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Autophagy and Autoimmunity
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bDivision of Rheumatology, Allergy and Clinical Immunology, University of California at Davis

cInstitute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California

Abstract

Autophagy is a highly conserved protein degradation pathway from yeasts to humans that is 

essential for removing protein aggregates and misfolded proteins in healthy cells. Recently, 

autophagy-related genes polymorphisms have been implicated in several autoimmune diseases 

including systemic lupus erythematosus, rheumatoid arthritis, psoriasis, and multiple sclerosis. 

Numerous studies reveal autophagy and autophagy-related proteins also participate in immune 

regulation. Conditional deletions of autophagy-related proteins in mice have rendered protection 

from experimental autoimmune encephalomyelitis, and TNF-mediated joint destruction in animal 

models of multiple sclerosis and experimental arthritis respectively. As autophagy is strongly 

implicated in immune functions such as removal of intracellular bacteria, inflammatory cytokine 

secretion, antigen presentation, and lymphocyte development, in this review we summarized 

current understanding of the roles of autophagy and autophagy proteins in autoimmune diseases.

1. Introduction

1.1 Autophagy pathways

Autophagy is the only known conserved protein degradation pathway other than the 

ubiquitin-proteasome system (UPS). There are three major types of autophagy: 1) 

macroautophagy (referred as autophagy in general), 2) chaperone-mediated autophagy 

(CMA), and 3) microautophagy (Fig. 1).

1.2 Macroautophagy

The most studied autophagy pathway is macroautophagy that is generally referred as 

autophagy. Because the autophagy pathway is highly conserved, studies in yeast genetics 

advance our knowledge tremendously in the molecular process of autophagy. This process 
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involves phagophore formation, autophagosome formation, and fusion of autophagosomes 

and lysosomes to form autolysosomes for protein degradation. Phagophore is an isolation 

membrane, which may derive from the endoplasmic reticulum (ER) or mitochondria. 

Phagophore can recruit and enclose cytoplasmic components selectively or non-selectively 

to form a double layer membrane vesicle called autophagosome. Autophagosome later fuses 

with the lysosome and forms the autolysosome where degradative enzymes break down 

cytoplasmic components.

Similar to UPS, ubiquitin also plays essential roles in regulating autophagy, including 

activating autophagy-related (ATG) proteins and labeling targeted cargos for degradation [1]. 

ATG7 is one of the ubiquitin-activating enzymes, also know as E1 enzymes that initialized 

the process [2]. E2 ATG10 is responsible for the conjugation of ATG5-ATG12 to ATG16, 

which then facilitate conjugation of phosphatidylethanolamine (PE) to LC3 together with E2 

ATG3 [3]. PE-conjugated LC3, also known as LC3-II tightly bound to autophagosomal 

membranes, therefore, is used as autophagic marker protein [4–6].

Autophagy has been long considered to be a non-selective process. However, recent studies 

demonstrate that autophagy also regulates highly selective degradation processes such as 

clearing damaged mitochondria (mitophagy) and clearing ubiquitinated protein aggregates 

(aggrephagy)(Fig. 2)[7–10]. Deficient in mitophagy-related proteins such as PTEN-induced 

putative kinase 1 (PINK1), Parkin, optineurin (OPTN) and Nix leads to impaired clearance 

of damaged mitochondria [11, 12]. Deficient in other autophagy adaptor proteins such as 

sequestosome-1 (SQSTM1), neighbor of Brca1 gene (NBR1), WDFY3 or HDAC6 leads to 

impaired clearance of misfolded proteins and protein aggregates [13–15].

1.3 Chaperone-mediated autophagy

Chaperone-mediated autophagy (CMA) is another type of autophagy that does not involve 

the formation of autophagosomes [16]. CMA involves several steps including 1) substrate 

recognition and lysosomal targeting, 2) substrate binding and unfolding, 3) substrate 

translocation and substrate degradation [17]. Firstly, cargos containing short degradation 

signal sequence related to KFERQ are recruited by a chaperone complex including Heat 

shock-cognate protein of 70KDa (Hsc70) in the cytosol [18]. Secondly, Lysosome-

associated membrane protein type 2A (LAMP-2A) on the lysosomes targets and binds to the 

chaperone complex, which brings the targeted proteins close to lysosomes. Thirdly, the 

interaction between LAMP-2A and chaperone complex further induces LAMP-2A 

oligomerization to facilitate translocation of targeted proteins from the cytosol into 

lysosomes for degradation [19]. Recently, modulation of deregulated CMA by a 

phosphopeptide has been shown significantly reduced autoimmune pathologies in patients 

and an animal autoimmune disease model [20], but further studies are required to elucidate 

CMA mechanisms in autoimmune diseases.

1.4 Microautophagy

Microautophagy involves direct lysosomal engulfment of cytoplasmic cargo without forming 

autophagosomes, which is essential for cell survival when cells are under stress such as 

nutrient starvation [21, 22]. Microautophagy can be divided into five sequential steps: 1) 
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microautophagic invagination and autophagic tubes, 2) vesicle formation, 3) vesicle 

expansion, 4) vesicle scission and 5) vesicle degradation [23]. In microautophagy, lipids are 

essential for maintaining invagination and forming autophagic tubes, which are distinct from 

other types of autophagy [24].

Recently, microautophagy has been shown to regulate synaptic protein turnover in neurons 

and thus defects in microautophagy may result in accumulation of dysfunctional proteins 

and cause neurodegenerative disorders [25]. Although studies in yeast and Drosophila 

models have advanced our knowledge of microautophagy, the physiological function of 

microautophagy in mammalian cells remains poorly understood.

2. Autophagy in the immune system

Autophagy plays four principle roles in the immune system including 1) removal of 

intracellular pathogens, 2) secretory pathway, 3) lymphocyte development, and 4) pro-

inflammatory signaling [26, 27].

2.1 Autophagy for removal of intracellular pathogens

There are two routes to eliminate intracellular pathogens through the autophagy pathway. 

The first route is termed xenophagy [28] that involves the engulfment of intercellular 

pathogens in double-membrane autophagosomes. The second route is termed LC3-

associated phagocytosis (LAP) and is characterized by the enclosing of pathogens in single-

membrane phagosomes decorated with LC3 [29, 30]. Some pathogen removal via autophagy 

requires additional receptors such as toll-like receptors (TLRs) [31]. The vesicles containing 

intracellular pathogens then fuse with lysosomes to form autolysosomes or 

autophagolysosomes [32] for degradation and elimination of intercellular pathogens.

2.2 Autophagy in the secretory pathway

The process of phagocytosis and the secretory pathway share a lot of common functions 

including vesicle trafficking and membrane fusion. Therefore, it’s no surprise that the 

autophagy pathway/autophagy proteins that play roles in phagocytosis also participate in 

secretory pathways. For instance, mice deficient in autophagy-related protein 5 (ATG5fl/fl 

LysM Cre+) present high level of IL-1α secreted by macrophages in vitro and in vivo, which 

lead to excessive inflammatory responses [33]. Furthermore, inhibition of autophagy in 

antigen-presenting cells leads to elevated IL-1β secretion upon TLRs stimulation in vitro 
and induction of autophagy along with LPS stimulation reduced IL-1β secretion in vivo 
[34]. Inhibition of autophagy in antigen-presenting cells also leads to elevated IL-23 

secretion as a consequential event of increased IL-1 β level [35]. Recently, autophagic 

regulation of mitochondrial reactive oxygen species (ROS) has been shown to control the 

secretion of another pro-inflammatory cytokine, macrophage migration inhibitory factor 

(MIF) [36], which aligns with previous studies and suggest defects in autophagy leads to 

increased pro-inflammatory cytokines secretion.
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2.3 Autophagy in lymphocyte development

Lymphocytes including T cells and B cells are important for adaptive immunity. Proper 

activation of lymphocytes is critical for lymphocyte development, and defective activation 

may result in autoimmunity. One major T cell activation signal is antigen presentation via 

the major histocompatibility complex (MHC) molecules I, II that reside on the cell surface 

to display antigens. MHC class I are found on all nucleated cells and MHC class II are found 

in antigen presenting cells (APCs) including macrophages, dendritic cells and B cells. To 

enable proper presentation of antigens, peptides derived from intracellular or extracellular 

proteins need to be digested or processed via degradation pathways including the ubiquitin-

proteasome system and autophagy.

Autophagy can enhance MHC class I presentation of viral antigens in macrophages during 

infection [37] and also promote MHC class II presentation of viral antigens [38, 39]. 

Furthermore, other reports have elegantly demonstrated that autophagy is required for 

generation of major histocompatibility complex (MHC) class II antigen-specific CD4 (+) T 

cell responses in dendritic cells [40, 41]. Similarly, autophagy deficiency in thymic epithelial 

cells (TECs) causes altered MHC class II presentation of MHC peptide ligands and tissue-

restricted antigens, which contributes to the generation of autoreactive CD4 (+) T cell 

repertoire [42].

B cells can differentiate into plasma cells that are responsible for generating autoantibodies 

and are critical for autoimmunity. It was previously shown that ATG5 is required for B cell 

survival during development and for the maintenance of B cell subset (B-1a) in the periphery 

[43] and plasma cells require autophagy for sustainable immunoglobulin production [44]. In 

fact, autophagy-deficient plasma cells secrete more antibodies accompanied with higher 

apoptosis rate compared to wild type plasma cells in vitro, suggesting that autophagy is 

specifically required for plasma cell homeostasis and long-lived humoral immunity. [44]. 

Defective or overactive autophagy modulates B cell development and function and therefore 

contributes to autoimmunity

2.4 Autophagy in pro-inflammatory signaling

Recent evidence supports crosstalk between autophagy/autophagy-related proteins in nuclear 

factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation. For instance, T 

cell receptor (TCR) mediated NF-κB activation is modulated by B-cell lymphoma/leukemia 

10 (BCL10) in association with the autophagy adaptor p62/SQSTM1 [45]. In macrophages, 

SQSTM1/p62-dependent clearance of damaged mitochondria modulates NLRP3-

inflammasome activation; ablation of SQSTM1/p62 leads to increased activation of 

inflammasome and overproduction of IL-1β [46]. Although this mechanism limits excessive 

IL-1β dependent inflammation, other studies have shown that autophagy enhances NF-κB 

activity in specific tissue macrophages by sequestering A20 to boost antifungal immunity 

[47]. This evidence suggests that autophagy can modulate survival and pro-inflammatory 

signaling via many pathways including NF-κB activation in many cell types. Since 

autophagy plays multiple roles in the immune system, disturbances in autophagic activity 

are likely to affect the development of autoimmunity. In fact, a plethora of evidence from 
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genome-wide association studies and basic research highlight the autophagy roles in 

autoimmune diseases and are summarized in (Table 1.).

3. Autophagy/Autophagy-related proteins in autoimmune diseases

3.1 Multiple sclerosis

Multiple sclerosis (MS) is a common autoimmune disease that caused inflammation and 

demyelination in the human central nervous system [58]. Since autophagy plays multiple 

roles in the immune system, extensive studies have investigated the role of autophagy in 

multiple sclerosis. A link between autophagy and multiple sclerosis is provided by the 

observed elevated autophagy-related protein, ATG5, expression in autoreactive T cells 

isolated from multiple sclerosis patients and mice with experimental autoimmune 

encephalomyelitis (EAE), [59]. The study further demonstrates that autophagy promotes T 

cell survival by degradation of apoptosis proteins in EAE model, and inhibition of 

autophagy in CD4 T cells using Beclin-1 conditional knockout mice (Beclin-1fl/fl CD4 Cre+) 

leads to protective phenotypes in EAE model [48]. In myeloid cells, disrupted antigen 

presentation in dendritic cells is observed in ATG7 conditional knockout mice (ATG7fl/fl 

CD11c Cre+) that again lead to reduced disease severity in EAE model [49]. Moreover, 

autophagy deficiency in neutrophils also reduced disease severity in EAE model due to 

defective degranulation [50]. Taken together, inhibition of autophagy leads to ameliorated 

disease severity in EAE model by regulating survival and activation of autoreactive T cells 

and reduced inflammatory cytokine secretion from neutrophils. The implication of 

autophagy in MS remains to be elucidated.

3.2 Systemic Lupus Erythematosus

Systemic Lupus Erythematosus (SLE) is an autoimmune disease that is characterized by 

acute and chronic inflammation of various tissues of the body including skin, joints, heart, 

kidneys and/or nervous system [60]. Several cellular and immune system components are 

disturbed in SLE, such as clearance of apoptotic cells, abnormal B and T cell signaling, 

autoantibody secretion and deregulated cytokine secretion. The cause of the SLE is currently 

unknown, but both genetic and environmental factors contribute to disease development 

[61]. Genome-wide association studies link autophagy-related gene 5 (ATG5) with SLE in 

both Chinese [62] and European [63] populations suggesting that defects in the autophagy 

pathway may contribute to SLE pathogenesis. A follow-up study suggested that ATG5 single 

nucleotide polymorphism (SNP) rs573775 implicated a role of the mutation with aberrant 

IL-10 cytokine secretion and higher risk for SLE [64]. Deregulation of autophagy has also 

been observed in T cells derived from SLE patients and confirmed in animal models of the 

disease [65], [66]. Moreover, activation of autophagy in B cell differentiation is observed in 

a lupus mouse model (NZB/W) and SLE patients. Inhibition of autophagy by inhibitors or 

transgenic mice partly inhibits plasma cells differentiation that suggests autophagy may 

regulate the survival rate of autoreactive B Cells and plasma cell differentiation in SLE [51].

Increased methylation patterns of histone deacetylase-6 (HDAC6), an ubiquitin-binding 

deacetylase critical for aggrephagy and mitophagy [67], compare to healthy controls are also 

observed in SLE patients [68]. Further animal studies reveal increased HDAC6 expression in 
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T cells and B cells derived from NZB/W mice [69], and inhibition of HDAC6 reduces lupus 

pathogenesis in NZB/W mice, which suggest a potential role of HDAC6-dependent selective 

autophagy in SLE pathogenesis. Therapeutic treatments inhibiting autophagy pathway or 

autophagy-related proteins may improve SLE clinical outcomes by reducing autoreactive 

lymphocytes differentiation and their associated functions.

3.3 Rheumatoid Arthritis

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that exhibits 

various clinical manifestations including synovial inflammation and bone loss. Immune cells 

such as Th17 cells, B cells, macrophages, neutrophils, mast cells and fibroblast-like 

synoviocytes are critical for inducing and maintaining synovial inflammation in RA 

pathology [70, 71]. This chronic inflammation leads to secretion of a plethora of pro-

inflammatory cytokines and RANKL, which are primarily responsible for the activation of 

osteoclasts and the subsequent bone destruction. Autophagy has been associated with RA 

fibroblast-like synoviocytes (RA-FLS) survival, which is a major source of pro-

inflammatory cytokines and RANKL. Specifically in in vitro experiments RA-FLS treated 

with a proteasome inhibitor (MG-132) prevented cell death whereas in contrast, treatment 

with an endoplasmic reticulum (ER) stress inducer, (thapsigargin) led to the formation of 

ubiquitinated protein aggregates and cell death via a mechanism involving autophagy 

proteins SQSTM1 and WDFY3 [72]. Other reports have shown that inhibition of autophagy-

related protein HDAC6 using Tubastitin A reduces the inflammatory cytokine secretion from 

macrophages and FLS, and ameliorated arthritis disease severity in collagen antibody-

induced arthritis (CAIA) and collagen-induced arthritis (CIA) in mouse models [73, 74]. 

Collectively, these data demonstrate a prominent role of autophagy in synovial inflammation 

both in vitro and in vivo.

Autophagy also modulates osteoclast-mediated bone destruction in rheumatoid arthritis. 

Increased expressions of autophagy-related protein Beclin1 and ATG7 are observed in 

osteoclasts of rheumatoid arthritis patients and inhibition of autophagy using ATG7fl/fl LysM 

Cre+ transgenic mice show reduced bone destruction in TNF-mediated arthritis [52]. The 

protective effect in TNF-mediated bone destruction resulted from the inhibition of 

autophagy may be in part due to impaired secretion of inflammatory cytokines IL-1 and IL-6 

that affects osteoclastogenesis [52]. In addition, autophagy regulates the osteoclast ruffled 

border formation, (specialized organelle that facilitates bone resorption) which is evidenced 

by reduced bone resorption in both in vitro and in vivo assays in ATG5 deficient mice 

(ATG5fl/fl LysM Cre+) [53]. Furthermore, mutations in autophagy-related protein SQSTM1 

impair osteoclast differentiation and are associated with Paget’s disease of bone [75]. 

Disrupted RANKL-induced osteoclastogenesis is observed in SQSTM1 deficient mice 

where SQSTM1 forms complex with TNF receptor associated factor 6 (TRAF6) and leads to 

NF-κB activation [76]. Deletion of SQSTM1 ubiquitin-binding domain (UBD) leads to 

increased osteoclast differentiation and function suggesting that SQSTM1 may regulate 

osteoclastogenesis via multiple pathways [77]. Interaction of autophagy-related proteins 

SQSTM1 and WDFY3 has been observed in human osteoclasts [78], and we recently 

showed that WDFY3 deficient mice (WDFY3fl/fl LysM Cre+) show enhanced 

osteoclastogenesis and RANKL-mediated bone resorption in vitro and in vivo assays via 
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TRAF6 dependent activation of NF-κB [79]. Another autophagy-related protein, optineurin 

(OPTN) also negatively regulates osteoclastogenesis by modulating NF-κB and IFN-β 
signaling [80]. Furthermore, inhibition of autophagy using chloroquine prevents TRAF3 

degradation and inhibits osteoclast differentiation in vitro and in vivo [81]. In summary, 

autophagy influences RA pathologies in two major ways; synovial inflammation and bone 

destruction. As inhibition of autophagy may ameliorate RA disease pathologies by 

modulating inflammation and bone destruction at synovial joints a detailed understanding of 

autophagy mechanisms in RA are needed to develop effective treatments.

3.4 Psoriasis/Psoriatic arthritis

Psoriasis is a chronic skin autoimmune disease where the skin undergoes abnormally 

excessive proliferation of keratinocytes, which also contribute to skin inflammation with 

increased secretion of pro-inflammatory cytokines. [82]. About 6–42% of psoriasis patients 

also have psoriatic arthritis [83]. Increased epidermal expression of the autophagy-related 

protein, SQSTM1, has been observed in psoriatic skin [54]. Autophagy negatively regulates 

TLR2/6 mediated NF-κB activation, SQSTM1 expression, and cytokine secretion in human 

keratinocytes that are critical to skin inflammation as observed in psoriasis/psoriatic arthritis 

[54]. Indeed other studies have shown that mutation of psoriasis risk gene AP1S3 that leads 

to impaired autophagy, and accumulation of SQSTM1, results in up-regulation of IL-36 in 

keratinocytes and causes skin inflammation [84]. Furthermore, increased expression of 

autophagy-related protein ATG16L1 is observed in dendritic cells derived from psoriatic 

arthritis patients compared to healthy controls that suggests autophagy involvement in 

psoriatic arthritis pathogenesis [85]. Inhibition of autophagy by chloroquine may aggravate 

psoriasis by increased IL-23 secretion from myeloid cells, which also leads to an induction 

of Th17 cells [55]. Taken together, inhibition of autophagy results in exacerbating skin 

inflammation in psoriasis and psoriatic arthritis. Modulation of autophagy may be a 

therapeutic approach for psoriasis/psoriatic arthritis, which merits further studies.

3.5 Inflammatory bowel diseases

Crohn’s disease and ulcerative colitis are the two common forms of inflammatory bowel 

disease (IBD) that are characterized as autoimmune diseases [86]. A human genome-wide 

association study identified autophagy-related genes ATG16L1 and immunity related 
GTPase M (IRGM) for Crohn’s disease and implicated autophagy in disease pathogenesis 

[87]. Deletion polymorphism upstream of IRGM alters IRGM expression, leads to defect 

autophagy and associates with Crohn's disease [88]. Deletion of autophagy-related proteins 

such as ATG16L1 and ATG5 leads to disrupted exocytosis of antimicrobial peptides of 

Paneth cells, which are essential for mucosal immunity [56]. Furthermore, deletion of 

ATG16L1 also leads to increased IL-1β production in macrophages that may also contribute 

to Crohn’s disease pathogenesis [57]. ATG16L1 interacts with nucleotide-binding 

oligomerization domain-containing protein 2 (NOD2) to degrade intracellular bacteria via 

autophagy pathway which is also deregulated in Crohn’s disease [89]. In summary, 

modulation of autophagy/autophagy-related proteins contributes to inflammatory bowel 

diseases. Restoring the functional autophagy-related proteins may be a great therapeutic 

approach for treating inflammatory bowel diseases in the future.
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4. Conclusions

Autophagy is a conserved cellular degradation pathway. Recent evidence ranging from 

genome-wide association studies to basic in vivo and in vitro research have linked the 

autophagy pathways and/or autophagy-related proteins to autoimmunity. Crosstalk between 

autophagy and immune system includes removal of intracellular pathogens, secretory 

pathway, lymphocytes development, and pro-inflammatory signaling. Using transgenic 

animals, to model human diseases, important roles of autophagy in autoimmunity have been 

uncovered. Although in certain studies presented in this review inhibition of autophagy 

ameliorates diseases including multiple sclerosis, systemic lupus erythematosus, and 

rheumatoid arthritis in other cases it seems to exacerbate diseases such as psoriasis, psoriatic 

arthritis and Crohn’s disease. Since the autophagy pathway and autophagy-related proteins 

are highly conserved in many cell types the variation between effectors and transducers in 

different cells/tissues (bone-osteoclasts, skin-keratinocytes etc.) affected in the autoimmune 

diseases discussed and crosstalk of multiple pathways may be the underlying cause for this 

effect. For instance, SQSTM1 can regulate NF-κB activation via forming a complex with 

TRAF6 but also can degrade NF-κB via selective autophagy. In such cases the availability of 

effectors and transducers within a given cell may dictate the outcome. Distinguishing the 

autophagy-related protein's roles in autophagy or other cellular mechanisms in autoimmune 

disease pathologies remains to be a challenge [90]. A detailed understanding of autophagy is 

paramount, for the development of treatments for autoimmune diseases in the near future.
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Highlights

• Autophagy is a highly conserved protein degradation pathway essential for 

removing protein aggregates and misfolded proteins in healthy cells.

• Autophagy pathways are strongly implicated in immune functions such as 

removal of intracellular bacteria, inflammatory cytokine secretion, antigen 

presentation, and lymphocyte development.

• Autophagy-related genes polymorphisms have been implicated in several 

autoimmune diseases including systemic lupus erythematosus, rheumatoid 

arthritis, psoriasis, and multiple sclerosis.
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Figure 1. Illustration of the three types of autophagy
1) Macroautophagy is generally referred to as autophagy. In the process, protein aggregates 

and misfolded proteins are recruited by the phagophore and then enclosed in double-

membrane vesicles named autophagosomes that later fuse with lysosomes for degradation. 

2) In chaperone-mediated autophagy, proteins contain KFERQ degradation signal are 

recruited by chaperone and bind to LAMP-2A on lysosomes. Proteins then translocate from 

cytosol through LAMP-2A multimers into lysosomes for degradation. 3) Microautophagy 

directly engulfs cytoplasmic components for degradation.
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Figure 2. Illustration of ubiquitinated proteins undergoes two major degradation pathways
Ubiquitinated-labeled misfolded proteins or protein aggregates can be degraded via 

ubiquitin-proteasome system (UPS) and/or autophagy. UPS system cannot process large 

proteins or protein aggregates due to its limitation of size. In contrast, macroautophagy can 

enclose large proteins and aggregates in autophagosomes (0.5–1.5µm), which later fuse with 

lysosomes for degradation. Autophagy adaptor proteins such as SQSTM1 and WDFY3 can 

recruit ubiquitinated-labeled misfolded proteins or protein aggregates into phagophore and 
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form autophagosomes. The autophagosomes then fuse with lysosomes that contain 

degradative enzymes and form autolysosomes and degrade proteins.
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Table 1

Summary of effect of inhibiting autophagy in cellular pathways and outcomes of different autoimmune 

diseases.

Inhibition of
Autophagy

Outcomes References

Multiple sclerosis Reduce autoreactive T cells,
disrupted antigen presentation,
defect neutrophils
degranulation

↓ disease severity [48], [49], [50]

Systemic Lupus
Erythematosus

Partly inhibits plasma cells
differentiation

↓ disease severity [51]

Rheumatoid
Arthritis

Reduced inflammatory
cytokines secretion, reduced
osteoclast function

↓ disease severity
↓ bone destruction

[52], [53]

Psoriasis/Psoriatic
arthritis

Increased inflammatory
cytokine secretion

↑ disease severity [54], [55]

Inflammatory
bowel diseases

Disrupted exocytosis of
antimicrobial peptides of
Paneth cells, increased
inflammatory cytokine

↑ disease severity [56], [57]
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