
UC San Diego
UC San Diego Previously Published Works

Title
Neutralizing the EGF receptor in glioblastoma cells stimulates cell migration by activating 
uPAR-initiated cell signaling

Permalink
https://escholarship.org/uc/item/40r5n2nj

Journal
Oncogene, 34(31)

ISSN
0950-9232

Authors
Hu, J
Muller, KA
Furnari, FB
et al.

Publication Date
2015-07-30

DOI
10.1038/onc.2014.336
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/40r5n2nj
https://escholarship.org/uc/item/40r5n2nj#author
https://escholarship.org
http://www.cdlib.org/


Neutralizing the EGF receptor in glioblastoma cells stimulates 
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VandenBerg1, and Steven L. Gonias1,4

1Department of Pathology, University of California San Diego, La Jolla CA 92093

3Department of Medicine, University of California San Diego, La Jolla CA 92093

2Department of Ludwig Institute for Cancer Research, University of California San Diego, La Jolla 
CA 92093

Abstract

In glioblastoma (GBM), the EGF receptor (EGFR) and Src family kinases (SFKs) contribute to an 

aggressive phenotype. EGFR may be targeted therapeutically; however, resistance to EGFR-

targeting drugs such as Erlotinib and Gefitinib develops quickly. In many GBMs, a truncated form 

of the EGFR (EGFRvIII) is expressed. Although EGFRvIII is constitutively active and promotes 

cancer progression, its activity is attenuated compared with EGF-ligated wild-type EGFR, 

suggesting that EGFRvIII may function together with other signaling receptors in cancer cells to 

induce an aggressive phenotype. In this study, we demonstrate that in EGFRvIII-expressing GBM 

cells, the urokinase receptor (uPAR) functions as a major activator of SFKs, controlling 

phosphorylation of downstream targets such as p130Cas and Tyr-845 in the EGFR in vitro and in 

vivo. When EGFRvIII expression in GBM cells was neutralized, either genetically or by treating 

the cells with Gefitinib, paradoxically, the cells demonstrated increased cell migration. The 

increase in cell migration was explained by a compensatory increase in expression of urokinase-

type plasminogen activator, which activates uPAR-dependent cell-signaling. GBM cells that were 

selected for their ability to grow in vivo in the absence of EGFRvIII also demonstrated increased 

cell migration, due to activation of the uPAR signaling system. The increase in GBM cell 

migration, induced by genetic or pharmacologic targeting of the EGFR, was blocked by Dasatinib, 

highlighting the central role of SFKs in uPAR-promoted cell migration. These results suggest that 

compensatory activation of uPAR-dependent cell-signaling, in GBM cells treated with targeted 

therapeutics, may adversely affect the course of the disease by promoting cell migration, which 

may be associated with tumor progression.
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INTRODUCTION

Glioblastoma (GBM) is a typically lethal malignancy in which c-Src and other members of 

the Src family kinase (SFK) gene family are frequently highly activated, contributing to 

tumor aggressiveness.1–4 SFKs are non-receptor tyrosine kinases with broad regulatory 

activity in cell survival, proliferation, cell migration, and angiogenesis.5,6 SFKs function 

independently and in conjunction with receptors in the plasma membrane, including receptor 

tyrosine kinases (RTKs), integrins, G protein-coupled receptors (GPCRs), and the 

erythropoietin receptor, to activate downstream cell-signaling pathways that include the Ras-

ERK1/2 pathway, the PI3K-Akt-mTOR1 pathway, and the Tiam1-Rac1 pathway.5–11 By 

phosphorylating Tyr-845 in the activated EGF receptor (EGFR), SFKs promote activation of 

the transcription factor, STAT5b, which supports cancer cell proliferation and survival.12–16 

Phospho-Tyr-845 also binds cytochrome C oxidase subunit II, which may be involved in 

cancer cell survival when the EGFR translocates to mitochondria.17

A second gene product that plays a central role in GBM pathogenesis is the EGF receptor 

(EGFR), which is frequently amplified or over-expressed and in many cases, may be 

truncated to form a constitutively active mutant called EGFR variant III (EGFRvIII).18–21 

Although EGFRvIII expression promotes an aggressive phenotype in GBM cells, the 

catalytic activity of EGFRvIII is attenuated compared with EGF-ligated wild-type (wt) 

EGFR.22 Thus, EGFRvIII may require novel interactions with other receptors and cell-

signaling proteins to most robustly affect cancer cell physiology.

We previously demonstrated that in GBM cells, phosphorylation of Tyr-845 in EGFRvIII is 

dependent on the urokinase receptor (uPAR),15 a GPI-anchored membrane protein that 

interacts with integrins, FPR-like receptor-1 (FPRL1), and various RTKs to form a 

multiprotein complex with potent cell-signaling activity.23 The role of uPAR in 

phosphorylation of Tyr-845 in EGFRvIII may reflect a physical interaction between uPAR 

and EGFRvIII that increases availability of Tyr-845, as has been reported previously for 

uPAR and wt-EGFR.24 Alternatively, in EGFRvIII-expressing GBM cells, uPAR may 

control SFK activity in general. We and others have shown that SFKs play an essential role 

in the cell-signaling pathways by which uPAR promotes cell survival and stimulates cell 

migration;25–29 however, the importance of uPAR in controlling SFK activation in 

comparison with other receptors has not been explored. This problem is particularly 

important in GBM because SFKs are activated by numerous RTKs implicated in GBM 

progression, including wt-EGFR and EGFRvIII.1,30,31

In this study, first we examined the role of uPAR in activation of SFKs in GBM cells by 

measuring phosphorylation of Tyr-416, which reports the fully activated form of SFKs,32 

and two SFK substrates, Tyr-845 in the EGFR and p130Cas. Our results demonstrate that in 

EGFRvIII-expressing GBM cells and in cells in which EGFRvIII expression was 

neutralized, uPAR functions as a general activator of SFKs, affecting substrates in addition 
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to EGFR Tyr-845. Next, we examined the effects of EGFRvIII neutralization on GBM cell 

migration. We previously demonstrated that reversing EGFRvIII gene expression in GBM 

cells, in vitro or in vivo, induces expression of increased levels of urokinase type-

plasminogen activator (uPA), stimulating uPAR-dependent cell-signaling and promoting cell 

survival.15 We now report that blocking EGFRvIII gene expression paradoxically promotes 

cell migration. This response was entirely attributable to activation of the uPA-uPAR 

signaling system. Similarly, EGFRvIII-expressing GBM cells that were treated with the 

EGFR tyrosine kinase inhibitor (TKI), Gefitinib, demonstrated increased uPA expression 

and accelerated cell migration. Gefitinib has been evaluated in clinical trials for GBM.33,34 

We propose that signaling systems, which are activated as a compensatory response to 

support cancer cell survival, may also stimulate processes such as cell migration, involved in 

cancer progression. Importantly, the uPA-dependent increase in GBM cell migration that 

accompanied EGFRvIII blockade was reversed by the SFK-targeting cancer therapeutic, 

Dasatinib.4,35,36

Results

uPAR controls SFK activation in EGFRvIII-expressing GBM cells

To compare the role of EGFRvIII and uPAR in SFK activation, first EGFRvIII was 

expressed in U373MG GBM cells. Fig. 1A shows that U373MG parental cells express low 

levels of wt-EGFR and that EGFRvIII is robustly expressed in transduced cells. The 

mobility of EGFRvIII is slightly increased compared with wt-EGFR due to receptor 

truncation.37 When SDS-PAGE was conducted for an extended time, to allow resolution of 

the bands for wt-EGFR and EGFRvIII, expression of wt-EGFR did not appear to be 

regulated by EGFRvIII (results not shown).

We previously reported that uPAR gene-silencing decreases phosphorylation of Tyr-845 in 

EGFRvIII in U373MG cells.15 Tyr-845 is a well described SFK substrate.12,38 Fig. 1B 

confirms our original result, showing that Tyr-845 phosphorylation in EGFRvIII is 

substantially decreased by uPAR gene-silencing. To test whether the decrease in phospho-

Tyr-845 reflects decreased SFK activity, or a distinct mechanism, such as altered availability 

of the substrate, first we examined phosphorylation of SFK Tyr-416, which was decreased 

by uPAR gene-silencing. Tyr-416 is known to be phosphorylated in maximally activated 

SFKs; however, active forms of SFKs also exist in which Tyr-416 is not 

phosphorylated.6,32,39 We therefore examined phosphorylation of a second SFK substrate, 

p130Cas, and demonstrated that uPAR gene-silencing decreases phospho-p130Cas as well. 

The total level of SFKs remained approximately unchanged in uPAR gene-silenced cells. 

Although in EGFRvIII-expressing U373MG cells, uPAR gene-silencing most substantially 

affected Tyr-845 phosphorylation, the effects on phosphorylation of Tyr-416 in SFKs and 

p130Cas suggest that uPAR functions as an general SFK activator in these cells, even 

though EGFRvIII expresses constitutive activity and also activates SFKs.1,30,31

To test the role of uPAR in SFK activation in a second model system, we expressed 

EGFRvIII in U87MG GBM cells. Fig. 1C shows that EGFRvIII was robustly expressed in 

these cells. Again in U87MG cells, EGFRvIII did not have an apparent effect on wt-EGFR 

expression, as determined by immunoblot analysis when the time of SDS-PAGE was 
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extended. uPAR gene-silencing reduced phosphorylation of SFK Tyr-416 in EGFRvIII-

expressing U87MG cells and phosphorylation of the SFK substrates: EGFR Tyr-845 and 

p130Cas, without having a major effect on the total level of SFKs (Fig. 1D). In the U87MG 

model system, the effects of uPAR gene-silencing on phosphorylation of SFK Tyr-416, 

EGFRvIII Tyr-845, and p130Cas were similar in magnitude. Thus, again in this cell line, 

uPAR functions as a general regulator of SFK activation. The previously reported activity of 

uPAR in controlling phosphorylation of Tyr-845 in EGFRvIII15 probably reflects, at least in 

part, the general activity of uPAR in SFK activation in EGFRvIII-expressing cells, although 

a direct interaction between uPAR and EGFRvIII cannot be ruled out by the studies 

presented here.

Because the U373MG and U87MG cell lines express low levels of wild-type EGFR, as a 

control, we tested whether EGF treatment affects SFK activation in EGFRvIII-expressing 

U87MG cells. As shown in Fig. 1D, phospho-Tyr-416, phospho-Tyr-845, and phospho-

p130Cas were unchanged in cells that were treated with 2 ng/ml EGF for 10 min.

Comparison of SFK activation in wt-EGFR and EGFRvIII-expressing GBM cells

EGFRvIII is constitutively active despite its inability to bind EGF; however, the catalytic 

activity of EGFRvIII is substantially decreased compared with EGF-ligated wt-EGFR.22,37 

To compare the role of uPAR in SFK activation in wt-EGFR- and EGFRvIII-expressing 

cells, U87MG cells were transduced to over-express wt-EGFR. Fig. 1E shows that EGF 

increased phosphorylation of Tyr-416 in SFKs in wt-EGFR over-expressing cells; however, 

uPAR gene-silencing decreased phospho-Tyr-416 both before and after EGF treatment. 

Thus, uPAR plays a role controlling SFK activation in GBM cells that express EGFRvIII or 

wt-EGFR.

To further compare the activity of uPAR in controlling SFK activity in wt-EGFR- and 

EGFRvIII-expressing GBM cells, we performed affinity precipitation experiments with a 

GST fusion protein that contains the SH2 domain of c-Src (GST-SH2). This fusion protein 

binds phospho-Tyr residues, which in the EGFR, may be generated by auto-phosphorylation 

or through the activity of SFKs.5,6,12 In EGFRvIII-expressing U87MG cells, EGFRvIII 

readily affinity-precipitated with GST-SH2; however, when uPAR was silenced, EGFRvIII 

precipitation with GST-SH2 was substantially decreased (Fig. 2A). These results suggest a 

major role for uPAR, and by extension, SFKs, in generating the phospho-Tyr residues that 

serve as SH2-binding sites in EGFRvIII in U87MG cells.

In U87MG cells that over-express wt-EGFR, only low levels of EGFR affinity-precipitated 

with GST-SH2 unless the cells were pre-treated with EGF (Fig. 2A). Following EGF pre-

treatment, affinity precipitation of wt-EGFR with GST-SH2 was robust and uPAR gene-

silencing did not affect this result, most likely reflecting the greatly increased capacity of 

EGF-ligated wt-EGFR to induce auto-phosphorylation.22 We confirmed the relationship 

between uPAR and EGFRvIII phosphorylation in U373MG GBM cells. uPAR gene-

silencing almost entirely blocked affinity precipitation of EGFRvIII with GST-SH2 in 

U373MG cells (Fig. 2B). This result was not affected by EGF pre-treatment, as anticipated 

because EGFRvIII does not bind EGF.37
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The results presented here demonstrate that the previously reported relationship between 

uPAR expression and phosphorylation of Tyr-845 in EGFRvIII in GBM cells may represent 

one component of a more general phenomenon in which uPAR plays a major role regulating 

SFK activation. To determine whether this relationship exists in vivo, we examined the 

EGFRvIII-expressing human GBM, GBM39, which has been propagated as a xenograft in 

mice.40 Tumor tissue was recovered from mice and analyzed by quantum dot 

immunofluorescence (IF) microscopy. This method allows precise quantitation of uPAR 

antigen expression and phospho-Tyr-845 at the single-cell level.41 Representative IF 

micrographs showed that uPAR expression and phospho-Tyr-845 varied from cell to cell 

(Fig. 3A). uPAR and phospho-Tyr-845 co-localized in the plasma membranes of many cells. 

Well-defined cells were identified and relative antigen levels were determined using Nuance 

Multispectral Imaging System software. The quantitative analysis of antigen intensity is 

shown in Fig. 3B. As predicted by our in vitro studies, there was a tight correlation between 

uPAR expression and phospho-Tyr-845 (R2= 0.87) in vivo, at the single cell level, in human 

GBM tissue.

Control of SFK activation when EGFRvIII expression is blocked in GBM

We previously described a model system in which EGFRvIII is expressed under the control 

of a doxycycline (Dox) repressible promoter in U373MG GBM cells.42 When EGFRvIII 

expression is neutralized by culturing the cells in the presence of Dox for at least 4 days, 

uPA expression is increased, activating compensatory uPAR-dependent pro-survival cell-

signaling.15 Fig. 4A compares cells that were Dox-treated and control cells by immunoblot 

analysis. EGFRvIII expression was essentially absent in the Dox-treated cells, revealing a 

residual lower mobility band corresponding to wt-EGFR, which is expressed at low levels in 

these cells. When we analyzed serum-free medium (SFM), which was conditioned by the 

cells for 48 h, the amount of uPA recovered from Dox-treated cells was substantially 

increased. qPCR analysis confirmed that in Dox-treated cells, uPA expression was increased 

at the mRNA level (p<0.05).

To study the role of uPAR in SFK activation when EGFRvIII expression is neutralized, we 

silenced uPAR in control and Dox-treated cells. Supplementary Fig. 1A shows that uPAR 

gene silencing was 95% effective. The cells were allowed to recover for 12 h and then 

cultured in SFM for 36 h (with continued Dox or vehicle treatment). Fig. 4B shows that SFK 

phospho-Tyr-416 was decreased by uPAR gene-silencing in EGFRvIII-deficient Dox-

treated cells, indicating that uPAR plays a significant role in maintaining SFK activation 

when EGFRvIII is neutralized in GBM cells.

Escaper (ESC) cell lines were derived from xenografts formed by U373MG GBM cells that 

express Dox-repressible EGFRvIII.42 These cells require EGFRvIII expression at the time of 

inoculation in order to form tumors in immunocompromised mice. When EGFRvIII 

expression was blocked in established tumors by treating the mice with Dox, the tumors 

entered a temporary state of dormancy and then, released from dormancy, re-establishing 

aggressive growth. ESC cell lines were established from tumor cells that released from 

dormancy.42 We previously demonstrated that ESC cell lines secrete substantially increased 

levels of uPA compared with parental cells. The uPA activates uPAR-dependent cell-
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signaling and may explain the ability of ESC cells to release from dormancy.15 Fig. 4C 

shows that EGFR mRNA expression was substantially decreased in three separate ESC cell 

lines, compared with the EGFRvIII-expressing parental cells from which the ESC cells were 

derived (p<0.01), as anticipated. The ESC cells also expressed increased levels of uPA 

mRNA, compared with parental cells (p<0.05).

To explore the role of uPAR in SFK activation in ESC cells, we silenced uPAR in the ESC1, 

ESC2, and ESC5 cells. Supplementary Fig. 1B shows that uPAR gene silencing was >95 

effective in all three cell lines. Next, we examined activation of SFKs in the control and 

uPAR gene-silenced cells by performing immunoblot analysis to detect phospho-Tyr-416. In 

each of the ESC cell lines, uPAR gene-silencing decreased phospho-Tyr-416 (Fig. 4D), 

indicating a role for uPAR in controlling SFK activation in tumor cells that acquire 

resistance to EGFR deficiency in vivo.

EGFRvIII neutralization in GBM cells promotes cell migration

Dox-treatment to block EGFRvIII expression in U373MG cells provides a model of changes 

that may occur in EGFRvIII-expressing GBM cells when tumors are treated with TKIs such 

as Erlotinib and Gefitinib.42 Because uPAR activates potent pro-migratory cell-signaling 

factors, such as Rac1 and ERK1/2,27,28,43–46 we used the Dox-repressible EGFRvIII 

expression model to study the effects of EGFRvIII neutralization on cell migration. Cells 

were treated with Dox or vehicle and transfected with uPAR-specific or NTC siRNA. 

Representative images of cells that migrated to the underside of Transwell membranes are 

shown in Fig. 5A. Neutralization of EGFRvIII expression was associated with a 2.3 ± 0.4-

fold increase in cell migration (p<0.05) (Fig. 5B). uPAR gene-silencing blocked the increase 

in cell migration observed in Dox-treated cells. When uPAR was silenced, Dox-treated and 

control cells migrated equivalently.

Next, we examined ESC cells, in which EGFRvIII deficiency was induced in vivo.42 All 

three ESC cell lines (ESC1, ESC2, ESC5) demonstrated significantly increased cell 

migration compared with EGFRvIII-expressing U373MG cells, from which the ESC cells 

were derived (Fig. 5C). Although uPAR-initiated cell-signaling occurs in the presence and 

absence of uPA, the full potential of uPAR in cell-signaling requires uPA.23,43,46,47 Thus, 

we tested whether uPA gene-silencing affects migration of EGFRvIII-expressing and –

deficient U373MG cells and ESC cells. As shown in Fig. 5C, uPA gene-silencing 

completely blocked the increase in cell migration observed when EGFRvIII expression was 

neutralized by treating U373MG cells with Dox in vitro. uPA gene-silencing also 

substantially inhibited migration of the ESC cells, effectively neutralizing any advantage in 

cell migration compared with the parental cells. Supplementary Fig. 2 confirms that uPA 

gene-silencing was >95% effective in the three ESC cell lines.

To complement our model system in which EGFRvIII gene expression was neutralized 

genetically, we treated EGFRvIII-expressing U373MG cells with 1.0 µM Gefitinib for 4 

days. Control cells were treated with vehicle. At the conclusion of the incubation, uPA 

mRNA expression was increased 4.9 ± 1.1-fold (p<0.05) in the Gefitinib-treated cells (Fig. 

5D). This is the first report demonstrating increased uPA expression induced by Gefitinib in 

GBM cells. The increase in uPA expression was accompanied by a 1.7-fold increase in cell 
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migration (p<0.05) (Fig. 5E). To assess the role of uPA in migration of Gefitinib-treated 

U373MG cells, we transfected EGFRvIII-expressing cells with uPA-specific or NTC 

siRNA. uPA gene-silencing had a modest effect on migration of the control cells; however, 

in the Gefitinib-treated cells, a more robust effect was observed. uPA gene-silencing 

inhibited migration of Gefitinib-treated cells by 66 ± 3% (p<0.01). The control and 

Gefitinib-treated cells migrated equivalently when uPA was not available.

Targeting SFKs blocks the increase in cell migration associated with activation of the uPA-
uPAR system in GBM cells

Given the reported role of SFKs as upstream mediators of uPAR-initiated cell-signaling to 

ERK1/2 and Rac1,25–28 we tested whether the anticancer drug, Dasatinib, which targets 

SFKs, inhibits migration of cells in which EGFRvIII is neutralized. Fig. 6A shows that 

treatment with 0.3 µM Dasatinib for 4 h almost entirely blocked activation of SFKs, as 

determined by measuring phosphorylation of SFK Tyr-416 in U373MG cells that express 

EGFRvIII (not treated with Dox) and in U373MG cells that were EGFRvIII-deficient (Dox 

treated). Dasatinib was extremely effective at inhibiting U373MG cell migration, especially 

when EGFRvIII expression was neutralized and cell migration stimulated by uPA (Fig. 6B). 

Under these conditions, inhibition of cell migration was greater than 80% complete.

Next we examined the effects of Dasatinib on migration of ESC cells. Fig. 6C shows that 

treatment with 0.3 µM Dasatinib for 4 h blocked SFK activation in each of the three ESC 

cell lines, as determined by measuring SFK phospho-Tyr-416 and phospho-p130Cas. Fig. 

6D shows that Dasatinib inhibited migration of the ESC cells by 80–90% (p<0.01). These 

results suggest that Dasatinib, which is used in human patients, may effectively antagonize 

the uPAR signaling system and its effects on cell migration.

An equivalent response was observed in Dasatinib treatment experiments when we studied 

cells that were pre-treated for 4 days with Gefitinib. Cells that were treated with Gefitinib 

migrated more rapidly (p<0.05), confirming the results presented in Fig. 5E (Fig. 6E). 

Including Dasatinib in the Transwell chambers inhibited migration of the control cells by 

about 75% and migration of the Gefitinib-treated cells by close to 90%. Thus, in all of our 

model systems, targeting SFKs blocked the increase in cell migration associated with 

EGFRvIII neutralization and activation of the uPAR signaling system.

DISCUSSION

EGFRvIII induces an aggressive phenotype in GBM cells, despite its attenuated activity 

compared with EGF-ligated wt-EGFR.18,22,37,48–50 Cells that express EGFRvIII may make 

neighboring cells in the tumor microenvironment more aggressive,48,51 so even a small 

population of EGFRvIII-positive cells in a GBM may significantly promote tumor 

progression. Given these properties, it was rational to test the efficacy of EGFR-selective 

TKIs, such as Gefitinib and Erlotinib, in EGFRvIII-positive GBM. Unfortunately, treated 

tumors rapidly escape from control, re-establishing aggressive growth and invasion within a 

short time.52 Failure of EGFR TKIs to induce sustained remission may reflect emergence of 

novel genomic alterations, activation of signaling systems that replace EGFRvIII, and/or 

selection of subpopulations of cancer cells that are drug-resistant. One known cause of 
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resistance to EGFR TKIs is mutation in PTEN, which sustains activation of signaling 

pathways that are downstream of the EGFR.40,48,52 We identified the uPA-uPAR system as 

one that may allow GBM cells to escape from control by EGFR TKIs.15

The hypothesis that activation of uPAR-initiated cell-signaling may compensate for loss of 

EGFR activity in GBM is supported by previous studies that have demonstrated substantial 

overlap in key downstream targets for uPAR and the EGFR, including ERK1/2, the PI3K-

Akt pathway, and Rac1 (Fig. 7).27–29,43–45,47,53–55 These common downstream targets 

support cell survival; however, the same signaling factors also play key roles in cell 

migration and in cancer cells, invasion and metastasis.27–29,46,47,54 Fig. 7 shows that uPAR 

is a member of a multi-protein signaling receptor complex, which may include different 

RTKs including the EGFR, the G-protein coupled receptor (GPCR) FPRL1, and integrins 

such as α5β1 and α4β1.23,24,56–59 Because SFKs associate with integrin cytoplasmic tails, the 

central role of SFKs in uPAR-initiated signaling may reflect a complex in which uPAR is 

bridged to SFKs through integrins; however, SFKs also are important effectors of RTK 

signaling and GPCR signaling.5–11,55

In this study, we demonstrated that uPAR is a major activator of SFKs in EGFRvIII-

expressing GBM cells. The effects of uPAR on SFK activation provide an explanation for 

the previously reported role of uPAR in Tyr-845 phosphorylation in EGFRvIII.15 uPAR also 

promoted phosphorylation of the SFK substrate, p130Cas. In a human GBM propagated as a 

xenograft, the extent of phosphorylation of Tyr-845 in EGFRvIII correlated with uPAR 

immunopositivity at the single cell level. SFK activation is a known determinant of GBM 

cell aggressiveness.1–4 Cooperation between EGFRvIII and uPAR may explain the cancer-

promoting activity of EGFRvIII in GBM cells, despite its attenuated enzymatic activity.22,37

In diverse forms of neoplasia, uPAR-initiated cell-signaling is known to prevent apoptosis 

and anoikis and release cancer cells from states of dormancy.56,61–63 Thus, it is not 

surprising that activation of uPAR-initiated cell-signaling compensates for neutralization of 

EGFRvIII in GBM cells.15 Other compensatory cell-signaling systems have been described, 

which also may promote GBM survival and growth following EGFR TKI treatment.52 In 

our model systems, when EGFRvIII was neutralized, uPAR remained an important activator 

of SFKs; however, the decrease in SFK activation induced by uPAR gene-silencing was 

incomplete, suggesting that, in these cells, SFKs may be activated by proximal receptors 

other than EGFRvIII and in addition to uPAR.

uPAR promotes cell migration by two major mechanisms.23,57 By binding and promoting 

activation of uPA as a protease at the cancer cell surface, uPAR assembles a cell-surface 

protease system, which may aid in the degradation of tissue boundaries for the migrating 

cancer cell.22,57–59,64 uPAR also promotes cell migration by its effects on pro-migratory 

cell-signaling factors, such as Rac1 and ERK1/2.27–29,43–45,47,53–55 Because uPA was 

expressed at increased levels in GBM cells when EGFRvIII was genetically neutralized or 

when the cells were treated with Gefitinib, we explored the effects of these treatments on 

GBM cell migration. The Transwell cell migration method applied in this study does not 

incorporate tissue boundaries and thus, is more sensitive to changes in cell-signaling, as 

opposed to effects on cell-surface protease activity. In GBM cells in which EGFRvIII 
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expression was blocked in vitro, in ESC cells in which EGFRvIII expression was blocked in 

vivo, and in cells treated with Gefitinib, increased cell migration was observed and the 

increase was entirely attributed to the uPA-uPAR signaling system. Silencing of uPA or 

uPAR blocked the increase in cell migration associated with EGFRvIII inactivation. These 

results provide an example of an important principle in cancer biology, relevant to uPAR. 

The cell-signaling systems activated downstream of uPAR to promote cell survival are 

overlapping with those that promote cancer cell migration.23,61 The increase in uPA 

expression and activation of uPAR signaling probably represents a cellular response to the 

stress imposed by loss of constitutive EGFRvIII signaling. uPAR-signaling provides 

resistance to the negative consequences of EGFRvIII neutralization and allows the cells to 

survive. Increased cell migration is a potentially important side-effect of activation of this 

pro-survival signaling system.

Parker et al.65 recently reported that Gefitinib selectively inhibits migration of GBM cells in 

which the EGFR gene is amplified. Although these investigators did not specifically study 

EGFRvIII, the more important difference between the study reported by Parker et al.65 and 

this investigation probably involves the methods applied. The tissue slice approach used by 

Parker et al.,65 although elegant, did not provide a sufficiently long exposure of the cells to 

Gefitinib to allow activation of compensatory signaling pathways, like the uPA-uPAR 

system. Understanding the mechanisms by which uPA expression is up-regulated in cells in 

which EGFRvIII is neutralized is an important topic for future investigation.

GBM is typically lethal due to local invasion as opposed to metastasis.48 Although the 

capacity for cancer cell migration correlates with the capacity for invasion in vivo, further 

work will be necessary to understand how the uPAR cell-signaling system affects GBM 

invasion in vivo, in new tumors and in treated malignancies. A number of strategies for 

specifically targeting uPAR in cancer are currently under development.66 If uPAR-initiated 

cell-signaling allows tumor cells to escape from control by EGFR TKIs in patients with 

GBM and promotes more rapid tumor spreading through the CNS, our results suggest that 

the responsible signaling pathways may be antagonized by Dasatinib. In our model systems, 

Dasatinib blocked migration of GBM cells by as much as 90%, after EGFRvIII expression 

was inhibited or its activity antagonized. The possibility that targeting SFKs may represent 

an alternative to direct targeting of uPAR is supported by our model in which SFKs function 

as proximal signaling factors, linking receptors in the uPAR cell-signaling system to key 

downstream signaling factors (Fig.7).

MATERIALS AND METHODS

Cell lines

U373MG cells, which express EGFRvIII under the control of a Dox-repressible promoter 

and U373MG cells that express wt-EGFR, are previously described.42 Escaper tumor cell 

lines (ESC1, ESC2, ESC5), which were derived from U373MG cell xenografts that re-

established growth following loss of EGFRvIII in vivo, also are previously described.42 

These cells were maintained in DMEM supplemented with 10% tetracycline-approved fetal 

bovine serum (FBS) (Clontech), Dox (1 µg/mL), puromycin (1 µg/mL), and Geneticin (200 
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µg/mL). U87MG cells that express EGFRvIII or over-express wt-EGFR are previously 

described.37

Antibodies and reagents

Antibody that detects phospho-Tyr-416 in c-Src and cross-reacts with the equivalent epitope 

in other SFKs was from Cell Signaling Technology. Antibodies specific for the 

phosphorylated form of p130Cas (phopho-Tyr-410) and total ERK1/2 also were from Cell 

Signaling Technology. Antibody that detects phospho-Tyr-845 in the EGFR was from 

Invitrogen. Antibody that detects uPA was from American Diagnostica and antibody that 

detects total EGFR was from Millipore. Human uPAR-specific antibody was from R&D 

Systems. Horseradish peroxide-conjugated anti-rabbit IgG and anti-mouse IgG were from 

GE Healthcare. Quantitative PCR (qPCR) reagents, including primers and probes for uPA, 

uPAR, and hypoxanthine phosphoribosyltransferase 1 (HPRT-1) were from Applied 

Biosystems. EGF was from R&D Systems. Dasatinib was from Eton Bioscience. Gefitinib 

was from LC Laboratories

Real-Time qPCR

Total RNA was isolated using the RNeasy Kit (Qiagen). cDNA was synthesized with the 

iScript cDNA Synthesis Kit (Bio-Rad). qPCR was performed on a System 7300 instrument 

(Applied Biosystems) with a one-step program: 95°C for 10 min, 95°C for 30 s, and 60°C 

for 1 min for 40 cycles. HPRT-1 gene expression was measured as a normalizer. Results 

were analyzed by the relative quantity method. Experiments were performed in triplicate 

with internal duplicate determinations.

Immunoblot analysis

Cell extracts were prepared in RIPA buffer [20 mM sodium phosphate, 150 mM NaCl, pH 

7.4, 1% Nonidet P-40, 0.1% SDS, and 0.5% deoxycholic acid] containing complete protease 

inhibitor mixture (Roche). Protein concentrations were determined by bicinchoninic acid 

assay (Sigma-Aldrich). Equal amounts of cell extract were subjected to SDS-PAGE, electro-

transferred to PVDF membranes, and probed with primary antibodies.

siRNA Transfection

uPAR-specific siRNA (5′-GCCGUUACCUCGAAUGCAU-3′) and uPA-specific siRNA 

(5′CAUGUUACUGACC-AGCAAC-3′) are previously described.15,67 Non-targeting 

control (NTC) siRNA was from Dharmacon. siRNAs (25 nM) were introduced into cells by 

incubation with Lipofectamine 2000 (Invitrogen) in SFM for 4 h. Cultures were allowed to 

recover in serum-containing medium for 12 h. The extent of gene-silencing was determined 

by qPCR and immunoblot analysis.

Cell Migration Assays

Cell migration was studied using 6.5-mm Transwell chambers with 8 µm pores (Costar, 

Corning, NY). Cells (1.5×105) that were transfected with siRNA targeting uPAR or uPA or 

with NTC siRNA were added to the top chamber and allowed to migrate at 37°C. When 

specified, Dasatinib was added to both chambers. The bottom chamber contained 10% FBS. 
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After 18 h, the upper surface of each membrane was cleaned with a cotton swab. The 

membranes were then stained with Diff-Quick (Dade-Behring, Deerfield, IL). The number 

of cells on the bottom surface of each membrane was counted (cells/field). Four fields from 

each membrane were examined. Each condition was studied at least in triplicate.

SH2 domain pulldown assays

A construct encoding a glutathione-S-transferase (GST) fusion protein with the SH2 domain 

of c-Src (GST-SH2) was kindly provided by Dr. J.T. Parsons (University of Virginia) and 

expressed in Escherichia coli. Bacterial cells that express GST-SH2 were suspended in 20 

mM sodium phosphate, 150 mM NaCl, pH 7.4, with 0.1% Triton X-100 and protease 

inhibitor cocktail and lysed by sonication. GST-SH2 was purified by glutathione-Sepharose 

affinity chromatography.

To assess SH2 docking sites in the EGFR, an equivalent number of different GBM cells was 

extracted in RIPA buffer. The extracts were subjected to centrifugation at 14,000×g for 10 

min at 4°C. The supernatants were incubated with G ST-SH2 coupled to glutathinone-

Sepharose for 3 h at 4°C. The Sepharose beads were was hed three times with RIPA buffer 

and resuspended in SDS sample buffer for SDS-PAGE. EGFR that associated with GST-

SH2 was determined by immunoblot analysis. In control experiments, EGFR failed to 

associate with glutathinone-Sepharose that was not loaded with GST-SH2.

Quantum dot immunofluorescence (IF) microscopy

An EGFRvIII-expressing human GBM (GBM39) was propagated as a xenograft40 and 

kindly provided by C. David James (Department of Neurological Surgery, University of 

California San Francisco). Harvested tumor tissue was formalin-fixed, paraffin-embedded, 

and cut into 4 µm sections for mounting on positively-charged slides. Antigen retrieval was 

performed using protease 2 (Ventana). Sections were immunostained with primary 

antibodies targeting phospho-Tyr-845 (1:150; Abcam) and human uPAR (1:75; Dako) for 1 

h at 37°C using the Ventana Discovery Ultra Platform. Q-dot-linked fluorescent secondary 

antibodies (1:150; Invitrogen) were added for 1 h. The slides were rinsed and cover-slipped 

with Prolong Gold and DAPI (Invitrogen). Slides were visualized on a Zeiss Axio Imager2 

using Cambridge Research Instruments Nuance Multispectral Imaging System software to 

capture images and visualize individual fluorophore spectra free from auto-fluorescence 

noise. In control experiments, phospho-epitope labeling was validated using protein 

phosphatase treatment, which eliminated signal.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Regulation of SFK activation by uPAR in EGFRvIII-expressing U373MG and U87MG 

cells. (a) Cell extracts from parental and EGFRvIII-expressing U373MG cells were 

subjected to immunoblot analysis to detect total EGFR (T-EGFR) and actin as a loading 

control. The mobility of wild-type EGFR is shown with an arrow and the mobility of 

EGFRvIII is shown with an arrowhead. (b) EGFRvIII-expressing U373MG cells were 

transfected with uPAR-specific (+) or NTC siRNA (−), allowed to recover, and then 

cultured in SFM for 24 h. Cell extracts were prepared and subjected to immunoblot analysis 
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to detect uPAR, phospho-Tyr-416 in SFKs (P-SFK(Y416)), total SFKs (T-SFK), 

phosphorylated Tyr-845 in the EGFR (P-EGFR(Y845)), total EGFR, phosphorylated 

Tyr-410 in p130Cas (P-p130Cas(Y410)) and tubulin. (c) Cell extracts from parental and 

EGFRvIII-expressing U87MG cells were subjected to immunoblot analysis to detect total 

EGFR (T-EGFR) and actin as a loading control. (d) EGFRvIII-expressing U87MG cells 

were transfected with uPAR-specific (+) or NTC siRNA (−), allowed to recover, and then 

cultured in SFM for 24 h. The cells were then treated with EGF (2 ng/mL) for 10 min as 

specified (the two right-hand lanes). Immunoblot analysis was performed. (e) wt-EGFR-

over-expressing U87MG cells and EGFRvIII-expressing U87MG cells were transfected with 

uPAR-specific (+) or NTC (−) siRNA, transferred to SFM, and treated with EGF (2 ng/mL) 

or vehicle for 10 min. Immunoblot analysis was performed.
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Figure 2. 
uPAR regulates availability of SH2-binding sites in EGFRvIII. (a) EGFRvIII-expressing and 

wt-EGFR-over-expressing U87MG cells were transfected with uPAR-specific (+) or NTC 

(−) siRNA, transferred to SFM, and treated with 10 ng/mL EGF or with vehicle for 10 min. 

Cell extracts were isolated and incubated with GST-SH2 coupled to glutathione-Sepharose 

for 3 h at 4°C. The Sepharose beads were wash ed and re-suspended in SDS-sample buffer 

for SDS-PAGE. EGFR that affinity-precipitated with GST-SH2 was determined by 

immunoblot analysis. Total cell extracts also were subjected to immunoblot analysis as a 

control for load. (b) EGFRvIII-expressing U373MG cells were transfected with uPAR-

specific (+) or NTC (−) siRNA, transferred to SFM, and treated with 10 ng/mL EGF or with 

vehicle for 10 min. Binding of EGFRvIII to GST-SH2 was determined as described in panel 

a.
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Figure 3. 
uPAR and phospho-Tyr-845 vary concordantly in individual cells in human GBM tissue. (a) 

An EGFRvIII-expressing human GBM was propagated as a xenograft. Harvested tissue was 

subjected to quantum dot immunofluorescence microscopy using antibodies that detect 

human uPAR (red, left) and phospho-Tyr-845 (green, middle). The merged image (right), 

highlights co-localization of uPAR and phospho-Tyr-845 (yellow). (b) To quantify antigen 

signal intensity, multispectral imaging was performed followed by spectral intensity 

analysis. The signal intensity for uPAR-staining was plotted against that for phospho-
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Tyr-845-staining in randomly selected individual cells, revealing a tight correlation 

(R2=0.87).
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Figure 4. 
Effects of EGFRvIII neutralization on SFK activation in U373MG GBM cells. (a) U373MG 

cells that express EGFRvIII under the control of a Dox repressible promoter were treated 

with Dox (1 µg/ml) (+) or with vehicle (−) for 4 days. The cells were transferred to SFM and 

allowed to condition medium for 2 days. The medium was concentrated 10× and subjected 

to immunoblot analysis to detect uPA. Cell extracts were then prepared and immunoblotted 

to detect EGFR and tubulin as a control for load. Equivalent incubations were conducted to 

isolate RNA. uPA mRNA expression was compared in Dox-treated (+) and control (−Dox) 

Hu et al. Page 21

Oncogene. Author manuscript; available in PMC 2016 January 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



U373MG cells (*, p<0.05, Student’s t-test). (b) U373MG cells were treated with Dox or 

vehicle for 6 days. uPAR-specific or NTC siRNA was introduced for 12 h, beginning at day 

4. The cultures were then washed and re-equilibrated in SFM with or without Dox for the 

final 36 h. Cell extracts were prepared and immunoblotted to detect Tyr-416 in SFKs (P-

SFK(Y416)) and tubulin as a control for load. (c) EGFRvIII-expressing U373MG cells and 

Escaper tumor cells (ESC1, ESC2 and ESC5) were cultured in SFM for 24 h. Total EGFR 

mRNA (wt-EGFR + EGFRvIII) and uPA mRNA levels were determined by qPCR and 

standardized against the levels present in parental cells that express EGFRvIII (mean ± 

SEM; n=3, *, p<0.05, **, p<0.01). (d) ESC cell lines were transfected with NTC (−) or 

uPAR-specific siRNA (siuPAR) (+), allowed to recover, and then cultured in SFM for 24 h. 

Immunoblot analysis was performed to detect SFK phospho-Tyr-416.
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Figure 5. 
Effects of EGFRvIII neutralization on migration of U373MG GBM cells. (a) U373MG cells 

that express EGFRvIII under the control of a Dox repressible promoter were treated with 

Dox or with vehicle for 4 days. uPAR-specific siRNA (siuPAR) or NTC siRNA were 

introduced for 12 h. The cells were re-equilibrated in serum-containing medium for 24 h 

(with or without Dox) and then added to Transwell chambers. Cell migration was allowed to 

occur in Transwell chambers for 18 h. Serum was present exclusively in the lower 

chambers. Representative photomicrographs show cells that migrated to the underside 

Hu et al. Page 23

Oncogene. Author manuscript; available in PMC 2016 January 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



surface of the membranes. (b) Cells that migrated to the underside surfaces of the 

membranes were counted (mean ± SEM, n=3, *, p<0.05). (c) U373MG GBM cells were 

cultured in the presence of Dox or vehicle (without Dox) for 4 days. These cells and ESC 

cell lines were transfected with NTC siRNA (black bars) or uPA-specific siRNA (grey bars). 

After re-equilibration in serum-containing medium for 24 h, cells were added to Transwell 

chambers. Cells were allowed to migrate for 18 h. The number of migrating cells was 

standardized against that observed with U373MG cells that were not treated with Dox and 

transfected with NTC siRNA (mean ± SEM, n=3, *, p<0.05; **, p<0.01). (d) EGFRvIII-

expressing U373MG cells were treated with Gefitinib (1 µM) or vehicle (DMSO) for 4 days. 

The cells were transferred to SFM for 24 h. uPA mRNA expression was determined by 

qPCR and standardized against the level present in cells treated with vehicle (mean ± SEM; 

n=3, *, p<0.05). (e) EGFRvIII-expressing U373MG cells were treated with Gefitinib (1 µM) 

or vehicle (DMSO) for 4 days. Cell migration was allowed to occur in Transwell chambers 

for 18 h. The number of migrating cells was standardized against that observed with vehicle-

treated U373MG cells (mean ± SEM, n=3, *, p<0.05). (f) EGFRvIII-expressing U373MG 

cells were treated with Gefitinib (1 µM) or with vehicle for 4 days and then transfected with 

uPA-specific siRNA (grey bar) or NTC siRNA (black bar). The cells were allowed to 

recover in serum-containing medium for 24 h (with continued treatment with Gefitinib or 

vehicle) before addition to Transwell chambers. Cell migration occurred for 18 h. The 

number of migrating cells was standardized against that observed with U373MG cells that 

were treated with vehicle and transfected with NTC siRNA (mean ± SEM, n=3, *, p<0.05).
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Figure 6. 
Dasatinib decreases SFK activation and blocks cell migration promoted by activation of the 

uPA-uPAR signaling system. (a) U373MG cells that express EGFRvIII under the control of 

a Dox repressible promoter were treated with Dox or with vehicle for 4 days and then with 

0.3 µM Dasatinib (+) or vehicle (DMSO) (−) in SFM for 4 h. Immunoblot analysis was 

performed to detect phosphorylated Tyr-416 in SFKs and tubulin as a control for load. (b) 

U373MG cells were treated with Dox or vehicle for 4 days. The cells were then added to 

Transwells in the presence of 0.3 µM Dasatinib (grey bar) or vehicle (DMSO, black bar). 
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Cells were allowed to migrate for 18 h. Serum (10% FBS) was added only to the lower 

chamber. The number of migrating cells was determined and standardized against that 

observed with vehicle-treated U373MG cells (mean ± SEM, n=3, *, p<0.05). (c) ESC cell 

lines (ESC1, ESC2 and ESC5) were treated with 0.3 µM Dasatinib (+) or vehicle (DMSO) 

(−) in SFM for 4 h. Immunoblot analysis was performed to detect phosphorylated Tyr-416 in 

SFKs, phosphop130Cas, and tubulin as a control for load. (d) Escaper cells (three separate 

cell lines) were treated with Dasatinib (gray bars) or DMSO (black bars) by adding drug to 

the top and bottom chambers of Transwells. Cell migration was then studied (mean ± SEM, 

n=3. **, p<0.01). (e) EGFRvIII-expressing U373MG cells were treated with Gefitinib (1 

µM) or vehicle (DMSO) for 4 days. These cells were then treated with 0.3 µM Dasatinib 

(grey bar) or vehicle (black bar) by adding drug to the top and bottom chambers of 

Transwells. Cells were allowed to migrate for 18 h. The number of migrating cells was 

standardized to that observed with vehicle-treated U373MG cells (mean ± SEM, n=3, *, 

p<0.05).
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Figure 7. 
A model showing overlap in downstream targets for EGFRvIII and uPAR-initiated cell-

signaling. uPAR signals as a component of a multiprotein receptor complex, which probably 

includes integrins, the GPCR, FPRL1, and RTKs. Gefitinib targets EGFRvIII signaling and 

may activate uPAR as a compensatory, pro-survival response. SFKs, which are targeted by 

Dasatinib, serve as key upstream signaling factors in the uPAR cell-signaling system. PI3K 

and ERK1/2 are well described pro-survival factors. PI3K, ERK1/2, and Rac1 have been 

implicated in cancer cell migration.
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