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Abstract

The causal relationship between urban form, in particular density, and
travel demand is subject to debate. Here, we investigate this relationship
using a structured regression approach applied to a large-scale layered
dataset of travel patterns and urban form. We find that residents of
dense urban areas use 80% less energy for transportation than residents
of rural areas and explore the causal factors influencing this relationship.
We find that a primary driver of the density/energy use relationship is
the larger number of nearby destinations available to urban dwellers,
followed by reduced road network capacity for cars and higher public
transit availability. An increase in destinations available further away
due to urban sprawl can reduce these benefits. While these proper-
ties are correlated with density, we find that the independent effect of
density is small—instead, we identify several measures of urban form
that substantially affect travel energy use even within a given density
bracket. We also show that urban form predominantly influences how
and where people travel, rather than how often and how long. These
results outline pathways for cities and communities to reduce the environ-
mental impact of travel while increasing access to relevant destinations.

Keywords: Urban form, density, travel demand, transportation energy
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Main

Personal mobility accounts for a substantial fraction of urban greenhouse gas
and air pollutant emissions [1], including in the United States [2]. Travel pat-
terns and energy demand of travel have been found to correlate with certain
aspects of the built environment, in particular density [3, 4]. As a result, land
use and urban design policies may contribute to energy consumption reduction
and emissions mitigation strategies [5].

The built environment influences travel behavior differently at different
distance scales. At the macro scale, residents of larger cities have been found
to travel further each day than those of smaller cities [6, 7]. At the intermedi-
ate or meso scale, the strongest effects are commonly found [8–10], including
influential factors such as most aspects of density and land use diversity (land
use entropy). At the micro scale, local urban design can affect modal choice,
in particular the likelihood of someone to walk [8, 11]. Effects at the meso-
and micro-scale have been dubbed the “3 Ds” of travel demand: density, (land
use) diversity, and design [8]. This is what we define to be ‘urban form’ here:
the physical characteristics of the built environment that can affect travel
behavior, including the density, size, and configuration of settlements and their
transport network.

The observed magnitude of the causal relationship between urban form
and travel demand at different scales is contested (e.g. [12, 13]) and can vary
substantially based on study design [4, 14]. Differences among existing studies
include how urban form and travel behavior are measured. For example, most
existing studies focus on vehicle miles traveled (VMT), often per household and
year [5, 15]. Such analysis does not explicitly reflect travel on non-automotive
modes, limiting insights on aggregate travel demand and substitutions between
modes. Studies also differ in whether they measure urban form through den-
sity as a proxy, or explicitly through concepts such as access (e.g., the typical
distance or travel time to key destinations). Some consider both, thus poten-
tially confounding the two (e.g. [3, 15, 16]). Further differences exist in whether
and how residential self-selection and other forms of endogeneity are treated
(e.g. [4, 17, 18]). Finally, most existing studies focus on a specific city or set of
neighborhoods within a city [4], thus not capturing the full set and magnitude
of differences that can exist between different areas. We include a tabularized
comparison between key existing studies and this work in Supplementary Note
1.

As a result of these limitations, existing studies on X have been limited
in geographical scope or comprehensiveness in representing urban form. Often
looked at one metric, such as annual vehicle vehicles traveled, and rarely
considered multiple or including total travel energy use.

Here, we evaluate the impact of urban form on travel demand across the
entire United States. We measure travel demand as the behavior of individual
people in terms of cumulative daily travel distance, cumulative daily travel
energy use, cumulative daily travel time, and daily number of trips. To address
the correlation between different aspects of urban form, such as density and
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access, we construct a layered model that allows us to investigate what spe-
cific features of urban form affect travel demand the most and how they are
related to density. We include a large number of demographic characteristics
and other control variables to address residential self-selection and other poten-
tial biases. We model these relationships using a path analysis—a special case
of a structural equation model without latent variables.

We combine the coverage of nation-wide studies with the regional detail
found in region-specific studies by merging data from the 2017 United States
National Household Travel Survey [19] (NHTS) with data containing a diverse
set of characteristics on urban form for each of the 220,000 census block
groups in the United States, which we gathered from the U.S. Environmental
Protection Agency’s Smart Location database [20] and from OpenStreetMap
[21].

The NHTS... While the NHTS data has previously been used to study the
relationship between the built environment and travel (e.g. [10, 15, 22, 23]),
the lack of detailed contextual data on urban form has been limiting its use.
Our combined dataset allows us to investigate this relationship using a large,
weighted sample that representatively spans the entire United States while
considering detailed information on urban form at the local level.

Our work reveals the quantitative relationship between different aspects of
urban form and daily travel demand. It also contributes meaningfully to the
discussion of how urban form can effectively be measured and quantified in
the context of mobility, and how various features of urban form relate to each
other. Therefore, this work supports the fundamental understanding of the role
that urban planning and design can play in the decarbonization of our cities.
In doing so it uncovers specific, actionable policy measures that can contribute
to decarbonization goals, as well as quantifying some of the potential benefits
and risks of urban form interventions.

Observations from cross-sectional travel survey data

We begin by using the NHTS data to evaluate travel demand, measured in
person travel days, in relationship to the density around the traveler’s house-
hold (specifically, its census tract). Measuring travel using cumulative daily
statistics, as opposed to per-trip statistics, allows us to consider shifts between
modes (e.g., is a reduction in the number of trips made by car per person and
day directly correlated with a corresponding increase in walking trips?) and
evaluate patterns in terms of total time spent traveling and total number of
trips made per day (e.g., if higher density causes trips to be shorter, do people
make more trips instead?). We also use an ‘effective’ measure of density that is
based on the number of housing units and jobs per area, capturing areas with
high commercial or industrial activity more accurately while being similar in
scale to the more commonly used residential population density. More details
regarding our approach are provided in the Methods section.

The data indicate that density, spanning rural environments to dense urban
areas, is strongly correlated with travel demand (Figure 1). People living in
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the densest urban areas (with a density of 13,000 household units and jobs per
km2, approximately equivalent to a residential population density of 13,000
people per km2) travel 50% less far per day and spend 70% less energy doing
so than people living in rural areas. Daily travel energy use decreases linearly
with the natural logarithm of increasing density. People in urban areas also
spend more time traveling each day, on average, than people living in rural
to suburban areas. The average number of trips made per person and day is
relatively constant, with a 15% increase in the densest areas. These observa-
tions are slightly dependent on metropolitan area population: people living in
large metropolitan areas travel further and longer each day, but with fewer
trips, than people living outside of metropolitan areas but in a similarly dense
environment.

In rural to mid-density suburban areas (up to 2,000 housing and job units
per km2, approximately equivalent to 2,000 people/km2), 90-95% of all trips
are car trips (Figure 1d), and the number of trips per day is roughly uniform.
Therefore, the decrease in daily travel distance and daily travel energy use
from 0 to 2,000 units/km2 is predominantly the result of a decrease in typical
travel distances made by car (Figure 2a). This decrease is correlated with a
simultaneous decrease in average car travel speeds (Figure 2a,b).

As density increases further, the average distance of trips made by car no
longer decreases. Instead, more trips are made with other modes, in particular
walking (Figure 1d). The travel speeds of trips made with a car, however, keep
decreasing. Car trips between 5 and 10 km are almost half as fast (ln(0.5) =
−0.69), on average, in dense urban areas as in rural areas. This indicates that
car travel speeds are strongly correlated with daily travel energy demand.
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Fig. 1 The four travel behavior indicators as a function of density and metropolitan area
size. Density is based on household units and jobs per land area and is comparable to
residential population density in terms of magnitude (see Methods). The bars show average
values for all people living in an area with the corresponding density, and the bootstrapped
95% confidence interval of the daily total. Shaded areas reflect the range between people
living within large (population >3M) metropolitan areas and people living outside of any
metropolitan area. For the highest two population density brackets, the sample size for ‘No
metro area’ is too small. People who did not travel on the sampled travel day (0 for all
indicators) are included. n=246,072.
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Modeling effect pathways and controlling for
demographics

The preceding section provides insight into the correlation between travel
demand and density across the United States. However, it still leaves many
questions unanswered. Where does the strong effect of density on travel behav-
ior come from? How much is it confounded by demographic characteristics
and residential self-selection (i.e., people with an inherent preference toward
certain travel characteristics choosing to live in an environment that enables
those preferences)? Is the increase in average daily travel time in higher den-
sity areas the result of decreased car travel speeds (and correspondingly longer
typical travel times for trips made by car), or the result of an increase in pub-
lic transit and walk mode share? And is there evidence that higher car travel
speeds cause higher daily travel energy demand, or is the observed correlation
fully explained by confounding factors?

<1
00

 p
/k

m
²

10
0-

25
0 

p/
km

²
25

0-
60

0 
p/

km
²

60
0-

2,
00

0 
p/

km
²

2,
00

0-
5,

00
0 

p/
km

²
5,

00
0-

13
,0

00
 p

/k
m

²
13

,0
00

+ 
p/

km
²

0.50

0.25

0.00

0.25

Va
lu

e 
re

la
tiv

e 
to

 <
10

0 
p/

km
² (

lo
g) a Individual car trips

<1
00

 p
/k

m
²

10
0-

25
0 

p/
km

²
25

0-
60

0 
p/

km
²

60
0-

2,
00

0 
p/

km
²

2,
00

0-
5,

00
0 

p/
km

²
5,

00
0-

13
,0

00
 p

/k
m

²
13

,0
00

+ 
p/

km
²

b Ind. car trips (5-10 km)
<1

00
 p

/k
m

²
10

0-
25

0 
p/

km
²

25
0-

60
0 

p/
km

²
60

0-
2,

00
0 

p/
km

²
2,

00
0-

5,
00

0 
p/

km
²

5,
00

0-
13

,0
00

 p
/k

m
²

13
,0

00
+ 

p/
km

²

c Ind. car trips (50-200 km)

Dist. [km]
Time [min]
Speed [m/s]
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n=161,863) and for trips with a distance between 50 and 200 km (right; n=33,501).
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features representing a given indicator is available in the Methods section. Solid arrows
reflect links related to urban form; dotted arrows reflect controls.
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To address these questions, we extend a restricted (i.e., non-public) version
of the 2017 NHTS data that contains the approximate location (the census
tract) of each traveler’s household by matching that household location with
additional information from the Smart Location database [20], OpenStreetMap
(accessed using OSMnx [21]), and the Typical Meteorological Year (TMY,
[24]). We then apply a path analysis to this comprehensive dataset that enables
us to explain which aspects of urban form affect travel behavior and how
they are correlated with density while controlling for residential self-selection
and other characteristics (Figure 3). A more extensive discussion of residential
self-selection is available in the Methods and Discussion sections.

Explaining the impact of density on travel through urban
form

We confirm that population density has a substantial impact on daily travel
behavior and energy consumption, even when controlling for demographics and
other factors (Figure 4a,b). Compared to the least-dense areas, dense urban
areas show a reduction of 72%1 in daily average travel distance and a reduction
of 78% in daily travel energy use. While a larger fraction of the population
travels on a given day in dense urban areas (+8.1%), Figure 4e), fewer travelers
make any motorized trips (−16.8%, Figure 4f). Combining these probabilities
with the reduction in energy consumption of people who do make at least one
motorized trip (Figure 4b), the densest urban areas cause a reduction in daily
travel energy use of 80% as compared to the least dense rural areas.

Supplementary Note 8 adds further insight into why demographic factors
do not substantially affect the previously identified relationship between den-
sity and travel demand: while demographic factors explain a large fraction
of daily travel demand, they are barely correlated with specific characteris-
tics of urban form such as access, road network properties, and public transit
infrastructure.

Of the total effect of density on travel demand, a large portion (46% in
terms of daily travel distance, 40% in terms of daily travel energy use) can be
attributed to the correlation between increased density and increased access
to locations no more than 10 km away (beeline distance). The rest of the effect
on daily travel energy use can be explained by road network properties (such
as block size and network structure), road capacity per capita, public transit
infrastructure, and land use entropy, in this order of importance.

We also confirm that the size of a metropolitan area has a considerable
effect on daily travel distance, energy use, and travel time Figure 4a-c). People
living in large cities (with a metropolitan area population of 3 million or more)
travel 28% further each day, for 17% more time, than people living outside of a
metropolitan area, all else being equal. This is predominantly the result of an
increased number of possible destinations at least 10 km away (an effect that,

1e−1.39+0.12 − 1 = −0.72; see section on coefficient interpretation in Methods
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Fig. 4 Effect of adjusted population density and metropolitan area size on travel demand,
explained by 6 groups of features of urban form and direct (unexplained) effects. The baseline
is <100 p/km2 and not part of any metropolitan area. The percentage values on the right
reflect the impact in percent (p = exp(−v) − 1, where v is the original y-axis value). The
black diamond markers show the net effect size. Results for the fixed effects of each of the
10 metropolitan area codes with largest sample size (see Figure 3, top left) are shown in
Supplementary Note 5.

as we will show later, can be mitigated by having access to more destinations
nearby).

Daily average travel time and in particular the number of trips per day
are affected less by density than daily travel distance and travel energy use,
even when controlling for demographics (Figure 4c-d). The net effect is also
partially negated by the fact that dense areas are mostly located inside large
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metropolitan areas in the United States, and larger cities exhibit higher daily
travel times and number of trips. The increased access to public transit in
dense urban areas also leads to an increase in typical daily travel times, acting
in opposition to the correlation between density and accessibility to nearby
destinations. Increased access to public transit (typically slower than car), in
combination with the increase in far-away destinations associated with large
metropolitan areas, causes the observed increase in average daily travel time
in dense areas in Figure 1.

Notably, the direct or unexplained effect of density and metropolitan area
size is small for all travel metrics, in particular for daily travel distance and
energy use (Figure 4a-f). This implies that the measures of urban form that
we did include comprehensively cover the mechanisms through which density
reduces daily travel distance and energy use. It also indicates that the identified
relationships in their sum are unlikely to be strongly under- or overestimated.
If they were, the free coefficients for the unexplained effect would need to
correct an overestimated effect for some, but not all, density or metropolitan
area size brackets.

Investigating specific aspects of urban form

Next, we explore individual measures of urban form and their impact on daily
travel energy use, daily travel time, and the probability of making at least one
motorized trip during a given day (results for the other three indicators are
available in the Supplementary information). Contrary to the results in the
previous section, where aspects of urban form were evaluated in the context
of density and metropolitan area population size, the results of this section
are independent of the extent to which individual aspect of urban form are
correlated with density and size.

Access to destinations nearby, particularly to destinations closer than 2
km, is one of the key causes for a reduction in average daily travel energy
use (Figure 5b). This effect is amplified considerably when many destinations
10-100 km away are present, which lead to an increase in daily travel energy
demand. This interaction illustrates a ‘tension’ between nearby and further-
away destinations.

In our formulation, urban form can impact travel demand directly, or it
can impact vehicle ownership, which in turn impacts travel demand. We find
that most of the effect of urban form on travel demand is direct, but that
vehicle ownership still plays a substantial role. This suggests that the choice to
walk or take public transit is less tied to the lack of availability of a car than
it is to the availability of destinations that are accessible by these alternative
modes. Similarly, it suggests that policies leading to marginal changes to car
ownership, when isolated from other impacts on urban form, are unlikely to
effectively reduce (or increase) travel energy demand.

Changes in observed daily travel time can result from changes to daily
travel distance, from passengers switching from one mode to a faster or slower
one, or from changes to the travel speed associated with a given mode (in
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Fig. 5 Effect of individual aspects of urban form on the probability of making at least
one motorized trip, daily travel energy use of those motorized trips, and daily travel time.
Equivalent results for the other three indicators (see Figure 3) are shown in Figure 6 in
Supplementary Note 6. All features are normalized to a range between 0 and 1, and all coef-
ficients have been multiplied by the mean average deviation of the corresponding predictor
(column ‘MAD’) to indicate the average contribution of variation in daily travel patterns of
each aspect across the United States. Equivalent figures with unadjusted coefficients (show-
ing the maximum impact rather than the average contribution) are shown in Figures 7-8
in Supplementary Note 7. Column ‘Corr’ indicates the correlation coefficient between each
aspect and the natural logarithm of density. A detailed description of how each feature is
defined is available in the Methods section.

particular, from roadway congestion). Access entropy (land use diversity) and
access to destinations less than about 2 km away are both associated with
decreases in typical average daily travel time, implying that they allow travelers
to take shorter-distance trips and spend less time traveling overall. On the
other hand, increased bus and rail station access is associated with increased
daily travel time through changes in mode split, and an increase in access to
destination 10-100 km away and increased road capacity is associated with an
increase in daily travel time through longer trips.

Notably, these results have been adjusted by the extent to which each
aspect varies across the United States (column ‘MAD’ in Figure 5). Unad-
justed results are shown in Supplementary Note 7. They highlight, for example,
that access to rail can reduce daily energy use substantially, but that the aver-
age effect across the country is mitigated by the fact that most households
currently do not have access to rail service.
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If you build it, they will come

Another factor that is strongly correlated with an increase in daily travel
energy use and time is road capacity (Figure 5a-c). In particular, increased road
capacity may enable access to destinations 10-100 km away (which increases
overall travel distance), and appears to disincentivise travelers from using non-
motorized modes (Figure 5a). This finding is consistent with the expected
impacts of induced demand—a phenomenon that takes place when roadway
congestion is acting as a binding constraint on demand for car travel, and
by which increasing roadway capacity leads to more car travel. Were induced
demand to be unimportant, one would expect increases in roadway capacity
to be associated with decreases in travel time owing to reduced congestion,
suggesting that the travel-inducing impacts of increases in roadway capacity
outweigh the congestion-mitigating ones.

Evidence for induced demand, particularly in urban areas, can also be found
elsewhere. In particular, urban form characteristics associated with faster or
easier driving do not tend to lead to overall reductions in travel time. For
instance, an increase in the average speed limit can be expected to be associ-
ated with an increase in typical travel speeds for car trips, but higher speed
limits lead to no net decrease in travel time, suggesting that travel speed
increases due to higher speed limits (and the associated higher-speed road-
way design) are entirely counteracted by increases in congestion and/or longer
distance trips. A smaller share of one-way streets and a lower intersection den-
sity (e.g. longer blocks) increase the likelihood of taking at least one car trip,
appearing to make car travel more, and non-motorized travel potentially less
convenient. Fewer four way intersections (associated with a suburban rather
than a typical urban street layout) are not associated with the same increase
in car trips, but these factors all lead to an increase in daily travel energy
use while hardly affecting daily travel time suggesting that car-friendly urban
form leads to either more or longer car trips.

Similarly, increases in roadway capacity are associated with more car trips,
more energy use, and more travel time. The observed effect of automotive road
capacity (where pedestrians are not allowed) is smaller than that of pedestrian-
accessible roads. This is likely because we only measure road capacity around
the traveler’s household in a radius of 5 km, not around each trip origin or
destination, thus only partially capturing the effect of automobile road capacity
on the prevalence of longer car trips. We discuss this modeling choice more
extensively in the Methods section.

Discussion

Our results suggest that higher density does indeed lead to substantially less
travel energy use, in a large part due to increased access to nearby destinations
less than 10 km away, and in particular destinations less than 2 km away. Part
of the benefit of denser areas, however, is offset by the fact that most dense
areas are located in large metropolitan areas. Combining these observations,
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Fig. 6 Examples of areas with higher and lower predicted energy use while controlling
for density and access to nearby destinations, for medium density (left two columns) and
high density (right two columns). The percentages indicate the estimated difference in per-
capita mobility energy use compared to the corresponding urban area to the left due to
differences in the category of the corresponding row. This illustrates that population density
is a reasonable but not definitive predictor of travel energy use, and that there are measures
that can be taken to reduce travel energy use without having to increase density. Each map
shows an area of 3x3 km. Public transit access, which also was found to have an impact
on travel energy demand (see Figures 4 and 5 and Supplementary Note 7), is not shown.
Plotted using network data from OpenStreetMap (accessed through OSMnx [21]).

our work suggests that promoting many urban centers no more than about
3-5 km apart from each other, to build ‘cities within a city’, may mitigate
the demand-increasing effect of large cities while maximizing the demand-
decreasing effect of local access.

While density is a good overall predictor of travel demand, properties of
the local street network contribute as well. And while density and access to
nearby destinations are correlated, they are not identical: an area with a given
density can still have better or worse overall access to a variety of destinations
closeby. For a given population density, lowest private vehicle travel energy use
is therefore found in areas with strong local access, a highly connected street
network, and low road capacity per capita (Figure 6). These examples also
illustrate that there are measures that can be taken to reduce travel energy
use without having to increase density, accommodating people who prefer to
live in lower-density areas.
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Efforts to reduce travel energy use should not come at a cost of reduced
access to opportunities for the population. Lowering road capacity for cars,
for example, should be complemented by increasing walking access to nearby
and public transit and cycling access to destinations further away (conversely,
any increases to road capacity should be complemented by policies aimed at
discouraging new, long-distance trips). Critically, our work indicates that pro-
viding access to a variety of destinations for all communities throughout a
city is symbiotic with lowering energy consumption if all key measures are
implemented simultaneously.

While in line with existing literature overall, our results indicate a stronger
relationship between urban form and travel demand than some existing work
[4] and appear to contradict certain previous findings that the impact of the
built environment on travel is strongly confounded by demographic character-
istics and attitude (e.g. [18, 25]). While we observe that demographic factors
indeed explain a large fraction of the variance in daily travel demand, they
are weakly correlated with specific characteristics of urban form (see Table 3
in the Supplementary information).

Instead, we postulate that there are two major drivers that distinguish our
findings and those previous observations. First, we consider the most rural all
the way to the densest urban areas, while incorporating detailed information
on urban form for each location. Studies that attribute a strong confounding
effect to attitude have predominantly compared individual, nearby neighbor-
hoods (e.g. [25, 26]). This design makes it more likely that differences in travel
behavior are attributed to attitude, especially when those neighborhoods are
relatively similar in terms of urban form, but distinct in terms of demo-
graphic characteristics. Second, attitudes themselves may be affected by the
built environment over time [18, 26–28]—in fact, attitudes may exemplify a
key mechanism through which urban form can affect travel demand: by modi-
fying the perceived attractiveness of certain modes and destinations compared
to other options.

Our work also reaffirms that the daily travel time budget is relatively con-
stant across very different urban environments [29, 30], although we observe an
even higher regularity for the average number of trips made per day. As such,
our findings add to current literature on the underlying regularity of human
travel patterns (e.g. [31]). These observations are closely related to induced
demand: if the time spent traveling per day is constant for a given individual,
then an increase in travel speed will lead to higher daily travel distance and
energy use through longer trips and/or modal shifts. This indicates that the
urban environment can influence how people travel and where, but not how
often and for how long. Therefore, the former should be the focus of future
policy and planning decisions aimed at decarbonization. Similarly, since travel
patterns are largely derived from the built environment, we should plan for the
patterns we want there to be, not for those that we project based on historical
data.
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A limitation of our study is the resolution and accuracy of certain measures
of urban form. Since all data is collected at the census block group level, we are
not able to investigate micro-scale effects of urban form on travel behavior. In
addition, while we do identify an impact of land use entropy on travel demand,
our measure of entropy is relatively coarse (see Methods). Finally, for street
network properties, certain data had to be imputed, possibly mitigating the
resulting effect size. Improvements in these measures would be unlikely to alter
any of our key conclusions, but could improve our understanding of the relative
importance of specific aspects of urban form in different contexts, especially
for walking trips.

Future work could therefore improve how urban form is measured and find
ways to integrate information on urban form measured at the origins and des-
tinations of each trip, rather than just around the location of each traveler’s
household, and information on travel speed and congestion, without introduc-
ing simultaneity or other forms of endogeneity. Another key avenue for future
work will be to achieve an increase in the spatial resolution of the analy-
sis. Analyses based on travel survey data, such as ours, could be combined
with crowd-sourced mobility pattern data to verify and further investigate the
observations made here [32]. This increase in spatial resolution could be accom-
panied by additional measures of urban form. Image processing of satellite and
street view images may assist in these measures, similarly to recent efforts for
building energy modeling [33]. More sophisticated methods could also be used
to include the impacts of climate, including urban microclimates, on travel.

Our work provides evidence for a strong causal link between properties of
urban form and daily travel demand and energy use. Distributed urban centers
that provide local access to a variety of destinations to a large part of the
population, connected streets with low capacity for motorized vehicles, and
public transit infrastructure should be prioritized in order to lower the energy
consumption of travel. This outlines a pathway for cities and communities to
reduce the energy demand and traffic of personal mobility while maximizing
access to destinations for all communities.

Method

Summary

We evaluate the relationship between urban form and daily travel demand
per capita while controlling for demographic and other properties. We imple-
ment the model structure shown in Figure 3 using a path analysis, a subtype
of structural equation models (SEMs) without latent variables. Similar tech-
niques have previously been used in the context of travel demand modeling
[15, 23, 34].

The model is applied to the weighted National Household Travel Survey
(NHTS) data, consisting of randomly sampled travel days made by 245,072
people after filtering. This travel survey data is complemented with data from
other sources at the census block group (CBG) level, aggregated to the census
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tract (CT). The average CBG has a population of about 1,500 people, meaning
that there are about 220,000 CBGs in the United States. There are about 3
CBGs per CT. A summary of properties of all variables used in the analysis
is available in Supplementary Note 9. The estimated coefficients, along with
their significance levels, are shown in Supplementary Note 10.

Measuring mobility demand

Existing analyses of mobility demand can be grouped along three axes: the
modes they consider (usually either car trips only, or all urban trips), their
geographic scale of analysis (individual person, household, or neighborhood/c-
ity), and the unit of time over which they measure mobility (annual, daily,
or individual trips). The most common metric to gauge travel demand in the
context of energy use and sustainability is daily or annual household vehicle
miles traveled (VMT; see Table 1 in the Supplementary information for a list of
examples). However, VMT do not include trips made with other travel modes,
making it difficult to determine whether and how trips are substituted when
they are not made by car. Household VMT are also confounded by household
size and structure. Finally, in many travel surveys, VMT are self-reported,
making the metric prone to noise and potentially response biases.

Modal choice studies, on the other hand, often focus on individual trips.
While this mitigates some of the issues associated with measurements of annual
household VMT, analysis of individual trips does not capture unobserved
aspects of travel behavior that may be correlated with the characteristics of
individual trips. For example, if higher density means trips become shorter, do
people make more trips instead?

Here, we measure travel behavior in terms travel days. Each travel day
represents the cumulative sum of travel activity (such as travel distance) made
by a given person on a single day. This approach can allow us to combine
the benefits of annual travel miles with the benefits of measuring individual
trips. Specifically, we consider four indicators of travel behavior: daily total
(cumulative) travel distance per person, daily travel energy use per person,
daily travel time per person, and number of individual trips made per person
and day. These four indicators provide a comprehensive picture of the different
ways in which urban form might affect travel behavior.

Measuring urban form

Early efforts to quantify the impact of urban form on travel demand often
focused on population density. In the late 90’s, the notion of the “3 D’s” of
travel demand (density, land use diversity, and design) was popularized, based
on evidence from travel surveys [8]. The list of D’s kept expanding, often includ-
ing measures of access (access to relevant destinations and/or infrastructure,
including public transit infrastructure). Access as well as street network prop-
erties are closely related to density, however, and may reflect one of the key
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mechanisms through which density affects travel behavior rather than being
separate factor [4, 35].

To preserve the intuitive concept of density but also understand the rele-
vance of specific aspects of urban form, such as access, land use diversity, and
road network properties, we measure urban form in two layers. Initially, we
consider three urban indicators: (1) population density; (2) metropolitan area
population of the core statistical area (CSA); and (3) fixed effects for indi-
vidual metropolitan areas with sufficient sample sizes. These indicators are
readily available in most travel surveys and are intuitive to understand.

In a second step, we tie these indicators to specific measures of urban form,
including access to destinations, land use diversity or entropy, access to public
transit network, and various street network and road design properties.

Notably, removing this second layer from the model would not change the
total measured effect of the first-layer urban indicators on daily travel demand.
The purpose of the second layer is to explain where the total effect of density,
metropolitan area population, and metropolitan area code on travel comes
from, and which aspects of urban form and urban design could be leveraged
most effectively to reduce daily travel energy use.

Through the structure in Figure 3, we also assume that there are no strong
causal links between the individual aspects of urban form measured here that
would need to be included explicitly. We believe this assumption to be jus-
tified, since the different properties can be planned, designed, and adjusted
simultaneously and largely independently. Correlations, however, are likely to
exist, and need to be evaluated carefully to avoid over- or underestimation of
coefficients due to strongly correlated predictors. We discuss this further in
the section describing endogenous variables reflecting urban form.

Finally, instead of measuring density as residential population density, we
consider the combined household and job density (the sum of the number of
households and jobs per area) as indicated by the smart location database [20].
This approach alleviates issues with residential population density where dense
but predominantly commercial or industrial areas would be considered low-
density due to the lack of residents in the area. Conveniently, the sum of the
total number of housing units and jobs across the United States. (324,600,000)
is almost identical to the sum of the total number of residents (322,900,000;
-0.53%), meaning that the combined housing and job density is comparable in
scale to residential population density, whose figures may be more intuitively
familiar.

Addressing residential self-selection and other forms of
simultaneity

The relationship between urban form and travel behavior can be obfuscated
by residential self-selection: people with specific attitudes (e.g., preference to
walk) may choose to live in specific areas (e.g., dense urban areas), meaning
that the built environment does not necessarily cause the choice to walk [36].
This represents simultaneity, where multiple variables (travel behavior, urban
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form as a residential choice) are co-determined and affect each other. Simul-
taneity is a case of endogeneity and can therefore lead to biased coefficient
estimates [23].

Self-selection preferences are often measured by some form of attitude.
Prior evidence suggests that urban form does affect travel behavior even when
attitude is controlled for [11, 26, 27, 36]. While these previous studies include
a measure of attitude towards travel to account for self-selection, the NHTS
data used here does not contain sufficient data to evaluate inherent attitude
towards travel. In addition, attitude itself can be shaped by the built envi-
ronment [18, 26–28], implying that including attitude explicitly may lead to
underestimations of the effect of urban form on travel. Here, we control for
residential self-selection by incorporating a wide variety of demographic char-
acteristics, and allowing those characteristics to moderate the link between
the urban indicators and travel demand through the included endogenous
variables, as well as the final travel demand itself (see Figure 3).

Notably, residential self-selection is not the only aspect of simultaneity that
can occur in the context of this analysis. In particular, it might seem tempting
to measure the population density at the origin and destination of each trip
instead of at the traveler’s household location, yielding a more accurate pic-
ture of the urban environment in which the trips took place. However, relating
urban form to individual trips can introduce bias. For example, we may find
that if both trip origin and trip destination are located in a high-density area,
trips are shorter than if only the origin is located in a high-density area. How-
ever, this could simply be the result of the fact that two high-density areas
are inherently more likely to be close to each other than a randomly chosen
high-density and a randomly chosen low-density area.

Similarly, we may find that a high road capacity at all trip origins through-
out a travel day is related to a high modal share of car trips. However, someone
who is going to drive can be more likely to choose destinations with high
road capacity; this does not mean that a higher capacity leads to more travel.
For similar reasons, average travel speeds and congestion levels are difficult to
include as an explanatory variable for travel demand as measured here: shorter
trips may have inherently lower travel speeds and higher levels of congestion
because they take place in denser areas, but that does not mean that low
travel speeds or congestion caused a trip to be shorter. For these reasons, we
measure all properties of urban form at and around the traveler’s household,
rather than the origin or destination of each trip.

Model setup

We specify a system of simultaneous equations where all causal effects are
directed at four different measures of travel behavior (see Figure 3). For each
of the four measures of travel behavior, y, our model can be written as follows:
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 y = Uβy1 + eβy2 +Xβy3 +Cβy4 +Lβy5 + ε1

e = Uβe1 +Xβe3 +Cβe4 + ε2

U = Xβu3 +Cβu4 + ε3

(1)

where:

• y is a (n)× 1 vector of the mobility / travel behavior variable in question;
• U is a (n)× 20 matrix reflecting endogenous measures of urban form;
• e is a (n) × 1 vector of the number of vehicles per adult person in the

household of the traveler;
• X is a (n) × 20 matrix reflecting exogenous urban indicators, including

density (1 of 8 brackets, with the lowest density being the default/with-
held), metropolitan area size (1 of 4 brackets, with no metro area being the
default/withheld), and metropolitan area CBSA code (1 of 10 codes, with
none/others being the default);

• C is a (n)× 33 matrix reflecting all demographic properties;
• L is a (n)×11 matrix reflecting other exogenous control properties, including

climate variables (heat-index temperature, solar irradiation, and precipita-
tion), day of the week (with Monday being the default/withheld), the local
gasoline price, and vehicle fuel economy (which is imputed where missing);

• β... are coefficient vectors; and
• εi are n× 1 error vectors.

y, e, C, and part of L (day of week, gasoline price, and vehicle fuel econ-
omy) are taken or inferred from the National Household Travel Survey (NHTS)
data. The properties of U are obtained from other data sources and merged
with NHTS data using a restricted version of NHTS that contains the census
tract of each household, trip origin, and trip destination. The same is true for
the climate variables in L. A more detailed descriptions of all variables follows
and is summarized in Supplementary Note 9.

The four travel behavior indicators can be 0 if the traveler did not make
any trips during the sampled travel day. Daily energy consumption is also 0 if
the traveler made only non-motorized trips during the sampled traveled day,
since we define the energy use of non-motorized trips to be 0. Therefore, we
employ a censored (Tobit-type) model. The four travel behavior indicators
y are modeled conditional on y > 0. For daily number of trips, daily travel
distance, and daily travel time, this means that the person made at least one
trip during that day (event T in Figure 3). For daily energy consumption, this
also means that the person made at least one trip with energy consumption
> 0 (at least one motorized trip), given that the person made at least one trip
(event E in Figure 3).
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T = ytrips > 0

E | T = yenergy > 0 | T
ydistance = y | T
yenergy = y | T ,E
ytime = y | T
ytrips = y | T

(2)

Events T and E are estimated using the set of equations 1. For T , vehicle
fuel economy is removed from control variables C, since this value cannot be
determined for the corresponding travelers.

Contrary to common implementations of a type I Tobit model [37], we
consider the two cases (y = 0; y > 0) separately, and use a linear model for
the first submodel (whether y is 0 or not), even though the outcome is binary.
In cases where the fitted coefficients are only interpreted for causal inference,
but not used for predicting individual choices, the sample size is large, and
where most predicted values would fall into [0, 1], the use of linear models
with binary dependent variables can be justified [38]. Specifically, it allows for
better interpretability of the magnitude of the fitted coefficients [38]. In our
case, it also allows for direct comparison between the first submodel with a
binary outcome and the second submodel with a continuous outcome.

To further verify the feasibility of a linear model of the binary outcomes
T and E, we also fit a Probit model to the same set of predictors and com-
pare the predicted values between the linear and the Probit models (using
unweighted samples for each case). Compared to the Probit model, the linear
implementation yields a mean absolute error (MAE) of 0.020 and a root mean
squared error (RMSE) of 0.027 (T ) and a MAE of 0.012 and RMSE of 0.022
(E | T ). The mean error of the linear model compared to the Probit model is
therefore around 1 to 2 false predictions per 100 travel days. There is almost
no bias (mean difference between linear and Probit predictions of < 0.0002 for
both T and E).

Coefficient estimation

We estimate the coefficients in Equations 1 and 2 using the Lavaan package in
R using maximum likelihood estimation with robust standard errors (MLM)
as well as sampling weights for each row equal to the default NHTS weight
set. Incorporating the sampling weights is critical for correcting sampling and
response biases in the survey and required when working with NHTS data.
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Coefficient interpretation

All continuous travel indicators y (daily travel distance, daily travel energy use,
daily travel time, and daily number of trips) are transformed using the natu-
ral logarithm. This transformation yields distributions for y that are close to
normal (see Figure 11 in Supplementary Note 9). The transformation reduces
the heteroscedasticity in our model, therefore improving accuracy.

Therefore, the first line of Equation 1 can be rewritten as:

log(y) = Uβy1 + · · ·+ ε1 (3)

The relative change in y, ∆y,%, (e.g., the relative change in daily average
travel distance) as a result of a unit increase (+1) in a specific predictor ui
can then be expressed as [39]:

∆y,% =
y − y0

y0
= eβui − 1 (4)

Since the range of all predictors has been normalized to [0, 1], this means
that the difference between the smallest and largest value of each predictor is
associated with a relative change of ∆y,% in travel indicator y. Furthermore,
the simultaneous effect of a unit increase in multiple predictors can be assessed
similarly:

∆y,% = eβu1
+βu2

+βu3
+··· − 1 (5)

Data filtering

The NHTS contains 923,572 trips made by 264,234 people. Those people
recorded their travel activities during a randomly assigned travel day. We fil-
ter the sampled individuals by: (1) unknown population density of the census
tract of the traveler’s household; (2) traveler was out of town that day; (3)
any demographic characteristic except income is unknown. In total, 11,610 of
264,234 people were filtered out that way (4.4%).

In addition, we filter individual trips according to the following character-
istics: (1) unknown trip distance or time as well as any trips faster than 100
m/s on average and walking trips faster than 10 m/s (5,103 trips); (2) travel
mode is unknown or airplane (9,208 trips). We then remove all people from
the dataset for which at least one trip was among those trips filtered as per
the rules above (since their remaining travel days would be incomplete), which
corresponds to an additional 6,158 people being removed from the dataset.

After joining the NHTS data with urban form features U , a final 394
people are removed from the data because one or several features could not be
determined for the corresponding household’s census tract.

The final sample sizes are 245,072 people and 882,846 individual trips
(made by 203,600 people; the remaining individuals did not travel during the
sampled travel day).
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Endogenous travel behavior variables (y)

We use four measures of travel behavior: energy use, distance, time, and num-
ber of trips. Each of them is considered on a per-travel-day basis, that is,
reflects the cumulative sum of the corresponding quantity across all trips made
by a given person on a given day. For trips past midnight, the start of the trip
is considered. To do so, we aggregate the 882,846 individual trips to 245,072
travel days (or ‘day trips’), where each travel day reflects all trips made by the
corresponding person on their assigned date.

Travel energy use is not available directly in NHTS. Instead, we estimated
the energy use of each trip based on travel distance, mode, and in the case
of car trips, travel speed. For walking and biking, 0 J/m is used. For public
transit, we apply a fixed consumption of 500 J/m (rail) and 1000 J/m (bus).
For car trips, we estimate the energy consumption per distance based on [40]:

Fv =

{
(15− v)/15, if v ≤ 15

0, otherwise

Fd =

{
(d− 50)/100, if d ≥ 50

0, otherwise

F = F0 + 1.2− Fv + Fd (6)

where F is the trip fuel economy in miles per gallon (MPG), F0 is the official
combined fuel economy rating of the vehicle used for this trip, v is speed in
m/s, and d is the distance in km. Adding a constant values of 1.2 ensures that
across all trips captured by the travel survey, a car’s average fuel economy is
approximately equal to F0. This approximation serves the purpose of capturing
the impact of urban form on average daily travel energy consumption through
changes in typical travel distances and trip speeds; in reality, the trip-specific
fuel economy would depend on weather [41], driving style [42], and particular
characteristics of the corresponding powertrain.

Exogenous variables reflecting urban area (X)

We measure (1) density of the census tract that the traveler’s household is
located in; (2) metropolitan area population of the core statistical area (CSA)
that the traveler’s household is located in; and (3) metropolitan area code of
that household if it is located within one of the 10 metropolitan areas with the
largest sample size in NHTS that are part one of the so-called ‘Add-on areas.’
The first two sets (population density and metropolitan area population) rep-
resent meso- and macro-scale aspects of urban form, respectively. The fixed
effects for metropolitan areas can account for differences between individual
cities that are not captured by the other two variables.

We use dummy variables for both population density and metropolitan area
size. This allows us to capture non-linear effects between those variables and
mobility demand. It also lets use evaluate whether the specific aspects of urban
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form, U , fully explain the relationship between X and y, since any remaining
(or unexplained effect) would be allocated to the dummy variables in X.

Endogenous variables reflecting urban form (U)

While the urban indicators in X are intuitive and available directly in NHTS,
they do not allow us to answer why density, metropolitan area size, or the spe-
cific metro area may affect travel behavior, and what other aspects of urban
form may matter in the context of travel demand. Therefore, we add a com-
prehensive set of features reflecting specific, detailed measures of urban form
to the data.

Each of these metrics is estimated at the level of the CBG. Those values
are then aggregated to the census tract (CT) level, where each CT consists of
2-4 CBGs. This is done because geographical locations in NHTS are available
specifically at the CT level. Finally, the CT values are joined with the CT of
the traveler’s household location.

Since CBGs and CTs are defined such that they contain a relatively con-
stant residential population, they are smaller in dense areas than in low-density
areas. As a consequence, any analysis based on census tracts themselves could
therefore be confounded by density. Instead, we measure all properties of urban
form U in a given, constant radius around each CBG (see Figure 7). Nonethe-
less, the spatial resolution of our analysis is higher in dense areas as well as in
areas with a higher residential population density compared to lower-density
areas and/or areas with commercial or industrial activity but fewer residents.

As noted previously, we only rely on information about the urban envi-
ronment in the area of the traveler’s household, not the specific origins and
destinations of trips that the traveler makes. This is because the later can eas-
ily lead to biased coefficient estimates. We discuss this extensively in section
‘Addressing residential self-selection and other forms of simultaneity’.

Strong correlation between two or more indicators should be avoided as
well. Such correlation could lead to unstable coefficient estimates. We have
carefully chosen the final set of indicators U by testing the effect of remov-
ing one or more indicators from the model and observing the stability of the
estimated coefficients of the indicators that remain in the model. This is a
key reason for why we do not measure most aspects of urban form in different
distance intervals around each traveler’s household, but selected one specific
radius instead.

We measure urban form in 5 sets: access to destinations at certain distance
intervals, land use entropy, access to public transit stops, road network prop-
erties, and road network capacity. These metrics are taken or derived from the
U.S. Environmental Protection Agencies Smart Location (SL) database [20],
complemented with information from OpenStreetMap (accessed using OSMnx
[21]). In Supplementary Note 3, we provide a detailed comparison between the
measured of urban form contained in the SL database and our measures, along
with reasons for potential differences and additions.
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The first set of variables reflect access to destinations of the same type as
those used to calculate density: residential units and jobs. To calculate access
for a given distance bracket (e.g., 2-5 km), we sum up the total number of resi-
dential units and jobs inside CBGs whose centroid is within the corresponding
distance interval (e.g., 2-5 km) from the centroid of the original CBG. For the
lowest bracket (0-1 km), the original CBG counts itself as well. The widths of
the distance brackets (0-1 km, 1-2 km, 2-5 km, 5-10 km, 10-20 km, 20-50 km,
50-100 km, and 100+ km) are chosen to balance accuracy of the analyzing with
limiting errors introduced due to the fact that we do not know the exact loca-
tion of each possible destination. In addition, we indicate the product between
the number of destinations accessible in the 0-5 km interval and the number
accessible in the 10-100 km interval. This interaction term allows us to gauge
whether the effect of having access to destinations nearby on travel demand
is amplified in cases where there are more destinations available further away,
as is the case in large cities.

The second set of properties reflect the land use entropy or diversity. This
includes land use entropy within each CBG (averaged over a given radius), as
well as land use entropy between CBGs. Land use entropy within each CBG is
based on the combined employment and household entropy in the SL database.
A more even split between residential household units and jobs, as well as a
higher diversity among the types of jobs, both contribute to a higher entropy
measure. Land use entropy between CBGs is based on the standard deviation
of the total number of destinations (household units and jobs) across all CBGs
within a given radius around the household’s CBG.

The third set of properties reflect access to public transit stations. Rather
than relying on information on public transit access from the SL database,

Fig. 7 Illustration of the spatial scale of urban form metrics, showing Los Angeles (CA).
The red area in subfigure a) indicates a census block group (CBG), the adjacent dark red
area the rest of the census tract. The red dots in both subfigures represent the centroids of
other CBGs. The shade of grey reflects density. In a), the 1, 2, and 5 km radii around the
centroid of the red shaded CBG are indicated; in b) the 5, 10, 20, and 50 km radii.
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we use information from OpenStreetMap on the number of bus and railway
stops accessible within a given radius around each CBG’s centroid. To do so,
we collect data from OpenStreetMap for each of about 220,000 CBGs in the
United States, bounded by the corresponding polygon obtained from the Tiger
Shapefile database [43].

From the SL database, we obtain the intersection density in number of
intersections per land area and the fraction of intersections with at least four
links (4-way intersections or higher). The street network density is indicated for
pedestrian, multimodal, and automobile roads. We use the sum of pedestrian
and multimodal roads to calculate street network density. These three types
are pre-defined in the SL database, based on the speed limit, direction of travel,
and classification of each road segment. The fraction of 4-way intersections of
higher is based on pedestrian roads only.

The fifth and final set of properties reflect the road capacity per capita for
the same three road types that are used for intersection density: pedestrian,
multimodal, and automobile roads. The road capacity per capita for a given
road type is not directly indicated in the SL database, but can be derived.
We obtain it by multiplying the facility miles of corresponding road links
per square mile, which is given, with the corresponding land area, and then
dividing it by the total number of housing units and jobs in that CBG. Rather
than calculating the sum across the three road types (as for street network
density), we consider the three types separately for road capacity.

Once all missing speed limit and lane count values have been imputed, we
calculate 20 different metrics for each CBG, based on the corresponding road
network and public transit stop nodes:

1. The number of destinations (indicated as household units and jobs) avail-
able within a given distance interval from the CBG in question (including
itself) at 8 different distance intervals; as well as the interaction term
between destination nearby (0-5 km) and further away (10-100 km);

2. The average land use entropy within each CBG, averaged across all CBGs
in a radius of 2 km around the CBG in question;

3. The land use entropy between CBGs in a radius of 2 km around the CBG;
4. The number of bus stops per area among all CBGs less than 2 km away

from the centroid of the CBG in question (including itself);
5. The number of railway stations per area among all CBGs less than 2 km

away from centroid of the CBG in question (including itself);
6. The average speed limit across non-residential/non-local road segments

across inside of CBGs less than 5 km away from the CBG in question
(including itself), reflecting typical road design;

7. The fraction of 1-way streets among pedestrian-accessible streets across all
CBGs less than 5 km away from the CBG in question (including itself);

8. The fraction of intersections with 4 or more segments or links across all
CBGs less than 5 km away from the CBG in question (including itself),
reflecting the connectivity of the road network;
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9. The intersection density of pedestrian-friendly roads (in intersections per
square mile) across all CBGs less than 5 km away from the CBG in question
(including itself); and

10. The road facility miles intensity (per capita-equivalent) of automobile,
multi-modal, and pedestrian-friendly roads in miles per household units
and jobs across all CBGs less than 5 km away from the CBG in question
(including itself).

The distance thresholds in km for these metrics are chosen to balance
specificity (a smaller radius makes results more specific to each household’s
location) and relevance (a larger radius will apply to and affect a larger frac-
tion of trips). Details on how each radius was determined, along with results
comparing different radii from 1 km to 50 km for each applicable metric, are
available in Supplementary Note 4.

While all of these metrics are calculated at the CBG level, the household
location in the restricted NHTS dataset is only available at the CT level.
Therefore, CBGs are aggregated to CTs, with each metric being averaged
across all CBGs inside a given tract before joining with NHTS. Finally, extreme
values are trimmed from the data, setting values below the 0.1th percentile to
those at the 0.1th percentile, and values above the 99.9th percentile to those
at the 99.9th percentile. For bus and rail stop access (for which many values
are 0), only the upper range of the distribution is trimmed, and only to the
99.99th percentile. These properties are summarized in Supplementary Note 9.

Vehicle ownership (e)

Vehicle ownership is reflected by the number of vehicles per adult person owned
by the household of the traveler. This number is capped at 1.5, since we found
that a vehicle ownership rate of more than 1.5 vehicle per adult household
member has no additional marginal effect on travel behavior. More details are
provided in Supplementary Note 2.

Similarly to variables T and E | T , which are bounded by [0, 1], but whose
predicted values fall within that range most of the time, we implement e as a
continuous variable with a linear relationship to other variables in the model.
To ensure a linear relationship between e and the endogenous travel behavior
variables y, we transform the capped vehicle ownership rate using the 4th root.
More details on this are provided in Supplementary Note 2 as well.

Demographic control variables (C)

We include gender, income, age, race, ethnicity, level of education, typical
level of physical activity as indicated by the respondent, number of adults and
number of children living in the household, employment status and type of
the respondent, and whether the traveler works from home. Ordinal variables
such as income, age, and the number of adults and number of children living
in the household are implemented as dummy variables using ranges (e.g.: Age
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<18, Age 18-34, Age 34-64, etc.) to allow for non-linear relationships between
these controls and the corresponding endogenous variables.

Further control (L)

We control for local climate, local gasoline price, vehicle fuel economy, and day
of the week (Monday through Sunday). These factors may affect typical travel
behavior and may be correlated with urban form. For example, the gasoline
price may be systematically higher in urban areas than rural areas. This means
that not accounting for the gasoline price explicitly may falsely attribute some
of its effect on travel behavior to urban form, thus over- or underestimating
the impact of urban form on travel.

The local gasoline price, vehicle fuel economy (official rating), and day
of the week are indicated in the NHTS data. To account for local climate,
we obtain weather-station-specific monthly average heat-index temperature,
direct solar irradiation, and precipitation from the National Renewable Energy
Laboratory Typical Meteorological Year (TMY) dataset [24]. We then assign
these values to each household based on the closest weather station to that
household and the month of the household’s assigned travel day. There are
1,020 weather stations in the database, distributed across the United States.
This means that our approach captures the general climate in the area of the
traveler, but no micro-climates and other localized effects.

Notably, treating vehicle fuel economy (or efficiency) as exogenous differs
from some previous studies (e.g. [34]) that considered vehicle fuel efficiency to
be endogenous and affected by urban form or density itself. Our approach is
more conservative, as we will not attribute any potential correlation between
urban form and vehicle fuel economy to be caused by urban form.

For trips that were not made with a vehicle or were fuel efficiency is missing,
fuel efficiency is imputed. First, we try to impute missing fuel efficiency data
by using the average fuel efficiency of other trips made by the same person
on the same day. If that value is not available either, we try to impute the
missing value by using the average fuel efficiency of other trips made by people
in the same household. If that value is not available either (likely because the
household neither owns any vehicles nor used any vehicles that day), we use
the fleet-average fuel efficiency value. Of 149,575 missing fuel efficiency values
(16.9% of 882,846 individual trips), 73,333 were imputed using the first option,
54,165 using the second option, and 22,077 using the third option.

Supplementary Information

Supplementary Notes 1–10, Figures 1–12 and Tables 1–8.
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[16] Muñiz, I., Rojas, C.: Urban form and spatial structure as determinants
of per capita greenhouse gas emissions considering possible endogeneity
and compensation behaviors. Environmental Impact Assessment Review
76(February), 79–87 (2019). https://doi.org/10.1016/j.eiar.2019.02.002

[17] Bhat, C.R., Guo, J.Y.: A comprehensive analysis of built environment
characteristics on household residential choice and auto ownership levels.
Transportation Research Part B: Methodological 41(5), 506–526 (2007).
https://doi.org/10.1016/j.trb.2005.12.005

[18] Cao, X., Mokhtarian, P.L., Handy, S.L.: Examining the Impacts of Resi-
dential Self-selection on Travel Behaviour: A Focus on Empirical Findings
vol. 29, pp. 359–395 (2009). https://doi.org/10.1080/01441640802539195

[19] FHWA (U.S. Federal Highway Administration): 2017 National Household
Travel Survey (Restricted Version) (2021). https://nhts.ornl.gov/

[20] Ramsey, K., Bell, A.: The Smart Location Database: A Nationwide
Data Resource Characterizing the Built Environment and Destination
Accessibility at the Neighborhood Scale. Cityscape 16(2), 145–162 (2014)

[21] Boeing, G.: OSMnx: New methods for acquiring, constructing, ana-
lyzing, and visualizing complex street networks. Computers, Environ-
ment and Urban Systems 65, 126–139 (2017). https://doi.org/10.1016/j.
compenvurbsys.2017.05.004

[22] Pucher, J., Renne, J.L.: Rural mobility and mode choice: Evidence from
the 2001 National Household Travel Survey. Transportation 32(2), 165–
186 (2005). https://doi.org/10.1007/s11116-004-5508-3

https://doi.org/10.1080/01944363.2016.1240044
https://doi.org/10.1080/01944363.2016.1240044
https://doi.org/10.1080/01944363.2016.1245112
https://doi.org/10.1016/j.compenvurbsys.2011.05.006
https://doi.org/10.1016/j.compenvurbsys.2011.05.006
https://doi.org/10.1016/j.eiar.2019.02.002
https://doi.org/10.1016/j.trb.2005.12.005
https://doi.org/10.1080/01441640802539195
https://nhts.ornl.gov/
https://doi.org/10.1016/j.compenvurbsys.2017.05.004
https://doi.org/10.1016/j.compenvurbsys.2017.05.004
https://doi.org/10.1007/s11116-004-5508-3


Springer Nature 2021 LATEX template

29

[23] Dillon, H.S., Saphores, J.D., Boarnet, M.G.: The impact of urban form
and gasoline prices on vehicle usage: Evidence from the 2009 National
Household Travel Survey. Research in Transportation Economics 52, 23–
33 (2015). https://doi.org/10.1016/j.retrec.2015.10.006

[24] NREL: TMY National Solar Radiation Database (NSRDB)˝
(2019). https://nsrdb.nrel.gov/tmy Accessed 2019-05-01

[25] Bagley, M.N., Mokhtarian, P.L.: The impact of residential neighbor-
hood type on travel behavior: A structural equations modeling approach.
Annals of Regional Science 36(2), 279–297 (2002). https://doi.org/10.
1007/s001680200083

[26] Handy, S., Cao, X., Mokhtarian, P.: Correlation or causality between the
built environment and travel behavior? Evidence from Northern Califor-
nia. Transportation Research Part D: Transport and Environment 10(6),
427–444 (2005). https://doi.org/10.1016/j.trd.2005.05.002

[27] Næss, P.: Residential self-selection and appropriate control variables in
land use: Travel studies. Transport Reviews 29(3), 293–324 (2009). https:
//doi.org/10.1080/01441640802710812

[28] Chatman, D.G.: Residential choice, the built environment, and nonwork
travel: Evidence using new data and methods. Environment and Planning
A 41(5), 1072–1089 (2009). https://doi.org/10.1068/a4114

[29] Hupkes, G.: The law of constant travel times and trip rates. Futures
14(April 1980), 38 (1982)

[30] Mokhtarian, P.L., Chen, C.: TTB or not TTB, that is the question: a
review and analysis of the empirical literature on travel time (and money)
budgets. Transportation Research Part A: Policy and Practice 38(9-10),
643–675 (2004). https://doi.org/10.1016/j.tra.2003.12.004
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