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Abstract
Sampling alternative conformations is key to understanding how proteins work and engineering
them for new functions. However, accurately characterizing and modeling protein conformational
ensembles remains experimentally and computationally challenging. These challenges must be
met before protein conformational heterogeneity can be exploited in protein engineering and
design. Here, as a stepping stone, we describe methods to detect alternative conformations in
proteins and strategies to model these near-native conformational changes based on backrub-type
Monte Carlo moves in Rosetta. We illustrate how Rosetta simulations that apply backrub moves
improve modeling of point mutant side chain conformations, native side chain conformational
heterogeneity, functional conformational changes, tolerated sequence space, protein interaction
specificity, and amino acid co-variation across protein-protein interfaces. We include relevant
Rosetta command lines and RosettaScripts to encourage the application of these types of
simulations to other systems. Our work highlights that critical scoring and sampling improvements
will be necessary to approximate conformational landscapes. Challenges for the future
development of these methods include modeling conformational changes that propagate away
from designed mutation sites and modulating backbone flexibility to predictively design
functionally important conformational heterogeneity.

Keywords
Protein design; protein dynamics; conformational heterogeneity; conformational sampling;
alternative conformations; Rosetta; Ringer; Backrub

Introduction
Proteins are constantly fluctuating between alternative conformations (Frauenfelder et al.,
1991). Processes including folding (Korzhnev et al., 2010), ligand binding (Boehr et al.,
2009), and enzymatic catalytic cycles (Nagel and Klinman, 2009) depend on the movement
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across the energy landscape. While protein folding is generally driven by a large energy gap
between the “native” state and the unfolded ensemble, functionally essential conformations
within the “native” state are often separated by smaller energy differences (Fleishman and
Baker, 2012).

Computational modeling of the “native” state can result in either a representative single
structure or a limited ensemble of conformations. Several straightforward global and local
metrics have been developed to compare computational predictions of a representative
single structure to an experimentally derived X-ray structure (MacCallum et al., 2011). In
contrast, modeling conformational heterogeneity within the “native” state presents
significant complications. For example, conformational heterogeneity present in NMR
structural ensembles can result from a lack of restraints, limitations in sampling methods, or
genuine heterogeneity (Rieping et al., 2005; Schneider et al., 1999). Additionally,
comparisons to simulations are often necessary to distinguish between multiple motional
models suggested by NMR dynamics observables including Residual Dipolar Couplings
(Meiler et al., 2001), CPMG relaxation dispersion (Bouvignies et al., 2011), and side chain
order parameters (S2) (Li et al., 1996). X-ray crystallography, which is traditionally
interpreted in terms of a single static structure, can also contain information about protein
conformational heterogeneity (Best et al., 2006; Furnham et al., 2006; Lang et al., 2010;
Levin et al., 2007). All of these experimental data types can be integrated to improve the
computational modeling of protein conformational ensembles.

Ultimately, to connect protein conformational dynamics to function, simulations must be
leveraged to provide structural mechanisms consistent with the experimental data. Molecular
dynamics simulations present the most obvious solution to identify the structural
mechanisms of conformational heterogeneity (Maragakis et al., 2008). However, other than
in exceptional cases (Kelley et al., 2008; Shaw et al., 2010), the timescales accessible to
molecular dynamics often preclude sampling functional motions. The computational
requirements of molecular dynamics simulations also make it prohibitive to simultaneously
sample sequence space for protein design.

Monte Carlo simulations, for example as used in Rosetta (Leaver-Fay et al., 2011), can also
be used to sample protein conformations, but rely on having moves that result in
energetically accessible conformations. Fixed backbone Monte Carlo simulations, where
side chain conformations are sampled based on a rotamer library, can provide some
indications of local flexibility (DuBay and Geissler, 2009). However, it is clear that both
side chain and backbone flexibility are necessary to describe and design protein
conformational heterogeneity (Friedland et al., 2008; Mandell and Kortemme, 2009).
Backbone conformations are less easily discretized compared to side chain rotamers, leading
to problems in both creating and validating Monte Carlo backbone moves. Many strategies
to efficiently search through backbone space have been implemented in Rosetta including
fragment insertion (Simons et al., 1997), loop closure with cyclic coordinate decent (CCD)
(Canutescu and Dunbrack, 2003), local torsion sampling with kinematic loop closure (KIC)
(Mandell et al., 2009), and backrub (Davis et al., 2006; Smith and Kortemme, 2008).
Additionally, these moves can be combined and iterated with sequence design to enrich for
proteins with desired conformational and functional properties that could not be explored
without backbone flexibility.

Here, we describe the application and validation of the backrub sampling move, which was
initially inspired by observations using high resolution X-ray crystallography (Davis et al.,
2006), in Rosetta (Smith and Kortemme, 2008) (Figure 1 A-C). To test whether these moves
accurately represent protein conformational heterogeneity, we provide example command
lines and scripts that can be run using Rosetta version 3.5. These commands and scripts
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examine how backrub sampling affects predictions of mutant structures, alternative
conformations observed by X-ray crystallography, peptide-ligand binding specificities, and
evolutionary properties (Figure 1D). The continued development of flexible backbone
sampling methods that agree with diverse experimental and evolutionary data will improve
our ability to design and engineer new protein functions that depend on and exploit
conformational heterogeneity.

Rosetta Moves To Model Alternative Conformations In X-Ray Density
Modeling the Richardson Backrub in Rosetta

Unlike other methods for flexible backbone sampling implemented in Rosetta, which are
based on fragment insertion or geometric constraints, the backrub move derives its motional
model from conformational variation observed in high-resolution X-ray data (Davis et al.,
2006). The Richardson group observed electron density consistent with a concerted
backbone reorientation that moves a central side chain perpendicular to the main chain
direction for 3% of total residues in a dataset of ultra-high resolution crystal structures. They
noted that this move changed the accessible side chain conformations while leaving flanking
structure undisturbed.

In Rosetta, the backrub consists of a rotation about an axis defined by the flanking backbone
atoms that changes 6 internal backbone degrees of freedom in the protein, namely the Φ, ψ,
and the N-Cα-C bond (α) angles at both pivots (Smith and Kortemme, 2008). In the
Richardson formulation, the pivots were Cα atoms surrounding a single residue (Figure 1A),
but the move can be performed over any backbone atom type over varying length scales
(Figure 1C). Bond angle, rotational angle and Cβ/Hα placement constraints are included to
eliminate the need for costly minimization steps after every move. In addition, the backrub
move in Rosetta can be adapted so that it obeys detailed balance (Smith and Kortemme,
2008). One notable aspect of the backrub move is that it makes certain side chain
conformations, which would not be accessible in the starting backbone conformation,
accessible in the newly accepted backbone conformation (Figure 1B). Such moves alter the
potential to accommodate new side chain conformations and mutations at the “backrubbed”
position and its local neighbors.

Modeling the Response to Mutations
Subtle backbone adjustments are often necessary to accommodate differences between the
wild type and mutant side chain. An initial test of the backrub move in Rosetta was to
compare its performance to fixed backbone sampling in predicting the conformation of
mutated side chains (Figure 2). Based on a template of the wild type structure, a successful
prediction of a mutant structure would generate both the conformation of the mutant side
chain and any changes that propagate away from the mutated residue. In general, backrub
moves decrease the RMSD between the prediction and conformation observed in the mutant
crystal structure (Figure 2). Particularly dramatic successes are achieved when there would
be a clash to neighboring atoms that is relieved by a small backbone adjustment or when a
local backbone move changes the probability of accessing a new conformation from a
backbone dependent rotamer library.

Due to the broad utility of this application for predicting the results of single or multiple
point mutations, we have created a webserver that automates this task: https://
kortemmelab.ucsf.edu/backrub/ (Lauck et al., 2010). On the server, the user must enter the
desired PDB, the site of mutation and the new amino acid identity. By default, 10
independent simulations are performed, but this can be adjusted to 2-50 simulations. For
each simulation, the server will attempt 10,000 moves that include backrub rotations of
various lengths and angles centered on the mutated residue, and side chain moves in a 6Å
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shell around the mutated residue. The resulting conformations are scored with the Rosetta
scoring function and accepted or rejected according to the Metropolis criterion using a kT of
0.6. The lowest scoring conformation out of all the simulations is returned to the user as the
best prediction. Advanced users can exert greater control over these parameters by using the
“backrub” Rosetta command line program or RosettaScripts (Fleishman et al., 2011). An
example command line for point mutation prediction is as follows:

∼/rosetta/rosetta_source/bin/backrub.linuxgccrelease -database ∼/rosetta/rosetta_database/ -s
1CV1.pdb -ex1 -ex2 -extrachi_cutoff 0 -use_input_sc -backrub:ntrials 10000 -nstruct 10 -
resfile 1CV1_M111I.resfile -pivot_residues 84 99 102 103 106 107 108 109 110 111 112
113 114 115 118

where the “resfile” sets positions to be mutated and repacked (allowing rotamer changes),
and the pivot residues denote pivots allowed for backrub moves (necessary files to run the
command line with Rosetta version 3.5 are included as example S1 at http://
kortemmelab.ucsf.edu/resources/MIE_Supplement.tar.gzresults results shown in Figure 2
were obtained with Rosetta revision 18013). For details about command line flags and the
resfile syntax, see the Rosetta manual at http://www.rosettacommons.org/.

Discovering and Modeling Alternative Conformations from X-ray data
The backrub move was inspired by manual examination of ultra-high (sub 1Å) resolution
electron density maps (Davis et al., 2006) suggesting that conformational heterogeneity in
X-ray data can be used to develop and validate new sampling methods. Subsequently, Alber
and colleagues developed a method, Ringer (Lang et al., 2010) to automate the discovery of
alternative side chain conformations in high (sub 2Å) resolution electron density maps by
sampling around side chain dihedral angles (Figure 3A). Despite the limitation that Ringer
uses a fixed backbone to define the sampling radius, they showed that 18% of side chains
have evidence for unmodeled alternative conformations at electron density levels of 0.3-1σ.
Concurrently, van den Bedem et al. (van den Bedem et al., 2009) developed a
complementary method, qFit, which includes local backbone and side chain flexibility to
compute an optimal fit to the electron density for each residue. The resulting 1-3 backbone
and side chain conformations per residue are merged together in a multiconformer qFit
model that improves R/Rfree and maintains excellent geometry statistics. Remarkably,
despite an entirely different search procedure from the original observation by the
Richardson group, many alternative conformations identified by qFit can be related by
backrub-like moves (Figure 3B). Collectively, these studies suggest that electron density
maps can provide a more informative representation of the “native” state than traditionally
offered by static X-ray structures.

By examining 30 pairs of matched room temperature and cryogenic X-ray datasets, Fraser et
al. used Ringer and qFit to show that room temperature X-ray data increase the evidence for
alternative conformations compared to data collected at conventional cryogenic
temperatures (Fraser et al., 2011). We reasoned that sampling between these experimentally
visualized alternative conformations would assess the ability of fixed backbone or backrub
simulations to access a representative set of conformations that are significantly populated in
the “native” state. To test this idea, we considered the A and B alternative conformations
(Figure 3C) from 30 room temperature X-ray multiconformer models refined by qFit.

We focused our analysis on alternative conformations with Cβ deviations of 0.2 Å or
greater, relative SASAs less than or equal to 30%, and different β1 rotameric bins (152 side
chains). First, we split the multiconformer model into two separate PDB files, containing all
residues without alternative conformations and either the “A” conformations or “B”
conformations (for example, 1kwn_A.pdb and 1kwn_B.pdb. Next, we ran a RosettaScripts
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protocol that moves between the starting conformation specified by the flag –s (in this
example, 1kwn_A.pdb) and the target alternative conformation specified by the flag –
in:file:native (in this example, 1kwn_B.pdb). At the beginning of the protocol, the χ angles
of a central side chain are switched from the starting conformation to the target
conformation. This script tests whether changes in the surrounding side chains (fixed
backbone) or both the backbone and surrounding side chains (backrub) better accommodate
the new χ angles and find a side chain conformation close in RMSD to the target
conformation. We tested this protocol in both directions between the A and B
conformations. In the simple example below, the variables χ1 through χ4 provide the target
χ angles (here the χ angles of conformation B), and piv1 through piv3 define the positions
around the central residue allowed to be pivots for the backrub move.

The command to run the protocol is:

∼/rosetta/rosetta_source/bin/rosetta_scripts.linuxgccrelease –database ∼/rosetta/
rosetta_database -s 1kwn_A.pdb -in:file:native 1kwn_B.pdb -parser:protocol
model_alternate_conformation.xml -parser:script_vars pos=29 chi1=-145.522
chi2=-160.509 chi3=81.9108 chi4=175.816 piv1=28 piv2=29 piv3=30

The contents of model_alternate_conformation.xml are:

<ROSETTASCRIPTS>

<SCOREFXNS>

 Include the bond angle potential scoring term

 <score12_backrub weights=score12_full>

   <Reweight scoretype=mm_bend weight=1/>

 </score12_backrub>

 </SCOREFXNS>

 <TASKOPERATIONS>

  Define the restrictions on the sidechain moves that will occur in the simulation

  <ExtraRotamersGeneric name=extra_rot ex1=1 ex2=2 extrachi cutoff=0/>

  <IncludeCurrent name=input_sc/>

  <DesignAround name=neighbors_only allow design=0 design_shell=0 repack_shell=6.0 resnums=%%pos%%/>

  <RestrictToRepacking name=repack_only/>

  <PreventRepacking name=fix_central_residue resnum=%%pos%%/>

 </TASKOPERATIONS>

 <FILTERS>

  Calculates the side-chain RMSD before and after simulation

  <SidechainRmsd name=rmsd threshold=10 include backbone=0 res1_res_num=%%pos%% res2_res_num=%
%pos%%/>

 </FILTERS>

 <MOVERS>

  Set the chi angles of the residue of interest

  <SetChiMover name=setchi1 chinum=1 resnum=%%pos%% angle=%%chi1%%/>

  <SetChiMover name=setchi2 chinum=2 resnum=%%pos%% angle=%%chi2%%/>

  <SetChiMover name=setchi3 chinum=3 resnum=%%pos%% angle=%%chi3%%/>

  <SetChiMover name=setchi4 chinum=4 resnum=%%pos%% angle=%%chi4%%/>

  Set backrub moves to only occur near residue of interest

  <Backrub name=backrub pivot_residues=%%piv1%%,%%piv2%%,%%piv3%% min_atoms=3 min_atoms=7/>
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  Set side-chain moves to only include residues within 6 angstrom shell

  <Sidechain name=sidechain task_operations=extra_rot, input_sc, fix central residue, neighbors_only, repack_only/
>

  During Monte Carlo, alternate between backrub moves (75%) and side-chain moves (25%)

  <ParsedProtocol name=backrub_protocol mode=single_random>

   <Add mover_name=backrub apply_probability=0.75/>

   <Add mover_name=sidechain apply_probability=0.25/>

  </ParsedProtocol>

  Set up Monte Carlo simulation with 10,000 steps and kT=0.6

  <GenericMonteCarlo name=backrub_mc mover_name=backrub_protocol
scorefxn_name=score12_backrubtrials=10000 temperature=0.6 preapply=0/>

 </MOVERS>

 <PROTOCOLS>

  Set the residue of interest to the desired chi angles

  <Add mover_name=setchi1/>

  <Add mover_name=setchi2/>

  <Add mover_name=setchi3/>

  <Add mover_name=setchi4/>

  Calculate RMSD before simulation

  <Add filter_name=rmsd/>

  Run backrub simulation

  <Add mover_name=backrub_mc/>

  Calculate RMSD after simulation

  <Add filter_name=rmsd/>

 </PROTOCOLS>

</ROSETTASCRIPTS>

Necessary files to run this script with Rosetta version 3.5 are included as example S2 at
http://kortemmelab.ucsf.edu/resources/MIE_Supplement.tar.gzresults shown in Figure 3
were obtained with Rosetta revision 48648.

Similarly to the mutation data set (Figure 2), backrub moves significantly improve the
predictions (Figure 3D,E). Additionally, we tested the effect of including larger backrub
moves or using C and N atoms as pivots in place of the normal Cα pivot. Applying these
larger moves or using additional pivot atoms did not significantly affect the modeled
alternate side-chain RMSD over the dataset. However, there may be certain residue types,
secondary structures, or local environments that benefit from distinct move sets.

These results suggest that backrub moves help to model “native” state heterogeneity. While
above we have described the validation of this procedure on high resolution room
temperature X-ray data, similar strategies can be applied to cryogenic data, where models
will likely contain fewer alternative conformations, or to low resolution data, where the
electron density maps do not reveal discrete alternative conformations. Therefore, flexible
backbone sampling strategies in Rosetta may help to improve the description of the “native”
state offered by conventional or low-resolution X-ray crystallography experiments (Tyka et
al., 2011). Such sampling methodologies will have many applications including flexible
receptor docking in drug discovery (Sherman et al., 2006).
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Sampling Functional Alternative Conformations in Cyclophilin A
While the preceding examples utilized backbone flexibility centered on a single residue,
many protein motions require movement of a neighborhood of residues that may potentially
spread across multiple elements of secondary structure. These movements can create loop,
rigid body domain, or side chain rearrangements that are crucial for the biological
mechanism.

The difficulty of discovering and simulating correlated motions is exemplified in the
intrinsic conformational exchange of the proline isomerase cyclophilin A (CypA) (Fraser et
al., 2009) (Figure 4A). Previous NMR studies by the Kern group identified a collective
exchange process extending from the active site into the core of the protein and established a
link between the rate of conformational exchange and the catalytic cycle of the enzyme
(Eisenmesser et al., 2002; Eisenmesser et al., 2005). Room temperature X-ray
crystallography and electron density interpretation using a combination of Ringer and
manual inspection were used to reveal that the exchange was due to a coupled network of
alternative side chain conformations (Fraser et al., 2009). The functional importance of the
alternative conformation was tested by demonstrating a parallel reduction in dynamics and
catalysis upon mutation of a residue outside the active site (Fraser et al., 2009). Intriguingly,
the backbone movement of Phe113 renders its alternative conformation undetectable by
Ringer, which is limited to fixed backbone sampling (Figure 4B).

Due to the millisecond timescale of this correlated motion, the side chain conformational
changes cannot be sampled in conventional molecular dynamics simulations. However,
recent accelerated molecular dynamics simulations that reduce torsional barriers have
recapitulated several key elements of the conformational dynamics during catalysis (Doshi
et al., 2012). As an initial test of the ability of Rosetta to model correlated motions between
neighboring side-chains in CypA, we modified the RosettaScripts protocol used to sample
alternative conformations. We defined multiple positions that are allowed to be pivots for
backrub and included a call to a “resfile” that specifies the positions whose side-chains can
be repacked. This protocol improves sampling of the alternative conformation over fixed
backbone approaches (Figure 4B).

The command to run the protocol is:

∼/rosetta/rosetta_source/bin/rosetta_scripts.linuxgccrelease -database ∼/rosetta/
rosetta_database/ -s 3K0N_A.pdb -in:file:native 3K0N_B.pdb -parser:protocol
model_alternate_conformation_F113.xml -resfile F113.resfile -parser:script_vars
chi1=-53.763 chi2=-41.4727 chi3=0 chi4=0

The contents of model_alternate_conformation_F113.xml are:

<ROSETTASCRIPTS>

 <SCOREFXNS>

  Include the bond angle potential scoring term

  <score12_backrub weights=score12_full>

   <Reweight scoretype=mm_bend weight=1/>

  </score12_backrub>

 </SCOREFXNS>

 <TASKOPERATIONS>

  <ExtraRotamersGeneric name=extra_rot ex1=1 ex2=2 extrachi_cutoff=0/>

  <ReadResfile name=read_resfile filename=“F113.resfile”/>
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 </TASKOPERATIONS>

 <FILTERS>

  Calculates the side-chain RMSD before and after simulation

  <SidechainRmsd name=rmsd threshold=10 include_backbone=0 res1_pdb_num=113A res2_pdb_num=113A/>

 </FILTERS>

 <MOVERS>

  Set the chi angles of the residue of interest

  <SetChiMover name=setchi1 chinum=1 resnum=113A angle=%%chi1%%/>

  <SetChiMover name=setchi2 chinum=2 resnum=113A angle=%%chi2%%/>

  <SetChiMover name=setchi3 chinum=3 resnum=113A angle=%%chi3%%/>

  <SetChiMover name=setchi4 chinum=4 resnum=113A angle=%%chi4%%/>

  Set backrub moves to only occur near residue of interest

  <Backrub name=backrub pivot_residues=54A,55A,56A,59A,60A,61A,62A,63A,64A,65A,90A, 91A,92A,97A,
98A,99A,100A,101A,102A,103A,110A,111A,112A,113A,114A,115A,116A,118A,119A,120A,121A,122A,123A,
125A,126A,127 A,128A,129A,130A min_atoms=3 min_atoms=7/>

  Set side-chain moves to only include residues within 6 angstrom shell

  <Sidechain name=sidechain task_operations=read_resfile, extra_rot/>

  During Monte Carlo, alternate between backrub moves (75%) and side-chain moves (25%)

  <ParsedProtocol name=backrub_protocol mode=single_random>

   <Add mover_name=backrub apply_probability=0.75/>

   <Add mover_name=sidechain apply_probability=0.25/>

  </ParsedProtocol>

  Set up Monte Carlo simulation with 10,000 steps and kT=0.6

  <GenericMonteCarlo name=backrub_mc mover_name=backrub_protocol scorefxn name=score12 backrub
trials=10000 temperature=0.6 preapply=0/>

 </MOVERS>

 <PROTOCOLS>

  Set the residue of interest to the desired chi angles

  <Add mover_name=setchi1/>

  <Add mover_name=setchi2/>

  <Add mover_name=setchi3/>

  <Add mover_name=setchi4/>

  Calculate RMSD before simulation

  <Add filter_name=rmsd/>

  Run backrub simulation

  <Add mover_name=backrub_mc/>

  Calculate RMSD after simulation

  <Add filter_name=rmsd/>

 </PROTOCOLS>

</ROSETTASCRIPTS>

Necessary files to run this script with Rosetta version 3.5 are included in the as example S3
at http://kortemmelab.ucsf.edu/resources/MIE_Supplement.tar.gzresults shown in Figure 4
were obtained with Rosetta revision 48648.

Here, we have specified neighboring residues that can undergo backrub moves. Similarly,
the ability of backrub to sample functionally important loop conformations has been
demonstrated for triosephosphate isomerase (TIM) (Smith and Kortemme, 2008). To
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efficiently sample these enzymatic motions, we used prior knowledge of residues that need
conformational adjustments. Therefore, these strategies present an immediate challenge:
sampling large correlated motions without prior knowledge of what residues are involved in
the motion. One approach is to use unbiased simulations to identify flexible regions. In the
case of TIM, unbiased simulations identify that the catalytically important loop region is
highly flexible, but only simulations that focus on the loop have been shown to sample the
entire range of motion. Another intermediate on the road to this goal is to include constraints
from NMR relaxation dispersion experiments, which specify residues that are experiencing
an exchange in chemical environment, but do not provide direct structural information about
the exchange. Recent work using T4 Lysozyme (Bouvignies et al., 2011) suggests that
Rosetta fragment insertion methods biased by experimental chemical shifts can generate
structural descriptions of alternative conformations discovered by NMR. The success of
backrub moves in sampling the enzyme motions of CypA and TIM indicate that “native”
state sampling using backrub moves can likely be exploited in a similar fashion to link
conformational dynamics discovered by NMR relaxation dispersion experiments with
structural mechanisms.

Sequence Plasticity and Conformational Plasticity are Intertwined
The improvements offered by backrub moves in predicting point mutant structures (Figure
2) suggest that subtle backbone rearrangements can significantly alter the prediction of
tolerated mutations. It follows that conformational ensembles created through backrub
moves would also change the potential for sequences predicted to be consistent with a given
protein fold. Indeed, incorporating backbone flexibility increased the overlap between
sequences predicted to be consistent with the ubiquitin fold and the evolutionary record
(Friedland et al., 2009). These results provided further evidence that the relationship
between sequence and structural variability can be leveraged to develop and validate new
conformational sampling methods. Both sequence alignments of orthologous proteins
(natural selection) and sequences enriched in high-throughput binding experiments, such as
phage display or peptide arrays (artificial selection), can been used to define the sequence
variability that design methods can target.

Modeling Peptide Binding Specificity
In addition to predicting sequences tolerated by a single protein fold, flexible backbone
methods can improve the prediction of binding specificity in peptide binding domains such
as PDZ, SH3 and WW domains. Phage display coupled with next-generation sequencing
techniques can generate experimental position weight matrices (PWMs) based on large
numbers of potential sequences (Huang and Sidhu, 2011). A challenge for interpreting these
datasets is to define the structural basis for specificity in binding pockets that are quite
similar. To test how well Rosetta can recapitulate the binding specificities discovered by
these experiments, we sampled conformations of both the peptide and receptor protein using
backrub moves. As observed previously for sampling the ubiquitin fold family sequences,
the temperature parameter is key for controlling the conformational diversity sampled by the
ensemble (Figure 5A). For applications where there is a larger degree of backbone flexibility
and corresponding sequence variability, higher temperatures can be explored. For PDZ
domain-peptide interactions, a temperature of 0.6 kT was used (Smith and Kortemme, 2010,
2011). After generating an ensemble using backrub moves, design can be used to sample
sequence changes of either the receptor or the peptide.

We have automated the sequence tolerance protocol for using flexible backbone ensembles
and sequence design for predicting peptide binding specificity on a webserver: https://
kortemmelab.ucsf.edu/backrub/ (Lauck et al., 2010). Users can also download a “protocol
capture” of the sequence tolerance method, complete with example input/output and scripts,
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in the Supplementary Materials accompanying (Smith and Kortemme, 2011). Given a
peptide-bound structure, backrub sampling methods are used to generate an ensemble of
conformations. For each conformation, a genetic algorithm is used to design sequences for
high affinity binding. In this protocol, the interface energy is given greater weight (Smith
and Kortemme, 2010, 2011). To compare these predictions to experimental data, we
generate a sequence logo based on the positional frequencies in the resulting designed
sequences (Figure 5B). Compared to fixed backbone methods, backrub sampling increases
the agreement at several positions. Given the adaptable nature of many protein-protein
interfaces, it is clear that flexible backbone methods will provide great insight into the
structural and energetic basis for binding specificity. Additionally, as more datasets on
mutant binding domains are collected, there is potential to look for co-variation between the
sequences tolerated between receptor and peptide positions (Ernst et al., 2010).

Co-variation and Interface Design in Two-component Signaling
Testing computational protein design methods based on comparison with experimental
PWMs is informative. However, it involves evaluating amino acid positions independently
from each other and therefore may overlook some of the intricate details of pair-wise
interactions between designed residues. In order to assess how well flexible backbone design
protocols capture dependencies between designed residues, we directly compared designed
residue co-variation to native residue co-variation. We chose to examine co-variation within
the bacterial two-component signaling system, since it has previously been shown that
sensor histidine kinases (HK) and their cognate response regulators (RR) exhibit significant
intermolecular co-variation at their protein-protein interface (White et al., 2007).

Designed sequences were obtained by generating a backrub conformational ensemble of 500
structures starting from the co-crystal structure of HK853 and RR468 from Thermotoga
maritima ((Casino et al., 2009) PDB 3DGE). Since bacterial HK and RR sequences are
highly divergent, we used a temperature of 1.2 kT to produce a conformational ensemble
that would yield sufficiently diverse designed sequences. We then performed sequence
design using Monte Carlo simulated annealing on each structure, which resulted in 500
designed HK and RR sequences.

The command lines for this protocol are as follows:

Backrub ensemble generation: ∼/rosetta/rosetta_source/bin/backrub.linuxgccrelease -
database ∼/rosetta/rosetta_database/ -s 3DGE.pdb -resfile NATAA.res -ex1 -ex2 -
extrachi_cutoff 0 -backrub:mc_kt 1.2 -backrub:ntrials 10000 -nstruct 500 -
backrub:initial_pack

Sequence design: ∼/rosetta/rosetta_source/bin/fixbb.linuxgccrelease -database ∼/rosetta/
rosetta_database/ -s3DGE_0001_last.pdb -resfile ALLAA.res -ex1 -ex2 -extrachi_cutoff 0 -
nstruct 1 -overwrite -linmem_ig 10 -no_his_his_pairE -minimize_sidechains

Necessary files to run these command lines with Rosetta version 3.5 are included as example
S4 at http://kortemmelab.ucsf.edu/resources/MIE_Supplement.tar.gzresults shown in Figure
6 were obtained with Rosetta revision 39284.

To compare the sequence features from interface design with those observed in naturally
interacting proteins, we collected alignments of natural HK and RR sequences from Pfam
(PF000512 for HK and PF00072 for RR) and concatenated all pairs of HKs and RRs that
were adjacent in a particular genome (i.e., pairs with GI numbers differing by 1). To avoid
bias from closely related sequences, we filtered the joint HK/RR alignment for redundancy
using an 80% sequence identity cutoff. We quantified residue co-variation of all

Ollikainen et al. Page 10

Methods Enzymol. Author manuscript; available in PMC 2013 August 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://kortemmelab.ucsf.edu/resources/MIE_Supplement.tar.gzresults


intermolecular pairs of amino acid positions in designed and natural sequences using a
mutual information based statistic (Dickson et al., 2010).

We observed significant overlap between the designed and natural highly co-varying
intermolecular pairs within the HK/RR complex (Figure 6A). Mapping the residue pairs that
were highly co-varying in both designed and natural sequences onto the structure of the
complex revealed that all of these pairs are localized to the HK/RR interface (Figure 6B). A
closer examination of these pairs shows that each pair forms a physical interaction across the
HK/RR interface (Figure 6C), suggesting that these pairs may be important for determining
specificity in bacterial two-component signaling systems. Indeed, several of these positions
have previously been mutated to alter the specificity of HK-RR interactions: HK-Thr in Pair
1, HK-Tyr in Pair 9 and HK-Val in Pair 11 (Skerker et al., 2008). The remaining pairs,
including those that highly co-vary in designed sequences but not natural sequences,
represent potential opportunities for rewiring two-component signaling specificity using
computational protein design.

Future Challenges
The success of flexible backbone sampling methods in predicting mutant side chain (Figure
2) and alternative (Figure 3) conformations indicates the broad utility of these methods in
designing sequences compatible with a target “native” structure. Previous studies have used
Rosetta to provide structural mechanisms for NMR measures of protein dynamics (Friedland
et al., 2009; Friedland et al., 2008) and to design mutations that stabilize specific
conformations from a dynamic ensemble (Babor and Kortemme, 2009; Bouvignies et al.,
2011). Additionally, the comparisons to naturally and artificially selected sequence data
suggest that flexible backbone methods can be leveraged to design libraries for generating
proteins with new or improved functions (Friedland and Kortemme, 2010).

Despite these successes, exploiting backbone flexibility to design conformational
heterogeneity, in contrast to design of a single target structure, remains largely unaddressed.
A major challenge in the coming years will be to adapt these methods to design functionally
important protein conformational dynamics. Examples of these design challenges include:
designing loops to sample multiple conformations that exclude water and permit substrate
flux during an enzymatic catalytic cycle, creating peptide binding domains where specificity
is encoded by distinct binding modes, or generating coupled networks of side chain
conformations that respond to an allosteric binding event.

To meet these lofty challenges, scoring functions must be sensitive to the small gaps that
separate these conformations on the energy landscape (Fleishman et al., 2011). In addition,
to avoid having populations biased by the sampling algorithm and provide better estimates
of conformational entropy, the Monte Carlo move sets must obey detailed balance
(Hastings, 1970). In addition to improvements in scoring and thermodynamics, more
sophisticated sampling protocols will likely be needed. Here, we have primarily focused on
backrub moves around Cα. However, sampling the “native” state of some protein
environments may benefit from different strategies or iterations through a combination of
sampling moves. Indeed, we have recently had success at modeling conformational changes
that propagate away from a designed mutation by iteratively switching between different
sampling and scoring strategies during the course of a single simulation (Kapp et al., 2012).
Learning from the successes and failures of these new strategies will be essential to improve
both protein design and our understanding of the relationship between protein
conformational dynamics and function.
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Figure 1. The backrub move and its applications in Rosetta
(A) The Richardson group originally described the “Backrub” move asa rotation around the
Cαi-1 and Cαi +1axis by τdisp, along with simultaneous peptide plane rotations (τ1 and τ2),
without disturbing other surrounding atom coordinates. (B) By changing the position of the
Cαi-Cβi bond vector, this move can couple side chain rotameric changes with small local
backbone adjustments.(C)In Rosetta, the generalized backrub move isa single rotation that
can also include longer intervals and other backbone atom types as pivots for the rotations.
(D) Implementing backrubs as a Monte Carlo move in Rosetta enables a variety of flexible
backbone prediction and design applications that are described in this paper: predicting
mutant conformations (Figure 2), modeling alternative conformations (Figures 3 and 4),
coupling conformational and sequence plasticity (Figure 5), and designing amino-acid co-
variation at protein interfaces (Figure 6).
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Figure 2. Backrub sampling improves the prediction of mutant side chain conformation
compared to fixed backbone simulations
(A) Example predictions of mutant conformations given the wild type structure, with the
indicated PDB codes and point mutations. The mutant crystal structure is shown in yellow
compared to the wild type crystal structure (green, left), prediction based on fixed backbone
simulations (magenta, center), or prediction based on backrub flexible backbone sampling
(cyan, right). (B) The overall quantification of the results of fixed backbone and backrub
predictions over a set of 136 buried (SASA <5%) side chains with conformations differing
by more than 0.2 Å between mutant and wild type. The median RMSD decreases from 1.17
Å to 0.98 Å. Shown are box plots with the median as a black line and the 25-75th percentiles
in the shaded box with outlier-corrected extreme values as dashed lines. (C) A scatter plot
representation of the data in (B) shows that for many mutant structure predictions backrub
leads to large improvements compared to fixed backbone simulations.
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Figure 3. Backrub sampling improves the prediction of alternative side chain conformations
observed in protein crystal structures
(A) Electron density sampling by Ringer around the χ1of R29 from PDB 1KWN reveals
high electron density for the primary conformation 60° and a secondary peak (indicated by
the black arrow), above the 0.3σ threshold that enriches for alternative conformations
(shaded green area), near the 180° rotameric bin. (B)2mFo-DFc electron density surrounding
R29 from PDB 1KWN contoured at 1σ (blue mesh) and 0.3σ (cyan mesh). The original
PDB model is shown in yellow, with an alternative conformation identified by Ringer and
modeled with qFit at 25% occupancy shown in green. (C) Example predictions with Rosetta,
with the indicated PDB codes and residues. Sampling of side chain conformations (yellow)
starting from alternative conformations (green, right) is improved by flexible backbone
backrub moves (cyan, right) compared to fixed backbone side chain only sampling
(magenta, center). (D) The overall quantification of the results, showing that backrub
sampling increases identification of discrete side chain local minima modeled as alternative
conformations by qFit compared to fixed backbone models over a set of 152 side chains
with solvent accessibility less than 30%. The median RMSD decreases from 0.47 to 0.33.
Box plots are shown as in Figure 2C. (E) A scatter plot representation of the data in (D)
shows that backrub leads to large improvements compared to fixed backbone for many
alternative conformation predictions.
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Figure 4. Backrub sampling can be used to model functionally relevant alternative
conformations
(A) NMR relaxation experiments detect that residues in a dynamic network (cyan
transparent surface) undergo a collective exchange between a major and minor conformation
with and without substrate present (Eisenmesser et al., 2002; Eisenmesser et al., 2005;
Fraser et al., 2009). Room temperature X-ray data collection and qFit multiconformer
refinement identify a major (green) and minor (yellow) conformation providing a structural
basis for the NMR observations. Additional alternative conformations are shown in orange.
(B) Rosetta simulations can access the alternative conformation starting from either state
(yellow/green) using backrub (right, cyan), but not fixed backbone (middle, magenta)
sampling methods.
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Figure 5. Rosetta generates near native ensembles using backrub sampling
(A) Cα cartoons of Rosetta generated conformational ensembles using backrub sampling at
different temperatures, compared to the fixed backbone (top left). Higher temperatures
increase the conformational diversity and can increase agreement with experimental data.
The PDZ domain structure is shown in white and peptide in grey. (B) Example results from
the sequence tolerance protocol to predict peptide specificity for 4 PDZ domains (DLG1-2,
MPDZ-12, MPDZ-13 and Erbin) and 1 PDZ domain point mutant (Erbin V83K); peptide
positions are indicated using the standard nomenclature for PDZ domain motifs, with 0
denoting the C-terminal residue, followed by -1, -2, etc. Without backbone flexibility
Rosetta fails to predict important residue preferences observed in experimental phage
display selections, such as valine at the 0 position or tryptophan at the -1 position for
DLG1-2 and Erbin.
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Figure 6. Rosetta backrub design methods capture features of evolutionary amino-acid co-
variation
(A) Comparison between designed and natural intermolecular amino acid co-variation for
histidine kinases (HK) and their cognate response regulators (RR). Each point represents a
pair of amino acid positions. Natural co-variation was quantified using a mutual information
based metric for all pairs of positions in a multiple sequence alignment of HKs concatenated
to their cognate RRs. A backrub ensemble of 500 structures was generated for a HK/RR
complex (PDB ID 3DGE) and RosettaDesign was used to predict one low energy sequence
for each structure in the ensemble. Designed co-variation was quantified for all pairs of
positions in the resulting multiple sequence alignment of 500 sequences. The red lines
indicate the threshold cut-off for the top 30 designed co-varying intermolecular pairs
(horizontal) and the top 30 natural co-varying pairs (vertical). The 12 intermolecular pairs of
positions that are highly co-varying in both designed and natural sequences are highlighted
in green. (B) The structure of a HK/RR complex with amino acids that are involved in
highly co-varying intermolecular pairs in both natural and designed sequences are shown in
green and stick representation. (C) Close-up of the 12 intermolecular co-varying pairs. Each
of these 12 pairs of amino acids forms a physical interaction across the interface of the
complex.
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