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Professor Steven G. Clarke, Chair 

 

 

Post translational modifications of proteins alter the biological landscape creating 

functional diversity. One modification, arginine methylation, was first identified in 1968 from calf 

thymus hydrolysates producing guanidino-methylated arginine derivatives. However, the 

enzymes that produce these modifications were poorly characterized until 1996 when the genes 

of the first protein arginine methyltransferases were cloned from yeast and mammalian cells. At 

this time, a family of nine mammalian genes has been identified that encode protein arginine 

methyltransferases (PRMTs). In vitro experiments identified three distinct types. Type I PRMTs 

catalyze asymmetric dimethylarginine (ADMA) (PRMTs 1-4, 6 and 8), Type II PRMTs catalyze 

symmetric dimethylarginine (SDMA) (PRMT5 and 9), and the only type III PRMT that catalyzes 

monomethylarginine (MMA) (PRMT7). The active sites of each of the major enzymes that form 

ADMA, SDMA and MMA have distinct structural architectures allowing for their specificity.  

In this dissertation I have focused my work on the major type I enzyme, PRMT1, the major 

type II enzyme, PRMT5, and the type III enzyme, PRMT7. I showed that each of these human 

enzymes behave differently under physiological stress conditions associated with temperature, 
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pH, and ionic strength thus potentially leading to alterations in the proteomic arginine methylation 

landscape. In particular, PRMT7 is maximally active at sub-physiological temperatures and at 

nonphysiological pH and ionic strength, suggesting regulatory roles. I then characterized the 

unusual substrate specificity of the PRMT7 enzyme with peptide substrates to demonstrate the 

exquisite dependence upon variations of the Arg-X-Arg motif. 

With the identification of a PRMT7 motif in the human Fhod1 and Fhod3 actin binding 

proteins, I characterized methylation reactions that were dependent upon the phosphorylation 

state of an adjacent serine residue. These results pointed to the cross-talk that can occur between 

phosphorylation and methylation reactions. Interestingly, I found little or no effect of methylation 

on ROCK1 protein kinase activity. 

PRMT enzymes have been identified to be oncogenic and closely associated with cancer 

progression. Surprisingly, it was found that methionine-dependent malignant cancer cells had no 

detectable alteration of protein arginine methylation than methionine-independent less malignant 

cells, suggesting that the methionine effect maybe be regulated through alternative pathways. 
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Chapter 1  

 

Plan of Dissertation 

 

In Chapter 2 I introduce protein arginine methyltransferases (PRMTs) including the common 

techniques to test their activity. In particular I briefly explain the history of arginine methylation, as 

well as introduce the major type I enzyme, PRMT1, the major type II enzyme, PRMT5, and only 

type III enzyme, PRMT7. As part of the common techniques to test PRMT activity, I highlight 

personal experience of the pitfalls of the techniques used. 

 

Chapter 3 will demonstrate the idea that PRMTs can be most optimal at nonphysiological 

conditions. While the goal of this chapter was to initially establish parameters that govern PRMT 

activity, it was ultimately discovered that the major enzymes of the individual subcategories are 

all quite unique to some degree. Utilizing recombinant purified enzymes from E. coli and 

purchased purified enzymes from HEK293 cells, in vitro characterization of temperature, pH and 

ionic strength were performed. This chapter was sparked from an idea that was previously 

established in the Clarke lab prior to me joining. Evidence was provided that PRMT7 activity was 

most active at temperatures lower than the human body temperature, thus leading to the idea that 

other intracellular conditions may have a profound effect on enzyme activity. 

 

Chapter 4 examines why histone H2B is presently the best in vitro substrate known for PRMT7. 

Previously established research in the Clarke Lab identified histone H2B as an excellent substrate 

for PRMT7, with monomethylation detected in vitro at arginine residues 29, 31, and 33, and 

defined RXR motifs as substrate recognition elements. However, other groups have found that 

H2B was not methylated by PRMT7 in higher oligomeric chromatin structures. This chapter 
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examines both H. sapiens and X. laevis histone H2B as substrates for PRMT7 while also 

identifying how adjacent amino acid residues might affect PRMT7 activity utilizing some of the 

conditions established in chapter 3.    

 

In Chapter 5 we utilize findings from chapter 4 and further identify new potential substrates for 

PRMT7 as well as to elaborate on how modifications of adjacent amino acids affect PRMT7 

activity. Here we take advantage of a collaboration with the Margot Quinlan laboratory at UCLA 

to study the interaction of methylation and phosphorylation on the actin binding Fhod1 and Fhod3 

proteins. In this chapter I examine how serine phosphorylation affects arginine methylation.  

 

Chapter 6 investigates how arginine methylation might be involved in cancer. While protein 

arginine methyltransferases have been identified to be overexpressed in cancer, little is still known 

of the possible mechanisms linking arginine methylation to uncontrolled cellular growth. In this 

chapter we explored the Hoffman effect where malignant cancer cells demonstrate enhanced 

methionine usage and potential increases in protein arginine methylation. However, in this chapter 

we found no evidence for this. We concluded that any linear relationship between cancer, 

methionine, S-adenosylmethionine, and protein arginine methyltransferases is not 

straightforward.  

 

Chapter 7 highlights my contributions to a collaboration with the Sbardella Lab at the University 

of Salerno in Italy that identified a novel dual inhibitor for PRMT7 and PRMT9.     

 

The final chapter of this thesis, Chapter 8, contains unpublished data from key experiments 

performed throughout my graduate career. The purpose of this chapter is to present the 

preliminary data collected and to aid future researchers of protein arginine methyltransferases.  
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Chapter 2  

 

Introduction to Protein Arginine methyltransferases (PRMTs) 

 

In this chapter, I give a brief introduction to the three members of the mammalian PRMT 

family that I have studied in this dissertation – PRMT1, PRMT5, and PRMT7. I also introduce the 

major experimental methods that were used in these studies. 

 

Introduction 

 

The enzymatic post translational methylation of arginine residues was initially identified in 

late 1960s by Sangduk Kim and Woon Ki Paik from Fels Research Institute at the Temple 

University School of Medicine (Paik 2007). This modification results from a basic SN2 reaction 

between S-adenosylmethionine and the nitrogens of the guanidino sidechain of arginine (Fulton 

2018). While arginine methylation is considered as one of the most abundant post translational 

modifications, with nearly 2% of all arginines to be methylated (Lee 2009), full knowledge of its 

biological relevance is still lacking (Paik 2007). To date nine mammalian genes encoding distinct 

protein arginine methyltransferase (PRMTs) have been identified (Bedford 2009). Isozymes have 

been identified but are less studied (Bedford 2007). Additionally, PRMTs are often overexpressed 

in cancer (Hwang 2021) and changes in arginine methylation have been identified in other disease 

states (Aletta 2008). Type I PRMTs catalyze asymmetric dimethylarginine (ADMA) (PRMTs 1-4, 

6 and 8), Type II PRMTs catalyze symmetric dimethylarginine (SDMA) (PRMT5 and 9), and the 

only type III PRMT that catalyzes monomethylarginine (MMA) (PRMT7) (Holtz 2023). 
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PRMT1 the major Type I protein arginine methyltransferase 

 

Protein arginine methyltransferase 1 (PRMT1) is the major type I enzyme of the family of 

arginine methyltransferases and accounts for approximately 85% of all arginine methylation 

(Zhang 2003). PRMT1 catalyzes asymmetric dimethylarginine ubiquitously throughout the human 

body, with the highest mRNA expression for its gene found in Epstein-Barr virus transformed 

lymphocytes (GTEx Portal website, see reference 10). While PRMT1 is known to methylate many 

protein substrates, a specific amino acid motif has not been identified for enzyme recognition. 

However, proteins containing sequences rich in glycine and arginine residues are generally good 

PRMT1 substrates (Wang 2023). Asymmetric dimethylarginine formation of these proteins are 

associated with transcriptional regulation, RNA processing, DNA damage repair, and signal 

transduction (Thiebaut 2021). Knockouts of the PRMT1 gene are known to lead to embryonic 

lethality in mice (Yu 2009). Additionally, PRMT1 knockout in HEK293T cells leads to growth arrest 

in the G2/M phase, and promotion of apoptosis (Zhou 2022). Studies have also identified that 

PRMT1 is not required for embryogenesis in Xenopus tropicalis but is important for growth and 

development. (Shibata 2020). While it is unknown how PRMT1 activity is regulated in the body, 

structural and enzymological approaches have discovered the minimal requirements for activity 

including oligomerization into either a heterodimer with other PRMTs, or homodimers (Morales 

2015)(Pak 2011), low ionic strength, and homeostatic body temperature and pH (Lowe 2022).  

  

PRMT5 the major Type II protein arginine methyltransferase 

 

Protein arginine methyltransferase 5 (PRMT5) is one of two type II enzymes that catalyze 

symmetric dimethylarginine, accounting for the bulk of SDMA formation in mammalian cells 

(Bedford and Clarke 2009). PRMT5 is an important target for cancer therapeutics due to its 
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overexpression in cancer (Lattouf 2019). Because PRMT5 is so heavily researched, many 

inhibitors have been identified for PRMT5 that are highly selective (Gao 2023). The 

methyltransferase activity of PRMT5 is enhanced when it is complexed with the MEP50 protein 

(Antonysamy 2017), and knockouts of the PRMT5 gene lead to embryonic lethality (Stopa, 2015). 

It has been noted PRMT5 binds to antibodies recognizing FLAG tags, leading to the potential 

misidentification of other binding partners (Nishioka 2003).  

 

PRMT7 the major Type III protein arginine methyltransferase 

 

Protein arginine methyltransferase 7 (PRMT7) is the only type III PRMT to catalyze 

monomethylarginine as a final product (Zurita 2012) and methylates proteins containing RXR 

motifs (Feng 2013). PRMT7 has been studied much less intensively than PRMT1 and PRMT5. 

To date there have been 141 published papers on PubMed that mention PRMT7, with the first 

paper attempting to characterize D. melanogaster homologs, DARTs (Boulanger 2004). While 

this initial study was the groundbreaking work to first characterize the PRMT7 gene, northern blot 

analysis of the mRNA from varying stages and organs of Drosophila males and females resulted 

in little to no PRMT7 mRNA (Boulanger 2004). Additionally, it wasn’t until 2006 when the first 

binding partner, the testis specific factor CTCFL, of PRMT7 was reported (Jelinic 2006). 

Unfortunately, there has been no reported evidence of CTCFL as a direct substrate for PRMT7 

methylation. However, CTCFL does contain a sequence in its C-terminal region that may be 

recognized by PRMT7, RTRKR. To date there are 51 reported human individuals containing 

PRMT7 gene mutations, leading to loss of activity  and neurodevelopmental disorders, skeletal 

abnormalities, and endocrine abnormalities (Cali 2023). While mutations of PRMT7 cause such 

issues, it is unknown if the cause of such phenotypes pertains to lack of function or alterations in 

structure.      
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Techniques for identification of PRMT activity 

 

2D chromatography followed by amino acid hydrolysis. 

 

Prior to the isolation of the PRMT genes, methylated amino acids were identified after 

protein hydrolysis. This approach led to the discovery of methylated lysine residues, using two-

dimensional chromatography to separate individual amino acids (Ambler 1959). It wasn’t until 

1970 when methylated arginine residues were identified in hydrolysates of rat liver nuclei (Paik 

1970). While this approach is powerful and still used today, the initial characterization of cell 

lysates resulted only in the identification of the modified amino acid without any knowledge of 

biological relevance or knowing which enzyme(s) was associated with each modification. To 

better understand the specific modification in a biologically relevant context, purified proteins 

identified from pulldowns are used with amino acid hydrolysis and methylarginine standards. 

Results from these experiments have identified that methylarginine peptides could be 

subcategorized into asymmetric dimethylarginine, symmetric dimethylarginine, and 

monomethylarginine (Lin 1996)(Branscombe 2001)(Zurita-Lopez 2012). 

 

Direct methylation assays using radioactive S-adenosylmethionine 

 

While much of today’s research involves the identification of post translational 

modifications with the use of high-throughput techniques like mass-spectrometry of cell lysates, 

low-throughput techniques like direct modification of a substrate provides clearer evidence. 

Through the use of oriented peptide array libraries (OPALs) and direct methylation assays 

coupled with mass spectrometry, it was discovered that specific PRMTs recognize distinct amino 

acid sequences. PRMT1 recognizes arginine and glycine rich motifs (GARs) with preference over 
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strings of RGG (Herrmann 2005), PRMT5 also methylates GAR motifs but can also methylate 

PGM motifs (Bedford 2009), and PRMT7 has preference for RXR motifs (Feng 2013).  

Two distinct assays were performed in this thesis. While both use a direct methylation with 

a [methyl-3H]-AdoMet molecule, each have their own pros and cons and will be outlined. The first 

direct methylation assay involves a radioactive gel assay. PRMT, substrate, and [methyl-3H]-

AdoMet are mixed together and allowed to incubate. Post termination, the polypeptides are 

separated using SDS-PAGE. The signal of the [methyl-3H]-AdoMet is enhanced by then soaking 

the gel in a liquid autoradiography enhancer and then exposure to a silver halide autoradiograph 

film where the radioactive source will exposure the film. Some pros with this technique include 

not having to separate excess nonreacted [methyl-3H]-AdoMet prior to exposure. Additionally, the 

separation of individual polypeptides helps to identify which proteins are methylated with the 

subsequent step of mass spectrometry identification. Some cons involved with this technique 

include the length of gel exposure to the autoradiograph film. The time needed to obtain a result 

can vary with results being obtained between 1 day to 60 days. Another con involves the 

identification of methylated peptides (Thomas 2014). I found that small peptides are not able to 

stay within the polyacrylamide matrix in gel separation, leading to a loss of sample. The other 

direct methylation assay involves a P81 phosphocellulose binding assay. Similar to the previous 

assay, PRMT, substrate, and [methyl-3H]-AdoMet are mixed together and allowed to incubate. 

Post termination, the samples are blotted onto a phosphocellulose paper, the proteins and 

methylated proteins are bound to the paper while the excess [methyl-3H]-AdoMet can be washed 

away. While this assay is quicker than a gel assay with results being obtained within a day, I found 

that it was not without problems. These problems include the inconsistent commercial availability 

and quality of the P81 phosphocellulose paper. Additionally, I found that the backgrounds for each 

assay can vary heavily where you can get a range of 50-3000 counts per minute differences. I 

postulate that the proteins that are blotted onto the paper can trap excess [methyl-3H]-AdoMet 

and that is not readily washed away from the paper.  



8 
 

References 

 

1) Paik, Woon Ki, David C. Paik, and Sangduk Kim. "Historical review: the field of protein 

methylation." Trends in biochemical sciences 32.3 (2007): 146-152. 

2) Fulton, Melody D., Tyler Brown, and Y. George Zheng. "Mechanisms and inhibitors of histone 

arginine methylation." The Chemical Record 18.12 (2018): 1792-1807. 

3) Lee, Young-Ho, and Michael R. Stallcup. "Minireview: protein arginine methylation of 

nonhistone proteins in transcriptional regulation." Molecular endocrinology 23.4 (2009): 425-

433. 

4) Bedford, Mark T., and Steven G. Clarke. "Protein arginine methylation in mammals: who, 

what, and why." Molecular cell 33.1 (2009): 1-13. 

5) Hwang, Jee Won, et al. "Protein arginine methyltransferases: promising targets for cancer 

therapy." Experimental & molecular medicine 53.5 (2021): 788-808. 

6) Aletta, John M., and John C. Hu. "Protein arginine methylation in health and disease." 

Biotechnology annual review 14 (2008): 203-224. 

7) Holtz, Ashley G., et al. "Asymmetric and symmetric protein arginine methylation in 

methionine-addicted human cancer cells." Plos one 18.12 (2023): e0296291. 

8) Bedford, Mark T. "Arginine methylation at a glance." Journal of cell science 120.24 (2007): 

4243-4246. 

9) Zhang, Xing, and Xiaodong Cheng. "Structure of the predominant protein arginine 

methyltransferase PRMT1 and analysis of its binding to substrate peptides." Structure 11.5 

(2003): 509-520. 

10) The GTEx Portal on 05/05/24 and/or dbGaP accession number phs000424.v8.p2 on 

05/05/24. 

11) Wang, Yi-Chun, et al. "Identification and characterization of glycine-and arginine-rich motifs 

in proteins by a novel GAR motif finder program." Genes 14.2 (2023): 330. 



9 
 

12) Thiebaut, Charlène, et al. "Structure, activity, and function of PRMT1." Life 11.11 (2021): 

1147. 

13) Yu, Zhenbao, et al. "A mouse PRMT1 null allele defines an essential role for arginine 

methylation in genome maintenance and cell proliferation." Molecular and cellular biology 

(2009). 

14) Zhou, Mei-Lin, Jin-Ni Ma, and Lu Xue. "Effect of Protein Arginine Methyltransferase 1 Gene 

Knockout on the Proliferation of Human Embryonic Kidney 293T Cells." Biology Bulletin 

49.Suppl 2 (2022): S1-S11. 

15) Shibata, Yuki, et al. "Knocking out histone methyltransferase PRMT1 leads to stalled tadpole 

development and lethality in Xenopus tropicalis." Biochimica et Biophysica Acta (BBA)-

General Subjects 1864.3 (2020): 129482. 

16) Morales, Yalemi, et al. "Redox control of protein arginine methyltransferase 1 (PRMT1) 

activity." Journal of Biological Chemistry 290.24 (2015): 14915-14926. 

17) Pak, Magnolia L., et al. "A protein arginine N-methyltransferase 1 (PRMT1) and 2 

heteromeric interaction increases PRMT1 enzymatic activity." Biochemistry 50.38 (2011): 

8226-8240. 

18) Lowe, Troy L., and Steven G. Clarke. "Human protein arginine methyltransferases (PRMTs) 

can be optimally active under nonphysiological conditions." Journal of Biological 

Chemistry 298.9 (2022). 

19) Lattouf, Hanine, Coralie Poulard, and Muriel Le Romancer. "PRMT5 prognostic value in 

cancer." Oncotarget 10.34 (2019): 3151. 

20) Gao, Jing, et al. "A patent review of PRMT5 inhibitors to treat cancer (2018-present)." Expert 

Opinion on Therapeutic Patents 33.4 (2023): 265-292. 

21) Antonysamy, Stephen. "The structure and function of the PRMT5: MEP50 

complex." Macromolecular Protein Complexes: Structure and Function (2017): 185-194. 



10 
 

22) Stopa, Nicole, Jocelyn E. Krebs, and David Shechter. "The PRMT5 arginine 

methyltransferase: many roles in development, cancer and beyond." Cellular and molecular 

life sciences 72 (2015): 2041-2059. 

23) Nishioka, Kenichi, and Danny Reinberg. "Methods and tips for the purification of human 

histone methyltransferases." Methods 31.1 (2003): 49-58. 

24) Zurita-Lopez, Cecilia I., et al. "Human protein arginine methyltransferase 7 (PRMT7) is a type 

III enzyme forming ω-NG-monomethylated arginine residues." Journal of Biological 

Chemistry 287.11 (2012): 7859-7870. 

25) Feng, You, et al. "Mammalian protein arginine methyltransferase 7 (PRMT7) specifically 

targets RXR sites in lysine-and arginine-rich regions." Journal of Biological Chemistry 288.52 

(2013): 37010-37025. 

26) Thomas, Dylan, et al. "Protein Arginine N‐Methyltransferase Substrate Preferences for 

Different Nη‐Substituted Arginyl Peptides." ChemBioChem 15.11 (2014): 1607-1613. 

27) Boulanger, Marie-Chloé, et al. "Characterization of the Drosophila protein arginine 

methyltransferases DART1 and DART4." Biochemical journal 379.2 (2004): 283-289. 

28) Jelinic, Petar, Jean-Christophe Stehle, and Phillip Shaw. "The testis-specific factor CTCFL 

cooperates with the protein methyltransferase PRMT7 in H19 imprinting control region 

methylation." PLoS biology 4.11 (2006): e355. 

29) Cali, Elisa, et al. "Biallelic PRMT7 pathogenic variants are associated with a recognizable 

syndromic neurodevelopmental disorder with short stature, obesity, and craniofacial and 

digital abnormalities." Genetics in Medicine 25.1 (2023): 135-142. 

30) Ambler, R. P., and M. W. Rees. "ɛ-N-methyl-lysine in bacterial flagellar protein." Nature 

184.4679 (1959): 56-57. 

31) Paik, Woon Ki, and Sangduk Kim. "ω-N-Methylarginine in Protein." Journal of Biological 

Chemistry 245.1 (1970): 88-92. 



11 
 

32) Lin, Wey-Jinq, et al. "The mammalian immediate-early TIS21 protein and the leukemia-

associated BTG1 protein interact with a protein-arginine N-methyltransferase." Journal of 

Biological Chemistry 271.25 (1996): 15034-15044. 

33) Branscombe, Tina L., et al. "PRMT5 (Janus kinase-binding protein 1) catalyzes the formation 

of symmetric dimethylarginine residues in proteins." Journal of Biological Chemistry 276.35 

(2001): 32971-32976. 

34) Herrmann, Frank, et al. "Dynamics of human protein arginine methyltransferase 1 (PRMT1) 

in vivo." Journal of Biological Chemistry 280.45 (2005): 38005-38010. 

35) Zeng, Hao, and Wei Xu. "Enzymatic assays of histone methyltransferase enzymes." 

Epigenetic technological applications. Academic Press, 2015. 333-361. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



12 
 

Chapter 3 

 

Human Protein Arginine Methyltransferases (PRMTs) Can Be Optimally Active Under 

Non-Physiological Conditions 

 

The work described in this chapter has been reproduced from: 

 

Lowe, T. L.,  and Clarke, S. G. (2022) “Human protein arginine methyltransferases (PRMTs) 

can be optimally active under nonphysiological conditions” J. Biol. Chem. 298, article 

102290, pp. 1-10. (http://doi.org/10.1016/j.jbc.2022.102290). PMCID: PMC9418908. PMID: 

35868559. 

 

Copyright 2024 

Troy L. Lowe, and Steven. G. Clarke 

 

Significance Statement 

 

Understanding the relationship between an enzyme and its substrate can give insights to 

an enzyme’s biological relevance. However, in some instances this is not the case. Protein 

arginine methyltransferases catalyze methylarginine on a multitude of substrates that have been 

identified using high throughput approaches. Because many of these high throughput approaches 

have not been verified, correlation of these enzymes to a specific biological process has remained 

difficult. Depending on these specific variables and circumstances, methylarginine marks have 

been identified as a ubiquitous modification in cancer, epigenetic regulation, disease states, as 

well as development.   

http://doi.org/10.1016/j.jbc.2022.102290
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Enzyme families usually contain highly conserved structural motifs leading to similar 

enzymatic catalysis. While the family of protein arginine methyltransferases are no different, the 

final modification that each can produce differs to some degree. The major three enzymes that 

catalyze the three types of methylated arginines include: PRMT1 catalyzing asymmetric 

dimethylarginine, PRMT5 catalyzing symmetric dimethylarginine, and PRMT7 catalyzing 

monomethylarginine (PRMT7). While all three of these enzymes have been identified to be 

overexpressed in a variety of cancers, the importance and involvement of each enzyme remains 

indistinguishable. Because the microenvironment of a cell is altered in a cancerous state, I was 

curious as to how these three enzymes behave under non-physiological conditions. It was 

determined that the conditions for PRMT1 and PRMT5 optimal activity are very similar but differ 

with pH. Additionally, the conditions that make PRMT7 most active are completely non-

physiological, allowing PRMT7 to be more discernible in activity compared to PRMT1 and 

PRMT5.       

The work provided in this study highlights that small differences in a cellular environment 

can alter PRMT activity. While important to know, it is still unknown whether these small 

differences translate to an in vivo system or are relevant due to the ever-changing landscape of 

a cell. 
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Chapter 3: Supporting information 

  

Human Protein Arginine Methyltransferases (PRMTs) Can Be Optimally Active Under 

Non-Physiological Conditions 

  

Troy L. Lowe and Steven G. Clarke 

 

List of material included: 

  

Figure 1S: pH Does not affect the P81 methylation assay efficiency. 

Figure 2S: pH dependence of human PRMT7 with a protein substrate. 

Figure 3S: Salts do not affect the P81 methylation assay efficiency. 

Figure 4S: Human PRMT7 activity decreases with ionic strength with a GST-GAR substrate. 
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Figure 1S: pH does not affect the P81 methylation assay efficiency. Replica reaction mixtures 

in a final volume of 30 µL were prepared containing 5 µg GST-HsPRMT7, 10 µM HsH2B (23-37), 

50 mM K-HEPES, 1 mM DTT, and 0.7 µM [3H]AdoMet at a final pH of 8.48, or a final pH of 6.72. 

These reaction mixtures were incubated for 1 hr at 20 °C and were then terminated by the addition 

of 0.5 µL of 100% TFA. At this point, either 3 µL of water or 3 µL of 500 mM K-HEPES, pH 8.48 

or 6.72 were added and the assay performed as described in the “Experimental Procedures” 

section. ANOVA analysis showed no significant difference between the activity with the addition 

of water or buffer with a pH of 8.48 or 6.72. 
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Figure 2S: pH dependence of human PRMT7 with a protein substrate. GST-HsPRMT7 5 µg 

was incubated with 6.2 µg GST-GAR, 1 mM DTT, 50 mM of the indicated buffer, and 0.14 µM 

[3H]AdoMet in a final volume of 30 µL. The reaction was performed for 1 h at 20 °C. The reaction 

was than quenched by the addition of SDS sample buffer and the mixtures were fractionated by 

SDS-PAGE as described in “Experimental Procedures.” Films were analyzed by densitometry 

using ImageJ software after scanning. Blue open circles represent samples incubated in K-

HEPES at the indicated final pH values, while red open triangles represent samples incubated in 

Tris-HCl, and green open squares represents samples incubated in a glycine buffer. 
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Figure 3S: Salts do not affect the P81 methylation assay efficiency. Replica reaction mixtures 

in a final volume of 30 µL were prepared containing 5 µg GST-HsPRMT7, 10 µM HsH2B (23-37), 

50 mM K-HEPES, 1 mM DTT, and 0.7 µM [3H]AdoMet at a final pH of 8.5. These reaction mixtures 

were incubated for 1 hr at 25 °C and were then terminated by the addition of 0.5 µL of 100% TFA. 

At this point, either no addition was made or 3 µL of water, 3 µL of 300 mM MgCl2, Na2SO4, or 

CaCl2, or 3 µL of 900 mM NaCl, or 3 µL of 225 mM MgSO4 were added and the assay performed 

as described in the “Experimental Procedures” section. ANOVA analysis showed no significant 

difference between the activity with no addition or with the water or salt additions. 
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Figure 4S: Human PRMT7 activity decreases with ionic strength with a GST-GAR substrate. 

5 µg GST-HsPRMT7 was incubated with 6.2 µg GST-GAR, 1 mM DTT, 50 mM K-HEPES, and 

0.14 µM [3H]AdoMet in a final volume of 30 µL and a final pH of 8.5. The ionic strength was 

adjusted with sodium sulfate to the indicated level. The reaction was performed for 1 h at 20 °C. 

The reaction was quenched by the addition of SDS sample buffer and the mixtures were 

fractionated by SDS-PAGE as described in “Experimental Procedures.” Films were analyzed by 

densitometry of the GST-GAR using ImageJ software after scanning. 
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Chapter 4 

 

The exquisite specificity of human protein arginine methyltransferase 7 (PRMT7) toward 

Arg-X-Arg sites 

 

The work described in this chapter has been reproduced from: 

 

Bondoc, T. J., Lowe, T. L.,  and Clarke, S. G. (2023) “The exquisite specificity of human 

protein arginine methyltransferase 7 (PRMT7) toward Arg-X-Arg sites” Plos one. 18, article 

e0285812, pp. 1-17. (http://doi.org/10.1371/journal.pone.0285812). PMCID: PMC10202292. 

PMID: 37216364. 

 

Copyright 2024 

Timothy J. Bondoc, Troy L. Lowe, and Steven. G. Clarke 

 

Significance Statement 

 

PRMT7 is the only enzyme in the family of nine that solely catalyzes monomethylarginine. 

While all other PRMTs are able to catalyze monomethylarginine, the specificity of a 

monomethylated substrate seems to remain exclusive to this particular enzyme. PRMT7 

catalyzes monomethylation of RXR specific substrates, while PRMT1 and PRMT5 are known to 

catalyze monomethylation of RGG specific substrates.  

Histone H2B arginine residues 29, 31, and 33 were identified to be methylated by PRMT7. 

The N-terminal region of histone H2B is highly conserved across higher order species from 

humans to mice. However, the sequence from 29-33 alters to some degree in lower order species 

like frogs and fruit flies. In particular the histone H2B (29-33) sequence of X. laevis contains a 

http://doi.org/10.1371/journal.pone.0285812
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switch of the arginine and lysine residues at positions 30 and 31, resulting in an RRKSR instead 

of an RKRSR. Ideally in theory, this switch in amino acids should completely abolish PRMT7 

activity since no RXR motif is present.  

Findings demonstrate that the histone H2B of X. laevis is in fact not a substrate for PRMT7, 

however additional data suggests that the residues surrounding the arginines that can be 

methylated by PRMT7 play a large role in substrate specificity. In particular if a lysine is present, 

we observe an increase in affinity of the substrate binding to enzyme. However, this can be 

reversed with increasing ionic strength. 

This work provides evidence that PRMT7 can in fact methylate substrates containing a 

single arginine as long as a positively charged residue is in close proximity. Additionally, these 

results confirm those of the previous chapter, demonstrating how increased ionic strength alters 

PRMT7 activity.          
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Chapter 4: Supporting information 

  

The exquisite specificity of human protein arginine methyltransferase 7 (PRMT7) toward 

Arg-X-Arg sites 

  

Timothy J. Bondoc, Troy L. Lowe and Steven G. Clarke 

 

List of material included: 

  

Figure 1S: Original gel stained with Coomassie Blue from figure 2. 

Figure 2S: Original 3H fluorograph 1-day exposure film from figure 2. 

Figure 3S: Original 3H fluorograph 74-day exposure film from figure 2. 
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Figure S1: Original gel stained with Coomassie Blue from figure 2. Lane 1: Protein ladder 

only. Lane 2: 5 μg GST-HsPRMT7. Lane 3: 1 μg full-length human histone H2B. Lane 4: 5 μg 

GST-HsPRMT7 with 1 μg full-length human histone H2B. Lane 5: 3 μg full-length Xenopus laevis 

histone H2B. Lane 6: 5 μg GST-HsPRMT7 with 3 μg full-length Xenopus laevis histone H2B. Red 

(X) lanes were cropped out of figure for presentation purposes and contained either no protein or 

a duplicate lane 1 protein ladder only. 
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Figure S2: Original 3H fluorograph 1-day exposure film from figure 2. Autoradiograph 

scanned backwards of figure S1. Lane 1 labeled L: Ladder. Lane 2 labelled E: 5 μg GST-

HsPRMT7. Lane 3 labeled S(Hs): 1 μg full-length human histone H2B. Lane 4 labeled ES (Hs): 5 

μg GST-HsPRMT7 with 1 μg full-length human histone H2B. Lane 5: 3 μg full-length Xenopus 

laevis histone H2B. Lane 6: 5 μg GST-HsPRMT7 with 3 μg full-length Xenopus laevis histone 

H2B. Red (X) lanes were cropped out of figure for presentation purposes and contained either no 

protein or a duplicate lane 1 protein ladder only. 
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Figure S3: Original 3H fluorograph 74-day exposure film from figure 2. Autoradiograph 

scanned backwards of figure S1. Lane 1 labeled L: Ladder. Lane 2 labelled E: 5 μg GST-

HsPRMT7. Lane 3 labeled S(Hs): 1 μg full-length human histone H2B. Lane 4 labeled ES (Hs): 5 

μg GST-HsPRMT7 with 1 μg full-length human histone H2B. Lane 5: 3 μg full-length Xenopus 

laevis histone H2B. Lane 6: 5 μg GST-HsPRMT7 with 3 μg full-length Xenopus laevis histone 

H2B. Red (X) lanes were cropped out of figure for presentation purposes and contained either no 

protein or a duplicate lane 1 protein ladder only. It is noted that the 100 kDa band in land 2 was 

not included in figure 2. 
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Chapter 5 

 

Methylation and phosphorylation of formin homology domain proteins (Fhod1 and 

Fhod3) by protein arginine methyltransferase 7 (PRMT7) and Rho Kinase (ROCK1) 

 

The work described in this chapter is from a manuscript submitted to the Journal of Biological 

Chemistry, currently in review. 

 

Copyright 2024 

 

Troy L. Lowe, Dylan A. Valencia, Vicente E. Velasquez, Margot E. Quinlan, and Steven G. 

Clarke 

 

Significance Statement 

 

The idea of the histone code revolves around the idea that specific modifications and 

combinations of modifications govern biological processes. While combinations of histone 

modifications, including phosphorylation, acetylation and methylation can work in concert to 

regulate transcriptional activation and repression, there are fewer examples with non-histone 

proteins. In this chapter we examine how combinations of phosphorylation and methylation may 

affect the function of two actin binding proteins Fhod1 and Fhod3.  

In this study we deviate from the idea of histones as substrates for PRMTs, and look 

toward an idea that PRMT7 can recognize RXR motifs and in particular proteins that have 

similarities to the histone H2B sequence. In theory the same sequence in human histone H2B 

should be recognized by PRMT7, RKRSR, and the sequence is present in both Fhod1 and Fhod3. 

This may not be the case as other factors like secondary structure may have a huge influence in 
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substrate recognition as well as additional modifications. In our particular case we were fortunate 

to identify the formin homology domain containing proteins (Fhods) as substrates. We identified 

that these proteins might be novel in vivo substrates for PRMT7 based on cellular localization. 

However, while our in vitro data shows strong evidence of a specific PRMT7 substrate, 

reconstitution in an in vivo system remains unknown. Additionally, this study demonstrates the 

effects of phosphorylation on methylation, and vice versa.        

Attention on how the methylation of Fhods in an in vivo system should be monitored for 

future work on the importance of arginine methylation.  

 

Abstract 

 

Protein post translational modifications (PTMs) can regulate biological processes by 

altering an amino acid’s bulkiness, charge, and hydrogen bonding interactions. Common 

modifications include phosphorylation, methylation, acetylation and ubiquitylation. Although a 

primary focus of studying PTMs is understanding the effects of a single amino acid modification, 

the possibility of additional modifications increases the complexity. For example, substrate 

recognition motifs for arginine methyltransferases and some serine/threonine kinases overlap, 

leading to potential enzymatic crosstalk. In this study we have shown that the human family of 

formin homology domain containing proteins (Fhods) contain a substrate recognition motif specific 

for human protein arginine methyltransferase 7 (PRMT7). In particular, PRMT7 methylates two 

arginine residues in the diaphanous autoinhibitory domain (DAD) of the family of Fhod proteins: 

R1588 and/or R1590 of Fhod3 isoform 4. Additionally, we confirmed that S1589 and S1595 in the 

DAD domain of Fhod3 can be phosphorylated by Rho/ROCK1 kinase. Significantly, we have 

determined that if S1589 is phosphorylated then PRMT7 cannot subsequently methylate R1588 

or R1590. However, if phosphoserine 1595 is present then PRMT7 is mildly inhibited, but can still 

methylate R1588 and R1590. Conversely, if R1588 or R1590 of Fhod3 is methylated then ROCK1 
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phosphorylation activity is slightly affected. Taken together these results suggest that the family 

of Fhod proteins, a potential in vivo substrate for PRMT7, might be regulated by a combination of 

methylation and phosphorylation. 

 

Introduction 

 

Protein post translational modifications enhance biological diversity. Although a 

generalized consensus of these individual modifications has been proposed, knowledge about 

the interplay of multiple modifications on biological function is lacking. However, distinct 

modifications often occur in close proximity on target substrates, creating potential cross-talk in 

regulatory pathways. Cross-talk may result from binding competition between enzymes or 

changes in the recognition motif. In particular, histones and transcription factors are known to 

display a plethora of modifications ultimately leading to the translational regulation of specific 

genes. For example, the recruitment of TATA binding proteins (TBPs) and associated factors 

(TAFs) to the transcriptional start site of some eukaryotic organisms results in the signaling for 

polymerase II (1). While phosphorylation is the most dominant modification on TBPs and TAFs 

(2), additional modifications like acetyllysine (3) and methylarginine (4) are also present.  

One modification, protein arginine methylation, is catalyzed by a family of nine enzymes 

in mammals; whether protein arginine demethylases are involved in vivo has not been fully 

resolved (5,6). Methylation occurs on the guanidino side chains of arginine residues, altering 

charge, increasing the number of potential hydrogen bond donors (7,8) and creating a bulkier side 

chain (9). PRMT1-4, 6, and 8 are known as type I PRMTs that catalyze asymmetric 

dimethylarginine (10), PRMT5 and PRMT9 are considered type II that catalyze symmetric 

dimethylarginine (11), and PRMT7 is the only type III PRMT exclusively catalyzing 

monomethylarginine (12). While most of the PRMTs recognize substrates containing arginine and 
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glycine rich motifs (GARs), PRMT4 prefers proline and glycine motifs, and PRMT7 prefers 

arginine-x-arginine motifs (RXR) (13,14). 

Protein phosphorylation is catalyzed by kinases and to date there are an estimated 538 

protein kinase encoding genes (15). These protein kinases are classified into eight groups 

depending on their substrate recognition. In particular, the AKT kinases that phosphorylate serine 

and threonine residues are known to have a recognition motif sequence of RxRxxS/T and are 

known to regulate many biological processes including the MAPK pathway and WNT signaling 

pathway (16). Because PRMT7 and the AKT kinases have overlapping substrate recognition 

motifs, one might expect some overlap of protein modifications, leading to crosstalk and allosteric 

regulations. In Saccharomyces cerevisiae, proteins Npl3, Ded1, and Sbp1 have been identified 

to have arginine methylation and phosphorylation co-occur in regions that are highly disordered 

(17). 

PRMT7 has been implicated in many biological processes including the epithelial to 

mesenchymal transition in breast cancer (18), the regulation of inflammation through the NF-κΒ 

pathway in chronic obstructive pulmonary disease patients (19), and the maintenance of stem 

cells during development (20). To date, 51 patients have been documented to have homozygous 

or compound heterozygous mutations in the PRMT7 gene, leading to a variety of phenotypes due 

to the presumed absence of enzyme activity (21,22). These phenotypes are classified as short 

stature, brachydactyly, intellectual developmental disability, seizures, and hypotonia (23). 

Additionally, PRMT7 appears to have a major role in skeletal muscle maintenance and formation 

(24-26). 

Actin is one of the most ubiquitous proteins in eukaryotic cells. It is a fundamental element 

of muscle and plays an important role in cellular architecture and movement (27). Actin nucleators 

aid in the assembly of actin filaments and are categorized into three classes, Arp2/3 complex, 

formins, and tandem WASP homology 2 (WH2) (28). In humans,15 genes encode the family of 

formin proteins and mutations of some of these genes have been linked to cancer, intellectual 
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disability, and developmental defects of the heart (28,29). All formins contain core formin 

homology domains unique to the class, FH1 and FH2, (30,31) and sequence similarity can vary 

between 20-60%, thus creating subclasses. One subfamily of formins, the Formin Homology 

Domain-containing proteins (Fhods) consist of two proteins in humans, Fhod1 and Fhod3. Fhod1 

is highly expressed in many cells, including spleen (32) and skeletal muscle (33). It is found in 

multiple structures including stress fibers (34), transmembrane actin-associated nuclear (TAN) 

lines (35), and is linked to a range of diseases (29,36). Fhod3 is mainly expressed in cardiac 

muscle (37). It is located in the contractile structures, sarcomeres (38,39), and linked to both 

dilated and hypertrophic cardiomyopathies (40). 

In this paper we show that Fhod1 and Fhod3 proteins are newly identified substrates for 

PRMT7 and that the phosphorylation of nearby serine residues can inhibit the methylation 

reactions. Additionally, we observed that methylation of an arginine residue in proximity to a 

phosphorylatable serine has a mild inhibitory effect on ROCK1 kinase. 

  

Results  

 

Human Fhod1 and Fhod3 contain a recognition sequence for PRMT7 similar to human 

histone H2B. 

 

Human histone H2B has been identified as a particularly effective substrate for PRMT7 

methylation (14). Specifically, the arginine residues in the RKRSR motif at residues 29-33 has 

been identified as PRMT7 targets and the methylation efficiency of this motif is highly dependent 

upon its sequence (13).  To identify additional proteins that may be substrates for PRMT7, we 

performed a peptide search for human proteins containing an RKRSR motif (Table S1). Based on 

the apparent importance of PRMT7 in muscle organization (26,41), we narrowed our search to 

four proteins classified in the “cytoskeleton organization” gene ontology group (Table 1). Since 
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PRMT7 primarily localizes in the cytoplasm (42,43), we further focused our attention on the two 

proteins that were mainly located in the cytoplasm, FH1/FH2 domain-containing protein 1 and 3.  

 

Table 1: Human cytoskeletal organization proteins containing the specific RKRSR 

sequence. 

Accession Entry 

Name 

Protein name Localization Gene Ontology 

O75400 PR40A Pre-mRNA-

processing factor 40 

homolog A 

Nucleus Cytoskeleton Organization 

P18583 SON Protein SON  Nucleus Microtubule 

Cytoskeleton Organization 

Q2V2M9 Fhod3 FH1/FH2 domain-

containing protein 3 

Cytoplasm Cortical Actin 

Cytoskeleton Organization 

Q9Y613 Fhod1 FH1/FH2 domain-

containing protein 1 

Cytoplasm Cortical Actin 

Cytoskeleton Organization 

 

 

The C-terminus of human Fhod1 and Fhod3 are methylated by human PRMT7. 

 

Fhod1 and Fhod3 contain four conserved domains, a diaphanous inhibitory domain (DID), 

formin homology domains 1 (FH1) and 2 (FH2), and a diaphanous autoregulatory domain (DAD) 

(Fig. 1A). The latter three domains compose the C-terminal half of the protein, with 52% amino 

acid identity between Fhod1 and Fhod3 (Fig. 1B). The RKRSR motif is present in the DAD region 

near the C-terminus. To determine if human Fhod1 and Fhod3 DAD domains can be methylated 
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by PRMT7, we performed in vitro methylation assays. We found that the constructs including the 

DAD domain of Fhod1 and Fhod3 were, in fact, substrates for PRMT7 (Fig. 1C). 

There is an additional sequence in the C-terminal domain of Fhod3 (RTRSR) that closely 

matches the RKRSR motif of human histone H2B and Fhod1 that may be a methylation site. To 

determine the localization of PRMT7 methylation site(s), we made mutations where we replaced 

arginine residues with lysine residues to remove the RXR motif. When we mutated the RTRSR 

motif to RTKSR we found no loss of methylation, suggesting that this site was not a substrate for 

PRMT7. On the other hand, when we mutated the RKRSR motif to KKKSR we found that the 

protein was no longer a substrate for PRMT7. In this case we mutated both of the initial arginine 

residues because the sequence immediately preceding the motif (RE) might have generated an 

additional RXR sequence. These results provided evidence that the major sites of arginine 

methylation reside in the RKRSR sequence exclusively within the DAD domain of Fhod3 (Fig. 2). 

 

Arginine residues at positions 1588 and 1590 of HsFhod3 isoform 4 are major 

methylation sites for PRMT7 catalysis. 

 

We next identified the specific arginine residues methylated within the canonical Fhod3 

target sequence. In the histone H2B RKRSR sequence, all three arginine residues were found to 

be methylated by PRMT7 through the use of mass spectrometry (14). Evidence was presented 

that the major activity occurred at the first two arginines in the RKRSR motif, R29 and R31 (14). 

While both Fhod1 and Fhod3 contained the RKRSR sequence, an additional RXR is present due 

to the preceding RE amino acids creating a RERKRSR motif (residues 1584-1590) potentially 

creating 4 arginines that can be methylated by PRMT7. We decided to perform mutagenesis of 

this region to identify which arginine residues are methylated by PRMT7. Upon performing in vitro 

methylation reactions with the MBP-Fhod3 (1472-1622) R1584K, R1586K, R1588K, and R1590K 

constructs, we were only able to observe methylation of the R1584K and R1586K constructs, 
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demonstrating that these two residues are not required for methylation and that both R1588 and 

R1590 are required (Fig. 3). Because R1588 and R1590 straddle a single RXR motif, we interpret 

these findings as evidence that one or both of these positions are the major sites of methylation. 

Interestingly, in the histone H2B sequence the first two arginines are preferentially methylated 

while in the Fhod3 sequence it is the latter two that are PRMT7 substrates. 

 

Phosphoserine 1589 inhibits methylation by PRMT7, while phosphoserine 1595 only 

mildly inhibits PRMT7 activity. 

 

It has been established that phosphorylation of Fhod3 at serine 1589 by either ROCK1 or 

ROCK2 kinase regulates the activity of this protein by alleviating its autoinhibition (44,45). Since 

we found that the two arginine residues directly adjacent to this serine residue are sites of PRMT7 

modification, we asked how phosphorylation of S1589 impacts methylation of R1588 and R1590. 

Significantly, we found that phosphorylation of a synthetic peptide containing S1589 resulted in 

little or no methylation by PRMT7 (Fig. 4). On the other hand, phosphorylation of a downstream 

serine residue at position 1595 decreases the Km four-fold without making a significant change 

to the Kcat. These results demonstrate that phosphoserine in close proximity to the RXR PRMT7 

substrate recognition site inhibits enzyme activity. 

 

Phosphoserine 32 of human histone H2B abolishes PRMT7 activity, while phosphoserine 

36 inhibits PRMT7 activity. 

 

The dramatic inhibition of PRMT7 activity by an adjacent phosphoserine residue seen with 

the Fhod3 peptide led us to ask if a similar effect is seen with the complementary motif of the H2B 

peptide. In yeast histone H2B, residues 30 to 37 comprise a repressive domain (46,47). 

Additionally, methylatable arginine residues 31 and 33 flank serine 32 which is known to be 
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phosphorylated by RSK2 (48) and by Aurora B kinase (49). Furthermore, the downstream serine 

36 residue can be phosphorylated by S6K1 (50) and AMPK (51). While serine 36 is conserved in 

higher organisms, serine 32 is only present in mammals and amphibians (Fig. 5). Upon 

performing in vitro methylation assays with PRMT7 and human histone H2B (23-37) synthetic 

peptides containing either a phosphoserine at position 32 or 36, we observed little to no 

methylation of the H2B (23-37) peptide containing a phosphoserine at position 32 while the 

peptide containing a phosphoserine at position 36 had a decreased amount of methylation 

compared to the wild type (Fig. 6). These results demonstrate that PRMT7 activity inhibition 

increases as the phosphoserine gets closer to the arginine recognition sequence in Histone H2B, 

and corroborate the results seen with Fhod3. 

 

Methylarginine 1588 or 1590 minimally affects the phosphorylation of Fhod by ROCK1 in 

a peptide containing serine 1589 and/or 1595. 

 

Since we found that phosphorylation of the serine residue in the RSR methylation motif 

resulted in the loss of PRMT7 methylation, we then asked whether methylation of these arginine 

residues affects phosphorylation of the serine residue. Phosphorylation of serine 1589 and 1595 

in the RSR motif of the DAD domain of Fhod1/3 by ROCK1/2 is sufficient to relieve autoinhibition, 

which then activates actin nucleation (44,45). While the previous ROCK1 phosphorylation studies 

have been performed both in vivo and on truncated C-terminal tail constructs, we first wanted to 

establish whether ROCK1 could recognize a serine residue in a peptide substrate that we could 

prepare in methylated and unmethylated forms (45). We thus compared the extent of 

phosphorylation of Fhod3 peptides containing residues 1581-1595 (VVPRERKRSRANRKS) with 

ROCK1 in in vitro time course assays, for up to 2 hours, analyzed by LC/MS (Fig. 7). We found 

clear evidence for phosphorylation of the unmethylated peptide and peptides with either a 

monomethylarginine at positions 1588, 1590, or both. In contrast to the effect of serine 
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phosphorylation on arginine methylation, we observed no significant decrease in phosphorylation 

(Fig. 7). These results suggest that methylation of adjacent arginine residues has little effect on 

ROCK1 phosphorylation, but further work will be needed to validate this. 

In the experiment shown in figure 7, we only detected monophosphorylated forms even 

after 2 h of incubation. We then decided to increase the incubation time in hopes of capturing a 

diphosphorylated peptide Fhod3. In a 5 h incubation we found that similar amounts of 

monophosphorylated and diphosphorylated peptides were formed with the unmethylated peptide, 

the 1588 monomethylated peptide, the 1590 monomethylated peptide, and 1588 and 1590 

monomethylated peptide (Fig. S1-S4). These results confirm the general lack of effect of 

methylation on phosphorylation. 

To observe the effect of arginine methylation on the serine residue between the two 

arginine residues, we designed peptides containing only the Fhod3 sequence 1581-1594 

(VVPRERKRSRANRK). In time course experiments with these peptides containing 

monomethylarginine residues at positions 1588, 1590, or at 1588 and 1590, we detected 

monophosphorylation at similar levels as the unmethylated peptide (Fig. 8).These results suggest 

that there is no major effect of methylation on ROCK1 phosphorylation of serine 1589. It is 

intriguing that phosphorylation has such a powerful negative affect on methylation whereas 

methylation appears to have a much more limited role on phosphorylation. 

 

Discussion 

 

Previous work has established that PRMT7 can be distinguished from the other members 

of the mammalian PRMT family both by its specificity for an arginine motif in proteins and by the 

fact that it is the sole PRMT that catalyzes monomethyl derivatives. This enzyme is characterized 

by its recognition of certain pairs of arginine residues separated by one residue, the RXR motif 

(14). A particular variant of this motif found in human histone H2B (RKRSR) has been shown to 
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be an excellent substrate (14). Searching for other proteins containing this motif identified the 

formin family of proteins as potential substrates. 

In this study we have demonstrated that the family of formin homology domain containing 

proteins are methylated by PRMT7. Specifically, Fhod1 and Fhod3, are methylated at the RKRSR 

sequence occurring at residues 1128-1132 in Fhod1 isoform 1 and 1586-1590 in Fhod3 isoform 

4, which is identical to the recognition motif in histone H2B. Despite the common sequence we 

found that different arginines were preferentially methylated in histone H2B and Fhod3. Further, 

we noted that neither RTRSR nor RERKR were targets for PRMT7. Together these results 

suggest that additional motif elements beyond the RXR motif contribute to PRMT7 recognition 

and methylation. We highlight in Table S1 additional proteins with the RKRSR motif. It is 

noteworthy that none of these proteins have been identified to date in proteomic studies (52). 

Methylarginines are known to occur in protein domains enriched with positively charged 

residues and low structural complexity seen in intrinsically disordered regions (53). The N-terminal 

regions of histones are highly disordered unless in contact with supercoiled DNA (54). 

Additionally, another identified substrate for PRMT7, the Peroxisome proliferator-activated 

receptor gamma (PPARγ) coactivator-1 alpha (PGC-1α), is intrinsically disordered (55). 

Therefore, we asked if the same is likely to be true for the C-terminal tail of Fhod3. Many if not all 

formin tails are disordered (56-58). In fact, AlphaFold structural predictions return a folded FH2 

domain, as expected, and suggest that the RKRSR sequence in Fhod3 is in a disordered region. 

There have been several studies that have demonstrated inhibition of PRMT methylation 

by adjacent or nearby phosphoserine residues. In histone H3, serine-10 is known to be 

phosphorylated by a variety of kinases (59) and arginine-8 is methylated by PRMTs (60). 

However, if serine-10 is phosphorylated, then PRMT1, PRMT4 or PRMT5 catalyzed methylation 

of arginine-8 is completely inhibited (61). In histones H2A and H4, serine phosphorylation at 

positions 1 and 4 partially inhibit methylation of arginine-3 by PRMT5 (62,63). We now extend 
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these observations by showing that PRMT7 methylation is inhibited by a phosphorylated serine 

in both Fhod3 and histone H2B. 

There have been two studies that demonstrate the effect of protein arginine methylation 

on phosphorylation. For example, methylation of arginine-1199 in the epidermal growth factor 

receptor stimulates the autophosphorylation of tyrosine-1197 (64). In another study, methylation 

of CIRBP by PRMT1 reduces the amount of phosphorylation at nearby sites by SRPK1 (65). In 

contrast, phosphorylation of the PRMT7 methylated site in Fhod3 was minimally impacted. 

Perhaps a monomethyl group is insufficient to inhibit kinases or the specific kinase is more robust. 

The significant inhibitory effect of phosphoserine residues on methylation of nearby 

arginine residues may be explained on a molecular basis by salt bridges between the positively 

charged and negatively charged side chains that stabilize proteins (66). Specifically, when a 

phosphoserine is in close proximity to arginine, the negatively charged oxygens on the phosphate 

group lead to non-covalent interactions with the positively charged nitrogen atoms of the arginine 

guanidino group (61). 

Interestingly, the inhibition of methylation by phosphorylation may represent a mechanism 

that can be seen to parallel direct enzymatic demethylation of arginine residues. There is no clear 

consensus on the existence of protein arginine demethylases but JMJD6, or Jumonji domain 

containing 6 protein has been proposed as such an enzyme (67). JMJD6 has also been 

characterized as a lysine hydroxylase (68). However, MALDI-TOF experiments have shown the 

reduction of 14 kDa or 28 kDa of a monomethylated or dimethylated arginine peptide with the 

addition of the JMJD6 enzyme (69). Another proposed mechanism of arginine demethylation 

utilizes the protein arginine deiminase 4 enzyme, PAD4. While the function of this enzyme has 

been shown to catalyze citrulline from arginine, in vitro studies have shown that catalysis of PAD4 

on methylarginine histones resulted in methylamine formation (70). However, the rates of 

demodification of methylarginine by PAD4 were slower in comparison to the formation of 
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methylarginines by PRMTs (71). Thus, inhibition of methylation may be an important way to 

regulate PRMTs. 

While we still lack an understanding of how PRMT7 is regulated in vivo, our findings of the 

crosstalk interactions with Fhod methylation and phosphorylation do suggest a possible regulatory 

mechanism for formin-mediated actin polymerization. It will be intriguing to learn how the known 

regulation of PRMT7 by low temperature, a low ionic strength environment, and alkaline 

conditions (72) may contribute to the physiological process of actin polymerization. 

  

Experimental Procedures 

 

Plasmids and Constructs 

 

Recombinant H. sapiens GST-PRMT7 was grown and purified as described (72). 

 

Mammalian Fhod3 C-terminal (963-1622), and Fhod1-tail (1110-1164) constructs were cloned 

into modified pGEX plasmids with a maltose binding protein (MBP) tag. MBP tagged Fhod3 tail 

(1472-1622) was cloned via FastCloning using pMAL-Fhod3 wild-type (963-1622) as a template 

(73). Point mutations of Fhod3-tail (1472-1622) were generated by site-directed mutagenesis as 

described (74). 

 

Growth and Purification 

 

All Fhod3 constructs were transformed in Rosetta 2 (DE3) cells (Novagen) and grown in 1 L of 

Terrific Broth supplemented with 100 mg/liter ampicillin and 32 mg/liter chloramphenicol. 

Expression was induced at OD 0.6-0.8 with 0.5 mM isopropyl-ß-D-1-thiogalactopyranoside (IPTG) 

and allowed to shake overnight at 18˚C, 210 rpm. Cells were harvested by centrifugation at 6,000 
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x g for 10 minutes, washed in 1X phosphate buffer saline (PBS) containing 1 mM dithiothreitol 

(DTT), and flash frozen in liquid nitrogen. Cell pellets expressing the MBP-Fhod3 were thawed 

and resuspended in 20 mM Tris, 200 mM NaCl, 1 mM EDTA, 1 mM DTT, 2 µg/mL DNaseI, 1 mM 

PMSF, pH 7.5. All subsequent steps were performed on ice or at 4 °C. The cells were lysed by 

microfluidization (3x) centrifuged at 20,000 x g for 20 minutes. Lysate was incubated with amylose 

resin (New England Biolabs) for 1 hour at 4 °C. Resin was washed with extraction buffer (20 mM 

Tris, 200 mM NaCl, 1 mM EDTA, 1 mM DTT, pH 7.5). Protein was eluted using elution buffer (20 

mM Tris, 200 mM NaCl, 1 mM EDTA, 1 mM DTT, 10 mM maltose), flash frozen in liquid nitrogen, 

and stored at -80˚C. MBP-Fhod1 was grown and purified similarly.  

 

Peptide Substrates 

 

Table 2: Arginine Methylation P81 Peptides 

Peptide Name Peptide Sequence Purity (%) Theoretical 

MW 

H2B (23-37) WT Ac-KKDGKKRKRSRKESY-NH2 87.8 1935.25 

H2B (23-37) poS32 KKDGKKRKR{poSER}RKESY 91.0 1974.18 

H2B (23-37) poS36 KKDGKKRKRSRKE{poSER}Y 88.3 1974.18 

Fhod3 (1581-1595) 

WT 

VVPRERKRSRANRKSY 98.2 2002.3 

Fhod3 (1581-1595) 

poS1589 

VVPRERKR{poSER}RANRKSY 87.2 2082.28 

Fhod3 (1581-1595) 

poS1595 

VVPRERKRSRANRK{poSER}Y 96.9 2082.28 
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All peptides were purchased from GenScript. Trifluoroacetic acid removal was performed by 

company and switched with a standard acetate salt. A tyrosine residue was added at the C-

terminus of each Fhod peptide to determine the concentration of the peptide by UV spectra. 

 

Table 3: Serine Phosphorylation Mass Spectrometry Peptides 

Peptide Name Peptide Sequence Purity 

(%) 

Theoretical 

MW 

Fhod3 (1581-1594) WT Ac-VVPRERKRSRANRKY-NH2 88.4 1956.33 

Fhod3 (1581-1594) 

R1588Me1 

Ac-VVPRERK{RMe1}SRANRKY-NH2 87.2 1970.33 

Fhod3 (1581-1594) 

R1590Me1 

Ac-VVPRERKRS{RMe1}ANRKY-NH2 96.9 1970.33 

Fhod3 (1581-1594) 

R1588Me1/R1590Me1 

Ac-VVPRERK{RMe1}S{RMe1}ANRKY-

NH2 

99.1 1984.38 

Fhod3 (1581-1595) WT Ac-VVPRERKRSRANRKSY-NH2 97.6 2043.35 

Fhod3 (1581-1595) 

R1588Me1 

Ac-VVPRERK{RMe1}SRANRKSY-NH2 97.6 2057.40 

Fhod3 (1581-1595) 

R1590Me1 

Ac-VVPRERKRS{RMe1}ANRKSY-NH2 99.1 2057.40 

Fhod3 (1581-1595) 

R1588Me1/R1590Me1 

Ac-VVPRERK{RMe1}S{RMe1}ANRKSY-

NH2 

94.1 2071.46 

All peptides were purchased from GenScript. Trifluoroacetic acid removal was performed by 

company and switched with a standard acetate salt. A tyrosine residue was added at the C-

terminus of each Fhod peptide to determine the concentration of the peptide by UV spectra. 
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Radioactive Methylation Assay 

 

Gel assays of GST-HsPRMT7, MBP-Fhod1-tail (1110-1164), Fhod3-CT (963-1622), MBP-Fhod3-

tail (1472-1622) wild-type and MBP-Fhod3-tail (1472-1622) arginine to lysine mutations were 

performed as previously described (72). 

 

In Vitro ROCK1 Kinase Assay 

 

N-terminal 6xHis-tagged recombinant human ROKβ/ROCK-I (17-535) was purchased from 

Eurofins Discoverx (catalog No. 14-601). Kinase reactions were carried out in a reaction buffer 

containing 8 mM K-HEPES, 200 µM EDTA supplemented with an ATP cocktail mixture of 8 mM 

MgAc·6H2O and 80 µM ATP. Reactions were allowed to incubate in a 30 °C water bath for the 

times listed and terminated with 0.5 µL of 100% trifluoroacetic acid. 

 

Mass Spectrometry  

 

In vitro ROCK1 kinase reactions were injected into an Agilent MS Q-TOF model G6545B with a 

Dual AJS ESI ion source. Scan segments were collected in positive mode with a MS absolute 

threshold of 200 (0.010% relative threshold), and a MS/MS absolute threshold of 5 (0.010% 

relative threshold).  Sampler auxiliary draw speed was 200 µL/min and an eject speed of 400 

µL/min. Binary pump, model G7112B, flow rate was set at 0.800 mL/min with a low-pressure limit 

of 0.00 bar, and a high-pressure limit of 400.0 bar. The maximum flow gradient was 100.000 

mL/min2 with a stop time of 12.0 min and a post time of 3.0 min. Mobile phase solvent A contained 

0.1% FA in water and solvent B contained 0.1% FA in acetonitrile. The first 2 minutes contained 

99% solvent A and 1% solvent B then 5% solvent A and 95% solvent B for the remainder of the 

run. Column composition, model G7116A, temperature was set to 40 °C. Both left and right 
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temperature control analysis were enabled and set to 0.8 °C with an equilibration temperature 

time of 0.0 min. DAD, model G7115A, contained a peak width of >0.1 min (2 s response time, 2.5 

Hz) with a slit of 4 nm. The analog output was offset by 5% with an attenuation of 1000 mAU and 

the margin for negative absorbance set to 100 mAU. The spectrum range was from 190 nm to 

650 nm with a spectrum step of 2.0 nm. 

 

P81 Methylation Assay  

 

P81 assay of GST-PRMT7, phosphoserine Fhod peptides, and phosphoserine H2B peptides 

were performed as previously described (72). 

 

Statistical Analysis  

 

Michaelis Menten non-linear regression was performed using GraphPad Prism version 5.01 for 

Windows, GraphPad Software, San Diego California USA, www.graphpad.com. No constraint 

was applied to the Vmax while the Km was constrained to a value greater than 0.0. No weighting 

method was applied and each replicate Y value was considered as an individual point. 

 

Data Availability 

 

All mass spectrometry raw files have been deposited in the MassIVE repository housed at UCSD 

(http://massive.ucsd.edu/) with the accession number MSV000094470 

[http://doi.org/doi:10.25345/C5T14V12K]. FTP files can be directly downloaded from 

[ftp://massive.ucsd.edu/v07/MSV000094470/]. Additional data are available upon request. 

 

 

http://massive.ucsd.edu/
https://doi.org/doi:10.25345/C5T14V12K
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Figure 1: The C-terminal domains of HsFhod1 and HsFhod3 are methylated by HsPRMT7 

in vitro. A) Schematic diagram of HsFhod1 and HsFhod3 and constructs used in this paper. 

Common domains are indicated. Light green boxes in Fhod3 are inserts that distinguish isozyme 

4 from isozyme 1. The dark blue box (RTRSR) contains a sequence similar to the PRMT7 

recognition sequence (RKRSR) in the red box. Red asterisk (*) denotes a serine that is 

phosphorylated by ROCK1/2. B) Sequence alignment of HsFhod1 and HsFhod3 (isozymes 1 and 

4) C-terminal residues including the core DAD domain (bold) and the PRMT7 recognition motif 

(red box). C) 7 μg of MBP-Fhod1 DAD domain (1110-1164) or 7 μg of Fhod3-CT (963-1622), 5 

μg of GST-HsPRMT7, and 0.7 μM [3H]AdoMet were combined and allowed to incubate for 20 h 

at 4 °C in a reaction buffer containing 1 mM DTT, 50 mM K-HEPES, with a final pH of 8.5. Samples 

were separated by SDS-PAGE electrophoresis and exposed to autoradiography film for 5 days. 

Single asterisk (*) denotes the polypeptide molecular weight of MBP-Fhod1 tail (1110-1164) 

double asterisk (**) denotes the polypeptide molecular weight of Fhod3-CT (963-1622). 
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Figure 2: PRMT7 methylates the RKRSR motif of Fhod3 and not the RTRSR motif. 5 µg of 

GST-HsPRMT7 and 3 µg of MBP-tagged DAD domain Fhod3 constructs was mixed with 0.7 μM 

[3H]AdoMet. Reactions were incubated for 20 h at 4 °C prior to termination by SDS-sample buffer. 

Samples were separated by SDS-PAGE electrophoresis and exposed to autoradiography film for 

10 days. Fhod3 constructs consisted of amino acid residues (1472-1622) from isozyme 4 as the 

wildtype (WT) sequence or the mutated R1536K sequence or the double mutant R1586K and 

R1588K sequence. Protein bands at 100 kDa represents GST-HsPRMT7 and protein bands at 

63 kDa represent MBP-Fhod3 (1472-1622) constructs. Total amount of protein and substrate was 

determined by nanodrop A280 where 1 μg/μL was equal to 1 absorbance unit. 



81 
 

 

Figure 3: PRMT7 methylates R1588 or R1590 of the Fhod3 C-terminal DAD domain. 5 µg of 

GST-HsPRMT7 was mixed with 3 μg of MBP-Fhod3 (1472-1622) constructs containing residue 

mutations of arginine to lysine in the identified RERKRSR motif sequence, and 0.7 μM 

[3H]AdoMet. Reactions were incubated for 20 h at 4 °C and then terminated with an SDS-PAGE 

sample buffer. Gel was exposed to an autoradiograph film for 10 days prior to development. Total 

amount of protein and substrate was determined by nanodrop A280 where 1 μg/μL was equal to 

1 absorbance unit. 
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Figure 4: Phosphoserine 1589 of Fhod3 inhibits PRMT7 activity. 5 μg of GST-HsPRMT7, 

0.14 μM of [3H]AdoMet and indicated Fhod3 (1581-1595) peptides incubated at 20 °C for 1 h in a 

reaction mixture of 50 mM K-HEPES, 1 mM DTT, and pH of 8.5. A) Fhod3 (1581-1595) WT, B) 

Fhod3 (1581-1595) poS1589, C) Fhod3 (1581-1595) poS1595. Curves were fitted to a standard 

Michaelis-Menten equation using GraphPad PRISM, n=3. 
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Figure 5: The RKRSR motif of histone H2B is highly conserved among higher order 

species. The human histone H2B sequence containing PRMT7 recognition residues RKRSR 

aligned with common model organism histone H2Bs.  Higher organisms only contain a serine at 

position 32. Serine 36 is highly conserved but is altered to threonine in some lower organisms. 
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Figure 6: Phosphoserine 32 of human histone H2B abolishes PRMT7 activity. 5 µg of GST-

HsPRMT7 was mixed with either A) H2B (23-37) WT, B) H2B (23-37) poS32 or C) H2B (23-37) 

poS36, and 0.7 µM [3H]AdoMet. Reaction mixtures contained 50 mM K-HEPES, 1 mM DTT, pH 

= 8.5. Reactions were incubated at 20 °C for 1 h prior to termination with 100% TFA. Points were 

fitted to a standard Michaelis Menten fit equation using GraphPad PRISM, n=3. 
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Figure 7: ROCK1 enzymatic activity is minimally affected by the presence of 

methylarginine residues in a peptide containing serine 1589 and serine 1595. 130 ng of 

ROCK1, 1 mM ATP and 10 μM Fhod3 (1581-1595) peptides was incubated in a water bath at 30 

°C for the specified time. Reactions were terminated with TFA and loaded into a vial for mass 

spectrometry analysis. 10 μL of sample was injected into an Agilent QTOF 6545 with a run time 

of 12 mins. A-B) Fhod3 WT, C-D) Fhod3 R1588Me1, E-F) Fhod3 R1590Me1, G-H) Fhod3 

R1588Me1/R1590Me1. Change in the total amount of unmodified or phosphorylated peptide in 

reaction mixtures from charge states [M+2H] (black line), [M+3H] (green line), [M+4H] (blue line), 

and [M+5H] (red line) with time. 
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Figure 8: ROCK1 enzymatic activity is minimally affected by the presence of 

methylarginine residues in a peptide containing serine 1589. 130 ng of ROCK1, 1 mM ATP, 

and 10 μM Fhod3 (1581-1594) peptides was incubated in a water bath at 30 °C for the specified 

time. Reactions were terminated with TFA and loaded into a vial for mass spectrometry analysis. 

10 μL of sample was injected into an Agilent QTOF 6545 with a run time of 12 mins. A-B) Fhod3 

WT, C-D) Fhod3 R1588Me1, E-F) Fhod3 R1590Me1, G-H) Fhod3 R1588Me1/R1590Me1. 

Change in the total amount of unmodified or phosphorylated peptide in reaction mixtures from 

charge states [M+2H] (black line), [M+3H] (green line), [M+4H] (blue line), and [M+5H] (red line) 

with time. 
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Table S1: H. Sapiens proteins containing an RKRSR sequence 

Accession Entry Protein Position 

P57053 Histone H2B type F-S 30-34 

O94913 Pre-mRNA cleavage complex 2 protein Pcf11 477-481 

P23527 Histone H2B type 1-O 30-34 

Q9HAZ1 Dual specificity protein kinase 133-137 

Q6PH81 UPF0547 protein C16orf87 84-88 

Q96IZ7 Serine/Arginine-related protein 53 80-84 

Q8IZU1 Protein FAM9A 6-10 

49-53 

Q3KR37 Protein Aster-B 25-29 

O95696 Bromodomain-containing protein 1 798-802 

Q7RTU1 Transcription factor 23 32-36 

O43290 U4/U6.U5 tri-snRNP-associated protein 1 53-57 

Q9NV56 MRG/MORF4L-binding protein 177-181 

P56182 Ribosomal RNA processing protein 1 homolog A 388-392 

Q3LXA3 Triokinase/FMN cyclase 347-351 

O60814 Histone H2B type 1-K 30-34 

Q0VF96 Cingulin-like protein 1 383-387 

Q93079 Histone H2B type 1-H 30-34 

P33778 Histone H2B type 1-B 30-34 

P62807 Histone H2B type 1-C/E/F/G/I 30-34 

Q5QNW6 Histone H2B type 2-F 30-34 

P06899 Histone H2B type 1-J 30-34 

Q99877 Histone H2B type 1-N 30-34 
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P53801 Pituitary tumor-transforming gene 1 protein-interacting 

protein 

123-127 

Q99879 Histone H2B type 1-M 30-34 

Q16778 Histone H2B type 2-E 30-34 

Q99880 Histone H2B type 1-L 30-34 

P58876 Histone H2B type 1-D 30-34 

Q9UPN6 SR-related and CTD-associated factor 8 428-432 

Q66PJ3 ADP-ribosylation factor-like protein 6-interaction protein 4 7-11 

Q5VTL8 Pre-mRNA-splicing factor 38B 498-502 

Q95218 Zinc finger Ran-binding domain-containing protein 2 285-289 

Q9HCG8 Pre-mRNA-splicing factor CWC22 homology 85-89 

Q9H8W3 Protein FAM204A 102-106 

P46695 Radiation-inducible immediate-early gene IEX-1 59-63 

Q9HCI7 E3 ubiquitin-protein ligase MSL2 340-344 

Q8TC41 E3 ubiquitin-protein ligase RNG217 533-537 

O95232 Luc7-like protein 3 290-294 

O75400 Pre-mRNA-processing factor 40 homolog A 796-800 

Q9HBE1 POZ-, AT hook-, and zinc finger-containing protein 1 346-350 

Q9Y3A4 Ribosomal RNA-processing protein 7 homolog A 231-235 

P47901 Vasopressin V1b receptor 64-68 

O75182 Paired amphipathic helix protein Sin3b 267-271 

Q08170 Serine/Arginine-rich splicing factor 4 357-361 

Q9Y5U2 U5 small nuclear ribonucleoprotein TSSC4 308-312 

Q9UQ35 Serine/arginine repetitive matrix protein 2 245-249 

1849-1853 
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2039-2043 

P18583 Protein SON 2035-2039 

Q9BUQ8 Probable ATP-dependent RNA helicase 20-24 

Q86U06 Probably RNA-binding protein 23 73-77 

Q96G42 Kelch domain-containing protein 7B 772-776 

Q8IX12 Cell division cycle and apoptosis regulator 336-340 

Q12955 Ankyrin-3 29-33 

O43502 DNA repair protein RAD51 homolog 3 366-370 

Q8NBI3 Draxin 133-137 

Q15637 Splicing factor 1 17-21 

Q14498 RNA-binding protein 39 55-59 

71-75 

Q9Y613 FH1/FH2 domain-containing protein 1 1128-1132 

Q2V2M9 FH1/FH2 domain-containing protein 3 1386-1390 

Q6PL18 ATPase family AAA domain-containing protein 2 376-380 

Q92560 Ubiquitin carboxyl-terminal hydrolase BAP1 718-722 

Q8N7W2 BEN domain-containing protein 7 6-10 

Q6DN03 Putative histone H2B type 2-C 30-34 

Q6DRA6 Putative histone H2B type 2-D 30-34 

O95218 Zinc finger Ran-binding domain-containing protein 2 285-289 

Proteins identified using MOTIF search (http://www.genome.jp/tools/motif/MOTIF2.html) and 

Expasy’s ScanProsite (http://prosite.expasy.org/scanprosite) using the UniProtKB/SWISS-Prot 

Database. 

 

http://www.genome.jp/tools/motif/MOTIF2.html
http://prosite.expasy.org/scanprosite
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Figure S1: Fhod3 (1581-1595) can be phosphorylated by ROCK1 in vitro. 130 ng of ROCK1, 

1 mM ATP, 10 μM Fhod3 (1581-1595) WT unmodified peptide was incubated for 5 h in a water 

bath at 30 °C. Reactions were terminated with TFA and loaded into a vial for mass spectrometry 

analysis. 10 μL of sample was injected into an Agilent QTOF 6545 with a run time of 12 mins. Top 

Panel: [M+5H] charge state of Fhod3 (1581-1595) unmodified peptide only control of an extracted 

MS result with a TIC retention time of 4.520 – 8.508 mins, WT unmodified labeled peak of 

401.4430 m/z. Middle Panel: [M+5H] charge state of Fhod3 (1581-1595) unmodified peptide with 

ROCK1 reaction from an extracted MS result with a TIC retention time of 4.469 – 8.406 mins, WT 

unmodified labeled peak of 401.4418 m/z, monophosphorylation labeled peak of 417.4364 m/z, 

and diphosphorylation labeled peak of 433.4284 m/z. Peak at 427.2503 m/z is an unidentified 

contaminate. Bottom panel: [M+5H] charge state of Fhod3 (1581-1595) unmodified peptide with 

ROCK1 reaction from an extracted MS result with a TIC retention time of 4.485 – 4.601 mins, 

monophosphorylation labeled peak of 417.4373 m/z, and diphosphorylation labeled peak of 

433.4297 m/z. Peak at 413.8317 m/z is an unidentified contaminate. ATP = adenosine 
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triphosphate, TFA = trifluoroacetic acid, MS = mass spectrometry, TIC = total ion current, WT = 

wild-type. 
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Figure S2: Methylarginine at 1588 of Fhod3 (1581-1595) minimally affects phosphorylation 

by ROCK1. 130 ng of ROCK1, 1 mM ATP, 10 μM Fhod3 (1581-1595) R1588Me1 unmodified 

peptide was incubated for 5 h in a water bath at 30 °C. Reactions were terminated with TFA and 

loaded into a vial for mass spectrometry analysis. 10 μL of sample was injected into an Agilent 

QTOF 6545 with a run time of 12 mins. Top Panel: [M+5H] charge state of Fhod3 (1581-1595) 

R1588Me1 unmodified peptide only control of an extracted MS result with a TIC retention time of 

4.643 – 9.278 mins, R1588Me1 unmodified labeled peak of 412.4509 m/z. Middle Panel: [M+5H] 

charge state of Fhod3 (1581-1595) R1588Me1 unmodified peptide with ROCK1 reaction from an 

extracted MS result with a TIC retention time of 4.682 – 9.301 mins, R1588Me1 unmodified 

labeled peak of 412.4487 m/z, monophosphorylation R1588Me1 labeled peak of 428.4447 m/z, 

and R1588Me1 diphosphorylation labeled peak of 444.4372 m/z. Bottom panel: [M+5H] charge 

state of Fhod3 (1581-1595) R1588Me1 unmodified peptide with ROCK1 reaction from an 

extracted MS result with a TIC retention time of 4.682 – 4.765 mins, R1588Me1 unmodified 

labeled peak of 412.2510 m/z, monophosphorylation R1588Me1 labeled peak of 428.4458 m/z, 

and R1588Me1 diphosphorylation labeled peak of 444.4381 m/z. ATP = adenosine triphosphate, 
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TFA = trifluoroacetic acid, MS = mass spectrometry, TIC = total ion current, 1588Me1 = Fhod3 

(1581-1595) R1588Me1.        
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Figure S3: Methylarginine at 1590 of Fhod3 (1581-1595) minimally affects phosphorylation 

by ROCK1. 130 ng of ROCK1, 1 mM ATP, 10 μM Fhod3 (1581-1595) R1590Me1 unmodified 

peptide was incubated for 5 h in a water bath at 30 °C. Reactions were terminated with TFA and 

loaded into a vial for mass spectrometry analysis. 10 μL of sample was injected into an Agilent 

QTOF 6545 with a run time of 12 mins. Top Panel: [M+5H] charge state of Fhod3 (1581-1595) 

R1590Me1 unmodified peptide only control of an extracted MS result with a TIC retention time of 

4.643 – 9.278 mins, R1590Me1 unmodified labeled peak of 412.4509 m/z. Middle Panel: [M+5H] 

charge state of Fhod3 (1581-1595) R1590Me1 unmodified peptide with ROCK1 reaction from an 

extracted MS result with a TIC retention time of 4.682 – 9.301 mins, R1590Me1 unmodified 

labeled peak of 412.4489 m/z, and monophosphorylation R1590Me1 labeled peak of 428.4448 

m/z. Peak at 455.2707 m/z is an unidentified contaminate. Bottom panel: [M+5H] charge state of 

Fhod3 (1581-1595) R1590Me1 unmodified peptide with ROCK1 reaction from an extracted MS 

result with a TIC retention time of 4.682 – 4.765 mins, R1590Me1 unmodified labeled peak of 

412.4513 m/z, monophosphorylation R1590Me1 labeled peak of 428.4456 m/z, and R1590Me1 

diphosphorylation labeled peak of 444.4381 m/z. ATP = adenosine triphosphate, TFA = 
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trifluoroacetic acid, MS = mass spectrometry, TIC = total ion current, 1590Me1 = Fhod3 (1581-

1595) R1590Me1. 
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Figure S4: Methylarginine at 1588 and 1590 of Fhod3 (1581-1595) minimally affects 

phosphorylation by ROCK1. 130 ng of ROCK1, 1 mM ATP, 10 μM Fhod3 (1581-1595) 

R1588Me1/R1590Me1 unmodified peptide was incubated for 5 h in a water bath at 30 °C. 

Reactions were terminated with TFA and loaded into a vial for mass spectrometry analysis. 10 μL 

of sample was injected into an Agilent QTOF 6545 with a run time of 12 mins. Top Panel: [M+5H] 

charge state of Fhod3 (1581-1595) R1588Me1/R1590Me1 unmodified peptide only control of an 

extracted MS result with a TIC retention time of 4.710 – 9.245 mins, R1590Me1 unmodified 

labeled peak of 415.2536 m/z. Middle Panel: [M+5H] charge state of Fhod3 (1581-1595) 

R1588Me1/R1590Me1 unmodified peptide with ROCK1 reaction from an extracted MS result with 

a TIC retention time of 4.749 – 9.252 mins, R1588Me1/R1590Me1 unmodified labeled peak of 

415.2527 m/z, and monophosphorylation R1588Me1/R1590Me1 labeled peak of 431.2481 m/z. 

Peak at 458.5251 m/z is an unidentified contaminate. Bottom panel: [M+5H] charge state of Fhod3 

(1581-1595) R1588Me1/R1590Me1 unmodified peptide with ROCK1 reaction from an extracted 

MS result with a TIC retention time of 4.783 – 4.799 mins, R1588Me1/R1590Me1 unmodified 

labeled peak of 415.2547 m/z, monophosphorylation R1588Me1/R1590Me1 labeled peak of 
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431.2486 m/z, and R1588Me1/R1590Me1 diphosphorylation labeled peak of 447.2401 m/z. ATP 

= adenosine triphosphate, TFA = trifluoroacetic acid, MS = mass spectrometry, TIC = total ion 

current, 1588Me1/1590Me1 = Fhod3 (1581-1595) R1588Me1/R1590Me1. 
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Chapter 6 

 

Asymmetric and symmetric protein arginine methylation in methionine-addicted human 

cancer cells 

 

The work described in this chapter has been reproduced from: 

 

Holtz, A. G., Lowe, T. L., Aoki, Y., Kubota, Y., Hoffman, R. M., and Clarke, S. G. (2023) 

“Asymmetric and symmetric protein arginine methylation in methionine-addicted human 

cancer cells” Plos one. 18, article e0296291, pp. 1-21. 

(http://doi.org/10.1371/journal.pone.0296291). PMCID: PMC10745221. PMID: 38134182. 

 

Copyright 2024 

Ashley G. Holtz, Troy L. Lowe, Yusuke Aoki, Yutaro Kubota, Robert M. Hoffman, and Steven G. 

Clarke 

 

Significance Statement 

 

Cancer cells have been associated with elevated levels of transmethylation reactions 

through the uptake of dietary methionine. While an original research study noted that a diet 

depleted of methionine resulted in inhibited tumor growth in mice, it wasn’t until years later that 

methionine dependence was considered a hallmark of cancer. Methionine is an essential amino 

acid and a precursor for the formation of S-adenosylmethionine. S-adenosylmethionine is utilized 

by many methyltransferases including RNA methyltransferases, DNA methyltransferases, and 

protein methyltransferases. Protein arginine methyltransferases are known to be overexpressed 

in cancer, however the biological interplay is still unknown.  

http://doi.org/10.1371/journal.pone.0296291
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These results suggest a connection between PRMT function and cancer. Because of the 

direct link between methionine, S-adenosylmethionine, and PRMTs, we were curious as to 

whether we could observe a difference in methylation patterns between cancer cells that were 

restricted to methionine or not. In this study we utilize a parental and methionine revertant 

osteosarcoma cell line to identify whether revertant cell lines had lower transmethylation marks 

compared to parental.  

Our results ultimately showed that the amounts of asymmetric and symmetric 

dimethylarginine marks were indistinguishable between both cell lines, suggesting the possibility 

that the relationship between PRMTs and cancer may be more complex. 
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Asymmetric and symmetric protein arginine methylation in methionine-addicted human 

cancer cells 
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Figure S1: Validating antibodies against SDMA and ADMA. 

Figure S2: Identification of proteins containing SDMA and ADMA in human parent and 

 revertant 143B osteosarcoma cells: Replicate experiment. 

Figure S3: Identification of SDMA-containing polypeptides in histone and non-histone 

 fractions of parent and revertant human osteosarcoma 143B cells 

Figure S4: Identification of proteins containing SDMA and ADMA in whole cell extracts of 

 the human colorectal cancer HCT116 cell line, human cervical cancer HeLa cell 

 line, and human non-small cell lung cancer H460 cell line. 

Figure S5: Identification of SDMA-containing polypeptides in histone and non-histone 

 fractions of HCT116 and H460 cell extracts 
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Figure S1: Validating antibodies against SDMA and ADMA. 143B-R whole cell extracts were 

used as positive controls, and GST-GAR and E. coli extracts were used as negative controls. To 

ensure the antibodies recognized the arginine methylation modification rather than the glycine 

and arginine rich regions, an unmethylated GST-tagged protein, based on the N-terminus of 

human fibrillarin that contains a glycine and arginine rich region (GST-GAR), was used as a 

negative control. Another negative control was an extract of untransformed and uninduced 

BL21 Escherichia coli (E. coli) lysate. The first and third panels show Coomassie-stained SDS-

PAGE gels. The second and fourth panels are immunoblots using the SDMA antibody or ADMA 

antibody with exposure times of 3 seconds or 10 seconds, respectively. Lanes from a single gel 

or blot were spliced together, as shown by the vertical black line, to remove irrelevant lanes. The 

same lanes for the parent cells and parent histones are shown in Figs 2 and 4, respectively. 
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Figure S2: Identification of proteins containing SDMA and ADMA in human parent and 

revertant 143B osteosarcoma cells: Replicate experiment. This shows an individual replicate 

experiment of the same conditions as in Fig 2. The leftmost panel shows a Coomassie-stained 

SDS-PAGE gel. The middle panel and rightmost panel show an anti-SDMA immunoblot and an 

anti-ADMA immunoblot, respectively, each with a 30 second exposure time. Molecular weight 

markers are shown at the left in the Coomassie-stained gel and as fluorescent bands on the left 

margin of the immunoblots. 
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Figure S3: Identification of SDMA-containing polypeptides in histone and non-histone 

fractions of parent and revertant human osteosarcoma 143B cells. This shows a higher 

exposure (30 seconds) of the immunoblot in Fig. 3 to show the histone band more clearly. 
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Figure S4: Identification of proteins containing SDMA and ADMA in whole cell extracts of 

the human colorectal cancer HCT116 cell line, human cervical cancer HeLa cell line, and 

human non-small cell lung cancer H460 cell line. This shows a higher exposure (10 seconds) 

of the immunoblots in Fig. 6. The left panel is an anti-SDMA immunoblot, and the right panel is 

an anti-ADMA immunoblot. 

 

 

 

 



129 
 

 

Figure S5: Identification of SDMA-containing polypeptides in histone and non-histone 

fractions of HCT116 and H460 cell extracts. This shows a higher exposure (30 seconds) of the 

anti-SDMA immunoblot in Fig. 7. 
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Chapter 7 

 

Identification of a Protein Arginine Methyltransferase 7 (PRMT7)/Protein Arginine 

Methyltransferase 9 (PRMT9) inhibitor 

 

The work described in this chapter has been reproduced from: 

 

Feoili, A., Iannelli, G., Cipriano, A., Milite, C., Shen, L., Wang, Z., Hadjikyriacou, A., Lowe, 

T. L., Safaeipour, C., Viviano, M., Sarno, G., Morretta, M. M., Yang, Y., Clarke, S. G., 

Cosconati, S., Castellano, S., and Sbardella, G. (2023) “Identification of a Protein Arginine 

Methyltransferase 7 (PRMT7)/Protein Arginine Methyltransferase 9 (PRMT9) Inhibitor” J. 

Med. Chem. 66, article 3c01030, pp. 1-19. (http://doi.org/10.1021/acs.jmedchem.3c01030). 

PMCID: PMC10578352. PMID: 37560786. 

 

Copyright 2024 

Alessandra Feoli, Giulia Iannelli, Alessandra Cipriano, Ciro Milite, Lei Shen, Zhihao Wang, Andrea 

Hadjikyriacou, Troy L. Lowe, Cyrus Safaeipour, Monica Viviano, Giuliana Sarno, Elva Morretta, 

Maria Chiara Monti, Yanzhong Yang, Steven G. Clarke, Sandro Cosconati, Sabrina Castellano, 

and Gianluca Sbardella 

 

Significance Statement 

 

Protein arginine methyltransferases have been identified as targets for cancer 

therapeutics. While the goal of many drug and inhibitor designs are to target specific molecular 

binding sites, even well-constructed inhibitors may have off target sights limiting their usefulness.  

http://doi.org/10.1021/acs.jmedchem.3c01030
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Protein methyltransferases bind S-adenosylmethionine at motifs I, post motif I, motif II, 

and motif III. Protein arginine methyltransferase contains an additional double E loop, and THW 

loop which specifically binds the guanidino arginine. Previous inhibitors fall into three classes. The 

first type defined involves a S-adenosylmethionine analog, the second type defined involves a 

peptide or guanidino analog, or a third type which involves a mixture of these structures.  

To date there have been many successful inhibitors identified including MS023 which is 

defined as a type I PRMT inhibitor, EPZ015666 which is a PRMT5 specific inhibitor, as well as 

SGC8158 which is PRMT7 specific. While additional inhibitors are present and currently 

undergoing clinical trials, a general inhibitor for PRMT9 has not yet been identified.  

The activity of PRMTs have been noted to be regulated by dimerization. While two 

monomers of PRMT 1-5, 6 and 8 are needed for activity, PRMT7 and PRMT9 just need one 

monomer. The structures of PRMT7 and PRMT9 are pseudo dimers containing duplicate motifs 

thus the need for just one copy for enzyme activity. Because of a similar structural design basis, 

in theory a PRMT7 inhibitor design could be applied to PRMT9. In collaboration with the Sbardella 

group, we were able to identify a novel inhibitor for both PRMT7 and PRMT9. While also 

uncovering small differences in both PRMT7 and PRMT9 active sites, which may aid in future 

PRMT drug designs. 
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Chapter 8 

 

Future directions and concluding statements of protein arginine methyltransferase 

research 

 

The work described in this chapter includes my unpublished experiments that maybe entry 

points to further work in the field. 

 

Abstract 

 

This chapter includes preliminary work in four areas. First we analyzed peptide sequences 

that have been previously assessed as PRMT7 methylation sites in two proteomic studies. We 

find that some of these sites do not appear to be methylatable raising questions on the original 

identification of these sites, or suggesting that tertiary structural conformations may strongly affect 

substrate site recognition. Secondly,  we followed up on the results of Chapter 4 to demonstrate 

the effect of the serine residue in the RKRSR motif of histone H2B and Fhod1/Fhod3. Thirdly, we 

describe experiments that originate from results in a previous paper describing the allosteric 

regulation of PRMTs (Jain 2017). Here we show the effects of amino acid changes at positions 1, 

3, 17 and 19 on histone H4 methylation by PRMT7. Finally, we show that an amino acid change 

in PRMT7 that results in human pathology also results in the loss of enzyme activity.  

While the current thesis in its whole describes the work performed throughout my graduate 

career, additional research experiments were performed yet will remain unpublished. The purpose 

of this chapter is to document these unpublished studies in the hopes that future protein arginine 

methyltransferase researchers can advance the ideas presented.  

First we pursued our investigation of the substrate specificity of PRMT7. We selected 

peptide sequences from identified proteins from two separate PRMT7 proteomics studies 
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containing RXR motifs (Ma 2023)(Szewczyk 2020). While we expected that PRMT7 would 

methylate each of these peptides, we found that many of these peptides were not substrates at 

all using the P81 phosphocellulose assay (Figures 1-3). We confirmed the absence of substrate 

activity in all of these peptides using the radioactive gel assay and mass spectrometry analysis 

(data not shown). We suggest two reasons why we saw little or no methylation in peptides from 

proteins that had been previously been identified as containing PRMT7 dependent methylated 

sites. In first place the three-dimensional structure of the protein may be required for the PRMT7 

recognition of particular arginine residues. Secondly, it is possible that the some of the proteomic 

identifications by mass spectrometry were simply incorrect. Further work will be necessary to 

validate the proteomic studies and to determine how three-dimensional structures may control the 

recognition of sites by PRMT7.  

In an extension of the work of Chapter 4 we studied the effect of the serine residue in the 

RKRSR PRMT7 substrate motif of histone H2B and Fhod1/Fhod3. We showed that switching the 

lysine and serine residues, or substituting a serine residue for the lysine residue, or substituting 

a lysine residue for the serine residue all had little effect on the ability of a peptide substrate to be 

methylated by PRMT7 (Figure 4). We were surprised by these results in light of the total loss of 

substrate activity when the lysine and central arginine residue were switched as seen in Chapter 

4. These results now will allow for a more extensive study to try to explain why some changes in 

this motif affect substrate activity and some don’t. 

One of the biggest breakthroughs that has come out of the Clarke Lab that has yet to 

further be investigated is the idea of allosteric regulation. Histone H4 can be methylated by 

PRMT1, PRMT5, and PRMT7. While initial characterization suggested H4R3 to be methylated by 

PRMT7 (Ying 2015), further studies revealed that H4R3 is not PRMT7 specific. Additionally, 

studies have shown that H4R17 and H4R19 are PRMT7 specific while H4R3 has been identified 

as a substrate for PRMT1 (Huang 2005) and PRMT5 (Dhar 2012). Jain and colleagues identified 

that if a predeposited methyl mark occurs at H4R17 then H4R3 methylation by PRMT1 or PRMT5 



157 
 

is enhanced (Jain 2017). Unfortunately, these results have not been recapitulated in vivo. 

However, with the discovery of PRMT5 specific inhibitor EPZ015666 (Liu 2021) and the PRMT7 

specific inhibitor SGC8158 (Szewczyk 2020), these in vivo studies are now possible. Ultimately 

these results have opened up doors for researchers to question whether other substrates that 

may be methylated by multiple PRMTs simultaneously, operate in an allosteric fashion. In efforts 

to recapitulate this finding as well as add to the knowledge we selectively tested N-terminal 

histone H4 peptides that contained phosphoserine modifications, as well as methylarginine 

modifications and tested how these affect PRMT1, PRMT5 and PRMT7 activities. The Zhang lab 

at the University of Georgia performed a similar study with PRMT1 and PRMT5 and concluded 

that if a modification in the -2 or +2 position occurred next to the R3 histone H4 peptide, then 

PRMT1 or PRMT5 activity would be mildly inhibited (Fulton 2022). Results of our experiments are 

presented in Figure 5. In this figure we show that amino acid substitutions at residues 1 and 3 do 

not largely effect PRMT7 activity. However, we were surprised to find that the loss of either 

arginine 17 or arginine 19 completely abolished the substrate activity of H4 peptides. This work 

provides the framework for future studies of the allosteric regulation of PRMT5 by methylation 

modifications catalyzed by PRMT7. 

Late into my PhD we were contacted by a doctor who had a patient with a PRMT7 mutation 

that showed a phenotype similar to those described by Cali 2023. The doctor identified a deletion 

mutation of one of the leucine residues in motif II and we were able to identify that this mutation 

leads to an abolishment of PRMT7 activity (Figure 6). It will be very interesting to examine the 

three-dimensional structure of the PRMT7 enzyme with the deleted leucine residue to determine 

the molecular basis for the loss of activity.  
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Figure 1: Time course methylation assays of peptides containing RXR motifs identified 

from PRMT7 proteomic studies. 1.5 μg of GST-HsPRMT7, 10 μM of described peptide and 

0.14 μM 3H-AdoMet was incubated in a reaction mixture containing 50 mM HEPES, 1 mM DTT 

at a pH of 8.5 for the varied time indicated. Methylation reactions were subjected to P81 

phosphocellulose analysis. 
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Figure 2: Competition experiments the verify if peptides that were not considered 

substrates with histone H2B (23-37). 1.5 μg of GST-HsPRMT7, 10 μM of described peptide, 

and 10 μM of histone H2B (23-37) and 0.14 μM 3H-AdoMet was incubated in a reaction mixture 

containing 50 mM HEPES, 1 mM DTT at a pH of 8.5 for the varied time indicated. Methylation 

reactions were subjected to P81 phosphocellulose analysis. 
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Figure 3: Time course methylation experiments of histone peptides H2B and H4. 1.5 μg of 

GST-HsPRMT7, 10 μM of described peptide, and 0.14 μM 3H-AdoMet was incubated in a reaction 

mixture containing 50 mM HEPES, 1 mM DTT at a pH of 8.5 for the varied time indicated. Reaction 

mixtures were assayed using our P81 Phosphocellulose assay. For the H4 (1-21) peptides we 

tested a stock sample that we used in previous experiments as well a freshly made peptide 

purchased from GenScript. Additionally, we compared these peptides toward a non-amidated 

peptide to see if this altered PRMT7 activity. 
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Figure 4: Mutations and rearrangements of residues of histone H2B (23-37) and PRMT7.  

1.5 μg of GST-HsPRMT7, 10 μM of described peptide, and 0.14 μM 3H-AdoMet was incubated in 

a reaction mixture containing 50 mM HEPES, 1 mM DTT at a pH of 8.5 for the varied time 

indicated. Reaction mixtures were assayed using our P81 Phosphocellulose assay 
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Figure 5: Modifications of Histone H4 (1-21) peptide and PRMT7 activity. 1.5 μg of GST-

HsPRMT7, 10 μM of described peptide, and 0.14 μM 3H-AdoMet was incubated in a reaction 

mixture containing 50 mM HEPES, 1 mM DTT at a pH of 8.5 for the varied time indicated. Reaction 

mixtures were assayed using our P81 Phosphocellulose assay. 
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Figure 6: Deletion of the leucine in motif II of PRMT7 abolishes methylation activity. A) 

Coomassie stained gel of purified 1.5 μg of GST-HsPRMT7 L476del (Lane 2) or GST-HsPRMT7 

WT (Lane 3) from e. coli. B) Time course methylation assays of either GST-HsPRMT7 WT or 

GST-HsPRMT7 L476del with human histone H2B (23-37) as a substrate. 1.43 μg of enzyme was 

used in each reaction and 10 μM of peptide substrate. Reactions were initiated with 0.35 μM 3H-

AdoMet. Buffer conditions consisted of 50 mM HEPES, and 1 mM DTT at a pH of 8.5. Reactions 

were incubated at 17 °C for the indicated times. Reactions were assayed using our P81 

phosphocellulose assay. Points represent individual experiments. Concentrations of enzymes 

were determined by A280 nanodrop where 1 absorbance unit is equal to 1 mg/mL.  

 




