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ABSTRACT OF THE DISSERTATION 

 
 

Analysis of Functional Genetic Screens for Genome-Wide Metabolic Engineering of 

Microbial Bioproduction Hosts 
 

 

by 
 
 

Varun Trivedi 

 

Doctor of Philosophy, Graduate Program in Chemical and Environmental Engineering 

University of California, Riverside, September 2024 

Dr. Ian Wheeldon, Chairperson 

 

 

 

 

Microorganisms found in the environment around us exhibit a multitude of 

desirable characteristics that make them suitable hosts for the industrial production of 

biochemicals and biofuels. A common strategy to engineer microbes is using rational 

design approaches that entail manipulation of genes involved in one or more native 

metabolic pathways to improve biochemical synthesis or other relevant phenotypes. The 

advent of synthetic biology tools such as CRISPR-Cas systems for gene editing, and 

next-generation sequencing technologies has, however, made it possible to elucidate 

pangenome-wide targets for strain engineering by performing experiments at a genomic 

scale, such as genome-wide pooled CRISPR knockout screens, and analyzing the 

resulting high-throughput data using bioinformatic methods. A crucial challenge in 

evaluating the outcomes of pooled CRISPR screens is accounting for the variability in 

sgRNA knockout efficiency, as low-activity guides can potentially mask screening hits to 

result in false negatives. Towards that end, we developed an analysis method, acCRISPR, 

that processes NGS data from pooled CRISPR knockout screens, and provides an activity 
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correction to accurately call statistically significant genes for the phenotype under study. 

We applied acCRISPR to CRISPR-Cas9 and CRISPR-Cas12a screening datasets from 

the oleaginous yeast Yarrowia lipolytica to identify a high-confidence set of essential 

genes for growth on glucose, as well as genes important for providing tolerance to high 

salt stress conditions. We further used the experimental sgRNA activity profiles from 

these screens to determine in silico sgRNA activity prediction accuracy of deep learning-

based models trained on balanced and imbalanced experimental datasets, and improve 

prediction power with imbalanced training datasets by augmenting them with synthetic 

sgRNA. In another study, we sought to identify genetic targets responsible for phenazine 

biosynthesis in the bacterium Pseudomonas chlororaphis by employing a population 

genomics approach. We sequenced 34 Pseudomonas isolates using short- and long-read 

sequencing technologies, characterized them for phenazine production, and performed a 

microbial genome-wide association study (mGWAS) on the genomic-phenotypic data to 

elucidate the most influential phenazine biosynthesis targets across the pangenome. 

Overall, this work demonstrates the utility of high-throughput experimental-

computational frameworks for identifying microbial strain engineering targets at a 

genomic scale and establishing novel genotype-phenotype relationships. 
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Chapter 0: Thesis organization 

 

Functional genomic screening using various synthetic biology tools results in the 

generation of vast amounts of data, necessitating computational analysis and modeling to 

elucidate screening outcomes. This dissertation focuses on developing and deploying 

bioinformatic methods to analyze data from high-throughput genetic screens in non-

conventional microbes, and identify genome-wide targets for strain engineering in an 

effort to improve industrial bioproduction. 

Chapter 1 of this dissertation reviews the experimental and computational 

approaches for conducting and analyzing pooled CRISPR knockout screens in non-

conventional microbes. We describe the various steps involved in the CRISPR screening 

workflow, ranging from sgRNA library design to interpretation of screening outcomes, 

while outlining the considerations and pitfalls in every step. We also discuss and compare 

existing software tools available for CRISPR screen analysis, sharing our insights on the 

suitability of different tools for different screening datasets. 

The sgRNA library used to conduct pooled CRISPR screens typically consists of 

sgRNA with a broad spectrum of activity, with only a limited fraction of sgRNA 

resulting in successful genomic edits. As a result, sgRNA having low editing efficiency 

tend to mask the effect of genetic disruptions and consequently obscure gene hits. In 

Chapter 2, we address this issue by developing acCRISPR, an end-to-end pipeline to 

analyze data from pooled CRISPR screens and identify statistically significant genes for a 

given phenotype. acCRISPR uses experimental sgRNA activity profiles to correct 
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screening outcomes by removing low-activity sgRNA based on an activity threshold. We 

applied acCRISPR to CRISPR-Cas9 and CRISPR-Cas12a screening datasets from the 

non-conventional yeast Yarrowia lipolytica to identify a consensus set of genes essential 

for growth on glucose, and previously unknown genes conferring tolerance to high salt 

stress conditions in industrial bioreactors, a subset of which were experimentally 

validated. 

The experimental activity profiles used for acCRISPR analysis in Chapter 2 also 

serve as suitable datasets to train deep learning models and design active sgRNA based 

on in silico activity scores. Chapter 3 showcases the importance of using balanced 

datasets to train deep learning models for accurate prediction of high- and low-activity 

sgRNA. We demonstrate this by training a convolutional neural network model and a 

large language model on the CRISPR-Cas12a experimental activity profile from Y. 

lipolytica. Training on the original CRISPR-Cas12a data, a balanced dataset, results in 

accurate activity predictions for experimentally-validated high- and low-activity sgRNA, 

while training on imbalanced datasets obtained by removing high- or low-activity sgRNA 

from the Cas12a data reduces the ability to predict high- or low-activity sgRNA 

respectively. Moreover, we found the prediction accuracy to improve when imbalanced 

training sets are re-balanced by adding synthetic high- or low-activity sgRNA, while still 

being lower than that obtained with an inherently balanced training set. 

In Chapter 4, we utilized a population genomics strategy to identify novel genetic 

targets responsible for the biosynthesis of phenazine compounds in the bacterium 

Pseudomonas chlororaphis. We collected and sequenced 34 Pseudomonas isolates using 
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Illumina and Oxford Nanopore technologies, and used the NGS reads to assemble whole 

genomes. We also characterized phenazine production for each isolate in two media 

conditions. Next, we used the whole genome assemblies along with the phenazine 

production data for the 34 isolates to perform a bacterial genome-wide association study 

(GWAS) and identified 330 significant genomic variants for improving bioproduction of 

various phenazines. Based on a quantitative metric, we elucidated the most influential 

hits for phenazine production and validated them in vivo in the most optimal phenazine 

producing strain, exemplifying the usefulness of adopting a population genomics 

approach to identify novel metabolic engineering targets. 

Chapter 5 discusses the findings presented in this dissertation within the broader 

context of the field and provides future research directions. 
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Chapter 1: Analyzing CRISPR screens in non-conventional microbes 

 

1.1 Abstract 

The multifaceted nature of CRISPR screens has propelled advancements in the 

field of functional genomics. Pooled CRISPR screens involve creating programmed 

genetic perturbations across multiple genomic sites in a pool of host cells subjected to a 

challenge, empowering researchers to identify genetic causes of desirable phenotypes. 

These genome-wide screens have been widely used in mammalian cells to discover 

biological mechanisms of diseases and drive the development of targeted drugs and 

therapeutics. Their use in non-model organisms, especially in microbes to improve 

bioprocessing-relevant phenotypes, has been limited. Further compounding this issue is 

the lack of bioinformatic algorithms for analyzing microbial screening data with high 

accuracy. Here, we describe the general approach and underlying principles for 

conducting pooled CRISPR knockout screens in non-conventional yeasts and performing 

downstream analysis of the screening data, while also reviewing state-of-the-art 

algorithms for identification of CRISPR screening outcomes. Application of pooled 

CRISPR screens to non-model yeasts holds considerable potential to uncover novel 

metabolic engineering targets and improve industrial bioproduction. 

 

1.2 Introduction 

High-throughput CRISPR screens have become a versatile tool in enabling 

identification of the genetic basis of various phenotypes 1–3. For instance, they have been 

https://paperpile.com/c/eyKpmB/1AUoh+88BRO+SD1uH
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used extensively in mammalian cancer cell lines to identify essential genes for survival, 

for facilitating targeted drug design, and in immunological studies to identify genes 

involved in various pathways in human immune cells 4–8. Moreover, with the ability to 

target combinations of multiple genes simultaneously, CRISPR screens have made it 

possible to elucidate functions of poorly characterized genes via construction of gene 

interaction (GI) maps 9. Genome-wide CRISPR screens have also been performed in 

bacteria and yeasts to unravel genetic hits influencing a diverse set of phenotypes, 

including those relevant to industrial bioproduction. Previous studies in model microbes – 

E. coli and S. cerevisiae – have identified essential genes as well as those required for 

conferring tolerance to biochemicals like isobutanol and furfural 10–12. Other studies have 

focused on non-conventional microbes, such as the oleaginous yeast Yarrowia lipolytica, 

to identify genes essential for growth on glucose, and those important for providing 

tolerance to environmental stress conditions, such as low pH and high salt concentration 

13,14. 

CRISPR screens typically use a library of programmable single guide RNAs 

(sgRNAs) and a CRISPR-associated endonuclease, typically Cas9 or Cas12a, to create 

mutations or alter gene expression 15–17. The most common type of CRISPR screens are 

knockout screens where the CRISPR-Cas system generates a double stranded break 

(DSB) at the genomic target site, evoking native DNA repair pathways such as non-

homologous end joining (NHEJ) to create INDEL mutations that result in loss of gene 

function 18,19. Besides knocking out gene function, CRISPR screens can make use of a 

nuclease-deactivated Cas protein to modulate transcription when fused to activator 

https://paperpile.com/c/eyKpmB/HQzC+44hF+9zqp+J1kf+AMAS
https://paperpile.com/c/eyKpmB/mU3Zt
https://paperpile.com/c/eyKpmB/ex8Tq+305JD+9lEpx
https://paperpile.com/c/eyKpmB/rR9LS+Gdqii
https://paperpile.com/c/eyKpmB/SnVuR+Lm3V2+0KwAy
https://paperpile.com/c/eyKpmB/mM633+UcW7Z
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(CRISPR activation or CRISPRa) or repressor (CRISPR interference or CRISPRi) 

domains. These screens can be conducted in a pooled or arrayed format. Arrayed screens 

physically separate predefined gene perturbations, making them malleable to 

amalgamation with downstream -omics profiling; but they have limited throughput and 

are relatively expensive 15–17. On the contrary, pooled screens have a much higher 

throughput as they are devoid of physical separation between gene targets, making them 

more commonplace compared to arrayed screens, but require performing comparisons to 

a baseline for hit identification 15,16. The customizable nature of sgRNA and the ease of 

inducing perturbations to gene function using CRISPR-Cas systems makes high-

throughput CRISPR screens an effective tool for establishing genotype-phenotype 

relationships in both model and non-conventional organisms. 

The CRISPR screening workflow comprises of a series of experimental and 

computational steps, ranging from host selection and library design to identification and 

biological interpretation of hits. In this review, we explore some of these steps in detail, 

with a focus on pooled CRISPR knockout screening in non-conventional yeasts. We 

begin by discussing the experimental design for conducting the screens, followed by 

bioinformatic processing of screening data. We also describe the general working 

principles behind the identification of screening outcomes, while juxtaposing the nature 

of yeast and mammalian cell datasets. Lastly, we review some of the existing algorithms 

for analyzing CRISPR screens and discuss their performance on yeast screening datasets, 

with a goal of assisting researchers in choosing the most appropriate tool for analyzing 

their data. 

https://paperpile.com/c/eyKpmB/SnVuR+Lm3V2+0KwAy
https://paperpile.com/c/eyKpmB/SnVuR+Lm3V2
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1.3 Functional genetic screening with pooled CRISPR libraries 

A schematic representation of the experimental pipeline for performing pooled 

CRISPR knockout screens is depicted in Fig. 1.1. Since microbes exhibit different sets of 

desirable phenotypes, a preliminary step in CRISPR screening is the selection of an 

appropriate biological host for a given application. In the case of non-conventional 

yeasts, relevant phenotypes influencing host selection include a microorganism’s natural 

ability to synthesize a certain bioproduct, or tolerate harsh environmental conditions that 

may be present in industrial bioprocesses 20. Once a host is chosen, an sgRNA library is 

designed to target relevant or all protein-coding genes in the genome of the organism 

(although non-coding regions could also be targeted 21). 

 

 
 
Fig. 1.1. Experimental workflow for conducting pooled CRISPR knockout screens. A library of 

sgRNA spanning multiple genomic sites is designed, synthesized, and cloned into a plasmid backbone. The 

plasmid library is transformed into control and treatment host strains, and cells are cultivated for a 

predetermined number of days to select for significant gene knockouts. Upon completion of the screen, 

plasmids are extracted from the cells, quantified by qPCR, and sequenced using NGS. Figure created with 

BioRender. 

https://paperpile.com/c/eyKpmB/JpU5O
https://paperpile.com/c/eyKpmB/1nsnL
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sgRNA library design 

It is well known that guide RNAs present disparities in inducing genetic edits and 

that guide activity is crucial to the accuracy of screening results. Highly active guides can 

correlate the phenotypic variations to the appropriate genomic perturbation with high 

accuracy, while poorly active guides may obscure gene hits. It is thus advantageous to 

create a library comprising a large proportion of high-activity guides to improve hit 

calling. High-activity libraries can be designed by picking guides based on in silico 

activity scores estimated using activity prediction algorithms. Existing software tools 

such as CHOPCHOP 22, CRISPRLearner 23, DeepCpf1 24, and DeepGuide 25, among 

others use one or more sequence, structural, and epigenetic features of sgRNA to predict 

on-target activity with endonucleases such as Cas9 and Cas12a. See 26 for an in-depth 

review on guide activity prediction and benchmarking across current tools. Despite most 

of the prediction algorithms being developed for model organisms, they have been 

reasonably effective in facilitating design of active sgRNA libraries in non-conventional 

hosts relative to an unbiased approach that is blinded to in silico activity scores 13,14.  

Even when using activity prediction scores, it is advisable to design several guides 

targeting each gene (i.e., a high genome coverage), ensuring the presence of an active 

guide per gene and sufficient statistical power for hit identification – an approach that 

comes with a cost of increasing downstream analytical complexity. Regardless of the 

design strategy, it is critical to ensure that every sgRNA in the final library is: (i) unique 

within the genome, so that off-target effects are minimized; (ii) does not target intronic 

regions of the coding sequence; (iii) sufficiently spaced from other sgRNA to improve 

https://paperpile.com/c/eyKpmB/CCeKa
https://paperpile.com/c/eyKpmB/MOoKZ
https://paperpile.com/c/eyKpmB/jtt3S
https://paperpile.com/c/eyKpmB/uTpMg
https://paperpile.com/c/eyKpmB/KPlds
https://paperpile.com/c/eyKpmB/rR9LS+Gdqii
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diversity of target locations; and if possible, (iv) located within 5-65% of each coding 

sequence to maximize the chances of a gene knockout resulting in a non-functional 

protein 27,28. 

 

Conducting the screening experiment 

The designed library is synthesized as pooled single stranded oligos on a DNA 

microchip that are cloned into a plasmid vector, resulting in a library of plasmids. This 

plasmid library is amplified by transforming it into E. coli before isolation and 

subsequent transformation into the actual host cells for the screening experiment. Stable 

Cas expression in host cells is often accomplished through heterologous expression from 

a genomically integrated expression cassette. In addition to the sample (or treatment) 

strain, a control (or reference) strain is also needed so that changes in guide abundances 

at the end of the screen can be determined. In many cases, a strain devoid of Cas 

endonuclease but harboring the guide RNA library is used as control 1,29. Other examples 

of the reference conditions include, the treatment sample immediately post 

transformation (day 0 of the screen before gene knockouts occur) or the untransformed 

library 6. 

Upon transformation of the sgRNA library in the control and treatment strains, 

cells are allowed to proliferate until they reach confluency, and then subcultured to allow 

for genetic selection. At the end of the screen, the connection between genotype and 

phenotype is made by sequencing isolated plasmids expressing the sgRNA. That is, the 

fitness effect of disrupting a given gene is determined by quantifying the abundance of 

the sgRNA targeting the gene. To do so, the plasmid library is extracted from the 

https://paperpile.com/c/eyKpmB/00OU9+QdvEN
https://paperpile.com/c/eyKpmB/tnltD+1AUoh
https://paperpile.com/c/eyKpmB/9zqp
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treatment and control samples, the encoded guides are amplified by PCR, and the 

amplicon pool is sequenced using an Illumina or similar NGS platform. For accuracy of 

results, it is advisable to ensure sufficient depth in the sequencing run, which should be 

about 100 times the library size or higher for every screening replicate. 

The resulting sequencing reads, the counts of which are indicative of the 

abundance of a given mutant in the microbial population, can be bioinformatically 

processed to identify genes that affect growth in the screened condition. The raw sgRNA 

abundances themselves cannot be used directly for accurate determination of screening 

outcomes, since they do not account for variability in sgRNA activity and variability in 

sequencing depth across samples, necessitating bioinformatic analysis to obtain 

significant hits from the screen. 

 

1.4 CRISPR screen data analysis 

CRISPR screen analysis pipelines typically include steps for sequencing read 

processing, quality control, hit identification, and investigation of screening results. 

These steps and a typical analysis pipeline are shown in Fig. 1.2, and described in detail 

below along with the associated bioinformatic tools available for use.
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Fig. 1.2. Typical steps in pooled CRISPR screen analysis and visual depiction of results. Raw 

sequencing reads from the screen are processed to generate sgRNA read counts, which, upon passing 

quality control, are used for identifying significant genes in the dataset. The identified hits are characterized 

to elucidate underlying biological mechanisms and screening results are visualized by making plots. Figure 

created with BioRender. 

 

Processing raw sequencing data 

While analysis tools like PinAPL-Py 30 and MAGeCK 31 can accept raw 

sequencing data as input and process it as part of their pipeline, most other analysis 

packages require sgRNA abundances or log2-fold changes as input. Consequently, raw 

sequencing reads from the genome-wide screen need to be modified and aligned 

separately before analyzing them to generate screening outcomes. This can be 

accomplished with a number of existing bioinformatics tools and workflows. For 

instance, FastQC 32 allows users to perform quality control on the sequencing data based 

on metrics such as per base sequence quality, sequence length distribution, and 

overrepresented sequences, among others. 

If multiple screening samples and replicates were sequenced in a single run, the 

reads can be demultiplexed to split the data into individual samples and replicates on the 

https://paperpile.com/c/eyKpmB/98qGa
https://paperpile.com/c/eyKpmB/s6ICR
https://paperpile.com/c/eyKpmB/Ri9KO
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basis of sample-specific adapters. This is achieved with the help of tools such as Cutadapt 

33, Ultraplex 34, or ea-utils 35. Other tools like fastp 36 or Trimmomatic 37 could be used to 

trim the reads by removing the vector backbone and other miscellaneous sequences to 

only retain the sgRNA sequence.  

In regard to mapping reads to the genome and/or the sgRNA library, available 

methods include BWA-MEM2 38, Bowtie2 39, or HISAT2 40, which align NGS reads to a 

reference sequence by exact or approximate matching. Of these tools, Bowtie2 is most 

widely used for read mapping in CRISPR screen analysis. The read alignment 

information is used to compute the read count (i.e., abundance) of each sgRNA across 

samples. 

For CRISPR screens in non-model yeasts like Yarrowia lipolytica, the tools 

Cutadapt and Trimmomatic have been found to be suitable for demultiplexing and 

trimming sequencing reads respectively 14,25. Similarly, a combination of Bowtie2 and 

naive exact matching has been shown to perform reasonably well in aligning reads, 

especially due to the ability of Bowtie2 to account for mismatches during alignment, that 

mainly stem from sequencing errors. 

 

Quality control of the screening data 

Before using the read counts for further analysis, it is essential to assess the 

quality of experimental data, for example, by determining pairwise replicate correlation 

coefficients per sample and examining the sgRNA abundance distribution in the original 

library. This is done to ensure authenticity of screening results and reduce spurious hit 

predictions. High correlation values (e.g., Pearson’s coefficient > 0.7) indicate 

https://paperpile.com/c/eyKpmB/R7a8o
https://paperpile.com/c/eyKpmB/IQxVD
https://paperpile.com/c/eyKpmB/aJBVn
https://paperpile.com/c/eyKpmB/0njHH
https://paperpile.com/c/eyKpmB/MiU4N
https://paperpile.com/c/eyKpmB/nZb8j
https://paperpile.com/c/eyKpmB/RCqKC
https://paperpile.com/c/eyKpmB/gquny
https://paperpile.com/c/eyKpmB/Gdqii+uTpMg
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consistency between biological replicates. Upon passing this quality check, raw sgRNA 

read counts from control and treatment samples are provided to one or more CRISPR 

screen analysis methods that employ statistical approaches to identify significant genes in 

the screen.  

 

Identifying screen hits 

Most methods normalize the raw sgRNA abundances to account for varying 

sequencing depth across samples and ensure a fair comparison between controls and 

treatments. These normalized abundances are used directly, or converted to log2-fold 

change to estimate gene essentiality scores, predominantly using Bayesian principles.  

The genome-wide library contains sgRNA with variable activity; failure to 

account for this variability could lead to inaccurate predictions of screening results. High 

activity sgRNA should thus have a greater influence in determining gene essentiality 

compared to low activity sgRNA. A common strategy to infer sgRNA activity involves 

screening across multiple conditions and applying probability-based approaches to make 

a prediction 41,42. Alternatively, guide RNA activity can be determined experimentally by 

screening in an additional treatment sample containing a knockout of the native DNA 

repair mechanism. The activity of sgRNA can then be estimated as the log2-fold change 

in sgRNA abundance in the knockout-containing strain (in presence of the Cas 

endonuclease) to that in the control strain 13,14. Using this approach not only improves the 

reliability of the activity estimate, but also avoids the need to screen across multiple 

conditions (substantially reducing the size of the experiment), although knockout of DNA 

repair may not always be viable for all organisms.  

https://paperpile.com/c/eyKpmB/KHZ6j+srqxE
https://paperpile.com/c/eyKpmB/rR9LS+Gdqii
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Once essentiality scores have been computed, a statistical test for every gene to 

determine whether it belongs to a ‘null’ population of scores (i.e., population of 

essentiality scores of non-essential genes) is typically conducted, thus resulting in a p-

value for the essentiality of each gene. The p-value is further corrected for multiple 

comparisons (typically using FDR 43) and genes having corrected p-value lower than a 

predetermined threshold are deemed as significant hits or essential genes. 

 

Selecting a null model for significance testing 

A suitable choice for the ‘null’ population depends on the host organism used to 

generate the screening data. Ideally, the null population is representative of the behavior 

of non-essential genes in the screen. For mammalian cells, the non-essential gene 

population overlaps well with the population of negative control sgRNA, and as a result, 

the negative control population serves as a suitable null model. On the other hand, non-

conventional yeast datasets, in our experience, have a non-essential gene population that 

is relatively distant from the population of negative control sgRNA 14. Using negative 

controls to create the null population would thereby result in a large number of false 

essentiality predictions, prompting the use of putative non-essential genes to create the 

null population.  

While negative control sgRNA make no knockouts in the genome, knockouts 

produced by targeting sgRNA result in growth defects and a corresponding drop in the 

targeting sgRNA abundance compared to the control sample. The proximity between the 

negative control sgRNA and non-essential gene populations thus depends on the ability 

of host cells to stem these growth defects. Non-conventional yeasts lack this ability to 

https://paperpile.com/c/eyKpmB/GDB2T
https://paperpile.com/c/eyKpmB/Gdqii
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suppress growth defects, likely due to the absence of multiple gene copies and alternate 

splicing mechanism. This is in contrast to the case of mammalian cells, which exhibit 

polyploidy and undergo alternate splicing of genes, presumably suppressing growth 

defects and causing the non-essential gene population to overlap well with the negative 

control population. 

 

Investigation of screening results 

After identifying significant genes from a screen, the next step is to elucidate their 

biological importance. Databases such as UnitProt 44 and Pfam 45 can be used to 

investigate protein functions of known genes. In addition, analyses like gene ontology 

(GO)-enrichment test 46 and GSEA 47 could be performed to identify biological pathways 

relevant to the significant hits. Since non-model organisms have a considerable number 

of unannotated genes, these could be investigated by performing BLAST 48 against 

proteomes of model organisms, or more rigorously by experimentation. Finally, 

screening results can be visualized, for example, by plotting log2-fold changes of sgRNA 

targeting significant genes against a backdrop of those of the entire library. Moreover, if a 

gold standard set of essential genes is available, receiver operator characteristic (ROC) 

plots or precision-recall (PR) plots can be constructed and area under the curve can be 

calculated to determine accuracy of the predictions. 

 

https://paperpile.com/c/eyKpmB/XSeXW
https://paperpile.com/c/eyKpmB/sgp31
https://paperpile.com/c/eyKpmB/iYJ4D
https://paperpile.com/c/eyKpmB/BevnU
https://paperpile.com/c/eyKpmB/5hrn1
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1.5 Software packages for CRISPR screen analysis 

Here we introduce and describe the most commonly used software packages for 

analyzing pooled CRISPR screens. A comparison of the tools based on some common 

features is provided in Table 1.1. 

Table 1.1. Comparison of software packages for analysis of pooled CRISPR screens. 

Method Implement- 

ation 

Quality 

control 

Expt. 

sgRNA 

efficiency 

Multiple 

screens 

Applicable to 

CRISPRa/i 

Ref. 

MAGeCK-VISPR Python Yes No Yes No 41 

CRISPhieRmix R,C++ No No No Yes 49 

JACKS Python No No Yes No 42 

ACE R No No Yes No 53 

BAGEL2 Python Yes No No No 51 

acCRISPR Python No Yes No No 14 

 

MAGeCK-VISPR 

MAGeCK-VISPR is an end-to-end workflow for quality control, analysis, and 

visualization of CRISPR screens 41. The analysis is carried out by an expectation-

maximization algorithm that takes raw sgRNA counts from multiple screening conditions 

as input, and uses them to iteratively compute gene essentiality across conditions and 

sgRNA activity. Read counts are modeled as a negative binomial distribution and a 

generalized linear model is used to deconvolute gene effects from multiple screens. 

Although shown to be robust in making predictions for mammalian cancer cell lines, the 

method inaccurately estimates sgRNA activity for datasets from non-conventional yeasts, 

which leads to erroneous predictions for gene essentiality 14. 

https://paperpile.com/c/eyKpmB/KHZ6j
https://paperpile.com/c/eyKpmB/cpR43
https://paperpile.com/c/eyKpmB/srqxE
https://paperpile.com/c/eyKpmB/Smh3H
https://paperpile.com/c/eyKpmB/YSJGI
https://paperpile.com/c/eyKpmB/Gdqii
https://paperpile.com/c/eyKpmB/KHZ6j
https://paperpile.com/c/eyKpmB/Gdqii
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CRISPhieRmix 

Originally designed to analyze CRISPRa and CRISPRi screens, CRISPhieRmix 

can also be applied to knockout screens 49. The method requires log2-fold changes of 

sgRNA as input and fits that data to a hierarchical mixture distribution, constituting a 

broad tailed null distribution (to account for asymmetry in the screening data) and an 

alternative distribution. This model is used to compute and return the posterior 

probability of belonging to the alternative distribution for each gene, marginalized over 

all possible mixture distributions of sgRNA targeting essential genes. Since 

CRISPhieRmix uses the negative control population to form the null distribution, it 

performs well on screening data from human cancer cells, but has been found to result in 

an excessive number of false positives for screening datasets in the yeast Yarrowia 

lipolytica 14. 

 

JACKS 

JACKS is a Bayesian method that processes data from multiple screens 

simultaneously to improve modeling of sgRNA activity and hence, estimation of 

condition-dependent gene essentiality 42. The method starts out by assuming Gaussian 

priors for gene essentiality scores and sgRNA efficacies. It further uses raw sgRNA 

counts as input to compute log2-fold changes that constitute the likelihood function. The 

final values of sgRNA activity and gene essentiality per condition are inferred from their 

respective posteriors, determined using variational inference. Like MAGeCK-MLE, 

JACKS effectively identifies essential genes in human datasets, but has been shown to 

fall short of correctly classifying essential genes in non-conventional yeasts like 

https://paperpile.com/c/eyKpmB/cpR43
https://paperpile.com/c/eyKpmB/Gdqii
https://paperpile.com/c/eyKpmB/srqxE
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Yarrowia lipolytica, mainly due to its inability to make accurate sgRNA activity 

inferences 14. 

 

BAGEL2 

Developed as an updated version of BAGEL 50, this method uses information 

from gold-standard sets of essential and non-essential genes to infer essentiality of every 

gene in the screening dataset, via calculation of a Bayes factor corrected for off-target 

effects 51. BAGEL2 accounts for copy number effect using the tool CRISPRcleanR 52. 

Additionally, it determines the quality of each screening replicate by computing a quality 

score based on log-fold change of sgRNA targeting reference essential and non-essential 

genes. Since gold-standard sets of essential and non-essential genes may not always be 

available, as is the case with most non-model organisms, this method may have limited 

cross-species applicability at present. 

 

ACE 

ACE is a probabilistic method with the ability to predict differential gene 

essentiality between samples, in addition to absolute essentiality 53. The method does this 

using sgRNA abundance in the untransformed library, along with initial and final 

abundances from each screening sample, which are all modeled as Poisson distributions 

and help define the likelihood function. Knockout efficiency of sgRNA is computed 

using a logistic regression model, assuming that it depends on the GC content of each 

guide sequence. Finally, ACE estimates gene essentiality and the logistic regression 

coefficients iteratively using maximum-likelihood estimation and determines gene 

https://paperpile.com/c/eyKpmB/Gdqii
https://paperpile.com/c/eyKpmB/noBQY
https://paperpile.com/c/eyKpmB/YSJGI
https://paperpile.com/c/eyKpmB/iLFc7
https://paperpile.com/c/eyKpmB/Smh3H
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significance from separate likelihood ratio tests for absolute and differential essentiality. 

Thus far, this analysis package has primarily been used to successfully identify gene 

essentiality in mammalian cancer cell lines 53. 

 

acCRISPR 

acCRISPR is an activity-correction method that improves CRISPR screening 

outcomes by optimizing sgRNA library activity 14. The method uses experimental sgRNA 

efficiency profiles, obtained by knocking out the dominant host DNA repair mechanism 

(such as non-homologous end joining by deletion of ku70 gene), to remove low activity 

sgRNA from the analysis and correct screening outcomes based on an activity threshold, 

by calculating an ac-coefficient (given as the product of sgRNA activity threshold and 

library coverage). In absence of experimental activity values, acCRISPR can utilize 

predicted activity scores for the library, if available. Gene essentiality is determined by 

testing against a null distribution, created using sgRNA targeting putative non-essential 

genes, which makes acCRISPR a suitable method for analyzing screens in non-model 

yeasts. This method has been shown to accurately call essential genes and genes 

important for environmental stress tolerance in the oleaginous yeast Yarrowia lipolytica 

14. 

 

1.6 Conclusions and Perspectives 

Pooled CRISPR screens have shown great promise in facilitating biological 

discovery by enabling identification of genetic signatures for known and novel 

phenotypes. Although CRISPR screens have been extensively used in mammalian cells to 

https://paperpile.com/c/eyKpmB/Smh3H
https://paperpile.com/c/eyKpmB/Gdqii
https://paperpile.com/c/eyKpmB/Gdqii
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investigate disease mechanisms, their application to non-conventional microbes for 

improving metabolic engineering-relevant phenotypes has been limited so far. This 

review describes the experimental and computational steps involved in conducting and 

analyzing CRISPR knockout screens, with a focus on approaches and methods that have 

been successfully deployed in non-conventional yeasts. While the integration of these 

steps makes for an end-to-end workflow, there are several considerations that one needs 

to be mindful of in the entire process. 

The ability of the sgRNA library to produce genetic knockouts, for instance, plays 

a pivotal role in determining the effectiveness of a screen. Accordingly, libraries should 

be formulated to include as many high-activity guides as possible. This could be achieved 

in part by using activity scores obtained from sgRNA activity prediction tools to inform 

library design. In the absence of accurate activity predictions, as is often the case with 

most non-model organisms, it is advisable to create a library having high genome 

coverage to ensure sufficient statistical power in evaluating screening outcomes. 

Another key aspect in improving screen design and analysis is the successful 

delineation of sgRNA activity profiles in the context of the screen itself. While predicted 

activity scores may be readily available, sgRNA efficiencies are susceptible to variation 

in the screening environment, warranting this extra measurement. Such activity profiles 

can be derived experimentally, or by modeling single or multiple screens. This additional 

data can be leveraged to diminish the influence of low-activity sgRNA in estimating gene 

effects, thereby enhancing the accuracy of hit identification. Other considerations for 

optimizing experimental design of the screen include using an adequate number of 
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biological replicates, ensuring high library representation at the start of the screen, and 

sequencing the library at a sufficient depth. 

Overall, CRISPR knockout screening in non-conventional microbes is an 

evolving tool that could be harnessed to investigate biological mechanisms and thus 

decode the genetics of the host organism. In addition to knockout screening, future 

studies should focus on knockdown and activation screens (CRISPRi and CRISPRa, 

respectively), promoting discovery of gene function and establishment of novel 

genotype-phenotype relationships. These biological findings would further improve host 

genetic engineering, drive enhancement of desirable phenotypes, and consequently 

improve the feasibility of industrial bioprocesses. 
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Chapter 2: acCRISPR: An activity-correction method for improving the accuracy of 

CRISPR screens 

 

2.1 Abstract 

High throughput CRISPR screens are revolutionizing the way scientists unravel 

the genetic underpinnings of novel and evolved phenotypes. One of the critical 

challenges in accurately assessing screening outcomes is accounting for the variability in 

sgRNA cutting efficiency. Poorly active guides targeting genes essential to screening 

conditions obscure the growth defects that are expected from disrupting them. Here, we 

develop acCRISPR, an end-to-end pipeline that identifies essential genes in pooled 

CRISPR screens using sgRNA read counts obtained from next-generation sequencing. 

acCRISPR uses experimentally determined cutting efficiencies for each guide in the 

library to provide an activity correction to the screening outcomes via calculation of an 

optimization metric, thus determining the fitness effect of disrupted genes. CRISPR-Cas9 

and -Cas12a screens were carried out in the non-conventional oleaginous yeast Yarrowia 

lipolytica to determine a high-confidence set of essential genes for growth under glucose, 

a common carbon source used for the industrial production of oleochemicals. acCRISPR 

was also used in screens quantifying relative cellular fitness under high salt conditions to 

identify known and novel genes that were related to salt tolerance. Collectively, this work 

presents an experimental-computational framework for CRISPR-based functional 

genomics studies that may be expanded to other non-conventional organisms of interest. 
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2.2 Introduction 

Functional genetic screening with pooled libraries of CRISPR guides has been 

successful in discovering gene function, identifying essential genes, and evolving new 

phenotypes 1–3. These screens work by inducing mutations across the genome to disrupt 

gene function. Genome-wide transcriptional regulation is also possible when a 

catalytically deactivated Cas endonuclease (typically, Cas9 or Cas12a) fused to an 

activation or repression domain is targeted to promoters 4,5. For these screens to be 

effective, the library should contain one or more active guide RNAs for each targeted 

gene. Creating such libraries is challenging due to imperfect design algorithms and an 

incomplete understanding of how Cas endonucleases function across different species. 

Further confounding guide design is the blocking effect of chromatin structure on guide 

RNA targeted Cas9 endonuclease 6,7. As a result of this imperfect design, CRISPR 

screens are conducted with pooled libraries of guide RNAs that have a broad range of 

activity 8,9. High activity guides can assign phenotypic changes to genome edits with high 

confidence, while inactive and low activity guides can obscure gene hits by producing 

false negatives. Computational and experimental methods that can quantify the activity of 

each guide in a library and account for the variance in activity are needed to correct 

screening outcomes, accurately identify genotype-phenotype relationships, and call 

essential genes with high confidence. 

A common CRISPR library design strategy is to include many guides targeting 

each gene or promoter. This strategy helps ensure that every gene is targeted by an active 

guide, but doing so increases the analytical complexity in assessing outcomes. Current 

https://paperpile.com/c/81b6tA/gC6S+oLNC+DvHK
https://paperpile.com/c/81b6tA/Vbmi+odXO
https://paperpile.com/c/81b6tA/4yC5+Z3Z7
https://paperpile.com/c/81b6tA/KsE1+c8fQ
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analysis methods use a Bayesian framework to infer guide activity from screens obtained 

across several experimental conditions; guide RNAs that elicit a fitness effect under 

several different conditions are indicative of high activity 10,11. Reliable measurements of 

guide activity can also be generated directly from screening experiments. In the yeast 

species that we have studied 12, this can be achieved by disrupting the primary DNA 

repair mechanism (typically, non-homologous end-joining or NHEJ) and using negative 

growth selections to quantify the activity of each guide, resulting in activity profiles 

across the genome. Guide activity data, whether computationally or experimentally 

produced, is used to identify and account for inactive and low activity guides, leading to 

improved hit calling and screen accuracy. Here we show that, given experimental guide 

activity measurements from a single screen, significant hits can be identified using 

average log2-fold change, thereby eliminating the need to process multiple screens and 

perform probabilistic modeling of the data. 

In this work, we develop an activity-correction CRISPR screen analysis method – 

acCRISPR – that optimizes library activity to generate accurate screening outcomes. 

Using guide RNA abundance data from sample and control screens along with 

information on the activity of each guide, acCRISPR computes a fitness score for every 

targeted gene and identifies genes essential to the screening condition. We demonstrate 

the utility of acCRISPR by analyzing CRISPR-Cas9 and -Cas12a screens in negative 

selection experiments in the oleaginous yeast Yarrowia lipolytica. We focus on this yeast 

because it has the ability to synthesize and accumulate lipids, and for its success as a host 

for oleochemical biosynthesis 13–15. Using previously derived guide activity profiles of 

https://paperpile.com/c/81b6tA/PDWJ+ikSL
https://paperpile.com/c/81b6tA/WxpN
https://paperpile.com/c/81b6tA/5NEe+INPT+1Vwc
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Yarrowia genome-wide Cas9 and -12a libraries (see ref. 16), along with new growth 

screens, we use acCRISPR to identify essential genes and call hits in high salt tolerance 

screens. We independently validate acCRISPR predictions by measuring growth of 

individual disruptions of a subset of essential genes and tolerance genes in conditions 

akin to those of the original genome-wide screens. We also evaluate the performance of 

acCRISPR with computational predictions of guide activity rather than experimentally 

determined values. Essential gene analysis and functional genetic screening will help 

toward developing a better understanding of Yarrowia’s genetics, and acCRISPR analysis 

of the screens conducted in this work enables this. 

 

2.3 Results 

acCRISPR optimizes sgRNA library activity and coverage 

acCRISPR uses raw read counts of guide RNAs from functional screens as inputs 

and computes cell fitness effects, guide RNA activity profiles, and calls essential genes. 

To demonstrate this analysis pipeline, we conducted CRISPR-Cas9 and -Cas12a genome-

wide screens in the PO1f strain of Y. lipolytica. The pooled guide libraries contain single 

guide RNAs (sgRNAs) that target more than 98.5% of the protein-coding sequences with 

6- and 8-fold coverage for Cas9 and Cas12a, respectively. Guide activity in these 

libraries was previously reported 9,16; a cutting score (CS), defined as the -log2 ratio of 

normalized read counts obtained in PO1f Cas9/12a ΔKU70 to counts in the control strain, 

was determined for each guide (Fig. 2.1a). The disruption of KU70 disables NHEJ DNA 

repair 17, creating a link between guide abundance in a negative selection growth screen 

https://paperpile.com/c/81b6tA/P3Zw
https://paperpile.com/c/81b6tA/c8fQ+P3Zw
https://paperpile.com/c/81b6tA/nu9U
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and guide activity. In the absence of the dominant DNA repair mechanism, a double-

stranded break causes cell death or significant impairment in growth; sgRNAs with high 

activity are lost from the cell population with higher frequency than those with lower 

activity, thus linking CS to guide activity. The fitness screen inputs for acCRISPR were 

generated using PO1f as the control strain and PO1f Cas9 or Cas12a as the sample. 

Screens were conducted in synthetic defined media with glucose as the sole carbon 

source. An Illumina sequencing instrument was used to generate sgRNA read counts after 

four days of culture. These data were used to generate a fitness score (FS) profile, defined 

as the log2 ratio between the normalized counts in the Cas9/Cas12a expressing strain and 

the control. Raw guide RNA counts for Cas9 and Cas12a screens are provided in 

Supplementary Files 2.1 and 2.2. 

The first analytical step of acCRISPR is to convert raw guide abundance values 

into CS and FS profiles (Fig. 2.1b, Supplementary File 2.3). First, an FS is computed 

for each gene as the average log2-fold change of all guides targeting that gene, both active 

and inactive. Then, the FS value for each gene is recalculated after excluding sgRNAs 

with a CS below a given CS threshold (i.e., a minimum value of CS for an sgRNA to be 

included in the analysis, T). As guides with low CS are removed, the library coverage is 

reduced along with the statistical power that multiple guides provide. To capture this 

effect, we compute the ac-coefficient as the product of the CS threshold (T) and the 

average number of guides per gene, for a range of T values. The maximum peak for the 

ac-coefficient indicates the CS threshold where the library activity is maximized. The 

corrected FS profile generated for the threshold corresponding to the peak is used to 



 31 

identify essential gene hits; p-values for every gene in the dataset are determined by 

comparing the FS of a gene to a null distribution that represents the fitness of non-

essential genes (see Methods for more details). 

 

Figure 2.1. acCRISPR analysis of CRISPR-Cas screens. (a) Growth screens in Y. lipolytica were 

conducted with pooled libraries of single guide RNAs (sgRNAs) (6- and 8-fold coverage of >98.5% of 

CDSs, for Cas9 and Cas12a respectively). A guide’s cutting score (CS) is equal to the -log2 fold-change of 

normalized guide abundance in PO1f Cas9/12a ΔKU70 to the control strain. Fitness scores (FS) are 

similarly defined, but with the PO1f Cas9/12a strain as the sample. (b) acCRISPR takes normalized sgRNA 

read counts from the control, CS, and FS strains and computes a series of outputs: CS per guide, FS per 

gene, the ac-coefficient (the product of CSthreshold and library coverage), and p-value per gene from 

significance testing against a non-essential gene population at the maximum ac-coefficient. The data sets 

shown here are from Cas9 screens in Y. lipolytica PO1f. Screens were conducted at 30 °C with glucose as 

the sole carbon source. Genes with an essentiality p-value <0.05 were classified as essential. 
 

acCRISPR accurately calls essential genes 

We evaluated the performance of acCRISPR against other established approaches 

that classify essential genes using read counts or log2-fold changes from CRISPR screens 

as input, namely JACKS 10, MAGeCK-MLE 11, and CRISPhieRmix 18. These methods 

have been validated against a gold standard set of essential genes in mammalian cells and 

https://paperpile.com/c/81b6tA/PDWJ
https://paperpile.com/c/81b6tA/ikSL
https://paperpile.com/c/81b6tA/4exk
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were used here to compute fitness effects and call essential genes in Yarrowia. The 

comparison of acCRISPR to the other methods on our Cas9 screens is shown in Fig. 2.2. 

Similar analyses of the CRISPR-Cas12a screens are shown in Fig. S2.1. 

 

Figure 2.2. acCRISPR analysis of CRISPR-Cas9 screens defines a high confidence set of essential 

genes. (a) Heat maps showing Pearson (below diagonal) and Spearman (above diagonal) correlation 

coefficients for comparison of gene fitness effects (uncorrected FS (FSunc), W, β, and -P; left) and sgRNA 

cutting efficiencies (CS, X, and π; right) from acCRISPR and three established essential gene identification 

algorithms, JACKS, MAGeCK-MLE and CRISPhieRmix. ‘n.a.’ denotes that sgRNA cutting efficiency 

values for CRISPhieRmix are not available. (b) The average number of sgRNAs per gene and the number 

of essential genes predicted with increasing CS threshold (bottom). The number of essential genes 

predicted for the corrected and uncorrected analyses. The data points colored in pink are the guides per 

gene and the number of essential genes determined at the maximum ac-coefficient. (c) Fitness scores of 

genes with (solid line) and without (dashed line) acCRISPR processing with a CS threshold (T) of 4.5. (d) 

The number of essential genes identified by JACKS, MAGeCK-MLE, CRISPhieRmix, FSunc, and 

acCRISPR are compared to previously reported essential gene sets for Yarrowia (FS-CS9 and transposon 

analysis19) and S. cerevisiae 20. Values at the top of each bar indicate the percentage of the total number of 

genes identified as essential by the respective method. 
 

acCRISPR, JACKS, and MAGeCK-MLE output values for the fitness effect of 

genes in Yarrowia (FS uncorrected (FSunc), W, and β) are in good agreement. The 

pairwise Pearson and Spearman r-values are 0.65 or greater (Fig. 2.2a). CRISPhieRmix 

was less successful at capturing raw fitness effects from the Yarrowia screen (Pearson r 

https://paperpile.com/c/81b6tA/c8fQ
https://paperpile.com/c/81b6tA/szzm
https://paperpile.com/c/81b6tA/cBcK
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<0.37) and the majority of genes were identified as essential. JACKS and MAGeCK-

MLE also output guide activity predictions (X and π); these values did not correlate well 

with the acCRISPR analysis of the CS profiles, which were directly obtained from the 

screening experiment. 

We next applied CS correction to the Cas9 screening data. The ac-coefficient 

curve for the Cas9 screen for each choice of the CS threshold T is shown in Fig. 2.1b. 

The number of essential genes and the average number of guides per gene for the same 

values of the threshold T are shown in Fig. 2.2b. As T increased from 0.5 to 4.0, the 

number of genes classified as essential also increased, an effect likely caused by 

removing false negatives resulting from poor activity sgRNAs targeting essential genes. 

The optimum library activity, indicated by the peak of the ac-coefficient, occurred at 

threshold T=4.5 with an average coverage of 2.78 guides per gene. The peak for the ac-

coefficient in the CRISPR-Cas12a library indicated the optimal CS threshold of T=1.5, 

with an average coverage of 2.97 guides per gene (Fig. S2.1). 

The optimized acCRISPR analysis of the Cas9 screen identified 1903 essential 

genes (see Supplementary File 2.4), a number similar to the 1954 essential genes 

reported for a transposon-based screen 19. Without the activity correction, only 702 genes 

could be classified as essential, a value significantly below what was expected; based on 

the analysis of other yeast species ~15% to ~30% of protein-coding genes are expected to 

be essential (e.g., 19.9% for S. cerevisiae and 26.1% for S. pombe 20,21). The Cas12a 

screens conducted here identified 1375 genes as essential (Supplementary File 2.4) 

when the acCRISPR pipeline was used, and only 335 when all sgRNAs (both active and 

https://paperpile.com/c/81b6tA/szzm
https://paperpile.com/c/81b6tA/cBcK+lfce
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inactive) were included in the analysis. JACKS and MAGeCK-MLE also under-predicted 

the number of essential genes in the Cas9 and Cas12a screens (JACKS, 102 and 0 ; 

MAGeCK-MLE, 535 and 1218), while CRISPhieRmix classified nearly all genes as 

essential (7724 and 7538).  

 

CRISPR-Cas9 and -Cas12a screens help define a consensus set of essential genes 

The acCRISPR analysis of the Cas9 and -12a screens provides the opportunity to 

define a consensus set of essential genes for Yarrowia growth on glucose. First, we 

validated the essential gene set via a Gene Ontology (GO) enrichment analysis 22,23, with 

the expectation that functional terms known to be essential would be enriched (FDR-

corrected p < 0.05; see Supplementary Files 2.5 and 2.6 for all GO and GO-Slim terms 

pertaining to molecular function (MF), biological process (BP) and cellular component 

(CC)). As expected, genes involved in transcription, translation, cell cycle regulation, 

cofactor metabolism, and tRNA metabolic processes showed significantly lower FS 

values (t-test, p < 0.05) compared to the average FS of all genes in both the Cas9 and 

Cas12a screens. The FS values of genes in these functional groups along with other 

enriched GO-Slim terms are shown in Fig. 2.3a. 

https://paperpile.com/c/81b6tA/7qS4+iYfh
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Figure 2.3. Defining a set of 

consensus essential genes in Y. 

lipolytica. (a) Enriched GO-Slim 

biological process terms for Cas9 and 

Cas12a essential gene sets and FS 

distribution of essential genes 

associated with each GO-Slim term. 

Enriched terms were determined using 

a hypergeometric test (FDR-corrected, 

p < 0.05). The FS values for each GO-

Slim term were found to be 

significantly lower than those of all 

genes by unpaired t-test (p < 0.0001). 

Blue and red dotted lines indicate the 

mean FS of all genes for Cas9 and 

Cas12a datasets respectively. (b) Venn 

diagram of the essential genes 

identified from CRISPR-Cas9, 

CRISPR-Cas12a, and transposon 

screening, and their overlap. The 

consensus set of essential genes, 

comprising genes common to at least 

two of the three screens, contains 1612 

unique genes. 
 

 

 

 

 

 

 

A previously published transposon-based screen identified 1954 essential genes 

19. Experimental conditions (2% glucose in SD-Leu media) were consistent with the Cas9 

and Cas12a experiments conducted here, thus providing a large data set from which we 

can identify a consensus set of essential genes. One thousand six hundred and twelve 

genes were common to at least two of the three different screens (Fig. 2.3b and 

https://paperpile.com/c/81b6tA/szzm
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Supplementary File 2.7). Enriched GO-Slim terms in this set were consistent with those 

expected for essential genes and we consider these genes as the consensus set for 

Yarrowia growth on glucose (see Supplementary File 2.8). To verify the essentiality of 

genes in the consensus set, we tested 15 essential genes from this set and 5 non-essential 

genes (i.e., genes non-essential in all 3 screens) using the CRISPR-Cas9 system and 

measured their abundance in glucose after 2 days of growth (Fig. S2.2; see Methods for 

details on the experimental procedure). Of the 15 essential genes tested, 12 were called as 

essential in all three screens, while 3 others were called as essential in the Cas9 and 

Cas12a screens, but not in the transposon screen. As expected, cells containing essential 

gene knockouts showed no or minimum growth throughout the validation experiment, 

whereas disruptions of non-essential genes exhibited substantial growth over the same 

time period. One-tailed t-test indicates that the growth of non-essential gene knockouts is 

significantly higher (p < 0.0001) than that of the essential gene knockouts. The essential 

genes identified in the consensus set were also compared to known essential genes in S. 

cerevisiae and S. pombe. Of these, 824 genes were identified to have homologs in S. 

cerevisiae, of which 54.6% were found to be essential in both species. Seven hundred and 

eighty-two genes had homologs in S. pombe and 60.9% of those were found to be 

commonly essential between both species (Fig. S2.3). 

 

acCRISPR can use sgRNA activity predictions as an alternative to CS 

We recognize that generating experimental CS profiles is not always feasible (for 

example, in organisms for which it is not possible to have NHEJ-deficient screens or in 

cases where a double stranded break is likely to be repaired by homology directly using a 
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second allele as a template). Thus, we sought to test the performance of acCRISPR using 

computationally predicted sgRNA activity scores in Yarrowia. Among the large set of 

guide prediction tools available for Cas9, we selected DeepGuide 16, uCRISPR 24, 

Designer v1 25, Designer v2 26, SSC 27, CRISPRscan 28, and CRISPRspec 29 (Fig. 2.4 and 

Supplementary File 2.9). For Cas12a, only a few prediction algorithms have been 

developed, for example, DeepGuide 16 and DeepCpf1 30, which have been shown to 

predict sgRNA activities in Yarrowia with reasonable accuracy (Fig. S2.4 and 

Supplementary File 2.10). Using the predicted activity scores, we implemented 

acCRISPR to compute the maximum ac-coefficient (Table S2.1) and determined a set of 

predicted essential genes. The consensus set identified in Fig. 2.3 served as a reference to 

evaluate the success of each prediction method. Of all prediction methods, DeepGuide 

was found to have the highest sensitivity for both Cas9 (62.8%) and Cas12a (51.7%) 

datasets (where sensitivity is the percentage of the consensus set that is captured by the 

predicted set). The higher performance of DeepGuide is likely a consequence of its 

training set, that is the Yarrowia CS profiles generated in our screens. Other methods 

captured a smaller fraction of the consensus set, with sensitivity ranging from 26.0% to 

44.9%. While the predicted guide activities were not successful at capturing the full set of 

essential genes in Yarrowia, those that were identified were called with high confidence; 

each of the tested methods maintained precision rates above ~75% (where precision is the 

number of predicted essential genes overlapping with the consensus set divided by the 

total number of essential genes predicted). 

https://paperpile.com/c/81b6tA/P3Zw
https://paperpile.com/c/81b6tA/9U8A
https://paperpile.com/c/81b6tA/BuIJ
https://paperpile.com/c/81b6tA/beAr
https://paperpile.com/c/81b6tA/LCSC
https://paperpile.com/c/81b6tA/1Dhj
https://paperpile.com/c/81b6tA/eNcV
https://paperpile.com/c/81b6tA/P3Zw
https://paperpile.com/c/81b6tA/a326
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In addition to evaluating the success of different guide prediction algorithms, we 

determined sensitivity and precision metrics for Cas9 and Cas12a screens using 

acCRISPR, JACKS, MAGeCK-MLE, CRISPhieRmix, and uncorrected FS profiles, with 

CS as an input (Fig. 2.4 and Fig. S2.4). acCRISPR analysis of the Cas9 screen captured 

nearly all of the consensus set (sensitivity of 89.1%) with high precision (75.5%). Except 

for CRISPhieRmix, the other methods failed to capture the majority of the consensus set. 

CRISPhieRmix classified nearly all Yarrowia genes as essential, thus capturing nearly 

100% of the consensus set but with low precision (20.8%). Results of a similar analysis, 

with the Cas12a screen are reported in Fig. S2.4; the Cas12a screen captured 66.7% of 

the consensus set with 78.1% precision. 

 
Figure 2.4. Performance of acCRISPR using predicted sgRNA activity profiles in Y. lipolytica. Raw 

sgRNA counts from control and treatment strains used for fitness score calculations were provided as input 

to acCRISPR along with sgRNA activity scores from a range of guide prediction tools (DeepGuide 16, 

uCRISPR 24, Designer v2 26, CRISPRspec 29, CRISPRscan 28, Spacer Scoring for CRISPR (SSC) 27 and 

Designer v1 25 left). The violin plot shows the distribution of min-max normalized CS (denoted by 

‘acCRISPR’) and sgRNA activity scores from each prediction tool. Dashed lines represent the median of 

the normalized score and the dotted lines represent the first and third quartiles. Essential genes were 

identified using predicted sgRNA efficiency scores from each tool after first determining the maximum ac-

coefficient. The % sensitivity and % precision in identifying genes from the consensus set are shown 

(right). Bars indicate the values of these two metrics for each prediction tool as well as for JACKS, 

MAGeCK-MLE, CRISPhieRmix, uncorrected FS (FSunc), and acCRISPR. 
 

https://paperpile.com/c/81b6tA/P3Zw
https://paperpile.com/c/81b6tA/9U8A
https://paperpile.com/c/81b6tA/beAr
https://paperpile.com/c/81b6tA/eNcV
https://paperpile.com/c/81b6tA/1Dhj
https://paperpile.com/c/81b6tA/LCSC
https://paperpile.com/c/81b6tA/BuIJ
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acCRISPR identifies biologically insightful hits related to salt tolerance 

To further demonstrate the utility of acCRISPR, we conducted high salt tolerance 

screens from which we identified genetic hits that produced significant effects on cell 

fitness. Tolerance to high salinity is an industrially beneficial trait that can reduce costs 

associated with process sterilization and enable growth in lower-cost water sources (e.g., 

seawater or wastewater) 31. The CRISPR-Cas9 strain was grown in the presence and 

absence of two different levels of salt concentration ([NaCl] of 0.75 and 1.5 M) and 

acCRISPR was used to identify significant hits for each salt stress condition. As a 

control, the Cas9-containing strain was grown under standard growth conditions (no 

added NaCl). In place of FS, these screens defined a tolerance score (TS), which is equal 

to the log2 ratio of sgRNA abundance under the stress condition (i.e., in the presence of 

salt) to that grown under control conditions (Fig. 2.5a). A low TS indicated that gene 

disruption conferred a growth disadvantage under the applied stress (see Fig. S2.5 for 

corrected TS profiles in tolerance screens conducted at 0.75 M and 1.5 M NaCl).  

acCRISPR analysis of the salt tolerance screens (Fig. S2.6) identified 721 and 884 

gene hits in 0.75 M and 1.5 M NaCl respectively (Supplementary File 2.11). The two 

screening conditions were found to share 344 significant genes in common (Fig. 2.5b). 

Similar to the essential gene screening outcomes, we sought to validate a subset of the 

gene hits (see Methods for experimental details). The validation set included four genes: 

YALI1_E24201g (TS1.5M NaCl = -4.5), YALI1_E23961g (TS1.5M NaCl = -4.2), 

YALI1_F12478g (TS1.5M NaCl = -4.9), and YALI1_A07277g (TS1.5M NaCl = -4.7; 

significant only in 1.5 M NaCl). YALI1_E24201g and YALI1_E23961g were selected 

https://paperpile.com/c/81b6tA/mdaz
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for validation because homologs of these genes are known to affect salt tolerance in other 

species. The GO-term of YALI1_E24201g suggests this gene encodes for 4-coumarate-

CoA ligase, which has been shown to enhance abiotic stress tolerance, including salt 

tolerance, in various plant species 32–34. YALI1_E23961g is homologous to methionine 

sulfoxide reductase (MXR1) in S. cerevisiae and has been shown to improve resistance to 

oxidative stress in S. cerevisiae 35. The other two gene hits selected for validation, 

YALI1_F12478g (a queuine tRNA-ribosyltransferase) and YALI1_A07277g (a 

hypothetical protein), have no known connection to stress tolerance. In all four cases, 

gene disruption in individual experiments that mimicked the screening conditions 

resulted in significantly lower (p < 0.01) growth than the disruption of a gene with a 

higher TS value that was not called as significant by acCRISPR, thus validating the 

called hits (Fig. S2.7). 

Overall, the results reported here support the validity of our acCRISPR analysis in 

identifying novel gene hits related to salt stress tolerance; the full list of hits will enable 

us to identify new cellular functions related to stress tolerance as well as identify 

mutational targets for engineering new strains with increased tolerance.  

https://paperpile.com/c/81b6tA/uzGv+jvat+mu6K
https://paperpile.com/c/81b6tA/rSFC
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Figure 2.5. acCRISPR analysis of salt tolerance screens. (a) Schematic of the CRISPR-Cas9 stress 

tolerance screens in Yarrowia. Analogous to fitness score (FS), the tolerance score (TS) is used to define 

the effect of each guide on cell growth under a stress condition. TS is equal to the log2-fold change of 

sgRNA abundance in the treatment to the control, where the control is a Cas9-expressing strain grown 

under standard culture conditions. (b) Outcomes of high salt tolerance screens. Venn diagram (top) shows 

the overlap of gene hits identified in the salt (0.75 M and 1.5 M NaCl) screens. Selected hits are shown 

(bottom), including the gene ID, the TS value from the 1.5 M NaCl condition, and putative gene function. 
 

 

 

2.4 Discussion 

A central challenge in analyzing CRISPR screens is deconvoluting the effect of 

poorly active guides from guides that create genome edits and elicit fitness effects. One 

approach to solving this challenge is to interrogate each edit in an arrayed format. The 

physical separation of different genetic perturbations throughout the screen also makes 

this approach more easily combined with -omics based profiling for further 

characterization of mutants. However, this requires extensive laboratory automation to 

achieve the throughputs that are accessible to pooled screens, where one can test the 

effect of all library mutants in a single culture. On the other hand, pooled screens lack 



 42 

distinct separation between mutants and thus rely on next generation sequencing methods 

to quantify the effect of genetic perturbations on cell fitness. Thus, resolving the effect of 

non-performing guides becomes ever more important in this context. acCRISPR 

addresses this issue in pooled screens by optimizing the screen’s ac-coefficient, a 

parameter that balances the trade-off between guide activity and coverage to maximize 

the performance of the library. In contrast to existing methods that infer sgRNA activity 

by modeling multiple screening conditions, acCRISPR uses an experimentally derived 

measure of guide activity obtained from an additional treatment sample in which DNA 

repair by NHEJ is disrupted. This additional data enabled acCRISPR to outperform other 

approaches in determining an accurate set of essential genes. 

acCRISPR was developed and validated using CRISPR-Cas9 and -Cas12a 

screening data to define essential genes in the oleaginous yeast Y. lipolytica. The other 

methods tested here, JACKS, MAGeCK-MLE, and CRISPhieRmix, are most commonly 

used to analyze the outcomes of mammalian cell CRISPR screens, and were found to be 

incompatible with our Yarrowia data; only a small percentage or all genes were identified 

as essential. This incompatibility is likely because the overlap between the fitness effect 

profiles of the non-targeting controls and the active sgRNA population is greater in 

mammalian cells compared to Yarrowia (Fig. S2.8 and see refs. 18,36).  CRISPhieRmix, 

which uses the non-targeting population to form the null distribution, greatly 

overestimates the number of essential genes in Yarrowia, classifying nearly all genes as 

essential. The relative fitness effects that targeting and non-targeting sgRNAs have may 

also be harder to resolve in mammalian cells due to alternative splicing, polyploidy, and 

https://paperpile.com/c/81b6tA/4exk+n6Sh
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redundant gene function. acCRISPR, on the other hand, uses sgRNA targeting non-

essential genes to construct the null model, thereby making it more adaptive to the 

Yarrowia dataset, and potentially more adaptable to other datasets. 

While acCRISPR’s use of an experimentally derived CS dataset is empowering, it 

also increases the technical difficulty of the experiments and is not necessarily accessible 

in all organisms (e.g., activity profiles across mammalian cell genomes and the genomes 

of other species have not yet been defined). We also recognize that alternate repair 

mechanisms could mask CRISPR Cas9/12a cutting. For example, we have previously 

observed error-prone microhomology mediated end-joining (MMEJ) DNA repair in 

Yarrowia 17. sgRNA that produce such cases will likely result in negative CS and FS 

values, indicating that despite poor guide activity, gene editing still occurred at a rate 

sufficient to affect cell fitness. Analysis of the CS and FS values per guide reveal that 

only 1.2% and 2.1% of guides from the Cas9 and Cas12a libraries respectively fit this 

pattern (see Supplementary File 2.3). The primary feature of acCRISPR is to remove 

guides with low CS, as such the majority of cases where an alternative repair mechanism 

was active will likely be removed from the final analysis. 

The ability to use predicted sgRNA activities in place of experimental activity 

scores may help address the limitation of requiring an experimental dataset. acCRISPR 

analysis with predicted activity resulted in high precision but modest sensitivity, thereby 

capturing a small portion of the essential genes but with high confidence (Fig. 2.4). 

While prediction methods have proven effective at designing active CRISPR sgRNAs, 

predictive power is still limited to the organism from which the training data was 

https://paperpile.com/c/81b6tA/nu9U
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generated 8,16,37. As better guide design algorithms are developed, we anticipate an 

improvement in acCRISPR performance in resolving essential genes when using 

predicted guide activities in place of experimentally derived CS distributions. 

acCRISPR analysis of the screens conducted here represents a meaningful step 

toward understanding Yarrowia genetics. Thus far, there have only been a few attempts at 

classifying essential genes 9,19. We use the CRISPR-Cas9 and -Cas12a screens conducted 

here along with the outcomes of a transposon screen conducted under similar conditions 

(see ref. 19) to define a consensus set of essential genes for growth on glucose. This set 

contains 1612 genes that were classified as essential in at least two of the three 

independent screens, a subset of which were independently validated experimentally 

(Fig. 2.3 and Fig. S2.2). While a considerable number of essential genes were called by 2 

or 3 of the different technologies, a number of genes were unique to each, likely due to 

mechanistic differences between the mutagenesis strategies. For example, transposon-

based screens have sequence biases for insertions and are known to miss shorter genes 

38,39; the more restrictive PAM of Cas12a leads to lower genome-wide coverage; Cas9 

has been shown to have higher rates of off-target effects, which could lead to false 

predictions; and specific to our experiments, the Cas12a library contains more inactive 

and low activity guides, thus reducing the number of genes targeted by highly active 

sgRNAs. Defining a consensus set mitigates these differences as well as other potential 

issues with functional genomic screens (e.g., plasmid instability) and leads to calling a 

high confidence set of essential genes – that is, those that were called in more than one 

screen. GO term enrichment analysis suggests that genes in the consensus set have 

https://paperpile.com/c/81b6tA/KsE1+3emh+P3Zw
https://paperpile.com/c/81b6tA/szzm+c8fQ
https://paperpile.com/c/81b6tA/szzm
https://paperpile.com/c/81b6tA/Xrvn+zcV1
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functions expected to be essential (e.g., genes related to transcription, translation, and cell 

cycle among others; Supplementary File 2.8), while those unique to each method have 

no enriched functions (Supplementary File 2.12). 

With respect to the high salt tolerance screens, acCRISPR analysis also helps to 

advance our understanding of Yarrowia genetics by identifying high confidence hits with 

significantly decreased cell fitness, a subset of which were independently validated. This 

information promises to guide future strain engineering seeking to improve production 

host tolerance to harsh environmental conditions.  

acCRISPR is an end-to-end pipeline for the analysis of pooled CRISPR screens. It 

takes a hybrid approach that combines experimental and computational methods to 

determine the activity of each guide in a pooled CRISPR screen and uses this information 

to correct screening outcomes based on guide activity.  We use this pipeline to generate 

new knowledge on the genetics of Y. lipolytica, including the identification of a 

consensus set of essential genes for growth on glucose and calling loss of fitness hits for 

growth under high salt conditions. While this work focuses on analyzing screens 

conducted in Y. lipolytica, the same experimental-computational workflow can be readily 

applied to other organisms in which accurate computational prediction or genome-wide 

functional screens can be used to estimate sgRNA activities.  
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2.5 Methods 

acCRISPR framework 

acCRISPR performs essential gene identification by calculating two scores for 

each sgRNA, namely the cutting score (CS) and the fitness score (FS). CS and FS are the 

log2-fold change of sgRNA abundance in the appropriate treatment sample with respect 

to that in the corresponding control sample (see Supplementary File 2.13 for replicate 

correlations of sgRNA abundance in control and treatment samples for Cas9 and Cas12a 

screens). Let us call C1 and T1 the control and treatment samples, respectively, for 

determining cutting scores. The cutting score CSi of sgRNA i is defined as follows 

𝐶𝑆𝑖 =  −𝑙𝑜𝑔2 (
𝑥𝑇1,𝑖

𝑥𝐶1,𝑖
) 

where 𝑥𝐶1,𝑖 and 𝑥𝑇1,𝑖 indicate the total normalized read counts of sgRNA i in 

samples C1 and T1, respectively, averaged across all replicates in their respective samples. 

A pseudocount of one is added to each raw count before normalization to prevent 

division by zero.  

Similarly, let us call C2 and T2 control and treatment samples, respectively, for the 

estimation of the fitness score. The fitness score FSi of sgRNA i is defined as follows  

𝐹𝑆𝑖 = 𝑙𝑜𝑔2 (
𝑥𝑇2,𝑖

𝑥𝐶2,𝑖
) 

where 𝑥𝐶2,𝑖 and 𝑥𝑇2,𝑖 are average total normalized read counts in samples C2 and 

T2, respectively, for sgRNA i. FSi represents the change in fitness when a gene targeted 

by sgRNA i is knocked out.  
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Given a CS-threshold T, acCRISPR creates a CS-corrected library by removing 

any sgRNA from the original library that has a cutting score less than T. However, if no 

sgRNA for a given gene has a CS that exceeds T, the sgRNA with the highest CS that 

targets that gene is kept in the CS-corrected library. 

The fitness score FSg for a gene g is calculated as the average of fitness scores of 

all sgRNA targeting gene g, as follows 

𝐹𝑆𝑔 =
∑ 𝐹𝑆𝑖𝑖𝜖𝑔

𝑚𝑔
 

where 𝑚𝑔 represents the total number of sgRNA targeting gene g in the CS-

corrected library. FSg indicates the overall change in fitness in a particular screening 

condition when gene g is knocked out. Since the knockout of an essential gene reduces 

cell fitness, essential genes would have lower fitness scores compared to non-essential 

genes. 

acCRISPR identifies essential genes from a screening dataset by first creating a 

null distribution and then computing a p-value. The null distribution is assumed to be 

Gaussian with mean µ and standard deviation σ. This distribution represents the 

population of fitness scores of non-essential genes. Previous studies on essential gene 

identification in different yeasts have found ~20% of genes in the yeast genome to be 

typically essential for growth 19–21. In addition, studies in mammalian cells have 

identified ~20% or fewer genes as essential for survival of various cell lines of interest 40–

43. Thus we hypothesize that genes having FS values higher than the 20th percentile in the 

https://paperpile.com/c/81b6tA/cBcK+lfce+szzm
https://paperpile.com/c/81b6tA/mWRV+147L+672u+R9wy
https://paperpile.com/c/81b6tA/mWRV+147L+672u+R9wy
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screening dataset are putatively non-essential. The value of µ is assumed to be equal to 

the median of all gene FS values and σ is computed as follows:  

(i) 1000 putatively non-essential genes are randomly sampled and sgRNA targeting these 

genes are pooled together to form an ‘sgRNA pool.’ 

(ii) A set of N sgRNA are randomly sampled from this pool and assumed to target a 

pseudogene, the FS of this pseudogene is calculated as the average fitness score of the 

sampled sgRNA. This step is repeated to generate a total of 1000 pseudogenes. 

(iii) The standard deviation of the fitness scores of these 1000 pseudogenes is computed.  

(iv) Steps (i)-(iii) are repeated 50 times and σ of the null distribution is calculated as the 

average of the 50 standard deviations (obtained in step (iii)). 

(v) In these calculations, the value of N is initialized to the average coverage of the 

original library rounded off to the nearest integer. If the total number of sgRNA to be 

sampled from the sgRNA pool (using this value of N) is more than twice the pool size, N 

is reduced until this value drops below 2. 

To identify essential genes, the resulting null distribution is used to perform a 

one-tailed z-test of significance for every gene in the dataset to determine whether its 

fitness score is significantly lower than µ. The raw p-values from the z-test are adjusted 

for multiple comparisons by FDR-correction and genes having corrected p-values less 

than a certain threshold (default: 0.05) are deemed as essential. Since every CS-threshold 

would result in a different essential gene set, the final set of essential genes is decided 

based on the value of a metric called the ‘ac-coefficient’, which is defined as: 

𝑎𝑐 − 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = (𝐶𝑆 − 𝑐𝑢𝑡𝑜𝑓𝑓) ∗ (𝑎𝑣𝑔. 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑡ℎ𝑒 𝐶𝑆 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑙𝑖𝑏𝑟𝑎𝑟𝑦) 
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The CS-threshold at which the ac-coefficient is maximum is considered optimum, 

and the set of essential genes obtained at this threshold is taken at the final essential gene 

set. In order to find the maximum ac-coefficient amongst values at different CS-

thresholds, only those thresholds should be considered at which the average coverage of 

the library is greater than 2, since a genome coverage of less than 2 would reduce 

statistical power to accurately determine gene essentiality. 

acCRISPR also has the ability to analyze CRISPR screening data to identify both 

loss- and gain-of-function hits (LOF and GOF). In this case, the fraction of genes directly 

related to the phenotype is typically less than the number of essential genes. Thus, we 

assume that 95% of genes in the screening dataset (i.e., FS values between the 2.5th 

percentile and 97.5th percentile) are putatively non-significant, and use them for 

calculating the null distribution parameters (µ and σ). Further, acCRISPR uses a two-

tailed test of significance to identify LOF and GOF hits. 

 

Implementation of acCRISPR with different input datasets 

acCRISPR takes raw sgRNA counts from genome-wide screens as input and 

processes them to calculate CS and FS per sgRNA, as described in the previous section. 

However, if CS and FS values have already been calculated previously or are readily 

available, they can be directly provided as input by skipping log2-fold change calculation 

from raw counts.  

For the CRISPR-Cas9 and -Cas12a datasets, acCRISPR was first implemented 

using raw sgRNA counts for all targeting sgRNA in the libraries. In subsequent 

acCRISPR runs, CS and FS values from the first run were input to the method (i.e., log2-
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fold change calculation was skipped) along with a CS-threshold to identify essential 

genes using a CS-corrected library. For essential gene identification, a one-tailed test of 

significance was performed. 

For implementing acCRISPR using guide activity scores from prediction 

algorithms, the predicted activity of each guide was provided in place of an 

experimentally derived CS value along with FS as input for each run. Guide activity and 

CS thresholds used for analyzing datasets can be found in Table S2.1.  

For the salt tolerance datasets, raw sgRNA counts from the control and treatment 

samples were used to calculate TS for each sgRNA (in the same manner as FS 

calculation) in the specific screening condition. These sgRNA TS values were used as 

input to acCRISPR in conjunction with the already calculated CS values from the 

essential gene analysis. Before implementing acCRISPR, sgRNA having very low 

normalized abundance (< 2.5% of the mean normalized abundance) in the control sample 

for TS calculation were discarded from the library. Significant genes from acCRISPR 

were then determined by performing a one-tailed test of significance. In all cases, genes 

having FDR-corrected p-value less than 0.05 were considered as significant. 

 

Implementation of other CRISPR screen analysis methods 

For implementing JACKS 10 and CRISPhieRmix 18, PO1f and PO1f Cas9/Cas12a 

strains of Y. lipolytica were used as control and treatment samples respectively.  

Raw sgRNA counts from these two strains were provided as input to JACKS 

v0.2. To obtain p-values from JACKS, 500 genes classified as ‘non-essential’ by the 

transposon analysis 19 were randomly sampled and provided separately as negative 

https://paperpile.com/c/81b6tA/PDWJ
https://paperpile.com/c/81b6tA/4exk
https://paperpile.com/c/81b6tA/szzm
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control genes for the CRISPR-Cas9 and -Cas12a datasets. The raw p-values were FDR-

adjusted and genes having a corrected p-value less than 0.05 were deemed as essential.  

Raw sgRNA counts from untransformed library samples were used as control 

(initial sgRNA abundance) and those from PO1f Cas9/Cas12a were used as treatment for 

MAGeCK-VISPR v0.5.6 11. Since the data being analyzed came from LOF screens, two-

tailed raw p-values from Wald test were converted to one-tailed p-values, followed by 

FDR-correction. Genes having FDR-adjusted p-value less than 0.05 were considered as 

essential. 

CRISPhieRmix v1.1 was implemented using R 4.0.2 (Rstudio 1.4.1106) by 

providing log2-fold changes of all sgRNA as input. The log2-fold changes were calculated 

in a manner similar to that of fitness scores. Log2-fold changes of non-targeting sgRNA 

in the respective libraries were provided as negative controls. The parameter screenType 

was set to ‘LOF’ since the sgRNA log2-fold changes were obtained from LOF screens. 

Genes having FDR-adjusted (1 – genePosteriors) values less than 0.05 were deemed as 

essential.  

 

Microbial strains and culturing 

All strains used in this work are presented in Table S2.2. We describe the parent 

Yarrowia strain used for molecular cloning, and the related culture conditions here. 

Yarrowia lipolytica PO1f (MatA, leu2-270, ura3-302, xpr2-322, axp-2) is the 

parent for all mutants used in this work. Cas9 and Cas12a expressing strains were 

constructed by integrating UAS1B8-TEF(136)-Cas9-CYCt and UAS1B8-TEF(136)-

LbCpf1-CYCt expression cassettes into the A08 locus 9,44. The PO1f Cas9 ku70 and PO1f 

https://paperpile.com/c/81b6tA/ikSL
https://paperpile.com/c/81b6tA/OxUL+c8fQ
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Cas12a ku70 strains were constructed by disrupting KU70 using CRISPR-Cas9 as 

previously described 17.  

Yeast culturing was conducted at 30 °C in 14 mL polypropylene tubes or 250 mL 

baffled flasks as noted, at 225 RPM. Under non-selective conditions, Y. lipolytica was 

grown in YPD (1% Bacto yeast extract, 2% Bacto peptone, 2% glucose). Cells 

transformed with sgRNA-expressing plasmids were selected for in synthetic defined 

media deficient in leucine (SD-leu; 0.67% Difco yeast nitrogen base without amino acids, 

0.069% CSM-leu (Sunrise Science, San Diego, CA), and 2% glucose). CRISPR screens 

for determining tolerance to high salinity were done in SD-leu containing a final 

concentration of 0.75 M and 1.5 M sodium chloride. The desired salinity was achieved by 

the addition of an appropriate quantity of autoclaved 5 M sodium chloride stock solution. 

All plasmid construction and propagation were conducted in Escherichia coli 

TOP10. Cultures were conducted in Luria-Bertani (LB) broth with 100 mg L-1 ampicillin 

at 37 °C in 14 mL polypropylene tubes, at 225 RPM. Plasmids were isolated from E. coli 

cultures using the Zymo Research Plasmid Miniprep Kit. 

 

Plasmid construction  

All plasmids and primers used in this work are listed in Tables S2.3 and S2.4. 

The plasmids used to construct Cas9 and Cas12a expressing strains of Y. lipolytica PO1f 

and the sgRNA expression plasmids were previously reported (see refs. 9 and 16). We 

describe the construction of these plasmids again here to provide a complete accounting 

of this work. 

https://paperpile.com/c/81b6tA/nu9U
https://paperpile.com/c/81b6tA/c8fQ
https://paperpile.com/c/81b6tA/P3Zw
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For CAS9 integration, we constructed the vector pHR_A08_Cas9, which 

integrates a UAS1B8-Cas9 expression cassette into the A08 locus of Y. lipolytica PO1f. 

First, pHR_A08_hrGFP (Addgene #84615) was digested with BssHII and NheI, and 

CAS9 was inserted via Gibson Assembly after PCR via Cr_1250 and Cr_1254 from 

pCRISPRyl (Addgene #70007). Integration was accomplished as previously described 

using a two plasmid CRISPR-mediated markerless approach 44. The creation of the Cas9 

genome-wide library expression plasmid was facilitated by removing the Cas9-containing 

fragment from pCRISPRyl using restriction enzymes BamHI and HindIII, and 

circularizing. The M13 forward primer was used to ensure correct assembly of the 

construct. 

LbCAS12a integration was accomplished in a similar manner. We first 

constructed pHR_A08_LbCas12a by digesting pHR_A08_hrGFP (Addgene #84615) 

with BssHII and NheI, and the LbCAS12a fragment was inserted using the New England 

BioLabs (NEB) NEBuilder® HiFi DNA Assembly Master Mix. The LbCAS12a gene 

fragment was amplified along with the necessary overlaps by PCR using Cpf1-Int-F and 

Cpf1-Int-R primers from pLbCas12ayl. Successful cloning of the LbCas12a fragment 

was confirmed with sequencing primers A08-Seq-F, A08-Seq-R, Tef-Seq-F, Lb1-R, Lb2-

F, Lb3-F, Lb4-F, and Lb5-F. To create the Cas12a sgRNA genome-wide library 

expression plasmid (pLbCas12ayl-GW) the UAS1B8-TEF- LbCas12a-CYC1 fragment 

was removed from pLbCas12ayl with the use of XmaI and HindIII restriction enzymes. 

Subsequently, the primers BRIDGE-F and BRIDGE-R were used to circularize the 

vector, and the M13 forward primer was used to ensure correct assembly of the construct. 

https://paperpile.com/c/81b6tA/OxUL
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The gRNAs library vector was constructed using pCas9yl-GW (SCR1’-tRNA-

AvrII site) as the backbone. The library was generated by digesting pCRISPRyl with 

BamHI and HindIII and circularizing to remove the Cas9 gene and its promoter and 

terminator using (NEBuilder® HiFi DNA Assembly). The methods used to create the 

guide library are provided below in the sgRNA library cloning subsection. 

The LbCas12a sgRNA expression plasmid (pLbCas12ayl) was similarly 

constructed, but a second direct repeat sequence at the 5’ of the polyT terminator in 

pCpf1_yl (see ref 16) was added. This was done to ensure that library sgRNAs could end 

in one or more thymine residues without being construed as part of the terminator. To 

make this mutation, pCpf1_yl was first linearized by digestion with SpeI. Subsequently, 

primers ExtraDR-F and ExtraDR-R were annealed and this double-stranded fragment was 

used to circularize the vector (NEBuilder® HiFi DNA Assembly).  

 

sgRNA library design  

sgRNA library design for the Cas9 and Cas12a CRISPR systems was 

accomplished as previously described in refs. 9 and 16. The critical elements of the design 

are described again here. 

Using the annotated genome of PO1f’s parent strain (CLIB89; 

[https://www.ncbi.nlm.nih.gov/assembly/GCA_001761485.1]45) as a reference, custom 

MATLAB scripts were used to design up to 8 unique Cas12a sgRNAs per gene. First, a 

list of all sgRNAs (25 nucleotides in length) with a TTTV (V=A/G/C) PAM were 

identified in both the top and bottom strand of each CDS (List A). A second list 

containing all possible 25nt sgRNAs with a TTTN (N=any nucleotide) PAM from the top 

https://paperpile.com/c/81b6tA/P3Zw
https://paperpile.com/c/81b6tA/c8fQ
https://paperpile.com/c/81b6tA/P3Zw
https://www.ncbi.nlm.nih.gov/assembly/GCA_001761485.1
https://paperpile.com/c/81b6tA/4z0i
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and bottom strands of all 6 chromosomes in Y. lipolytica was also generated and used as a 

reference set to test for sgRNA uniqueness (List B). The uniqueness test was carried out 

by comparing the first 14nt of each sgRNA (seed sequence) in List A to the first 14nt of 

every sgRNA in List B. Any sequence that occurred more than once was deemed as not-

unique and was removed from List A. sgRNAs that passed the uniqueness test were then 

picked in an unbiased manner, with even representation from the top and bottom strands 

when possible, starting from the 5’ end of the CDS. When possible 8 unique sgRNAs 

were selected for each gene. In cases where 8 unique guides were not available, all 

unique guides were selected. In addition to the gene targeting guides, 651 non-targeting 

control guides were also designed. Random 25nt sequences were generated and each 

sequence was queried against the PO1f genome. Only sgRNA sequences in which the 

first 10nt were not found anywhere in the genome were selected and used as part of the 

control set. 

The Cas9 sgRNA library was similarly designed, with the following differences. 

Working with the annotated CLIB89 genome, custom MATLAB scripts were used to 

identify unique sgRNAs (NGG PAM + 12 bp closest to the PAM) located within the first 

300 bp of the gene. Subsequently, the top 6 sgRNAs from this filtered list were ranked 

based on their on-target activity score (Designer v1 25) and the top 6 guides were selected. 

480 sgRNAs with random sequence were also added to the library as non-targeting 

controls. These guides were confirmed not to target anywhere within the genome by 

ensuring that the first 12 nt of the sgRNA did not map to any genomic locus 9. 

 

 

https://paperpile.com/c/81b6tA/BuIJ
https://paperpile.com/c/81b6tA/c8fQ
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sgRNA library cloning  

The Cas12a library targeting the protein-coding genes in PO1f was ordered as an 

oligonucleotide pool from Agilent Technologies Inc. and cloned in-house using the 

Agilent SureVector CRISPR Library Cloning Kit (Part Number G7556A) as previously 

described in 16. 

First, the backbone pLbCas12ayl-GW was linearized and amplified by PCR using 

the primers InversePCR-F and InversePCR-R. To verify the completely linearized vector, 

we DpnI digested amplicon, purified the product with Beckman AMPure XP SPRI beads, 

and transformed it into E. coli TOP10 cells. A lack of colonies indicated a lack of 

contamination from the intact backbone. 

Library ssDNA oligos were then amplified by PCR using the primers OLS-F and 

OLS-R for 15 cycles as per vendor instructions using Q5 high fidelity polymerase. The 

amplicons were cleaned using the AMPure XP beads prior to use in the following step. 

sgRNA library cloning was conducted in four replicate tubes using Agilent’s SureVector 

CRISPR library cloning kit (Catalog #G7556A). The completed reactions were pooled 

and subjected to another round of cleaning. 

Two amplification bottles containing 1L of LB media and 3 g of high-grade low-

gelling agarose were prepared, autoclaved, and cooled to 37 °C (Agilent, Catalog #5190-

9527). Eighteen replicate transformations of the cloned library were conducted using 

Agilent’s ElectroTen-Blue cells (Catalog #200159) via electroporation (0.2 cm cuvette, 

2.5 kV, 1 pulse). Cells were recovered and with a 1 hr outgrowth in SOC media at 37 °C 

(2% tryptone, 0.5% yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 mM 

https://paperpile.com/c/81b6tA/P3Zw
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MgSO4, and 20 mM glucose.) The transformed E. coli cells were then inoculated into two 

amplification bottles and grown for two days until colonies were visible in the matrix. 

Colonies were recovered by centrifugation and subject to a second amplification step by 

inoculating an 800 mL LB culture. After 4 hr, the cells were collected, and the pooled 

plasmid library was isolated using the ZymoPURE II Plasmid Gigaprep Kit (Catalog 

#D4202) yielding ~2.4 mg of plasmid DNA encoding the Cas12a sgRNA library. The 

library was subject to a NextSeq run to test for fold coverage of individual sgRNA and 

skew. 

The Cas9 library was constructed by the US Department of Energy’s Joint 

Genome Institute as a deliverable of Community Science Project (CSP) 503076. 

Experimental details as previously described in ref 9 are included here for completeness. 

The pooled sgRNA library targeting the protein-coding genes of PO1f was ordered as 

four oligo pools each consisting of 25% of the designed sgRNAs from Twist Bioscience 

and cloned. The separation into different sub-libraries was done to test different methods 

of assembly; the details of each approach are briefly described here.  

For sub-libraries 1 and 3, second-strand synthesis reactions were conducted using 

the primer sgRNA-Rev2 and T4 DNA polymerase (NEB), gel extracted, and purified 

using Zymo Research Zymo-Spin 1 columns. For sub-libraries 2 and 4, oligos were 

amplified with primers via Q5 DNA polymerase (NEB) using 0.2 picomoles of DNA as a 

template for 7 cycles, and column purified. Library 2 had overlaps of 20 bp on either side 

of the spacer and was amplified with 60mer_pool-F and spacer-AarI.rev. Library 4 had 

overlaps of ~60 bp on either side of the spacer and was amplified with primers pLeu-

https://paperpile.com/c/81b6tA/c8fQ
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mock-sgRNA.fwd and sgRNA-Rev2. Libraries 1, 3, and 4 were cloned into the AarI 

digested pCas9yl-GW vector using the Gibson Assembly HiFi HC 1-step Master Mix 

(SGI-DNA). Library 2 was digested with AarI and cloned into pCas9yl-GW digested 

with AarI using Golden Gate assembly with T4 DNA ligase (NEB).  

The cloning method for library 4 resulted in the least number of spacers missing 

in the propagated library. Cloned DNA was transformed into NEB 10-beta E. coli and 

plated. Sufficient electroporations were performed for each library to yield a >10-fold 

excess in colonies for the number of library variants. The plasmid library was isolated 

from the transformed cells after a short outgrowth. 

 

Yeast transformation and screening  

Transformation of the Cas9 and Cas12a sgRNA plasmid libraries into Y. lipolytica 

was done using a method previously described in refs. 9,16. For Cas12a experiments, 3 mL 

of YPD was inoculated with a single colony of the strain of interest and grown in a 14 

mL tube at 30 °C with shaking at 200 RPM for 22-24 hours (final OD ~30). Cells were 

pelleted by centrifugation (6,300g), washed with 1.2 mL of transformation buffer (0.1 M 

LiAc, 10 mM Tris (pH=8.0), 1 mM EDTA), pelleted again by centrifugation, and 

resuspended in 1.2 mL of transformation buffer. To these resuspended cells, 36 µL of 

ssDNA mix (8 mg/mL Salmon Sperm DNA, 10 mM Tris (pH=8.0), 1 mM EDTA), 180 

µL of β-mercaptoethanol mix (5% β-mercaptoethanol, 95% triacetin), and 8 µg of 

plasmid library DNA were added, mixed via pipetting, and incubated for 30 mins. at 

room temperature. After incubation, 1800 µL of PEG mix (70% w/v PEG (3,350 MW)) 

was added and mixed via pipetting, and the mixture was incubated at room temperature 

https://paperpile.com/c/81b6tA/P3Zw+c8fQ
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for an additional 30 min. Cells were then heat shocked for 25 min at 37 °C, washed with 

25 mL of sterile Milli-Q H2O, and used to inoculate 50 mL of SD-leu media. Dilutions of 

the transformation (0.01% and 0.001%) were plated on solid SD-leu media to calculate 

transformation efficiency. Three biological replicates of each transformation were 

performed for each condition. Transformation efficiency for each replicate from the Cas9 

and Cas12a experiments is presented in Table S2.5. 

Transformation for the Cas9 library was done in a very similar manner. Briefly, 

half the amount of cells, DNA, and other chemical reagents described above were used 

for a single transformation and multiple transformations were done and pooled as 

necessary to ensure adequate diversity to maintain library representation and minimize 

the effect of plasmid instability (100x coverage, 5 x 106 total transformants per biological 

replicate). 

Screening experiments were conducted in 25 mL of liquid media in a 250 mL 

baffled flask (220 RPM shaking, 30 °C). Cells first reached confluency after two days of 

growth (OD600 ~12), at which time 200 µL, which includes a sufficient number of cells 

for approximately 500-fold library coverage, was used to inoculate 25 mL of fresh media. 

The cells were again subcultured upon reaching confluency after four days of culture, and 

the experiment was stopped after reaching confluency again on day six of the screen. 

Glycerol stocks of day 2 cultures were also prepared and used to start other growth 

screens as discussed in a following subsection. 

On days two, four, and six, 1 mL of culture was removed to isolate sgRNA 

expression plasmids for deep sequencing. Each sample was first treated with DNase I 
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(New England Biolabs; 2 µL and 25µL of DNaseI buffer) for 1 h at 30 °C to remove any 

extracellular plasmid DNA. Cells were then isolated by centrifugation at 4,500g, and the 

resulting cell pellets were stored at -80 °C prior to sequencing. 

 

Y. lipolytica salt tolerance screens  

CRISPR-Cas9 growth screens with high salinity were conducted in synthetic 

defined media deficient in leucine. Media were prepared with two different salt 

concentrations as defined in the microbial strains and culturing subsection. 150 uL 

(approximately 1x107 cells) of Day 2 glycerol stocks of PO1f Cas9 strain transformed 

with the sgRNA library were used to inoculate 250 mL baffled flasks containing 25 mL 

of three different media: SD-leu, SD-leu (0.75 M NaCl), and SD-leu (1.5 M NaCl). Three 

biological replicates were cultured for each different media condition. Outgrowth 

following inoculation was done at 30 °C at 225 RPM. Cells were grown for two days, 

and fresh media was inoculated with at least 1x107 cells and grown for another two days. 

The experiment was halted after 4 days of outgrowth following inoculation. On the last 

day, 1 mL of culture was removed, treated with DNase I, pelleted, and processed to 

extract plasmids as described above. Extracted plasmids were quantified by qPCR, and 

amplified with forward (Cr1665-Cr1668) and reverse primers (Cr1669-Cr1671, Cr1673, 

and Cr1709) containing the necessary barcodes and adapters for NGS using NextSeq. 

Growth of the PO1f Cas9 strain in SD-leu was used as a control in the salt tolerance 

screens to select for genetic perturbations that conferred a growth disadvantage only 

under the stressed condition. 
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Library isolation and sequencing  

Frozen culture samples from pooled CRISPR screens were thawed and 

resuspended in 400 µL sterile, Milli-Q H2O. Each cell suspension was split into two, 200 

µL samples. Plasmids were isolated from each sample using a Zymo Yeast Plasmid 

Miniprep Kit (Zymo Research). Splitting into separate samples here was done to 

accommodate the capacity of the Yeast Miniprep Kit, specifically to ensure complete 

lysis of cells using Zymolyase and lysis buffer. This step is critical in ensuring sufficient 

plasmid recovery and library coverage for downstream sequencing. The split samples 

from a single pellet were pooled, and the plasmid copy number was quantified using 

quantitative PCR with qPCR-GW-F and qPCR-GW-R and SsoAdvanced Universal 

SYBR Green Supermix (Biorad). Each pooled sample was confirmed to contain at least 

107 plasmids so that sufficient coverage of the sgRNA library is ensured.  

To prepare samples from the Cas12a screen for next-generation sequencing, 

isolated plasmids were subjected to PCR using forward (ILU1-F, ILU2-F, ILU3-F, ILU4-

F) and reverse primers (ILU(1-12)-R) containing all necessary barcodes and adapters for 

next-generation sequencing using the Illumina platform (Table S2.6). Schematics of the 

amplicons from the Cas9 and Cas12a screens submitted for NGS are depicted in Fig. 

S2.9. At least 0.2 ng of plasmids (approximately 3x107 plasmid molecules) were used as 

template for PCR and amplified for 16 cycles and not allowed to proceed to completion 

to avoid amplification bias. PCR product was purified using SPRI beads and tested on the 

bioanalyzer to ensure the correct length.  
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Samples from the Cas9 screens were prepared as previously described in ref.9. 

Briefly, isolated plasmids were amplified using forward (Cr1665-Cr1668) and reverse 

primers (Cr1669-Cr1673; Cr1709-1711) containing the necessary barcodes, pseudo-

barcodes, and adapters (Table S2.7). Approximately 1x107 plasmids were used as a 

template and amplified for 22 cycles, not allowing the reaction to proceed to completion. 

Amplicons at 250 bp were then gel extracted and tested on the bioanalyzer to ensure 

correct length. Samples were pooled in equimolar amounts and submitted for sequencing 

on a NextSeq 500 at the UCR IIGB core facility.  

 

Generating sgRNA read counts from raw reads  

Next-generation sequencing raw fastq files were processed using the Galaxy 

platform 46. Read quality was assessed using FastQC v0.11.8., demultiplexed using 

Cutadapt v1.16.6, and truncated to only contain the sgRNA using Trimmomatic v0.38. 

Custom MATLAB scripts were written to determine counts for each sgRNA in the 

library using Bowtie alignment (Bowtie2 v2..4.2; inexact matching) and naïve exact 

matching (NEM). The final count for each sgRNA was taken as the maximum of the two 

methods. A large majority of data points were derived from inexact matching with 

Bowtie, in only a few cases where Bowtie failed to give proper alignment, was the exact 

matching value used. Parameters used for each of the tools used on Galaxy for Cas12a 

and Cas9 screens are provided in Tables S2.8 and S2.9 respectively. MATLAB scripts 

are provided as part of the GitHub link found below in the “Code availability” section. 

Supplementary File 2.14 provides further information correlating the NCBI SRA file 

names to the information needed for demultiplexing the readsets. Analysis of raw Cas9 

https://paperpile.com/c/81b6tA/c8fQ
https://paperpile.com/c/81b6tA/sS6u


 63 

and Cas12a libraries revealed 721 and 12 sgRNA, respectively, that were found to be 

either missing or having very low normalized abundance (< 5% of the normalized mean 

abundance of the library) and were discarded from further analysis (see Supplementary 

File 2.15 for raw sgRNA counts of the untransformed Cas9 and Cas12a libraries). 

 

Gene ontology enrichment analysis 

GO annotations for the CLIB89 reference genome of Y. lipolytica 47 were 

obtained from MycoCosm (mycocosm.jgi.doe.gov). GO analysis for the essential gene 

sets was performed using the Galaxy platform 46. First, GO-slim annotations for CLIB89 

were obtained using GOSlimmer v1.0.1. Next, the GO annotation and GO-slim 

annotation files were used to perform GO enrichment and GO-slim enrichment analyses 

respectively, using GOEnrichment v2.0.1. For this analysis, the list of essential genes 

from a particular dataset was provided as the study set, and the list of all genes covered 

by the corresponding library was provided as the population set. GO terms/GO-slim 

terms having FDR-corrected p-value less than 0.05 from the hypergeometric test were 

considered to be over-represented. 

 

Finding essential gene homologs in S. cerevisiae and S. pombe 

Sequences of essential genes in the Y. lipolytica consensus set from the CLIB89 

strain were aligned to genes in S. cerevisiae and S. pombe using BLASTP. S. cerevisiae 

essential genes (phenotype:inviable) were retrieved from the Saccharomyces Genome 

Database (SGD), and S. pombe essential genes were taken from Kim et al., 2010 21. Pairs 

https://paperpile.com/c/81b6tA/1d8i
https://paperpile.com/c/81b6tA/sS6u
https://paperpile.com/c/81b6tA/lfce
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of query and subject sequences having > 40% identity from BLASTP were deemed as 

homologs. 

 

Experimental validation of essential genes and salt tolerance genes 

Selected hits from the essential gene and salt tolerance screens were validated by 

performing single gene knockouts using CRISPR-Cas9 genome editing and measuring 

the growth of these knockouts. Gene knockouts were made by using high-activity 

sgRNAs (i.e., sgRNA with cutting scores greater than 5.0; see Table S2.10 for a 

complete list). For construction of sgRNA expression vector, pCas9yl-GW was digested 

with AvrII, similar to the construction of sgRNA library plasmids. Primers for sgRNA 

cloning were obtained from Integrated DNA Technology (IDT). Each primer contained 

20 bp of homology flanking either side of a 20 bp target sequence. A mixture of two 

primers was placed in a thermocycler to anneal the oligos together and create double 

stranded DNA. Next, the annealed oligonucleotide was inserted by HiFi DNA Assembly 

(New England BioLabs, NEB) into a linearized pCas9yl-GW vector. Successful cloning 

of the sgRNA fragment was confirmed by Sanger sequencing. 

Cells containing integrated Cas9 were grown in YPD before being subjected to 

transformation of plasmid containing an sgRNA. All transformants were then inoculated 

in 17 x 100 mm round-bottomed polystyrene tubes containing 3 mL of SD-Leu media 

and allowed to grow for 16 hours at 30 ℃ and 200 rpm shaking. Cells were then 

subcultured in 2 mL of fresh media with a starting OD600 of 0.025. After 2 days of 

growth, cell density was determined by measuring OD600 using a Nanodrop 2000c (Fisher 

Scientific) and a 1 cm pathlength cuvette. In the case of essential genes, a culture 
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containing cells with an empty vector was used as a positive control, while the wildtype 

strain containing no plasmid was used as a negative control. Two biological replicates 

were performed for each sample. 

Validation of salt tolerance genes was performed using high salinity media (SD-

Leu containing 1.5 M NaCl). Cas9 expressing cells were transformed with plasmid 

containing sgRNA and transformants were grown in SD-Leu for 16 hours. This was 

followed by inoculation in 2 mL of high salinity media to an initial OD600 of 0.025. 

Inoculation in SD-Leu devoid of salt was used as a reference condition. After 4 days of 

growth in the presence and absence of salt stress, cell density was determined by 

measuring the OD600. Sample containing cells with an empty plasmid was used as a 

positive control. Two biological replicates were performed for each sample. 

 

Implementation of sgRNA activity prediction tools 

DeepGuide predicted CS values for CRISPR-Cas9 and -Cas12a datasets were 

obtained using DeepGuide v1.0.0 16. sgRNA activity prediction scores from Designer v1 

25, Designer v2 26, CRISPRspec 29, CRISPRscan 28, SSC 27, and uCRISPR 24 were 

obtained using CHOPCHOP v3 48. Similarly, DeepCpf1 scores were obtained using 

DeepCpf1 30. 

 

Calculation of sensitivity and precision  

Sensitivity measures the fraction of the consensus set of essential genes that is 

covered by predicted essential genes from a given method and is computed as: 

% 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  (
𝑁𝑜. 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑒𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙 𝑔𝑒𝑛𝑒𝑠 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 𝑠𝑒𝑡

𝑆𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 𝑠𝑒𝑡
) ∗ 100 

https://paperpile.com/c/81b6tA/P3Zw
https://paperpile.com/c/81b6tA/BuIJ
https://paperpile.com/c/81b6tA/beAr
https://paperpile.com/c/81b6tA/eNcV
https://paperpile.com/c/81b6tA/1Dhj
https://paperpile.com/c/81b6tA/LCSC
https://paperpile.com/c/81b6tA/9U8A
https://paperpile.com/c/81b6tA/ZmTG
https://paperpile.com/c/81b6tA/a326
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Precision measures the fraction of predicted essential genes from a given method 

that overlap with the consensus set and is calculated as: 

% 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  (
𝑁𝑜. 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑒𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙 𝑔𝑒𝑛𝑒𝑠 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 𝑠𝑒𝑡

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑒𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙 𝑔𝑒𝑛𝑒𝑠
) ∗ 100 

 

2.6 Data availability 

The sgRNA sequencing data for all CRISPR-Cas9 and -Cas12a screens generated 

for this study have been deposited in the NCBI SRA database under accession code 

PRJNA857832. The sgRNA raw counts, cutting scores, and fitness scores generated in 

this study are provided as separate Supplementary Information and Source Data files.  

 

2.7 Code availability 

Source code for acCRISPR can be found at 

https://github.com/ianwheeldon/acCRISPR. This GitHub page includes system 

requirements, instructions for installation, and usage examples. Custom Matlab scripts 

that were used for the design of the Cas12a CRISPR library and processing of Illumina 

reads to generate sgRNA abundance for both Cas9 and Cas12a screens can also be found 

at the same link. A permanent repository of the software has been created and archived to 

Zenodo (https://doi.org/10.5281/zenodo.7847623 49). 

 

 

 

 

https://doi.org/10.5281/zenodo.7847623
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2.9 Supplementary Information 

Supplementary Figures 

 
Fig. S2.1. acCRISPR analysis of Cas12a growth screens in Yarrowia lipolytica. (a) Heat-maps showing 

Pearson (below diagonal) and Spearman (above diagonal) coefficients of fitness effects (uncorrected FS 

(FSunc), W, β & -P; left) and sgRNA cutting efficiencies (CS, X and π; right) and from acCRISPR and three 

established essential gene identification algorithms, JACKS, MAGeCK-MLE and CRISPhieRmix. (b) ac-

coefficient is calculated with increasing CS threshold values and maximum value is represented by the 

purple datapoint. Genes with a p-value < 0.05 were classified as essential at the maximum ac-coefficient 

value. (c) Average number of sgRNA per gene and the number of essential genes predicted with increasing 

CS threshold. The number of essential genes predicted for the corrected and uncorrected analyses. The data 

points colored in pink are the guides per gene and number of essential genes determined at the optimum CS 

threshold. (d) Fitness scores of genes with (solid line) and without (dashed line) acCRISPR processing with 

a CS threshold of 1.5. (e) Number of essential genes identified by JACKS 1, MAGeCK-MLE 2, 

CRISPhieRmix 3, FSunc, and acCRISPR along with the percentage of total genes in the genome are 

reported. 
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Fig. S2.2. Experimental validation of CRISPR-Cas9 and CRISPR-Cas12a essential and non-essential 

genes from acCRISPR analysis. Final OD of cells containing single knockouts of 5 non-essential genes 

(red bars) and 15 essential genes (green bars) from the consensus set. Of the 15 selected for validation, 12 

were called as essential genes in all 3 screens (Cas9, Cas12a and transposon 4). The other three genes, 

YALI1_B03043g, YALI1_E18269g and YALI1_F34105g, were called as essential only in the Cas9 and 

Cas12a screens. Cells were grown in SD-Leu for 16 hrs post sgRNA transformation, followed by 

subculturing in fresh media and growth for another 2 days before measuring final OD. An empty vector 

control (blue bar) was used to show growth in absence of any knockout. The PO1f strain containing no 

plasmid (indicated as WT; leftmost bar) was used as no growth, negative control. Each bar represents mean 

of two biological replicates (n = 2), and data points represent OD of each individual replicate in the 

respective sample (****p < 0.0001 ; one-tailed unpaired t-test). 
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Fig. S2.3. Essential gene comparison to S. cerevisiae and S. pombe. Pie charts indicating the percentage 

of homologs in the Y. lipolytica consensus set that are essential, non-essential and have unknown 

essentiality in S. cerevisiae (824 homologs) and S. pombe (782 homologs). 
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Fig. S2.4. Performance of acCRISPR on the Cas12a screening dataset with predicted sgRNA 

activities. Essential genes were determined with acCRISPR utilizing FS along with predicted sgRNA 

activities from DeepGuide 5 and DeepCpf1 6. The violin plot shows min-max normalized sgRNA activity 

distributions of experimental CS determined by acCRISPR and those from DeepGuide and DeepCpf1. The 

% sensitivity and % precision in identifying genes from the consensus set is shown (right). Bars indicate 

the values of these two metrics for each prediction tool as well as for JACKS 1, MAGeCK-MLE 2, 

CRISPhieRmix 3, uncorrected FS (FS only) and acCRISPR. 
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Fig. S2.5. acCRISPR corrected Tolerance Scores (TS) for salt tolerance screens. S-curves showing 

tolerance scores of genes at a CS threshold of 4.5 for the two salt stress conditions – 0.75 M NaCl (left) and 

1.5 M NaCl (right). 
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Fig. S2.6. Number of significant genes at different levels of activity correction for high salt tolerance 

screens. Dark blue points represent the number of significant genes predicted by acCRISPR without CS 

correction and with a small CS correction (CS-threshold = 1.0), while pink diamonds indicate the number 

of predicted significant genes with a large CS correction (CS-threshold = 4.5, i.e., optimum CS-threshold) 

for NaCl concentrations of  (a) 0.75 M, and (b) 1.5 M. 
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Fig. S2.7. Experimental validation of high salt tolerance genes from acCRISPR analysis. Bars 

represent final OD of (a) 5 single gene knockouts (i.e., 4 significant genes and a non-significant gene, 

YALI1_C11819g), and (b) an empty vector control, grown in absence (normal; red bars) and presence (1.5 

M NaCl; blue bars) of high salt conditions. Cells were grown in SD-Leu for 16 hrs post sgRNA 

transformation, followed by subculturing in fresh media (containing 1.5 M NaCl for the high salt condition) 

and growth for 4 days before measuring final OD. Bars indicate mean of two biological replicates (n = 2), 

and data points represent OD of each individual replicate in the respective sample (**p < 0.01, ***p < 

0.001 ; one-tailed unpaired t-test). 
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Fig. S2.8. CRISPR-Cas9 and -Cas12a FS distributions on days 2, 4 and 6. Green and purple 

distributions plotted on the left y-axis show FS of all targeting sgRNA in the library, while the dark red 

distributions plotted on the right y-axis represents the non-targeting populations. (a) Histogram of sgRNA 

FS values in the Cas9 dataset. (b) Histogram of sgRNA FS values in Cas12a dataset. 
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Fig. S2.9. Schematic and sequence information of Cas9 (top) and Cas12a (bottom) amplicons for 

NGS. Amplicons contain: (i) P5 and P7 sequences (light blue) that are necessary for binding with the flow 

cell in Illumina sequencers, (ii) TruSeq adapter (brown) for binding of the sequencing primer, (iii) a portion 

of tRNAgly (black) expressing the sgRNA, (iv) Cas9 or Cas12 spacer (green) (v) Cas12a associated direct 

repeats or a portion of the Cas9 tracrRNA sequence (red), (vi) Universal 8 bp Illumina barcodes (blue), 

(vii) Index read 1 sequence for the binding of primers to sequence the Illumina barcodes, and (viii) 4-9 nt 

pseudo-barcodes (orange) at the 5’ end between the TruSeq and tRNAgly which help demultiplex replicates 

that contain the same Illumina barcode. 
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Supplementary Tables 

Table S2.1. CS threshold data for Cas9 and Cas12a screens. The CS threshold values used to generate 

‘CS-corrected’ libraries and the optimum cutoff value for Cas9 and Cas12a datasets. 

Cas9 Screen 

 

Cutting efficiency score 

Value  

Lowest 

cutoff 

Highest 

cutoff 

Step size Optimum 

cutoff 

Experimental CS 0.5 6.0 0.5 4.5 

DeepGuide CS 0.5 6.0 0.5 4.0 

Designer v1 0.108 0.892 0.098 0.402 

Designer v2 20.209 78.441 7.279 49.325 

CRISPRspec 1.215 39.175 4.745 15.45 

CRISPRscan 0.491 0.739 0.031 0.553 

SSC 0.301 0.789 0.061 0.484 

uCRISPR 10.045 90.005 9.995 70.015 

 

 

Cas12a Screen 

 

Cutting efficiency score 

Value  

Lowest 

cutoff 

Highest 

cutoff 

Step size Optimum 

cutoff 

Experimental CS 0.5 3.0 0.5 1.5 

DeepGuide CS 0.5 2.5 0.5 1.0 

DeepCpf1 10 90 10 40 
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Table S2.2. Yeast strains used in this study. 

Yeast strain genotype Phenotype 

PO1f (MatA, leu2-270, ura3-302, xpr2-322, axp-2) Wild type strain 

PO1f Δku70 PO1f with disrupted KU70, which 

facilitates the non-homologous end 

joining DNA repair pathway 

PO1f UAS1B8-TEF(136)-Cas9 -CycT::A08 PO1f expressing Y. lipolytica codon 

optimized Cas9 gene at the A08 

locus 

PO1f UAS1B8-TEF(136)-LbCas12a -CycT::A08 PO1f expressing Y. lipolytica codon 

optimized LbCas12a gene at the 

A08 locus 

PO1f Δku70 UAS1B8-TEF(136)-Cas9 -CycT::A08 KU70 disrupted in Cas9 integrated 

PO1f strain 

PO1f Δku70 UAS1B8-TEF(136)-LbCas12a -

CycT::A08 

KU70 disrupted in LbCas12a 

integrated PO1f strain 
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Table S2.3. Plasmids used for genome wide CRISPR screens. 

Plasmid name Reference Function 

pCpf1_yl 7 Plasmid for CRISPR-LbCas12a based gene 

editing in Y. lipolytica 

pCRISPRyl 

(Addgene #70007) 

8 Plasmid for CRISPR-Cas9 based gene 

editing in Y. lipolytica 

pLbCas12ayl This study and 5 Plasmid for CRISPR-LbCas12a based gene 

editing in Y. lipolytica. sgRNA is flanked on 

either end by the direct repeat, to allow 

sgRNAs to end in T residues without being 

construed as part of the PolyT terminator 

pHR_A08_hrGFP 

(Addgene #84615) 

9 Plasmid containing homology arms for 

integration of hrGFP into the A08 locus 

pHR_A08_LbCas12a This study and 5 Plasmid containing homology arms for 

integration of LbCas12a into the A08 locus 

pHR_A08_Cas9 10 Plasmid containing homology arms for 

integration of Cas9 into the A08 locus 

pLbCas12ayl-GW This study and 5 Vector containing sgRNA expression 

cassette for cloning Cas12a sgRNA library. 

(Does not contain Cas12a expression 

cassette) 

pCas9yl-GW 10 Vector containing sgRNA expression 

cassette for cloning Cas9 sgRNA library. 

(Does not contain Cas9 expression cassette) 

pCRISPRyl_KU70 This study and 11 CRISPR plasmid for the disruption of KU70 

 

https://paperpile.com/c/3zFuRK/URmG
https://paperpile.com/c/3zFuRK/LZF5
https://paperpile.com/c/3zFuRK/j4jA
https://paperpile.com/c/3zFuRK/kEnu
https://paperpile.com/c/3zFuRK/j4jA
https://paperpile.com/c/3zFuRK/XkmE
https://paperpile.com/c/3zFuRK/j4jA
https://paperpile.com/c/3zFuRK/XkmE
https://paperpile.com/c/3zFuRK/laS4
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Table S2.4. Sequences of primers used in this study. 

Primer name Primer Sequence 

ExtraDR-F CGGCGCAAATTTCTACTAAGTGTAGACTAGTAATTTCTA

CTAAGTGTAGATTTTTTTACGTCTAAGAAACCATTATT 

ExtraDR-R AATAATGGTTTCTTAGACGTAAAAAAATCTACACTTAGT

AGAAATTACTAGTCTACACTTAGTAGAAATTTGCGCCG 

Cpf1-Int-F TGCCTGGAGCCGAGTACGGCATTGATTACTAGTCCGGG

TTCGAAGGTACCAAG 

Cpf1-Int-R TTAGGCTGGGTCTCGAGAGCAAAGAAGCCTAGGGCAAA

TTAAAGCCTTCGAGCG 

BRIDGE-F CTAAATTTGATGAAAGGGGGATCCCCCGGGTGGCGTAA

TCATGGTCATAGCTGTTTCCTG 

BRIDGE-R CAGGAAACAGCTATGACCATGATTACGCCACCCGGGGG

ATCCCCCTTTCATCAAATTTAG 

A08-Seq-F AGCCGAGTACGGCATTGAT 

A08-Seq-R TCAATGTAGCCTCCTCCAACC 

Tef_Seq-F GTTGGGACTTTAGCCAAG 

Lb1-R CTTCTGCTTGGTCTTCTGGTTG 

Lb2-F AACCTGTACAACCAGAAGACCAAG 

Lb3-F AAGGAGACCAACCGAGACGAG 

Lb4-F AACCTGCACACCATGTACTTCAAG 

Lb5-F CCAGATCACCAACAAGTTCGAGTC 

M13-F GTAAAACGACGGCCAGT 

InversePCR-F TTTTTTTACGTCTAAGAAACCATTATTATCATGACATTA

ACCT 

InversePCR-R TGCGCCGACCCGGAATCGAACCGGGGGCCC 

OLS-F GTTTAGTGGTAAAATCCATCGTTGCCATCG 

OLS-R GATACGCCTATTTTTATAGGTTAATGTCATG 

qPCR-GW-F TTATGAACTGAAAGTTGATGGC 

qPCR-GW-R TCACACAGGAAACAGCTATG 

Cr_1250  TATAAGAATCATTCAAAGGCGCGCATGGATAAGAAATA

CTCCATTGGCCTG 

Cr_1254 ATAACTAATTACATGAGGCTAGCTTACAGCATGTCCAG

ATCGAAATCG 

Sg-Seq CTTCGACTCTAGAGGATCTGG 
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Table S2.5. Transformation efficiencies measured as x106 transformants, for all replicates in the 

control and treatment strains. 

Cas9 Screen 

 

Strain 

Replicate Transformation 

Efficiency (x106 transformants) 

R1 R2 R3 

PO1f 12.35 11.39 15.80 

PO1f Cas12a 11.42 8.29 10.64 

PO1f Cas12a Δku70 6.79 7.33 7.08 

 

 

Cas12a Screen 

 

Strain 

Replicate Transformation 

Efficiency (x106 transformants) 

R1 R2 R3 

PO1f Δku70 6.89 6.21 5.43 

PO1f Cas12a Δku70 5.06 4.29 4.41 

PO1f 11.93 8.28 4.23 

PO1f Cas12a 6.32 5.47 6.11 
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Table S2.6. Primers used for NGS fragment amplification (Cas12a). 

Primer 

name 

Primer Sequence Illumina Barcode 

(Reverse primer) / 

Pseudo-Barcode 

(Forward primer) for 

demultiplexing 

ILU1-F AATGATACGGCGACCACCGAGATCTACACTC

TTTCCCTACACGACGCTCTTCCGATCTTTCCG

GGTCGGCGCAAATTTC 

^TTCCGG 

ILU2-F AATGATACGGCGACCACCGAGATCTACACTC

TTTCCCTACACGACGCTCTTCCGATCTAGATC

GGGTCGGCGCAAATTTCT 

^AGATCG 

ILU3-F AATGATACGGCGACCACCGAGATCTACACTC

TTTCCCTACACGACGCTCTTCCGATCTGCTAT

TCGGGTCGGCGCAAATTTCT 

^GCTATT 

ILU4-F AATGATACGGCGACCACCGAGATCTACACTC

TTTCCCTACACGACGCTCTTCCGATCTCAGGA

CTACGGGTCGGCGCAAATTTCT 

^CAGGAC 

ILU1-R CAAGCAGAAGACGGCATACGAGATTCGCCTT

GGTGACTGGAGTTCAGACGTGTGCTCTTCCG

ATCTTAGAGGATCTGGGCCTCGTGATAC 

CAAGGCGA 

ILU2-R CAAGCAGAAGACGGCATACGAGATGACGAG

AGGTGACTGGAGTTCAGACGTGTGCTCTTCC

GATCTTAGAGGATCTGGGCCTCGTGATAC 

CTCTCGTC 

 

ILU3-R CAAGCAGAAGACGGCATACGAGATAGACTT

GGGTGACTGGAGTTCAGACGTGTGCTCTTCC

GATCTTAGAGGATCTGGGCCTCGTGATAC 

CCAAGTCT 

 

ILU4-R CAAGCAGAAGACGGCATACGAGATCTGTATT

AGTGACTGGAGTTCAGACGTGTGCTCTTCCG

ATCTTAGAGGATCTGGGCCTCGTGATAC 

TAATACAG 

 

ILU5-R CAAGCAGAAGACGGCATACGAGATCCTGAA

CCGTGACTGGAGTTCAGACGTGTGCTCTTCC

GATCTTAGAGGATCTGGGCCTCGTGATAC 

GGTTCAGG 

 

ILU6-R CAAGCAGAAGACGGCATACGAGATATCAGG

TTGTGACTGGAGTTCAGACGTGTGCTCTTCC

GATCTTAGAGGATCTGGGCCTCGTGATAC 

AACCTGAT 

 

ILU7-R CAAGCAGAAGACGGCATACGAGATTAGGTG

ACGTGACTGGAGTTCAGACGTGTGCTCTTCC

GATCTTAGAGGATCTGGGCCTCGTGATAC 

GTCACCTA 

 

ILU8-R CAAGCAGAAGACGGCATACGAGATCGAACA

GTGTGACTGGAGTTCAGACGTGTGCTCTTCC

GATCTTAGAGGATCTGGGCCTCGTGATAC 

ACTGTTCG 

 

ILU9-R CAAGCAGAAGACGGCATACGAGATGTTCGA

TCGTGACTGGAGTTCAGACGTGTGCTCTTCC

GATCTTAGAGGATCTGGGCCTCGTGATAC 

GATCGAAC 

 

ILU10-R CAAGCAGAAGACGGCATACGAGATACCTAG

CTGTGACTGGAGTTCAGACGTGTGCCTTCCG

AGCTAGGT 
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ATCTTAGAGGATCTGGGCCTCGTGATAC 

ILU11-R CAAGCAGAAGACGGCATACGAGATAGAGAT

GAGTGACTGGAGTTCAGACGTGTGCTCTTCC

GATCTTAGAGGATCTGGGCCTCGTGATAC 

TCATCTCT 

 

ILU12-R CAAGCAGAAGACGGCATACGAGATCTGGAC

TTGTGACTGGAGTTCAGACGTGTGCTCTTCC

GATCTTAGAGGATCTGGGCCTCGTGATAC 

AAGTCCAG 
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Table S2.7. Primers used for NGS fragment amplification (Cas9). 

Primer 

name 

Primer Sequence Illumina Barcode 

(Reverse primer) / 

Pseudo-Barcode 

(Forward primer) for 

demultiplexing 

Cr_1665 AATGATACGGCGACCACCGAGATCTACACTC

TTTCCCTACACGACGCTCTTCCGATCTAGTCC

GGTTCGATTCCGGGTC 

^AGTCCG 

Cr_1666 AATGATACGGCGACCACCGAGATCTACACTC

TTTCCCTACACGACGCTCTTCCGATCTGTAGT

CCGGTTCGATTCCGGGTC 

^GTAGTC 

Cr_1667 AATGATACGGCGACCACCGAGATCTACACTC

TTTCCCTACACGACGCTCTTCCGATCTCAGTA

GTCCGGTTCGATTCCGGGTC 

^CAGTAG 

Cr_1668 AATGATACGGCGACCACCGAGATCTACACTC

TTTCCCTACACGACGCTCTTCCGATCTTCCAG

TAGTCCGGTTCGATTCCGGGTC 

^TCCAGT 

Cr_1669 CAAGCAGAAGACGGCATACGAGATTCGCCTT

GGTGACTGGAGTTCAGACGTGTGCTCTTCCG

ATCTCGACTCGGTGCCACTTTTTCAAG 

CAAGGCGA 

Cr_1670 CAAGCAGAAGACGGCATACGAGATATAGCG

TCGTGACTGGAGTTCAGACGTGTGCTCTTCC

GATCTCGACTCGGTGCCACTTTTTCAAG 

GACGCTAT 

Cr_1671 CAAGCAGAAGACGGCATACGAGATGAAGAA

GTGTGACTGGAGTTCAGACGTGTGCTCTTCC

GATCTCGACTCGGTGCCACTTTTTCAAG 

ACTTCTTC 

Cr_1672 CAAGCAGAAGACGGCATACGAGATATTCTA

GGGTGACTGGAGTTCAGACGTGTGCTCTTCC

GATCTCGACTCGGTGCCACTTTTTCAAG 

CCTAGAAT 

Cr_1673 CAAGCAGAAGACGGCATACGAGATCGTTAC

CAGTGACTGGAGTTCAGACGTGTGCTCTTCC

GATCTCGACTCGGTGCCACTTTTTCAAG 

TGGTAACG 

Cr_1709 CAAGCAGAAGACGGCATACGAGATGTCTGA

TGGTGACTGGAGTTCAGACGTGTGCTCTTCC

GATCTCGACTCGGTGCCACTTTTTCAAG 

CATCAGAC 

Cr_1710 CAAGCAGAAGACGGCATACGAGATTTACGC

ACGTGACTGGAGTTCAGACGTGTGCTCTTCC

GATCTCGACTCGGTGCCACTTTTTCAAG 

GTGCGTAA 

Cr_1711 CAAGCAGAAGACGGCATACGAGATTTGAAT

AGGTGACTGGAGTTCAGACGTGTGCTCTTCC

GATCTCGACTCGGTGCCACTTTTTCAAG 

CTATTCAA 
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Table S2.8. Parameters for bioinformatics tools on Galaxy 12 used in the analysis of NGS reads 

(Cas12a). 

Tool Version Parameters* 

FastQC v0.11.8 Default settings 

Cutadapt Galaxy Version 1.16.6 13 The 3 biological replicates of a given sample at a 

given time-point in the Cas12a screen always 

had the same reverse primer containing the 

Illumina barcode, and forward primers ILU1-F, 

ILU3-F and ILU4-F; or ILU2-F, ILU3-F and 

ILU4-F each containing different pseudo-

barcodes. Thus Cutadapt was used to 

demultiplex biological replicates from each 

other. 

▪ 5’ (Front) anchored 6 bp pseudo-barcodes to be 

demultiplexed (-g): ^NNNNNN (refer to 

previous table for pseudo-barcode-forward 

primer association).  

▪ Maximum error rate (--error-rate): 0.2 

▪ Match times (--times): 1 

▪ Minimum overlap length (--overlap): 4 

▪ Multiple output: Yes (Each demultiplexed 

readset is written to a separate file) 

Trimmomatic v0.38 ▪ HEADCROP: 29 (if amplified by ILU1-F); or 

30 (if amplified by ILU2-F); or 32 (if amplified 

by ILU3-F); or 34 (if amplified by ILU4-F) 

▪ CROP: 25 

 

Bowtie2** v2.4.2 ▪ Number of allowed mismatches in seed 

alignment (-N): 1 

▪ Length of the seed substring (-L): 21 

▪ Function governing interval between seed 

substrings in multiseed alignment (-i): S,1,0.50 

▪ Function governing maximum number of 

ambiguous characters (--n-ceil): L,0,0.15 

▪ Alignment mode: end-to-end 

▪ Number of attempts of consecutive seed 

extension events (-D): 20 

▪ Number of times re-seeding occurs for 

repetitive reads: 3 

▪ Save mapping statistics: Yes 

 

* All parameters other than those mentioned here are kept at default values. 

** Bowtie2 usage needs a genome fasta file for alignment. Nontargeting sgRNA and any other 

sgRNA that Bowtie2 could not find within the original CLIB89 genome file were appended as an 

extra chromosome so that Bowtie could align all sgRNA for the purposes of generating counts.

https://paperpile.com/c/3zFuRK/8DkH
https://paperpile.com/c/3zFuRK/Hf26j
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Table S2.9. Parameters for bioinformatics tools on Galaxy 12 used in the analysis of NGS reads 

(Cas9). 

Tool Version Parameters* 

FastQC v0.11.8 Default settings 

Cutadapt Galaxy Version 1.16.6 13 Cutadapt was used to demultiplex samples 

containing the same Illumina barcode, but 

different pseudobarcodes at the 5’ end of the 

read. Samples were amplified with reverse 

primers Cr1669-1673;Cr1709-1711 and 

forward primers Cr1665-1668 each containing 

a different pseudo barcode as mentioned in 

Table 

▪ 5’ (Front) anchored 6 bp pseudo-barcodes to be 

demultiplexed (-g): ^NNNNNN (refer to 

previous table for pseudo-barcode-forward 

primer association).  

▪ Maximum error rate (--error-rate): 0.2 

▪ Match times (--times): 1 

▪ Minimum overlap length (--overlap): 4 

▪ Multiple output: Yes (Each demultiplexed 

readset is written to a separate file) 

Trimmomatic v0.38 ▪ HEADCROP: 30 (if amplified by Cr1665); or 

32 (if amplified by Cr1666); or 34 (if amplified 

by Cr1667); or 36 (if amplified by Cr1668) 

▪ CROP: 20 

 

Bowtie2** v2.4.2 ▪ Number of allowed mismatches in seed 

alignment (-N): 1 

▪ Length of the seed substring (-L): 19 

▪ Function governing interval between seed 

substrings in multiseed alignment (-i): S,1,0.50 

▪ Function governing maximum number of 

ambiguous characters (--n-ceil): L,0,0.15 

▪ Alignment mode: end-to-end 

▪ Number of attempts of consecutive seed 

extension events (-D): 20 

▪ Number of times re-seeding occurs for 

repetitive reads: 3 

▪ Save mapping statistics: Yes 

 

* All parameters other than those mentioned here are kept at default values. 

** Bowtie2 usage needs a genome fasta file for alignment. Nontargeting sgRNA and any other 

sgRNA that Bowtie2 could not find within the original CLIB89 genome file were appended as an 

extra chromosome so that Bowtie could align all sgRNA for the purposes of generating counts. 

https://paperpile.com/c/3zFuRK/8DkH
https://paperpile.com/c/3zFuRK/Hf26j
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Table S2.10. List of sgRNA (& associated cutting scores) used for validation of essential genes, non-

essential genes, and significant genes for salt tolerance. 

Gene sgRNA ID 

(from Cas9 lib.) 

sgRNA sequence Cutting  

score 

YALI1_B20188g YALI1_B20188g_3 TTGCATCCTGATCGAAACCA 6.88 

YALI1_D06665g YALI1_D06665g_6 GGATGCTGCTACTTCCAAAT 5.73 

YALI1_E17613g YALI1_E17613g_6 CTTTGCACACCCCGTCAATT 7.14 

YALI1_F08292g YALI1_F08292g_3 GAACTCGTCAGCGAGCACGG 6.07 

YALI1_F27686g YALI1_F27686g_6 GCAGAAGAACCGCCTCACCA 6.90 

YALI1_E23184g YALI1_E23184g_3 CGAGTCGCCGACAACTGTAA 7.52 

YALI1_A21345g YALI1_A21345g_1 TCAATAGTAGCCTCAGACAA 6.80 

YALI1_A03069g YALI1_A03069g_5 TGCATCGGCGATATGTTCCA 6.10 

YALI1_B00908g YALI1_B00908g_5 GTTCTACGAGACCGATCACC 7.27 

YALI1_C08600g YALI1_C08600g_3 AATGGGGTCGAACGAAACGC 6.07 

YALI1_D03952g YALI1_D03952g_6 CTCCTGAGCGGCCTTCCACG 6.59 

YALI1_D14276g YALI1_D14276g_2 CTGGATCTCCAGCTGTACCG 6.35 

YALI1_B03043g YALI1_B03043g_2 AATGTCGCTCTGGTGAGTGA 6.64 

YALI1_E18269g YALI1_E18269g_3 ACACGCACTCAGTAAGGCAG 6.25 

YALI1_F34105g YALI1_F34105g_6 GAACGCCGTGATCATCGGAC 6.72 

YALI1_E24201g YALI1_E24201g_4 GACGTGGGCAAGAAAAAGGA 6.12 

YALI1_C11819g YALI1_C11819g_5 GTTTTGCCAGTTCCCCAACG 5.58 

YALI1_A07277g YALI1_A07277g_4 TGGCGGAGATCTAGATGTCG 7.11 

YALI1_F10122g YALI1_F10122g_1 CAGAAGGGAAAGTAGTACCG 5.90 

YALI1_F09056g YALI1_F09056g_5 CCGAGAAAACGGCCAAAGGG 5.86 

YALI1_E23961g YALI1_E23961g_2 AGGCTACTCGGGAGGAAACA 5.73 

YALI1_F12478g YALI1_F12478g_6 ACTTGTGCGCGCCTCCCACT 5.90 
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Chapter 3: Balanced training datasets improve deep learning-based prediction of 

CRISPR sgRNA activity 

 

3.1 Abstract 

CRISPR-Cas systems have transformed the field of synthetic biology by 

providing a versatile method for genome editing. The cleavage efficiency of CRISPR 

systems depends largely on the sequence of the constituent sgRNA, necessitating the 

development of computational methods for designing active sgRNAs. While deep 

learning-based models have shown promise in predicting sgRNA activity, the accuracy of 

prediction is primarily governed by the dataset used in model training. Here, we trained a 

convolutional neural network model and a large language model (LLM) on balanced and 

imbalanced datasets generated from CRISPR-Cas12a screening data for the yeast 

Yarrowia lipolytica, and evaluated their ability to predict high- and low-activity sgRNAs. 

We further tested whether prediction performance can be improved by training on 

imbalanced datasets augmented with synthetic sgRNAs. Lastly, we demonstrated that 

adding synthetic sgRNAs to inherently imbalanced CRISPR-Cas9 datasets from Y. 

lipolytica and Komagataella phaffii leads to improved performance in predicting sgRNA 

activity, thus underscoring the importance of employing balanced training sets for 

accurate sgRNAs activity prediction. 
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3.2 Introduction 

CRISPR systems have emerged as a potent tool in enabling targeted genome 

editing in assays ranging from individual genetic perturbation experiments to high-

throughput functional genetic screens 1–4. Precise genomic edits created using CRISPR 

systems have facilitated identification of the genetic basis of phenotypes and discovery of 

previously unknown biological mechanisms in various model and non-model organisms 

for industrial, agricultural and therapeutic applications 5–10. CRISPR systems achieve 

efficient targeted editing by utilizing two components – a Cas endonuclease that creates a 

double stranded break, and a single guide RNA (sgRNA) that guides the Cas enzyme to 

the targeted genomic locus 11,12. Genome editing efficacy depends on several factors such 

as the sequence and nucleotide composition of the sgRNA, propensity of the sgRNA to 

form secondary structure, genomic context, and epigenetic features like chromatin 

accessibility and DNA methylation 13–16. As a result, CRISPR systems often have a broad 

spectrum of activity, with only a limited fraction of sgRNA successfully generating a 

desired genetic manipulation, thus emphasizing the need for computational approaches to 

design sgRNAs. 

A host of computational tools for CRISPR sgRNA design have been developed 

that possess the ability to predict sgRNA activity in prokaryotic and eukaryotic organisms 

using machine learning and deep learning approaches 17–20. These methods use large 

datasets that link sgRNA sequence with Cas activity as training sets to capture 

generalizable patterns and features of sgRNAs, and in doing so generate design rules for 

maximizing sgRNA activity 21,22. The composition of the training datasets used as input 

https://paperpile.com/c/47Mbzt/vLmO+LC3d+Qray+RhA9
https://paperpile.com/c/47Mbzt/VVaLt+oMRAe+bDT8Q+3oWj7+baZYf+B4VC4
https://paperpile.com/c/47Mbzt/cdJ37+KNRjH
https://paperpile.com/c/47Mbzt/3bxdf+e9ONm+ZWN8S+hgiXm
https://paperpile.com/c/47Mbzt/sUiRj+MSDnS+2AaF3+okMii
https://paperpile.com/c/47Mbzt/CbPQz+Un2Xl
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to these methods thus plays a critical role in determining the accuracy of activity 

predictions. Training datasets consisting of a large number of sgRNAs with a wide 

distribution of activity lead to more accurate predictions of activity compared to skewed 

datasets 18. 

In this work, we evaluated the effect of training set composition on the 

performance of deep learning methods for sgRNA activity prediction. We began by 

training a deep convolutional neural network model, DeepGuide 18, on previously 

reported CRISPR-Cas12a data from Y. lipolytica 6,18. The performance of a series of 

DeepGuide models trained on the original dataset and datasets skewed toward high- and 

low-activity sgRNAs was evaluated for prediction accuracy. We also implemented an 

LLM architecture, HyenaDNA 23, on the original and skewed datasets, and observed 

similar prediction performance. Finally, we investigated the effect of augmenting 

imbalanced training datasets with synthetic sgRNAs on the ability to recover predictive 

power lost during training on imbalanced datasets. 

 

3.3 Results and Discussion 

Balanced training sets enable accurate predictions of sgRNA activity 

The CRISPR-Cas12a sgRNA dataset in Y. lipolytica, previously reported in ref 

6,18, is an 8-fold coverage library containing 57,018 sgRNA targeting ~98% of the 

protein-coding genes in the PO1f strain. Unbiased design and screening of this library 

produced a dataset containing a well-balanced representation of high- and low-activity 

sgRNAs. The activity of each guide was determined using an experimental cutting score 

https://paperpile.com/c/47Mbzt/MSDnS
https://paperpile.com/c/47Mbzt/MSDnS
https://paperpile.com/c/47Mbzt/MSDnS+oMRAe
https://paperpile.com/c/47Mbzt/NDe1O
https://paperpile.com/c/47Mbzt/MSDnS+oMRAe


 96 

(CS), computed as the log2 ratio of sgRNA abundance in a strain deficient in non-

homologous end joining (NHEJ) to that in a Cas12a-expressing strain deficient in NHEJ 

18,24. Using this CS dataset, we trained DeepGuide18 to predict CRISPR-Cas12a activity 

based on sgRNA sequence. The data was split into training and test sets in the ratio 

90:10, with the training set consisting of 50,731 sgRNAs, comprising ~41% high-activity 

sgRNA and ~59% low-activity sgRNA (Fig. S3.1). Model training resulted in a mean 

Pearson’s r of 0.596 (experimental CS vs DeepGuide-predicted CS), thus establishing a 

baseline of model performance for sgRNA activity predictions. 

 

Imbalanced training sets result in poor prediction of sgRNA activity 

In this experiment, we sought to quantify the impact of a reduced training set on 

model performance by randomly removing high- or low-activity sgRNAs from the 

original training set and evaluating the performance of DeepGuide when trained on the 

imbalanced datasets. While Pearson’s r computed for the test set captures the overall 

accuracy of the model in predicting the CS of each sgRNA, it does not gauge the model’s 

ability to correctly predict high- and low-activity sgRNAs as measured in experimental 

assays 25–27. For this reason, we evaluated the performance of DeepGuide to accurately 

classify a set of experimentally-validated high- and low-activity sgRNAs identified from 

individual phenotype screening experiments 18. Based on the DeepGuide predicted CS 

values along with the experimental high-/low-activity classification for each sgRNA, we 

computed the fraction of high-activity and low-activity sgRNAs correctly predicted by 

the model in terms of True Positive Rate (TPR) and 1 - False Positive Rate (1-FPR) 

respectively (see Methods for details on TPR, 1-FPR calculation from predicted CS). 

https://paperpile.com/c/47Mbzt/faAur+MSDnS
https://paperpile.com/c/47Mbzt/MSDnS
https://paperpile.com/c/47Mbzt/RisRU+Tw95w+40YnQ
https://paperpile.com/c/47Mbzt/MSDnS
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Fig. 3.1. DeepGuide performance with imbalanced CRISPR-Cas12a training datasets. (a), (d) 

Normalized cutting score (CSnorm) distributions of the Cas12a training dataset imbalanced by removing 0, 

25, 50, 75, and 90% high- and low-activity sgRNAs along with the total number of sgRNAs (n) in every 

training set. (b), (e) Performance of DeepGuide models on the sgRNA test sets (Pearson’s r), and high- and 

low-activity Cas12a sgRNAs from individual phenotype screening experiments (TPR, 1-FPR). Bars 

represent mean values of Pearson’s r, TPR, and 1-FPR across five independent runs (n=5). Error bars 

indicate one standard deviation, and data points represent values from each individual run. (c), (f) Mean 

predicted CS of high-activity (KO efficiency >= 50%) and low-activity (KO efficiency < 50%) sgRNAs 

from individual phenotype screening experiments in Y. lipolytica when DeepGuide was trained on 

imbalanced datasets with 90% high-activity and 90% low-activity sgRNA removed. Data points represent 

mean values of predicted CS for experimental sgRNA with a given KO efficiency across five independent 

runs (n=5), and error bars indicate one standard deviation. Dashed line represents average predicted CS 

threshold for high-activity and dotted lines represent one standard deviation of the high-activity threshold. 
 

We first generated imbalanced training datasets biased towards low-activity 

sgRNAs by removing 25, 50, 75 and 90% high-activity sgRNAs from the original 

training set (Fig. 3.1a). Upon training DeepGuide on these datasets, the performance on 

the test set was found to decrease slightly as more high-activity sgRNAs were removed, 

with mean Pearson’s r ranging from 0.597 when 25% high-activity sgRNA were removed 
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to 0.579 when 90% of the high-activity guides were excluded (Fig. 3.1b). Given that the 

Pearson’s r for a balanced training set of 30,000 sgRNA was found to be higher (r = 

0.588; Fig. S3.2) than that when 90% high-activity sgRNA were removed (r = 0.579; 

training set size ~ 32,000), the drop in Pearson’s r can be attributed to a decrease in the 

share of high-activity sgRNAs in the training set. TPR was found to decline sharply as 

the percentage of high-activity sgRNAs removed increased from 25% to 90% – shrinking 

from a mean value of 0.894 to 0 when 25% and 90% high-activity sgRNAs were 

removed respectively, indicating a reduced ability to predict high-activity sgRNAs when 

the dataset is skewed toward low-activity guides (Fig. 3.1b). The decrease in TPR was 

accompanied by marginal increases in 1-FPR (mean value ranging from 0.887 when 25% 

high-activity sgRNAs were removed to 0.9914 when 90% were removed), reflecting the 

increasing share of low-activity sgRNAs in the training set. As the training datasets 

become more biased towards low-activity sgRNAs, the DeepGuide-predicted CS of 

experimental sgRNAs shift to lower values leading to fewer sgRNAs being predicted as 

high-activity (Fig. 3.1c and Fig. S3.3a,b). 

We similarly removed 25, 50, 75, and 90% low-activity sgRNA from the original 

set to result in training data biased towards high-activity sgRNAs (Fig. 3.1d). Similar to 

the results with datasets biased toward low-activity sgRNAs, DeepGuide’s performance 

on the test set decreased as more low-activity sgRNAs were removed (Fig. 3.1e; mean 

Pearson’s r = 0.598 and 0.545 when 25% and 90% low-activity sgRNAs were removed 

respectively). Furthermore, as fewer low-activity sgRNA were retained in the training 

dataset, DeepGuide gradually lost the ability to accurately predict low-activity 
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experimental data, with 1-FPR diminishing from 0.896 when 25% low-activity sgRNA 

were removed, to 0.426 when 90% low-activity sgRNA were removed (Fig. 3.1e). This 

result was coupled with a slight increase in TPR values (0.882  and 1 when 25% and 90% 

low-activity sgRNA were removed respectively). Fig. 3.1f and Fig. S3.3a,c show that the 

predicted CS of experimental sgRNAs shift to higher values with respect to the predicted 

CS obtained by training DeepGuide on the original dataset, ultimately causing fewer 

sgRNA to be predicted as low-activity. 

To test whether alternative deep learning frameworks exhibit similar behavior in 

predicting sgRNA activity when trained on imbalanced datasets, we evaluated the 

performance of HyenaDNA 23, a large language model (LLM), trained on various 

datasets. For this analysis, we used the balanced training dataset and the skewed datasets 

with 50% and 90% high- and low-activity sgRNAs removed. Similar to the DeepGuide 

results, Pearson’s r slightly decreased as more high- and low-activity sgRNAs were 

removed (Fig. S3.4a). Likewise, the TPR and 1-FPR showed a decrease that is 

commensurate with the fraction of high- and low-activity sgRNAs preserved in the 

training dataset (Fig. S3.4b). These results substantiate the critical importance of the 

training set composition in influencing sgRNA activity prediction accuracy, independent 

of the prediction model. 

 

Augmenting imbalanced training sets with synthetic sgRNAs helps recover activity 

prediction power 

To examine whether artificially re-balancing training sets improves prediction 

performance, we augmented imbalanced CRISPR-Cas12a training sets with synthetic 

https://paperpile.com/c/47Mbzt/NDe1O
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high- or low-activity sgRNA. It is well-established that CRISPR endonuclease activity is 

less sensitive to mismatches between the sgRNA and target DNA in the PAM-distal 

region of the sgRNA compared to the PAM-proximal or seed region 28–30. For CRISPR-

Cas12a, the first 14 bp of a sgRNA from the 5’ end comprise the seed region 28,31. We 

thus generated synthetic sgRNAs by randomly sampling guides from the minority class in 

a given imbalanced training set (for a training set biased towards low-activity sgRNA, the 

minority class constitutes all high-activity sgRNAs within the training set, and vice-

versa) and created new guides with random one nucleotide substitution in the non-seed 

region (base positions 15-25 from the 5’ end) of the selected guide. Since the CRISPR-

Cas12a library was designed by ensuring the uniqueness of the 14 bp sgRNA seed region 

in the genome 6,18, the generated synthetic sgRNA would always target the same genomic 

locus as the original sgRNA it was created from. 

To re-balance training sets biased towards low-activity sgRNA, we augmented the 

datasets consisting of 50% and 90% high-activity sgRNAs removed with 20,000 and 

28,000 synthetic high-activity sgRNA, respectively (Fig. 3.2a). DeepGuide training on 

these re-balanced datasets resulted in a small decrease in performance on the test set 

compared to that for the corresponding imbalanced training sets, with the mean Pearson’s 

r dropping from 0.591 to 0.539, and from 0.579 to 0.496 when datasets with 50% and 

90% high-activity sgRNAs removed were balanced with synthetic guides (Fig. 3.2b). The 

TPR for experimental high-activity sgRNAs, however, exhibited an increase when 

synthetic high-activity sgRNAs were added to the training sets (an increase of 0.223 and 

0.459 for datasets with 50% and 90% high-activity sgRNA removed, respectively). For 

https://paperpile.com/c/47Mbzt/8C1Fq+1LEoP+6wQn9
https://paperpile.com/c/47Mbzt/8XR0M+8C1Fq
https://paperpile.com/c/47Mbzt/MSDnS+oMRAe
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the dataset with 50% high-activity sgRNA removed, the recovery in performance yields 

predictions that closely match those achieved using the original training set (mean TPR = 

0.870 for the balanced dataset, and 1 for the original dataset). The 1-FPR value, 

meanwhile, showed a small decrease when synthetic high-activity sgRNA were appended 

to the training sets, while still remaining above 0.85 for all datasets. Fig. 3.2c shows that 

the addition of synthetic high-activity sgRNAs to imbalanced training sets causes the 

predicted CS of experimental sgRNAs to shift to higher values, illustrating the recovery 

in high-activity guide prediction accuracy. 

We next re-balanced training datasets with 50% and 90% low-activity sgRNAs 

removed by augmenting them with 6,000 and 18,000 synthetic low-activity sgRNAs, 

respectively (Fig. 3.2d). This resulted in minimal change in Pearson’s r for DeepGuide 

predictions on the test set (an uptick of 0.004 and 0.015 for datasets with 50% and 90% 

low-activity sgRNA removed respectively; Fig. 3.2e). More importantly, the addition of 

synthetic sgRNAs led to a resurgence in 1-FPR for both datasets (an increase of 0.026 

and 0.357 for datasets with 50% and 90% low-activity sgRNAs removed respectively), 

signifying that DeepGuide regains the ability to predict low-activity sgRNAs. It is 

noteworthy here that model performance for the dataset supplemented with synthetic 

sgRNAs after removing 90% of the low-activity population (1-FPR = 0.783, TPR = 

0.976) is inferior to that for the original dataset (1-FPR = 0.887, TPR = 1) only by a small 

margin. Fig. 3.2f illustrates the shift in predicted CS of experimental sgRNAs to lower 

values upon addition of synthetic low-activity sgRNA to imbalanced training datasets. 
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Fig. 3.2. DeepGuide performance with imbalanced CRISPR-Cas12a training datasets augmented 

with synthetic sgRNAs. (a), (d) Pie charts showing change in composition of imbalanced training sets 

skewed towards low- and high-activity sgRNAs after adding synthetic (a) high-activity, and (d) low-

activity sgRNAs. (b), (e) Performance of DeepGuide models on the test set of sgRNAs (Pearson’s r), and 

high-activity and low-activity Cas12a sgRNAs from individual phenotype screening experiments (TPR, 1-

FPR), when trained using the original training set, imbalanced training sets obtained after removing 50% 

and 90% (b) high- and (e) low-activity sgRNAs, and re-balanced training sets obtained after adding 

synthetic (b) high- and (e) low-activity sgRNAs. Bars represent mean values of Pearson’s r, TPR and 1-

FPR across five independent runs (n=5), error bars indicate one standard deviation, and data points 

represent values from each individual run. (c), (f) Mean predicted CS of high-activity (KO efficiency >= 

50%) and low-activity (KO efficiency < 50%) sgRNA from individual phenotype screening experiments in 

Y. lipolytica when DeepGuide was trained on balanced datasets containing synthetic (c) high- and (f) low-

activity sgRNAs, with respect to the mean predicted CS of the same guides obtained upon training 

DeepGuide on the corresponding imbalanced datasets with 50% high-activity and 90% low-activity sgRNA 

removed. Data points represent mean values of predicted CS for experimental sgRNA with a given KO 

efficiency across five independent runs (n=5), and error bars indicate one standard deviation. Dashed line 

represents average predicted CS threshold for high-activity and dotted lines represent one standard 

deviation of the high-activity threshold. 

 

We also explored variations of the current approach to generate synthetic sgRNA, 

and investigated their ability to improve prediction performance. The tested variations 

include: (i) penalizing the normalized CS of the sampled sgRNA by 4% (or (1/25)), 
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assuming that the resulting synthetic sgRNA will have reduced activity due to a one 

nucleotide  mismatch between sgRNA and target, (ii) sampling sgRNA by biasing 

towards sgRNA with extreme (high/low) normalized CS values, (iii) creating one 

nucleotide  substitution in the sampled sgRNA by biasing towards terminal positions (i.e., 

positions close to the 3’ end), and (iv) creating two nucleotide  substitutions in the non-

seed region of the sampled sgRNA. Addition of synthetic sgRNA generated using the 

different methods resulted in a similar performance on the test set, and was not an 

improvement over the method shown in Figure 2 (Fig. S3.5). This similarity in 

performance was also observed for the experimental sgRNAs; the mean TPR values for 

training sets with synthetic high-activity sgRNAs range between 0.435-0.447 across all 

methods except method (ii), while mean 1-FPR values for training sets with synthetic 

low-activity sgRNA range between 0.722-0.852 across methods (Fig. S3.5). Overall, the 

similar performance of variant methods implies that the method used for generating 

synthetic sgRNA has no effect on the improvement in model performance. 

 

Adding synthetic sgRNA to imbalanced CRISPR-Cas9 datasets improves low-activity 

sgRNA prediction 

To assess the capability of the synthetic sgRNA-based approach in improving 

activity prediction on imbalanced training sets from other species and endonucleases, we 

implemented DeepGuide on CRISPR-Cas9 datasets from Y .lipolytica and K. phaffii 

previously reported in refs 32 and 33. The Y. lipolytica Cas9 dataset is biased towards 

high-activity sgRNA; the set includes 67.3% high-activity sgRNA with a training set size 

of 19,953 (Fig. 3.3a,b). To alleviate this imbalance, we augmented the training set with 

https://paperpile.com/c/47Mbzt/amuTt
https://paperpile.com/c/47Mbzt/N0InU
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6,500 synthetic low-activity sgRNA by creating a 1 bp substitution in the non-seed region 

(base positions 1-8 from the 5’ end; see Methods). Since DeepGuide improves Cas9 

activity predictions using nucleosome occupancy information 18, we provided occupancy 

scores for every sgRNA in addition to sgRNA sequence as input for training on the Cas9 

datasets. When trained on the original and re-balanced training sets, DeepGuide was 

found to yield nearly similar values of Pearson’s r on the test set of sgRNA (Fig. 3.3c). 

Addition of synthetic sgRNA also resulted in an increase in 1-FPR from 0.053 to 0.493 

for the original and re-balanced datasets respectively, but at the cost of a decrease in TPR 

from 1 to 0.656, Fig. 3.3d. Fig. S3.6a shows the predicted CS of experimental high- and 

low-activity sgRNA before and after adding synthetic sgRNA to the original training set. 

The K. phaffii training set contains a disproportionately large number of high-

activity sgRNA (73.7% high-activity sgRNA in a training set of 27,821 sgRNA, Fig. 

3.3e,f), and was hence, re-balanced by adding 13,000 synthetic low-activity sgRNA. 

DeepGuide implementation on the training sets resulted in similar values of Pearson’s r 

(Fig. 3.3g). More prominently, when measuring performance on experimentally-validated 

high- and low-activity sgRNA from individual experiments 33, the addition of synthetic 

low-activity sgRNA led to an jump in 1-FPR from 0.042 to 0.232, accompanied by a 

small decrease in TPR from 1 to 0.815 (Fig. 3.3h and Fig. S3.6b). 

https://paperpile.com/c/47Mbzt/MSDnS
https://paperpile.com/c/47Mbzt/N0InU
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Fig. 3.3. Composition of the Y. lipolytica (top) and K. phaffii (bottom) CRISPR-Cas9 training sets and 

DeepGuide performance with the two datasets. (a), (e) Normalized cutting score (CSnorm) distributions 

of the original Cas9 training datasets for Y. lipolytica and K. phaffii. (b), (f) Pie charts showing the 

proportion of high- and low-activity sgRNAs in the original Cas9 training sets containing a total of 19,953 

sgRNA for Y. lipolytica, and 27,821 sgRNA for K. phaffii. (c), (g) Performance of DeepGuide on the test 

set of sgRNA for Y. lipolytica, and K. phaffii when trained on the respective original training sets and re-

balanced training sets obtained after adding synthetic low-activity sgRNA to the original sets. Bars 

represent mean Pearson’s r across five independent runs (n=5), error bars indicate one standard deviation, 

and data points represent values from each individual run. (d), (h) DeepGuide performance on high- and 

low-activity Cas9 sgRNAs from individual experiments for Y. lipolytica, and K. phaffii. Bars represent 

mean values of TPR and 1-FPR across five independent runs (n=5), error bars indicate one standard 

deviation, and data points represent values from each individual run. 
 

 

3.4 Conclusion 

Deep learning models, while having shown to be effective in designing sgRNAs, 

depend significantly on the training set composition for accurate prediction of activity. 

Implementation of deep learning models on CRISPR-Cas datasets in this study shows 

that adding synthetic sgRNAs can improve performance with imbalanced datasets, but 

not to the level of balanced datasets. Ultimately, AI models result in best prediction 
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performance when trained on datasets evenly representing both positive and negative 

biological outcomes, well-balanced datasets. 

 

3.5 Methods 

Processing Y. lipolytica and K. phaffii CRISPR-Cas12a and CRISPR-Cas9 sgRNA-CS 

data 

Y. lipolytica sgRNA sequence and CS data for the CRISPR-Cas12a library was 

obtained from 18, while CRISPR-Cas9 datasets for Y. lipolytica and K. phaffii were 

obtained from 32 and 33 respectively. For all datasets, raw CS values of sgRNA were 

converted to normalized CS by subtracting the average CS of all non-targeting sgRNA in 

the respective libraries from the raw CS values of every sgRNA. For Cas12a data, the 25 

bp sequences of sgRNA were extended to 32 bp sequences (25 bp spacer + 4 bp PAM + 1 

bp context upstream of the PAM + 2 bp context downstream of the spacer) using custom 

Python scripts to map sgRNA to the Y. lipolytica CLIB89 genome 

(https://www.ncbi.nlm.nih.gov/assembly/GCA_001761485.1) 34 and obtain the upstream 

and downstream nucleotides. In case of the Cas9 datasets, the 20 bp sequences of sgRNA 

were extended to 28 bp sequences (20 bp spacer + 3 bp PAM + 2 bp context upstream of 

the spacer + 3 bp context downstream of the PAM) by mapping sgRNA to Y. lipolytica 

CLIB89 and K. phaffii GS115 

(https://www.ncbi.nlm.nih.gov/assembly/GCA_000027005.1) 35 genomes. 

For each dataset, the “sgRNA + PAM + upstream/downstream context” sequences 

and normalized CS data were then randomly split into training and test sets for the 

https://paperpile.com/c/47Mbzt/MSDnS
https://paperpile.com/c/47Mbzt/amuTt
https://paperpile.com/c/47Mbzt/N0InU
https://www.ncbi.nlm.nih.gov/assembly/GCA_001761485.1
https://paperpile.com/c/47Mbzt/ZNOPr
https://www.ncbi.nlm.nih.gov/assembly/GCA_001761485.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_001761485.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_001761485.1
https://paperpile.com/c/47Mbzt/aubpX
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sgRNA activity prediction tools in the ratio 90:10. For Y. lipolytica CRISPR-Cas12a data, 

the original training set consisted of 50,731 sgRNA, while the test set comprised 5,637 

sgRNA. Guides in the original training set were classified as high-activity and low-

activity based on a high-activity threshold defined in 6, equivalent to a normalized CS of 

3.10. The training and test sets for Y. lipolytica CRISPR-Cas9 data consisted of 19,953 

and 2,217 sgRNA respectively, with a high-activity threshold equivalent to normalized 

CS of 5.30, as defined in 32. Similarly, for K. phaffii Cas9 data, the training and test set 

sizes were 27,821 and 3,093 sgRNA respectively, with sgRNA having normalized CS 

greater than 11.66 deemed as high-activity sgRNA, based on the threshold defined in 33. 

 

DeepGuide implementation 

For Y. lipolytica datasets, DeepGuide 

(https://github.com/ucrbioinfo/deepguide_reborn) 18 was first pre-trained on the Y. 

lipolytica CLIB89 genome using a sequence length of 32 bp for Cas12a (guide_length: 

32) and 28 bp (guide_length: 28) for Cas9 with 6 epochs (dg_one_pretrain_epochs: 6), 

followed by training on the Y. lipolytica Cas12a/Cas9 data with 10 epochs 

(dg_one_epochs: 10). For the K. phaffii Cas9 dataset, the pre-training was performed on 

the K. phaffii GS115 genome using 28 bp as the sequence length (guide_length: 28). 

Both the pre-training and training steps were performed using a batch size of 64 

(dg_one_pretrain_batch_size: 64, and dg_one_batch_size: 64) and a train:validation split 

of 70:30 (dg_one_pretrain_train_test_ratio: 0.7, and dg_one_train_test_ratio: 0.7). For 

Cas12a, the ‘cas’ parameter was set to ‘cas9_seq’, since only sgRNA sequence data was 

used for training. For Cas9 datasets, the value of ‘cas’ parameter was changed to 

https://paperpile.com/c/47Mbzt/oMRAe
https://paperpile.com/c/47Mbzt/amuTt
https://paperpile.com/c/47Mbzt/N0InU
https://paperpile.com/c/47Mbzt/MSDnS
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‘cas9_nucleosome’, since sgRNA nucleosome occupancy scores were used for training in 

addition to sequence data. Five independent runs were performed for each experiment. 

 

HyenaDNA implementation 

HyenaDNA (https://github.com/HazyResearch/hyena-dna) 23 was pre-trained on 

the Y. lipolytica CLIB89 genome using a sequence length of 32 bp (max_length: 32), 

train:val:test split of 80:10:10, model width of 32 (d_model: 32), depth of 2 layers 

(n_layer: 2), a learning rate of 6*10-4 (lr: 6e-4) and a global batch size of 1024 

(global_batch_size: 1024) with 100 epochs (max_epochs: 100). Default values of all 

other parameters were used. Pre-training was carried out on 4 Nvidia A100 80GB GPUs 

(devices: 4). 

For fine-tuning the model, the Cas12a training data was split into training and 

validation sets in the ratio 80:10 (train_len: 45094 for original training set), and a global 

batch size of 256 (global_batch_size: 256) was used. The model configuration, sequence 

length, and learning rate were kept unchanged from the pre-training step (d_model: 32, 

n_layer: 2, max_length: 32, lr: 6e-4). The fine-tuning step was also performed with 100 

epochs (max_epochs: 100), using one Nvidia A100 80GB GPU (devices: 1), and the 

entire model was fine-tuned rather than freezing the weights of the pre-trained backbone 

(freeze_backbone: false). Default values of all other parameters were used. Five 

independent runs were performed for each experiment. 

 

 

 

https://paperpile.com/c/47Mbzt/NDe1O
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Generating synthetic sgRNA 

Custom Python scripts were used to generate synthetic sgRNA by randomly 

sampling appropriate number of sgRNA from the pool of high-/low-activity sgRNA in 

the imbalanced training sets, and creating a 1 bp substitution for four of the five 

simulation methods, and 2 bp substitutions for one method, in the non-seed region (base 

positions 15-25 from the 5’ end on the 25 bp spacer sequence for Cas12a sgRNA and 

positions 1-8 from the 5’ end of the 20 bp spacer for Cas9 sgRNA 36,37) of the sampled 

sgRNA. 

In case of unbiased sampling with penalized CS for Cas12a sgRNA, the 

normalized CS of the synthetic guides was reduced by (1/25)th, or 4% compared to that 

of the original sgRNA to account for a possible reduction in sgRNA activity due to a 1 bp 

mismatch. 

For biased sampling towards sgRNA with extremely high/low CS values, positive 

and negative exponential distributions were created for the range of normalized CS 

values for high-activity and low-activity guides respectively. For every simulated guide, a 

random value was sampled from this exponential distribution, and the normalized CS 

value closest to this sampled value and the corresponding sgRNA sequence were used to 

generate the synthetic guide.  

For creating substitutions by biasing towards terminal positions on the sgRNA, 

the position for creating a substitution was sampled from an exponential distribution so 

that the probability of sampling terminal positions is higher compared to relatively central 

positions. 

https://paperpile.com/c/47Mbzt/TmLQf+eXHnG
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Computing nucleosome occupancy scores 

Genome-wide nucleosome occupancy data for Y. lipolytica CLIB89 and K. phaffii 

GS115 genomes was obtained from MNase-seq datasets previously reported in 38 and 39 

respectively. For every Cas9 sgRNA, an average occupancy score of the corresponding 

target locus was first computed by averaging the occupancy scores across all target bases, 

followed by normalizing the scores to values between 0 and 1 by dividing each average 

score by the highest average score in the respective dataset (Y. lipolytica/K. phaffii). The 

average normalized occupancy scores obtained for each sgRNA were then used to train 

DeepGuide alongside sgRNA sequence information. 

 

Calculation of TPR and 1-FPR 

Based on the predicted CS of sgRNA from individual phenotype screening 

experiments, every sgRNA was classified as high-activity or low-activity, which was 

different from the high-/low-activity classification based on experimental knockout 

efficiency. The predicted high-/low-activity classification was based on a p-value derived 

from a z-test of significance. Briefly, predicted CS values of experimental high-activity 

sgRNA (i.e., sgRNA having knockout efficiency > 50%) obtained from the models 

trained on the original training sets were used to create a population of predicted CS of 

high-activity sgRNA for the respective datasets. Predicted CS values of experimental 

low-activity sgRNA obtained from the models trained on the original training sets, as 

well as predicted CS values of all (i.e., experimental high-activity & low-activity) sgRNA 

in every subsequent activity prediction trial were compared to this population in a z-test 

of significance to determine if a given predicted CS value belongs to this population (p > 

https://paperpile.com/c/47Mbzt/kXsaO
https://paperpile.com/c/47Mbzt/CwErU
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0.05; predicted high-activity sgRNA) or is significantly different from the population (p < 

0.05; predicted low-activity sgRNA). The ability of a model to accurately predict sgRNA 

from individual experiments as high-activity and low-activity was measured using two 

metrics – True Positive Rate (TPR) and 1-False Positive Rate (FPR), respectively. TPR is 

defined as: 

𝑇𝑃𝑅 =  (
𝑁𝑜. 𝑜𝑓 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 ℎ𝑖𝑔ℎ − 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑠𝑔𝑅𝑁𝐴 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑡𝑜 ℎ𝑎𝑣𝑒 ℎ𝑖𝑔ℎ − 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 ℎ𝑖𝑔ℎ − 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑠𝑔𝑅𝑁𝐴
) 

 

Similarly, 1-FPR is calculated as: 

1 − 𝐹𝑃𝑅 =  (
𝑁𝑜. 𝑜𝑓 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑙𝑜𝑤 − 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑠𝑔𝑅𝑁𝐴 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑡𝑜 ℎ𝑎𝑣𝑒 𝑙𝑜𝑤 − 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑙𝑜𝑤 − 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑠𝑔𝑅𝑁𝐴
) 

 

Since the predicted CS values of experimental high-activity sgRNA from the 

model trained on the original set were used to generate the predicted high-activity 

population, all of these sgRNA were deemed to have high predicted activity, resulting in 

a TPR of 1 for the original training sets. 
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http://paperpile.com/b/47Mbzt/ZNOPr
http://paperpile.com/b/47Mbzt/ZNOPr
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http://paperpile.com/b/47Mbzt/ZNOPr
http://paperpile.com/b/47Mbzt/aubpX
http://paperpile.com/b/47Mbzt/aubpX
http://paperpile.com/b/47Mbzt/aubpX
http://paperpile.com/b/47Mbzt/aubpX
http://paperpile.com/b/47Mbzt/aubpX
http://paperpile.com/b/47Mbzt/aubpX
http://paperpile.com/b/47Mbzt/aubpX
http://paperpile.com/b/47Mbzt/aubpX
http://paperpile.com/b/47Mbzt/TmLQf
http://paperpile.com/b/47Mbzt/TmLQf
http://paperpile.com/b/47Mbzt/TmLQf
http://paperpile.com/b/47Mbzt/TmLQf
http://paperpile.com/b/47Mbzt/TmLQf
http://paperpile.com/b/47Mbzt/TmLQf
http://paperpile.com/b/47Mbzt/TmLQf
http://paperpile.com/b/47Mbzt/TmLQf
http://paperpile.com/b/47Mbzt/eXHnG
http://paperpile.com/b/47Mbzt/eXHnG
http://paperpile.com/b/47Mbzt/eXHnG
http://paperpile.com/b/47Mbzt/eXHnG
http://paperpile.com/b/47Mbzt/eXHnG
http://paperpile.com/b/47Mbzt/eXHnG
http://paperpile.com/b/47Mbzt/eXHnG
http://paperpile.com/b/47Mbzt/kXsaO
http://paperpile.com/b/47Mbzt/kXsaO
http://paperpile.com/b/47Mbzt/kXsaO
http://paperpile.com/b/47Mbzt/kXsaO
http://paperpile.com/b/47Mbzt/kXsaO
http://paperpile.com/b/47Mbzt/kXsaO
http://paperpile.com/b/47Mbzt/kXsaO
http://paperpile.com/b/47Mbzt/CwErU
http://paperpile.com/b/47Mbzt/CwErU
http://paperpile.com/b/47Mbzt/CwErU
http://paperpile.com/b/47Mbzt/CwErU
http://paperpile.com/b/47Mbzt/CwErU
http://paperpile.com/b/47Mbzt/CwErU
http://paperpile.com/b/47Mbzt/CwErU
http://paperpile.com/b/47Mbzt/CwErU
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3.7 Supplementary Information 

Supplementary Figures 

 

Fig. S3.1. Composition of Yarrowia lipolytica CRISPR-Cas12a training set. (a) Pie chart showing the 

proportion of high-activity and low-activity sgRNA in the Y. lipolytica CRISPR-Cas12a original training 

set containing a total of 50,731 sgRNA. (b) Distribution of normalized cutting scores (CSnorm) of sgRNA in 

the original Cas12a training set. 
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Fig. S3.2. DeepGuide performance as a function of CRISPR-Cas12a training set size. Performance of 

DeepGuide 1 on the Cas12a test set for different training set sizes. Horizontal bars represent mean values of 

Pearson’s r across five independent runs (n=5), and data points represent values from each individual run. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://paperpile.com/c/F1wIIA/baSt
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Fig. S3.3. DeepGuide CS predictions for individual high- and low-activity Cas12a sgRNA using 

different training sets. Mean predicted CS of high-activity (KO efficiency >= 50%) and low-activity (KO 

efficiency < 50%) sgRNA when DeepGuide was trained on (a) the original Cas12a training set, and (b), (c) 

imbalanced training sets with 25%, 50% and 75% (b) high- and (c) low-activity sgRNA removed. Data 

points represent mean values of predicted CS for experimental sgRNA with a given KO efficiency across 

five independent runs (n=5), and error bars indicate one standard deviation. Dashed line represents average 

predicted CS threshold for high-activity and dotted lines represent one standard deviation of the high-

activity threshold. 
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Fig. S3.4. Benchmarking performance of a large language model (LLM) on Y. lipolytica CRISPR-

Cas12a dataset. Performance of HyenaDNA 2 on (a) the test set of sgRNA, and (b) high- and low-activity 

Cas12a sgRNA from individual phenotype screening experiments, when trained on the original Cas12a 

training set, and imbalanced training sets with 50% and 90% high- and low-activity sgRNA removed. Bars 

indicate mean values of Pearson’s r, TPR and 1-FPR across five independent runs (n=5), error bars 

represent one standard deviation, and data points represent values from each individual run. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://paperpile.com/c/F1wIIA/aaxWp
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Fig. S3.5. DeepGuide performance with re-balanced training sets containing synthetic sgRNA 

generated using different variations of the unbiased method. Performance of DeepGuide models on the 

test set of sgRNA (Pearson’s r), and high-activity and low-activity Cas12a sgRNA from individual 

phenotype screening experiments (TPR, 1-FPR), when trained using the original training set, imbalanced 

training sets obtained after removing 90% (a) high- and (b) low-activity sgRNA, and re-balanced training 

sets obtained after adding synthetic (a) high- and (b) low-activity sgRNA generated by:- penalizing 

normalized CS of synthetic sgRNA by 4% (pen. CS), sampling sgRNA by biasing towards sgRNA with 

extreme normalized CS values (high/low CS bias), creating a substitution in the sampled sgRNA by biasing 

towards terminal positions (term. pos. bias), and creating 2 bp substitutions in the non-seed region of the 

sampled sgRNA (2 bp sub.). Bars represent mean values of Pearson’s r, TPR and 1-FPR across five 

independent runs (n=5), error bars indicate one standard deviation, and data points represent values from 

each individual run. 
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Fig. S3.6. DeepGuide CS predictions for individual high- and low-activity Cas9 sgRNA from Y. 

lipolytica and K. phaffii. Mean predicted CS of high-activity (KO efficiency >= 50%) and low-activity 

(KO efficiency < 50%) sgRNA when DeepGuide was trained on (a) Y. lipolytica, and (b) K. phaffii Cas9 

datasets, before and after adding synthetic low-activity guides to the original set. Data points represent 

mean values of predicted CS for experimental sgRNA with a given KO efficiency across five independent 

runs (n=5), and error bars indicate one standard deviation. Dashed line represents average predicted CS 

threshold for high-activity and dotted lines represent one standard deviation of the high-activity threshold. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 121 

References 

 

1. Baisya, D., Ramesh, A., Schwartz, C., Lonardi, S. & Wheeldon, I. Genome-wide 

functional screens enable the prediction of high activity CRISPR-Cas9 and -Cas12a 

guides in Yarrowia lipolytica. Nat. Commun. 13, 922 (2022). 

 

2. Nguyen, E. et al. HyenaDNA: Long-Range Genomic Sequence Modeling at Single 

Nucleotide Resolution. ArXiv (2023). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://paperpile.com/b/F1wIIA/baSt
http://paperpile.com/b/F1wIIA/baSt
http://paperpile.com/b/F1wIIA/baSt
http://paperpile.com/b/F1wIIA/baSt
http://paperpile.com/b/F1wIIA/baSt
http://paperpile.com/b/F1wIIA/baSt
http://paperpile.com/b/F1wIIA/baSt
http://paperpile.com/b/F1wIIA/aaxWp
http://paperpile.com/b/F1wIIA/aaxWp
http://paperpile.com/b/F1wIIA/aaxWp
http://paperpile.com/b/F1wIIA/aaxWp
http://paperpile.com/b/F1wIIA/aaxWp
http://paperpile.com/b/F1wIIA/aaxWp


 122 

Chapter 4: Population genomics-guided engineering of phenazine biosynthesis in 

Pseudomonas chlororaphis 

 

4.1 Abstract 

The emergence of next-generation sequencing (NGS) technologies has made it 

possible to not only sequence entire genomes, but also identify metabolic engineering 

targets across the pangenome of a microbial population. This study leverages NGS data 

as well as existing molecular biology and bioinformatics tools to identify and validate 

genomic signatures for improving phenazine biosynthesis in Pseudomonas chlororaphis. 

We sequenced a diverse collection of 34 Pseudomonas isolates using short- and long-read 

sequencing techniques and assembled whole genomes using the NGS reads. In addition, 

we assayed three industrially relevant phenotypes (phenazine production, biofilm 

formation, and growth temperature) for these isolates in two different media conditions. 

We then provided the whole genomes and phenazine production data to a unitig-based 

microbial genome-wide association study (mGWAS) tool to identify novel genomic 

signatures responsible for phenazine production in P. chlororaphis. Post-processing of 

the mGWAS analysis results yielded 330 significant hits influencing the biosynthesis of 

one or more phenazine compounds. Based on a quantitative metric (called the phenotype 

score), we elucidated the most influential hits for phenazine production and 

experimentally validated them in vivo in the most optimal phenazine producing strain. 

Two genes significantly increased phenazine-1-carboxamide (PCN) production: a 

histidine transporter (ProY_1), and a putative carboxypeptidase (PS__04251). A putative 
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MarR-family transcriptional regulator decreased PCN titer when overexpressed in a high 

PCN producing isolate. Overall, this work seeks to demonstrate the utility of a population 

genomics approach as an effective strategy in enabling identification of targets for 

metabolic engineering of bioproduction hosts. 

 

4.2 Introduction 

The development of next-generation sequencing and CRISPR genome editing has 

enabled entire microbial genomes to be sequenced and manipulated, resulting in genome-

wide metabolic engineering approaches often within non-traditional hosts. With further 

advancements in DNA sequencing technologies it is now economically feasible for a 

single research group to sequence small collections of tens to hundreds of microbial 

isolates, sometimes even in-house with portable sequencing devices. New metabolic 

engineering strategies could take advantage of this increasing accessibility of microbial 

whole-genome sequencing data and existing bioinformatics tools to analyze this data to 

identify metabolic engineering targets from a collection of genomes in a “pangenome”-

wide or population genomics approach. 

A first step in the design of a new metabolic engineering project is the selection of 

an appropriate host that natively exhibits a phenotype of interest. This work seeks to 

improve phenazine production in the bacterium Pseudomonas chlororaphis by 

identifying non-intuitive genetic targets from a collection of P. chlororaphis isolates as 

part of a population genomics approach to metabolic engineering. Phenazines are redox-

active, often colorful, secondary metabolites with applications in agriculture as antifungal 
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agents and potential applications as redox mediators in flow cell batteries and 

bioelectrochemical devices 1–3. P. chlororaphis is a commercially available biocontrol 

species that would make a good potential phenazine production host as it natively 

produces multiple phenazine derivatives, is non-pathogenic to humans and plants, can 

utilize the inexpensive carbon source glycerol, and has available synthetic biology tools 

for genetic manipulation. Many strains also have traits that are detrimental to industrial 

bioprocessing, such as biofilm formation and low growth temperatures. Here, we 

sequenced the genomes of 34 Pseudomonas isolates, characterized their bioprocess-

relevant phenotypes (phenazine production, biofilm formation, and growth temperature), 

and conducted microbial genome-wide association studies (mGWAS) to select an optimal 

host strain for phenazine production and identify genetic manipulations that increase 

phenazine biosynthesis. 

P. chlororaphis has already been successfully engineered for phenazine 

production, with metabolic engineering works pursuing rational design strategies. 

Replacing genes within the phenazine biosynthesis operon can modulate final phenazine 

composition and allow non-native phenazines to be produced, including 1-

hydroxyphenazine 4 and phenazine-1,6-dicarboxylic acid derivatives iodinin and 1,6-

dimethoxyphenazine 5). Regulation of the phenazine biosynthesis operon provides 

opportunities to improve phenazine production, including phzR and phzI which directly 

regulate expression through quorum sensing 6 and components of the Gac/Rsm pathway 

(e.g. rpeA, rsmE, lon protease, psrA, parS, gacA 4,7–9) which indirectly interact with 

PhzR/PhzI in response to other environmental factors. Increasing carbon flux through the 

https://paperpile.com/c/RPFGWX/3JXW+Go63+JWtb
https://paperpile.com/c/RPFGWX/H9fVx
https://paperpile.com/c/RPFGWX/C27nt
https://paperpile.com/c/RPFGWX/14MQA
https://paperpile.com/c/RPFGWX/H9fVx+gg0vc+KFcla+ZfZHE
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shikimate pathway, such as by overexpressing aroB, aroD, aroE, ppsA, and tktA 7,8, also 

improves phenazine production by increasing flux through phenazine biosynthesis. 

Collectively, these approaches combined with fermentation optimization have been able 

to produce grams per liter titers of phenazines, including 0.68 g/L of 2-hydroxyphenazine 

9, 3.6 g/L of 1-hydroxyphenazine 4, and 11.45 g/L of PCN in P. chlororaphis 8. 

Our population genomics approach uses mGWAS to identify metabolic 

engineering targets from our genomic and phenotypic data. GWAS correlate genomic and 

phenotypic datasets to identify causal genetic variants 10. While GWAS are most 

commonly used to identify human disease risk factors, recent bioinformatics tools have 

been developed to adapt these studies to bacteria 11–13. We input our sequenced genomes 

and phenotypic data into DBGWAS 13, a unitig-based mGWAS tool, to identify genomic 

loci that are significantly associated with phenazine production. This approach requires 

no prior knowledge of relevant biosynthetic pathways and could identify previously 

unknown targets for metabolic engineering throughout a single genome and the genomes 

of a population of isolates. We further sought to experimentally validate the top mGWAS 

hits by overexpressing associated genes and measuring phenazine production with respect 

to the wildtype control. Genes associated to hits identified in this study present new 

targets for strain engineering of P. chlororaphis to improve phenazine bioproduction. 

 

 

 

https://paperpile.com/c/RPFGWX/gg0vc+KFcla
https://paperpile.com/c/RPFGWX/ZfZHE
https://paperpile.com/c/RPFGWX/H9fVx
https://paperpile.com/c/RPFGWX/KFcla
https://paperpile.com/c/RPFGWX/8rXMM
https://paperpile.com/c/RPFGWX/iuyRj+EfikT+lnYFR
https://paperpile.com/c/RPFGWX/lnYFR


 126 

4.3 Results and Discussion 

Curating a P. chlororaphis strain collection 

We began our population genomics approach to metabolic engineering by 

collecting a library of P. chlororaphis strains, a known overproducer of phenazines. We 

purchased all unique strains that were accessible to us from international culture 

collections, resulting in 26 strains purchased from three culture collections (Table S4.1). 

Eight of these strains had multiple colony morphologies present which appeared to vary 

in pigment production. Because these variants could differ in the phenotypes of interest 

and consequently may have associated genetic variation, each of these variants was 

treated as a separate isolate with the strain number indicating the original culture 

collection strain designation followed by a superscript 1 and 2 arbitrarily assigned to the 

differing morphologies. 16s rRNA sequencing identified 33 isolates as P. chlororaphis 

and one as P. synxantha for a total of 34 Pseudomonas isolates used in this study. 

 

Phenotyping for phenazine production, biofilm formation, and growth temperature 

For the phenazine biosynthesis phenotyping, we quantify the four phenazine 

compounds naturally produced by P. chlororaphis: 2-hydroxyphenazine (2-HP), 2-

hydroxyphenazine-1-carboxylic acid (2-HPCA), phenazine-1-carboxylic acid (PCA) and 

phenazine-1-carboxamide (PCN) (Fig. 4.1) 14. In phenazine-producing pseudomonads, 

the core phenazine biosynthesis operon is responsible for synthesizing PCA which serves 

as the precursor for other phenazine derivatives. P. chlororaphis strains typically produce 

either PCN or a combination of 2-HPCA and 2-HP depending on whether phzH or phzO, 

respectively, is present and functional. 

https://paperpile.com/c/RPFGWX/Uh3Es
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Fig. 4.1. Phenazine biosynthesis 

pathway and operon in P. chlororaphis. 

(a) Phenazine biosynthesis pathway. P. 

chlororaphis naturally produces 4 

phenazines: 2-hydroxyphenazine (2-HP), 

2-hydroxyphenazine-1-carboxylic acid (2-

HPCA), phenazine-1-carboxylic acid 

(PCA) and phenazine-1-carboxamide 

(PCN). Chorismate from the shikimate 

pathway is converted into PCA. PCA can 

be converted into PCN or 2-HPCA by 

PhzH or PhzO, respectively. 2-HP is a 

byproduct of the spontaneous 

decarboxylation of 2-HPCA. (b) In 

fluorescent pseudomonads, phenazines 

are produced by a highly conserved core 

phenazine biosynthesis operon. phzI/phzR 

encodes a two-component quorum-

sensing system which regulates the 

expression of the phz operon 

phzABCDEFG, which is responsible for 

the production of PCA. Some strains of P. 

chlororaphis contain phzO, the protein 

product of which converts PCA into 2-

HPCA (which spontaneously decomposes 

into 2-HP), while others contain phzH, 

whose gene product converts PCA into 

PCN. phzH or phzO occur immediately 

downstream of phzG in the biosynthesis 

operon. 

 

 

 

We first characterized phenazine production in King’s Media B (KMB), the 

standard culture media for fluorescent pseudomonads (Fig. 4.2). Under these conditions, 

fewer than half the isolates produced more than 10 mg/L of phenazines. These low titers 

suggest that phenotyping in KMB may underestimate the phenazine production capacity 

of our strain collection. To improve phenazine production and consequently the quality of 

this dataset for our mGWAS analysis, we supplemented KMB with 100 µM ferric iron, 

which has been previously reported to enhance phenazine production in some strains of 
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P. chlororaphis 15,16. KMB+Fe media improved phenazine production in 24 isolates, and 

10 isolates did not produce significant phenazines in either medium. Due to its positive 

effects for most of the strains and its neutral effects on the remaining strains, we did 

additional phenotyping in KMB+Fe as well as KMB. 

 
Fig. 4.2. Phenazine production, biofilm formation, and growth temperature phenotyping for all 

isolates used in this study. All phenotyping data was collected after 48 hours of culture in either King’s 

Media B (-Fe) or King’s Media B + 100 µM Fe3+ (+Fe). 2-hydroxyphenazine (2-HP), 2-hydroxyphenazine-

1-carboxylic acid (2-HPCA), phenazine-1-carboxylic acid (PCA) and phenazine-1-carboxamide (PCN) 

were quantified using HPLC. The PCN-producers primarily produced PCN, with only very small amounts 

of the PCA precursor detected (< 5 mg/L). For phenazine production, bars indicate average of 3 replicates, 

and error bars represent one standard deviation. For growth temperature, the heat map shows a measure of 

colony growth on solid media (opacity (*10-3); higher opacity indicates large and more dense colonies). For 

biofilm formation, each data point (A550, which is indicative of biofilm formation) represents a separate 

biological replicate, which is the average of 8 technical replicates. 
 

Out of all strains we characterized, strain DSM 21509 was found to produce 

significantly higher titers of PCN (477 ± 163 mg/L; one-way ANOVA followed by 

Tukey’s test, p < 0.05) than all other strains in KMB + Fe. DSM 21509 was also one of 

https://paperpile.com/c/RPFGWX/OpMX2+2qO2X
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the strains producing significantly higher PCN titers in KMB, along with NCCB 1003681 

(> 95 mg/L for both strains; p < 0.001). Strain DSM 21509 was thus deemed as the best 

host strain overall for PCN production. DSM 21509 is the type strain of P. chlororaphis 

subsp. piscium. This strain was isolated from the intestine of a European perch from Lake 

Neuchâtel, Switzerland, in 2005 17. Strains ATCC 17417, NCCB 880621, ATCC 15926 

and ATCC 13985 were found to produce significantly higher titers of combined PCA/2-

HPCA/2-HP in KMB+Fe (> 150 mg/L for each strain; p < 0.05) compared to the 

remaining strains, while strain NCCB 880621 alone produced a significantly higher titer 

of combined PCA/2-HPCA/2-HP in KMB (80 ± 6 mg/L;  p < 0.0001). Strain NCCB 

880621 was therefore considered the most optimum strain for production of PCA and its 

derivatives. This strain originated from the Netherlands and was deposited into NCCB in 

1988 (https://wi.knaw.nl/page/NCCB_strains_display/24262). This phenazine production 

data for both media conditions was used as input for the mGWAS analysis. 

In addition to phenazine production, we also characterized growth temperature 

and biofilm formation for all strains in both media conditions and used these phenotypic 

datasets to assess the potential of each isolate as a biotechnology host 18. To identify 

strains which could grow at common bioprocessing temperatures, we characterized 

growth for all strains at 30 °C and 37 °C. These temperatures are relevant for P. 

chlororaphis since it is typically cultured at 28-30 °C, and some strains have been 

reported to grow at a maximum of 37 °C 19,20. While some other fluorescent 

pseudomonads like P. aeruginosa can grow well and produce phenazines at 37 °C, there 

are no reports of phenazine production in P. chlororaphis at this temperature. In order to 

https://paperpile.com/c/RPFGWX/KjaVb
https://wi.knaw.nl/page/NCCB_strains_display/24262
https://paperpile.com/c/RPFGWX/0MNML
https://paperpile.com/c/RPFGWX/xsWpo+hQ7pt
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measure growth at 30 °C and 37 °C, strains were grown on solid media (KMB and 

KMB+Fe) at the two temperatures and the opacity of colonies (i.e., the brightness of 

every colony pixel relative to its background, summed over the entire colony size) was 

measured after 48 hours of growth (see Materials and Methods for experimental details). 

At 37 °C, the average opacity of strains was relatively lower compared to that at 30 °C, 

indicating worse growth at 37 °C (Fig. 4.2; see Fig. S4.1 for growth curves of all strains 

across 3 days in each condition). We also observed no colorful pigments on colonies at 

37 °C, indicating little to no phenazine production, which agrees with the literature 

observations for P. chlororaphis 19. The strains which can grow at 37 °C could be useful 

to pursue as hosts for other products but likely not for phenazines. Therefore 30 ℃ was 

selected as the fermentation temperature for this study, as all isolates could grow at the 

lower temperature on both media. 

Biofilm formation is a phenotype which affects a host’s ability to produce a 

desired product through altered cellular metabolism and growth kinetics and can be 

engineered within pseudomonads 21. Given this, we characterized biofilm formation to 

determine whether future metabolic engineering efforts would be necessary to alter 

biofilm production in the desired host strain. For this study, we chose to minimize biofilm 

formation because high biofilm formation may be difficult to easily culture in a 

planktonic system and/or clean from industrial bioreactors. In KMB, only 2 strains 

produced noticeable biofilm. Biofilm formation did increase in KMB+Fe, but only 5 

strains had enough biofilm for it to be visibly noticeable when handling the liquid culture. 

Strain DSM 21509 and PCN were selected as the production strain and desired phenazine 

https://paperpile.com/c/RPFGWX/xsWpo
https://paperpile.com/c/RPFGWX/pWQXf
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product, respectively, because this strain produced the highest overall phenazine titers, 

which were 99.2% PCN in KMB+Fe. Additionally, DSM 21509 had low biofilm 

formation in both tested media conditions making it favorable to work with. 

 

Genome sequencing, assembly, and annotation 

We sequenced all strains with both Illumina and Oxford Nanopore technologies 

as each technology generates reads which vary in length and accuracy, therefore affecting 

the quality of the resulting assemblies. Using each read set separately or together (in a 

hybrid approach), we assembled genomes with different assembly algorithms (i.e., 

SPAdes, Unicycler, Flye) to determine which algorithm and combinations of parameters 

yield the best assemblies. The summary statistics (i.e., number of contigs, L50, N50, 

assembly length, GC content, number of CDS and BUSCO score) were compared to 

assess genome contiguity and accuracy and thus to select the optimal genome assemblies 

for the mGWAS analysis (Fig. S4.2). 
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Table 4.1. Summary statistics for final genome assemblies. For each isolate, the assembly length, 

number of contigs, N50, L50, GC% and BUSCO score are reported. These assemblies were used as input to 

mGWAS analysis. The number of CDS was tallied from the Prokka genome annotations, and the BUSCO 

score was calculated as the percentage of complete and single copy BUSCOs present in each genome using 

the BUSCO algorithm. All other statistics were generated from QUAST. These genome assemblies are 

available at NCBI with the listed accession numbers. All strains are P. chlororaphis, except ATCC 17413 

(marked with *), which is P. synxantha.  

Strain Total 

length (bp) 

Contigs N50 L50 GC 

(%) 

CDS BUSCOs 

(%) 

NCBI Accession 

Number 

ATCC 13985 7 024 010 10 4 636 000 1 62.7 6251 99.1 JAQZQZ000000000 

ATCC 139861 6 675 284 2 6 636 555 1 63.0 5926 99.5 JAQZQY000000000 

ATCC 139862 6 682 756 2 6 644 045 1 63.0 5949 99.5 JAQZQX000000000 

ATCC 15926 6 763 921 1 6 763 921 1 62.9 5998 99.4 CP118156 

ATCC 17411 7 212 419 1 7 212 419 1 62.5 6366 99.2 CP118155 

ATCC 17414 6 807 169 1 6 807 169 1 63.0 6048 99.5 CP118154 

ATCC 174151 6 664 157 1 6 664 157 1 63.0 5887 99.4 CP118147 

ATCC 174152 6 664 503 1 6 664 503 1 63.0 5884 99.2 CP118146 

ATCC 17417 6 746 536 1 6 746 536 1 62.9 5954 99.1 CP118145 

ATCC 174181 6 883 267 1 6 883 267 1 62.8 6075 99.5 CP118144 

ATCC 174182 6 881 643 1 6 881 643 1 62.8 6074 99.5 CP118143 

ATCC 17419 6 608 598 5 4 662 896 1 62.7 5919 99.0 JAQZQW000000000 

ATCC 17809 7 020 903 1 7 020 903 1 62.4 6223 99.0 CP118142 

ATCC 17810 6 863 056 2 6 791 445 1 62.7 6074 99.4 JAQZQV000000000 

ATCC 17811 7 189 114 1 7 189 114 1 62.4 6422 99.4 CP118153 

ATCC 17814 6 807 913 1 6 807 913 1 63.0 6050 99.4 CP118141 

ATCC 336631 7 109 352 1 7 109 352 1 62.9 6281 99.1 CP118152 

ATCC 336632 7 108 820 1 7 108 820 1 62.9 6284 99.2 CP118140 

ATCC 9446 6 637 791 1 6 637 791 1 63.0 5909 99.2 CP118151 

ATCC 9447 6 807 068 3 6 677 872 1 63.0 6048 99.4 JAQZQU000000000 

DSM 21509 7 064 975 1 7 064 975 1 62.7 6246 99.1 CP118150 

DSM 295781 7 216 947 1 7 216 947 1 62.5 6378 99.1 CP118139 

DSM 295782 7 216 571 1 7 216 571 1 62.5 6380 99.1 CP118138 

DSM 6508 7 915 166 3 7 476 725 1 62.5 7222 99.4 JAQZQT000000000 

NCCB 1003681 6 870 522 2 6 455 838 1 62.8 6010 99.2 JAQZQS000000000 

NCCB 1003682 6 870 415 2 6 455 628 1 62.8 6010 99.1 JAQZQR000000000 

NCCB 47033 7 221 530 1 7 221 530 1 62.4 6378 99.2 CP118137 

NCCB 60037 6 977 278 1 6 977 278 1 62.7 6209 99.1 CP118149 

NCCB 60038 6 979 353 1 6 979 353 1 62.7 6214 99.1 CP118136 

NCCB 820531 6 763 242 2 6 274 577 1 62.9 6002 99.4 JAQZQQ000000000 

NCCB 820532 6 762 156 1 6 762 156 1 62.9 6002 99.4 CP118135 

NCCB 880621 7 025 460 2 6 660 177 1 62.8 6233 99.1 JAQZQP000000000 

NCCB 880622 6 923 225 1 6 923 225 1 62.8 6138 98.2 CP118148 

*ATCC 17413 6 147 644 1 6 147 644 1 60.0 5459 99.9 CP118134 
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Contiguity statistics (number of contigs, N50, L50) describe the degree of 

fragmentation of an assembly. The number of contigs, or assembly fragments, should 

ideally approach one to accurately represent bacterial genomes with a singular circular 

chromosome, as is expected for P. chlororaphis. Genome completeness was assessed by 

implementing the BUSCO algorithm to calculate the percentage of expected complete 

and single copy orthologs which are present in each strain. The hybrid assemblies created 

with Unicycler were selected as the final assemblies due to their high contiguity and 

completeness metrics (L50 = 1 and BUSCO score >98% for all strains). Summary 

statistics for each of the final genomes, including total length, number of annotated CDS, 

BUSCOS scores, and assembly metrics are presented in Table 4.1. Notably, the vast 

majority of assemblies resulted in a single contig (22 P. chlororaphis and 1 P. 

synxantha), nine assembled into three or less contigs, one produced five contigs, and only 

one had ten contigs. Combined with the high BUSCO scores, the low number of contigs 

is indicative of high quality, complete genomes across our strain collection. 

 

Assembling the P. chlororaphis pangenome 

While the 33 P. chlororaphis isolates are members of the same species, their gene 

content varies among isolates. Comparing the assembly summary statistics (Table 1) 

reveals a wide range of assembly size (6.6 Mbp to 7.9 Mbp) and number of CDS (5884 to 

7222 annotated CDS) so we decided to assemble the pangenome to gain further insight 

into these genomic differences. We input the Prokka annotations for the final P. 

chlororaphis genomes into the algorithm PEPPAN 22 to calculate the pangenome, the 

total gene content of the strains. The pangenome contains 11527 total CDS and 4406 

https://paperpile.com/c/RPFGWX/gxbXe
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CDS common to all strains (Fig. 4.3a). This translates to 61-75% of the CDS in each 

genome being common to all strains, the core P. chlororaphis genome. The remaining 

CDS are members of the accessory genome (genes present in some strains and absent in 

others), which corresponds to the majority of this pangenome (7121 genes). These 

accessory genes are found in a relatively small number of strains, while all strains contain 

the 4406 core genome (Fig. 4.3b).  

 
Fig. 4.3. Summary of the pangenome 

constructed from the final hybrid 

genome assemblies. (a) The pangenome 

rarefaction curve shows how the total 

pangenome size (blue) increases and the 

core genome size (purple) decreases as 

isolates are added to the pangenome. (b) 

Histogram showing how many CDS are 

only found in a specific number of strains. 

Core genes present in almost all strains or 

accessory genes only found in a few are 

present with the highest frequencies. 

 

In addition to the genomic variation among the strains, we observed considerable 

phenotypic variation as shown in Fig. 2. Most notably, strains that produced PCN did not 

accumulate significant quantities of PCA or other phenazine derivatives. One of the key 

differences amongst these strains was the presence or absence of phzH and phzO; those 

that produced PCN contained phzH, while those that produced 2-HPCA contained phzO, 

as expected (Fig. 4.4). This split amongst the population is observable in a similarity tree 

based on accessory gene content, which clustered the isolates containing phzH separately 

from those that contain phzO. In the pre-genomic era the phenotypic differences were the 

basis of classification; members of these two groups would likely have been classified as 

different Pseudomonas species (e.g., green pigment-producers as P. chlororaphis, 
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yellow-orange pigment-producers as P. aureofaciens or P. aurantiaca; 23). Classification 

in this way would incorrectly separate the groups, as our 16s and genomic sequencing 

shows that all 33 strains are P. chlororaphis with genetic variation driving the naturally 

produced phenazines. Collectively, the pangenome represents a large number of potential 

metabolic engineering targets that will be analyzed in our mGWAS. 

 

 

 

 

Fig. 4.4. Categorizing isolates based on 

presence and absence of genes phzH and 

phzO. (a) Tree based on accessory gene 

content among the P. chlororaphis 

pangenome. Strains containing phzO (red) 

and phzH (blue) form groups with similar 

gene content. (b), (c) Box-and-whisker 

plots showing significantly higher (***p < 

0.001) PCN production in strains 

containing phzH and significantly higher 

(**p < 0.01) 2-HPCA production in strains 

containing phzO in KMB+Fe based on 

paired t-test. Phenazine production data in 

(b) and (c) is taken from the phenotype 

data shown in Fig. 4.2. 

 

 

 

 

 

 

Identifying phenazine biosynthesis hits by mGWAS 

We used the hybrid genome assemblies and the phenazine production data to 

carry out an mGWAS for identification of genetic signatures associated with phenazine 

production. Phenazine biosynthesis was split into a series of phenotypes pertaining to 

production of PCA, PCN, and total phenazines in KMB and KMB+Fe for the mGWAS 

analysis (see Materials and Methods for the complete list of phenotypes). Table S4.3 

https://paperpile.com/c/RPFGWX/O0WS3
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shows the number of significant hits (i.e., unique DNA sequences or unitigs) obtained for 

each phenotype in the mGWAS. All hits and their reverse-complement sequences were 

aligned to genomes of all strains to find their genomic locations, resulting in a 

‘preliminary list’ of 2493 significant hits across all phenotypes (Fig. 4.5a, 

Supplementary File 4.1). Each unitig (and its reverse-complement) in this list may be 

found in one or more strains and in one or more phenotypes, thus creating redundancies 

in the list as the unitigs were counted multiple times. These redundancies were eliminated 

by collapsing the hit list in 3 stages – phenotype-collapsing, strain-collapsing, and 

reverse-complement collapsing – to result in a ‘final list’ that only contains a unique 

entry for each significant hit influencing phenazine biosynthesis. Phenotype collapsing 

reduced the list to 1568; strain collapsing reduced the list further to 474. Finally, 

removing entries that were due to reverse complement redundancy resulted in a final list 

of 330 unique genomic hits for phenazine biosynthesis. The corrected p-value of the hits 

in the final list is shown in Fig. 4.5b. Fig. S4.3 illustrates the collapsing pipeline, and 

Supplementary File 4.2 contains all entries in each of the collapsed lists. A vast majority 

of the hits (284 out of 330) have a positive effect on phenazine production while the 

remaining ones had a negative effect (Fig. S4.4). 

To visualize the genomic location of hits in the final list, we created a circos plot 

and mapped as many hits as possible to a PCN- or PCA-producing strain (Fig. 4.5d). 

Since each strain contains a different set of accessory genes and many of the hits map to 

the accessory genome, we were unable to map all hits to a single strain. We selected 

NCCB 1003681 as the basis for displaying the PCN-related hits because it contains the 
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majority of the PCN hits (122 out of 127). Similarly, NCCB 880621 was selected as the 

basis to display PCA related hits as it contained 170 out of 203 PCA-related hits, more 

than any other strain. In total, the two strains combined contain 292 hits from the final list 

(out of 330). Mapping the hits revealed that there is little association between the PCA 

hits and PCN-producing strains. In addition, the two hits related to total phenazine 

production mapped to PCN-producing strains only. In comparison, many of the hits 

related to PCN biosynthesis were found in both PCA- and PCN-producing strains. 

 
Fig. 4.5. Results of the mGWAS analysis for phenazine production. (a) Number of significant mGWAS 

hits in the preliminary (uncollapsed) list and lists obtained after each collapsing stage - phenotype-

collapsed list (Ph), phenotype+strain-collapsed list (Ph./Str.), and phenotype+strain+reverse complement-

collapsed list (Ph/Str/RC; also called the ‘final list’). Numbers above each bar indicate the exact number of 

hits in the list corresponding to that bar. (b) Corrected p-values of the 330 hits in the final list. Hits were 

numbered in decreasing order of -log10(p-corrected) value, and were grouped into those influencing PCA 

production and PCN production. (c) Phenotype score distribution of hits in the final list. Numbers above 

each bar indicate the total number of hits having phenotype score corresponding to that bar. (d) Circos plot 

showing genomic locations of hits in the final list grouped into 3 categories based on the phenotype(s) in 

which they were significant: PCA production, PCN production, and total phenazine production, with 

respect to 2 strains - NCCB 1003681 and NCCB 880621.  
 

The mGWAS analysis links unitigs to phenazine production, the next step in our 

analysis is to identify which genes are associated with each unitig. This mapping is 
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straightforward when the unitig partially or completely overlaps to a CDS, but the 

connection to a gene is less clear when the unitig is contained within an intergenic region. 

In these cases, we identified genes upstream and downstream of the intergenic region as 

potential genes of interest. In total, the 330 unitig hits map to 158 genes in the 

pangenome (many of the genes were associated with more than one unitig; see 

Supplementary File 4.3). The 158 genes include 80 functionally annotated proteins or 

homologs of proteins with known function and 78 hypothetical proteins. While the 

function of the hypothetical proteins are unknown, 33 of them belonged to the core 

genome while the remainder belonged to the accessory genome. Forty-one out of the 80 

proteins of known function belonged to the P. chlororaphis core genome. 

In the phenotype-collapsing stage we associated each hit to a ‘phenotype score’, 

which represents the number of phenotypes in which a hit was found (Fig. S4.3); the 

higher the score, the greater the number of phenotypes influenced by the hit. The 

phenotype score was used as a metric to identify hits and associated genes most likely to 

improve phenazine biosynthesis. Fig. 4.5c shows the distribution of phenotype scores for 

the final list. We deemed hits with a phenotype score of 3 or higher as most likely to 

affect phenazine biosynthesis, and therefore ones that we sought to target for further 

analysis. The top phenazine-producing strain DSM 21509 primarily produces PCN, and 

the hits influencing PCN production have lower q-values than those influencing PCA 

production (Fig. 5b). We therefore narrowed our mGWAS validation and metabolic 

engineering studies to PCN producing hits only. Table 4.2 shows the attributes of these 

hits, two of which have a phenotype score of 4, while the other two have a score of 3. All 
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of these hits were found to be single nucleotide polymorphisms (SNPs) in the coding or 

intergenic regions. Genes containing or adjacent to SNPs for PCN production include 

YbhH (a putative isomerase), RhtA (threonine/homoserine exporter), UctC (acetyl-

CoA:oxalate CoA-transferase), ProY_1 (proline-specific permease), HutH2 (histidine 

ammonia-lyase), and two hypothetical proteins (annotated as PS__04251 and PS__04252 

in DSM 21509), all of which belong to the P. chlororaphis core genome. DSM 21509, 

the highest PCN-producing strain, contains 3 of the 4 SNPs for PCN production. 

Table 4.2. Most influential hits for PCN production, identified in the final list of significant mGWAS 

hits. Hits are numbered 1 through 4, and attributes such as phenotype score, associated phenotypes, strains, 

and genes, as well as variant type, p-value, effect on phenotype (positive/negative), & genomic region have 

been provided for each hit. 

No. Phen. 

score 

Major 

phen. 

Associated 

gene(s) 

Corr. p-

value 

(effect) 

Genomic 

region 

Type of 

variant 

Strains 

1 4 PCN prodn. hypothetical protein 

(PS__04251) 

2.6 x 10-14 

(+) 

intergenic SNP DSM 21509, 

DSM 295781,  

DSM 295782, 

NCCB 

1003681 

Total phz. 

prodn. 

hypothetical protein 

(PS__04252) 

2 4 PCN prodn. Putative isomerase 

(YbhH) 

2.6 x 10-14 

(+) 

CDS SNP DSM 21509, 

DSM 295781,  

DSM 295782, 

NCCB 

1003681 

Total phz. 

prodn. 

3 3 PCN prodn. Threonine/homoseri

ne exporter (RhtA) 

6.7 x 10-10 

(-) 

intergenic SNP DSM 295781, 

DSM 295782,  

NCCB 

1003682 
Acetyl-CoA:oxalate 

CoA-transferase 

(UctC) 

4 3 PCN prodn. Proline-specific 

permease (ProY_1) 

2.2 x 10-9 

(+) 

intergenic SNP DSM 21509, 

DSM 295781,  

DSM 295782, 

NCCB 

1003681, 

NCCB 47033, 

ATCC 17411, 

ATCC 17809, 

ATCC 17414, 

ATCC 9446, 

ATCC 17814,  

ATCC 9447, 

ATCC 17811,  

ATCC 17810 

Histidine ammonia-

lyase (HutH_2) 
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Validating mGWAS hits for PCN production 

We overexpressed the top gene hits for PCN production in DSM 21509 to verify 

their phenotypic effects. Three of the genes yielded significant changes in PCN 

production when overexpressed in DSM 21509. Overexpression of PS__04252 in KMB 

produced 19.1 ± 3.5 mg/L of PCN compared to 58.7 ± 12.3 mg/L produced by the empty 

vector control, which is a 67.5% decrease (Fig. 4.6a). This target whose overexpression 

decreases PCN production could provide a target for knockout to increase PCN 

production. Overexpressing ProY_1 and PS__04251 increased PCN production in 

KMB+Fe to 420.2 ± 19.7 mg/L and 400.1 ± 21.5 mg/L, respectively, compared to the 

343.6 ± 7.3 mg/L PCN produced by the empty vector control (Fig. 4.6b). The hits 

validated here could be combined with other known beneficial genetic manipulations 

and/or applied to previously engineered and process-optimized strains (8: 11.45 g/L PCN) 

to further improve phenazine production. 

 

Fig. 4.6. Overexpressing top hits in 

the top PCN-producer DSM 21509. 

Genes associated with top phenotype-

scoring unitigs for PCN production 

were overexpressed in the top PCN-

producing strain DSM 21509. PCN was 

quantified after 48 hr of culture in (a) 

King's Media B and (b) King's Media B 

+ Fe. Bars represent the average of 3 

replicates and error bars represent one 

standard deviation. Asterisks denote p-

values <0.01 (**), <0.001 (***) and 

<0.0001 (****) when performing an 

ordinary one-way ANOVA comparison 

to the empty vector control.  

 

 

https://paperpile.com/c/RPFGWX/KFcla
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PS__04251 and PS__04252 were both associated with unitig 1. PS__04252 is 

annotated as a hypothetical protein and has 57% sequence identity and 97% coverage to 

helix-turn-helix (HTH) MarR-family transcriptional regulator PA1607 from P. 

aeruginosa (NCBI Reference Sequence  NP_250298.1) 24. The MarR, or multiple 

antibiotic resistance repressor, family often regulates expression of multidrug efflux 

pumps and some, including PA1607, may derepress in response to oxidative stress 24,25. 

Therefore overexpression of the putative regulator PS__04252 could lead to increased 

repression of its target which could explain the observed decrease, rather than increase, in 

PCN production. PS__04251 is a hypothetical protein with unknown function which has 

86% identity and 100% coverage to putative M14-type zinc cytosolic carboxypeptidase 

PSF113_3889 (NCBI Reference Sequence WP_041476041.1) from Pseudomonas ogarae 

whose function is unknown 26. While the function of this and similar proteins are 

unknown, we found its overexpression to significantly improve phenazine production in 

P. chlororaphis. Because both CDS surrounding unitig 1 were successful, this genomic 

region could be of further interest to investigate for phenazine production. 

The other hit which significantly improved PCN production, ProY_1, was 

associated with unitig 4 which occurred within the hut operon, which is responsible for 

histidine catabolism. Due to its position in the highly conserved operon and its sequence 

similarity, the hit annotated as ProY_1 is likely the histidine permease HutT which 

imports histidine and is required for its utilization 27. One study suggests that histidine 

catabolism in P. fluorescens is connected to oxidative stress response, as it could increase 

intracellular pools of the antioxidant α-ketoglutarate 28. Possibly, overexpressing HutT 

https://paperpile.com/c/RPFGWX/fu8HT
https://paperpile.com/c/RPFGWX/JVy1x+fu8HT
https://paperpile.com/c/RPFGWX/Pu1yp
https://paperpile.com/c/RPFGWX/hPIKO
https://paperpile.com/c/RPFGWX/46SW8
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could contribute to improved oxidative stress tolerance through a similar mechanism in 

P. chlororaphis by increasing intracellular histidine levels and therefore α-ketoglutarate 

levels. The other CDS adjacent to unitig 4 is HutH_2 (HutH2), the histidine ammonia 

lyase which catalyzes the first step of histidine catabolism, the conversion of L-histidine 

into urocanate 29. While this hit is associated with the same operon, its overexpression did 

not affect PCN titers. Because unitig 4 was within the non-coding region between 2 CDS, 

the mGWAS results in actuality may have been connected to one CDS and not the other. 

By overexpressing both hits, we were able to identify the one which was relevant for 

phenazine production. 

While overexpressing the genes associated with unitigs 2 and 3 did not produce 

an observable change in phenotype, they also appear to be related to oxidative stress as 

well as amino acid export and catabolism. Unitig 2 occurred within the gene annotated as 

putative isomerase YbhH. This CDS has 34% identity and 92% coverage to E. coli 

YbhH, which does not have a known function but its expression has been upregulated in 

response to the σE stress signaling pathway 30. Unitig 3 occurred within a non-coding 

region which was flanked by 16s rRNA and either UctC or RhtA. The hit annotated as 

UctC has 87% sequence identity and 100% coverage to P. putida KT2440 glutarate-CoA 

transferase GcoT (NCBI Reference Sequence NP_742328.1) which is part of L-lysine 

catabolism 31. The other associated hit has 57% identity and 93% coverage to E. coli 

RhtA (NCBI Reference Sequence WP_001295297), which exports threonine and 

homoserine in addition to other amino acids. While the mGWAS analysis identified these 

https://paperpile.com/c/RPFGWX/IetSA
https://paperpile.com/c/RPFGWX/jLtaI
https://paperpile.com/c/RPFGWX/ibUzb
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unitigs as significantly related to phenazine production, the overexpression studies 

showed that they did not alter PCN titers in DSM 21509. 

Traditional approaches to metabolic engineering involve manipulation of native 

or engineered pathways in microbial hosts to direct metabolic flux towards synthesis of a 

target biochemical 32. The development of high-throughput technologies, such as next-

generation sequencing (NGS), that generate massive amounts of data has made it possible 

to look for genetic targets spanning the entire genome, thereby facilitating strain 

engineering for various phenotypes of industrial importance. So far, this population 

genomics approach for metabolic engineering has been mainly applied to model 

organisms like Saccharomyces cerevisiae for design of strains manifesting higher 

biochemical production and higher tolerance to growth inhibitors present in the feedstock 

33–35. These studies exploit the natural diversity of strains to identify non-intuitive genetic 

variants underpinning the trait of interest. In this study, we sought to extend this approach 

to the production of phenazine compounds in the non-model bacterium P. chlororaphis. 

We used a collection of 34 Pseudomonas strains that were isolated from various 

environmental locations to ensure sufficient genomic diversity. We exploited this 

diversity within the strain collection to identify 330 variants within the pangenome that 

influence phenazine production. These pangenome-wide variants were associated to 158 

genes, which serve as potential metabolic engineering targets for increasing phenazine 

biosynthesis in P. chlororaphis. To validate our metabolic engineering approach, we 

selected 7 gene hits and overexpressed them in DSM 21509, the strain with the highest 

PCN titers. We used the phenotype score to prioritize these hits over others because this 

https://paperpile.com/c/RPFGWX/h9Bcv
https://paperpile.com/c/RPFGWX/suN99+ouERx+4Pob2
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method was unbiased in that it is blinded to gene function. Overall this data-driven 

approach was successful because we identified two candidate genes that improved 

phenazine production and one that reduced it. 

An alternative approach is to prioritize hits based on a rational design strategy, 

that is, target genes with known functions related to the phenazine biosynthesis or 

associated pathways. For example, our hit list also includes GacA, a global 

transcriptional regulator known to impact phenazine production 8,36. Pursuing this target 

or others associated with the Gac regulatory cascade could be promising for phenazine 

production, as the mGWAS and literature results are in agreement. Moreover, since we 

verified successful hits that may be transcriptional regulators or are involved in oxidative 

stress response, hits from the list with similar functions could be prioritized for future 

studies. The other hits on the list which are annotated as HTH-transcriptional regulators 

(e.g., ArgP, BenM, CynR, MtrA, and RhaS) or the hits known to be connected to 

oxidative stress response from the literature (e.g., RscC 30, glutathione synthase 37,38 and 

glucose-6-phosphate 1-dehydrogenase (zwf) 39) could be pursued as targets in future 

studies. Importantly, our population genomics approach to metabolic engineering and the 

hits it generates could be used in tandem with other successful genetic targets from the 

literature and process optimization strategies to achieve additional improvements in 

product titers. 

Many of the strains in our collection were isolated from diverse environmental 

locations to ensure natural phenotypic and genomic variation. In our analysis, we 

observed a broad range of phenotypes and genotypes that were distributed so that both 

https://paperpile.com/c/RPFGWX/KFcla+rO4f8
https://paperpile.com/c/RPFGWX/jLtaI
https://paperpile.com/c/RPFGWX/I7cn+SdUb
https://paperpile.com/c/RPFGWX/gImD


 145 

positive and negative groups were well-represented. For example, similar numbers of 

strains contained phzH (14 strains) vs. phzO (19 strains), and similar numbers of strains 

produced no phenazines (10 strains), less than 100 mg/L phenazines (11 strains), and 

greater than 100 mg/L phenazines (13 strains). This phenotypic diversity, along with the 

genetic diversity found in the pangenome, allowed us to use a relatively small number of 

strains to perform the mGWAS analysis and obtain significant hits. The statistical power 

of hit identification can be potentially improved by using a bigger and more diverse 

collection of isolates as input to the mGWAS analysis, entailing a larger representation of 

phenotypic and genomic diversity. Further, GO and pathway enrichment tests of genes 

associated with 330 hits resulted in no enriched terms (see Supplementary File 4.4, 

Supplementary File 4.5). Pursuing hits based off their functions will become more 

promising as more microbes are annotated for GO-terms and metabolic pathways. 

Taken together, this work presents a new approach that enables genome-scale 

metabolic engineering of pseudomonads. This approach is data-driven, using the power 

of low cost sequencing and high throughput phenotyping to generate large data sets that 

correlate desired traits to genomic variants within a microbial population, thereby 

generating new metabolic engineering targets. While we demonstrate this approach in 

Pseudomonas, it can be extended to other microbial species, especially non-conventional 

microbes exhibiting industrially relevant phenotypes as new strains are discovered and 

whole genome sequences become available. Upon gene target elucidation, the microbial 

strains can be engineered to improve biochemical production or tolerance to various 

environmental stresses inhibiting cell growth, among other phenotypes. Identification of 
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genetic targets for engineering more complex phenotypes could be accomplished by 

using a collection of isolates belonging to different but related species, resulting in 

greater genetic diversity and hence, a more complex pangenome. While rational design 

strategies for many of these phenotypes may have been previously developed, novel hits 

identified using a population genomics approach could be used in conjunction with those 

to further enhance the phenotype of interest and consequently scale-up industrial 

bioprocesses. 

 

4.4 Conclusions 

Advancements in whole genome DNA sequencing and genome-editing 

techniques, as well as increased availability of bioinformatics tools for analysis of 

genome-wide data have allowed us to identify metabolic engineering targets spanning the 

entire pangenome. The accessory genome and core genome are promising sources of 

metabolic engineering targets for the bacterial production of secondary metabolites such 

as phenazines. The present study taps into both of these pangenome components to help 

identify strain engineering targets for biosynthesis of the phenazine PCN in Pseudomonas 

chlororaphis. This pangenome-wide approach, in combination with rational design 

approaches, could potentially lead to substantial improvement in the phenotype of 

interest, while also assisting with selection of the appropriate host strain for metabolic 

engineering. 
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4.5 Materials and Methods 

Strain selection and culturing 

All strains designated as Pseudomonas chlororaphis that were available as of 

April and October 2019 were ordered from the American Type Culture Collection 

(ATCC; Manassas, VA); all strains designated as Pseudomonas chlororaphis that were 

nonredundant and available as of March 2020 were ordered from the German Collection 

of Microorganisms and Cell Cultures (DSMZ GmbH; Braunschweig, Germany) and the 

Westerdijk Fungal Biodiversity Institute’s Netherlands Culture Collection of Bacteria 

(NCCB; Utrecht, Netherlands). Strains which appeared to have more than one colony 

morphology present were separated into distinct isolates (denoted by 1 and 2, which were 

arbitrarily assigned) that were sequenced and cultured separately. All isolates were 

sequenced with 16s rRNA sequencing (GENEWIZ®; South Plainfield, NJ), and the 33 

confirmed P. chlororaphis isolates were used in this study (Table S4.1). One PCA-

producing P. synxantha isolate was also used in this study as a phylogenetic outgroup for 

a total of 34 isolates. 

Strains were initially revived according to the guidance of each culture collection 

then subsequently cultured at 30°C in King’s Media B (KMB), the standard media for 

fluorescent pseudomonads culture, according to the methods of King et al. 40. To improve 

phenazine production, KMB+Fe Media was made by supplementing KMB with 100 μM 

ferric sodium ethylenediaminetetraacetate (FeNaEDTA) based off the findings of van Rij 

et al. 16. For phenazine production experiments, both KMB and KMB+Fe contained 1.5 

g/L MgSO4. Cultures were supplemented with 50 μg/mL kanamycin sulfate when an 

https://paperpile.com/c/RPFGWX/LRsmP
https://paperpile.com/c/RPFGWX/2qO2X
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antibiotic resistance marker was used. Luria Bertani (LB) broth and TOP10 chemically 

competent E. coli cells were used for cloning. 

Liquid culturing was performed using sterile 2 mL 96-deep well plates within an 

INFORS HT Multitron Pro plate shaker incubator at 1000 rpm and ~88% humidity. 

Overnight cultures were started by inoculating 500 μL media of interest with the 

respective colony or glycerol stock. After the overnight culture was incubated with 

shaking at 30 °C for 22-24 hours, the plate was spun down in Beckman Coulter Allegra 

25R centrifuge for 10 minutes at 5,000g. To reduce phenazine transfer and to ensure 

biofilm-forming strains were well-mixed, old media was removed, and cultures were 

resuspended in fresh media. To start experimental cultures, 500 μL of desired media were 

inoculated with 10 μL of resuspended overnight culture. For cultures requiring induction 

with isopropyl β-D-1-thiogalactopyranoside (IPTG), sterile-filtered IPTG was added to 

cultures to a final concentration of 1 mM about 4 hours after inoculation. 

 

Phenazine quantification 

48 hours after inoculation, phenazine compounds were extracted from each liquid 

culture using ethyl acetate liquid-liquid extraction. Whole cultures were acidified with 10 

μL of 3M HCl, then 1.2 mL ethyl acetate was added to each culture. Each mixture was 

transferred to a microcentrifuge tube, vortexed at maximum speed for 1 minute, and spun 

down to separate liquid phases. The ethyl acetate phase was evaporated, resuspended in 

methanol, and filtered for quantification via HPLC. 

All phenazines were quantified with a photodiode-array detector on a Shimadzu 

Nexera-i LC-2040C 3D liquid chromatograph with an Agilent Poroshell 120 EC-C18 2.7 
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μm 3.0 x 75 mm column and 3.0 mm x 5.0 mm guard column at 40℃. To resolve the 

similar phenazine derivatives, the following method with gradients of methanol and 

ammonium acetate buffer (pH 5.0) was used: 2 μL sample injection, 5 min of 20% 

methanol, 2 min gradient from 20% to 30% methanol, and 13 min gradient from 30 to 

40% methanol with subsequent steps to wash and re-equilibrate the column, with all steps 

at a 1 mL/min flow rate. PCA and PCN peaks were identified by comparing retention 

times to those of purchased PCA and PCN (ChemScene; Monmouth Junction, NJ). 

Because pure 2-HP and 2-HPCA were not commercially available, the identities of these 

HPLC peaks were confirmed with LC-MS following the same protocol. Phenazines were 

quantified by converting peak areas at a wavelength of 254 nm and bandwidth of 4 nm to 

concentrations using extinction constants calculated from the purchased PCA and PCN. 

 

Biofilm formation and growth temperature phenotyping 

Biofilm formation phenotyping was characterized using a crystal violet staining 

assay following the protocol of O’Toole 41. To adapt the protocol for Pseudomonas 

chlororaphis, a 2% inoculum of overnight culture in the respective media was used to 

start stationary cultures which were incubated without agitation at 30 °C for 48 hours. 

For growth phenotyping, Pseudomonas cultures were grown in KMB for 48 

hours, diluted to an OD600 of 1, then 1 µL was transferred onto respective solid media and 

incubated at two different temperatures: 30 ℃ and 37 ℃. Four technical replicates were 

performed for each sample. The plates were imaged every 24 hours for 3 days with an 

Epson V850 scanner and the images were processed using Iris v0.9.7 (mode: Colony 

Growth). Any colonies that were missed were reprocessed using Colony Picker in Iris. 

https://paperpile.com/c/RPFGWX/eS4jb
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Similar to previous studies 42,43, the opacity of colonies was used as an indicator for 

colony growth. Average opacity for each strain was calculated as the mean of opacity 

values across all replicates. The value of average opacity on day 2 (i.e., after 48 hours of 

growth) was used to gauge the ability of strains to grow at the respective temperature 

levels. Opacity values of all strains in each condition for days 1-3 have been provided in 

Supplementary File 4.6. 

 

Genome assembly 

Genomic DNA was isolated using the Quick-DNA™ Fungal/Bacterial Miniprep 

Kit (Zymo Research; Irvine, CA) and sent to the Microbial Genome Sequencing Center 

(Pittsburgh, PA) for whole genome sequencing. All isolates were sequenced on the 

NextSeq 2000 (Illumina; San Diego, CA) with paired-end 150 base pair reads and with 

Oxford Nanopore technologies. Illumina read quality was assessed using FASTQC 

v0.11.9 44 and Nanopore read statistics were assessed with NanoStats v1.28.2 45 on the 

Galaxy platform before and after read filtering and trimming (the parameters for all 

bioinformatics tools are available in Table S4.2). Summary statistics (i.e., total assembly 

length, number of contigs, N50, L50, % GC) were calculated using QUAST v.5.0.2 46. 

Genome completeness was assessed by running BUSCO v.5.2.2 in genome mode using 

the pseudomonadales_odb10 (prokaryota, 2020-03-06) database 47. 

Flye genome assemblies were created with Flye v.2.8.3 and raw Nanopore reads 

as input 48. All other genome assemblies used reads which were filtered and trimmed 

based on read quality. Raw Illumina reads were trimmed to remove adapters and low-

quality ends using Trimmomatic v.0.38 49. Raw Nanopore reads were adaptor-trimmed 

https://paperpile.com/c/RPFGWX/Hn5Yv+076OX
https://paperpile.com/c/RPFGWX/IYqYZ
https://paperpile.com/c/RPFGWX/cb1tS
https://paperpile.com/c/RPFGWX/GIO0k
https://paperpile.com/c/RPFGWX/HoB90
https://paperpile.com/c/RPFGWX/NUE4N
https://paperpile.com/c/RPFGWX/yyail
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using Porechop v.0.2.4 50 then filtered with filtlong v.0.2.1 51. SPAdes genome 

assemblies were created using SPAdes v.3.12.0 52 on the Galaxy platform 53; Unicycler 

assemblies were created using Unicycler v.0.4.8 using both “Normal” and “Bold” 

bridging modes and excluding contigs shorter than 1000 bp from the assemblies 54. The 

short-reads assemblies were created using only the paired end Trimmomatic output. The 

long-reads Nanopore assemblies were created using the trimmed and filtered Nanopore 

reads. The hybrid assemblies were assembled using both sets of aforementioned reads. 

 

Genome annotation and pangenome assembly 

Genome assemblies were annotated with Prokka v1.14.6 55 on the Galaxy 

platform 53, using a minimum contig size of 1000 and ‘Pseudomonas’ as the genus name. 

Prokka outputs genome annotations in GFF3 format. These GFF3 files were used along 

with the draft genome assemblies to generate annotated genome FASTA files by bedtools 

GetFastaBed v2.30.0 56. The pangenome was constructed using PEPPAN v1.0.5 and the 

.gff files generated by Prokka as input 22. A rarefaction curve, gene presence absence 

matrix, and accessory genome tree were created from the PEPPAN output using the 

included PEPPAN_parser algorithm. Statistics about the core genome were calculated 

from the gene presence absence matrix using R v4.2.1 (RStudio 2022.07.1). The resulting 

.nwk tree file was visualized using R v4.2.1 and treeio package v1.20.2 57. All remaining 

figures were created using GraphPad Prism v9.4.1 (GraphPad Software; San Diego, CA). 

 

 

 

https://paperpile.com/c/RPFGWX/IDJ4h
https://paperpile.com/c/RPFGWX/ACHXh
https://paperpile.com/c/RPFGWX/ghXUs
https://paperpile.com/c/RPFGWX/3N4n3
https://paperpile.com/c/RPFGWX/t94EZ
https://paperpile.com/c/RPFGWX/XvsDJ
https://paperpile.com/c/RPFGWX/3N4n3
https://paperpile.com/c/RPFGWX/NMDvp
https://paperpile.com/c/RPFGWX/gxbXe
https://paperpile.com/c/RPFGWX/CSE7x
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Genome-wide association study 

De novo assembled genomes of the 34 Pseudomonas strains were provided as 

input to DBGWAS v0.5.4 13 along with the corresponding phenotype values for 

phenazine production. DBGWAS was implemented for 7 different phenotypes: (i) PCA 

production in KMB; (ii) PCA production in KMB+Fe; (iii) Effect of Fe on PCA 

production; (iv) PCN production in KMB; (v) PCN production in KMB+Fe; (vi) Effect of 

Fe on PCN production; (vii) Total phenazine production in KMB. 

For phenotypes (i), (ii), (iv) and (v), concentrations of PCA and PCN (mg/L) 

obtained from experiments were used directly. Values of phenotypes (iii) and (vi) were 

estimated by subtracting the concentration of the phenazine compound in KMB from that 

in KMB+Fe. If the difference was negative, it was replaced by 0. Total phenazine 

production in KMB was obtained by simply adding the concentrations of all phenazine 

compounds (i.e., PCA, 2-HPCA, PCN and 2-HP) in KMB. The genome sequences of 

strains were also provided as BLAST database to DBGWAS for genome mapping of 

significant unitigs. Significant unitigs were identified based on a corrected p-value cutoff, 

and a minor allele frequency greater than 1% (default). The number of significant unitigs 

obtained for each phenotype are listed in Table S4.3. 

 

Downstream processing of mGWAS hits 

Even though DBGWAS maps significant unitigs to genomes by BLAST, we 

chose to independently perform unitig alignment to genomes by exact matching to avoid 

any tolerance to mismatches during alignment. Custom Python3 scripts were used for this 

purpose with the 34 genome sequences as the mapping database. To ensure that each 

https://paperpile.com/c/RPFGWX/lnYFR
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unitig finds a match, both the significant unitig and its reverse-complement were used. 

Further, genome annotations were used to determine the genomic regions of the mapped 

unitigs (i.e., whether the unitig falls within a gene or an intergenic region). 

The lists of mGWAS hits from the 7 phenotypes were concatenated into a single 

list called the ‘preliminary list’. In this list, each occurrence of a significant unitig 

constituted a single entry, creating separate entries for each phenotype, strain, as well as 

the reverse complement sequence of that unitig. Custom Python3 scripts were used to 

remove redundancies and collapse the preliminary list so that each significant unitig has a 

single entry in the final list (Fig. S4.3) For each strain, entries for identical unitigs that 

were significant for multiple phenotypes were collapsed together in the ‘phenotype-

collapsed’ list. Each entry was assigned a phenotype score, which represents the number 

of phenotypes (out of 7) where each unitig was significant. If a unitig had a phenotype 

score greater than 1, its corrected p-value was taken to be the minimum of corrected p-

values for all phenotypes it is found in. Similarly, the effect of that unitig was taken to be 

the one with the highest magnitude across all phenotypes. The ‘phenotype+strain-

collapsed list’ combined entries where the same unitig mapped to the same genomic 

region in multiple strains. Redundancies where the reverse complement of a significant 

unitig shows up as a separate entry were then collapsed to create the ‘final list’ of 

mGWAS hits. 

Genes associated to mGWAS hits were determined based on the overlap of 

unitigs to genes. If the overlap to a gene was partial or complete, that gene was 

considered to be associated to the unitig. In case of no overlap, i.e., when the unitig 
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appeared completely between two genes, both the neighboring genes were considered to 

be linked to the unitig. 

 

Experimental validation of top hits 

The hits from the final list with a phenotype score of 3 or higher which were 

significant for PCN production phenotypes were selected as top hits for experimental 

validation. The CDS immediately upstream and downstream of each significant unitig 

were chosen as metabolic engineering targets to be overexpressed in the top PCN-

producing strain. Any CDS which encoded ribosomal RNA was discarded from the list. 

If the significant unitig sequence was completely contained within a CDS, only the 

unitig-containing CDS was studied rather than the 2 adjacent CDS. 

Each target was PCR-amplified from the genomic DNA of the strain listed on the 

top hits file then inserted into the backbone of plasmid pBb(RK2)1k-GFPuv using either 

restriction digest cloning or NEBuilder® HiFi DNA Assembly (New England Biolabs; 

Ipswich, MA) using the primers listed in Table S4.4. pBb(RK2)1k-GFPuv is a broad-

range expression vector with an IPTG-inducible promoter which was gifted by Brian 

Pfleger at the University of Wisconsin, Madison, and used as the empty vector control 58. 

All plasmids used in this study are listed in Table S4.5. 

Plasmids were transformed into the respective strain via electroporation based on 

the method of Choi et al. 59. Electroporations were performed by pulsing either 1.8 or 2.5 

kV through a 0.1 or 0.2 cm electroporation cuvette using a MicroPulser™ 

Electroporation Apparatus (Bio-Rad) then recovering the reaction for 2-3 hours at 30℃. 

https://paperpile.com/c/RPFGWX/9cWwv
https://paperpile.com/c/RPFGWX/Wcdbt
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Culturing and phenazine quantification were performed as described in previous 

subsections. 

 

Gene Ontology enrichment analysis 

To identify enriched GO-terms for significant mGWAS hits, strain DSM 21509 

(highest PCN producer) was used as the reference. GO-IDs for this strain were obtained 

using Blast2GO v6.0.3 60. First, Blast2GO was used to map the annotated genome of 

strain DSM 21509 to proteins in the P. chlororaphis protein file (program: blastx; 

number of blast hits = 5; HSP length cutoff = 50) obtained from NCBI (Taxonomy ID: 

587753). Next, the BLAST hits were mapped to GO-identifiers from the database of the 

Gene Ontology Consortium 61,62. Lastly, GO mapped hits were annotated (Hit Filter = 2; 

Filter GO by taxonomy: g-proteobacteria (taxa: 1236,Gammaproteobacteria)) to obtain 

additional information, such as enzyme codes, enzyme names and InterPro IDs. GO-

enrichment test was performed with the obtained GO-IDs using the tool GOEnrichment 

v2.0.1 on the Galaxy platform 53. Annotated genes associated to significant unitigs in the 

final list were provided as the study set. GO annotations from the strain DSM 21509 were 

provided as the reference set. All enrichment tests were performed using an FDR-

corrected p-value cutoff of 0.05 for enrichment. 

 

Pathway enrichment analysis 

A list of existing metabolic pathways (and corresponding genes involved) in P. 

chlororaphis strain PA23 was extracted from KEGG PATHWAY database 63 (prefix: 

pch) and written into a custom pathway database file (.GMT format) using R 4.2.1 

https://paperpile.com/c/RPFGWX/L7gdC
https://paperpile.com/c/RPFGWX/qZwXt+Z0jLP
https://paperpile.com/c/RPFGWX/3N4n3
https://paperpile.com/c/RPFGWX/mcGmW
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(RStudio 2022.07.1). Sequences of all genes associated to significant unitigs in the final 

list were BLASTed against proteins of the P. chlororaphis strain PA23 (obtained from 

NCBI) using Blast2GO v6.0.3 60 (program: blastx; number of blast hits = 5; HSP length 

cutoff = 50) to find homologs. The list of PA23 gene homologs was then used as input 

along with the custom pathway database file to perform pathway enrichment analysis 

using the web version of the tool g:Profiler 64. 

 

Data availability 

Sequencing reads and assembled genomes for the 34 Pseudomonas isolates have 

been deposited in the NCBI SRA (BioProject ID: PRJNA932460) and NCBI GenBank 

databases, respectively. NCBI accession numbers for the assembled genomes have been 

provided in Table 1. Source data for main figures in the study has been provided in 

Supplementary File 4.7. Scripts used for collapsing mGWAS hits have been provided as 

Supplementary File 4.8. 

 

 

 

 

 

 

 

 

 

https://paperpile.com/c/RPFGWX/L7gdC
https://paperpile.com/c/RPFGWX/7xg6M
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http://paperpile.com/b/RPFGWX/L7gdC
http://paperpile.com/b/RPFGWX/L7gdC
http://paperpile.com/b/RPFGWX/L7gdC
http://paperpile.com/b/RPFGWX/L7gdC
http://paperpile.com/b/RPFGWX/L7gdC
http://paperpile.com/b/RPFGWX/L7gdC
http://paperpile.com/b/RPFGWX/qZwXt
http://paperpile.com/b/RPFGWX/qZwXt
http://paperpile.com/b/RPFGWX/qZwXt
http://paperpile.com/b/RPFGWX/qZwXt
http://paperpile.com/b/RPFGWX/qZwXt
http://paperpile.com/b/RPFGWX/qZwXt
http://paperpile.com/b/RPFGWX/qZwXt
http://paperpile.com/b/RPFGWX/qZwXt
http://paperpile.com/b/RPFGWX/Z0jLP
http://paperpile.com/b/RPFGWX/Z0jLP
http://paperpile.com/b/RPFGWX/Z0jLP
http://paperpile.com/b/RPFGWX/Z0jLP
http://paperpile.com/b/RPFGWX/Z0jLP
http://paperpile.com/b/RPFGWX/Z0jLP
http://paperpile.com/b/RPFGWX/Z0jLP
http://paperpile.com/b/RPFGWX/Z0jLP
http://paperpile.com/b/RPFGWX/mcGmW
http://paperpile.com/b/RPFGWX/mcGmW
http://paperpile.com/b/RPFGWX/mcGmW
http://paperpile.com/b/RPFGWX/mcGmW
http://paperpile.com/b/RPFGWX/mcGmW
http://paperpile.com/b/RPFGWX/mcGmW
http://paperpile.com/b/RPFGWX/mcGmW
http://paperpile.com/b/RPFGWX/7xg6M
http://paperpile.com/b/RPFGWX/7xg6M
http://paperpile.com/b/RPFGWX/7xg6M
http://paperpile.com/b/RPFGWX/7xg6M
http://paperpile.com/b/RPFGWX/7xg6M
http://paperpile.com/b/RPFGWX/7xg6M
http://paperpile.com/b/RPFGWX/7xg6M
http://paperpile.com/b/RPFGWX/7xg6M
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4.7 Supplementary Information 

Supplementary Figures 

 
Fig. S4.1. Growth curves of Pseudomonas strains at two different temperatures. Growth curves of the 

34 Pseudomonas strains based on opacity values for the first 3 days of growth at (a) 30 °C, and (b) 37 °C in 

two media conditions – KMB (pink) and KMB+Fe (blue). Data points represent average opacity for a 

particular strain on a given day and condition. 
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Fig. S4.2. Graphical comparisons of the summary statistics for all genome assemblies. Genome 

assemblies were created with only short Illumina sequencing reads (left graph subsections), only long 

Oxford Nanopore sequencing reads (right graph subsection) or both reads sets in a hybrid approach (middle 

graph subsection), with contigs files (C) and scaffolds (S) generated by SPAdes, and genome assemblies 

generated by using either normal (N) or bold (B) bridging mode in Unicycler. Number of contigs, N50, L50, 

total sequence length, and GC content were generated using QUAST. The % complete BUSCOS was 

calculated using BUSCO and number of CDS from assembly annotations generated by Prokka. 
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Fig. S4.3. Collapsing pipeline for GWAS hits. A schematic showing each collapsing stage to remove 

redundancies in the preliminary list of significant GWAS hits. A phenotype score is assigned to each hit in 

the phenotype-collapsing stage. Numbers on the right indicate the total number of hits in the preliminary 

list as well as resulting lists from each corresponding collapsing stage for the phenazine production GWAS 

results. 
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Fig. S4.4. Distribution of significant GWAS hit effects in the ‘final list’. Vertical axis indicates the 

number of significant hits having effect values in a certain range as specified by each bin. 
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Supplementary Tables 

Table S4.1. List of strains used in this study. All of the listed isolates were 16s rRNA sequenced and 

confirmed to be Pseudomonas chlororaphis except for ATCC 17413 which was determined to be 

Pseudomonas synxantha. 

Full strain name Strain isolate 

used in this 

study 

Source 

Pseudomonas chlororaphis subsp. 

chlororaphis (ATCC® 9446™) 

ATCC 9446 American Type Culture Collection 

Pseudomonas chlororaphis (ATCC® 

9447™) 

ATCC 9447 American Type Culture Collection 

Pseudomonas chlororaphis subsp. 

aureofaciens (ATCC® 13985™) 

ATCC 13985 American Type Culture Collection 

Pseudomonas chlororaphis (ATCC® 

13986™) 

ATCC 139861 American Type Culture Collection 

ATCC 139862 

Pseudomonas chlororaphis (ATCC® 

15926™) 

ATCC 15926 American Type Culture Collection 

Pseudomonas chlororaphis (ATCC® 

17411™) 

ATCC 17411 American Type Culture Collection 

Pseudomonas chlororaphis (ATCC® 

17413™) 

ATCC 17413 American Type Culture Collection 

Pseudomonas chlororaphis (ATCC® 

17414™) 

ATCC 17414 American Type Culture Collection 

Pseudomonas chlororaphis (ATCC® 

17415™) 

ATCC 174151 American Type Culture Collection 

ATCC 174152 

Pseudomonas chlororaphis (ATCC® 

17417™) 

ATCC 17417 American Type Culture Collection 

Pseudomonas chlororaphis (ATCC® 

17418™) 

ATCC 174181 American Type Culture Collection 

ATCC 174182 

Pseudomonas chlororaphis (ATCC® 

17419™) 

ATCC 17419 American Type Culture Collection 

Pseudomonas chlororaphis (ATCC® 

17809™) 

ATCC 17809 American Type Culture Collection 

Pseudomonas chlororaphis (ATCC® 

17810™) 

ATCC 17810 American Type Culture Collection 

Pseudomonas chlororaphis (ATCC® 

17811™) 

ATCC 17811 American Type Culture Collection 

Pseudomonas chlororaphis (ATCC® 

17814™) 

ATCC 17814 American Type Culture Collection 

Pseudomonas chlororaphis subsp. 

aurantiaca (ATCC® 33663™) 

ATCC 336631 American Type Culture Collection 

 ATCC 336632 

Pseudomonas chlororaphis subsp. 

aureofaciens DSM-6508 

DSM 6508 German Collection of 

Microorganisms and Cell Cultures 

Pseudomonas chlororaphis subsp. piscium 

DSM-21509 

DSM 21509 German Collection of 

Microorganisms and Cell Cultures 

Pseudomonas chlororaphis subsp. 

aureofaciens DSM-29578 

DSM 295781 German Collection of 

Microorganisms and Cell Cultures DSM 295782 

Pseudomonas chlororaphis subsp. NCCB 47033 Netherlands Culture Collection of 
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chlororaphis NCCB 47033 Bacteria 

Pseudomonas chlororaphis subsp. 

aureofaciens NCCB 60037 

NCCB 60037 Netherlands Culture Collection of 

Bacteria 

Pseudomonas chlororaphis subsp. 

aureofaciens NCCB 60038 

NCCB 60038 Netherlands Culture Collection of 

Bacteria 

Pseudomonas chlororaphis subsp. 

aureofaciens NCCB 82053 

NCCB 820531 Netherlands Culture Collection of 

Bacteria 
NCCB 820532 

Pseudomonas chlororaphis subsp. 

aureofaciens NCCB 88062 

NCCB 880621 Netherlands Culture Collection of 

Bacteria NCCB 880622 

Pseudomonas chlororaphis subsp. 

chlororaphis NCCB 100368 

NCCB 1003681 Netherlands Culture of Collection 

Bacteria NCCB 1003682 
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Table S4.2. List of bioinformatics tools and parameters used for genome and pangenome assembly 

and annotation in this study.  Other parameters which are not listed were kept at default values. 

Tool Name Version Parameters 

FASTQC v0.11.9 Input: Illumina reads, raw and output from Trimmomatic 

(forward and reverse fastq.gz files) 

● Default settings 

NanoStats v1.28.2 Input: Oxford Nanopore reads, raw and output from Porechop 

and filtlong (fastq.gz files) 

● Default settings 

QUAST v5.0.2 Input: All genome assemblies (fasta files) 

● Default settings 

BUSCO v5.2.2 Input: All genome assemblies (fasta files) 

● Lineage dataset (--lineage-dataset): 

pseudomonadales_odb10 (prokaryota, 2020-03-06) 

● Running mode (--mode): genome 

Flye v2.8.3 Input: raw Oxford Nanopore reads (fastq.gz files) 

● Specify raw Oxford Nanopore reads as input (--nano-

raw) 

Trimmomatic v0.38 Input: raw Illumina reads (forward and reverse fastq.gz files) 

● ILLUMINACLIP: NexteraPE 

● LEADING:3  

● TRAILING:3  

● SLIDINGWINDOW: 4:15  

● MINLEN:36 

Porechop v0.2.4 Input: raw Oxford Nanopore reads (fastq.gz files) 

● Default settings 

filtlong v0.2.1 Input: adapter-trimmed Oxford Nanopore reads output from 

Porechop (fastq.gz files) 

● Minimum length (--min_length): 1000 

● Minimum mean quality (--min_mean_q): 10 

SPAdes v3.12.0 Input: paired-end trimmed Illumina reads output from 

Trimmomatic (forward and reverse fastq.gz files). Hybrid 

assemblies also used filtered long reads output from filtlong 

(fastq.gz files) 

● Default settings 

Unicycler v0.4.8 Input: paired-end trimmed reads output from Trimmomatic. 

Hybrid assemblies also used filtered long reads output from 

filtlong. 

● Bridging mode (--mode): normal OR bold 

● Exclude contigs shorter than this length from FASTA 

(bp) (--min_fasta_length: 1000 

Prokka v1.14.6 Input: All genome assemblies (fasta files) 

● Default settings 

PEPPAN v1.0.5 Genome annotations output from Prokka (.gff files for either all final 

genome assemblies or only the P. chlororaphis assemblies) 

PEPPAN_parser  Output by PEPPAN output (PEPPAN.gff file) 

● Generate gene presence/absence tree (--tree) 

● Generate rarefaction curve (--curve) 

● Ignore pseudogenes in analysis (--pseudogene). This flag 

was used in the pangenome analysis, but left of when 

determining which hits belonged to the core and 
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accessory genome 

treeio v1.20.2 Input: gene presence/absence tree output by PEPPAN_parser (All 34 

strains, excluding pseudogenes; CDS_content.nwk file) 
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Table S4.3. Number of significant unitigs obtained for different phenotypes in the GWAS analysis. 

Phenotype No. of significant unitigs 

PCA production in KMB 121 

PCA production in KMB + Fe 77 

Effect of Fe on PCA production 79 

PCN production in KMB 122 

PCN production in KMB + Fe 81 

Effect of Fe on PCN production 4 

Total phenazine production in KMB 2 
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Table S4.4. List of primers used in this study. 

Name Sequence (5’→3’) Description 

PS__04252_F AATTTCAGAATTCAAAAGAT

CTTTTAAGAAGGAGATATAC

ATATGGTCAAACGCACAAGC 

Amplify PS__04252 from DSM 21509 

gDNA for restriction digest cloning into 

pBb(RK2)1k-GFPuv backbone, forward 

primer 

PS__04252_R CCTTACTCGAGTTTGGATCCC

TATTGCACCGGCACCC 

Amplify PS__04252 from DSM 21509 

gDNA for restriction digest cloning into 

pBb(RK2)1k-GFPuv backbone, reverse 

primer 

PS__04251_F AATTTCAGAATTCAAAAGAT

CTTTTAAGAAGGAGATATAC

ATATGACCGTGGCTCAAAGC 

Amplify PS__04251 from DSM 21509 

gDNA for restriction digest cloning into 

pBb(RK2)1k-GFPuv backbone, forward 

primer 

PS__04251_R ATCCTTACTCGAGTTTGGATC

CTCAGCGCAGGATGCCGA 

Amplify PS__04251 from DSM 21509 

gDNA for restriction digest cloning into 

pBb(RK2)1k-GFPuv backbone, reverse 

primer 

RhtA_F AATTTCAGAATTCAAAAGAT

CTTTTAAGAAGGAGATATAC

ATATGAATGACCAGCCCCG 

Amplify rhtA from DSM 295782 gDNA 

for restriction digest cloning into 

pBb(RK2)1k-GFPuv backbone, forward 

primer 

RhtA_R ATCCTTACTCGAGTTTGGATC

CTCAATCAGCTGCAACCAAA

G 

Amplify rhtA from DSM 295782 gDNA 

for restriction digest cloning into 

pBb(RK2)1k-GFPuv backbone, reverse 

primer 

ProY1_F AATTTCAGAATTCAAAAGAT

CTTTTAAGAAGGAGATATAC

ATATGCAACAGCAAGCTCAA 

Amplify proY_1 from ATCC 9447 gDNA 

for restriction digest cloning into 

pBb(RK2)1k-GFPuv backbone, forward 

primer 

ProY1_R ATCCTTACTCGAGTTTGGATC

CTTATCGATGGGACAAAGAA

GG 

Amplify proY_1 from ATCC 9447 gDNA 

for restriction digest cloning into 

pBb(RK2)1k-GFPuv backbone, reverse 

primer 

UctC_F AATTTCAGAATTCAAAAGAT

CTTTTAAGAAGGAGATATAC

ATATGGGCGCGTTATCTCAT 

Amplify uctC from DSM 295782 gDNA 

for restriction digest cloning into 

pBb(RK2)1k-GFPuv backbone, forward 

primer 

UctC_R ATCCTTACTCGAGTTTGGATC

CTCACAGCACGCCCGAG 

Amplify uctC from DSM 295782 gDNA 

for restriction digest cloning into 

pBb(RK2)1k-GFPuv backbone, reverse 

primer 

HutH2_F AATTTCAGAATTCAAAAGAT

CTTTTAAGAAGGAGATATAC

ATGTGACTGCGCTAAATCTG 

Amplify hutH2 from ATCC 9447 gDNA 

for restriction digest cloning into 

pBb(RK2)1k-GFPuv backbone, forward 

primer 

HutH2_R ATCCTTACTCGAGTTTGGATC

CTTACAGGCTCGGCAGC 

Amplify hutH2 from ATCC 9447 gDNA 

for restriction digest cloning into 

pBb(RK2)1k-GFPuv backbone, reverse 

primer 

pBb(RK2)1k_F GGATCCAAACTCGAGTAAG Amplify pBb(RK2)1k-GFPuv backbone 
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for HiFi assembly, forward primer 

pBb(RK2)1k_R ATGTATATCTCCTTCTTAAAA

GATCT 

Amplify pBb(RK2)1k-GFPuv backbone 

for HiFi assembly, reverse primer 

YbhH-HiFi_F TTTAAGAAGGAGATATACAT

ATGTCTTTTGAACTGGACCTT

CCC 

Amplify ybhH from DSM 21509 gDNA 

for HiFi assembly, forward primer 

YbhH-HiFi_R CCTTACTCGAGTTTGGATCCT

TAGCCCCGCCCTTTCAAC 

Amplify ybhH from DSM 21509 gDNA 

for HiFi assembly, reverse primer 

Seq-

pBb(Rk2)1k_F 

CAATTAATCATCCGGCTCG Forward sequencing primer for 

overexpression plasmids 

Seq-

pBb(Rk2)1k_R 

GACTCTAGTAGAGAGCGTTC Reverse sequencing primer for 

overexpression plasmids 
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Table S4.5. List of plasmids used in this study. 

Plasmid name Description Source 

pBb(RK2)1k-GFPuv IPTG-inducible trc promoter expressing gfpuv, 

kanamycin resistance, RK2 origin of replication 

Cook et al. 2018  

pBb(RK2)1k-PS__04252 IPTG-inducible trc promoter expressing 

PS__04252 amplified from DSM 21509, 

kanamycin resistance, RK2 origin of replication 

This study 

pBb(RK2)1k-PS__04251 IPTG-inducible trc promoter expressing 

PS__04251 amplified from DSM 21509, 

kanamycin resistance, RK2 origin of replication 

This study 

pBb(RK2)1k-YbhH IPTG-inducible trc promoter expressing ybhH 

amplified from DSM 21509, kanamycin 

resistance, RK2 origin of replication 

This study 

pBb(RK2)1k-RhtA IPTG-inducible trc promoter expressing rhtA 

amplified from DSM 295782, kanamycin 

resistance, RK2 origin of replication 

This study 

pBb(RK2)1k-UctC IPTG-inducible trc promoter expressing uctC 

from amplified from DSM 295782, kanamycin 

resistance, RK2 origin of replication 

This study 

pBb(RK2)1k-HutH2 IPTG-inducible trc promoter expressing hutH2 

amplified from ATCC 9447, kanamycin 

resistance, RK2 origin of replication 

This study 

pBb(RK2)1k-ProY1 IPTG-inducible trc promoter expressing proY_1 

amplified from ATCC 9447, kanamycin 

resistance, RK2 origin of replication 

This study 
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Chapter 5: Conclusion and future directions 

Microorganisms natively exhibiting industrially relevant phenotypes present 

attractive hosts for biochemical production. Advancements in synthetic biology and 

sequencing techniques have facilitated genome-wide manipulation of these microbes in 

high-throughput screens, allowing us to identify strain engineering targets at a 

pangenome-scale via bioinformatic analysis of the screening data. This dissertation 

presents different genome-scale approaches and the corresponding bioinformatic analyses 

that could be implemented to elucidate previously unknown gene targets for metabolic 

engineering of microbes in an effort to improve the scalability and economic feasibility 

of industrial bioprocesses. 

Chapter 2 presents an end-to-end pipeline, acCRISPR, that identifies statistically 

significant genes for a phenotype using data from pooled CRISPR knockout screens. 

While existing methods for CRISPR screen analysis have been successful in identifying 

essential genes for growth of mammalian cancer cell lines, they were found to perform 

poorly on microbial datasets. These methods make use of data from multiple screens and 

apply Bayesian approaches to predict sgRNA activity. acCRISPR, on the other hand, 

utilizes experimental activity profiles from the host organism to remove low-activity 

sgRNA and accurately call essential genes from a single screening dataset, thereby 

reducing the scale of the screening experiment and presenting a significant step forward 

in CRISPR screen analysis. The essential gene hits and salt tolerance hits identified by 

acCRISPR in the commercially important yeast Y. lipolytica would be useful to engineer 

Yarrowia for cultivation in high salt conditions in industrial bioreactors. 
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Functional genomic screens conducted using CRISPRa and CRISPRi systems 

have shown success in unraveling the biological mechanisms underlying various 

phenotypes by modulating expression of genes rather than knocking them out. Having 

demonstrated the ability to reliably call gene hits from CRISPR knockout screens, 

acCRISPR could be implemented on CRISPRi and CRISPRa screening datasets, which 

would help improve our understanding of gene function and relevant biological pathways 

in non-conventional microbes, such as those involved in cellular stress response, 

potentially complementing findings from knockout studies. A critical challenge, however, 

in analyzing CRISPRa/i datasets would be the lack of availability of sgRNA activity 

profiles for gene perturbation experiments. A potential workaround for this issue could be 

to use knockout activity profiles for the same guides as a substitute when implementing 

acCRISPR, given that both gene modulation and gene knockout entail binding of the 

sgRNA to the target genomic locus, independent of the nature of Cas protein activity 

(gene disruption/modulation). 

Another compelling direction in this area could be to explore the cross-species 

applicability of acCRISPR. Using existing data for CRISPR screens performed in 

mammalian cell lines with libraries such as GeCKO, Avana and Yusa, coupled with in 

silico activity scores for library guides, the performance of acCRISPR in accurately 

predicting the gold standard set of essential genes for tumor cell survival could be 

evaluated. Furthermore, the accuracy and cross-species applicability of the method could 

be potentially improved by making the nature of the null distribution more adaptable to 

the dataset being analyzed. While the assumption of normality for the population of non-
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essential genes seems to be a reasonable one, it may not always lead to optimum 

performance for every dataset, given the biological differences among various cell types. 

The method could instead utilize a more generic distribution function to describe the 

distribution curve that could resemble for instance, a normal distribution, a t-distribution 

(typically narrower than normal distribution, with heavier tails), or a skewed t-

distribution (asymmetric distribution), depending on the gene fitness profiles. This could 

be achieved by incorporating hyperparameters into the distribution function, whose 

values depend on the screening dataset, and ultimately govern the nature of the null 

distribution. 

The Y. lipolytica sgRNA activity profiles used for acCRISPR analysis were also 

employed to examine the sgRNA activity prediction accuracy of deep learning models in 

Chapter 3. By training a convolutional neural network (CNN) model and a large language 

model (LLM) on balanced, imbalanced and re-balanced datasets, we found the models to 

have maximum accuracy in predicting high- and low-activity sgRNA when trained on 

inherently balanced datasets. Similar performances of the CNN and LLM architectures on 

the same (CRISPR-Cas12a) training set, and variable performance of the same (CNN) 

architecture on training sets with different compositions signify the importance of 

training set characteristics in influencing prediction power. The Y. lipolytica CRISPR-

Cas12a library that resulted in the best prediction performance consists of substantial 

fractions of high- and low-activity sgRNA, and was designed using minimal design 

criteria. This approach of using minimal design criteria could be extended to other 
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species to generate innately balanced training datasets and consequently improve sgRNA 

design for those species. 

While deep learning frameworks such as CNN architectures have shown to be 

effective in predicting sgRNA activity, they need to be trained from the ground up for 

every individual species, requiring greater use of computational resources. LLMs, on the 

other hand, allow the creation of a generalizable pre-trained model that can then be fine-

tuned on a wide range of tasks, including sgRNA activity prediction, across multiple 

species. The ease of usage of AI models to generate species-specific sgRNA activity 

predictions could thus be improved by pre-training an LLM architecture on a large 

collection of genomes from species belonging to one or more phylogenetic groups (such 

as prokaryotes, fungi, plants and/or mammals), and fine-tuning this pre-trained model on 

CRISPR sgRNA datasets for a particular species of interest. Using the LLM approach 

would greatly improve the algorithmic efficiency since the computationally intensive pre-

training step is a one-time process, while fine-tuning, required to be performed separately 

for each species, is relatively less burdensome, allowing researchers with limited 

computational resources to conveniently use the pre-trained model for their specific 

needs. 

Chapter 4 showcases the use of a population genomics approach in enabling 

identification of 330 pangenome-wide biomarkers influencing phenazine biosynthesis in 

the bacterium Pseudomonas chlororaphis. This data-driven approach resulted in unbiased 

identification of gene candidates belonging to core and accessory genomes compared to 

strategies that mainly focus on genes having known relevant functions or genes 
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pertaining to relevant native metabolic pathways. Given the industrial importance of 

phenazine compounds as bio-fungicides for crop protection, the hits elucidated in this 

study could be potentially used to produce higher titers of phenazines with 

P.chlororaphis in industrial bioreactors. 

While the hits identified in this work add to the existing knowledge of strain 

engineering targets for improving phenazine production, additional studies could be 

conducted to further investigate the biological significance of these hits. For instance, the 

hypothetical protein PS_04252, reducing cellular PCN production upon overexpression in 

hit validation experiments, was putatively linked to a family of transcriptional regulators. 

To unravel the function of this gene, transcriptomic studies such as an RNA-seq analysis 

could be performed to identify genes that are differentially expressed between the 

wildtype strain and the strain containing overexpression of the hypothetical protein. 

Similarly, another validated gene hit, ProY_1, was linked to histidine catabolism and 

increasing intracellular histidine levels. The putative function of this gene could be 

corroborated by conducting metabolomic studies and measuring titers of histidine and 

other precursors in the histidine catabolic pathway in a ProY_1 overexpressing strain 

relative to the wildtype strain background. Follow-up studies like these would not only 

allow us to establish the role of gene candidates in influencing phenazine synthesis, but 

also expand our current understanding of P. chlororaphis as a biotechnology host. 

In addition to a deeper investigation of the identified gene hits, refining the 

GWAS analysis promises to be another future direction. The GWAS performed in this 

study used a relatively small collection of 34 isolates to call statistically significant 
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variants for phenazine biosynthesis. This small sample size of strains was due to the 

limited availability of P. chlororaphis isolates at the time this study was conducted. 

However, as new strains get discovered and their genome sequences become more 

readily available, the study could be expanded to a larger collection of P. chlororaphis 

isolates, which in turn would improve the statistical power of the GWAS analysis. 

Moreover, the GWAS method used in this study, DBGWAS, correlates the 

presence/absence of unitigs (high-confidence contigs obtained my collapsing successive 

genomic k-mers in a de Bruijn graph) to phenotypic levels to enable hit identification. A 

major drawback of using the presence/absence information of unitigs in the GWAS is 

that it fails to detect phenotypic associations for copy number variants (resulting from 

repeat regions in the genome). Correlating unitig counts to phenotype instead would help 

overcome this limitation and improve variant detection power of the GWAS analysis. 

Taken together, the forward genetic frameworks described in this dissertation 

present meaningful advancements in enabling identification of genome-wide strain 

engineering targets and evolving microbes as chemical factories for industrial 

bioproduction. 




