . . . , sHT . An example of determining the labels of elements is

depicted in Figure 2.1. The label of each element uses dlog(4κ1γ + 1)e bits per level of T for

a total of HT dlog(4κ1γ + 1)e bits.

15

d−
0 1 2 3 4 `T () = 0 · 51 + 1 · 50 = 1

`T () = 2 · 51 + 2 · 50 = 12

`T () = 2 · 51 + 0 · 50 = 10`T () = 1 · 51 + 0 · 50 = 5

`T () = 4 · 51 + 1 · 50 = 21`T () = 4 · 51 + 0 · 50 = 20

−∞

−∞

Figure 2.1: This tree illustrates how elements are labelled based on their representative’s
node’s file maintenance labels and the node labels of their parents. Empty leaf nodes are
omitted and we note that the root node is violating the Capacity Property.

Notice that by construction and the Order Property, the labels of elements respect the order

of the elements in the house numbering.

Relabeling and subtrees. To maintain the Order Property, whenever a representative r

is moved from slot s to slot s′ in fu, all of the elements and file-maintenance representatives

in Ts are moved to the same exact location, but in Ts′ . The following property will guarantee

that this movement does not violate the Order Property.

2. Representative Property: The representatives for an element e induce a path from the

parent of the leaf containing e to the highest representative. Each representative of e except

for the highest one is the dummy representative of its corresponding node.

Following the Representative Property, we refer to the highest representative of an element e

as the canonical representative of e, and denote this representative by r(e).

2.3.1 Insertions

We now discuss the implementation of the insert(x, a) operation. Let u be the parent of the

leaf node containing a, and assume for now that usage(fu) < κ1γ. A new representative r

16

of x is inserted into fu immediately after the representative representing a in fu (possibly

causing elements in fu to change slots). Because this insertion is into a file maintenance data

structure, this insertion may cause some movement of other elements. Element x is placed

into the leaf node corresponding to the slot assigned to r in fu.

The insertion respects the Order Property, so x receives a valid label. The insertion causes

some number of other representatives in fu to be relabeled and also increases the usage of fu.

Eventually fu will reach capacity. The capacity of the file maintenance instances needs to be

respected and so when fu reaches capacity we move around representatives in T to create

room (thereby guaranteeing again that fu is below capacity before the next insertion). This

is captured by the following property.

3. Capacity Property: For any internal node u in T , usage(fu) < κ1γ.

In order to maintain the Capacity Property, the data structure employs the promotion of

canonical representatives to higher nodes in T . The promotion procedure is detailed in

Section 2.3.2.

Relabel counters. The relabel counter of an element is incremented whenever the label

of the element is changed. To prevent any one element from being relabeled too many times,

we enforce a bound on the relabel counter. Recall that the cost(η) function is defined in

Section 2.2.

4. Counter Property: For any element e, c(e) < κ2 cost(κ1γ).

In order to enforce the Counter Property, whenever the counter of element e reaches its

threshold, r(e) is moved one level higher in the tree by a promotion operation, which we

describe shortly, and sets c(e) = 0.

Notice that moving a representative to a new slot higher up in T will tend to relabel more

17

elements compared to moving a representative to a new slot in a lower node in T . This

presents a subtle challenge. Consider two representatives in fu where u is relatively high up

in T , such that one representative r has every file maintenance instance in Ts(r) half full while

the other representative r′ has every file maintenance instance in Ts(r′) just below capacity.

This implies that the ratio of the number of elements contained in Ts(r) to the number of

elements contained in Ts(r′) is exponentially small in the height of u. The consequence of

this imbalance is that insertions of elements into the lighter subtree Ts(r) can cause frequent

promotions into fu, each time causing r′ to move to a new slot in fu. When r′ moves to a new

slot, all of the elements in Ts(r′) must be relabeled. This imbalance creates some difficulties

in keeping a tab on the complexities of the data structure. To overcome these difficulties,

we enforce a requirement on the data structure to have the following property, which helps

ensure a promotion does not relabel too many elements that are too high in the tree. This

requirement restricts the total weight of elements in subtrees. For a representative r in fu

where u has height h in T , let w(r) = γh.

5. Balance Property: For any node u,
∑

node v∈Tu
∑

canonical representative r∈fv w(r) < κ3γ
height(u).

2.3.2 Promotions

For element e, the promotion of r = r(e) from fu to fv, where v is a proper ancestor of u,

is performed as follows. Let r̂ be the representative in the slot in fv that contains e in its

subtree.

1. Insert r′, which is a new representative of e, into fv immediately after r̂ in the order fv

is maintaining (this may cause some elements in fu to change their slots).

2. Move any element in Ts(r̂) that is after e (inclusive) and its representatives in Ts(r̂) into

identical locations in the subtree of Ts(r′).

18

Promoting the full node’s median element

Figure 2.2: The blue median representative of the full file maintenance data structure is
promoted dividing the subtree into two parts.

19

Promote to the top node

Figure 2.3: The black representative’s subtree passed the threshold of the Balance Property
and the weighted median representative, shown in green, is promoted. The subtrees of
representatives less and greater than the median are copied and possibly shifted if they need
a new root representative. Empty subtrees are omitted.

20

3. The previous step partitions some file maintenance instances into two pieces. In each

such instance, respace the representatives it contains according to the split operation

of Lemma 2.1. Notice that if the dummy representative is part of one piece, the data

structure adds a new dummy representative in the other piece. This new dummy

representative is a representative of e.

Examples of promotions are shown in Figures 2.2 and 2.3.

Lemma 2.2. Promotions preserve the Order and Representative Properties.

Proof. Before the promotion, the Order Property held and so an inorder traversal encountered

the elements with label less than `T (e), then e, and then the elements with label greater

than `T (e). After the promotion, the inorder traversal will traverse Ts(r̂) which contains the

elements less than e and then Ts(r′) which contains e followed by the elements greater than e.

The two new subtrees preserved the original inorder traversal of their contained elements.

So the inorder traversal before and after the promotion traverses the elements in T in the

exact same order and the Order Property holds. The last step of a promotion ensures that

the representatives of e still behave properly with respect to the Representative Property.

Since we split along the path of elements less than and greater than e, no other path of

representatives was altered and the Representative Property still holds.

The only operations we perform on T are insertions of elements at leaves and promotions. Both

of these preserve the Order and Representative Properties. Violations of the Capacity, Balance,

and Counter Properties are fixed by promoting certain representatives. When a node u with

parent v violates the Capacity Property, promote the median representative in fu (which

must be a canonical representative) into fv. When the subtree of s(r) becomes too heavy and

violates the Balance Property, promote the weighted median canonical representative in the

subtree of s(r) into the node that contains r. When c(e) passes the threshold of the Counter

21

Property, promote the canonical representative of e into the parent of its current node, and

reset c(e) to be zero. Figure 2.3 shows a promotion due to a violation of the Balance Property

and Figure 2.2 shows a promotion due to a violation of the Capacity Property.

Promoting a representative may introduce new property violations. For example, suppose fu

for some internal node u contains κ1γ representatives and its parent v has exactly κ1γ − 1

representatives. Promoting the median representative from fu to fv will cause the fv to

violate the Capacity Property.

The very rough pseudocode in Algorithms 1 and 2 describes the high level steps for insertions

and promotions. We describe exactly how violations are processed next.

Algorithm 1 Insert x into the house numbering data structure immediately after element a.

1: function insert(x, a)
2: u← parent of a’s leaf
3: insert a representative of x into fu
4: move any relabeled elements to their new leaves
5: place x into the corresponding leaf of u
6: repeatedly fix property violations using promote()
7: end function

Algorithm 2 Promote an element x into a node u

1: function promote(x, u)
2: v ← node containing the canonical representative for x
3: remove x from fv
4: a← predecessor of x in fu
5: insert a new canonical representative of x after a in fu
6: move the entire subtree of any relabeled elements
7: split the subtree below a’s canonical representative into:
8: - T1 a subtree of elements < x and >= a
9: - T2 a subtree of elements >= x

10: place T1 below a’s canonical representative
11: place T2 below x’s canonical representative
12: end function

Property violations. Since several properties may be violated at the same time, we employ

the following prioritization for fixing these violations. We process the property violations

22

by alternating between processing all violations of the Capacity and Balance Properties

in a highest first fashion and then processing a single violation of the Counter Property.

Algorithm 3 shows this procedure in pseudocode.

Algorithm 3 Process the violations in the tree

1: function process violations
2: while there is a violated property do
3: while there is a violation of the capacity or balance properties do
4: process the highest capacity or balance violation
5: (capacity violations have priority)
6: end while
7: if there is a violation of the counter property then
8: process one violation of the counter property
9: end if

10: end while
11: end function

It is not yet clear that this processing terminates. We address this in Section 2.4. Whenever

the initial insertion or a promotion causes an element to be relabeled, we increment the

corresponding relabel counter.

During the processing of violations, a given relabel counter may be increased well past the

bound in the Counter Property. But our potential argument only allows us to charge for

relabelings that occur when the counter is at or below the threshold. To keep from relabeling

the corresponding element each time an above-threshold counter is pushed even higher during

a single (recursive) house numbering insertion, we perform the invariant violation processing

on a logical copy of the data structure and only relabel elements with the final label. While a

relabel counter may be incremented many times, any element is only relabeled at most once

per insert operation.

23

2.4 Bounding the Height and Complexities

Let H(n) denote an upper bound on the maximum possible height of a canonical representative

in our house-numbering data structure after n elements are inserted. (We shall bound H(n)

as a function of γ in Lemma 2.6.) Then we can directly bound the length of labels at

H(n) · dlog(4κ1γ + 1)e bits. In particular, if κ1 and γ are constants, we will prove that

H(n) = O(log n) and hence the labels use O(log n) bits. Moreover, since we guarantee the

Counter Property, each element e can be relabeled at most κ2 cost(κ1γ) times before r(e)

is moved up a level. So the maximum number of times that an element is relabeled is

O(κ2H(n)) = O(κ2 log n), assuming κ1γ is a constant and H(n) = O(log n).

The intuition behind our height analysis is as follows. Each insertion causes cost(κ1γ)

representatives to be relabeled. Thus we need roughly κ2 insertions to trigger enough relabels

that a single representative could be promoted by the Counter Property. In other words, at

most a 1/κ2 fraction of representatives are promoted due to insertions of elements and the

Counter Property. This argument extends up the tree; promotions into height-h nodes can

cause at most a 1/κ2 fraction of representatives to be promoted from height h. If this were

the only effect, we would see (1/κ2)h representatives promoted to height h.

This challenge turns out to be even more complex, since each promotion into a height-h

node u also causes the elements in subtrees of any locally relabeled representatives in u

to be completely relabeled. The Balance Property helps us to bound the total weight of

representatives in these subtrees by κ3γ
h. By increasing κ2 enough, we effectively amortize

the high number of relabelings due to moving a subtree against the geometrically decreasing

number of promotions to that height, i.e., about κ3γ
h/κh2 per insertion. Since there are some

“feedback” effects that arise from the interaction of fixing property violations, the analysis

must proceed with care.

Before we turn to bounding the height, we prove a useful lemma.

24

Lemma 2.3. If the Capacity, Balance, and Counter properties hold before an insertion, the

processing of the resulting violations will never promote a representative into a node that:

• violates the Capacity Property or

• contains a representative whose subtree violates the Balance Property.

Proof. Call a promotion into such a node an invalid promotion. We claim that in addition to

never performing an invalid promotion, the violation processing maintains the property that

violations of the Capacity and Balance Properties each occur at most once in each level of T .

We call this the Once Per Level Property. When a representative is inserted or promoted

into u: the usage of u is increased, the weight of every subtree of every representative on the

path to the root is increased, and the relabel counters of any relabeled elements are increased.

So an insertion or promotion will only introduce violations of the Capacity Property at u

and violations of the Balance Property along the path from u to the root (and some other

violations of the Counter Property). For example in Figures 2.2 and 2.3, each promotion can

only create Counter Property violations lower in the subtree while it may introduce Capacity

and Balance Property violations at the root. Hence the initial insertion or promotion from

processing a Counter Property violation in a tree with no violations of the Capacity or

Balance Properties is valid and will maintain the Once Per Level Property.

When the Once Per Level Property holds, there is some highest violation of each type.

There is a highest node violating the Capacity Property and a highest node containing a

representative violating the Balance Property. Let u be the higher of these two nodes. If

both nodes have equal height, then let u be the highest node violating the Capacity Property.

We consider the cases when u violates the Capacity Property or when u does not violate the

Capacity Property and violates the Balance Property.

In the first case, fu violates the Capacity Property by containing κ1γ representatives. Because

25

the parent of u is not violating either of the two properties, promoting the median of fu

is valid. That promotion may introduce violations at the parent of u or higher, but they

will only be in levels of the tree where there were previously no violations. The violations

that were either at u or below will be unaffected by the promotion (except for the one being

processed). Therefore the Once Per Level Property still holds after the violation is processed.

In the second case, fu does not violate the Capacity Property but it does have one repre-

sentative violating the Balance Property. Because no other representative in fu violates the

Balance Property due to the Once Per Level Property, processing the violation is valid. By

promoting the weighted median descendant into u, only fu can be newly in violation of the

Capacity Property and only representatives in ancestors of u can be newly in violation of the

Balance Property. Both of these types of new violations are introduced at levels that did not

contain a violation of that type before. The splitting of the subtree below into two pieces can

only eliminate violations in the levels below u. So after validly processing this violation, the

Once Per Level Property holds.

In either case, processing a violation does not make an invalid promotion and maintains the

Once Per Level Property. Thus, the invariant processing never promotes a representative

into a node violating the Capacity Property or containing a representative whose subtree

violates the Balance Property.

Potential argument. To formalize the intuition outlined in the beginning of this section,

we analyze our data structure using the following three potential functions, each of which

corresponds to one of our properties:

• Φfmds = π1

∑
internal nodes u max

(
2γheight(u) · usage(fu)− κ1γ

height(u)+1, 0
)

• Φcounters =
∑

ew(r(e))c(e)

26

• Φtree = π2

∑
u max

(
2
∑

node v∈T(u)

∑
canonical representative r∈fv w(r)− κ3γ

height(u), 0
)

The total potential, Φ(T), is the sum of these three potential functions, that is Φ =

Φfmds + Φcounters + Φtree. Each potential function corresponds to one of our three properties

and guarantees that when a property is violated we have sufficient potential to “pay” for the

promotion.

The next few lemmas show how the potential functions work with the properties. The change

in Φ due to a processing a violation can be separated into the two phases of a promotion.

First, there is the decrease in potential when the promoted element’s relabel counter is reset

and the node containing the canonical representative of the element is split. Second, there is

the increase in potential due to the insertion of the canonical representative of the element

into a higher up node which results in relabeling many other elements, increasing that node’s

usage, and increasing the weight of every subtree containing the higher up node. Lemma 2.4

gives an upper bound on the increase in potential due to either an insertion or the second

part of a promotion. Lemma 2.5 gives a lower bound on the decrease in potential due to

the first part of a promotion. In conjunction these two Lemmas show that as long as the

maximum height H(n) is small, the lower bound on the decrease in potential is greater than

the upper bound on the increase in potential. So a promotion results in a net decrease in

potential and only insertions of new elements at the leaves increase the potential. Finally

Lemma 2.6 contrasts the amount of potential gained from these insertions with the amount

of potential needed to promote one representative to a height of logγ n. Because the former

is strictly smaller, the height of the tree must be H(n) < logγ n.

Lemma 2.4. During a promotion, the insertion of a representative into a file maintenance

data structure at height h increases Φ(T) by at most (2π1 + κ3 cost(κ1γ) + 2π2 height(T))γh.

Moreover, the insertion of an element increases Φ(T) by at most 2π1 + κ3 cost(κ1γ) +

2π2 height(T).

27

Proof. Placing a canonical representative into a node u at height h causes the potential

functions to change as follows:

• ∆(Φfmds) ≤ 2π1γ
h, because fu had its size increased by 1

• ∆(Φcounters) ≤ κ3γ
h cost(κ1γ), because cost(κ1γ) representatives in fu are relabeled,

each causing subtrees with total weight at most κ3γ
h to be relabeled.

• ∆(Φtree) ≤ 2π2 height(T)γh, because each representative on the path to the root has

the potential of its subtree increased by at most γh

The bound on ∆(Φcounters) deserves some more elaborate explanation. Because by Lemma 2.3

we never promote a representative into a node that is violating the Capacity Property, there

are at most cost(κ1γ) relabels by Lemma 2.3. Lemma 2.3 also implies we never promote

into a node violating the Balance Property, and so incrementing the relabel counters of each

subtree costs at most κ3γ
h potential. Combining these two facts gives us the stated bound.

Note that the cost(κ1γ) term is an amortized upper bound across all of the file maintenance

data structure insertions we perform. So one insertion of a canonical element may individually

violate this inequality, but the increase can be amortized across the entire sequence of file

maintenance insertions our data structure performs.

In total these sum up to (2π1 + κ3 cost(κ1γ) + 2π2 height(T))γh which upper bounds the

increase in all three potential functions.

Lemma 2.5. If height(T) ≤ H(n), there exist settings of πi’s and κi’s such that promoting

a representative to fix a violation does not increase the total potential and κ2 = O(γH(n)).

Proof. Depending on which violation caused the promotion, we must analyze the de-

crease in potential differently to account for the potential increase from Lemma 2.4 of

28

(2π1 + κ3 cost(κ1γ) + 2π2H(n)) γh where h is again the height of the node the promoted

element is moved into.

• If a Capacity Property violation was processed, then Φfmds decreased by at least π1κ1γ
h.

• If a Counter Property violation was processed, then Φcounters decreased by at least

γh−1κ2 cost(κ1γ) due to the potential from c(e).

• If a Balance Property violation was processed, then Φtree decreased by more than

π2κ3γ
h because of the subtree containing r.

To ensure the potential available is always at least the potential cost π1κ1,
κ2 cost(κ1γ)

γ
, and

π2κ3 must all be greater than 2π1 + κ3 cost(κ1γ) + 2π2H(n). Analyzing the system of

inequalities leads to setting κ1 = 3, κ2 = 72γH(n), κ3 = 12H(n), π1 = 24 cost(3γ)H(n), and

π2 = 6 cost(3γ).

Plugging these values back into the original formula, the potential increases by at most

(2(24 cost(3γ)H(n)) + (12H(n)) cost(3γ) + 2(6 cost(3γ))H(n))γh = 72 cost(3γ)H(n)γh.

On the other hand, the potential decrease is at least

• (24 cost(3γ)H(n))(3)γh in the case of a Capacity Property violation,

• γh−1(72γH(n)) cost(3γ) in the case of a Counter Property violation, or

• (6 cost(3γ))(12H(n))γh in the case of a Balance Property violation.

In all three cases, the lower bound of the decrease in potential is equal to 72 cost(3γ)γhH(n)

and therefore it is at least the increase in potential due to a promotion.

29

Lemma 2.6. For the same setting of πi’s and κi’s as Lemma 2.5, and γ ≤ n, after n

insertions there are no promotions to height above logγ n.

Proof. Initially the tree is empty and has height zero. By Lemma 2.5, setting logγ n = H(n),

until height(T) exceeds H(n) promoting a representative does not increase the potential.

Thus, while the height bound holds the only mechanism for increasing the potential is by

inserting a new element. By Lemma 2.4, the increase in potential from inserting an element is

at most 72 cost(3γ) logγ n and so after n insertions, the potential of the entire data structure

is at most 72 cost(3γ)n log n.

To complete the proof, we observe that a representative can only be promoted to height h if the

total potential in the data structure is at least 72 cost(3γ)γh logγ n. Specifically, the proof of

Lemma 2.5 shows that the potential has to decrease by at least this amount when performing

the promotion, so the potential has to exist before the promotion. In order to reach a height

of at least logγ n+ 1, we would need at least 72 cost(3γ)γlogγ n+1 logγ n > 72 cost(3γ)n log n

potential. Thus, a height logγ n structure cannot have enough potential.

Theorem 2.4. There exists a house numbering data structure with complexity 〈O(γ log2 n), logγ n·

dlog(12γ + 1)e〉.

Proof. By Lemma 2.6, after n insertions there are no promotions into nodes at height higher

than logγ n, so a tree of this height suffices. Thus, each label uses logγ n “digits”, where each

digit uses dlog(12γ + 1)e bits, for a total of logγ n · dlog(12γ + 1)e bits per label. For the

relabel bound, by the Counter Property, each canonical representative is promoted at most

κ2 cost(3γ) = O(γH(n)) cost(3γ) = O(γ logγ n · log2 γ) times. Summing on all possible levels

and applying Lemma 2.1, each element is only relabeled O(γ log2 n) times.

Theorem 2.1 is a special case of Theorem 2.4 obtained by setting γ = 2.

30

2.4.1 Achieving 〈O(nε), log n+O(1/ε)〉

Proof of Theorem 2.3. Setting γ = nε in Theorem 2.4, the number of bits used is 1/εdlog(12nε+

1)e = log n + O(1/ε). The maximum relabel bound becomes O(nε log2(nε)) = O(nε log2 n).

That is, when γ = nε, it is an 〈O(nε log2 n), log n + O(1/ε)〉 house numbering data struc-

ture. This bound is improved to 〈O(nε), log n + O(1/ε)〉 by using the same solution with

γ = nε/2.

2.5 A
〈
O(log n), O(log2 n)

〉
house numbering data struc-

ture

Our
〈
O(log n), O(log2 n)

〉
house numbering data structure also maintains a tree T ′ of nodes

of instances of file maintenance data structures. In this data structure, the file maintenance

data structure instances do not all use the same label range. Instead, the instance fu for

node u at height h is set to store at most 2h+1 − 1 representatives. The data structure uses

the same labelling method for the representatives and so the Representative Property holds.

Level h uses log(2h+1) = h + 1 bits and the total number of bits used for a label is, again,

going to depend on the height of the tree.

The insert operation. On an insert(x, a) operation insert x into the appropriate leaf

bucket and its immediate parent’s file maintenance data structure. If an attempted insertion

would overflow a node, take every representative in the subtree rooted at that node and insert

them into the parent. If this immediately overflows the parent, recursively repeat the process

until a node is large enough. An example of this cascading overflow process can be seen in

Figure 2.4.

31

insert(,)

Figure 2.4: An insertion causes a cascade of overflowing buckets until a node is reached
which can contain the whole subtree. Only canonical elements are drawn.

32

Lemma 2.7. After n insertions the height of the tree is at most log n.

Proof. We only insert into a higher node when the previously highest node was filled up. A

node at height log n has room for 2logn+1 − 1 = 2n− 1 representatives and so will never be

overflowed.

As representatives are moved throughout T ′, they cause relabels to other representatives.

We say a relabeling of a representative is caused by an insertion if the representative was

in the node being inserted into, was one of the representatives being inserted, or was in a

descendant of that node.

Lemma 2.8. For any h, over the course of n insertions, a representative undergoes at most

two relabelings caused by insertions at level h.

Proof. Each node has size one less than twice the size of its immediate children. So when a

node overflows the parent is filled at least halfway after the insertions. Therefore a set of

insertions into any node can only happen twice before that node is overfilled. Each of these

insertions causes every descendant of the node to be relabeled. Once the node is overfilled

every descendant will be inserted into a node at level h+ 1 and can no longer be affected by

insertions into nodes at lower levels.

Proof of Theorem 2.2. By Lemma 2.7, the height of the tree is at most log n− 1 and we use

at most
∑logn

h=0 h =
(

logn+1
2

)
bits. Because of Lemma 2.8, any representative is relabeled at

most twice per level of the tree for a total of at most 2 log n relabels.

33

2.6 Conclusion

The house numbering problem is an interesting variant of the very well studied file maintenance

and online list labelling problems. It poses some unique challenges that previous techniques

do not solve. Our two data structures are able to come near optimal for the problem, but an

〈O(log n), O(log n)〉 house numbering data structure remains as an open problem.

34

Chapter 3

Parallel Equivalence Class Sorting ∗

3.1 Introduction

In the Equivalence Class Sorting problem, we are given a set, S, of n elements and an

equivalence relation, and we are asked to group the elements of the set into their equivalence

classes by only making pairwise equivalence tests (e.g., see [56]). For example, imagine a

convention of n political interns where each person at the convention belongs to one of k

political parties, such as Republican, Democrat, Green, Labor, Libertarian, etc., but no

intern wants to openly express their party affiliation unless they know they are talking

with someone of their same party. Suppose further that each party has a secret handshake

that two people can perform that allows them to determine whether they are in the same

political party (or they belong to different unidentified parties). We are interested in

this chapter in the computational complexity of the equivalence class sorting problem in

distributed and parallel settings, where we would like to minimize the total number of parallel

∗This chapter is included with permission from ACM and appeared in W. E. Devanny, M. T. Goodrich,
and K. Jetviroj, “Parallel Equivalence Class Sorting: Algorithms, Lower Bounds, and Distribution-Based
Analysis,” Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures, 2016
c© 2016 ACM. [31]

35

comparison rounds and/or the total number of comparisons needed in order to classify

every element in S.

An important property of the equivalence class sorting problem is that it is not possible

to order the elements in S according to some total ordering that is consistent with the

equivalence classes. Such a restriction could come from a general lack of such an ordering or

from security or privacy concerns. Additionally hashing elements by their equivalence class is

not permitted. For example, consider the following applications:

• Generalized fault diagnosis. Suppose that each of n different computers are in one of k

distinct malware states, depending on whether they have been infected with various

computer worms. Each worm does not wish to reveal its presence, but it nevertheless

has an ability to detect when another computer is already infected with it (or risk

autodetection by an exponential cascade, as occurred with the Morris worm [69]). But

a worm on one computer is unlikely to be able to detect a different kind of worm on

another computer. Thus, two computers can only compare each other to determine if

they have exactly the same kinds of infections or not. The generalized fault diagnosis

problem, therefore, is to have the n computers classify themselves into k malware

groups depending on their infections, where the only testing method available is for

two computers to perform a pairwise comparison that tells them that they are either

in the same malware state or they are in different states. This is a generalization of

the classic fault diagnosis problem, where there are only two states, “faulty” or “good,”

which is studied in a number of interesting papers, including one from the very first

SPAA conference (e.g., see [11–13,43,72,73]).

• Group classification via secret handshakes. This is a cryptographic analogue to the

motivating example given above of interns at a political convention. In this case, n

agents are each assigned to one of k groups, such that any two agents can perform a

cryptographic “secret handshake” protocol that results in them learning only whether

36

they belong to the same group or not (e.g., see [24, 55, 76, 83]). The problem is to

perform an efficient number of pairwise secret-handshake tests in a few parallel rounds

so that each agent identifies itself with the others of its group.

• Graph mining. Graph mining is the study of structure in collections of graphs [28]. One

of the algorithmic problems in this area is to classify which of a collection of n graphs

are isomorphic to one another (e.g., see [70]). That is, testing if two graphs are in the

same group involves performing a graph isomorphism comparison of the two graphs,

which is a computation that tends to be nontrivial but is nevertheless computationally

feasible in some contexts (e.g., see [9]).

Note that each of these applications contains two important features that form the essence of

the equivalence class sorting problem:

1. In each application, it is not possible to sort elements according to a known total order,

either because no such total order exists or because it would break a security/privacy

condition to provide such a total order.

2. The equivalence or nonequivalence between two elements can be determined only

through pairwise comparisons.

There are nevertheless some interesting differences between these applications, as well, which

motivate our study of two different versions of the equivalence class sorting problem. Namely,

in the first two applications, the comparisons done in any given round in an algorithm must

be disjoint, since the elements themselves are performing the comparisons. In the latter two

applications, however, the elements are the objects of the comparisons, and we could, in

principle, allow for comparisons involving multiple copies of the same element in each round.

For this reason, we allow for two versions of the equivalence class sorting problem:

37

• Exclusive-Read (ER) version. In this version, each element in S can be involved in at

most a single comparison of itself and another element in S in any given comparison

round.

• Concurrent-Read (CR) version. In this version, each element in S can be involved in

multiple comparisons of itself and other elements in S in any comparison round.

In either version, we are interested in minimizing the number of parallel comparison rounds

and/or the total number of comparisons needed to classify every element of S into its group.

Because we expect the number of parallel comparison rounds and the total number of

comparisons to be the main performance bottlenecks, we are interested here in studying the

equivalence class sorting problem in Valiant’s parallel comparison model [78], which only

counts steps in which comparisons are made. This is a synchronous computation model that

does not count any steps done between comparison steps, for example, to aggregate groups

of equivalent elements based on comparisons done in previous steps.

3.1.1 Related Prior Work

In addition to the references cited above that motivate the equivalence class sorting problem

or study the special case when the number of groups, k, is two, Jayapaul et al. [56] study the

general equivalence class sorting problem, albeit strictly from a sequential perspective. For

example, they show that one can solve the equivalence class sorting problem using O(n2/`)

comparisons, where ` is the size of the smallest equivalence class. They also show that this

problem has a lower bound of Ω(n2/`2) even if the value of ` is known in advance.

The equivalence class sorting problem is, of course, related to comparison-based algorithms

for computing the majority or mode of a set of elements, for which there is an extensive set

of prior research (e.g., see [3, 4, 35, 74]). None of these algorithms for majority or mode result

38

in efficient parallel algorithms for the equivalence class sorting problem, however.

In some contexts, it may be possible to hash elements according to their equivalence class.

For example, when counting word or item frequencies, a well known linear time solution is to

use a hash table. If the equivalence classes can be totally ordered, sorting the elements by

their equivalence class leads to an O(n log n) time solution.

3.1.2 Our Results

In this chapter, we study the equivalence class sorting (ECS) problem from a parallel

perspective, providing a number of new results, including the following:

1. The CR version of the ECS problem can be solved in O(k + log log n) parallel rounds

using n processors, were k is the number of equivalence classes.

2. The ER version of the ECS problem can be solved in O(k log n) parallel rounds using n

processors, were k is the number of equivalence classes.

3. The ER version of the ECS problem can be solved in O(1) parallel rounds using n

processors, for the case when ` is at least λn, for a fixed constant 0 < λ ≤ 0.4, where `

is the size of the smallest equivalence class.

4. If every equivalence class is of size f , then solving the ECS problem requires Ω(n2/f)

total comparisons. This improves a lower bound of Ω(n2/f 2) by Jayapaul et al. [56].

5. Solving the ECS problem requires Ω(n2/`) total comparisons, where ` is the size of the

smallest equivalence class. This improves a lower bound of Ω(n2/`2) by Jayapaul et

al. [56].

6. In Section 3.4, we study how to efficiently solve the ECS problem when the input is

drawn from a known distribution on equivalence classes. In this setting, we assume

39

n elements have been sampled and fed as input to the algorithm. We establish a

relationship between the mean of the distribution and the algorithm’s total number of

comparisons, obtaining upper bounds with high probability for a variety of interesting

distributions.

7. We provide the results of several experiments to validate the results from Section 3.4 and

study how total comparison counts change as parameters of the distributions change.

Our methods are based on several novel techniques, including a two-phased compounding-

comparison technique for the parallel upper bounds and the use of a new coloring argument

for the lower bounds.

3.2 Parallel Algorithms

In this section, we provide efficient parallel algorithms for solving the equivalence class

sorting (ECS) problem in Valiant’s parallel model of computation [78]. We focus on both

the exclusive-read (ER) and concurrent-read (CR) versions of the problem, and we assume

we have n processors, each of which can be assigned to one equivalence comparison test to

perform in a given parallel round. Note, therefore, that any lower bound, T (n), on the total

number of comparisons needed to solve the ECS problem (e.g., as given by Jayapaul et al. [56]

and as we discuss in Section 3.3), immediately implies a lower bound of Ω(T (n)/n) for the

number of parallel rounds of computation using n processors per round. For instance, these

lower bounds imply that the number of parallel rounds for solving the ECS problem with

n processors must be Ω(n/`) and Ω(k), respectively, where k is the number of equivalence

classes and ` is the size of the smallest equivalence class.

With respect to upper bounds, recall that Jayapaul et al. [56] studied the ECS problem from

a sequential perspective. Unfortunately, their algorithm cannot be easily parallelized, because

40

the comparisons performed in a “round” of their algorithm depend on the results from other

comparisons in that same round. Thus, new parallel ECS algorithms are needed.

3.2.1 Algorithms Based on the Number of Groups

In this subsection, we describe CR and ER algorithms based on knowledge of the number of

groups, k.

If two sets of elements are partitioned into their equivalence classes, merging the two partitions

of elements into the equivalence class partition for the union of the two sets requires at most

k2 equivalence tests by simply performing a comparison between every pair of equivalence

classes: one from the first partition and one from the partition. This idea leads to the

following algorithm, which uses a two-phased compounding-comparison technique to solve

the ECS problem:

• Initialize a list of n sets containing the individual input elements and associate with

each set the trivial partition containing the single element in the set.

• While the number of processors per partition is less than 4k2, merge pairs of equivalence

class partitions by performing all k2 pairwise comparisons between the k equivalence

classes in the two partitions.

• While there is more than one equivalence class partition remaining, if m is the number

of processors per partition remaining, then let c = m
k2 and merge c partitions together

simultaneously by performing all k2 pairwise comparisons between the k equivalence

classes for each of the
(
c
2

)
pairs of partitions.

We analyze this algorithm in the following two lemmas and we illustrate it in Figure 3.1.

41

Number of
answers

Processors
per answer

Answer
size

Rounds
needed

n

n/2

n/4

∼ n/k

1

2

4

1

≤ 2

≤ 4

∼ k ≤ k

≤ k

1

2

4

k

k/2

k/2≤ k/2∼ k/2∼ 2n/k

∼ n/2k ∼ 2k

. . .

. . .

. . .

. . .

... ...
...

...
...

...
...

...
...

1≤ k∼ k2∼ n/k2

Answer
reduction
factor

2

2

...

...

...

1≤ k∼ 2k2∼ n/2k2
1≤ k≥ 22k2≤ n/22k2
1≤ k≥ 24k2≤ n/24k2

2

2

2

2

2

2

22
24

...
...

...
...

...

k1 n

≤ n/28k2 ≥ 28k2 ≤ k 1 ∼ 28

...
...

...
...

...
...

...

≤ n/22
i

k2 ≥ 22
i

k2 ≤ k 1 ∼ 22
i

First while
loop phase

Second while
loop phase

Figure 3.1: A visualization of the parallel algorithm with a table on the right keeping track
of relevant numbers for each loop iteration.

42

Lemma 3.1. The first while loop takes O(k) rounds of parallel comparisons to complete.

Proof. In each round of parallel comparisons, the number of equivalence classes in a partition

at most doubles until it reaches the upper bound of k. In loop iteration i ≤ dlog ke, the

partitions are size at most 2i and there are 2i processors per set. Therefore it takes at most

2i rounds to merge two partitions. So the number of rounds to reach loop iteration dlog ke is

O(k).

For loop iterations dlog ke < i < dlog ke2, the partitions are size at most k, but there are still

2i processors per partition. Therefore the number of processors available doubles each loop

iteration. The total number of parallel comparison rounds needed for these iterations is also

O(k), as it forms a geometric sum that adds up to be O(k). This part of the algorithm is

illustrated in the bottom half of Figure 3.1.

Lemma 3.2. The second while loop takes O(log log n) rounds to complete.

Proof. When entering the second while loop, there are many more processors per partition

than needed to merge just two partitions. If a set has access to ck2 processors, then a group

of
(
c
2

)
partitions can merge into one partition in a single round. This means that if there

are n/(ck2) sets at the start of a round, then we merge groups of c2/2 partitions into one

partition and there are n/(c3k/2) partitions remaining. Because c ≥ 4 by the condition of the

first while loop, in iteration i of the second while loop, there are at most n/(22ik) partitions.

And so the second while loop will terminate after O(log log n) rounds with the single partition

for the entire input. This is illustrated in the top half of Figure 3.1.

43

Combining these two lemmas, we get the following.

Theorem 3.1. The CR version of the equivalence class sorting problem on n elements and k

equivalence classes can be solved in O(k + log log n) parallel rounds of equivalence tests, using

n processors in Valiant’s parallel comparison model.

Proof. Lemmas 3.1 and 3.2.

We also have the following.

Theorem 3.2. The ER version of the equivalence class sorting problem on n elements and

k equivalence classes can be solved in O(k log n) parallel rounds of equivalence tests, using n

processors in Valiant’s parallel comparison model.

Proof. Merging two equivalence class partitions for the ER version of the ECS problem model

will always take at most k rounds. Repeatedly merging equivalence partitions will arrive

at one partition in log n iterations. So equivalence class sorting can be done in O(k log n)

parallel rounds of equivalence tests.

3.2.2 Algorithms Based on the Smallest Group Size

In this subsection, we describe ER algorithms based on knowledge of `, the size of the smallest

equivalence class. We assume in this section that ` ≥ λn, for some constant λ > 0, and we

show how to solve the ECS problem in this scenario using O(1) parallel comparison rounds.

Our methods are generalizations of previous methods for the parallel fault diagnosis problem

when there are only two classes, “good” and “faulty” [11–13,43]. Let us assume, therefore,

that there are at least 3 equivalence classes. We begin with a theorem from Goodrich [43].

44

Theorem 3.3 (Goodrich [43]). Let V be a set of n vertices, and let 0 < γ, λ < 1. Let

Hd = (V,E) be a directed graph defined by the union of d independent randomly-chosen1

Hamiltonian cycles on V (with all such cycles equally likely). Then, for all subsets W of V

of λn vertices, Hd induces at least one strongly connected component on W of size greater

than γλn, with probability at least

1− en[(1+λ) ln 2+d(α lnα+β lnβ−(1−λ) ln(1−λ))]+O(1),

where α = 1− 1−γ
2
λ and β = 1− 1+γ

2
λ.

In the context of the present chapter, let us take γ = 1/4, so α = 1−(3/8)λ and β = 1−(5/8)λ.

Let us also assume that λ ≤ 0.4, since we are considering the case when the number of

equivalence classes is at least 3; hence, the smallest equivalence class is of size at most n/3.

Unfortunately, standard approximations for the natural logarithm are not strong enough for

us to employ the above probability bound and achieve our desired result for small values of

λ. So instead we use the following inequalities, which hold for x in the range [0, 0.4] (e.g.,

see [62]), and are based on the Taylor series for the natural logarithm:

−x− x2

2
− x3

2
≤ ln(1− x) ≤ −x− x2

2
− x3

4
.

These bounds allow us to bound the term, t = α lnα + β ln β − (1 − λ) ln(1 − λ), in the

1That is, Hd is defined by the union of cycles determined by d random permutations of the n vertices in
V , so Hd is, by definition, a simple directed graph.

45

above probability of Theorem 3.3 (for γ = 1/4) as follows:

t = (1− 3

8
λ) ln(1− 3

8
λ) + (1− 5

8
λ) ln(1− 5

8
λ)

− (1− λ) ln(1− λ)

≤ (1− 3

8
λ)

(
−3

8
λ− 1

2

(
3

8
λ

)2

− 1

4

(
3

8
λ

)3
)

+ (1− 5

8
λ)

(
−5

8
λ− 1

2

(
5

8
λ

)2

− 1

4

(
5

8
λ

)3
)

− (1− λ)

(
−λ− λ2

2
− λ3

2

)
≤ −3743

8192
λ4 +

19

256
λ3 − 15

64
λ2,

which, in turn, is at most

−λ
2

8
,

for 0 < λ ≤ 0.4. Thus, since t is negative for any constant 0 < λ ≤ 0.4, we can set d large

enough (depending on λ) so that dt + (1 + λ) ln 2) < 0 and Theorem 3.3 holds with high

probability.

Our ECS algorithm, then, is as follows:

1. Construct a graph, Hd, as in Theorem 3.3, as described above, with d set to a constant

so that the theorem holds for the fixed λ in the range (0, 0.4] that is given. Note that

this step does not require any comparisons; hence, we do not count the time for this

step in our analysis (and the theorem holds with high probability in any case).

2. Note that Hd is a union of d Hamiltonian cycles. Thus, let us perform all the comparisons

in Hd in 2d rounds. Furthermore, we can do this set of comparisons even for the ER

46

version of the problem. Moreover, since d is O(1), this step involves a constant number

of parallel rounds (of O(n) comparisons per round).

3. For each strongly connected component, C, in Hd consisting of elements of the same

equivalence class, compare the elements in C with the other elements in S, taking

|C| at a time. By Theorem 3.3, |C| ≥ λn/8. Thus, this step can be performed in

O(1/λ) = O(1) rounds for each connected component; hence it requires O(1) parallel

rounds in total. Moreover, after this step completes, we will necessarily have identified

all the members of each equivalence class.

We summarize as follows.

Theorem 3.4. Suppose S is a set of n elements, such that the smallest equivalence class in

S is of size at least λn, for a fixed constant, λ, in the range (0, 0.4]. Then the ER version

of the equivalence class sorting problem on S can be solved in O(1) parallel rounds using n

processors in Valiant’s parallel comparison model.

This theorem is true regardless of whether or not the true λ is known. If the true value of λ

is not known, it is possible to repeatedly run the ECS algorithm starting with an arbitrary

constant of 0.4 for λ and halving the constant whenever any of the final equivalence classes

are smaller than λn for the current value of λ. Once the value is less than the unknown

true λ, the algorithm will succeed and the number of rounds will be independent of n and a

function of only the constant λ.

As we show in the next section, this performance is optimal when ` ≥ λn, for a fixed constant

λ ∈ (0, 0.4].

47

3.3 Lower Bounds

The following lower bound questions were left open by Jayapaul et al. [56]:

• If every equivalence class has size f , is the total number of comparisons needed to solve

the equivalence class sorting problem Θ(n2/f) or Θ(n2/f 2)?

• Is the total number of comparisons for finding an element in the smallest equivalence

class Θ(n2/`) or Θ(n2/`2)?

Speaking loosely these lower bounds can be thought of as a question of how difficult it is

for an element to locate its equivalence class. The Θ(n2/f) and Θ(n2/`) bounds can be

interpreted as saying the average element needs to compare to at least one element in most of

the other equivalence classes before it finds an equivalent element. Because there must be
(
x
2

)
comparisons between x equivalence classes, the Θ(n2/f 2) and Θ(n2/`2) bounds say we do not

need too many more comparisons then the very minimal number needed just to differentiate

the equivalence classes. It seems unlikely that so few comparisons are required and we prove

that this intuition is correct by proving lower bounds of Ω(n2/f) and Ω(n2/`) comparisons.

Note that these lower bounds are on the total number of comparisons needed to accomplish

a task, that is they bound the work a parallel algorithm would need to perform. By dividing

by n, they also give simple bounds on the number of rounds needed in either the ER or CR

models.

With respect to such lower bound questions as these, let us maintain the state of an algorithm’s

knowledge about element relationships in a simple graph. At each step, the vertex set of this

graph is a partition of the elements where each set is a partially discovered equivalence class

for S. Thus, each element in S is associated with exactly one vertex in this graph at each

step of the algorithm, and a vertex can have multiple elements from S associated with it. If

48

x

y

x ≡ y?

x

y

x

y

True

False

Figure 3.2: We test if x and y are in the same equivalence class. If they are, their vertices
are contracted together. If they are not, an edge is added.

3

2

1

1

1

Figure 3.3: On the left we have a graph with an equitable 3-coloring and on the right we
have a graph with a weighted equitable 3-coloring.

a pair of elements was compared and found to not be equal, then there should be an edge

in between the two vertices containing those elements. So initially the graph has a vertex

for each element and no edges. When an algorithm tests equivalence for a pair of elements,

then, if the elements are not equivalent, the appropriate edge is added (if it is absent) and, if

the elements are equivalent, the two corresponding vertices are contracted into a new vertex

whose set is the union of the two. A depiction of this is shown in Figure 3.2. An algorithm

has finished sorting once this graph is a clique and the vertex sets are the corresponding

equivalence classes.

An equitable k-coloring of a graph is a proper coloring of a graph such that the size of each

color class is either bn/kc or dn/ke. A weighted equitable k-coloring of a vertex weighted

graph is a proper coloring of a graph such that the sum of the weight in each color class is

either bn/kc or dn/ke. Examples of these can be seen in Figure 3.3. Equitable coloring was

49

introduced by Meyer [66].

An adversary for the problem of equivalence class sorting when every equivalence class has

the same size f (so f divides n) must maintain that the graph has a weighted equitable

n/f -coloring where the weights are the size of the vertex sets. The adversary we describe

here will maintain such a coloring and additionally mark the elements and the color classes

in a special way. It proceeds as follows.

First, initialize a starting graph that consists of n vertices and no edges and arbitrarily color

the graph in an equitable maner. For each comparison of two elements performed by a sorting

algorithm, the adversary reacts based on the following case analysis:

• If either of the two elements is unmarked and this comparison would increase its degree

to higher than n/4f , then the adversary marks it as having “high” element degree.

• If either of the two elements is still unmarked, the two elements currently have the same

color, and there is another unmarked vertex such that it is not adjacent to a vertex

with the color involved in the comparison and no vertex with its color is adjacent to

the unmarked vertex in the comparison (i.e. we can have it swap colors with one of the

vertices in the comparison), then the adversary swaps the color of that element and the

unmarked element in the comparison.

• If either of the two elements is still unmarked, the two elements currently have the

same color, and there is no other unmarked vertex with a different unmarked color not

adjacent to the color of the two elements being compared, then the adversary marks all

elements with the color involved in the comparison as having “high” color degree and

marks the color as having “high” degree.

50

≡?

≡?

≡? ≡?

≡?

≡?
Marking an element with high element degree:

Swapping two colors:

Marking blue with high color degree:

Figure 3.4: Three cases of how the adversary works to mark vertices and swap colors. The
dashed line indicates the two elements being compared. Marked vertices are denoted with
stars.

• At this point, either both elements are marked and the adversary answers the algorithms

comparison based on their color, or one of the elements is unmarked and they have

different colors, so the adversary can reply “not equal” to the algorithm’s comparison.

At all times, the vertices that contain unmarked elements all have weight one, because the

adversary only answers equivalent for comparisons involving two marked vertices. When

a color class is marked, all elements in that color class are marked as having “high” color

degree. A few of the cases the adversary goes through are depicted in Figure 3.4.

51

Lemma 3.3. If n/8 elements are marked during the execution of an algorithm, then Ω(n2/f)

comparisons were performed.

Proof. There are three types of marked vertices: those with “high” element degree marks,

those with “high” color degree marks, and those with both marks.

The color classes must have been marked as having “high” degree when a comparison was

being performed between two elements of that color class and there were no unmarked color

candidates to swap colors with. Because one of the elements in the comparison had degree

less than n/4f , only a quarter of the elements have a color class it cannot be swapped with.

So if there were at least n− n/4 unmarked elements in total, then the elements in the newly

marked color class must have been in a comparison n/2 times.

The “high” element degree elements were involved in at least n/4f comparisons each. So if i

color classes were marked and j elements were only marked with “high” element degree, then

the marked elements must have been a part of a test at least ni/2 + nj/4f ≥ (i+ j/f)n/4

times. Once fi+ j ≥ n/8, then at least n2/64f equivalence tests were performed.

Theorem 3.5. If every equivalence class has the same size f , then sorting requires at least

Ω(n2/f) equivalence comparisons.

Proof. When an algorithm finishes sorting, each vertex will have weight f and so the elements

must all be marked. Thus, by Lemma 3.3, at least Ω(n2/f) comparisons must have been

performed.

We also have the following lower bound as well.

Theorem 3.6. Finding an element in the smallest equivalence class, whose size is `, requires

at least Ω(n2/`) equivalence comparisons.

52

Proof. We use an adversary argument similar to the previous one, but we start with ` vertices

colored a special smallest class color (scc) and seperate the remaining n − ` vertices into

b(n− `)/(`+ 1)c color classes of size n
b(n−`)/(`+1)c or n

b(n−`)/(`+1)c + 1.

There are two changes to the previous adversary responses. First, the degree requirement for

having “high” degree is now n/4`. Second, if an scc element is about to be marked as having

“high” degree, we attempt to swap its color with any valid unmarked vertex. Otherwise, we

proceed exactly as before.

If an algorithm attempts to identify an element as belonging to the smallest equivalence class,

no scc elements are marked, and there have been fewer than n/8 elements marked, then the

identified element must be able to be swapped with a different color and the algorithm made

a mistake. Therefore, to derive a lower bound for the total number of comparisons, it suffices

to derive a lower bound for the number of equivalence tests until an scc element is marked.

The scc color class cannot be marked as having “high” color degree until at least one scc

element has high element degree. However, as long as fewer than n/8 elements are marked,

we will never mark an scc element with “high” degree. So at least n/8 elements need to be

marked as having “high” element degree or “high” color degree and, by the same type of

counting as in Lemma 3.3, Ω(n2/`) equivalence tests are needed.

3.4 Sorting Distributions

In this subsection, we study a version of the equivalence class sorting problem where we are

given a distribution, D, on a countable set, S, and we wish to enumerate the set in order of

most likely to least likely, s0, s1, s2, For example, consider the following distributions:

• Uniform: In this case, D is a distribution on k equivalence classes, with each equivalence

53

class being equally likely for every element of S.

• Geometric: Here, D is a distribution such that the ith most probable equivalence class

has probability pi(1 − p). Each element flips a biased coin where heads occurs with

probability p until it comes up tails. Then that element is in equivalence class i if it

flipped i heads.

• Poisson: In this case, D is model of the number of times an event occurs in an interval

of time, with an expected number of events determined by a parameter λ. Equivalence

class i is defined to be all the samples that have the same number of events occurring,

where the probability of i events occurring is

λie−λ

i!
.

• Zeta: This distribution, D, is related to Zipf’s law, and models when the sizes of

the equivalence classes follows a power law, based on a parameter, s > 1, which

is common in many real-world scenarios, such as the frequency of words in natural

language documents. With respect to equivalence classes, the ith equivalence class has

probability

i−s

ζ(s)
,

where ζ(s) is Riemann zeta function (which normalizes the probabilities to sum to 1).

So as to number equivalence classes from most likely to least likely, as i = 0, 1, . . ., define DN

to be a distribution on the natural numbers such that

Pr
x∼DN

[x = i] = Pr
y∼D

[y = si] .

54

Furthermore, so as to “cut off” this distribution at n, define DN(n) to be a distribution on

the natural numbers less than or equal to n such that, for 0 ≤ i < n,

Pr
x∼DN(n)

[x = i] = Pr
y∼DN

[y = i]

and

Pr
x∼DN(n)

[x = n] = Pr
y∼DN

[y ≥ n] .

That is, we are “piling up” the tail of the DN distribution on n.

The following theorem shows that we can use DN(n) to bound the number of comparisons in

an ECS algorithm when the equivalence classes are drawn from D. In particular, we focus

here on an algorithm by Jayapaul et al. [56] for equivalence class sorting. This algorithm

involves a round-robin testing regiment, such that each element, x, initiates a comparison

with the next element, y, with an unknown relationship to x, until all equivalence classes are

known.

Theorem 3.7. Given a distribution, D, on a set of equivalence classes, then n elements who

have corresponding equivalence class independently drawn from D can be equivalence class

sorted using a total number of comparisons stochastically dominated by twice the sum of n

draws from the distribution DN(n).

Proof. Let Vi denote the random variable that is equal to the natural number corresponding to

the equivalence class of element i in DN(n). We denote the number of elements in equivalence

class i as Yi. Let us denote the number of equivalence tests performed by the algorithm by

Jayapaul et al. [56] using the random variable, R.

By a lemma from [56], for any pair of equivalence classes, i and j, the round-robin ECS

algorithm performs at most 2 min(Yi, Yj) equivalence tests in total. Thus, the total number

55

of equivalence tests in our distribution-based analysis is upper bounded by

R ≤
∞∑
i=0

i−1∑
j=0

2 min(Yi, Yj)

= 2
n∑
i=0

i−1∑
j=0

min(Yi, Yj) + 2
∞∑

i=n+1

i−1∑
j=0

min(Yi, Yj)

≤ 2
n∑
i=0

i−1∑
j=0

Yi + 2
∞∑

i=n+1

nYi

≤ 2

(
n∑
i=0

iYi +
∞∑

i=n+1

nYi

)
= 2

n∑
i=1

Vi

The second line in the above simplification is a simple separation of the double summation and

the third line follows because
∑i−1

j=0 min(Yi, Yj) is zero if Yi is zero and at most n, otherwise.

So the total number of comparisons in the algorithm is bounded by twice the sum of n draws

from DN(n).

Given this theorem, we can apply it to a number of distributions to show that the total

number of comparisons performed is linear with high probability.

Theorem 3.8. If D is a discrete uniform, a geometric, or a Poisson distribution on a set

equivalence classes, then it is possible to equivalence class sort using linear total number of

comparisons with exponentially high probability.

Proof. The sum of n draws from DN(n) is stochastically dominated by the sum of n draws

from DN. Let us consider each distribution in turn.

• Uniform: The sum of n draws from a discrete uniform distribution is bounded by n

times the maximum value.

56

• Geometric: Let p be the parameter of a geometric distribution and let X =
∑n−1

i=0 Xi

where the Xi are drawn from Geom(p), which is, of course, related to the Binomial

distribution, Bin(n, p), where one flips n coins with probability p and records the

number of “heads.” Then, by a Chernoff bound for the geometric distribution (e.g.,

see [67]),

Pr[X − (1/p)n > k] = Pr[Bin(k + (1/p)n, p) < n]

≤ e−2
(pk+n−n)2

k+(1/p)n

Pr[X > (2/p)n] ≤ e−np

• Poisson: Let λ be the parameter of a Poisson distribution and let Y =
∑n−1

i=0 Yi where the

Yi are drawn from Poisson(λ). Then, by a Chernoff bound for the Poisson distribution

(e.g., see [67]),

Pr[Y > (λ(e− 1) + 1)n] = Pr[eY > e(λ(e−1)+1)n]

≤ (E[eYi])n

e(λ(e−1)+1)n

=
eλ(e−1)n

e(λ(e−1)+1)n
= e−n

So, in each case with exponentially high probability, the sum of n draws from the distribution

is O(n) and the round-robin algorithm does O(n) total equivalence tests.

We next address the zeta distribution.

Theorem 3.9. Given a zeta distribution with parameter s > 2, n elements who have corre-

sponding equivalence class independently drawn from the zeta distribution can be equivalence

class sorted in O(n) work in expectation.

57

Proof. When s > 2, the mean of the zeta distribution is

ζ(s− 1)

ζ(s)
,

which is a constant. So the sum of n draws from the distribution is expected to be linear.

Therefore, the expected total number of comparisons in the round-robin algorithm is linear.

Unfortunately, for zeta distributions it is not immediately clear if it is possible to improve

the above theorem so that total number of comparisons is shown to be linear when 2 ≥ s > 1

or obtain high probability bounds on these bounds. This uncertainty motivates us to look

experimentally at how different values of s cause the runtime to behave. Likewise, our

high-probability bounds on the total number of comparisons in the round-robin algorithm for

the other distributions invites experimental analysis as well.

3.5 Experiments

In this section, we report on experimental validations of the theorems from the previous

section and investigations of the behavior of running the round-robin algorithm on the zeta

distribution. For the uniform, geometric, and Poisson distributions, we ran ten tests on sizes

of 10, 000 to 200, 000 elements incrementing in steps of 10, 000. For the zeta distribution,

because setting s < 2 seems to lead to a superlinear number of comparisons, we reduced

the test sizes by a factor of 10 and ran ten tests each on sizes from 1, 000 to 20, 000 in

increments of 1, 000. For each distribution we used the following parameter settings for

various experiments:

58

Uniform: k = 10, 25, 100

Geometric: p = 1
2
, 1

10
, 1

50

Poisson: λ = 1, 5, 25

Zeta: s = 1.1, 1.5, 2, 2.5

The results of these tests are plotted in Figure 3.5. Best fit lines were fitted whenever we

have theorems stating that there will be a linear number of comparisons with high probability

or in expectation (i.e., everything except for zeta with s < 2). We include extra plots of the

zeta distribution tests with the s = 1.1 data and the s = 1.1, 1.5 data removed to better see

the other data sets.

We can see from the data that the number of comparisons for the uniform, geometric, and

Poisson distributions are so tightly concentrated around the best fit line that only one data

point is visible. Contrariwise, the data points for the zeta distributions do not cluster nearly

as nicely. Even when we have linear expected comparisons with s = 2, the data points vary

by as much as 10%.

3.6 Conclusion

In this chapter we have studied the equivalence class sorting problem, from a parallel

perspective, giving several new algorithms, as well as new lower bounds and distribution-

based analysis. We leave as open problems the following interesting questions:

• Is it possible to find all equivalance classes in the ER version of the ECS problem in

O(k) parallel rounds, for k ≥ 3, where k is the number of equivalence classes? Note

that the answer is “yes” for k = 2, as it follows from previous results for the parallel

fault diagnosis problem [11–13].

59

• Is it possible to bound the number of comparisons away from O(n2) for the zeta

distribution when s < 2 even just in expectation?

• Is it possible to prove a high-probability concentration bound for the zeta distribution,

similar to the concentration bounds we proved for other distributions?

60

Figure 3.5: The results of the experiments are plotted and best fit lines are placed when we
have a linear number of comparisons with high probability or in expectation.

61

Chapter 4

Optimally Sorting Evolving Data

4.1 Introduction

In the classic version of the sorting problem, we are given a set, S, of n comparable items

coming from a fixed total order and asked to compute a permutation that places the items

from S into non-decreasing order, and it is well-known that this can be done using O(n log n)

comparisons, which is asymptotically optimal (e.g., see [30, 45, 58]). There are a number

of interesting applications where this classic version of the sorting problem doesn’t apply,

however.

For instance, consider the problem of maintaining a ranking of a set of sports teams based on

the results of head-to-head matches. A typical approach to this sorting problem is to assume

there is a fixed underlying total order for the teams, but that the outcomes of head-to-head

matches (i.e., comparisons) are “noisy” in some way. In this formulation, the ranking problem

becomes a one-shot optimization problem of finding the most-likely fixed total order given the

outcomes of the matches (e.g., see [20,40,47,50,65]). In this chapter, we study an alternative,

complementary motivating scenario, however, where instead of there being a fixed total order

62

and noisy comparisons we have a scenario where comparisons are accurate but the underlying

total order is evolving. This scenario, for instance, captures the real-world phenomenon

where sports teams make mid-season changes to their player rosters and/or coaching staffs

that result in improved or degraded competitiveness relative to other teams. That is, we are

interested in the sorting problem for evolving data.

4.1.1 Related Prior Work for Evolving Data

Anagnostopoulos et al. [7] introduce the evolving data framework, where an input data set is

changing while an algorithm is processing it. In this framework, instead of an algorithm taking

a single input and producing a single output, an algorithm attempts to maintain an output

close to the correct ouptut for the current state of the data, repeatedly updating its best

estimate of the correct output over time. For instance, Anagnostopoulos et al. [7] mention the

motivation of maintaining an Internet ranking website that displays an ordering of entities,

such as political candidates, movies, or vacation spots, based on evolving preferences.

Researchers have subsequentially studied other interesting problems in the evolving data

framework, including the work of Kanade et al. [57] on stable matching with evolving prefer-

ences, the work of Huang et al. [52] on selecting top-k elements with evolving rankings, the

work of Zhang and Li [84] on shortest paths in evolving graphs, the work of Anagnostopoulos

et al. [8] on st-connectivity and minimum spanning trees in evolving graphs, and the work of

Bahmani et al. [10] on PageRank in evolving graphs. In each case, the goal is to maintain an

output close to the correct one even as the underlying data is changing at a rate commensurate

to the speed of the algorithm. By way of analogy, classical algorithms are to evolving-data

algorithms as throwing is to juggling.

63

4.1.2 Problem Formulation for Sorting Evolving Data

With respect to the sorting problem for evolving data, following the formulation of Anagnos-

topoulos et al. [7], we assume that we have a set, S, of n distinct items that are properly

ordered according to a total order relation, “<”. In any given time step, we are allowed to

compare any pair of items, x and y, in S according to the “<” relation and we learn the

correct outcome of this comparison. After we perform such a comparison, α pairs of items

that are currently consecutive according to the “<” relation are chosen uniformly at random

and their relative order is swapped. As in previous work [7], we focus on the case where α = 1,

but one can also consider versions of the problem where the ratio between comparisons and

random consecutive swaps is something other than one-to-one. Still, this simplified version

with a one-to-one ratio already raises some interesting questions.

Since it is impossible in this scenario to maintain a list that always reflects a strict ordering

according to the “<” relation, our goal is to maintain a list with small Kendall tau distance,

which counts the number of inversions, relative to the correct order.1 Anagnostopoulos et

al. [7] show that, for α = 1, the Kendall tau distance between the maintained list and the

underlying total order is Ω(n) in both expectation and with high probability. They also show

how to maintain this distance to be O(n log log n), with high probability, by performing a

multiplexed batch of quicksort algorithms on small overlapping intervals of the list.

4.1.3 Our Contributions

The main contribution of the present chapter is to provide algorithms that maintain an

asymptotically optimal Kendall tau distance, with high probability, for sorting evolving

data. Moreover, we show how to achieve such a result using a simple repeated insertion-sort

1Recall that an inversion is a pair of items u and v such that u comes before v in a list but u > v. An
inversion in a permutation π is a pair of elements x 6= y with x < y and π(x) > π(y).

64

algorithm. This algorithm repeatedly makes in-place insertion-sort passes (e.g., see [30, 45])

over the list, lt, maintained by our algorithm at each step t. Each such pass moves the item

at position j to an earlier position in the list so long as it is bigger than its predecessor in

the list. With each comparison done by this repeated insertion-sort algorithm, we assume

that a consecutive pair of elements in the underlying ordered list, l′t, are chosen uniformly at

random and swapped. In spite of the uncertainty involved in sorting evolving data in this

way, we prove the following theorem, which is the main result of this chapter.

Theorem 4.1. When running the repeated insertion-sort algorithm, for every step t = Ω(n2),

the Kendall tau distance between the maintained list, lt, and the underlying ordered list, l′t, is

O(n) with exponentially high probability.

That is, after an initialization period of Θ(n2) steps, the repeated insertion-sort algorithm

converges to a steady state having an asymptotically optimal Kendall tau distance between the

maintained list and the underlying total order, with exponentially high probability. We also

show how to reduce this initialization period to be Θ(n log n) steps, with high probability, by

first performing a quicksort algorithm and then following that with the repeated insertion-sort

algorithm.

Intuitively, our proof of Theorem 4.1 relies on two ideas: the adaptivity of insertion sort and

that, as time progresses, a constant fraction of the random swaps fix inversions. Ignoring

the random swaps for now, when there are k inversions, a complete execution of insertion

sort performs roughly k + n comparisons and fixes the k inversions (e.g., see [30, 45]). If an ε

fraction of the random swaps fix inversions, then during insertion sort ε(k + n) inversions

are fixed by the random swaps and (1− ε)(k + n) are introduced. Naively the total change

in the number of inversions is then (1− 2ε)(k + n)− k and when k > 1−2ε
2ε
n, the number of

inversions decreases. So the number of inversions will decrease until k = O(n).

This simplistic intuition ignores two competing forces involved in the heavy interplay between

65

the random swaps and insertion sort’s runtime, however, in the evolving data model. First,

random swaps can cause an insertion-sort pass to end too early, thereby causing insertion

sort to fix fewer inversions than normal. Second, as insertion sort progresses, it decreases the

chance for a random swap to fix an inversion. Analyzing these two interactions comprises the

majority of our proof of Theorem 4.1.

In Section 4.3, we present a complete proof of Theorem 4.1. The most difficult component of

Theorem 4.1’s proof is Lemma 4.5, which lower bounds the runtime of insertion sort in the

evolving data model. The proof of Lemma 4.5 is presented separately in Section 4.4.

4.2 Preliminaries

The sorting algorithm we analyze in this chapter for the evolving data model is the repeated

insertion-sort algorithm whose pseudocode is shown in Algorithm 4.

Algorithm 4 Repeated insertion sort pseudocode

function repeated insertion sort(l)
while true do

for i← 1 to n− 1 do
j ← i
while j > 0 and l[j] < l[j − 1] do

swap l[j] and l[j − 1]
j ← j − 1

end while
end for

end while
end function

Formally, at time t, we denote the sorting algorithms’s list as lt and we denote the underlying

total order as l′t. Together these two lists define a permutation, σt, of the indices, where

σt(x) = y if the element at index x in lt is at position y in l′t. We define the simulated final

state at time t to be the state of l obtained by freezing the current underlying total order, l′t,

(i.e., no more random swaps) and simulating the rest of the current round of insertion sort

66

(we refer to each iteration of the while-true loop in Algorithm 4 as a round). We then define

a frozen-state permutation, σ̂t, where σ̂t(x) = y if the element at index x in the simulated

final state at time t as at index y in l′t.

Let us denote the number of inversions at time t, in σt, with It. Throughout the chapter,

we may choose to drop time subscripts if our meaning is clear. The Kendall tau distance

between two permutations π1 and π2 is the number of pairs of elements x 6= y such that

π1(x) < π1(y) and π2(x) > π2(y). That is, the Kendall tau distance between lt and l′t is equal

to It, the number of inversions in σt. Figure 4.1 shows the state of l, l′, I, and σ for two steps

of an insertion sort (but not in the same round).

l0

l′0

I0 = 5

l1

l′1

I1 = 6

l[1] < l[2]?

l2

l′2

I2 = 4

t = 0

t = 1

t = 2

l[2] < l[3]?

σ0

σ1

σ2

Figure 4.1: Examples of l, l′, I, and σ over two steps of an algorithm. In the first step the
green and red elements are compared in l and the red and yellow elements are swapped in l′.
In the second step the red and yellow elements are compared and swapped in l and the blue
and yellow elements are swapped in l′.

As the inner while-loop of Algorithm 4 executes, we can view l as being divided into three

sets: the set containing just the active element, l[j] (which we view as moving to the left,

starting from position i, as it is participating in comparisons and swaps), the semi-sorted

portion, l[0 : i], not including l[j], and the unsorted portion, l[i+ 1 : n− 1]. Note that if no

random adjacent swaps were occurring in l′ (that is, if we were executing insertion-sort in

67

the classical algorithmic model), then the semi-sorted portion would be in sorted order.

Given a list, L, of m numbers with no two equal numbers, the Cartesian tree [79] of L is

a binary rooted tree on the numbers where the root is the minimum element L[k], the left

subtree of the root is the Cartesian tree of L[0 : k− 1], and the right subtree of the root is the

Cartesian tree of L[k + 1 : m]. In our analysis, we will primarily consider the Cartesian tree

of the simulated final state at time t where L[k] = σ̂t(k) in the frozen-state permutation σ̂t.

We also choose to include two additional elements, L[−1] = −1 and L[n] = n, for boundary

cases. Figure 4.2 shows an example Cartesian tree we might consider. The Cartesian trees

we consider are only for the sake of analysis. They are not explicitly constructed.

We call the path from the root to the rightmost leaf of the Cartesian tree the (right-to-left)

minima path as the elements on this path are the right-to-left minima in the list. The minima

path is highlighted in Figure 4.2. For a minimum, l[k], denote with M(k) the index of the

element in the left subtree of l[k] that maximizes σ̂(k), i.e., the index of the largest element

in the left subtree.

We use the phrase with high probability to indicate when an event occurs with probability that

tends towards 1 as n→∞. When an event occurs with probability of the form 1− e− poly(n),

ij

Figure 4.2: On the left we have a representation of σ, a dot for each element x is drawn at
the coordinate (a, b) where x = l[a] = l′[b]. On the right the elements have been moved to
their position in σ̂ and the corresponding Cartesian tree is superimposed. The active element
of insertion sort at the current moment is highlighted in red, the elements that haven’t been
seen by the algorithm are highlighted in green, the added elements are highlighted in pink,
and the minima path is highlighted in blue.

68

we say it occurs with exponentially high probability. During our analysis, we will make use of

the following facts.

Lemma 4.1 (Poisson approximation (Corollary 5.9 in [68])). Let X
(m)
1 , . . . , X

(m)
n be the

number of balls in each bin when m balls are thrown uniformly at random into n bins. Let

Y
(m)

1 , . . . , Y
(m)
n be independent Poisson random variables with λ = m/n. Then for any event

ε(x1, . . . , xn):

Pr
[
ε
(
X

(m)
1 , . . . , X(m)

n

)]
≤ e
√
mPr

[
ε
(
Y

(m)
1 , . . . , Y (m)

n

)]
.

Lemma 4.2 (Hoeffding’s inequality (Theorem 2 in [51])). If X1, . . . , Xn are independent

random variables and ak ≤ Xk ≤ bk for k = 1, . . . , n, then for t > 0:

Pr

[∑
k

Xk − E
[∑

k

Xk

]
≥ tn

]
≤ e−2n2t2/(

∑
k(bk−ak)2).

4.3 Sorting Evolving Data with Repeated Insertion Sort

Let us begin with some simple bounds with respect to a single round of insertion sort.

Lemma 4.3. If a round of insertion sort starts at time ts and finishes at time te, then

1. te − ts = F + n − 1, where F is the number of inversions fixed (at the time of a

comparison in the inner while-loop) by this round of insertion sort.

2. te − ts < n2/2

3. for any ts ≤ t ≤ te, It − Its < n.

Proof. (1): For each iteration of the outer for-loop, each comparison in the inner while-loop

either fixes an inversion (at the time of that comparison) or fails to fix an inversion and

69

completes the inner while-loop. Note that this “failed” comparison may not have compared

elements of l, but may have short circuited due to j ≤ 0. Nevertheless, every comparison

that doesn’t fail fixes an inversion (at the time of that comparison); hence, each non-failing

comparison is counted in F .

(2): In any round, there are at most n(n− 1)/2 comparisons, by the formulations of the outer

for-loop and inner while-loop.

(3): At time t, the round of insertion sort will have executed t− ts steps. Of those steps, at

least t− ts − (n− 1) comparisons resulted in a swap that removed an inversion and at most

n− 1 comparisons did not result in a change to l. The random swaps occurring during these

comparisons introduced at most t− ts inversions. So It − Its ≤ t− ts −
(
t− ts − (n− 1)

)
=

n− 1.

We next show that, while a round of insertion sort executes, a constant fraction of the random

swaps are actually fixing inversions.

Lemma 4.4. There exists a constant, 0 < ε < 1, such that, for a round of insertion sort

that takes time t∗, at least εt∗ of the random adjacent swaps in l′ decrease I during the round,

with exponentially high probability.

Proof. We call a random adjacent swap that decreases the number of inversions, I, during

the insertion-sort round a good swap.

Break the time interval for this round of insertion sort into epochs, each of size between n/32

and n/16 (this is possible because t∗ ≥ n− 1, by Lemma 4.3) and let tk be the start of epoch

k. Denote the length of epoch k by t∗k = tk+1 − tk. Given the values of i and j at tk, only the

elements in the ranges l[j − n/16, j] and l[i − n/16, i + n/16] will be involved in insertion

sort comparisons during epoch k. This set of potentially compared elements has size at most

3n/16.

70

Consider the set of adjacent disjoint 4-tuples in l′, l′[4a], l′[4a + 1], l′[4a + 2], l′[4a + 3] for

a = 0, 1, . . . , n/4. There are n/4 of these tuples and so there are at least n/4− 3n/16 = n/16

tuples whose elements cannot be involved in comparisons during a given epoch. Call such a

tuple of elements an untouchable tuple.

We now examine just the swaps during one specific epoch. Let Xi be the number of

random adjacent swaps that swap l′[i] with l′[i + 1] for i = 0, 1, . . . , n − 1. Let Yi be

independent identically distributed Poisson random variables with parameter λ =
t∗k
n−1

for i = 0, 1, . . . , n − 1. Note that 1/32 ≤ λ ≤ n
16(n−1)

≤ 1/15 for large enough n. Let

f(z1, z2, . . . , zn) be the function that counts how many a = 0, 1, . . . , n/4 there are such that

the tuple l′[4a], l′[4a + 1], l′[4a + 2], l′[4a + 3] is untouchable and z4a = 0, z4a+1 = 2, and

z4a+2 = 0.

By the Poisson approximation, Lemma 4.1, for any δ > 0,

Pr
[
f(X1, X2, . . . , Xn−1) ≤ δn

]
≤ e
√
n/16 Pr

[
f(Y1, Y2, . . . , Yn−1) ≤ δn

]
.

As previously stated, there are at least n/16 untouchable tuples. Because the Yi are indepen-

dent, for an untouchable 4-tuple l′[4a], l′[4a+ 1], l′[4a+ 2], l′[4a+ 3],

Pr
[
Y4a = 0, Y4a+1 = 2, Y4a+2 = 0

]
=
e−3λλ2

0!2!0!

≥ e−3/15 (1/32)2

2

≥ 3

10, 000

f(Y1, Y2, . . . , Yn−1) is the sum of at least n/16 independent indicator random variables that

each have probability at least 3/10, 000 of being 1. Thus E[f(Y1, Y2, . . . , Yn−1)] ≥ 3n
160,000

.

Therefore, by a Chernoff bound from [68]:

71

Pr

[
f (Y1, Y2, . . . , Yn−1) ≤

(
1− 1

2

)
3n

160, 000

]
≤ e−Ω(n)

Pr

[
f (X1, X2, . . . , Xn−1) ≤

(
1− 1

2

)
3n

160, 000

]
≤ e

√
n/16

eΩ(n)
≤ e− poly(n)

Therefore, within each epoch of the insertion sort round there are at least 3
320,000

n untouchable

tuples where the middle pair of indices are swapped twice and the other two pairs are not

swapped, with exponentially high probability. In each of these tuples one of the two swaps

must have been a good swap.

So we can conclude that for each epoch, with exponentially high probability, there are 3
320,000

n

good swaps. Because there are at least t∗

n/16
epochs, setting ε = 3

20,000
implies there are at least

εt∗ good swaps during the entire insertion sort round, with exponentially high probability.

We next give a lower bound with respect to a single round of repeated insertion sort.

Lemma 4.5. If a round of insertion sort starts at time ts with Its ≥ (12c2 +2c)n and finishes

at time te, then, with exponentially high probability, te− ts ≥ cn, i.e., the insertion sort round

takes at least cn steps.

Proof. See Section 4.4.

4.3.1 Proof of Theorem 4.1

Armed with the above lemmas (albeit postponing the proof of Lemma 4.5), let us prove our

main theorem.

Theorem 4.1. There exists a constant, 0 < ε < 1, such that, when running the repeated

72

insertion-sort algorithm, for every step t > (1 + 1/ε)n2, the Kendall tau distance between

the maintained list, lt, and the underlying ordered list, l′t, is O(n), with exponentially high

probability.

Proof. By Lemma 4.4, there exists a constant 0 < ε < 1 such that at least an ε fraction of

all of the random swaps during a round of insertion sort fix inversions. Consider an epoch

of the last (1 + 1/ε)n2 steps of the repeated insertion-sort algorithm, that is, from time

t′ = t − (1 + 1/ε)n2 to t. During this epoch, some number, m ≥ 1, of complete rounds of

insertion sort are performed from start to end (by Lemma 4.3). Denote with tk the time at

which insertion-sort round k ends (and round k + 1 begins), and let tm denote the end time

of the final complete round, during this epoch. By construction, observe that t′ ≤ t0 and

tm ≤ t. Furthermore, because the insertion-sort rounds running before t0 and after tm take

fewer than n2/2 steps (by Lemma 4.3), tm − t0 ≥ n2/ε.

The remainder of the proof consists of two parts. In the first part, we show that for some

complete round of insertion sort ending at time tk ≤ t, Itk is O(n), with exponentially high

probability. In the second part, we show that once we achieve Itk being O(n), for tk ≤ t, then

It is O(n), with exponentially high probability.

For the first part, suppose, for the sake of a contradiction, Itk >
(
12(1

ε
)2 + 2

ε

)
n, for all

0 ≤ k ≤ m. Then, by a union bound over the polynomial number of rounds, Lemma 4.5

applies to every such round of insertion sort. So, with exponentially high probability, each

round takes at least n/ε steps. Moreover, by Lemma 4.4, with exponential probability, an ε

fraction of the random swaps from tm to t0 will decrease the number of inversions. That is,

these random swaps increase the number of inversions by at most

(1− ε)(tm − t0)− ε(tm − t0) = (1− 2ε)(tm − t0),

with exponentially high probability. Furthermore, by Lemma 4.3, at least a (1/ε)−1
1/ε

= 1− ε

73

fraction of the insertion-sort steps fix inversions (at the time of a comparison). Therefore,

with exponentially high probability, we have the following:

Itm ≤ It0 − (1− ε)(tm − t0) + (1− 2ε)(tm − t0)

= It0 − ε(tm − t0)

≤ It0 − n2.

But, since It0 < n2, the above bound implies that Itm < 0, which is a contradiction. Therefore,

with exponentially high probability, there is a k ≤ m such that Itk ≤ (12(1
ε
)2 + 2

ε
)n.

For the second part, we show that the probability for a round ` > k to have It` > (12(1
ε
)2 +

2
ε

+ 1)n is exponentially small, by considering two cases (and their implied union-bound

argument):

• If It`−1
≤ (12(1

ε
)2 + 2

ε
)n, then Lemma 4.3 implies It` ≤ (12(1

ε
)2 + 2

ε
+ 1)n.

• If (12(1
ε
)2 + 2

ε
)n ≤ It`−1

≤ (12(1
ε
)2 + 2

ε
+ 1)n, then, similar to the argument given above,

during a round of insertion sort, `, at least a 1− ε fraction of the steps fix an inversion.

Also at least an ε fraction of the random swaps fix inversions. Thus, with exponentially

high probability, the total change in inversions is at most −ε(t` − t`−1) and It` < It`−1
.

Therefore, by a union bound over the polynomial number of insertion-sort rounds, the

probability that any It` > (12(1
ε
)2 + 2

ε
+ 1)n for k < ` ≤ m is exponentially small. By

Lemma 4.3, It ≤ Itm + n. So, with exponentially high probability, Itm ≤ (12(1
ε
)2 + 2

ε
+ 1)n =

O(n) and It = O(n), completing the proof.

74

4.3.2 Improved Convergence Rate

In this subsection, we provide an algorithm that converges to O(n) inversions more quickly.

To achieve the steady state of O(n) inversions, repeated insertion sort performs Θ(n2)

comparisons. But this running time to reach a steady state is a worst-case based on the fact

that the running time of insertion sort is O(n+ I), where I is the number of initial inversions

in the list, and, in the worst case, I is Θ(n2). By simply running a round of quicksort on l

first, we can achieve a steady state of O(n) inversions after just Θ(n log n) comparisons. See

Algorithm 5. That is, we have the following.

Algorithm 5 Quicksort followed by repeated insertion sort pseudocode

function quick then insertion sort(l)
quicksort(l)
while true do

for i← 1 to n− 1 do
j ← i
while j > 0 and l[j] < l[j − 1] do

swap l[j] and l[j − 1]
j ← j − 1

end while
end for

end while
end function

Theorem 4.2. When running Algorithm 5, for every t = Ω(n log n), It is O(n) with high

probability.

Proof. By the results of Anagnostopoulos et al. [7], the initial round of quicksort takes

Θ(n log n) comparisons and afterwards the number of inversions (that is, the Kendall tau

distance between the maintained list and the true total order) is O(n log n), with high

probability. Using a nearly identical argument to the proof of Theorem 4.1, and the fact that

an insertion-sort round takes O(I+n) time to resolve I inversions, the repeated insertion-sort

algorithm will, with high probability, achieve O(n) inversions in an additional O(n log n) steps.

From that point on, it will maintain a Kendall tau distance of O(n), with high probability.

75

4.4 Proof of Lemma 4.5

Recall Lemma 4.5, which establishes a lower bound for the running time of an insertion-sort

round, given a sufficiently large amount of inversions relative to the underlying total order.

Lemma 4.5. If a round of insertion sort starts at time ts with Its ≥ (12c2 +2c)n and finishes

at time te, then, with exponentially high probability, te− ts ≥ cn, i.e., the insertion sort round

takes at least cn steps.

The main difficulty in proving Lemma 4.5 is understanding how the adjacent random swaps

in l′ affect the runtime of the current round of insertion sort on l. Let St be the number of

steps left to perform in the current round of insertion sort if there were no more random

adjacent swaps in l′. In essence, S can be thought of as an estimate of the remaining time in

the current insertion sort round. If a new round of insertion sort is started at time ts, then

Sts−1 = 1 and Its ≤ Sts ≤ Its + n− 1. Each step of an insertion sort round decreases S by

one and the following random swap may increase or decrease S by some amount. Figure 4.3

illustrates an example where one random adjacent swap in l′ decreases S by a non-constant

amount (relative to n).

semisorted

unsorted
σt σt+1

Figure 4.3: An example where swapping the red and blue elements in l′ creates multiple
blocked inversions between the red element and the black elements.

A random adjacent swap in l′ involving two elements in the unsorted portion of l will either

increase or decrease S by one depending on if it introduces or removes an inversion. Random

adjacent swaps involving elements in the semi-sorted portion have more complex affects on S.

76

An inversion currently in the list
(
l[a], l[b]

)
will be fixed by insertion sort if l[a] and l[b] will

be compared and the two are swapped. Because a < b, l[b] must be the active element during

this comparison. An inversion
(
l[a], l[b]

)
will not be fixed by insertion sort if l[b] was already

inserted into the semi-sorted portion or there is some element l[c] in the semi-sorted portion

with a < c < b and σ(c) < σ(b). We call an inversion with l[b] in the semi-sorted portion

a stuck inversion and an inversion with a smaller semi-sorted element between the pair a

blocked inversion. We say an element l[c] in the semi-sorted portion of l blocks an inversion(
l[a], l[b]

)
with a ≤ i and l[b] either the active element or in the unsorted portion of l, if l[c]

is in the semi-sorted portion of l with a < c < b and σ(c) < σ(b). Note that there may be

multiple elements blocking a particular inversion. Figure 4.4 shows examples of these two

types of inversions.

unsorted element

minima path

Figure 4.4: In this Cartesian tree, the green-blue pair is a blocked inversion and the green-
yellow pair is a stuck inversion. Both pairs of inversions blame the red element.

We denote the number of “bad” inversions at time t that will not be fixed with Bt. That

is, Bt is the sum of the blocked and stuck inversions. At the end of an insertion-sort round

every inversion present at the start was either fixed by the insertion sort, fixed by a random

adjacent swap in l′, or is currently stuck. No elements can be blocked at the end of an

insertion-sort round, because the semi-sorted portion is the entire list. Stuck inversions are

either created by random adjacent swaps in l′ or were blocked inversions and insertion sort

finished inserting the right element of the pair. Blocked inversions are only introduced by the

random adjacent swaps in l′. Thus Bt is unaffected by the steps of insertion sort.

Every inversion present at the start must be fixed by a step of insertion sort, be fixed by

77

a random swap, or it will end up “bad”. Therefore, for any given time, t, by using naive

upper bounds based on the facts that every insertion sort step can fix an inversion and every

random adjacent swap can remove an inversion, we can immediately derive the following:

Lemma 4.6. For an insertion sort round that starts at time ts and ends at time te, if

ts ≤ t ≤ te, then St ≥ Its − 2(t− ts)−Bt.

Since, when an insertion sort round finishes, Ste−1 = 1, Lemma 4.6 implies 2(te − ts − 1) +

Bte + 1 ≥ Its . If we understand how B changes with each random adjacent swap in l′, then

we can bound how long insertion sort needs to run for this inequality to be true.

We associate the blocked and stuck inversions with elements that we say are blamed for

the inversions. A blocked inversion
(
l[a], l[b]

)
blames the element l[c] with a < c < b and

minimum σ(c). Note than l[c] is on the minima path of the modified Cartesian tree and

l[a] is in the left subtree of l[c]. A stuck inversion either blames the element on the minima

path whose subtree contains both l[a] and l[b] or if they appear in different subtrees, the

inversion blames the element l[c] with a < c < b and minimum σ(c). Again note that the

blamed element is on the minima path and l[a] is in the blamed element’s left subtree. The

bad inversions in Figure 4.4 blame the red element.

Whether stuck or blocked, every inversion blames an element on the minima path and the

left element of the inverted pair appears in that minimum’s subtree. If l[k] is on the minima

path, M(k) is the index of the element in l[k]’s subtree with maximum σ(M(k)), and an

inversion
(
l[a], l[b]

)
has l[a] in l[k]’s subtree, then both l[a] and l[b] are in the range σ(k) to

σ(M(k)). So we can upper bound Bt by
∑n−1

k=0(σ(M(k)) − σ(k))2, where we extend M to

non-minima indices with M(k) = k if k is not the index of a minima in l.

78

4.4.1 Bounding the Number of Blocked and Stuck Inversions with

Counters

For the purposes of bounding Bt, we conceptually associate two counters, Inc(x) and Dec(x),

with each element, x. The counters are initialized to zero at the start of an insertion sort

round. When an element x is increased by a random swap in l′, we increment Inc(x) and

when x is decreased by a random swap in l′, we increment Dec(x). After the random swap

occurs, we may choose to exchange some of the counters between pairs of elements, but we

will always maintain the following invariant:

Invariant 1. For an element, l[k], on the minima path,

Inc
(
l[M(k)]

)
+ Dec

(
l[k]
)
≥ σ

(
M(k)

)
− σ(k).

We actually maintain a stronger invariant that implies this invariant. However, Invariant 1

allows us to prove the following Lemma:

Lemma 4.7. If
∑n−1

k=0 Inc
(
l[k]
)2
< κ and

∑n−1
k=0 Dec

(
l[k]
)2
< κ, then Bt ≤ 4κ.

Proof.

Bt ≤
n−1∑
k=0

(
σ(M(k)

)
− σ(k)

)2

≤
n−1∑
k=0

(
Inc
(
M(k)

)
+ Dec(k)

)2

By Invariant 1 (4.1)

Interpreting Inc and Dec as two n-dimensional vectors, we know their lengths are both less

than
√
κ. Equation 4.1 is the squared length of the sum of the Dec and Inc vectors with the

entries of Inc permuted by the function M . By the triangle inequality, the length of their sum

is at most 2
√
κ and so the squared length of their sum is at most 4κ. Therefore, Bt ≤ 4κ.

79

-1

n+1

Figure 4.5: Every degree-three vertex is paired up with a leaf in one of it’s subtrees. The
node −1 is always paired with node n+ 1.

Maintaining Invariant 1 in the face of the random swaps in l′ can be difficult, because new

minima could be added to the path or old minima could be removed from the path. To

handle these challenges, we pair up each element with degree three in the Cartesian tree with

a descendant leaf. First, as a special case, the −1 element in the Cartesian tree is paired with

the n + 1 element. To find pairs for the degree-three elements, we consider traversing the

tree in depth first order starting at the root. Below a degree-three element in the Cartesian

tree there are two subtrees. When a degree-three element is encountered in the traversal, the

larger of the maximum leaf element in the left subtree and the maximum leaf element in the

right subtree will have already been paired up. So we pair the degree-three element with the

unpaired (and smaller) of the two maximum leaves (Figure 4.5). For a degree-three element,

l[a], denote the index in l of its pair with P (a). We enforce the following stronger invariant:

Invariant 2. For every element l[a] with degree three in the Cartesian tree, σ
(
P (a)

)
−σ(a) ≤

Inc
(
l[P (a)]

)
+ Dec

(
l[a]
)
.

Invariant 2 implies Invariant 1, because each minima along the path is either paired with the

maximum leaf element in its left subtree if it has one.

We now consider how to maintain Invariant 2 after each random swap in l′. Suppose

σ(a) = k + 1 and σ(b) = k are the swapped pair and for now assume neither is the active

element. After the swap σ(a) = k and σ(b) = k + 1 and the two counters Dec
(
l[a]
)

and

80

Inc
(
l[b]
)

are incremented. However, the slight upward and downward movement of elements

may have changed how element’s are paired up either by a structural change in the Cartesian

tree or exchanging the relative value of two leaf elements. There are several cases to analyze

based on how the random swap affected the modified Cartesian tree.

First we observe that if the random swap did not affect the pairing of elements, then the

incrementing of counters maintains the invariant. For example, if a has a pair P (a), then

σ
(
P (a)

)
− σ(a) is increased by one and if there is an element l[c] with P (c) = b, then

σ(b) − σ(c) increased by one. Each of these increases are offset by the incrementing of

Dec
(
l[a]
)

and Inc
(
l[b]
)

respectively.

If the random adjacent swap did affect the pairing of elements, then either l[a] and l[b] are

adjacent in the tree or l[a] and l[b] are leaf elements with least common ancestor l[c]. In this

second case, there is an ancestor of l[c] paired with l[a] before the swap which is paired with

l[b] after and l[c] is paired with l[b] before the swap and is paired with l[a] after. For both

pairing changes, the distance between the paired elements is unchanged, but the Inc counter

of the leaf element in the pairs may be incorrect. So we exchange Inc
(
l[a]
)

and Inc
(
l[b]
)
.

In the case where l[b] and l[a] are adjacent in the tree, before the swap l[b] is the parent

of l[a] and afterwards l[a] is the parent of l[b]. When this happens, if either l[a] or l[b] are

unsorted elements, then both elements must lie on the minima path and the swap simply

exchanges their order on the minima path. So while there is a change in the tree structure,

there is no change in the pairing of elements.

We can now assume both elements are semi-sorted which leads to some case analysis based

on the degrees of l[a] and l[b] which determines how they are paired with other elements. In

these cases, the random swap acts almost like a tree rotation.

• If l[a] and l[b] both have degree three, then together there are three subtrees below l[a]

81

and l[b]. For the largest elements in these three subtrees, one is paired with l[a], one

is paired with l[b], and the third is paired with an ancestor of l[a] and l[b]. After the

random swap, the ancestor will have the same paired element, but l[a] and l[b] may

have had their pairs exchanged. In this case, to maintain our invariant if the pairings

changed, we exchange Dec
(
l[a]
)

and Dec
(
l[b]
)
.

This case is shown in Figure 4.6.

• If either l[a] or l[b] has degree three and the other has degree two, then there are two

subtrees below l[a] and l[b] in the subtree. Out of the two maximums in the subtrees,

one is associated with whichever of l[a] and l[b] has two children and one is associated

with an ancestor of l[a] and l[b]. Notice that when a swap happens, the degree of l[a]

and l[b] will not change if there is a subtree “between them” i.e. there are descendants

of l[a] and l[b] with index between a and b (or equivalently |a− b| 6= 1).

When there is no subtree between l[a] and l[b], then the swap exchanges the degrees of

the two elements. In this case, to maintain the invariant we also exchange Dec
(
l[a]
)

and Dec
(
l[b]
)
.

• If l[a] has degree one and l[b] has degree three, then there is only one subtree below

l[a] and l[b]. Because σ(a) = σ(b) + 1, that subtree’s maximum must be larger than

σ(a). So P (b) = a. After the swap, this pairing relationship is destroyed, because both

elements will have degree two. In this case, no additional work is needed to maintain

the invariant.

• If l[a] and l[b] both have degree two, then there is only one subtree below l[a] and l[b].

Again we condition on whether or not there is a subtree between l[a] and l[b].

If there is a subtree between them, then the swap simply reorders l[a] and l[b] on

the path leading to that subtree causing no change in pairings and maintaining the

invariant.

82

When there is no such subtree, after the swap, one of l[b] will now be a leaf, l[a] will have

degree three, and P (a) = b. In this case, a new pairing relationship was created between

l[a] and l[b]. The swap incremented Dec
(
l[a]
)

and Inc
(
l[b]
)

so σ
(
l[a]
)
− σ

(
l[b]
)

= 1 <

2 ≤ Inc
(
l[b]
)

+ Dec
(
l[a]
)

and the invariant holds.

• If l[a] has degree one and l[b] has degree two, then there are no subtrees below l[a] and

l[b]. After the swap, they will switch which element is the leaf. An ancestor was paired

with l[a] and is now paired with l[b].

In this case, to maintain the invariant we exchange Inc
(
l[a]
)

and Inc
(
l[b]
)
.

l[a]
l[b]

l[c]

l[e]
l[d]

. . .

l[f]

P (c) = f P (b) = d P (a) = e

l[a] l[b]

l[c]

l[e]
l[d]

. . .

l[f]

P (c) = f P(b) = eP(a) = d

Inc(l[b]) + +, Dec(l[a]) + +

Dec(l[a]) ↔ Dec(l[b])

Figure 4.6: When the red and blue element are randomly swapped in l′, they switch paired
elements and exchanging their Dec counters maintains the invariant.

When the random adjacent swap in l′ involves the active element, the affect on the Cartesian

tree can be somewhat more complicated. Issues might arise because l[j] is not yet slotted

into its simulated final horizontal position in the Cartesian tree. We need to make sure the

horizontal movements of the active element do not invalidate the invariant. Suppose there

is a maximal index k < j such that σ(k) < σ(j), i.e., index k + 1 is where the insertion of

l[j] will stop. When there is no such k, l[j] will be inserted at the front of the list and so we

set k to be −1. If l[j] swaps with an element outside the range [k, j − 1], then no horizontal

movement of l[j] will occur and we can handle the case as though l[j] is semi-sorted.

83

So suppose l[j] is swapped with l[a] with a ∈ [k, j − 1] and σ(a) = σ(j) + 1 before the swap.

After the swap, l[j] will be moved immediately to the right of l[a] in the Cartesian tree and

is the right child of l[a]. Because σ(j) is smaller than σ(x) for x ∈ [k, j − 1], l[a] must be the

right child of l[j] before the swap. So l[j] has degree two and is unpaired before the swap.

• If l[a] had a right child before the swap, then l[j] now subdivides the edge from l[a] to

its old right child and has degree two. So the invariant is maintained.

• If l[a] had only a left child before the swap, then l[a] is now paired with l[j], which is

a leaf after the swap. The invariant requires σ(j)− σ(a) = 1 ≤ Inc
(
l[j]
)

+ Dec
(
l[a]
)
.

This inequality is satisfied, because the swap incremented Inc
(
l[j]
)
.

• If l[a] was a leaf paired with l[c] before the swap, then l[j] is now paired with l[c].

Exchanging the Inc counters for l[j] and l[a] guarantees the invariant is maintained.

Now we consider the final case where l[j] is swapped with l[a] with a ∈ [k, j − 1] and

σ(a) + 1 = σ(j) before the swap. Because σ(a) < σ(j), a = k. Additionally we observe that

l[j] is the right child of l[a] in the Cartesian tree before the swap. After the swap, l[a] is the

right child of l[j] and l[j] has degree two. So l[j] is unpaired after the swap.

• If l[j] had a right child before the swap, then l[j] now subdivides the edge from l[a] to

its old parent and has degree two. So the invariant is maintained.

• If l[j] is a leaf and l[a] has a left child, then l[a] was paired with l[j] before the swap.

After the swap, l[a] and l[j] both have degree two with l[j] subdividing the old edge

between l[a] and its parent.

• If l[j] is a leaf and l[a] does not have a left child, then there is some ancestor paired

with l[j]. The pairing will switch to l[a] after the swap. Exchanging the Inc counters

for l[j] and l[a] maintains the invariant.

84

The above case analysis describes a counter maintenance strategy satisfying the following

lemma.

Lemma 4.8. There is a counter maintenance strategy that maintains Invariant 2 such that

after each random adjacent swap in l′, the corresponding counters are incremented and then

some counters are exchanged between pairs of elements.

4.4.2 Bounding the Counters with Balls and Bins

We model the Inc and Dec counters each with a balls and bins process and analyze the sum

of squares of balls in each bin. Each element in l is associated with one of n bins. When an

element’s Inc counter is increased, throw a ball into the corresponding bin. If a pair of Inc

counters are exchanged, exchange the set of balls in the two corresponding bins. The Dec

counters can be modeled similarly.

This process is almost identical to throwing balls into n bins uniformly at random. Note that

the exchanging of balls in pairs of bins takes place after a ball has been placed in a chosen

bin, effectively permuting two bin labels in between steps. If every bin was equally likely to

be hit at each time step, then permuting the bin labels in this way would not change the final

sum of squares and the exchanging of counters could be ignored entirely. Unfortunately the

bin for the element at l[n− 1] in the case of Inc counters or l[0] in the case of Dec counters

cannot be hit, i.e., there is a forbidden bin controlled by the counter swapping strategy.

However, even when in each round the forbidden bin is adversarially chosen, the sum of

squares of the number of balls in each bin will be stochastically dominated by a strategy of

always forbidding the bin with the lowest number of balls. Therefore, the sum of squares of

m balls being thrown uniformly at random into n− 1 bins stochastically dominates the sum

of squares of the Inc (or Dec) counters after m steps.

Theorem 4.3. If cn balls are each thrown uniformly at random into n bins with c > e, then

85

the sum over the bins of the square of the number of balls in each bin is at most 3c2n with

exponentially high probability.

Proof. Let X1, . . . , Xn be random variables where Xk is the number of balls in bin k and let

Y1, . . . , Yn be independent Poisson random variables with λ = c.

By the Poisson approximation, Lemma 4.1,

Pr

[∑
k

X2
k ≥ 3c2n

]
≤ e
√
cnPr

[∑
k

Y 2
k ≥ 3c2n

]
.

Let Zk be the event that Yk ≥ ecn1/6 and Z be the event that at least one Zk occurs.

Pr[Z] ≤ nPr[Z1] by a union bound.

Pr[Z1] = e−c
∞∑

k=ecn1/6

ck

k!
≤ e−c

∞∑
k=ecn1/6

ck

e
(
k
e

)k
= e−c−1

∞∑
k=ecn1/6

(ec
k

)k
≤ e−c−1

∞∑
k=ecn1/6

(
1

n1/6

)k
= e−c−1(n1/6)−ecn

1/6
∞∑
k=0

1

n1/6

k

≤ e−cn−
ec
6
n1/6

.

⇒ Pr[Z] ≤ n

ecn
ec
6
n1/6
≤ e−Ω(n1/6).

Letting Y =
∑

k Y
2
k :

E[Y |¬Z] ≤ E[Y] = nE[Y 2
1] = n

(
c+ c2

)
≤ 2c2n.

86

Given ¬Z, (Yk)
2 ∈ [0, ecn1/3]. So we can apply Hoeffding’s inequality, Lemma 4.2, to get:

Pr [Y − E [Y |¬Z] ≥ tn|¬Z] ≤ e
−2t2n2/

(
n(ecn1/3)

2
)
.

Setting t = c2, we have:

Pr
[
Y − E [Y |¬Z] ≥ c2n|¬Z

]
≤ e(

−2c4n2)/
(
n(ecn1/3)

2
)

≤ e−2n1/3

.

Because E [Y |¬Z] ≤ 2c2n, we have Pr[Y ≥ 3c2n|¬Z] ≤ e−Ω(n1/3).

Pr
[
Y ≥ 3c2n

]
= Pr

[
Y ≤ 3c2n and Z

]
+ Pr

[
Y ≤ c2n and ¬Z

]
≤ Pr[Z] + Pr

[
Y ≤ 3c2n|¬Z

]
≤ e−Ω(n1/6) + Pr[Y − E[Y |¬Z] ≥ c2n|¬Z]

≤ e−Ω(n1/6) + e−Ω(n1/3) ≤ 2e−Ω(n1/6).

Thus, we can conclude Pr[
∑

kX
2
k ≥ 3c2n] ≤ 2e

√
cn

eΩ(n1/6)
≤ e− poly(n).

Recall that by Lemma 4.6, if an insertion-sort round ends at time t, then Its ≤ 2(t−ts)+Bt+1.

Theorem 4.3 and a simple union bound tell us that if t ≤ ts + cn, then
∑n−1

k=0 Inc
(
l[k]
)2 ≤

3c2(n − 1) and
∑n−1

k=0 Dec
(
l[k]
)2 ≤ 3c2(n − 1) with exponentially high probability. So by

Lemma 4.7, Bt ≤ 12c2n.

Recall that when the insertion sort round finishes, 2(te− ts− 1) +Bte + 1 ≥ Its . If fewer than

cn steps have been performed, the left hand side of this inequality is less than (12c2 + 2c)n

with exponentially high probability. Therefore, if we started with (12c2 + 2c)n inversions,

the current round of insertion sort must perform at least cn steps with exponentially high

87

probability; otherwise, there are unfixed but still “good” inversions. This completes the proof

of Lemma 4.5.

4.5 Conclusion

We have shown that, although it is much simpler than quicksort and only fixes at most one

inversion in each step, repeated insertion sort leads to the asymptotically optimal number of

inversions in the evolving data model. We have also shown that we can get to this steady

state after an initial phase of O(n log n) steps, which is also asymptotically optimal.

For future work, it would be interesting to explore whether our results can be composed with

other problems involving algorithms for evolving data, where sorting is a subcomponent. For

additional future work, it might also be interesting to study other sorting algorithms, either

empirically or analytically, to see if they achieve similar number of inversions in the steady

state in the evolving data model. Finally, it would also be interesting to explore whether one

can derive a much better ε value than we derived in the proof of Lemma 4.4.

88

Bibliography

[1] R. C. Agarwal. A super scalar sort algorithm for risc processors. SIGMOD Rec.,
25(2):240–246, June 1996.

[2] M. Ajtai, J. Komlós, and E. Szemerédi. An 0(n log n) sorting network. In Proceedings
of the Fifteenth Annual ACM Symposium on Theory of Computing, STOC ’83, pages
1–9, New York, NY, USA, 1983. ACM.

[3] L. Alonso and E. M. Reingold. Analysis of Boyer and Moore’s MJRTY algorithm.
Information Processing Letters, 113(13):495–497, 2013.

[4] L. Alonso, E. M. Reingold, and R. Schott. Determining the majority. Information
Processing Letters, 47(5):253 – 255, 1993.

[5] A. Amir, M. Farach, R. M. Idury, J. A. Lapoutre, and A. A. Schaffer. Improved dynamic
dictionary matching. Information and Computation, 119(2):258–282, 1995.

[6] A. Amir, G. Franceschini, R. Grossi, T. Kopelowitz, M. Lewenstein, and N. Lewenstein.
Managing unbounded-length keys in comparison-driven data structures with applications
to online indexing. SIAM J. Comput., 43(4):1396–1416, 2014.

[7] A. Anagnostopoulos, R. Kumar, M. Mahdian, and E. Upfal. Sorting and selection on
dynamic data. Theoretical Computer Science, 412(24):2564–2576, 2011. Special issue
on selected papers from 36th International Colloquium on Automata, Languages and
Programming (ICALP 2009).

[8] A. Anagnostopoulos, R. Kumar, M. Mahdian, E. Upfal, and F. Vandin. Algorithms on
evolving graphs. In 3rd ACM Innovations in Theoretical Computer Science Conference
(ITCS), pages 149–160, 2012.

[9] L. Babai, P. Erdös, and S. M. Selkow. Random graph isomorphism. SIAM Journal on
Computing, 9(3):628–635, 1980.

[10] B. Bahmani, R. Kumar, M. Mahdian, and E. Upfal. Pagerank on an evolving graph. In
18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD), pages 24–32, 2012.

[11] R. Beigel, W. Hurwood, and N. Kahale. Fault diagnosis in a flash. In 36th IEEE Symp.
on Foundations of Computer Science (FOCS), pages 571–580, 1995.

89

[12] R. Beigel, S. R. Kosaraju, and G. F. Sullivan. Locating faults in a constant number of
parallel testing rounds. In 1st ACM Symp. on Parallel Algorithms and Architectures
(SPAA), pages 189–198, 1989.

[13] R. Beigel, G. Margulis, and D. A. Spielman. Fault diagnosis in a small constant number
of parallel testing rounds. In 5th ACM Symp. on Parallel Algorithms and Architectures
(SPAA), pages 21–29, 1993.

[14] A. Ben-Aroya and S. Toledo. Competitive analysis of flash-memory algorithms. In
Y. Azar and T. Erlebach, editors, European Symp. on Algorithms (ESA), volume 4168
of LNCS, pages 100–111. Springer, 2006.

[15] M. A. Bender, R. Cole, E. D. Demaine, M. Farach-Colton, and J. Zito. Two simplified
algorithms for maintaining order in a list. In R. H. Möhring and R. Raman, editors,
Euro. Symp. on Algorithms (ESA), volume 2461 of LNCS, pages 152–164. Springer,
2002.

[16] M. A. Bender, E. D. Demaine, and M. Farach-Colton. Cache-oblivious B-trees. SIAM
Journal on Computing, 35(2):341–358, 2005.

[17] M. A. Bender, Z. Duan, J. Iacono, and J. Wu. A locality-preserving cache-oblivious
dynamic dictionary. Journal of Algorithms, 3(2):115–136, 2004.

[18] M. A. Bender, J. T. Fineman, S. Gilbert, T. Kopelowitz, and P. Montes. File maintenance:
When in doubt, change the layout! In Proceedings of the Twenty-Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms, (SODA), pages 1503–1522, 2017.

[19] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti. Introduction to flash memory.
Proceedings of the IEEE, 91(4):489–502, 2003.

[20] M. Braverman and E. Mossel. Noisy sorting without resampling. In 19th ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 268–276, 2008.

[21] D. Breslauer and G. F. Italiano. Near real-time suffix tree construction via the fringe
marked ancestor problem. J. Discrete Algorithms, 18:32–48, 2013.

[22] G. S. Brodal, R. Fagerberg, and R. Jacob. Cache oblivious search trees via binary trees
of small height. In Proc. 13th Annual Symposium on Discrete Algorithms (SODA), pages
39–48, 2002.

[23] J. Bulánek, M. Koucký, and M. E. Saks. Tight lower bounds for the online labeling
problem. SIAM J. Comput., 44(6):1765–1797, 2015.

[24] C. Castelluccia, S. Jarecki, and G. Tsudik. Secret handshakes from CA-oblivious
encryption. In P. J. Lee, editor, Advances in Cryptology - ASIACRYPT, pages 293–307.
Springer, 2004.

[25] S. Chen, P. B. Gibbons, and S. Nath. Rethinking database algorithms for phase change
memory. In 5th Conf. on Innovative Data Systems Research (CIDR), pages 21–31, 2011.

90

[26] R. Cole. Parallel merge sort. SIAM Journal on Computing, 17(4):770–785, 1988.

[27] R. Cole and R. Hariharan. Dynamic LCA queries on trees. SIAM J. Comput., 34(4):894–
923, 2005.

[28] D. J. Cook and L. B. Holder. Mining Graph Data. John Wiley & Sons, 2006.

[29] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to Algorithms.
McGraw-Hill Higher Education, 2nd edition, 2001.

[30] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to Algorithms.
McGraw-Hill Higher Education, 2nd edition, 2001.

[31] W. E. Devanny, M. T. Goodrich, and K. Jetviroj. Parallel equivalence class sorting:
Algorithms, lower bounds, and distribution-based analysis. In Proceedings of the 28th
ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’16, pages
265–274, New York, NY, USA, 2016. ACM.

[32] P. Dietz and D. Sleator. Two algorithms for maintaining order in a list. In 19th ACM
Symp. on Theory of Computing (STOC), pages 365–372, 1987.

[33] P. F. Dietz. Fully persistent arrays (extended array). In Algorithms and Data Structures,
Workshop WADS ’89, Ottawa, Canada, August 17-19, 1989, Proceedings, pages 67–74,
1989.

[34] P. F. Dietz and R. Raman. Persistence, amortization and randomization. In Proceedings
of the Second Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
78–88, 1991.

[35] D. Dobkin and J. I. Munro. Determining the mode. Theoretical Computer Science,
12(3):255–263, 1980.

[36] Y. Emek and A. Korman. New bounds for the controller problem. Distributed Computing,
24(3-4):177–186, 2011.

[37] D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig. Sparsificationa technique for
speeding up dynamic graph algorithms. Journal of the ACM (JACM), 44(5):669–696,
1997.

[38] D. Eppstein, M. T. Goodrich, M. Mitzenmacher, and P. Pszona. Wear minimization for
cuckoo hashing: How not to throw a lot of eggs into one basket. In J. Gudmundsson
and J. Katajainen, editors, 13th Int. Symp. on Experimental Algorithms (SEA), volume
8504 of LNCS, pages 162–173, Cham, 2014. Springer.

[39] D. Eppstein, M. T. Goodrich, and J. Z. Sun. Skip quadtrees: Dynamic data structures
for multidimensional point sets. International Journal of Computational Geometry &
Applications, 18(01n02):131–160, 2008.

[40] U. Feige, P. Raghavan, D. Peleg, and E. Upfal. Computing with noisy information.
SIAM Journal on Computing, 23(5):1001–1018, 1994.

91

[41] L. R. Ford and S. M. Johnson. A tournament problem. The American Mathematical
Monthly, 66(5):387–389, 1959.

[42] M. L. Fredman and D. E. Willard. Surpassing the information theoretic bound with
fusion trees. Journal of Computer and System Sciences, 47(3):424 – 436, 1993.

[43] M. T. Goodrich. Pipelined algorithms to detect cheating in long-term grid computations.
Theoretical Computer Science, 408(2–3):199–207, 2008.

[44] M. T. Goodrich and R. Tamassia. Algorithm Design and Applications. Wiley Publishing,
1st edition, 2014.

[45] M. T. Goodrich and R. Tamassia. Algorithm Design and Applications. Wiley Publishing,
1st edition, 2014.

[46] R. Graham. An efficient algorith for determining the convex hull of a finite planar set.
Information Processing Letters, 1(4):132 – 133, 1972.

[47] B. Groz and T. Milo. Skyline queries with noisy comparisons. In 34th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems (PODS), pages 185–198,
2015.

[48] Y. Han and M. Thorup. Integer sorting in o (n/spl radic/(log log n)) expected time and
linear space. In Foundations of Computer Science, 2002. Proceedings. The 43rd Annual
IEEE Symposium on, pages 135–144. IEEE, 2002.

[49] D. S. Hirschberg. Fast parallel sorting algorithms. Commun. ACM, 21(8):657–661, Aug.
1978.

[50] D. S. Hochbaum. Ranking sports teams and the inverse equal paths problem. In
P. Spirakis, M. Mavronicolas, and S. Kontogiannis, editors, 2nd Int. Workshop on
Internet and Network Economics (WINE), volume 4286 of Lecture Notes in Computer
Science, pages 307–318, Berlin, Heidelberg, 2006. Springer.

[51] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal
of the American Statistical Association, 58(301):13–30, 1963.

[52] Q. Huang, X. Liu, X. Sun, and J. Zhang. Partial sorting problem on evolving data.
Algorithmica, pages 1–24, 2017.

[53] S. Irani, M. Naor, and R. Rubinfeld. On the time and space complexity of computation
using write-once memory or is pen really much worse than pencil? Mathematical Systems
Theory, 25(2):141–159, 1992.

[54] A. Itai, A. G. Konheim, and M. Rodeh. A sparse table implementation of priority queues.
Springer, 1981.

[55] S. Jarecki and X. Liu. Unlinkable secret handshakes and key-private group key manage-
ment schemes. In J. Katz and M. Yung, editors, 5th Int. Conf. on Applied Cryptography
and Network Security (ACNS), pages 270–287. Springer, 2007.

92

[56] V. Jayapaul, J. I. Munro, V. Raman, and S. R. Satti. Sorting and selection with
equality comparisons. In F. Dehne, J.-R. Sack, and U. Stege, editors, 14th Int. Symp.
on Algorithms and Data Structures (WADS), pages 434–445. Springer, 2015.

[57] V. Kanade, N. Leonardos, and F. Magniez. Stable Matching with Evolving Preferences.
In K. Jansen, C. Mathieu, J. D. P. Rolim, and C. Umans, editors, Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques (AP-
PROX/RANDOM), volume 60 of LIPIcs, pages 36:1–36:13, Dagstuhl, Germany, 2016.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[58] D. E. Knuth. The Art of Computer Programming: Sorting and Searching, volume 3.
Pearson Education, 2nd edition, 1998.

[59] D. E. Knuth. The Art of Computer Programming, Volume 3: (2Nd Ed.) Sorting and
Searching. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA,
1998.

[60] T. Kopelowitz. On-line indexing for general alphabets via predecessor queries on subsets
of an ordered list. In IEEE Symp. on Found. of Comp. Sci. (FOCS), pages 283–292,
2012.

[61] T. Kopelowitz, G. Kucherov, Y. Nekrich, and T. A. Starikovskaya. Cross-document
pattern matching. J. Discrete Algorithms, 24:40–47, 2014.

[62] L. Kozma. Useful inequalities cheat sheet, 2016. http://www.lkozma.net/

inequalities_cheat_sheet/.

[63] J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman
problem. Proceedings of the American Mathematical Society, 7(1):48–50, 1956.

[64] S. Lohr. Frances e. holberton, 84, early computer programmer. New York Times, 2011.

[65] K. Makarychev, Y. Makarychev, and A. Vijayaraghavan. Sorting noisy data with partial
information. In 4th ACM Conference on Innovations in Theoretical Computer Science
(ITCS), pages 515–528, 2013.

[66] W. Meyer. Equitable coloring. The American Mathematical Monthly, 80(8):920–922,
1973.

[67] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, 2005.

[68] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, New York, NY, USA, 2005.

[69] H. Orman. The Morris worm: A fifteen-year perspective. IEEE Security & Privacy,
1(5):35–43, 2003.

93

http://www.lkozma.net/inequalities_cheat_sheet/
http://www.lkozma.net/inequalities_cheat_sheet/

[70] S. Parthasarathy, S. Tatikonda, and D. Ucar. A survey of graph mining techniques for
biological datasets. In C. C. Aggarwal and H. Wang, editors, Managing and Mining
Graph Data, pages 547–580. Springer, 2010.

[71] P. Pavan, R. Bez, P. Olivo, and E. Zanoni. Flash memory cells—an overview. Proceedings
of the IEEE, 85(8):1248–1271, 1997.

[72] A. Pelc and E. Upfal. Reliable fault diagnosis with few tests. Combinatorics, Probability
and Computing, 7:323–333, 1998.

[73] F. P. Preparata, G. Metze, and R. T. Chien. On the connection assignment problem of
diagnosable systems. IEEE Trans. on Electronic Computers, EC-16(6):848–854, 1967.

[74] M. E. Saks and M. Werman. On computing majority by comparisons. Combinatorica,
11(4):383–387, 1991.

[75] Y. Shiloach and U. Vishkin. Finding the maximum, merging, and sorting in a parallel
computation model. Journal of Algorithms, 2(1):88 – 102, 1981.

[76] A. Sorniotti and R. Molva. A provably secure secret handshake with dynamic controlled
matching. Computers & Security, 29(5):619–627, 2010.

[77] R. E. Tarjan. Amortized computational complexity. SIAM Journal on Algebraic Discrete
Methods, 6(2):306–318, 1985.

[78] L. G. Valiant. Parallelism in comparison problems. SIAM Journal on Computing,
4(3):348–355, 1975.

[79] J. Vuillemin. A unifying look at data structures. Commun. ACM, 23(4):229–239, 1980.

[80] D. Willard. Maintaining dense sequential files in a dynamic environment (extended
abstract). In Proc. 14th Annual Symposium on Theory of Computing (STOC), pages
114–121, 1982.

[81] D. E. Willard. Good worst-case algorithms for inserting and deleting records in dense
sequential files. In Proc. International Conference on Management of Data (SIGMOD),
pages 251–260, 1986.

[82] H.-S. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi,
and K. E. Goodson. Phase change memory. Proceedings of the IEEE, 98(12):2201–2227,
2010.

[83] S. Xu and M. Yung. K-anonymous secret handshakes with reusable credentials. In 11th
ACM Conf. on Computer and Communications Security (CCS), pages 158–167, 2004.

[84] J. Zhang and Q. Li. Shortest paths on evolving graphs. In H. Nguyen and V. Snasel,
editors, 5th Int. Conf. on Computational Social Networks (CSoNet), volume 9795 of
Lecture Notes in Computer Science, pages 1–13, Berlin, Heidelberg, 2016. Springer.

94

	LIST OF FIGURES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE DISSERTATION
	Introduction
	Results

	The Online House Numbering Problem: Min-Max Online List Labeling
	Introduction
	Our Results
	Related Prior Work

	Preliminaries
	A Generic House Numbering Data Structure
	Insertions
	Promotions

	Bounding the Height and Complexities
	Achieving <O(n), logn + O(1/)>

	A <O(logn), O(log2 n)> house numbering data structure
	Conclusion

	Parallel Equivalence Class Sorting
	Introduction
	Related Prior Work
	Our Results

	Parallel Algorithms
	Algorithms Based on the Number of Groups
	Algorithms Based on the Smallest Group Size

	Lower Bounds
	Sorting Distributions
	Experiments
	Conclusion

	Optimally Sorting Evolving Data
	Introduction
	Related Prior Work for Evolving Data
	Problem Formulation for Sorting Evolving Data
	Our Contributions

	Preliminaries
	Sorting Evolving Data with Repeated Insertion Sort
	Proof of Theorem 4.1
	Improved Convergence Rate

	Proof of Lemma 4.5
	Bounding the Number of Blocked and Stuck Inversions with Counters
	Bounding the Counters with Balls and Bins

	Conclusion

	Bibliography

