
Lawrence Berkeley National Laboratory
LBL Publications

Title
Transverse Mode Coupling Instability in a Double RF System

Permalink
https://escholarship.org/uc/item/40s2z77x

Author
Chin, Y.-H.

Publication Date
1993-02-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/40s2z77x
https://escholarship.org
http://www.cdlib.org/


.. 

LBL-33696 
UC-414 
Pre print 

Lawrence Berkeley Laboratory 
UNIVERSITY OF CALIFORNIA 

Accelerator & Fusion 
Research Division 

Submitted to Particle Accelerators 

Transverse Mode Coupling Instability in 
a Double RF System 

Y.-H. Chin 

February 1993 

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098 

---
1-+.0 o .... r 
'i 'i 0 

0 > ,..:::z: .... 
.: IP n 
ftlt+O 
ftl ftl ., 
:r.;mo< 
to ---
ttl .... 
0. 

I.Q 

U1 
IS) 

r 
r ttl .... r trn I 
'i 0 [a) 
IP't:l [a) 
'i'< ()"' 

"< 1.0 . tv ()"' 



DISCLAIMER 

This document was prepared as an account of work sponsored by the 
United States Government. Neither the United States Government 
nor any agency thereof, nor The Regents of the University of Califor­
nia, nor any of their employees, makes any warranty, express or im­
plied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, 
or process disclosed, or represents that its use would not infringe pri­
vately owned rights. Reference herein to any specific commercial 
product, process, or service by its trade name, trademark, manufac­
turer, or otherwise, does not necessarily constitute or imply its en­
dorsement, recommendation, or favoring by the United States Gov­
ernment or any agency thereof, or The Regents of the University of 
California. The views and opinions of authors expressed herein do 
not necessarily state or reflect those of the United States Government 
or any agency thereof or The Regents of the University of California 
and shall not be used for advertising or product endorsement pur­
poses. 

Lawrence Berkeley Laboratory is an equal opportunity employer. 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



.. 

LBL-33696 
ESG-249 
CERN/SL-93/03 (AP) 

Tranverse Mode Coupling Instability in a Double RF System* 

Y.-H. Chin 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, CA 94720 

Submitted to Particle Accelerators 

* This work was supported by the Director, Office of Energy Research, Office of High Energy 
and Nuclear Physics, High Energy Physics Division, of the U.S. Department of Energy under 
Contract No. DE-AC03-76SF00098. 



* Prlntod on n.'cyclod P'P" 



EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH 

CERN /SL-93/03(AP) 

Transverse Mode Coupling Instability 

Double RF System 

Yong Ho Chin * 

Lawrence Berkeley Laboratory 

Berkeley, California 

Abstract 

• In a 

The equations for transverse mode coupling in a storage ring with a double 

rf system are derived from a Hamiltonian formalism. The resulting integral 

equation is expanded into a set of orthogonal polynomials, and the expansion 

coefficients are then given by the solution of an infinite determinant. Truncation 

of this determinant permits solution of the problem on a computer, and a code 

has been written which finds the complex mode frequencies. The stability limits 

of LEP with a third harmonic are determined by equating the imaginary part of 

the solution to the radiation clamping rate. 
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1 Introduction 

The bunch current in large electron (or positron) storage rings like LEP at CERN is limited 

by the transverse mode-coupling insta.bility(l]. This instability - also called "fast head-tail 

effect" was first described as "transverse turbulence" (2], when it seemed to limit the current 

in the DESY storage ring PETRA. However, it was already experienced earlier at the storage 

ring SPEAR, and was clearly a limitation in PEP, both at the Stanford Linear Accelerator 

Center(3). More detailed investigations were made at the next larger electron storage ring 

TRISTAN at KEK in Japan(4). 

A number of methods have been proposed to overcome. the resulting limitations of bunch 

current and hence luminosity. The most obvious one is the reduction of transverse impedance 

alre~dy during construction of the machine, by making the vacuum chamber as smooth as 

possible and careful shielding of all unavoidable cross-section variations such as bellows or 

flange-gaps. The major source of transverse impedance then remains the rf cavity system, 

which is usually designed to have a large impedance at the accelerating frequency in order to 

minimize the cost of rf power. This can be avoided by the use of superconducting cavities, for 

which the extremely high quality factor reduces the input power and a high shunt impedance 

is no longer required. 

Nevertheless, in existing machines with copper cavities like the present version of LEP, the 

bunch current is severely limited. Another means to increase the threshold are lengthening 

of the bunches, e.g. by wigglers or changing the damping partition numbers. However, this 

method is limited by the concurrent increase. of the energy spread which can not exceed the 

energy aperture of the machine. A way to increase the bunch length without increase of 

energy spread is the use of a second, "higher-harmonic" rf system. The increase of bunch 

length is largest when the phase and amplitude of the second rf system is adjusted such that 

the synchrotron frequency vanishes at the center of the bunch (i.e., the slope of the total rf 

voltage is zero there). 

The effect on the TMC instability is then not so obvious. On one hand, the longer bunches 

should increase the threshold, but on the other hand, the smaller synchrotron frequency tends 

to reduce it. In order to study this situation in detail, it was necessary to develop a theoretical 

description which permits study of the equations of motion in a strongly deformed rf bucket. 

This is done by describing the systen: in a Hamiltonian formalism. 

The result can be expressed as an eigenvalue equation, respectively the vanishing of the 

determinant, of an infinite matrix. Such a problem can be solved numerically by truncating 

the matrix to finite dimensions, given by the product of the number of radial and azimuthal 
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modes to be included. For not too long bunches, these dimensions can be kept to quite small 

values. 

The eigenvalues yield the complex mode-frequencies - and hence the frequency shift and 

growth rates - as function of bunch current. Contrary to the problem for a single rf system, 

there is always a finite imaginary part, i.e. the growth rates are always non-zero. However, 

due to radiation damping (neglected in the Vlasov equation formulation), a finite threshold 

is found nevertheless. The computer code MOSDRF has been written and is available on 

the CERN-IBM system. It has been applied to a third harmonic system for LEP. It is found 

to be capable of increasing the threshold current at injection if it is adjusted correctly. 

2 Double RF Systen1 

In this section, we define some quantities to describe the double rf system. The voltage seen 

by beam particles for the double rf system case is defined by 

11(</>) = Vp[sin(</> + 4>s) + ksin(n</> + n</>n)], (1) 

where 

VP peak voltage of the main rf system 

kVp peak voltage of the higher-harmonic rf system 

h harmonic number of the main rf system 

n · h - harmonic number of the higher-harmonic rf system 

4>s - synchronous phase angle of the main rf system 

n · 4>n - synchronous phase angle of the higher-harmoi1ic rf system. 

The Hamiltonian for the synchrotron motion is given by[6) 

(2) 

where 
.6.E 

w=-, 
hwo 

(3) 

and 

(4) t 
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The variable w is the canonic.al momentum conjugate to </>. The other parameters are as 

follows: 
w0 angular revolution frequency 

1J a- 1/!2 = phase slip factor 

a momentum compaction factor 

1 Lorentz factor 

E - .6 + Eo = particle energy 

Eo energy. of the synchronous particle 
.' 

e elementary charge. 

The quantity e V(O) represents the synchrotron radiation loss pet turn that must be replen­

ished by the rf system. 

When the higher-harm~nic parameters k and 4>n are chosen so that the first and the 

second derivatives of V(4>) vanish at the bunch center, namely, 

nk cos n</>n = -cos 4>s, (5) 

the rf potential function U( 4>) becomes quartic with respect to 4> in the vicinity of the bunch 

center: 
n2 -1 4 u ( 4>) = - 24 cos 4> s • 4> . (6) 

Then, the phase motion can be expressed by the Jacobian elliptic function cn(u) of modulus 

1/V'l and the product of sn(u) and dn(u): 

w 

-</>maxcn(u), 

Wmaxv'2sn( u )dn( u ), (7) 

where </>max and Wmax are the 4> and w coordinates where the particle trajectory intersects 

with the positive 4> and w axes, respectively. The angle u in phase space is given by 

(8) 

where V 8o is the synchrotron tune in the absence of the higher-harmonic system. 

Using the action-angle variables Is and <l>s for the synchrotron motion, the above phase 

space motion can be described as 

A.. _ (2h
2

7]Wo 31rv'21f{;J;I )1; 3 
'+'max - E r( 1 ) 2 2 s , oVso 4 · n - 1 

(9) 

= ( Eovso ~)1/3. (37r.J2; I )2/3 
Wmax 2woh2'f/ v ~ r(~)2 s ' 

(10) 
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and 

(11) 

where f(x) is the. Gamma Function. The Hamiltonian (2) can be expressed as function only 

of Is: / 

(12) 

3 Canonical Fonnulation 

We start with the Vlasov eq. for the particle distribution function A(Ix, <'PxJs, <'P 8 , Bz):[5] 

DA I DA .• I DA I DA IDA 
DBz +<'PxO<'Px +lxOlx +<'P8 0<'Ps +lsOls =O, (13) 

where we take the angular position Bz in a ring as an independent variable, and a prime 

denotes the derivative with respect to Bz. The symbols Ix and <'Px are the action-angle 

variables for the transverse motion. They are related to the transverse coordinate x and its 

canonical momentum Px by 

( 2clx a )1; 2 .m. 
X - E fJx COS '*'x' 

0 . 

2IxEo )1; 2 • 
Px = -(-(3-- (axcos<'Px + sm<'Px), 

xC 
(14) 

where ax and f3x are the Twiss parameters, and cis the speed of light. 

The unperturbed Hamiltonian for the transverse and synchrotron motion is given by 

(15) 

where Hs is given by Eq. (12), Vx is the incoherent betatron tune, and e is the chromaticity. 

The changes in the action-angle variables are calculated from H as 

<pi DH 
Cl = DICI' I~=-:~, (16) 

where a is x or s. 

The unperturbed particle distribution function is a function only of lx and 18 : 

A- fo(Ix)go(Is), (17) 

where they are normalized in such a way that 

re-o r21r 
Jo dlx Jo d<'Pxfo(Ix) = 1, (18) 
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and 

loco dis lo2

1r diflsgo(Is) = Ne, 

where N is the total number of particles in the bunch. 

(19) 

Now, let us calculate the potential term Ux(lx, iflx, Is, iPs) for the Hamiltonian due to the 

interaction with the environment[5]. For this purpose, we first define the perturbed part of 

the particle distribution function by 

A =fo(Ix)go(Is) + At(Jx, iflx, Is, ifls) exp( -ivOl + i: *), (20) 

where vis the tune of the coherent oscillation to be determined and exp(i~<P/(cxh)) is the 

head-tail phase factor. The transverse force Fx felt by a particle at rf phase arigle <P at B1 is 

given. by 

(21) 

where TV( 0) is the transverse wake potential, and R is the average radius of the ring. The 

effect of the wake of all previous revolutions is expressed by the summation over k. Now, we 

define the dipole qistribution function D(Is, iPs) by 

D(Is, ifls) =loco dix lo2
1r diflxXAt(Ix, iflx,ls, ifls)f[i. (22) 

The function D(Is, iPs) represents the distribution function of the dipole moment of A1 in 

synchrotron phase space. We also define the Fourier transform of D(Is, iPs) (projected onto 

<P axis) with respect to <P by 

(23) 

Substituting Eq. (22) into Eq. (21), and using fJ, the LHS of Eq. (22) can be transformed 

into the frequency domain . The result is 

(24) 

where ZT is the transverse impedance given by the Fourier transform of the wake potential: 

w 1joo i!:!_.e 
ZT(-) = -:- ' dOliV(O)e Wo , 

Wo Z -oo (25) 

6 



• • d I d II ~ p 1s an mteger, an p = p + 11 an p = p + 11 - -. 
Q' 

The potential Ux can be calculated from Fx as 

8Ux Fx 
- fJx = Wo (26) 

It follows 
/7.l 00 • I <P 

Ux = -ix e2~';;e-i 11lh pi;oo D(p")Zr(p')ezp h (27) 

The total Hamiltonian is given by 

H = Ho + Ux. (28) 

Hamilton's equations are 

8H 8Ux 
fJix = llx + fJix' <I>' 

X '(29) 

• I <P 

I ' _ _ fJH __ . ef3x (2clx)I/2 -i1101"" D~ ( ")Z .(· ')· zp h · ;r,. 
x 8<I>x - z27rR Eo e L.J p T p e sm '.l!'x, 

p 

(30) 

fJH fJUx 
8Is = lls(/s) + fJis' <I>' s (31) 

_fJH =- ev'Tf:: -iiiOt"'iJ( ") 'Z ( ') ip't fJ<fy 
8<I>s X 21rRhe L.J P p T p e fJ<I>s' 

p 

I' s (32) 

where 

(33) 

is the synchrotron tune of particles at amplitude <Pmax· We can see from the last non-zero I; 
term that a longitudinal force is also created by 'the transverse dipole oscillation. This effect 

-

is, however, normally negligible. 

Inserting all these Eqs. (30-32) and Eq. (20) into Vlasov eq. (13), and linearizing it with 

respect to AI, we obtain 

. 8AI fJA1 
-z11A1- 118 (/s) fJ<I>s + llx fJ<I>x = 

ef3x (2cix)I/2 ~ D( ")Z ( ') ip"t( i<I>x _ -i<I>x) (I )dfo(Ix) (34) 
4 R E L.J p T p e e e go s di , 

7r 0 p=-oo x 

where we have expressed sin <I>x by exponential. The perturbed distribution function AI can 

be Fourier expanded iri' <I>x and <I>s with period 27r due to its periodicity in transverse and 

synchrotron phase spaces as 
00 

(35) 
q=-oo m=-oo 
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where q and m are integers. If we multiply Eq. (35) by exp( -iq<I>x) and integrate over <I>x 

from 0 to 2?r, we get 

[-iv- vs(Is) 0~ ,+ iqvx] f: AqmUx, Is)e-imi!Js 
s m=-oo 

where 8kt is Kronecker's delta. The RHS of the above equation has non-zero values only for 

the dipole mode terms, q = 1 and q = -1. In a similar way, by multiplying Eq. (36) by 

exp(im<I>s) and integrating it over <I>s from 0 to 2?r, we can extract Aqm(IxJs) component 

out of the summation. In doing so, since the Jacobian function en( u) can be expanded as 

cn(u) = 0.95501 cosi!Js + 0.04305cos 3<I>s + ... , (37) . 

. we can well approximate cn(u) in exp(ip"t) on RHS by cos <I>s . Then, we can use the 

formula 
{27r .p" ·-m p" 

lo d<I>s exp( -zh<Pmax cos i!Js + m<I>s) = 2n Jm( J;cPmax)· 
0 . 

(38) 

In this approximation, Eq. (36) becomes 

-i[v- mvs(Is) - qvx]Aqm{Ix, Is) 

= (8 - 8 ) ·-m ef3x c· 2clx )1/2 ~ D( ")Z ( ')J cp" ,/.. ) (I ) dfo(Ix) 
lq -lq Z 4 R E L...J P T P m h 'f'max go s dJ · 

7r 0 p=-oo x 
(39) 

The dipole distribution D(Is, <I>s) also can be expanded with respect to <I>s as 

~ D (I )e -ini!Js L...J rn s ' (40) 
r=-oo n=-oo 

where Drn(Is) can be expressed by Arn(Ix, Is) as 

(41) 

and r and n are integers. The Fourier transform D(p") can be also expanded as 

(42) 

where we have approximated cn(u) by cosi!J8 and used the formula (38). 
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If we multiply Eq. (39) by x exp(iqi!Jx)/ $x, and integrate it over Ix and ~x, we obtain 

(43) 

where we have used Eqs.' ( 41) and ( 42) and T is the revolution period. 

We solve Eq. (43) by expanding D9m(Is) using a complete set of orthogonal functions as 

00 

Dqm(Js) = W(Is) L a~7:) fklmi)(Js)· (44) 
k=oo 

Here, the weight function TV(Js) is defined by 

(45) 

where C is a normalization constant to be chosen. The orthogonal functions f~lml)(Is) are 

determined so as to satisfy the following orthogonal relationship· 

loco disliV(Js)J~lmi)(Is)JPml)(Is) = 8kl· (46) 

Dividing Eq. (43rby [v- mvs(Is)- qvx], inserting Eq. (44) into it, multiplying by Jllml)(Is) 

and integrating over Is, we have a !Jlatrix equation f~r the coefficients a~r;:): 

- , a 1 oo oo W(I )f(lml)(I )J(lmD(I) 
- -i( btq - 8-lq )i-m fJx - 2::.::: { dis 8 

k 
8 

j 
8 

2TEo/e C j=OJo v- mvs(Is)- qvx 
00 00 00 

2::.::: ZT(p')Cm;(p") 2::.::: inLa~7)Cnt(p"), 
p=-oo n=-oo l=O 

where 

Cmj(p") = fooo dlsJ~(~:I </>max)H1 (Js)JJlml)(Js)· 

If we define new coefficients b~m) by 

b(m)­
k -

00 

2::.::: q=-oo 
(m) 

aqk ' 

Eq. (47) can be rewritten as a matrix equation for b1m): 

00 00 

b~m) = L L N:Jkb}n)' 
n=-oo l=O 
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where 

where 

and 

. . 00 

111;::3 = -iJ<in-m L Zr(p')Cmj(p")Cnt(p"), 
p=-oo 

f3x 1 
I<= 2T E0 /e c· 

The nontrivial solution of Eq. (51) requires that 

This dispersion relation gives a coherent tune v. 

(51) 

(52) 

(53) 

(54) 

(55) 

Now, let us find appropriate orthogonal functions f~lml) Us) and derive more explicit ex­

pressions of matrixes F~'7) and 111::;j. The normalized unperturbed longitudinal distribution 

function go(Is) is given by 

(56) 

where 
at/>= 2vf1r( 3 ?'4(haaE/Eo) 1; 2 ~ 1.28678 (hao-E/Eo) 1; 2 ( 57) 

f(~) n2 - 1 Vso (n 2 - 1)1/4 V8 o 

is the rms bunch length in units of rf phase angle, aE/ Eo is the relative rms energy spread, 

and the parameter .A is defined by 

(58) 

To obtain a simple expression of the orthogonal functions f~lmi)(Is), we chose the normaliza­

tion factor C to be 
Nehwo8 114 

C= o- . 
f(! )2o-<1> _!!..Eo 4 Eo 

(59) 

It is convenient to change the variable from Is to z ...:_ <Pmax/O"tJ>· The action variable Is is 

proportional to cubic of <P~ax (see Eq. (9)): 

(60) 
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where 

(61) 
'· 

(62) 

If we substitute Eqs, (59) and (62) into Eq. ( 46), we flnd that the functions e~lml)(z) satisfy 

the following orthogonal relationship: 

fooo dz exp( -.-\z4 )z 2 1ml+2e~lml)(z)e} 1mD(z) = Dkt· (63) 

Solutions of the above equation are given by 

e\lml)(z) = 2.X¥+~( k! )If2 L(~-t)(Az4), 
k . r(~+k+~) k . 

(64) 

where L~a) are the generalized Laguerre polynomials. By inserting the above equation into 

Eq. (48), the function Cmj(p") becomes 
II 

Cmj(p") = lmj(~ U¢) • J3Au~, (65) 

(66) 

There is no analytical expression for the above integral ill: terms of known special functions. 

One must carry out integration numerically. In a similar way, the fun~tion F~j) can be 

expressed explicitly as 

· (m) _ 00 ·loo exp(--.Xz4)z 21ml+2eilml)(z)ejlml)(z) 
Fkj - L (81q - 8_1q) dz ( ) . , 

q=-oo 0 v - mvs z - qvx 
(67) 

where the amplitude dependent synchrotron tune is given by 
. " 

· 2Tr312vso ~ · · 
Vs(z) = f(~) 2 v ~Uq,Z ~ 0.34587 · V8 oVn2 - 1U¢Z. (68) 

The matrix M;;;i can be also rewritten using Imi as 
00 II II 

.M;;;j = -iK'in-m L ZT(p')lmj(~ U¢)lnz(~ U¢), 
p=-oo 

(69) 

,. 

where the constant I<' is given by 

I 4.../281/4 
K = y?rr( ~ )2 

N ef3x ~ 0.20417 · hf3x , 
2TEofe Eo/e 

(70) 

where Ibis the bunch current .. 
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4 Ntunerical Examples and Discussions 

Let us apply the present formalism to LEP to see how the mode-coupling instability will be 

affected by installation of higher-harmonic cavities into the current single rf system. For this 

purpose, a computer code MOSDRF has been written. The main LEP patameters used are 

summarized in Table 1. In the following calculations, we included three azimuthal modes 

(m = -1, 0, 1) and two radial modes (k = 0, 1). Figures 1 and 2 show the real and imaginary. 

parts of the coherent tune shift in the single rf systemin units of the incoherent synchrotron 

tune v80 , respectively. One can see the clear onset of the mode-coupling instability at the 

bunch current of about 0. 75 rnA. \iVhen higher-harmonic cavities are installed (double rf 

system), they are changed as shown by the broken curves in Figs. 3 and 4. The single 

curve starting from the origin in Fig. 3 represents actually the two eigenmodes. 'rn Figs. 

3 and 4, only the eigenmodes which have non-zero imaginary parts of coherent tunes are 

plotted. Other eigenmodes have singularities at the denominators of the integration F~j) 

given by Eq. (67), and thus cannot be obtained by the present method. The sharpe rise of 

growth rate at the onset of mode-coupling instability is replaced by a steady increase which 

starts from the zero bunch current. However, the magnitude of growth rate is far smaller in 

the latter case (notice the difference of the vertical scale in Figs. 2 and 4.). This behavior 

change can be explained as follows. Since the incoherent synchrotron tune is diminished at 

the zero synchrotron amplitude in the double rf system, the m = 0 and m = -·1 modes 

can couple to each other even at the zero bunch current to yield an instability. However, 

a strong Landau damping due to a large synchrotron tune spread drags down the growth 

rate to a low level. The threshold cutrent will be now defined by the current for which the 

growth rate is balanced by the radiation damping rate. In LEP, the numerical result shows 

the threshold current will increase from 0.75 rnA to 1.16 rnA. 

Next, let us examine the effect of the bunch length in the double 1-f system. Figures 5 and 

6 show the real and imagina,ry parts of the coherent tune shift in units of v80 in the double rf 

system, when~the bunch length is halved by halving the energy spread and the momentum 

compaction factor. The growth rate gets enlarged by two orders of magnitude. In Fig. 7, we 

plot the growth rate at h = 0.75mA as a function of the bunch length CY¢ in units of CY<J>o, the 

original bunch length in units of rf phase angle, when we shorten the bunch by reducing the 

energy spread and the moment compaction factor proportionally. The bunch length in the 

real space corresponding to CY<J>o is given by CY¢oR/h- 13.12cm. As can be seen, the growth 

rate rises up very rapidly as the bunch shortens. The growth rate exceeds the radiation 

.damping rate at about CY¢/crq,0 = 0.82, or CY¢R/h = 10.8cm. Figure 8 shows the threshold 
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current against the bunch length a,p in units of O"q,0 • The threshold current breaks below the 

present threshold of 0. 75 rnA of the single rf system again at O"q,j O"q,o = 0.82. These results 

show that if a double rf system does not produce a long enough bunch, the threshold current 

could become lower than that of the single rf system. This may imply that the LEP case 

might be a .rather fortunate one. 
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Table 1. The main LEP parameters used for the calculations. 

Beam energy, Eo ( Ge V) 20.0 

Revolution frequency, fo (kHz) 11.2455 
\ 

Average m~chine radius, R (km) 4.2429 

Momentum compaction factor, a 0.0019 

Harmonic number of the single rf system, h 31320 

Rms bunch length in the single rf system, a z (em) 2.0 

Rms relative _energy spread in the single rf system, aE/ Eo 0.0021 

Radiation damping time, Tr (sec) 0.3 

Synchrotron tune of the single rf system, v80 0.078 

Ratio of the higher-harmonic frequency to the main frequency, n 3 

Rms bunch length in the double rf system, aq,0R/h (em) 13.12 

Beta function at the impedance, f3x (m), 40 

Resonant frequency of the broadband impedance, fr (GHz) 2.0 

Peak value of the broadband impedance, Rr (Mf!/m) 1.5 

Q-factor of the broadband impedance, Q 1.0 
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Figure 1: Real parts of (v- vx)/v80 in the single rf system. 
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Figure 2: Imaginary parts of (v- vx)/vso in the single rf system. 
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Figure 3: Real parts of (v- vx)/vso in the double rf system. O"¢oR/h = 13.12cm. 
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