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Key Points

Question: Can a deep learning model using routinely acquired outpatient 12-
lead ECGs predict the presence of atrial fibrillation within 31 days across 
diverse populations?

Findings: A model trained on data from two large Veterans Affairs (VA) 
hospital networks predicted atrial fibrillation with high accuracy in several 
separate patient populations (VA and non-VA) and across different 
demographic and comorbidity subgroups.

Meaning: Deep learning of ECGs holds promise for identifying patients at 
high risk of atrial fibrillation who could be considered for intensive monitoring
programs to help prevent adverse cardiac events.
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Abstract
Importance
Early detection of atrial fibrillation (AF) may help prevent adverse 
cardiovascular events such as stroke. Deep learning of electrocardiograms 
(ECGs) has been successfully used for early prediction of several 
cardiovascular diseases. 

Objective
To determine whether deep learning of outpatient ECGs in sinus rhythm can 
predict patients with AF in a large and diverse population.

Design
Retrospective cohort study from 1/1/1987 to 12/31/2022.

Setting
Multicenter study at 6 US Veterans Affairs (VA) hospital networks and 1 large 
non-VA academic medical center

Participants
All outpatient 12-lead ECGs in sinus rhythm

Methods and Outcomes
We trained a convolutional neural network using 12-lead ECGs from 2 US VA 
hospital networks to predict the presence of AF within 31 days of sinus 
rhythm ECGs. The model was tested on ECGs held out from training at the 2 
VA networks as well as 4 additional VA networks and 1 large non-VA 
academic medical center. 

Results
We used cohort of 908,341 ECGs. ECGs were from patients across 6 VA sites 
who had an average age of 62.4 years, were 6.4% female, 37.6% non-white, 
with an average CHA2DS2-VASc score of 1.9. At the non-VA academic 
medical center, the average age was 59.5 years, with 52.5% female, 25.2% 
non-white, and an average CHA2DS2-VASc score of 1.6. A deep learning 
model predicted the presence of atrial fibrillation within 31 days of a sinus 
ECG with AUCs of 0.86 (95% CI 0.85-0.86) and 0.93 (0.93-0.94), accuracies of
0.78 (0.77-0.78) and 0.87 (0.86-0.88), F1 scores of 0.30 (0.30-0.31) and 0.46 
(0.44-0.48) on held-out test ECGs at VA and non-VA hospitals, respectively. 
The model was well-calibrated with a Brier score of 0.02 across all sites. 
Among individuals deemed high risk by deep learning, the number needed to
screen to detect a positive case of AF was 2.5 individuals at a testing 
sensitivity of 25% and 11.5 at 75%. Model performance was similar in 
patients who were black, female, younger than 65 years old, or had 
CHA2DS2-VASc score ≥ 2. 

Conclusions
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Deep learning of outpatient sinus rhythm ECGs predicted AF within 31 days 
in populations with diverse demographics and comorbidities.
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Abbreviations

Atrial fibrillation (AF)
Electrocardiogram (ECG)
Veteran Affairs (VA)
International Classification of Diseases (ICD)
Current Procedural Terminology (CPT)
Receiver Operating Characteristic (ROC)
Area Under the Curve (AUC)
Stroke (CVA)
Transient ischemic attack (TIA)
Thromboembolism (TE)
Myocardial infarction (MI)
Standard Deviation (SD)
Confidence Interval (CI)
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Background

Atrial fibrillation (AF) is the most common arrhythmia, affecting one quarter 

of patients older than 80 years old.1 Patients with AF are five times more 

likely to experience a stroke and have up to a 25% risk of dying within 30 

days of stroke.2,3 Many cases of AF go undetected since at least one third are

asymptomatic.4–6 Among patients who experience an acute stroke of 

unknown origin, one fifth will be found to have occult AF.7–10 AF also causes 

long-term changes in cardiac structure including atrial dilation and 

ventricular function deterioration, which can result in permanent AF, valvular

regurgitation, and heart failure.11,12 

Effective clinical management can mitigate the complications of AF. Oral 

anticoagulation reduces the relative risk of stroke by two thirds.13 Early use 

of antiarrhythmic medications or ablation may prevent more permanent AF 

and reduce symptoms and stroke risk.14–16 Earlier detection of AF therefore 

holds promise in preventing later adverse sequelae. 

Deep learning, a subset of machine learning, can help diagnose early disease

given its ability to utilize information-dense data to draw associations that 

may be too complicated to be routinely identified by human clinicians. Deep 

learning of electrocardiograms (ECGs) has been used to successfully predict 

mortality, heart failure, cardiomyopathy, and valvular disease.17–25 It has also 
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been used recently to predict paroxysmal and incident AF, often in 

predominantly white, single-center patient populations.26–28 

To date, few deep learning algorithms have been used for the US Veteran 

Affairs (VA) population, which includes almost 19 million individuals from a 

diversity of demographic backgrounds, many of whom are at higher risk for 

having cardiovascular disease including AF when compared to the general 

adult population.29–31 The VA patient population therefore represents a group 

in which deep learning guided screening efforts may be most effective. We 

investigated whether deep learning of sinus rhythm ECGs in VA patients 

could predict the presence of concurrent AF.

Methods

ECG dataset selection 

We extracted all 12-lead ECGs acquired at sites within the VA’s Veterans 

Integrated Services Network Region (VISN) 21, which includes 6 separate VA 

medical center networks (San Francisco, Palo Alto, Fresno, Sacramento, 

Reno, and the Pacific Islands), each of which is composed of multiple clinics. 

ECGs were performed from 1/1/1987 to 12/31/2022. ECG tracings were 

linked to cardiologist ECG interpretations, patient demographic (age, sex, 

and race/ethnicity), and comorbidity information (atrial fibrillation, heart 

failure, hypertension, diabetes, prior stroke/transient ischemic 

attack/thromboembolism, prior myocardial infarction, peripheral vascular 
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disease, chronic kidney disease) from the VA Corporate Data Warehouse. 

Comorbidities were determined using International Classification of Diseases 

(ICD) and Current Procedural Terminology (CPT) codes.32 Using comorbidity 

fields, we estimated CHA2DS2-VASc scores. 

We included only ECGs in sinus rhythm. We excluded ECGs that had poor 

data quality, paced rhythms, or could not be paired with age and sex 

information (a sign that a patient was not followed consistently in VA health 

system or that the ECG patient data was entered incorrectly and not 

linkable) (Figure 1). We limited our dataset to outpatient ECGs given that 

screening for AF would predominantly be implemented in an outpatient 

setting. Inpatient ECGs could introduce selection bias for sicker patients who 

may not be reflective of a general AF screening population.  

ECGs from the San Francisco VA and Palo Alto VA were used for model 

training, validation, and testing. ECGs from the Fresno VA, Sacramento VA, 

Reno VA, and the Pacific Islands VA were used as separate held-out test 

datasets. 

For an external test dataset, we used all 12-lead ECGs acquired at Cedars-

Sinai Medical Center, a large urban tertiary care center, from 3/1/2005 to 

12/31/2018. The same inclusion and exclusion criteria were applied as were 

used for the VA dataset. 
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This study was approved by the University of California, San Francisco IRB 

and the Cedars-Sinai IRB. 

Definition of cases and controls

Cases of concurrent AF were defined as sinus rhythm ECGs that could be 

paired with at least one ECG in atrial fibrillation or flutter (based on the 

cardiologist ECG interpretation) within 31 days (Figure 1). Controls were 

defined as sinus ECGs in patients who did not have ECGs in atrial fibrillation 

or flutter or diagnoses of atrial fibrillation or flutter by ICD/CPT coding. A 

single patient could contribute multiple case and control ECGs, which has 

been shown to improve model performance.26 

In an additional exploratory analysis to simulate prospective prediction of a 

patient’s first case of AF within a longer 1-year time frame, we defined cases 

to be sinus rhythm ECGs that were closest to and chronologically before the 

first diagnosis of AF for each patient. ECGs had to be within 1 year before AF 

diagnosis. 

ECG processing and deep learning model training

ECG tracings were extracted from the VA’s MUSE Cardiology Information 

System (GE HealthCare). ECG waveform data was acquired at 250 Hz and 

extracted as 10 second, 12 x 2500 matrices of amplitude values, stored as 
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base64 text. ECGs underwent baseline wander correction using median 

filtering at 200ms and 600ms intervals and z-score normalization. 

We employed an atrous convolutional neural network based on a novel 

architecture previously used for predicting clinical phenotypes from ECGs 

(Supplemental Figure 1).33 The model was trained using PyTorch. We 

initialized our model with random weights and trained using a binary cross-

entropy loss function for 50 epochs with an ADAM optimizer and an initial 

learning rate of 1e-4. The training dataset, composed of ECGs from the San 

Francisco VA and Palo Alto VA sites, was split on a patient level in an 

80:10:10 ratio to create training, validation, and held-out test datasets. 

Assessing model performance

All performance analyses were from model prediction of held-out VA datasets

and the external Cedars-Sinai dataset not involved in model training.  We 

compared the deep learning model’s performance to clinical prediction of AF 

for held-out testing data from the VA and Cedars-Sinai using the CHA2DS2-

VASc score and a logistic regression model that incorporated all available 

demographic and comorbidity information (age, sex, history of heart failure, 

diabetes, CVA/TIA/TE, prior MI, peripheral vascular disease, chronic kidney 

disease). These patient characteristics approximate those used in AF clinical 

risk prediction models such as CHARGE-AF.34 A CHARGE-AF risk score was not
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explicitly calculated because of the inability to reliably determine blood 

pressure and antihypertensive medication use at the time of the ECG. 

Model discrimination was assessed by the area under the curve (AUC) for the

ROC curve. We reported the sensitivity, specificity, and accuracy at Youden’s

index (defined as the maximum value of sensitivity+specificity-1) as well as 

the maximum F1 score (harmonic mean of the precision (positive predictive 

value) and recall (sensitivity)).35 All metrics were reported with two-sided 

95% confidence intervals (CI) from 1000 bootstrapped samples. ROC curve 

AUCs were compared using DeLong’s test.36 We calculated the number 

needed to screen to detect a true positive case of AF among patients 

deemed as high risk by the deep learning model as 1/positive predictive 

value.

For model calibration, risk scores underwent Platt scaling using logistic 

regression trained on 80% of the test dataset and then applied to a held-out 

20% of the test dataset.37 We visualized a calibration plot for this held-out 

20% test dataset by plotting the observed versus predicted risk of AF for 50 

equal-sized groups of increasing predicted risk. Calibration was quantified 

using the Brier score, which is the mean squared error between observed 

outcome and predicted risk with 0 representing perfect accuracy and 1 

meaning perfect inaccuracy. Calibration was tested using Spiegelhalter’s z 

test at a significance threshold of 0.05. The null hypothesis of Spiegelhalter’s
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z test is that the model is well calibrated; a statistically significant score 

indicates poor calibration. Calibration was visualized and tested across all 

sites and separately across VA hospitals and Cedars-Sinai. 

Statistical analysis was performed in R and Python. 

Results

There were 2,420,508 12-lead ECGs acquired within our network of VA 

hospitals. After excluding ECGs that had poor data quality, paced rhythms, 

incomplete clinical info and were non-sinus or acquired in inpatient settings 

(62.5% of all ECGs), the final VA cohort included 907,858 outpatient ECGs in 

sinus rhythm from 277,528 patients with 28,117 ECGs having a documented 

case of AF within 31 days (Figure 1). The Cedars-Sinai external testing 

cohort included 72,483 outpatient ECGs in sinus rhythm from 44,754 

patients with 1,736 cases of AF within 31 days.  In the VA cohort, ECGs were 

from patients who were on average 62.4 (SD 13.5) years old, 6.4% female, 

10.7% Black, with a high prevalence of comorbidities (11.2% heart failure, 

32.4% diabetes, 8.8% prior stroke (CVA)/transient ischemic attack 

(TIA)/thromboembolism (TE), 11.1% prior myocardial infarction (MI)) and a 

mean CHA2DS2-VASc score of 1.9 (1.6) (Table 1). In the external test cohort, 

patients had an average of 59.5 years (SD 15.4) and were 52.5% female and 

9.4% Black. Compared to the VA population, there was a lower prevalence of
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comorbidities (8.4% heart failure, 8.5% diabetes, 4.6% prior CVA/TIA/TE, 

1.8% prior MI) and mean CHA2DS2-VASc score of 1.6 (1.4).

The prevalence of sinus ECGs with AF detected within 31 days on ECG was 

3.1%. When comparing cases to controls, patients with concurrent AF were 

on average older (70.4 vs. 61.9 years old), less often female (3.8% vs. 

10.0%), more often White (78.3% vs. 62.9%) with a higher incidence of 

comorbidities (37.3% vs. 10.2% heart failure, 45.0% vs. 30.2% diabetes, 

16.2% vs. 8.3% prior CVA/TIA/TE, 25.4% vs. 9.9% prior MI) and CHA2DS2-

VASc score (3.1 (1.8) vs. 1.9 (1.6)) (Supplemental Table 1). 

The deep learning model was trained on 359,886 ECGs from the San 

Francisco VA and Palo Alto VA. When tested on held-out training datasets at 

these two VA sites, the model had AUCs of 0.88 (95% CI 0.87-0.90), 0.89 

(0.89-0.90) with accuracies of 0.81 (0.79-0.83), 0.82 (0.81-0.83) and F1 

scores of 0.33 (0.29-0.37) and 0.49 (0.47-0.51), respectively (Figure 2A). 

The model was then applied to four other VA sites that were not included in 

model training and achieved AUCs of 0.86 (0.85-0.87) (Fresno VA), 0.84 

(0.83-0.85) (Sacramento VA), 0.84 (0.83-0.85) (Reno VA), 0.83 (0.79-0.88) 

(Pacific Islands VA). When tested on an external test set at Cedars-Sinai 

Medical Center, the model achieved an AUC of 0.93 (0.93-0.94). 
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The deep learning model was also well-calibrated with Brier scores of 0.02, 

0.02, and 0.02 across all sites, VA hospitals, and Cedars-Sinai Medical 

Center, respectively (a Brier score of 0 indicates perfect calibration, 1 

indicates perfect miscalibration) (Figure 2B). Testing by Spigelhalter’s z test

also confirmed a failure to reject the null hypothesis of model calibration at a

significance threshold of 0.05 (p = 0.06, 0.07, 0.39 across all sites, VA 

hospitals, Cedars-Sinai Medical Center).

To establish the deep learning model’s performance relative to conventional 

clinical prediction tools, we compared the deep learning model’s predictions 

to AF predictions made by using the CHA2DS2-VASc score as well as 

regression using all available demographic and clinical risk factor 

information. When applied to test patients not involved in model training 

across all VA and Cedars-Sinai sites, the deep learning model had an AUC of 

0.86 (0.86-0.87), the risk factor regression model had an AUC of 0.73 (0.73-

0.74), and the CHA2DS2-VASc score had an AUC of 0.70 (0.70-0.70) (Figure 

3). Choosing a screening threshold to fix testing sensitivity at 25% resulted 

in the number needed to screen to find a true positive case of AF being 2.47 

individuals using the deep learning model vs. 11.48 by the regression model 

and 12.01 by CHA2DS2-VASc score (Figure 3).  

We tested the model’s performance in specific patient cohort subsets (Table

2, Supplemental Table 2). Across the different sites, there were 
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substantial differences in the proportion of patients that were female 

(ranging from 4.8%-52.5%), Black (1.5%-17.2%), younger than 65 years old 

(48.1%-59.9%), and with a CHA2DS2-VASc score ≥ 2 (41.4%-64.4%). At some 

sites, the model showed small significant increases in performance in female

patients and small decreases in performance in patients older than 65 years 

old and those with a CHA2DS2-VASc score ≥ 2. However, these differences 

were not observed consistently across all sites and performance was largely 

unchanged across the different subgroups.

We conducted an additional exploratory analysis to simulate the prediction 

of new undiagnosed AF within a longer 1-year time frame, by redefining 

cases as sinus rhythm ECGs closest to and chronologically before the first 

known diagnosis of AF for each patient (limited to ECGs within 1 year before 

AF diagnosis). In this analysis, the model had AUCs ranging from 0.80 (0.79-

0.81) to 0.85 (0.84-0.86) and accuracies from 0.73 (0.72-0.75) to 0.77 (0.76-

0.78) at VA sites (Supplemental Table 3, Supplemental Figure 2). When

tested on Cedars-Sinai ECGs, the AUC was 0.79 (0.78-0.79) with an accuracy 

of 0.72 (0.71-0.72). 

Discussion

In this multi-site retrospective study of a large and diverse population, we 

found that a deep learning model using convolutional neural networks 

predicted with high discrimination and calibration the occurrence of atrial 

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355



fibrillation within 31 days from 12-lead ECGs in sinus rhythm. Prediction 

performance was robust across 6 different VA hospital networks as well as a 

separate non-VA large urban academic medical center. Predictions were 

better than those using conventional clinical risk factors and were largely 

preserved across multiple patient subgroups including women and Black 

patients. We additionally showed that this model could potentially help 

predict new onset atrial fibrillation within a longer 1-year time horizon.

Early detection of AF holds particular promise because it can inform 

management decisions that change the natural progression and complication

profile of this disease. Anticoagulation reduces the risk of stroke by two 

thirds.13 Antiarrhythmic medications and ablation can prevent the 

development of permanent AF and may also reduce the rate of stroke and 

cardiovascular death.14–16 While guidelines support opportunistic screening 

for AF, the ideal population and best method for screening remain 

unclear.38,39 Multiple studies have proven that more intensive monitoring, 

whether by structured 12-lead ECG screening programs, remote monitoring, 

or implanted devices, results in more detection of occult AF.40–46 However, 

most of these screening interventions are resource-intensive, sometimes 

invasive, and have not been adopted as part of routine clinical practice. One 

recent large randomized controlled trial of an AF screening program for all 

individuals 75-76 years old in two regions of Sweden revealed that one of the

major barriers in screening was convincing patients to participate in the 
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program, even though those who did participate had a significantly lower 

composite endpoint of stroke, bleeding, and mortality.47 

In this study, we show that deep learning of 12-lead ECGs acquired as a part 

of routine clinical practice may be a relatively easy method for identifying 

patients who are at highest risk for having unidentified AF. This could be 

incorporated into existing workflows without necessarily requiring significant 

additional patient participation or clinical resources. High risk patients could 

then be funneled into a more intensive AF identification program using 

additional monitoring. Among patients determined to be high risk by the 

deep learning model, the number needed to screen to detect a true positive 

case of AF is tunable based on the desired test sensitivity and could be as 

low as 2.5 patients for a test sensitivity of 25% and up to 11.5 patients for a 

sensitivity of 75%. This is substantially lower than the number needed to 

screen using risk assessment based on clinical risk factor regression or the 

CHA2DS2-VASc score, which had a number needed to screen of 11.5 and 12, 

respectively, for a test sensitivity of 25% and 25.4 and 20.8 for a test 

sensitivity of 75%. Our work builds upon previous research which has also 

used deep learning to identify AF from sinus ECGs with simulated and real 

pilot deployments in different patient populations.48,27 

Our findings are unique in applying deep learning to multicenter 

cardiovascular data from US Veterans with additional external site validation.
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Implementation of a screening program in this large population may be 

particularly effective given the high pre-test probability of disease, which 

could help limit the rate of false positives, as well as the higher average 

CHA2DS2-VASc score, which could increase the net benefit of starting 

anticoagulation.29–31 The same characteristics that make the Veteran 

population particularly apt for AF screening, however, also make it different 

from other well-studied patient populations. These differences can pose 

challenges for the generalizability into and out from the VA for deep learning 

models, which remain limited in their interpretability and at risk for 

overfitting and confounding.49 A recent study showed that a deep learning 

algorithm designed to recognize acute kidney injury did not perform equally 

well across VA and non-VA populations possibly due to differences in 

demographics (i.e. a significantly lower proportion of VA patients being 

female).50 

We found that despite there being substantial differences in patient makeup 

across different VA cohorts and our external non-VA test site, the predictive 

performance of our deep learning model for concurrent AF was largely 

preserved. At some sites, there were small decreases in performance in 

patients who were older and had higher CHA2DS2-VASc scores. This could be 

because these patients had more comorbidities that introduced competing 

changes to the ECG and made predicting AF more difficult. Female patients 

in this cohort were also overall younger (69.7% < 65 years old compared to 
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50.6% of male patients), which could explain the improved performance in 

this subgroup. Overall, these differences were not seen across all sites and 

given the small magnitude of difference, may not be clinically meaningful. 

Similarly, our model displayed small improvements in discriminatory abilities 

when applied to the external test cohort from Cedars-Sinai. This may be 

because this cohort was relatively enriched for patients who were female, 

younger, and with a lower CHA2DS2-VASc score.

Limitations

Several limitations warrant consideration. As this was a retrospective study, 

the population with 12-lead ECGs may be different from a prospective AF 

screening population. While ECGs in our VA system are routinely obtained 

during clinic visits, there was site-to-site variability in the average number of 

ECGs per patient, and we might expect that this study’s patient population 

with ECGs has a higher prevalence of cardiovascular disease and AF. This 

selection bias could increase the positive predictive value of the model and 

decrease the number needed to screen compared to using the model when 

screening a broader population of patients. Still, prospective model 

performance could be similar if a higher risk population is chosen for 

prospective screening. While we used all data from the ECG database and 

electronic health records to identify cases of AF, it remains likely that there 

were patients in the control group who had undiagnosed AF. This would bias 

our results to the null and cause underestimation of our model’s 
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performance. Some patients predicted to be cases could have in fact been 

correctly predicted but unknown at the time or had AF identified at an 

outside health system. Future prospective studies using continuous 

monitoring of high risk patients by our model could confirm AF prediction and

clarify whether this method improves downstream outcomes such as stroke 

and thromboembolism. 

Conclusion

A convolutional neural network trained using outpatient 12-lead ECGs in 

sinus rhythm from US Veterans successfully predicted the presence of AF 

within 31 days in populations of Veterans and non-Veterans with a diversity 

of demographic characteristics and comorbidities. Such a model holds 

promise for AF screening and could be used in future efforts to reduce 

adverse complications associated with this disease.  
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Figure Legends

Figure 1. Cohort flow diagram

Inclusion and exclusion of 12-lead ECGs at 6 VA sites and Cedars-Sinai. All 

available ECGs were initially included and then excluded if they had poor 

data quality, paced rhythm, incomplete clinical information, were acquired 

during inpatient stays, or were non-sinus rhythm. The model was trained and

validated on ECGs from the San Francisco and Palo Alto VA sites. The model 

was then tested on held-out ECGs from San Francisco and Palo Alto VA sites 

in addition to ECGs from 4 other VA sites and Cedars-Sinai. 

Abbreviations: ECG = electrocardiogram, SF = San Francisco, PA = Palo Alto,

Sac = Sacramento, PI = Pacific Islands

*A single ECG could fall into multiple exclusion categories (E.g. both a paced 

rhythm and non-sinus)

Figure 2. Model performance

A. Model discrimination performance characteristics for deep learning model 

trained on data from San Francisco and Palo Alto VA sites and tested on held 

out ECGs from these two sites as well as additional VA sites and Cedars-

Sinai.

B. Model calibration performance characteristics. Observed versus predicted 

risk of AF for equal-sized groups of increasing predicted risk for all sites, VA 

hospitals only, and Cedars-Sinai only.
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Abbreviations: AUC = area under the curve of the receiver operating 

characteristic curve

Figure 3. Deep learning model performance compared to clinical risk

factor models. 

Performance of deep learning model on all ECGs held out from model 

training compared to predicting AF using a clinical risk factors model (age, 

sex, history of heart failure, diabetes, stroke/transient ischemic 

attack/thromboembolism, prior myocardial infarction, peripheral vascular 

disease, chronic kidney disease) or CHA2DS2-VASc score.

Abbreviations: PPV = positive predictive value, NNS = number needed to 

screen to detect one true positive case of AF

Supplemental Figure 1. Study design schematic. 

Outpatient 12-lead ECGS in sinus rhythm from the San Francisco and Palo 

Alto VA centers were used for model training. Cases of concurrent AF were 

defined as sinus ECGs with an AF ECG within 31 days. Controls were sinus 

ECGs with no AF by ECG or by diagnoses available in the electronic health 

records system. An atrous convolutional neural network was trained to 

predict cases and was then tested on held-out ECGs from San Francisco and 

Palo Alto VA sites in addition to ECGs from 4 other VA sites and Cedars-Sinai. 

The model was also tested in specific patient subgroup. Both prediction 

discrimination and calibration performance characteristics were reported. 
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Supplemental Figure 2. Model performance for exploratory analysis 

to simulate prediction of first case of AF within 1 year.

The model was used to predict the first case of AF within 1 year of a sinus 

rhythm ECG.
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Figure 1. Cohort flow diagram

All ECGs: 2,420,508

Veterans Affairs

Training Dataset
SF: 141,986 (2,939 cases)
PA: 217,900 (11,887 cases)

Validation Dataset
SF: 17,846 (372 cases)
PA: 26,988 (1,460 cases)

Held-Out Test Dataset
SF: 17,793 (403 cases)
PA: 27,186 (1,473 cases)
Fresno: 114,332 (3,398 cases)
Sac: 168,798 (2,798 cases)
Reno: 145,474 (3,294 cases)
PI: 29,555 (93 cases)

Poor data quality: 69,542
Paced rhythm: 106,215
Incomplete clinical info: 412,793
Inpatient:  398,671
Non-sinus: 559,161

Final Cohort ECGs: 907,858 (28,117 cases)

Cedars-Sinai

All ECGs: 581,737

Poor data quality: 5,580
Paced rhythm: 48,166
Inpatient: 414,070
Non-sinus: 41,438

External Test Dataset: 72,483 (1,736 cases)

*
*

Abbreviations: ECG = electrocardiogram, SF = San Francisco, PA = Palo Alto, Sac = 
Sacramento, PI = Pacific Islands
*A single ECG could fall into multiple exclusion categories (E.g. both a paced rhythm and 
non-sinus)
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Table 1. ECG patient characteristics by site

All VA 
Sites

San 
Francisco 
VA

Palo Alto 
VA Fresno VA

Sacrament
o VA Reno VA

Pacific 
Islands VA

Cedars-
Sinai

n 907858 177625 272074 114332 168798 145474 29555 72483

ECGs/Patient 
(SD)

3.27 (4.14)
3.67 (4.82) 3.48 (4.55) 3.88 (4.65) 2.74 (3.09) 3.23 (3.81) 1.85 (1.49) 1.62 (2.78)

Age (SD) 62.4 (13.5) 62.4 (13.1) 61.6 (14.0) 64.1 (13.1) 62.2 (13.8) 62.7 (13.2) 61.8 (12.9) 59.5 (15.4)

Female
58158 (6.4) 10820 (6.1) 18548 (6.8) 5440 (4.8) 13020 (7.7) 8796 (6.0) 1534 (5.2) 38068 

(52.5)

Race (%)

American 
Indian

1553 (0.2) 330 (0.2) 555 (0.2) 118 (0.1) 331 (0.2) 165 (0.1) 54 (0.2) 66 (0.1)

Asian 24813 (2.7) 8257 (4.6) 9408 (3.5) 494 (0.4) 3562 (2.1) 196 (0.1) 2896 (9.8) 5743 (7.9)

Black
96912 
(10.7)

31192 
(17.6)

29646 
(10.9)

4731 (4.1) 27930 
(16.5)

2159 (1.5) 1254 (4.2) 6828 (9.4)

Latinx 41446 (4.6) 5691 (3.2) 18216 (6.7) 9617 (8.4) 6455 (3.8) 987 (0.7) 480 (1.6) 2119 (2.9)

Pacific Islander 6193 (0.7) 502 (0.3) 1179 (0.4) 142 (0.1) 1000 (0.6) 59 (0.0) 3311 (11.2) 20 (0.0)

White
566613 
(62.4)

122725 
(69.1)

205831 
(75.7)

48544 
(42.5)

121565 
(72.0)

59010 
(40.6)

8938 (30.2) 54245 
(74.8)

Other 3690 (0.4) 591 (0.3) 1192 (0.4) 142 (0.1) 916 (0.5) 56 (0.0) 793 (2.7) 69 (0.1)

Unknown
166638 
(18.4)

8337 (4.7) 6047 (2.2)
50544 
(44.2)

7039 (4.2)
82842 
(56.9)

11829 
(40.0)

3393 (4.7)

HF
101548 
(11.2)

20395 
(11.5)

26827 (9.9)
15246 
(13.3)

21168 
(12.5)

14003 (9.6) 3909 (13.2) 6088 (8.4)

HTN
523776 
(57.7)

97995 
(55.2)

127289 
(46.8)

78804 
(68.9)

115605 
(68.5)

83449 
(57.4)

20634 
(69.8)

14627 
(20.2)

DM
294232 
(32.4)

53360 
(30.0)

76378 
(28.1)

50328 
(44.0)

60373 
(35.8)

41881 
(28.8)

11912 
(40.3)

6170 (8.5)

CVA/TIA/TE
80006 (8.8) 15402 (8.7) 19365 (7.1)

11844 
(10.4)

17689 
(10.5)

13783 (9.5) 1923 (6.5) 3309 (4.6)

MI
100788 
(11.1)

20954 
(11.8)

29135 
(10.7)

15305 
(13.4)

18899 
(11.2)

14123 (9.7) 2372 (8.0) 1339 (1.8)

PVD 37596 (4.1) 8339 (4.7) 7837 (2.9) 4316 (3.8) 7938 (4.7) 7829 (5.4) 1337 (4.5) 3740 (5.2)

CKD
92461 
(10.2)

18226 
(10.3)

21900 (8.0) 14347 
(12.5)

21025 
(12.5)

13490 (9.3) 3473 (11.8) 5943 (8.2)

CHADSVASc (SD) 1.9 (1.6) 1.9 (1.6) 1.7 (1.6) 2.3 (1.6) 2.1 (1.6) 1.9 (1.6) 2.1 (1.5) 1.6 (1.4)

Concurrent AF 28117 (3.1) 3714 (2.1) 14820 (5.4) 3398 (3.0) 2798 (1.7) 3294 (2.3) 93 (0.3) 1736 (2.4)

Abbreviations: SD = standard deviation, HF = heart failure, HTN = hypertension, DM = diabetes mellitus, CVA = cerebrovascular 
accident, TIA = transient ischemic attack, TE = thromboembolism, MI = myocardial infarction, PVD = peripheral vascular disease, 
CKD = chronic kidney disease, AF = atrial fibrillation
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Figure 2. Model performance by test site

A. Model discrimination. Performance characteristics for deep learning 
model trained on data from San Francisco and Palo Alto VA sites and tested 
on held out ECGs from these two sites as well as additional VA sites and 
Cedars-Sinai

AUROC

0.93 (0.93-0.94)Cedars-Sinai

0.88 (0.87-0.9)San Francisco VA

0.89 (0.89-0.9)Palo Alto VA

0.86 (0.85-0.87)Fresno VA

0.84 (0.83-0.85)Sacramento VA

0.84 (0.83-0.85)Reno VA

0.83 (0.79-0.88)Pacific Islands VA
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B. Model calibration. Observed versus predicted risk of AF for equal-sized 
groups of increasing predicted risk for all sites, VA hospitals only, and 
Cedars-Sinai only.
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Figure 3. Deep learning model performance compared to clinical risk
factor models. Performance of deep learning model on all ECGs held out 
from model training compared to predicting AF using a clinical risk factors 
model (age, sex, history of heart failure, diabetes, stroke/transient ischemic 
attack/thromboembolism, prior myocardial infarction, peripheral vascular 
disease, chronic kidney disease) or CHA2DS2-VASc score.
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Table 2. Model performance in patient subgroups

San 
Francisco VA Palo Alto VA Fresno VA

Sacramento 
VA Reno VA

Pacific 
Islands VA Cedars-Sinai

All Test 
Patients 17793 27186 114332 168798 145474 29555 72483

AUC All 
Patients 0.88 (0.87-0.9) 0.89 (0.89-0.9)

0.86 (0.85-
0.87)

0.84 (0.83-
0.85)

0.84 (0.83-
0.85)

0.83 (0.79-
0.88)

0.93 (0.93-
0.94)

Female (%) 1048 (5.9) 1785 (6.6) 5440 (4.8) 13020 (7.7) 8796 (6.0) 1534 (5.2) 38068 (52.5)

AUC in Female
Patients

0.92* (0.88-
0.97)

0.88 (0.79-
0.97)

0.88 (0.84-
0.92)

0.87 (0.82-
0.92)

0.87 (0.84-
0.91)

0.96* (0.91-
1.00)

0.95* (0.94-
0.96)

Black (%) 3058 (17.2) 2827(10.4) 4731 (4.1) 27930 (16.5) 2159 (1.5) 1254 (4.2) 6828 (9.4)

AUC in Black 
Patients 0.9 (0.85-0.94)

0.88 (0.84-
0.92)

0.84 (0.81-
0.88)

0.86 (0.84-
0.89)

0.80 (0.71-
0.89)

0.86 (0.73-
0.99)

0.92 (0.88-
0.95)

Age < 65 y.o. 
(%) 9834 (55.3) 14884 (54.7) 55035 (48.1) 90427 (53.6) 75162 (51.7) 15549 (52.6) 43431 (59.9)

AUC in < 65 
y.o.

0.88 (0.85-
0.92)

0.90* (0.88-
0.91)

0.86 (0.85-
0.88)

0.84 (0.83-
0.86)

0.85 (0.83-
0.86)

0.80 (0.72-
0.88)

0.94* (0.93-
0.95)

Age ≥ 65 y.o. 
(%) 7959 (44.7) 12302 (45.3) 59297 (51.9) 78371 (46.4) 70312 (48.3) 14006 (47.4) 29052 (40.1)

AUC in ≥ 65 
y.o.

0.85 (0.83-
0.88)

0.87 (0.86-
0.89)

0.83* (0.82-
0.84)

0.81* (0.8-
0.82)

0.81* (0.8-
0.82) 0.85 (0.8-0.89)

0.92* (0.91-
0.93)

CHA2DS2-VASc 
≥ 2 (%) 9340 (52.5) 12872 (47.3) 73633 (64.4) 101830 (60.3) 78041 (53.6) 17938 (60.7) 29990 (41.4)

AUC in 
CHA2DS2-VASc 
≥ 2

0.86 (0.84-
0.88)

0.87 (0.86-
0.88)

0.84* (0.83-
0.84)

0.82* (0.81-
0.83)

0.82* (0.81-
0.83) 0.84 (0.78-0.9)

0.92* (0.91-
0.93)

* = statistically significant, p < 0.01 when comparing to AUC for all patients at site
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eFigure 1. Study Design Schematic
Outpatient 12-lead ECGS in sinus rhythm from the San Francisco and Palo 
Alto VA centers were used for model training. Cases of concurrent AF were 
defined as sinus ECGs with an AF ECG within 31 days. Controls were sinus 
ECGs with no AF by ECG or by diagnoses available in the electronic health 
records system. An atrous convolutional neural network was trained to 
predict cases and was then tested on held-out ECGs from San Francisco and 
Palo Alto VA sites in addition to ECGs from 4 other VA sites and Cedars-Sinai. 
The model was also tested in specific patient subgroup. Both prediction 
discrimination and calibration performance characteristics were reported. 
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eTable 1. ECG Patient Characteristics by Case or Control

Concurrent AF
No Concurrent 
AF

n 29853 950488
ECGs/Patient 3.4 (4.9) 3.1 (4.0)
Age (SD) 70.4 (10.5) 61.9 (13.7)
Female 1147 (3.8) 95079 (10.0)
Race (%)

American 
Indian

39 (0.1) 1580 (0.2)

Asian 674 (2.3) 29882 (3.1)
Black 1797 (6.0) 101943 (10.7)
Latinx 1042 (3.5) 42523 (4.5)
Pacific Islander 161 (0.5) 6052 (0.6)
White 23373 (78.3) 597485 (62.9)
Other 71 (0.2) 3688 (0.4)
Unknown 2696 (9.0) 167335 (17.6)

HF 11130 (37.3) 96506 (10.2)
HTN 22665 (75.9) 515738 (54.3)
DM 13443 (45.0) 286959 (30.2)
CVA/TIA/TE 4850 (16.2) 78465 (8.3)
MI 7573 (25.4) 94554 (9.9)
PVD 2655 (8.9) 38681 (4.1)
CKD 6469 (21.7) 91935 (9.7)
CHA2DS2-VASc 
(SD)

3.1 (1.8) 1.9 (1.6)

Abbreviations: SD = standard deviation, HF = heart failure, HTN = hypertension, DM = 
diabetes mellitus, CVA = cerebrovascular accident, TIA = transient ischemic attack, TE = 
thromboembolism, MI = myocardial infarction, PVD = peripheral vascular disease, CKD = 
chronic kidney disease, AF = atrial fibrillation
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eTable 2. Model Discrimination Performance by Test Site. 

Performance characteristics for deep learning model trained on data from 
San Francisco and Palo Alto VA sites and tested on held out ECGs from these 
two sites as well as additional VA sites and Cedars-Sinai

Site AUROC Sensitivity Specificity Accuracy F1

Cedars-Sinai
0.93 (0.93-
0.94)

0.87 (0.83-
0.9) 0.87 (0.83-0.9)

0.87 (0.86-
0.88)

0.46 (0.44-
0.48)

San Francisco VA 0.88 (0.87-0.9)
0.86 (0.82-
0.9)

0.76 (0.74-
0.79)

0.81 (0.79-
0.83)

0.33 (0.29-
0.37)

Palo Alto VA 0.89 (0.89-0.9)
0.74 (0.72-
0.76)

0.83 (0.81-
0.85)

0.82 (0.81-
0.83)

0.49 (0.47-
0.51)

Fresno VA
0.86 (0.85-
0.87)

0.78 (0.72-
0.84)

0.78 (0.71-
0.84)

0.78 (0.77-
0.79)

0.32 (0.30-
0.33)

Sacramento VA
0.84 (0.83-
0.85)

0.75 (0.67-
0.82)

0.78 (0.71-
0.85)

0.76 (0.76-
0.77)

0.24 (0.23-
0.26)

Reno VA
0.84 (0.83-
0.85)

0.73 (0.7-
0.76)

0.79 (0.76-
0.82)

0.76 (0.75-
0.77)

0.28 (0.27-
0.30)

Pacific Islands 
VA

0.83 (0.79-
0.88)

0.77 (0.66-
0.89)

0.80 (0.71-
0.88)

0.78 (0.74-
0.83)

0.18 (0.12-
0.25)
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eTable 3. Number Needed to Screen (NNS) Across Different Atrial Fibrillation
Detection Sensitivities to Identify One True Case of Atrial Fibrillation

Deep Learning 
Model

Risk Factors 
Regression CHA2DS2VASc

Sensitivit
y PPV NNS PPV NNS PPV NNS

0.10 0.61 1.65 0.10 9.68 0.10 10.03

0.25 0.40 2.47 0.09 11.48 0.08 12.01

0.50 0.19 5.40 0.06 17.59 0.06 15.63

0.75 0.09 11.53 0.04 25.39 0.05 20.76

0.90 0.05 20.75 0.03 31.58 0.04 26.25
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eTable 4. Number Needed to Screen Across Patients Subgroups

 Number needed to screen to detect one true positive case of AF in patient 
subgroups across different sensitivities when deep learning model is applied 
to held out test data.

Sensitivi
ty All Patients Female Black Age < 65 Age ≥ 65

CHA2DS2-VASc
≥ 2

0.1 1.65 1.83 1.94 1.82 1.58 1.56

0.25 2.47 2.17 3.41 2.94 2.31 2.33

0.5 5.4 3.31 7.65 8.1 4.8 4.89

0.75 11.53 9.89 15.77 20.1 9.61 9.96

0.9 20.75 26.3 30.69 39.19 15.82 16.56
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eTable 5. ECG Patient Characteristics for Exploratory Analysis to Simulate 
Prediction of First Case of AF Within 1 Year

All VA 
Sites

San 
Francisco 
VA

Palo Alto 
VA Fresno VA

Sacrament
o VA Reno VA

Pacific 
Islands VA

Cedars-
Sinai

n 760976 126698 181893 112448 166939 143494 29504 306789

Age (SD)
62.58 
(13.25)

62.97 
(12.47)

62.02 
(13.34)

63.96 
(13.08)

62.09 
(13.82)

62.56 
(13.21)

61.82 
(12.90)

62.15 
(17.18)

Female 45707 (6.0) 6736 (5.3) 10314 (5.7) 5392 (4.8) 12970 (7.8) 8763 (6.1) 1532 (5.2)
145394 
(47.4)

Race (%)

American 
Indian 1306 (0.2) 249 (0.2) 394 (0.2) 118 (0.1) 327 (0.2) 164 (0.1) 54 (0.2) 379 (0.1)

Asian 18715 (2.5) 5602 (4.4) 6008 (3.3) 481 (0.4) 3537 (2.1) 196 (0.1) 2891 (9.8) 19020 (6.2)

Black
81236 
(10.7)

24272 
(19.2)

21161 
(11.6) 4675 (4.2)

27737 
(16.6) 2138 (1.5) 1253 (4.2)

47933 
(15.6)

Latinx 34660 (4.6) 4410 (3.5) 12880 (7.1) 9535 (8.5) 6387 (3.8) 968 (0.7) 480 (1.6) 8668 (2.8)

Pacific Islander 5518 (0.7) 306 (0.2) 726 (0.4) 141 (0.1) 989 (0.6) 55 (0.0) 3301 (11.2) 241 (0.1)

White
457460 
(60.1)

86666 
(68.4)

136723 
(75.2)

47250 
(42.0)

120040 
(71.9)

57870 
(40.3) 8911 (30.2)

211646 
(69.0)

Other 3038 (0.4) 392 (0.3) 750 (0.4) 142 (0.1) 909 (0.5) 56 (0.0) 789 (2.7) 693 (0.2)

Unknown
159043 
(20.9) 4801 (3.8) 3251 (1.8)

50106 
(44.6) 7013 (4.2)

82047 
(57.2)

11825 
(40.1) 18209 (5.9)

HF
87807 
(11.5)

16873 
(13.3)

19164 
(10.5)

14341 
(12.8)

20378 
(12.2) 13147 (9.2) 3904 (13.2)

44935 
(14.6)

HTN
460657 
(60.5)

76735 
(60.6)

90400 
(49.7)

77152 
(68.6)

113974 
(68.3)

81802 
(57.0)

20594 
(69.8)

74555 
(24.3)

DM
260372 
(34.2)

42960 
(33.9)

55739 
(30.6)

49272 
(43.8)

59502 
(35.6)

41013 
(28.6)

11886 
(40.3)

36016 
(11.7)

CVA/TIA/TE 71193 (9.4)
12727 
(10.0) 14358 (7.9)

11435 
(10.2)

17357 
(10.4) 13397 (9.3) 1919 (6.5)

36737 
(12.0)

MI
89655 
(11.8)

18108 
(14.3)

22422 
(12.3)

14697 
(13.1)

18407 
(11.0) 13653 (9.5) 2368 (8.0) 20741 (6.8)

PVD 33795 (4.4) 7160 (5.7) 5787 (3.2) 4173 (3.7) 7760 (4.6) 7582 (5.3) 1333 (4.5)
33163 
(10.8)

CKD
82415 
(10.8)

15144 
(12.0) 16442 (9.0)

13780 
(12.3)

20532 
(12.3) 13054 (9.1) 3463 (11.7)

34340 
(11.2)

CHADSVASc (SD) 2.00 (1.62) 2.02 (1.66) 1.78 (1.61) 2.25 (1.63) 2.12 (1.60) 1.90 (1.60) 2.07 (1.48) 2.05 (1.76)

AF in 1 year 5628 (0.7) 578 (0.5) 1726 (0.9) 1151 (1.0) 916 (0.5) 1213 (0.8) 44 (0.1) 7170 (2.3)
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eFigure 2. Model Performance for Exploratory Analysis to Simulate 
Prediction of First Case of AF Within 1 Year
The model was used to predict the first case of AF within 1 year of a sinus 
rhythm ECG.

F1AccuracySpecificitySensitivityAUCSite

0.33 (0.33-0.34)0.72 (0.71-0.72)0.70 (0.67-0.72)0.74 (0.71-0.77)0.79 (0.78-0.79)Cedars-Sinai

0.10 (0.08-0.12)0.75 (0.73-0.77)0.72 (0.66-0.78)0.78 (0.72-0.84)0.82 (0.81-0.84)San Francisco VA

0.19 (0.17-0.2)0.77 (0.76-0.78)0.78 (0.75-0.80)0.77 (0.74-0.80)0.85 (0.84-0.86)Palo Alto VA

0.15 (0.13-0.17)0.74 (0.73-0.75)0.71 (0.68-0.75)0.77 (0.73-0.82)0.82 (0.80-0.83)Fresno VA

0.11 (0.09-0.13)0.75 (0.74-0.77)0.76 (0.66-0.86)0.75 (0.65-0.84)0.82 (0.80-0.83)Sacramento VA

0.12 (0.11-0.13)0.73 (0.72-0.75)0.75 (0.69-0.81)0.72 (0.65-0.78)0.80 (0.79-0.81)Reno VA

0.17 (0.06-0.28)0.79 (0.73-0.85)0.82 (0.73-0.90)0.77 (0.62-0.92)0.81 (0.73-0.89)Pacific Islands VA
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