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hindered, because data is not made 
available and used in ways that maxi-
mize its value.

And yet, as emphasized widely in 
scientific communities,3,5 by the Na-
tional Academies, and via the U.S. 
government’s initiatives for “respon-
sible liberation of Federal data,” find-
ing ways to make sensitive data avail-
able is vital for advancing scientific 
discovery and public policy. When 
data is not shared, certain research 
may be prevented entirely, be signifi-
cantly more costly, take much longer, 
or might simply not be as accurate 
because it is based on smaller, poten-
tially more biased datasets.

Scientific computing refers to the 
computing elements used in scien-
tific discovery. Historically, this has 
emphasized modeling and simula-
tion, but with the proliferation of in-
struments that produce and collect 
data, now significantly also includes 
data analysis. Computing systems 
used in science include desktop sys-
tems and clusters run by individual 

D
ATA  U S E F U L  TO  science is 
not shared as much as it 
should or could be, partic-
ularly when that data con-
tains sensitivities of some 

kind. In this column, I advocate the 
use of hardware trusted execution en-
vironments (TEEs) as a means to sig-
nificantly change approaches to and 
trust relationships involved in se-
cure, scientific data management. 
There are many reasons why data may 
not be shared, including laws and 
regulations related to personal priva-
cy or national security, or because 
data is considered a proprietary trade 
secret. Examples of this include elec-
tronic health records, containing 
protected health information (PHI); 
IP addresses or data representing the 
locations or movements of individu-
als, containing personally identifi-
able information (PII); the properties 
of chemicals or materials, and more. 
Two drivers for this reluctance to 
share, which are duals of each other, 
are concerns of data owners about 

the risks of sharing sensitive data, 
and concerns of providers of comput-
ing systems about the risks of hosting 
such data. As barriers to data sharing 
are imposed, data-driven results are 
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physical presence in a particular fa-
cility for analysis would be a public 
health risk.

Reducing Data Sensitivity Using 
“Anonymization” Techniques
Sometimes attempts are made to 
avoid security requirements by mak-
ing data less sensitive by applying 
“anonymization” processes in which 
data is masked or made more gener-
al. Examples of this approach remove 
distinctive elements from datasets 
such as birthdates, geographical lo-
cations, or IP network addresses. 
Indeed, removing 18 specific identi-
fiers from electronic health records 
satisfies the HIPAA Privacy Rule’s 
“Safe Harbor” provisions to provide 
legal de-identification. However, on 
a technical level, these techniques 
have repeatedly been shown to fail to 
preserve privacy, typically by merg-
ing external information containing 
identifiable information with quasi-
identifiers in the dataset to re-identi-
fy “anonymized” records.6 Therefore, 

investigators, institutional comput-
ing resources, commercial clouds, 
and supercomputers such as those 
present in high-performance com-
puting (HPC) centers sponsored by 
U.S. Department of Energy’s Office of 
Science and the U.S. National Science 
Foundation. Not all scientific com-
puting is large, but at the largest 
scale, scientific computing is charac-
terized by massive datasets and dis-
tributed, international collabora-
tions. However, when sensitive data 
is used, computing options available 
are much more limited in computing 
scale and access.8

Current Secure  
Computing Environments
Today, where remote access to data is 
permitted at all, significant technical 
and procedural constraints may be 
put in place, such as instituting in-
gress/egress “airlocks,” requiring 
“two-person” rules to move software 
and data in or out, and requiring the 
use “remote desktop” systems. Archi-

tectures like this are becoming more 
and more common as means for sci-
entific computing involving sensitive 
data.8 However, even with these secu-
rity protections, traditional enclaves 
still require implicitly trusting sys-
tem administrators and anyone with 
physical access to the system con-
taining the sensitive data, thereby in-
creasing the risk to and liability of an 
institution for accepting responsibil-
ity for hosting data. This security 
limitation can significantly weaken 
the trust relationships involved in 
sharing data, particularly when 
groups are large and distributed. 
These concerns can be partially miti-
gated by requiring data analysts to be 
physically present in a facility owned 
by the data provider in order to access 
data. However, in all these cases, anal-
ysis is hindered for the scientific com-
munity whose abilities and tools are 
optimized for working in open, collab-
orative, and distributed environ-
ments. Further, consider the current 
pandemic in which a requirement of 
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used or generated in the computation, 
including even from certain “physical 
attacks” against the computing sys-
tem. They can implement similar 
functionality as software-based homo-
morphic and mutiparty computation2 
approaches, but without the usability 
issues and with dramatically smaller 
performance penalties.

The use of TEEs to protect against 
untrustworthy data centers is not a 
novel idea, as seen by the creation of 
the Linux Foundation’s Confidential 
Computing Consortium10 and 
Google’s recent “Move to Secure the 
Cloud From Itself.”7 Google has com-
paring the importance of the use of 
TEEs in its cloud platform to the in-
vention of email.9 However, TEEs 
have not yet seen broad interest and 
adoption by scientists or scientific 
computing facilities.

The envisioned approach is to le-
verage TEEs when data processing 
environments are out of the direct 
control of the data owner, such as in 
third-party (including DOE or NSF) 
HPC facilities or commercial cloud 
environments, in order to prevent ex-
posure of sensitive data to other us-
ers of those systems or even the ad-
ministrators of those systems. Data 
providers can specify the configura-
tion of the system, even if they are not 
directly the hosts of the computing 
environment, to specify access con-
trol policies, a permitted list of soft-
ware or analyses that can be per-
formed, and output policies to 
prevent data exfiltration by the user. 
The notion of being able to leverage 
community HPC and cloud environ-
ments also enables the use of data 
from multiple providers simultane-
ously while protecting the raw data 
from all simultaneously, each poten-
tially with their own distinct policies.

Researchers at the Berkeley Lab 
and UC Davis have been empirically 
evaluating Intel SGX and AMD SEV 
TEEs for their performance under 
typical HPC workloads. Our results1 
show that AMD’s SEV generally im-
poses minimal performance degra-
dation for single-node computation 
and represents a performant solution 
for scientific computing with lower 
ratios of communication to computa-
tion. However, Intel’s SGX is not per-
formant at all for HPC due to TEE 

de-identification does not necessar-
ily address the risk and trust issues 
involved in data sharing because re-
identification attacks can still result 
in significant embarrassment, if not 
legal sanctions. In addition, the same 
masking used in these processes also 
removes data that is critical to the 
analysis.6 Consider public health re-
search for which the last two digits 
of a ZIP code, or the two least signifi-
cant figures of a geographic coordi-
nate are vital to tracking viral spread.

Confidential Scientific Computing
Hardware TEEs can form the basis for 
platforms that provide strong securi-
ty benefits while maintaining compu-
tational performance (see the accom-
panying figure). TEEs are portions of 
certain modern microprocessors that 
enforce strong separation from other 
processes on the CPU, and some can 
even encrypt memory and computa-
tion. TEEs have roots in the concepts 
of Trusted Platform Modules (TPMs) 
and Secure Boot, but have evolved to 
have significantly greater functional-
ity. Common commercial TEEs today 
include ARM’s TrustZone, introduced 
in 2013; Intel’s Secure Guard Exten-
sions (SGX), introduced in 2015; and 
AMD’s Secure Encrypted Virtualiza-
tion (SEV), introduced in 2016 and 
revamped several times since then 
to include SEV-ES (Encrypted State) 
in 2017 and SEV SEV-SNP (Secure 

Nested Paging) in 2020. All three 
vendors take extremely different ap-
proaches and have extremely differ-
ent strengths, weaknesses, use cases, 
and threat models.

TEEs can be used to maintain or 
even increase security over traditional 
enclaves, at minimal cost to perfor-
mance in comparison to computing 
over plaintext. TEEs can isolate com-
putation, preventing even system ad-
ministrators of the machine in which 
the computation is running from ob-
serving the computation or data being 

Trusted execution 
environments can 
be used to maintain 
or even increase 
security over 
traditional enclaves, 
at a minimal cost  
to performance  
in comparison  
to computing  
over plaintext.

A portion of a system leveraging a trusted execution environment in which data is stored 
encrypted on disk; a policy engine, controlled by the data owner, and running in the TEE, 
contains the mapping for what data is to be made available for computing by each authen-
ticated user; and an output policy, also specified by the data owner, dictates what informa-
tion is permitted to be returned to the user. An output policy might be based on differential 
privacy, or be access-control based, or be some combination of these or other functions.
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memory size limitations. Important-
ly, NERSC-9 and a number of other 
modern HPC centers will contain 
AMD processors that support the SEV 
TEE, and thus it is our hope that our 
results will provide some of the evi-
dence needed to justify the use of 
TEEs in scientific computing.

Looking to the Future
Although numerous commercial TEEs 
exist, no TEEs yet exist in processors 
other than CPUs, such as in GPUs and 
accelerators, although Google has in-
dicated that it plans to expand “Con-
fidential Computing” to GPUs, TPUs, 
and FPGAs.9 There are also issues with 
low-latency communication between 
TEEs, and also the cost of virtualiza-
tion, that must be addressed to enable 
HPC at scale.1 In addition, promising 
RISC-V efforts such as Keystone4 exist 
that carry both the promise of broad-
ening the scope of processors that 
contain TEEs, while also being open 
source and possible to formally verify. 
However, RISC-V based TEEs have not 
yet been developed that target scien-
tific computing. Most likely, an entire-
ly new TEE architecture tailored for 
scientific computing and data analy-
sis applications will be needed.

Output policies are another area 
that deserve investigation. While TEEs 
protect against untrusted computing 
providers, and can provide certain 
measures of protection from mali-
cious users, output policies determine 
what data is returned to the user. Dif-
ferential privacy is a particularly inter-
esting approach to providing strong 
privacy protection of data output. Dif-
ferential privacy is a statistical tech-
nique that can guarantee the bounds 
on the amount of information about a 
dataset that can be leaked to a data 
analyst as a result of a query or compu-
tation by adding “noise” and enforcing 
a “privacy budget” that bounds infor-
mation leakage. It is now a main-
stream solution, with production use 
by Apple, Google, and the U.S. Census 
Bureau, the existence of several open 
source distributions, and successful 
application to a diverse range of data 
types. However, differential privacy is 
not appropriate everywhere, and ap-
plying it is currently challenging, re-
quiring a high degree of expertise and 
effort. Thus, differential privacy is 

highly useful today, albeit in a limited 
set of situations for datasets that have 
sufficiently wide use to justify the 
time and expense required. Work is 
needed to advance the usability of dif-
ferential privacy so it can more easily 
be broadly leveraged.

Summary and Next Steps
In contrast to traditional secure en-
claves, TEEs enable sensitive data to 
be leveraged without having to trust 
system administrators and comput-
ing providers. However, while the 
application of TEEs has now been 
widely heralded in cloud environ-
ments, TEEs have not been discussed 
for use in scientific computing en-
vironments, despite the significant 
concerns frequently expressed by 
both data providers and computing 
facilities about hosting sensitive data. 
Operators of scientific computing fa-
cilities are notoriously conservative 
for good reason—they are frequently 
evaluated on the degree of utiliza-
tion and amount of uptime of the sys-
tems they run, and so the margin for 
error is low. But TEEs are here, they 
are available, and until we start mak-
ing use of them in scientific comput-
ing, data is not shared as much as it 
should or could be by leveraging TEEs 
to address the trust issues underlying 
current limits on data sharing.

What is missing is a connection to the 
particular infrastructure used in scien-
tific computing, including identity, ac-
cess, and authentication systems; re-
mote direct memory access (RDMA); 

Trusted execution 
environments 
enable sensitive 
data to be leveraged 
without having 
to trust system 
administrators 
and computing 
providers.

batch scheduling systems in HPC; HPC 
I/O subsystems; custom scientific work-
flows; highly specialized scientific in-
struments; community data reposito-
ries, and so on. Therefore what is 
needed is a conversation between pro-
cessor manufacturers, system vendors 
(for example, Cray, HPE), and scientific 
computing operators regarding en-
abling the TEE functionality already 
present in the AMD EPYC processors—
and presumably in other, future proces-
sors—into scientific computing envi-
ronments. However, the path forward is 
not solely technical. It requires the com-
munity to build infrastructure around 
TEE technology and integrate that infra-
structure into scientific computing fa-
cilities and workflows, and into the 
mind-set of operators of such facilities. 
I hope this column helps to start that 
conversation. For more on TEEs, see the 
Singh et al. article on p. 42.  —Ed. 	
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